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Abstract: We study limit theorems for entropic optimal transport (EOT)
maps, dual potentials, and the Sinkhorn divergence. The key technical tool
we use is a first and second-order Hadamard differentiability analysis of
EOT potentials with respect to the marginals, which may be of independent
interest. Given the differentiability results, the functional delta method is
used to obtain central limit theorems for empirical EOT potentials and
maps. The second-order functional delta method is leveraged to establish
the limit distribution of the empirical Sinkhorn divergence under the null.
Building on the latter result, we further derive the null limit distribution
of the Sinkhorn independence test statistic and characterize the correct
order. Since our limit theorems follow from Hadamard differentiability of
the relevant maps, as a byproduct, we also obtain bootstrap consistency and
asymptotic efficiency of the empirical EOT map, potentials, and Sinkhorn
divergence.
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1. Introduction

1.1. Overview

Optimal Transport (OT) [55] quantifies the discrepancy between Borel proba-
bility measures μ1, μ2 on R

d as

OTc(μ1, μ2) := inf
π∈Π(μ1,μ2)

∫

c dπ, (1)

where c : R
d × R

d → R+ = [0, ∞) is the cost function and Π(μ1, μ2) is the
set of couplings (or plans) between μ1 and μ2. Under certain conditions on
the marginals and the cost function, the OT plan π that achieves the infimum
in (1) concentrates on the graph of a deterministic map T , called the OT map or
the Brenier map when c is quadratic [10, 43]. OT tools have been successfully
employed for various applications, encompassing machine learning, statistics,
and applied mathematics; see [78, 77, 8, 88] and references therein. We refer the
reader to [93, 94, 87] as standard references on OT theory.

Statistical OT seeks to estimate and carry out inference for OT and related
objects thereof based on data. Two central objects of interest are the OT cost,
which has natural applications to minimum distance estimation and testing, and
the OT map, which is useful for transfer learning and domain adaptation tasks.
Alas, despite its widespread applicability, the OT problem suffers from compu-
tational and statistical scalability issues. In general, the OT cost is difficult to
compute and its plug-in empirical estimator converges towards the ground truth
at the rate n−1/d [34, 41, 62, 72], which is known to be minimax optimal without
further assumptions [73]. Estimation of the Brenier map encounters similar dif-
ficulties, as the results of [54] suggest that the minimax rate would be n−1/d in
general (though formally a conjecture). Imposing smoothness on the marginals
or the Brenier map can speed up minimax rates, but verification of such as-
sumptions is nontrivial and computations of the minimax optimal estimators
tend to be burdensome [30, 54, 63].

Entropic OT (EOT) has emerged as an appealing alternative to the classic
Kantorovich formulation that circumvents these statistical and computational
difficulties. EOT regularizes the transportation cost by the Kullback-Leibler
(KL) divergence as [60]

Sc,ε(μ1, μ2) := inf
π∈Π(μ1,μ2)

∫

c dπ + εDKL(π‖μ1 ⊗ μ2), (2)

where ε > 0 is a regularization parameter. As ε → 0, the EOT problem converges
towards OT, not only in terms of the transportation cost but also in optimal
plans and dual potentials [3, 6, 15, 18, 22, 24, 59, 66, 69, 74, 76]. For fixed
ε > 0, EOT alleviates the computational and statistical challenges associated
with classic OT. Indeed, EOT between discrete distributions (e.g., empirical
distributions) can be efficiently solved via the Sinkhorn algorithm [27, 4], whose
time complexity scales quadratically in the number of support points. Regarding
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empirical estimation, EOT and its centered version S̄c,ε(μ1, μ2) = Sc,ε(μ1, μ2)−
(Sc,ε(μ1, μ1) + Sc,ε(μ2, μ2))/2 (known as the Sinkhorn divergence) enjoy the
parametric n−1/2 convergence rate under several settings [32, 44, 65, 83]. Recent
work has further established central limit theorems (CLTs) for the EOT cost in
certain cases [9, 32, 48, 57, 65] as well as estimation rate results for EOT maps
and plans [80, 82, 83]; see a literature review below. Still, much is left to be
desired on deeper understanding of limit behaviors of EOT and related objects,
such as EOT potentials, maps, and Sinkhorn divergences, whose analysis poses
a significant challenge from a probabilistic perspective.

1.2. Contributions

The present paper contributes to the growing literature on statistical OT by es-
tablishing limit theorems of the aforementioned objects: EOT potentials, maps,
and the Sinkhorn divergence. The key ingredient of our derivations is a first and
second-order Hadamard differentiability analysis of the EOT potentials with re-
spect to (w.r.t.) the marginal distributions. Importantly, we establish Hadamard
differentiability of the EOT potentials as maps into Hölder function spaces. The
derivation first establishes Hadamard differentiability as maps into the space of
continuous functions (C-space) using the Schrödinger system, which character-
izes EOT potentials, and a version of the implicit function theorem. We then lift
the Hadamard differentiability to Hölder spaces by showing that derivatives of
the EOT potentials are again Hadamard differentiable as maps into the C-space.
Having this result, the functional delta method [85] yields a CLT for the em-
pirical EOT potentials, which, in turn, implies a CLT for the EOT map under
the quadratic cost via the continuous mapping theorem. Both limit variables
are characterized as Gaussians with values in the appropriate function spaces.

Hadamard differentiability results for the EOT potentials further enable de-
veloping a limit distribution theory for the Sinkhorn divergence. While asymp-
totic normality under the alternative (when μ1 �= μ2) is a straightforward con-
sequence of existing EOT limit theorems [32, 48], the null case (when μ1 = μ2)
for general distributions is significantly more challenging and is a subject of
this paper. The difficulty originates from the first-order Hadamard derivative
of the Sinkhorn divergence nullifying when μ1 = μ2 (as the functional achieves
its global minimum there), which implies that the variance of the empirical
Sinkhorn divergence vanishes under the null and the limit degenerates. To over-
come this, we employ the second-order functional delta method [85], which
requires second-order Hadamard derivatives of the EOT potentials and the
Sinkhorn divergence. The Hadamard differentiability result of EOT potentials
in Hölder spaces is key to finding such higher-order derivatives. Application of
the second-order functional delta method then yields a distributional limit for
the empirical Sinkhorn divergence at the rate of n−1. To the best of our knowl-
edge, the null limit distribution for the Sinkhorn divergence beyond the discrete
case has been an open problem, and our result closes this gap.

The Sinkhorn divergence was applied to independence testing in [61], al-
though the null limit distribution of the test statistic was not obtained in that
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work. [61] proposed critical values of order n−1/2 derived from concentration
inequalities, which is at odds with the n−1 order fluctuations under the null
implied by our limit theorem. Building on the second-order Hadamard differ-
entiability result for the Sinkhorn divergence and techniques for analysis of
U -processes [19, 29], we establish the null limit distribution of the Sinkhorn
independence test statistic and the correct n−1 order. Finally, the Hadamard
differentiability results automatically yield bootstrap consistency and asymp-
totic efficiency of the empirical EOT potentials, map, and Sinkhorn divergence
(under the alternative), which is another virtue of our approach.

1.3. Literature review

Statistical and probabilistic analyses of EOT and related objects have seen ac-
tive research in the past couple of years. Regarding limit distribution theory,
[9, 57] derived CLTs for the EOT cost with c(x1, y2) = ‖x1−x2‖p (p ∈ [1, ∞)) for
finitely discrete distributions. [9] also derived the null limit of the Sinkhorn di-
vergence in the discrete case by parameterizing it by finite-dimensional simplex
vectors and directly finding the Hessian w.r.t. the simplex vectors. This approach
does not directly extend to the general case. For general sub-Gaussian distribu-
tions, [65] showed asymptotic normality of

√
n(S‖·‖2,ε(μ̂1

n, μ2)−E[S‖·‖2,ε(μ̂1
n, μ2)])

and its two-sample analog. The main limitation of this result is that the cen-
tering term is the expected empirical EOT cost, which precludes performing
inference for S‖·‖2,ε(μ1, μ2) itself. This limitation was addressed in [32], who de-
rived a limit theorem for the population centering by combining the CLT from
[65] with a bias bound of the form E

[
S‖·‖2,ε(μ̂1

n, μ2)
]
−S‖·‖2,ε(μ1, μ2) = o(n−1/2).

The recent work by the present authors [48] generalized this result to dependent
data and further complemented it with asymptotic efficiency of the empirical
EOT cost and consistency of the bootstrap estimate. It is worth noting that [32]
derived the n−1 rate for the empirical Sinkhorn divergence under the null but
did not derive its limit distribution.

Estimation of the EOT plan and map were also studied as a means to obtain
computationally efficient proxies of the OT plan and the Brenier map, respec-
tively. [82] considered estimation of the Brenier map under the quadratic cost
via an entropic approximation; see also [80]. They analyzed the empirical EOT
map and established a rate toward the Brenier map by taking ε = εn → 0,
which is however sub-optimal. [83] established the parametric rate toward the
EOT map with ε > 0 fixed. CLTs for the empirical EOT plan were studied
in [57, 53] for discrete distributions and [51] for more general cases. The latter
work also obtained a limit theorem for the EOT potentials in the C-space, which
is derived via a significantly different proof technique than ours (not relying on
Hadamard differentiability) and is weaker than the convergence in Hölder spaces
established herein. Hadamard differentiability in Hölder spaces is crucial for ob-
taining the null limit distribution of the empirical Sinkhorn divergence, which is
one of our main contributions. Furthermore, our argument based on Hadamard
differentiability of EOT potentials yields not only limit distributions but also
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asymptotic efficiency and consistency of the bootstrap. Finally, [52] derived limit
theorems for a different entropic regularization that makes the optimal solution
explicit and thus relies on analysis techniques that significantly differ from ours.

Our Hadamard differentiability results also contribute to the study of stability
of EOT, which has attracted growing interest in the mathematics literature
[14, 17, 33, 37, 45, 67, 68, 75], and hence would be of independent interest
beyond statistical applications. Those references study stability of EOT-related
objects w.r.t. varying marginals (e.g., weak convergence of marginals) under
general settings, but do not contain differentiability results like ours. The recent
preprint [84] studies stability of the cost and dual potentials of the quadratic
Gromov-Wasserstein distance with entropic penalty, leveraging the variational
form from [96] that represents it as an infimum of a sequence of EOT problems.

1.4. Concurrent work

The concurrent and independent work [50] establishes similar results concern-
ing limit distributions of EOT potentials and the Sinkhorn divergence, but via
a markedly different proof technique that does not involve Hadamard deriva-
tives or the functional delta method. They also do not discuss bootstrapping
or asymptotic efficiency. Our overlapping results—a mean-zero Gaussian limit
for the EOT potentials in the Hölder space and a non-Gaussian limit for the
Sinkhorn divergence under the null (with a scaling factor of n)—are consistent
with each other, although they derive explicit forms of the limit distributions.
Compared with [50], our contribution is to formulate and derive Hadamard dif-
ferentiability for the EOT potentials and the Sinkhorn divergence, including
higher-order ones, from which the limit distributions, consistency of resampling
methods, and asymptotic efficiency of the empirical estimators automatically fol-
low. The resampling methods enable performing inference without knowing the
explicit limits, and our semiparametric efficiency result implies that, though the
limit is not explicit, it is the best one can hope for. Furthermore, the Hadamard
differentiability results enable deriving limit distributions beyond the empirical
estimators, such as for the Sinkhorn independence statistic. As such, we view
the contributions of our work and that of [50] as complementary to each other.

Another related work is [49], which appeared after the initial version of this
paper was posted on arXiv. That work derived several limit theorems for EOT-
related objects for nonsmooth costs, combining the approaches of [50] and [83],
but their scope and proof techniques are substantially different.

1.5. Organization

The rest of the paper is organized as follows. In Section 2, we collect background
material on the EOT problem, potentials, map, and Sinkhorn divergence. In
Section 3, we derive limit distributions of these objectives. We also derive the
null limit distribution of the Sinkhorn independence test statistic in [61]. In
Section 4, we collect Hadamard differentiability results for the relevant maps,
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including higher-order ones. In Section 5, we discuss bootstrap consistency and
asymptotic efficiency of the empirical estimators. Section 6 contains proofs for
Sections 3 and 4. Section 7 leaves some concluding remarks and discussions on
the extensions to the unbounded support case and multimarginal EOT. The
Appendix contains additional results concerning the m-out-of-n bootstrap for
the Sinkhorn null limit (including small-scale numerical experiments), proofs
that are omitted from the main text, technical tools used in the proofs, and
other auxiliary results.

1.6. Notation

For a subset A of a topological space S, let A
S

denote the closure of A. We use
P(S) to denote the set of Borel probability measures on S. For μ ∈ P(S), spt(μ)
denotes its support. For a nonempty set S, let �∞(S) denote the Banach space of
bounded real functions on S equipped with the sup-norm ‖ · ‖∞,S = supx∈S | · |.
For every compact set X ⊂ Rd, let C(X ) denote the Banach space of continuous
functions on X equipped with the sup-norm ‖ · ‖∞,X . For every multi-index

k = (k1, . . . , kd) ∈ N
d
0 with |k| =

∑d
j=1 kj (N0 = N∪ {0}), define the differential

operator Dk by Dk = ∂|k|

∂x
k1
1 ···∂x

kd
d

with D0f = f . For every s ∈ N0 and nonempty

compact set X ⊂ R
d that agrees with the closure of its interior, Cs(X ) denotes

the set of functions f on X such that f has continuous derivatives of all orders
≤ s on int(X ) and the derivatives have continuous extensions to X (C0(X ) =
C(X )). Define the norm ‖f‖Cs(X ) =

∑s
j=0 max|k|=j ‖Dkf‖∞,int(X ); (Cs(X ), ‖ ·

‖Cs(X )) is a separable Banach space [see Problem 5.1 in [47]; separability follows

by noting that f �→ (Dkf)|k|≤s is isomorphic from Cs(X ) onto a closed subspace

of
∏

k:|k|≤s C(X )]. We often identify a finite signed Borel measure γ on R
d with

the linear functional f �→ γ(f) :=
∫

f dγ defined on the bounded Borel functions
on R

d. For two real numbers a and b, let a ∨ b = max{a, b}.

2. Background and preliminaries

2.1. EOT problem

In this paper, we study EOT problems with smooth cost functions for compactly
supported distributions on R

d. We briefly review basic definitions and results
concerning EOT problems. Let c : Rd × R

d → R+ be a smooth (i.e., infinitely
differentiable) cost function. To simplify exposition concerning the Sinkhorn
divergence, we will assume that c is symmetric, i.e., c(x1, x2) = c(x2, x1) for all
x1, x2 ∈ R

d. A canonical example is the quadratic cost c(x1, x2) = ‖x1 −x2‖2/2.
The corresponding EOT problem for compactly supported distributions μ1, μ2

on Rd is defined as

Sc,ε(μ1, μ2) = inf
π∈Π(μ1,μ2)

∫

c dπ + εDKL(π‖μ1 ⊗ μ2), (3)
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where ε > 0 is a regularization parameter, Π(μ1, μ2) is the set of couplings of
(μ1, μ2), and DKL is the Kullback-Leibler divergence defined by

DKL(³‖´) :=

{∫
log(d³/d´) d³ if ³ � ´

+∞ otherwise
.

The EOT problem admits a unique solution π�, which we call the EOT plan.
Throughout this paper, we assume that the regularization parameter ε > 0 is
fixed, so we often omit the dependence on ε.

The EOT problem admits strong duality, which reads as

Sc,ε(μ1, μ2) = sup
ϕ=(ϕ1,ϕ2)

∫

ϕ1 dμ1 +

∫

ϕ2 dμ2 − ε

∫

e
ϕ1⊕ϕ2−c

ε dμ1 ⊗ μ2 + ε, (4)

where (ϕ1 ⊕ ϕ2)(x1, x2) = ϕ1(x1) + ϕ2(x2) and the supremum is taken over
all ϕ = (ϕ1, ϕ2) ∈ L1(μ1) × L1(μ2). There exist functions ϕ = (ϕ1, ϕ2) ∈
L1(μ1) × L1(μ2) that achieve the supremum in the dual problem (4), which we
call EOT potentials. EOT potentials are a.e. unique up to additive constants in
the sense that if (ϕ̃1, ϕ̃2) is another pair of EOT potentials, then there exists a
constant a ∈ R such that ϕ̃1 = ϕ1 + a μ1-a.e. and ϕ̃2 = ϕ2 − a μ2-a.e. A pair
of functions ϕ ∈ L1(μ1) × L1(μ2) are EOT potentials if and only if they satisfy
the so-called Schrödinger system

∫

e
ϕ1⊕ϕ2−c

ε dμj − 1 = 0 μi-a.e., i �= j,

where μj acts on the j-th coordinate, i.e.,
∫

e
ϕ1⊕ϕ2−c

ε dμ2 =

∫

e
ϕ1(·)+ϕ2(x2)−c(·,x2)

ε dμ2(x2).

Given EOT potentials (ϕ1, ϕ2), the (unique) EOT plan π� can be expressed as

dπ� = e
ϕ1⊕ϕ2−c

ε d(μ1 ⊗ μ2). (5)

See Section 1 in [74] and the references therein for the above results.

2.2. EOT potentials

In what follows, we deal with distributions supported in a compact set X ⊂ R
d.

We will maintain the following assumption throughout the paper:

the set X ⊂ R
d is a bounded closed ball,

where we implicitly assume that the radius of X is sufficiently large to contain
the supports of the population distributions.

Our limit theorems rely on regularity properties of EOT potentials. These
properties are summarized in the following lemma (proved in Appendix B),
where the notation ≡ is used to represent equality that holds everywhere on the
domain.
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Lemma 1 (Regularity of EOT potentials). Pick and fix an arbitrary reference
point (x◦

1, x◦
2) ∈ X × X . The following hold.

(i) For every µ = (μ1, μ2) ∈ P(X )×P(X ), there exist EOT potentials (ϕ1, ϕ2) ∈
C(X ) × C(X ) such that
∫

e
ϕ1(·)+ϕ2(x2)−c(·,x2)

ε dμ2(x2) − 1 ≡ 0,

∫

e
ϕ1(x1)+ϕ2(·)−c(x1,·)

ε dμ1(x1) − 1 ≡ 0.

(6)
Furthermore, if (ϕ̃1, ϕ̃2) is another pair of EOT potentials satisfying (6),
then there exists a ∈ R such that (ϕ̃1, ϕ̃2) ≡ (ϕ1 + a, ϕ2 − a). Hence, there
exists a unique pair of functions ϕµ = (ϕµ

1 , ϕµ
2 ) ∈ C(X ) × C(X ) that satis-

fies (6) and ϕµ
1 (x◦

1) = ϕµ
2 (x◦

2).
(ii) For every s ∈ N, there exists Rs > 0 that may depend on c, ε, d, X , such that

‖ϕµ
1 ‖Cs(X ) ∨ ‖ϕµ

2 ‖Cs(X ) ≤ Rs for all µ ∈ P(X ) × P(X ).
(iii) Fix arbitrary s ∈ N and equip P(X ) with the topology of weak convergence.

Then, the map µ �→ ϕµ, P(X )×P(X ) → Cs(X )×Cs(X ) is continuous, i.e., if
each μi

n converges weakly to μi (i = 1, 2), then ϕµn → ϕµ in Cs(X )×Cs(X ).

2.3. EOT map

The EOT map is an efficiently computable surrogate of the Brenier map. Recall
that the (vanilla) OT problem with the quadratic cost between (μ1, μ2) with
absolutely continuous μ1 admits a (μ1-a.e.) unique OT map (called the Brenier
map) T : Rd → R

d and the (unique) OT plan concentrates on the graph of T ,
{(x1, T (x1)) : x1 ∈ spt(μ1)}. Hence, the Brenier map agrees with the conditional
expectation of the second coordinate given the first under the OT plan (also
called the barycenter projection). Motivated by this observation, [82] considered
the following EOT analog of the Brenier map.

Definition 1 (EOT map). Consider the quadratic cost c(x1, x2) = ‖x1−x2‖2/2.
For µ = (μ1, μ2) ∈ P(X ) × P(X ), the EOT map is defined by

T µ = Eπ� [X2 | X1 = ·], (X1, X2) ∼ π�,

where π� is the unique EOT plan for (μ1, μ2).

The EOT map is a priori defined only μ1-a.e. However, as noted in [82], using
the expression (5) of the EOT plan, we may define a version of the conditional
expectation for all x1 ∈ X (and indeed x1 ∈ R

d) as

T µ(x1) =

∫

X
x2e

ϕ
µ

2 (x2)−‖x1−x2‖2/2

ε dμ2(x2)
∫

X
e

ϕ
µ

2 (x2)−‖x1−x2‖2/2

ε dμ2(x2)
, x1 ∈ X . (7)

We always choose this version throughout the paper. Just as the Brenier map,
the EOT map can be characterized in terms of the gradient of the EOT potential.

Lemma 2 (Proposition 2 in [82]). Under the setting of Definition 1, we have
T µ(x1) = x1 − ∇ϕµ

1 (x1) for x1 ∈ X .
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[82] used the EOT map as a means to estimate the (original) Brenier map
by taking ε = εn → 0. Here, we view the EOT map T µ as an object of interest
on its own right, rather than approximating the Brenier map.

Example 1 (Vector quantile function). The Brenier map can be interpreted as
a vector version of the quantile function when μ1 is taken as a known reference
measure, such as μ1 = Unif[0, 1]d [13, 20, 46]. Indeed, for d = 1, the Brenier
map sending μ1 = Unif[0, 1] to μ2 agrees with the quantile function of μ2 [87].
The EOT map T µ can thus be viewed as an efficiently computable surrogate of
the vector quantile function [12].

2.4. Sinkhorn divergence

One drawback of EOT in (3) is that it is not a metric even for distance-like costs,
such as c(x1, x2) = ‖x1 −x2‖p, p ≥ 1. In fact, EOT is not even a divergence since
Sc,ε(μ1, μ2) �= 0 when μ1 = μ2, which renders it incompatible for applications
to homogeneity and independence testing.1 To remedy this issue, a popular
approach is center EOT to obtain the Sinkhorn divergence:

S̄c,ε(μ1, μ2) = Sc,ε(μ1, μ2) − 1

2

(
Sc,ε(μ1, μ1) + Sc,ε(μ2, μ2)

)
. (8)

Under certain regularity conditions on the cost function (satisfied by the quadrat-
ic cost), the Sinkhorn divergence satisfies S̄c,ε(μ1, μ2) ≥ 0 and S̄c,ε(μ1, μ2) = 0
if and only if μ1 = μ2 [39].

Assuming x◦
1 = x◦

2, by duality (4) and ϕ
(μi,μi)
1 = ϕ

(μi,μi)
2 (which follows by

symmetry of the cost function), the Sinkhorn divergence admits the following
expression [80]:

S̄c,ε(μ1, μ2) =

∫

(ϕ
(μ1,μ2)
1 − ϕ

(μ1,μ1)
1 ) dμ1 +

∫

(ϕ
(μ1,μ2)
2 − ϕ

(μ2,μ2)
2 ) dμ2. (9)

We will use this expression when studying the null limit distribution of the
empirical Sinkhorn divergence.

3. Main results

In this section, we derive limit distributions for the empirical EOT potentials,
map, and Sinkhorn divergence. For μi ∈ P(X ), i = 1, 2, let μ̂i

n denote the
empirical distribution of a sample of n independent observations from μi, i.e.,
μ̂i

n = n−1
∑n

j=1 δXi
j
, where Xi

1, . . . , Xi
n are i.i.d. according to μi. The samples

from μ1 and μ2 are assumed to be independent, and we set µ̂n = (μ̂1
n, μ̂2

n).

1A divergence on the space of probability distributions is a mapping to the extended reals
that is nonnegative and nullifies if and only if the distributions are the same.
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3.1. Limit theorems for EOT potentials and maps

Lemma 1 (ii) implies that EOT potentials lie in the Hölder space Cs(X ) for arbi-
trary s ∈ N. The first main result concerns a limit distribution for the empirical
EOT potentials in Cs(X ) × Cs(X ), which, in view of Lemma 2, automatically
yields a limit distribution for the empirical EOT map in Cs−1(X ;Rd). Recall that
a random variable G with values in a (real) Banach space B is called Gaussian
if for every b∗ ∈ B

∗ (the topological dual of B), b∗G is a real-valued Gaussian
random variable. We say that G has mean zero if b∗G does so for every b∗ ∈ B

∗.

Let
d→ denote convergence in distribution. When necessary, convergence in dis-

tribution is understood in the sense of Hoffmann-Jørgensen (cf. Chapter 1 in
[91]). For the product of two metric (or normed) spaces, we always consider a
product metric (or norm).

Theorem 1 (Limit theorem for EOT potentials). Let s ∈ N and µ = (μ1, μ2) ∈
P(X ) × P(X ) be arbitrary. Then, for ϕ̂n = ϕµ̂n , we have as n → ∞,

√
n
(
ϕ̂n − ϕµ

) d→ Gµ in Cs(X ) × Cs(X ),

where Gµ = (Gµ
1 , Gµ

2 ) is a zero-mean Gaussian random variable with values in
Cs(X ) × Cs(X ).

Theorem 1 immediately implies the following corollary concerning the limit
distribution of the empirical EOT map. For s ∈ N0, let Cs(X ;Rd) denote
the space of vector-valued functions f = (f1, . . . , fd) : X → Rd whose co-
ordinate functions belong to Cs(X ), equipped with the norm ‖f‖Cs(X ;Rd) =
∑d

j=1 ‖fj‖Cs(X ).

Corollary 1 (Limit theorem for EOT map). Let s ∈ N and µ = (μ1, μ2) ∈
P(X )×P(X ) be arbitrary. Consider the quadratic cost c(x1, x2) = ‖x1 −x2‖2/2
and the EOT map T µ given in (7). Then, for T̂n = T µ̂n , we have as n → ∞,

√
n
(
T̂n − T µ

) d→ −∇Gµ
1 in Cs−1(X ;Rd).

The limit −∇Gµ
1 is a zero-mean Gaussian random variable in Cs−1(X ;Rd).

The recent work of [32] shows that E[‖ϕ̂n
1 − ϕµ

1 ‖2
Cs(X )] ∨E[‖ϕ̂n

2 − ϕµ
2 ‖2

Cs(X )] =

O(n−1). Theorem 1 complements their result by further showing distributional
convergence of

√
n(ϕ̂n − ϕµ) in Cs(X ) × Cs(X ).

The proof of Theorem 1 employs Hadamard differentiability of the map
µ �→ ϕµ in Cs(X ) × Cs(X ) (stated in Theorem 3 ahead) and the functional
delta method; see Appendix C.1 for a review of Hadamard differentiability and
the functional delta method. To this effect, we embed P(X ) into �∞(Bs), where
Bs is the unit ball in Cs(X ). Since Bs is μi-Donsker for i = 1, 2 when s > d/2
(cf. Theorem 2.7.1 in [91]), the conclusion of Theorem 1 follows from the func-
tional delta method. The case of s ≤ d/2 follows by noting that the inclusion
map f �→ f, Cs(X ) → Cs′

(X ), with s′ < s is continuous. Having Theorem 1,
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Corollary 1 follows by Lemma 2 and the fact that the gradient f �→ ∇f is con-
tinuous from Cs(X ) into Cs−1(X ;Rd). The corollary can also be deduced directly
from Hadamard differentiability of the map µ �→ ∇ϕµ

1 in Cs−1(X ;Rd). The co-
variance structure of the limiting Gaussian random variables in Theorem 1 and
Corollary 1 can be inferred from their respective proofs.

Remark 1 (One-sample case). We have only presented the two-sample limit
distribution results for the EOT potentials and map, but as evident from the
proof strategy, analogous conclusions continue to hold for the one-sample case
where either μ1 or μ2 is known (cf. Example 1).

Remark 2 (Measurability). Since (x1, . . . , xn) �→ n−1
∑n

j=1 δxj , X n → P(X ) is
weakly continuous, in view of Lemma 1 (iii), ϕ̂n is a proper, Cs(X ) × Cs(X )-
valued random variable. Likewise, the empirical EOT map T̂n is a proper,
Cs−1(X ;Rd)-valued random variable.

Remark 3 (Higher-order fluctuations). More can be said about higher-order
fluctuations of the empirical EOT potentials. In Theorem 4, we will establish
second-order Hadamard differentiability of the EOT potentials, which implies
that

n
(
ϕ̂n − ϕµ − [ϕµ]′(µ̂n − µ)

)

converges in distribution in C(X ) × C(X ), where [ϕµ]′ is the first Hadamard
derivative at µ (cf. Theorem 3).

Remark 4 (Comparison with [51]). Theorem 1 in the latest update of [51] (up-
dated on July 9, 2022 on arXiv)2 states a limit distribution result for the EOT
potentials in C(S1) × C(S2), where Si := spt(μi) is a compact convex set (in
fact [51] consider the multimarginal setting, but we focus our discussion on
the two-marginal case). Their proof differs from ours in that they do not de-
rive Hadamard differentiability of EOT potentials (nor does the proof contain
Hadamard differentiability results). Importantly, the Hadamard differentiabil-
ity result is stronger than just deriving a limit distribution, as it automatically
yields bootstrap consistency and asymptotic efficiency of the empirical estima-
tors; see Section 5 for further discussion. The question of asymptotic efficiency is
not accounted for in [51]. Furthermore, Hadamard differentiability of the EOT
potentials in Cs(X ) × Cs(X ) plays a crucial role in deriving the null limit dis-
tribution of the empirical Sinkhorn divergence that involves the second-order
Hadamard derivative of the EOT potentials in C(X ) × C(X ).

3.2. Limit theorems for Sinkhorn divergence

The second main result concerns limit distributions for the empirical Sinkhorn
divergence. We first state an asymptotic normality result for the empirical
Sinkhorn divergence.

2The initial version stated a weak convergence result in L∞(µ1) × L∞(µ2).
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Proposition 1 (Limit theorem for Sinkhorn divergence). For every µ=(μ1, μ2) ∈
P(X ) × P(X ), we have

√
n
(
S̄c,ε(μ̂1

n, μ̂2
n) − S̄c,ε(μ1, μ2)

) d→ N(0, σ2
µ), as n → ∞,

where σ2
µ = Varμ1

(
ϕµ

1 − ϕ
(μ1,μ1)
1

)
+ Varμ2

(
ϕµ

2 − ϕ
(μ2,μ2)
2

)
. Furthermore, the

asymptotic variance σ2
µ is strictly positive whenever S̄c,ε(μ1, μ2)�=0 and spt(μ1)∩

spt(μ2) �= ∅.

Remark 5. Since (μ1, μ2) �→ S̄c,ε(μ1, μ2) is weakly continuous (this follows by
Lemma 1 and the duality formula), S̄c,ε(μ̂1

n, μ̂2
n) is a proper random variable.

The first claim of this proposition follows from relatively minor modifications
to the proof of Theorem 7 in [48] that establishes asymptotic normality of the
empirical EOT for the quadratic cost (or [32]). The (two-sample) asymptotic
variance for the (uncentered) EOT cost Sc,ε is Varμ1

(
ϕµ

1

)
+ Varμ2

(
ϕµ

2

)
, while

that for the Sinkhorn divergence S̄c,ε involves debiased EOT potentials. The
second claim provides conditions under which the limiting Gaussian distribution
is nondegenerate. If S̄c,ε is a valid divergence (e.g., when the cost is quadratic),
then S̄c,ε(μ1, μ2) �= 0 if and only if μ1 �= μ2. The assumption that spt(μ1) ∩
spt(μ2) �= ∅ can not be dropped in general. Indeed, if μ1 and μ2 are point
masses at distinct points, we have σ2

µ = 0 but μ1 �= μ2.
In Proposition 1, when μ1 = μ2, we have σ2

µ = 0, which entails that√
nS̄c,ε(μ̂1

n, μ̂2
n) → 0 in probability. Indeed, [32] show that E[S̄c,ε(μ̂1

n, μ̂2
n)] =

O(n−1) under μ1 = μ2 for the quadratic cost, which implies that nS̄c,ε(μ̂1
n, μ̂2

n)
is uniformly tight. The next theorem shows that, when μ1 = μ2, nS̄c,ε(μ̂1

n, μ̂2
n)

in fact has a weak limit, thereby determining a more precise random fluctuation
of the empirical Sinkhorn divergence under the null.

Theorem 2 (Limit theorem for Sinkhorn divergence under null). Suppose that

μ1 = μ2 = μ ∈ P(X ). Then, nS̄c,ε(μ̂1
n, μ̂2

n)
d→ χμ as n → ∞ for some random

variable χμ. Furthermore, assuming nonnegativity of S̄c,ε, the support of χμ

agrees with [0, ∞), unless χμ = 0 a.s.

The proof of Theorem 2 is significantly more involved than that of Propo-
sition 1 and relies on the second-order functional delta method. To this end,
we establish second-order Hadamard differentiability of the map (ν1, ν2) �→
S̄c,ε(ν1, ν2) at (ν1, ν2) = (μ, μ), which in turn involves the second-order
Hadamard derivative of the EOT potentials. The limit variable is given by a
nonlinear functional of a certain Gaussian process, but it seems highly nontriv-
ial to derive an explicit expression of the limit distribution from our derivation;
an implicit expression is provided in the proof.3 Still, the limit distribution can
be consistently estimated by the (two-sample version of) subsampling or the
m-out-of-n bootstrap [7, 79]. See Appendix A for details. The proof of the con-
sistency of the m-out-of-n bootstrap again relies on second-order Hadamard
differentiability of the Sinkhorn divergence w.r.t. the marginals.

3The concurrent work [50] derives an explicit expression of the Sinkhorn null limit, albeit
with a different technique.
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The second claim of the theorem shows that the limit variable χμ is nonde-
generate in most cases. Indeed, assuming that either μ1 or μ2 is not a point mass,
in view of Lemma 10 below, χμ = 0 a.s. if and only if the second Hadamard
derivative of S̄c,ε at (μ, μ) is identically zero.4 Otherwise, the support of χμ

agrees with [0, ∞).

Remark 6 (One-sample case). Analogous results hold for the one-sample case.

For example, when μ2 is known,
√

n
(
S̄c,ε(μ̂1

n, μ2)−S̄c,ε(μ1, μ2)
) d→ N

(
0, Varμ1(ϕµ

1

− ϕ
(μ1,μ1)
1 )

)
under the setting of Proposition 1, while nS̄c,ε(μ̂1

n, μ) has a weak
limit under the setting of Theorem 2. The alternative limit in the one-sample
case may degenerate even when the supports of the two marginals overlap. In-
deed, when c is quadratic, μ1 = 1

2 δ−1 + 1
2 δ1, and μ2 = Unif[−1, 1], by symmetry

considerations, ϕ
(μ1,μ2)
1 − ϕ

(μ1,μ1)
1 is μ1-a.s. constant, so the limit distribution

for
√

n
(
S̄c,ε(μ̂1

n, μ2) − S̄c,ε(μ1, μ2)
)

degenerates to 0.5

Remark 7 (Higher-order fluctuations). The proof of Theorem 2 reveals that in
general (i.e., μ1 �= μ2 is allowed), the following stochastic expansion holds:

√
n
(
S̄c,ε(μ̂1

n, μ̂2
n) − S̄c,ε(μ1, μ2)

)
=

2∑

i=1

√
n(μ̂i

n − μi)
(
ϕµ

i − ϕ
(μi,μi)
i

)
+ n−1/2rn,

where rn converges in distribution as n → ∞. This expansion characterizes
more precise random fluctuations of S̄c,ε(μ̂1

n, μ̂2
n); similar expansions hold for

the (uncentered) EOT cost Sc,ε.

Remark 8 (Comparison with [9]). A version of Theorem 2 was derived in [9]
when the (common) distribution μ is finitely discrete, where the limit is given
by a weighted sum of independent χ2

1-random variables. When μ is finitely dis-
crete, it may be parameterized by a finite-dimensional simplex vector. Using this
parameterization, [9] directly computed the Hessian matrix of the Sinkhorn di-
vergence w.r.t. the simplex vectors and applied the second-order delta method.
Clearly, this proof technique is restricted to the finitely discrete case and does
not directly extend to the general case of Theorem 2. Indeed, the major chal-
lenge in the proof of Theorem 2 stems from the fact that in the general case,
the problem is inherently infinite-dimensional and requires delicate functional
analytic arguments. This is accounted for by the second-order Hadamard differ-
entiability result of the Sinkhorn divergence, stated in Theorem 5.

3.2.1. Independence testing with Sinkhorn divergence. Let (Vi, Wi) ∈
R

d1 × R
d2 , i = 1, . . . , n be i.i.d. with common distribution π. Set d = d1 + d2

and Xi = (Vi, Wi) ∈ R
d. Let πV and πW denote the marginal distributions of Vi

and Wi, respectively. Assume that πV and πW are compactly supported and let

4For finitely discrete marginals, [9] show that the Sinkhorn divergence, as a function of the
simplex vectors representing discrete distributions, is ε-strongly convex in the first argument.
This implies nondegeneracy of the Sinkhorn null limit, unless µ is a point mass. Extending
their argument to general compactly supported marginals appears to be nontrivial and is not
pursued here.

5We thank an anonymous referee for this counterexample.
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X ⊂ R
d be a closed ball containing spt(πV ) × spt(πW ). Consider independence

testing

H0 : π = πV ⊗ πW vs. H1 : π �= πV ⊗ πW .

Motivated by computational considerations, [61] proposed a test based on the
Sinkhorn divergence that compares the empirical distribution of Xi = (Vi, Wi)
with the product of the marginal empirical distributions of Vi and Wi. [61]
focused on the quadratic cost, but we allow here a general smooth cost. Specif-
ically, [61] proposed a test that rejects the null for large values of the statistic

Dn = S̄c,ε(π̂n, π̂V
n ⊗ π̂W

n ),

where π̂n = n−1
∑n

i=1 δXi , π̂V
n = n−1

∑n
i=1 δVi , and π̂W

n = n−1
∑n

i=1 δWi . The
rationale behind this test is as follows. By Varadarajan’s theorem, it holds that
π̂n → π and π̂V

n ⊗ π̂W
n → πV ⊗ πW weakly a.s., so by Lemma 1 (iii) and

duality, we have Dn → S̄c,ε(π, πV ⊗ πW ) a.s. At least for the quadratic cost,
S̄c,ε(π, πV ⊗ πW ) = 0 if and only if π = πV ⊗ πW , so it is reasonable to reject
H0 when Dn is large.

[61] suggested a critical value of order n−1/2 derived from a finite sample
deviation inequality for Dn. However, under H0, both π̂n and π̂V

n ⊗ π̂W
n converge

to the same limit, so Theorem 2 suggests that the correct order of Dn under the
null should be n−1. The next proposition confirms this, thereby determining the
precise rate for Dn under the null.

Proposition 2 (Null limit of Sinkhorn independence test). Consider the setting

as stated above. Then, under the null H0, we have nDn
d→ ℵπ as n → ∞

for some random variable ℵπ. Furthermore, assuming nonnegativity of S̄c,ε, the
support of ℵπ agrees with [0, ∞), unless ℵπ = 0 a.s.

Note that Proposition 2 does not immediately follow from Theorem 2 since
π̂V

n ⊗π̂W
n is not an empirical process but a two-sample V -process [29], and π̂n and

π̂V
n ⊗π̂W

n are dependent. The proof first finds a joint limit distribution of
√

n(π̂n−
π) and

√
n(π̂V

n ⊗π̂W
n −π) in �∞(Bs)×�∞(Bs) with s > 2d using techniques from

U -processes [19], and then applies the second-order functional delta method.
Additionally, as in Theorem 2, unless π degenerates to a point mass or the
second derivative of S̄c,ε at (π, π) with π = πV ⊗ πW is identically zero, the
support of the limit variable ℵπ agrees with [0, ∞), yielding nondegeneracy of
the limit law. An implicit expression for the derived limiting random variable is
provided in the proof.

4. Differentiability of EOT potentials and Sinkhorn divergence

As already stated, the main ingredients of the proofs of the results in the pre-
ceding section are the first and second-order Hadamard differentiability results
for the EOT potentials and Sinkhorn divergence. The present section collects
those results.
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4.1. Hadamard differentiability of EOT potentials

Our goal is to establish Hadamard differentiability of the map µ �→ ϕµ. Since
P(X ) × P(X ) is a priori not a vector space, we embed the preceding map into
a normed space as follows. Note that ϕµ is fully characterized as the solution
of (6) (subject to the normalization ϕ1(x◦

1) = ϕ2(x◦
2)), and whenever ϕi ∈ Cs(X )

for i = 1, 2, we have
(

e
ϕ1(·)+ϕ2(x2)−c(·,x2)

ε , e
ϕ1(x1)+ϕ2(·)−c(x1,·)

ε

)

∈ Cs(X )×Cs(X ), ∀(x1, x2) ∈ X ×X ,

for s ∈ N arbitrary. With this in mind, it is natural to think of μi as a functional
on Cs(X ), and we identify P(X )×P(X ) as a subset of �∞(Bs)× �∞(Bs), where

Bs =
{

f ∈ Cs(X ) : ‖f‖Cs(X ) ≤ 1
}

.

Formally, defining τ : P(X ) × P(X ) → �∞(Bs) × �∞(Bs) by (τµ)i = (f �→
∫

f dμi)f∈Bs , i = 1, 2, we identify the map ν �→ ϕν with τν �→ ϕν . Since τ
is one-to-one (cf. Lemma 16), the latter map is well-defined. Equip �∞(Bs) ×
�∞(Bs) with the norm ‖γ1‖∞,Bs ∨‖γ2‖∞,Bs for γ = (γ1, γ2) ∈ �∞(Bs)×�∞(Bs).
Finally, for η ∈ P(X ), set

Pη =
{

ν ∈ P(X ) : spt(ν) ⊂ spt(η)
}

and Mη =
{

t(ν − η) : ν ∈ Pη, t > 0
}

.

Elements of Mη are signed measures with total mass zero supported in spt(η).
Observe that Mη ⊂ �∞(Bs). These definitions are an artifact of our proof
technique.

Theorem 3 (Hadamard differentiability of EOT potentials). For every s ∈ N

and µ = (μ1, μ2) ∈ P(X ) × P(X ), the map ν �→ ϕν , Pμ1 × Pμ2 ⊂ �∞(Bs) ×
�∞(Bs) → Cs(X ) × Cs(X ) is Hadamard differentiable at µ tangentially to

Mμ1
�∞(Bs) × Mμ2

�∞(Bs)
.

The first step of the proof of Theorem 3 is to establish Hadamard differen-
tiability in C(X ) × C(X ) instead of Cs(X ) × Cs(X ). To this effect, we regard
ϕµ as a solution to the system of functional equations (6) and use a version of
the implicit function theorem to prove Hadamard differentiability of the map
µ �→ ϕµ in C(X ) × C(X ). Precisely, Hadamard differentiability of the EOT po-
tentials is first established in C(spt(μ1)) × C(spt(μ2)), then the EOT potentials
are extended to X ×X via (6) and differentiability in C(X )×C(X ) follows readily.

To lift the Hadamard differentiability to Cs(X ) × Cs(X ), we again use the
expression from (6),

e−ϕµ

i /ε(xi) =

∫

e(ϕµ

j (xj)−c(x1,x2))/ε dμj(xj), i �= j,

and show that derivatives of ϕµ
i are Hadamard differentiable in C(X ). This

argument is partly inspired by the proof of Theorem 4.5 in [32]. Completeness
of Cs(X ) then yields that the map µ �→ ϕµ

i is Hadamard differentiable in Cs(X ).
See the proof in Section 6.1 for the full details.
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Remark 9 (Tangent cone). Since Pμ1 × Pμ2 is convex, the set Mμ1
�∞(Bs) ×

Mμ2
�∞(Bs)

agrees with the tangent cone to Pμ1 ×Pμ2 at µ in �∞(Bs)× �∞(Bs)

(cf. Chapter 4 in [5]; see also Appendix C.1). Each element of Mμi

�∞(Bs)
extends

uniquely to a bounded linear functional on Cs(X ) (cf. Lemma 1 in [70]). Hence,

by the Riesz-Markov-Kakutani theorem, each γi ∈ Mμi

�∞(Bs)
corresponds to

finite signed Borel measures (γi
k)k∈Nd

0 ,|k|≤s on X supported in spt(μi) such that

γi(f) =
∑

|k|≤s

∫
Dkf dγi

k for f ∈ Cs(X ). We remark that this action also

makes sense for a function f ∈ C(spt(μi)) that merely admits some extension
f̄ ∈ Cs(X ). Indeed, let γi

n ∈ Mμi converge to γi in �∞(Bs), then γi
n(f) =

γi
n(f̄) → γi(f̄) as spt(γi

n) ⊂ spt(μi); the first equality also shows that the limit
is independent of the choice of extension, hence we may define γi(f) := γi(f̄).
Abusing notation, we often denote the action of γi on f ∈ C(spt(μi)) admitting
a Cs extension to X or f ∈ Cs(X ) as γi(f) =

∫
f dγi.

Remark 10 (Functional delta method). Recalling that s in Lemma 1 (ii) is
arbitrary, if we choose s > d/2, then Bs is μi-Donsker for each i = 1, 2 (cf.
Theorem 2.7.1 in [91]). We use this fact in the proof of the limit theorem for
EOT potentials from Theorem 1. Since the support of a tight μi-Brownian

bridge in �∞(Bs) is contained in Mμi
�∞(Bs)

(see Lemma 17), the functional
delta method (see Lemma 11) immediately applies to the map µ �→ ϕµ. Similar
comments apply to other Hadamard differentiability results.

The derivation of the null limit distribution of the empirical Sinkhorn diver-
gence involves the second-order Hadamard derivative of EOT potentials, which
is given next.

Theorem 4 (Second-order Hadamard differentiability of EOT potentials). For
every s ∈ N and µ = (μ1, μ2) ∈ P(X ) × P(X ), there exists a continuous map

[ϕµ]′′ : Mμ1
�∞(Bs) × Mμ2

�∞(Bs) → C(X ) × C(X ) such that for every sequence
(µt)t>0 ⊂ Pμ1 × Pμ2 with γt := t−1(µt − µ) → γ in �∞(Bs) × �∞(Bs) as t ↓ 0,
we have

ϕµt − ϕµ − t[ϕµ]′(γt)

t2/2
→ [ϕµ]′′(γ) in C(X ) × C(X ).

The map [ϕµ]′′ is positively homogeneous of degree 2, i.e., [ϕµ]′′(tγ)=t2[ϕµ]′′(γ)

for every t > 0 and γ ∈ Mμ1
�∞(Bs) × Mμ2

�∞(Bs)
.

To prove this theorem, we extend Lemma 3.9.34 in [91] to the second-order
Hadamard derivative, which is presented in Lemma 15. It is worth noting that,
while the second-order Hadamard differentiability result is stated in terms of
C(X )×C(X ), its proof requires the (first-order) Hadamard derivative in Cs(X )×
Cs(X ) to verify Condition (iv) in Lemma 15. See the proof in Section 6.2 for
details.



Limit theorems for entropic maps and the Sinkhorn divergence 997

4.2. Hadamard differentiability of Sinkhorn divergence

In this section, we study Hadamard derivatives of the Sinkhorn divergence. The
following lemma follows relatively easily from the proof of Theorem 7 in [48].

Lemma 3 (Hadamard derivative of Sinkhorn divergence). For every s ∈ N

and µ = (μ1, μ2) ∈ P(X ) × P(X ), the map ν = (ν1, ν2) �→ S̄c,ε(ν1, ν2), Pμ1 ×
Pμ2 ⊂ �∞(Bs) × �∞(Bs) → R is Hadamard differentiable at µ tangentially to

Mμ1
�∞(Bs) × Mμ2

�∞(Bs)
with derivative

[
S̄

µ
c,ε

]′
(γ) =

∫
(
ϕµ

1 − ϕ
(μ1,μ1)
1

)
dγ1 +

∫
(
ϕµ

2 − ϕ
(μ2,μ2)
2

)
dγ2

for γ = (γ1, γ2) ∈ Mμ1
�∞(Bs) × Mμ2

�∞(Bs)
.

When μ1 = μ2, we have
[
S̄µ

c,ε

]′
(γ) = 0. Therefore, to explore the limit dis-

tribution of the empirical Sinkhorn divergence under the null μ1 = μ2, we need
to look at the second-order Hadamard derivative of the Sinkhorn divergence,
which is given next.

Theorem 5 (Second-order Hadamard derivative of Sinkhorn divergence). For
every s ∈ N and µ = (μ1, μ2) ∈ P(X ) × P(X ), there exists a continuous

functional ∆μ : Mμ
�∞(Bs) × Mμ

�∞(Bs) → R such that for every sequence
(μ1

t , μ2
t ) ∈ Pμ × Pμ with t−1(μi

t − μ) → γi in �∞(Bs) as t ↓ 0 for i = 1, 2,
we have

S̄c,ε(μ1
t , μ2

t )

t2/2
→ ∆μ(γ)

with γ = (γ1, γ2). The functional ∆μ is positively homogeneous of degree 2.

Given the first and second-order Hadamard differentiability results for the
EOT potentials, the proof of Theorem 5 is reasonably straightforward. Indeed,

the proof consists of expanding ϕ
(μ1

t ,μ2
t )

i and ϕ
(μi

t,μi
t)

i up to the second-order and
plugging these expansions into the dual expression (9) of S̄c,ε(μ1

t , μ2
t ).

5. Bootstrap consistency and asymptotic efficiency

As discussed before, our limit theorems in Theorem 1, Corollary 1, and Propo-
sition 1 follow by establishing Hadamard differentiability of the relevant maps.
Importantly, Hadamard differentiability results automatically also yield boot-
strap consistency and asymptotic efficiency (cf. Chapter 3.11 in [91] and Chapter
25 in [90]) of the empirical estimators of the EOT potentials, map, and Sinkhorn
divergence (with μ1 �= μ2). To simplify our discussion, we focus here on estimat-
ing the EOT map for the quadratic cost with known μ1 (i.e., the one-sample
case); other cases are similar. The setting of known μ1 is motivated by the con-
nection of the EOT map to the vector quantile function (Example 1). Consider
the setting of Corollary 1.
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5.1. Bootstrap consistency

Let T̃n = T (μ1,μ̂2
n) be the empirical EOT map, and T̃ B

n be its bootstrap analog,

i.e., T̃ B
n = T (μ1,μ̂2,B

n ), where μ̂2,B
n is the empirical distribution of a bootstrap

sample from μ̂2
n of size n (cf. Chapter 3.6 in [91] and Chapter 23 in [90]).

Pick any s, s′ ∈ N0 with s′ < s and s > d/2. Lemma 2 and Theorem 3

yield that the map δ : ν2 �→ T (μ1,ν2), Pμ2 ⊂ �∞(Bs) → Cs′

(X ;Rd) is Hadamard

differentiable at ν2 = μ2 tangentially to Mμ2
�∞(Bs)

with derivative δ′
μ2(γ2) =

−[∇ϕµ
1 ]′(0, γ2). The tangent cone Mμ2

�∞(Bs)
contains a vector subspace on

which a tight μ2-Brownian bridge G
μ2

2 in �∞(Bs) concentrates (cf. Lemma 17;
note that Bs with s > d/2 is μ2-Donsker). Hence, by the functional delta
method, we have

√
n(T̃n − T µ)

d→ δ′
μ2(Gμ2

2 ) in Cs′

(X ;Rd).

Furthermore, by Theorems 3.6.1 and 3.9.11 in [91], the following bootstrap con-
sistency holds:

sup
h∈BL1(Cs′ (X ;Rd))

∣
∣E

B
[
h
(√

n(T̃ B
n − T̃n)

)]
− E

[
h
(
δ′

μ2(Gμ2

2 )
)]∣
∣ → 0 (10)

in outer probability, where E
B denotes the conditional expectation given the

sample and BL1(Cs′

(X ;Rd)) is the class of 1-Lipschitz functions h : Cs′

(X ;Rd) →
[−1, 1].

Example 2 (Confidence bands for EOT map). Consider constructing confi-
dence bands for T µ

j with T µ = (T µ
1 , . . . , T µ

d ). The continuous mapping the-

orem yields that ‖√
n(T̃n,j − T µ

j )‖∞,X
d→ ‖[δ′

μ2(Gμ2

2 )]j‖∞,X . For a given ³ ∈
(0, 1), let q̂1−α denote the conditional (1 − ³)-quantile of ‖√

n(T̃ B
n,j − T̃n,j)‖∞,X

given the data. The bootstrap consistency result (10) yields that {[T̃ n
j (x1) ±

q̂1−α/
√

n] : x1 ∈ X } is a valid confidence band for T µ
j , i.e., P

(
T µ

j (x1) ∈
[T̃ n

j (x1) ± q̂1−α/
√

n] for all x1 ∈ X
)

→ 1 − ³.

Remark 11 (Statistical inference for unregularized Brenier maps). When the
source measure μ1 is absolutely continuous, Brenier’s theorem [10] guarantees
the existence of the μ1-a.e. unique map (called the Brenier map) given by the
gradient of a convex function transporting μ1 onto μ2. The EOT map approx-
imates the (unregularized) Brenier map as ε → 0 (cf. [18, 66]). However, all
the limit theorems in the present paper crucially rely on the fact that the reg-
ularization parameter ε > 0 is fixed and do not directly extend to the case
where ε = εn → 0. Indeed, estimation of the unregularized Brenier map suffers
from the curse of dimensionality [54], so

√
n-consistency toward the unregular-

ized Brenier map does not hold in general for ε = εn → 0. One exception is
the semidiscrete case where μ1 is absolutely continuous and μ2 is finitely dis-
crete, for which [81] establish the parametric convergence rate of empirical EOT
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maps with vanishing regularization parameters under the squared L2-loss. For
the semidiscrete case, the recent preprint [86] by a subset of the authors stud-
ies statistical inference for the empirical (unregularized) Brenier map. Beyond
the semidiscrete case, however, limiting distributional results for the (unregular-
ized) Brenier are still rather limited. The recent preprint [64], which appeared on
arXiv after the present work, derives pointwise limiting distributions for kernel-
based estimates of the Brenier map for densities supported on the flat torus.
For finitely discrete marginals, [56] derives limit laws for the unregularized OT
plan, which in particular, specialize to the Brenier map, provided that the latter
exists.

5.2. Asymptotic efficiency

Regarding asymptotic efficiency, we follow Chapter 3.11 in [91]. Consider the
setting of Corollary 1 and fix (μ1, μ2) ∈ P(X ) × P(X ). As before, let s, s′ ∈ N0

be such that s′ < s and s > d/2. For notational convenience, set B = Cs′

(X ;Rd).

By linearity of the derivative, the limit variable δ′
μ2(Gμ2

2 ) is zero-mean Gaussian
in B.

To apply the results of Chapter 3.11 in [91], we need to specify statisti-
cal experiments (Xn, An, Pn,h : h ∈ H) indexed by a vector subspace H of a
Hilbert space and local parameters κn(h). Choose H to be the set of bounded
measurable functions on X with μ2-mean zero equipped with the L2(μ2)-inner
product, and set Xn = X n, An = (Borel σ-field on X n), Pn,h = (μ2

n,h)⊗n with

dμ2
n,h = (1 + h/

√
n)dμ2, and κn(h) = δ(μ2

n,h) = T (μ1,μ2
n,h) : H → B. Note that

for each h ∈ H, μ2
n,h is a valid probability measure for sufficiently large n. By

Lemma 3.10.11 in [91], the sequence of experiments (Xn, An, Pn,h : h ∈ H) is
asymptotically normal in the sense of [91, p 412]. Under this setup, the fol-
lowing proposition regarding asymptotic efficiency of the empirical EOT map
holds. We say that the parameter sequence κn(h) is regular if there exists a
continuous linear operator κ̇ : H → B such that

√
n(κn(h) − κn(0)) → κ̇(h) for

every h ∈ H; a sequence of (Borel measurable) estimators Tn is called regular
if the limit law of

√
n(Tn − κn(h)) under Pn,h exists for every h ∈ H and is

independent of h. Additionally, a function � : B → R+ is called subconvex if for
every c ∈ R+, the level set �−1([0, c]) is closed, convex, and symmetric.

Proposition 3 (Asymptotic efficiency of empirical EOT map). Consider the
above setting. Then the following hold.

(i) (Convolution) The sequences of parameters κn(h) and estimators T̃n are reg-
ular. For every regular sequence of Borel measurable estimators Tn based on
X2

1 , . . . , X2
n, the limit law of

√
n(Tn −T µ) under Pn,0 equals the distribution

of the sum δ′
μ2(Gμ2

2 )+W for some B-valued random variable W independent

of δ′
μ2(Gμ2

2 ).
(ii) (Local asymptotic minimaxity) For every sequence of Borel measurable esti-
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mators Tn based on X2
1 , . . . , X2

n and every subconvex function � : B → R+,

sup
I⊂H:finite

lim inf
n³∞

sup
h∈I

Eh

[

�
(√

n(Tn − κn(h)
))]

≥ E

[

�
(
δ′

μ2(Gμ2

2 )
)]

,

where Eh denotes the expectation under Pn,h.

The regularity of the parameter sequence κn(h) follows from Hadamard differ-

entiability of the map ν2 �→ T (μ1,ν2). The regularity of the empirical EOT map
follows from the Hadamard differentiability result and Le Cam’s third lemma.
The second claim of Proposition 3 (i) follows from applying Theorem 3.11.2 in
[91]. To this effect, we need to verify that the law of the Gaussian variable ap-

pearing in the cited theorem agrees with that of δ′
μ2(Gμ2

2 ) in our setting, which
follows by adapting the argument in the proof of Proposition 2 in [48]. Given
(i), Proposition 3 (ii) directly follows from Theorem 3.11.5 in [91].

Proposition 3 (i) shows that the limit law δ′
μ2(Gμ2

2 ) of the empirical EOT
map is the most concentrated around zero among all regular estimators for
κn(h). Furthermore, by regularity of the empirical EOT map, for every bounded
continuous function � : B → R+ and every finite set I ⊂ H,

lim
n³∞

sup
h∈I

Eh

[

�
(√

n(T̃n − κn(h)
))]

= E

[

�
(
δ′

μ2(Gμ2

2 )
)]

,

showing that T̃n is asymptotically minimax in a local sense.

6. Proofs for Sections 3 and 4

6.1. Proof of Theorem 3

As noted in Section 4.1, we will first establish Hadamard differentiability of the
map ν �→ ϕν in C(X ) × C(X ).

Lemma 4. Consider the setting of Theorem 3. Then, the map ν �→ ϕν , Pμ1 ×
Pμ2 ⊂ �∞(Bs) × �∞(Bs) → C(X ) × C(X ) is Hadamard differentiable at µ tan-

gentially to Mμ1
�∞(Bs) × Mμ2

�∞(Bs)
.

The proof of Lemma 4 proceeds as follows. Fix µ = (μ1, μ2) ∈ P(X ) × P(X )
with Si := spt(μi) for i = 1, 2. For notational convenience, set S := S1 × S2

and D := C(S1) × C(S2). We equip D with a product norm, ‖(ϕ1, ϕ2)‖D =
‖ϕ1‖∞,S1 ∨ ‖ϕ2‖∞,S2 . Choose an arbitrary fixed reference point (x◦

1, x◦
2) ∈ S.

With Lemma 1 in mind, consider

Θs =
{

(ϕ1|S1 , ϕ2|S2) : (ϕ1, ϕ2) ∈ Cs(X ) × Cs(X ),

‖ϕ1‖Cs(X ) ∨ ‖ϕ2‖Cs(X ) ≤ Rs, ϕ1(x◦
1) = ϕ2(x◦

2)
}

⊂ D.

Define the map Ψ :
(
Pμ1 × Pμ2

)
× Θs → D by

Ψ(ν, ϕ) =

(∫

e
ϕ1⊕ϕ2−c

ε dν2 − 1,

∫

e
ϕ1⊕ϕ2−c

ε dν1 − 1

)

(11)
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for ν = (ν1, ν2) ∈ Pμ1 × Pμ2 and ϕ = (ϕ1, ϕ2) ∈ Θs. Given ν ∈ Pμ1 × Pμ2 ,
the corresponding EOT potentials ϕν are fully characterized by its restriction
to S, ϕν |S := (ϕν

1 |S1 , ϕν
2 |S2) ∈ Θs, being the unique solution to Ψ(ν, ϕ) ≡ 0

on S. We will decompose the map ν �→ ϕν into the composition of the maps
ν �→ Ψ(ν, ·), Ψ(ν, ·) �→ ϕν |S , and ϕν |S �→ ϕν , and separately show their
Hadamard differentiability.

To formulate Hadamard differentiability of the map Ψ(ν, ·) �→ ϕν |S , we con-
sider the following setting (cf. Section 3.9.4.7 in [91]; see also Appendix C.2). Let
�∞(Θs,D) be the Banach space of all uniformly norm-bounded maps z : Θs → D

equipped with the norm ‖z‖�∞(Θs,D) = supϕ∈Θs ‖z(ϕ)‖D. Also, let Z(Θs,D)
be the subset of �∞(Θs,D) consisting of all maps with at least one zero. Let
φ : Z(Θs,D) → Θs be a map that assigns each z ∈ Z(Θs,D) to one of its zeros
φ(z), i.e., z(φ(z)) = 0.

For a given ν ∈ Pμ1 × Pμ2 , Ψ(ν, ·) : ϕ �→ Ψ(ν, ϕ) is a uniformly norm-
bounded map from Θs into D with a zero at ϕν |S , guaranteeing that Ψ(ν, ·) ∈
Z(Θs,D). Uniqueness of the EOT potentials then yields that

ϕν |S = φ ◦ Ψ(ν, ·).
Furthermore, in light of (6), we have the following representation of the EOT
potentials ϕν for ν ∈ Pμ1 × Pμ2 ,

ϕν = −ε

(

log

(∫

e
ϕν

2 |S2
(x2)−c(·,x2)

ε dν2(x2)

)

, log

(∫

e
ϕν

1 |S1
(x1)−c(x1,·)

ε dν1(x1)

))

(12)
which depends on the potentials only through their restrictions to S1 and S2.

We will establish Hadamard differentiability of φ at Ψ(µ, ·) by invoking
Lemma 3.9.34 in [91] (see also Lemma 14). Hadamard differentiability of the
map ν �→ Ψ(ν, ·) is straightforward. The chain rule for Hadamard differentiable
maps (cf. Lemma 3.9.3 in [91]) then yields Hadamard differentiability of the
map ν �→ ϕν |S in D. Hadamard differentiability of ν �→ ϕν in C(X ) × C(X )
follows readily.

We shall first verify Hadamard differentiability of the map ν �→ Ψ(ν, ·), Pμ1 ×
Pμ2 ⊂ �∞(Bs) × �∞(Bs) → Z(Θs,D) ⊂ �∞(Θs,D). For notational convenience,
define ψ : Pμ1 × Pμ2 → Z(Θs,D) by ψ(ν) = Ψ(ν, ·).
Lemma 5. The map ψ : Pμ1 × Pμ2 ⊂ �∞(Bs) × �∞(Bs) → Z(Θs,D) ⊂
�∞(Θs,D) is Hadamard differentiable at µ tangentially to Mμ1

�∞(Bs)

× Mμ2
�∞(Bs)

with derivative ψ′ : Mμ1
�∞(Bs) × Mμ2

�∞(Bs) → �∞(Θs,D) given
by

ψ′(γ)(ϕ) =

(∫

e
ϕ1⊕ϕ2−c

ε dγ2,

∫

e
ϕ1⊕ϕ2−c

ε dγ1

)

,

ϕ = (ϕ1, ϕ2) ∈ Θs, γ = (γ1, γ2) ∈ Mμ1
�∞(Bs) × Mμ2

�∞(Bs)
.

(13)

As before, γj acts on the j-th coordinate, i.e.,
∫

e
ϕ1⊕ϕ2−c

ε dγ2 =

∫

e
ϕ1(·)+ϕ2(x2)−c(·,x2)

ε dγ2(x2).
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Proof. Let Mi denote the space of finite signed Borel measures on X supported
in Si = spt(μi). The definition (13) makes sense for γ ∈ M1 × M2, and the
extended map ψ′ : M1 × M2 → �∞(Θs,D) is linear. For every ϕ = (ϕ1, ϕ2) ∈
Θs, let ϕ̄ = (ϕ̄1, ϕ̄2) ∈ Cs(X ) × Cs(X ) denote an arbitrary Cs-extension with
‖ϕ̄1‖Cs(X ) ∨ ‖ϕ̄2‖Cs(X ) ≤ Rs. Observe that

R′ = sup
(x1,x2)∈X ×X

sup
(ϕ1,ϕ2)∈Θs

∥
∥
∥e

ϕ̄1(x1)+ϕ̄2(·)−c(x1,·)
ε

∥
∥
∥

Cs(X )

∨∥
∥
∥e

ϕ̄1(·)+ϕ̄2(x2)−c(·,x2)
ε

∥
∥
∥

Cs(X )
< ∞.

(14)

Since ψ′(γ)(ϕ) = ψ′(γ)(ϕ̄)|S for every γ ∈ M1 × M2, we have

‖ψ′(γ)‖�∞(Θs,D) ≤ R′
(
‖γ1‖∞,Bs ∨ ‖γ2‖∞,Bs

)
. (15)

Hence, ψ′ extends uniquely to a continuous linear operator from M1
�∞(Bs) ×

M2
�∞(Bs)

into �∞(Θs,D).

Second, for every γ ∈ Mμ1
�∞(Bs) × Mμ2

�∞(Bs)
, pick a sequence of pairs of

signed Borel measures (γt)t>0 with total mass zero such that µ+tγt ∈ Pμ1 ×Pμ2

for sufficiently small t and γt → γ in �∞(Bs) × �∞(Bs) as t ↓ 0. Then, as t ↓ 0,

ψ(µ + tγt) − ψ(µ)

t
= ψ′(γt) → ψ′(γ) in �∞(Θs,D).

This completes the proof.

Next, we shall establish Hadamard differentiability of the map φ : Z(Θs,D) ⊂
�∞(Θs,D) → D at Ψµ := Ψ(µ, ·). To this end, we apply Lemma 3.9.34 in [91].
The following lemma verifies the required conditions to apply the lemma. The
proof, which we defer to Appendix B, relies on the results from [17].

Lemma 6. The following hold.

(i) The map Ψµ : Θs � ϕ �→ Ψ(µ, ϕ) ∈ D is injective and its inverse (defined
on Ψµ(Θs)) is continuous at 0.

(ii) The map Ψµ is Fréchet differentiable at ϕ = ϕµ|S with derivative Ψ̇µ :
lin(Θs) → D given by

Ψ̇µ(h) = ε−1

(∫

e
ϕ

µ

1 ⊕ϕ
µ

2 −c

ε (h1 ⊕ h2) dμ2,

∫

e
ϕ

µ

1 ⊕ϕ
µ

2 −c

ε (h1 ⊕ h2) dμ1

)

for h = (h1, h2) ∈ lin(Θs), where lin(Θs) is the linear hull of Θs. Further-
more, Ψ̇µ : (lin(Θs), ‖ · ‖D) → D is injective and its inverse is continuous.

Extend Ψ̇−1
µ continuously to Ψ̇µ(lin(Θs))

D

. Now, Lemma 3.9.34 in [91] implies
the following. See also Appendix C.2.
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Lemma 7. The map φ : Z(Θs,D) ⊂ �∞(Θs,D) → D is Hadamard differentiable
at Ψµ := Ψ(µ, ·) tangentially to the set

Zµ =
{

z ∈ �∞(Θs,D) : z = lim
t´0

zt − Ψµ

t
for some zt → Ψµ in Z(Θs,D), t ↓ 0

}

⋂{

z ∈ �∞(Θs,D) : z is continuous at ϕµ|S
}

.

The derivative is given by φ′
Ψµ

(z) = −Ψ̇−1
µ (z(ϕµ|S)).

Hadamard differentiability of the map ν ∈ Pμ1 × Pμ2 �→ ϕν |S ∈ D at µ now
follows directly from Lemmas 5 and 7.

Lemma 8. The map ν �→ ϕν |S, Pμ1 × Pμ2 ⊂ �∞(Bs) × �∞(Bs) → D is

Hadamard differentiable at µ tangentially to Mμ1
�∞(Bs) × Mμ2

�∞(Bs)
.

Proof. Given Lemmas 5 and 7, the lemma follows from the chain rule for
Hadamard differentiable maps; see Lemma 3.9.3 in [91]. The only thing we

need to verify is that, for every γ = (γ1, γ2) ∈ Mμ1
�∞(Bs) × Mμ2

�∞(Bs)
, it

holds that ψ′(γ) ∈ Zµ. Let (µt)t>0 ⊂ Pμ1 × Pμ2 be a sequence such that
γt := t−1(µt − µ) → γ in �∞(Bs) × �∞(Bs). Then Ψµt ∈ Z(Θs,D) and
t−1(Ψµt − Ψµ) = ψ′(γt) → ψ′(γ) in �∞(Θs,D). It remains to show that
ψ′(γ) is continuous at ϕµ|S . By construction, for every η > 0, there exists
γ̃ = (γ̃1, γ̃2) ∈ Mμ1 × Mμ2 such that ‖γ1 − γ̃1‖�∞(Bs) ∨ ‖γ2 − γ̃2‖�∞(Bs) ≤
η. By (15), we have ‖ψ′(γ) − ψ′(γ̃)‖�∞(Θs,D) ≤ R′η with R′ given by (14).
Since γ̃ is a pair of signed measures, for every sequence ϕn ∈ Θs with ‖ϕn −
ϕµ|S‖D → 0, we see that ‖ψ′(γ̃)(ϕn) − ψ′(γ̃)(ϕµ|S)‖D → 0. We thus conclude
that lim supn³∞ ‖ψ′(γ)(ϕn)−ψ′(γ)(ϕµ|S)‖D ≤ 2R′η, and as η > 0 is arbitrary,
we have shown that ψ′(γ) is continuous at ϕµ|S . Hence, the chain rule applies,

and the Hadamard derivative [ϕµ|S ]′ : Mμ1
�∞(Bs) × Mμ2

�∞(Bs) → D is given
by [ϕµ|S ]′(γ) = −Ψ̇−1

µ (ψ′(γ)(ϕµ|S)).

Now, Lemma 8 and the formula for the potentials (12) together yield Lemma 4.

Proof of Lemma 4. We show Hadamard differentiability of the map ν �→ ϕν
1

at µ; differentiability of the second potential follows analogously. To simplify
notation, define

ξν : (x1, x2) ∈ X × S2 �→ e
ϕ

ν |S2
(x2)−c(x1,x2)

ε .

By the formula (12) and the chain rule, it suffices to show that the map Υ :
ν ∈ Pμ1 × Pμ2 �→

∫
ξν(·, x2)dν2(x2) ∈ C(X ) is Hadamard differentiable at µ

tangentially to Mμ1
�∞(Bs) ×Mμ2

�∞(Bs)
. To this effect, let (µt)t>0 ⊂ Pμ1 ×Pμ2

be such that γt := t−1(µt − µ) → γ in �∞(Bs) × �∞(Bs), and consider

t−1 (Υ(µt) − Υ(µ)) =

∫

t−1 (ξµt(·, x2) − ξµ(·, x2)) dμ2(x2)
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+

∫

ξµt(·, x2) dγ2
t (x2).

As t ↓ 0, the first term on the right-hand side converges to the Hadamard
derivative of the map ν ∈ Pμ1 × Pμ2 �→

∫
ξν(·, x2) dμ2(x2) ∈ C(X ) at µ, which

agrees with ε−1
∫

ξµ(·, x2)[ϕµ
2 |S2 ]′(γ)(x2) dμ2(x2) by Lemma 8 and the chain

rule.
Pertaining to the second term, since spt(γ2

t ) ⊂ S2, we have

sup
x1∈X

∣
∣
∣

∫

ξµt(x1, x2) dγ2
t (x2) −

∫

ξµ(x1, x2) dγ2(x2)
∣
∣
∣

≤ sup
x1∈X

∥
∥
∥e

ϕ
µt
2 (·)−c(x1,·)

ε − e
ϕ

µ

2 (·)−c(x1,·)

ε

∥
∥
∥

Cs(X )
‖γ2

t ‖∞,Bs

+ sup
x1∈X

∥
∥
∥e

ϕ
µ

2 (·)−c(x1,·)

ε

∥
∥
∥

Cs(X )
‖γ2

t − γ2‖∞,Bs .

The right-hand side converges to 0 as t ↓ 0 since ‖γ2
t ‖∞,Bs = O(1), ‖γ2

t −
γ2‖∞,Bs = o(1), and ϕµt

2 → ϕµ
2 in Cs(X ) by Lemma 1 (iii) (note that µt → µ

in �∞(Bs) × �∞(Bs) and hence μi
t → μi weakly for i = 1, 2 by Lemma 16).

Conclude that, for γ ∈ Mμ1
�∞(Bs) × Mμ2

�∞(Bs)
,

Υ′
µ(γ) = ε−1

∫

ξµ(·, x2)[ϕµ
2 |S2 ]′(γ)(x2) dμ2(x2) +

∫

ξµ(·, x2) dγ2(x2), (16)

and hence [ϕµ
1 ]′(γ) = −εe

ϕ
µ

1
ε Υ′

µ(γ) by the chain rule.

Remark 12 (Compatibility of derivatives of EOT potentials). As Lemmas 8
and 4 establish, respectively, the Hadamard derivatives of the maps ν ∈ Pμ1 ×
Pμ2 �→ ϕν |S ∈ D and ν ∈ Pμ1 × Pμ2 �→ ϕν ∈ C(X ) × C(X ), the latter derivative

should extend the former. Indeed, for every γ ∈ Mμ1
�∞(Bs) × Mμ2

�∞(Bs)
and

(µt)t>0 ⊂ Pμ1 ×Pμ2 for which t−1(µt −µ) → γ in �∞(Bs)×�∞(Bs), t−1(ϕµt −
ϕµ) → [ϕµ]′(γ) in C(X )×C(X ) and hence also in D. So, [ϕµ]′(γ)|S = [ϕµ|S ]′(γ),
as desired.

Remark 13 (Choice of reference point). We have chosen a reference point (x◦
1, x◦

2)
from S in the proof of Lemma 4, but this is immaterial. Indeed, for a different
choice of reference point (x̃◦

1, x̃◦
2) ∈ X × X , the functions ϕ̃μ

1 = ϕμ
1 − 1

2 (ϕ1(x̃◦
1) −

ϕ2(x̃◦
1)) and ϕ̃μ

2 = ϕμ
2 + 1

2 (ϕ1(x̃◦
1) − ϕ2(x̃◦

1)) are EOT potentials satisfying the
constraint ϕ̃μ

1 (x̃◦
1) = ϕ̃μ

2 (x̃◦
2). Clearly, by construction, the map ν �→ ϕ̃ν , Pμ1 ×

Pμ2 ⊂ �∞(Bs)×�∞(Bs) → C(X )×C(X ) is Hadamard differentiable at µ. Hence
the conclusion of Lemma 4 holds for an arbitrary reference point (x◦

1, x◦
2) ∈

X × X .

We are now ready to prove Theorem 3.

Proof of Theorem 3. We divide the proof into two steps.
Step 1. Pick any multi-index k = (k1, . . . , kd) ∈ N

d
0 with 0 < |k| ≤ s. In

what follows, i ∈ {1, 2} is arbitrary. Also, μ−1 = μ2 and μ−2 = μ1. Similar
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conventions apply to x−i etc. We will show that the map

ν �→ Dkϕν
i , Pμ1 × Pμ2 ⊂ �∞(Bs) × �∞(Bs) → C(X )

is Hadamard differentiable at µ. Observe that

e−ϕν

i (xi)/ε =

∫

e(ϕν

−i(x−i)−c(x1,x2))/εdν−i(x−i),

so that by interchanging differentiation and integration, Dk
xi

(
e−ϕν

i (xi)/ε
)

can be
expressed as a linear combination of functions of the form

∫ J∏

j=1

[
D�j

xi
c(x1, x2)

]mj × e(ϕν

−i(x−i)−c(x1,x2))/εdν−i(x−i),

where 1 ≤ J ≤ |k|, and m1, . . . , mJ ∈ N and �1, . . . , �J ∈ N
d
0 \ {0} are such that

m1�1 + · · ·+mJ�J = k. Combining the fact that (log y)(n) = (−1)n+1(n−1)!y−n

and the multivariate Faà di Bruno formula (cf. Theorem 2.1 in [25]), we see that
Dkϕν

i (xi) = −εDk log(e−ϕν

i (xi)/ε) can be expressed as a linear combination of
products of functions of the form

∫
ζ(x1, x2)e(ϕν

−i(x−i)−c(x1,x2))/εdν−i(x−i)
∫

e(ϕν

−i(x−i)−c(x1,x2))/εdν−i(x−i)

=

∫

ζ(x1, x2)e
ϕν

1 (x1)+ϕν
2 (x2)−c(x1,x2)

ε dν−i(x−i),

where ζ is a smooth function on R
d × R

d that depends only on the cost c and
multi-index k. For example, for y = (y1, . . . , yd),

∂3

∂yj1∂yj2∂yj3

log(f(y)) =

∂3

∂yj1 ∂yj2 ∂yj3
f(y)

f(y)
−

∂2

∂yj1 ∂yj3
f(y)

f(y)

∂
∂yj2

f(y)

f(y)

−
∂

∂yj1
f(y)

f(y)

∂2

∂yj2 ∂yj3
f(y)

f(y)
+ 2

∂
∂yj1

f(y)

f(y)

∂
∂yj2

f(y)

f(y)

∂
∂yj3

f(y)

f(y)
.

Hence, it suffices to show that, for every smooth function ζ on Rd ×Rd, the map

ν �→
∫

ζ(x1, x2)e
ϕν

1 (x1)+ϕν
2 (x2)−c(x1,x2)

ε dν−i(x−i),

Pμ1 × Pμ2 ⊂ �∞(Bs) × �∞(Bs) → C(X )

is Hadamard differentiable at µ.
Let (µt)t>0 ⊂ Pμ1 × Pμ2 be a sequence such that γt := t−1(µt − µ) → γ in

�∞(Bs) × �∞(Bs) as t ↓ 0 with γ = (γ1, γ2). Define

gt(x1, x2) = ζ(x1, x2)e
ϕ

µt
1 (x1)+ϕ

µt
2 (x2)−c(x1,x2)

ε , t ≥ 0
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with µ0 = µ. We have shown in Lemma 4 that t−1(ϕµt

i − ϕµ
i ) → [ϕµ

i ]′(γ) in
C(X ) as t ↓ 0, so that

t−1(gt − g0) → ε−1
{

[ϕµ
1 ]′(γ) ⊕ [ϕµ

2 ]′(γ)
}

g0 =: h(γ) in C(X × X ).

Observe that
∫

gt(x1, x2) dμ−i
t (x−i) =

∫

gt(x1, x2) dμ−i(x−i) + t

∫

gt(x1, x2) dγ−i
t (x−i).

As t ↓ 0, we have

t−1

{∫

gt(x1, x2) dμ−i(x−i) −
∫

g0(x1, x2) dμ−i(x−i)

}

→
∫

h(γ)(x1, x2) dμ−i(x−i) in C(X ).

To control
∫

gt(x1, x2) dγ−i
t (x−i), observe that

∣
∣
∣
∣

∫

gt(x1, x2) dγ2
t (x2) −

∫

g0(x1, x2) dγ2(x2)

∣
∣
∣
∣

≤
∣
∣
∣
∣

∫

(gt − g0)(x1, x2) dγ2
t (x2)

∣
∣
∣
∣
+

∣
∣
∣
∣

∫

g0(x1, x2)d(γ2
t − γ2)(x2)

∣
∣
∣
∣

≤ ‖gt(x1, ·) − g0(x1, ·)‖Cs(X )‖γ2
t ‖∞,Bs + ‖g0(x1, ·)‖Cs(X )‖γ2

t − γ2‖∞,Bs .

We have ‖γ2
t ‖∞,Bs = O(1) and ‖γ2

t − γ2‖∞,Bs = o(1) as t ↓ 0 by construction,
and supx1∈X ‖g0(x1, ·)‖Cs(X ) < ∞ by Lemma 1 (ii). Since μi

t converges weakly to
μi as t ↓ 0 (as convergence in �∞(Bs) implies weak convergence; cf. Lemma 16),
Lemma 1 (iii) implies that ϕµt → ϕµ in Cs(X ) × Cs(X ), which in turn implies
that supx1∈X ‖gt(x1, ·) − g0(x1, ·)‖Cs(X ) = o(1) as t ↓ 0. Hence, we have

∫

gt(·, x2) dγ2
t (x2) →

∫

g0(·, x2) dγ2(x2) in C(X ).

Likewise, we have
∫

gt(x1, ·) dγ1
t (x1) →

∫
g0(x1, ·) dγ1(x1) in C(X ). Conclude

that

t−1

{∫

gt(x1, x2) dμ−i
t (x−i) −

∫

g0(x1, x2) dμ−i(x−i)

}

→
∫

h(γ)(x1, x2) dμ−i(x−i) +

∫

g0(x1, x2) dγ−i(x−i) in C(X ).

The limit is linear and continuous from Mμ1
�∞(Bs) × Mμ2

�∞(Bs)
into C(X ).

Step 2. As in Step 1, let (µt)t>0 ⊂ Pμ1 × Pμ2 be a sequence such that γt :=

t−1(µt − µ) → γ in �∞(Bs) × �∞(Bs) as t ↓ 0. By Lemma 4 and Step 1,
for every multi-index k ∈ N

d
0 with |k| ≤ s, the map ν �→ Dkϕν

i , Pμ1 × Pμ2 ⊂
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�∞(Bs)×�∞(Bs) → C(X ) is Hadamard differentiable at µ. Denote its derivative
by [Dkϕµ

i ]′, so that

t−1(Dkϕµt

i − Dkϕµ
i ) → [Dkϕµ

i ]′(γ) in C(X ).

Pick any sequence tn ↓ 0. Then, t−1
n (ϕ

µtn

i − ϕµ
i ) is Cauchy in Cs(X ), so by

completeness of Cs(X ), the limit in Cs(X ) exists, i.e., t−1
n (ϕ

µtn

i − ϕµ
i ) → ϕ̄i

in Cs(X ). The limit ϕ̄i satisfies that Dkϕ̄i = [Dkϕµ
i ]′(γ) for every multi-index

k ∈ N
d
0 with |k| ≤ s, which shows that [ϕµ

i ]′(γ) ∈ Cs(X ) with Dk[ϕµ
i ]′(γ) =

[Dkϕµ
i ]′(γ) for every multi-index k ∈ N

d
0 with |k| ≤ s. Since the map γ �→

[ϕµ
i ]′(γ) is linear and continuous from Mμ1

�∞(Bs) × Mμ2
�∞(Bs)

into Cs(X ), we
obtain the desired result.

Remark 14. Another possible approach would be to employ the implicit function
theorem for Banach spaces (see, e.g., Theorem I.5.9 in [58]), which asks Fréchet
differentiability of the map µ �→ ϕµ. However, in our problem, it seems highly
nontrivial to verify the required conditions to directly apply the implicit function
theorem. For statistical purposes, Hadamard differentiability is sufficient in most
cases; cf. Chapter 3.9 in [91].

6.2. Proof of Theorem 4

We divide the proof into two steps.
Step 1. We first show twice Hadamard differentiability of the mapping ν �→

ϕν in D. Recall that ϕµt |S = φ ◦ Ψ(µt, ·). Observe that Ψ(µt, ·) = Ψ(µ, ·) +
tψ′(γt). We will apply Lemma 15 below with Θ = Θs,D = D,L = D, Ψ =
Ψ(µ, ·), »0 = ϕµ|S , »t = ϕµt |S , and zt = ψ′(γt). To this end, we shall verify the
conditions in Lemma 15.

Twice Fréchet differentiability of Ψ(µ, ·) is straightforward to verify, with
second derivative given by

Ψ̈µ(h1, h2) = ε−2

(∫

e
ϕ

µ

1 ⊕ϕ
µ

2 −c

ε (h1 ⊕ h2)2 dμ2,

∫

e
ϕ

µ

1 ⊕ϕ
µ

2 −c

ε (h1 ⊕ h2)2 dμ1

)

.

We have already verified Conditions (i)–(ii) of Lemma 15 in the proof of Lemma 8.
Regarding Condition (iii), since ψ′(γt) ∈ Zµ (cf. the proof of Lemma 8), in view

of Remark 17 after Lemma 14, it holds that ψ′(γt)(ϕ
µ|S) ∈ Ψ̇µ(lin(Θs))

D

. It
remains to verify Condition (iv) in Lemma 15. Observe that, as spt(γi

t) ⊂ Si,

t−1 {ψ′(γt)(ϕ
µt |S) − ψ′(γt)(ϕ

µ|S)}

= t−1

(∫ (

e
ϕ

µt
1 ⊕ϕ

µt
2 −c

ε − e
ϕ

µ

1 ⊕ϕ
µ

2 −c

ε

)

dγ2
t ,

∫ (

e
ϕ

µt
1 ⊕ϕ

µt
2 −c

ε − e
ϕ

µ

1 ⊕ϕ
µ

2 −c

ε

)

dγ1
t

)

.

By symmetry, it suffices to show convergence of the first coordinate. Recall from
Theorem 3 that t−1(ϕµt

i − ϕµ
i ) → [ϕµ

i ]′(γ) in Cs(X ) for i = 1, 2. We shall show
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that

sup
x1∈X

∥
∥
∥
∥
∥
t−1

{

e
ϕ

µt
1 (x1)+ϕ

µt
2 (·)−c(x1,·)

ε − e
ϕ

µ

1 (x1)+ϕ
µ

2 (·)−c(x1,·)

ε

}

− ε−1
{

[ϕµ
1 ]′(γ)(x1) + [ϕµ

2 ]′(γ)(·)
}

e
ϕ

µ

1 (x1)+ϕ
µ

2 (·)−c(x1,·)

ε

∥
∥
∥
∥
∥

Cs(X )

→ 0.

(17)

Indeed, since γ2
t → γ2 in �∞(Bs), (17) implies that

∫

t−1
(

e
ϕ

µt
1 ⊕ϕ

µt
2 −c

ε −e
ϕ

µ

1 ⊕ϕ
µ

2 −c

ε

)

dγ2
t → ε−1

∫
{

[ϕµ
1 ]′(γ)⊕[ϕµ

2 ]′(γ)
}

e
ϕ

µ

1 ⊕ϕ
µ

2 −c

ε dγ2

in C(X ), yielding the desired result in view of Remark 9.
Observe that, in general, for f, g ∈ Cs(X ), it holds that

‖fg‖Cs(X ) ≤ K‖f‖Cs(X )‖g‖Cs(X )

for some constant K that depends only on s, d. Now, since

sup
x1∈X

∥
∥
∥e

ϕ
µ

1 (x1)+ϕ
µ

2 (·)−c(x1,·)

ε

∥
∥
∥

Cs(X )
< ∞

by Lemma 1 (ii), the left-hand side of (17) is bounded by

sup
x1∈X

∥
∥
∥
∥
∥
t−1

{

e
ϕ

µt
1 (x1)−ϕ

µ

1 (x1)+ϕ
µt
2 (·)−ϕ

µ

2 (·)

ε − 1
}

− ε−1
{

[ϕµ
1 ]′(γ)(x1) + [ϕµ

2 ]′(γ)(·)
}

∥
∥
∥
∥
∥

Cs(X )

(18)

up to a constant independent of t. It is not difficult to see that (18) converges
to zero when ‖ · ‖Cs(X ) is replaced by ‖ · ‖∞,X . We shall show that for every

multi-index k ∈ N
d
0 with 0 < |k| ≤ s,

sup
x1∈X

∥
∥
∥
∥
∥
t−1Dk

x2

(
e

ϕ
µt
1 (x1)−ϕ

µ

1 (x1)+ϕ
µt
2 (·)−ϕ

µ

2 (·)

ε

)
− ε−1Dk

x2
[ϕµ

2 ]′(γ)(·)
∥
∥
∥
∥
∥

∞,X

→ 0. (19)

By the multivariate Faà di Bruno formula (cf. Theorem 2.1 in [25]),

t−1Dk
x2

(

e
ϕ

µt
1 (x1)−ϕ

µ

1 (x1)+ϕ
µt
2 (x2)−ϕ

µ

2 (x2)

ε

)

can be expressed as a linear combination of functions of the form

e
ϕ

µt
1 (x1)−ϕ

µ

1 (x1)+ϕ
µt
2 (x2)−ϕ

µ

2 (x2)

ε × t−1
J∏

j=1

[

D�j
x2

(
ϕµt

2 (x2) − ϕµ
2 (x2)

)]mj

, (20)



Limit theorems for entropic maps and the Sinkhorn divergence 1009

where 1 ≤ J ≤ |k|, and m1, . . . , mJ ∈ N and �1, . . . , �J ∈ N
d
0 \ {0} are such that

m1�1 + · · · + mJ�J = k. The coefficient for the leading term with J = 1 and
m1 = 1 is ε−1. Except for the leading term, the order of (20) is O(t) as t ↓ 0 in
C(X × X ), so we arrive at the following expansion in C(X × X ):

t−1Dk
x2

(

e
ϕ

µt
1 (x1)−ϕ

µ

1 (x1)+ϕ
µt
2 (x2)−ϕ

µ

2 (x2)

ε

)

= ε−1e
ϕ

µt
1 (x1)−ϕ

µ

1 (x1)+ϕ
µt
2 (x2)−ϕ

µ

2 (x2)

ε × t−1Dk
x2

(
ϕµt

2 (x2) − ϕµ
2 (x2)

)
+ o(1).

The right-hand side converges to ε−1Dk
x2

[ϕµ
2 ]′(γ)(x2) in C(X × X ) as t−1(ϕµt

i −
ϕµ

i ) → [ϕµ
i ]′(γ) in Cs(X ) for i = 1, 2, which leads to (19) as desired.

Therefore, Lemma 15 guarantees that the limit

lim
t´0

ϕµt |S − ϕµ|S − t[ϕµ|S ]′(γt)

t2/2

exists in D. By our construction, the limit depends on γ but not on the choice
of sequence µt, so denote the limit by [ϕµ|S ]′′(γ).

Step 2. Next, we leverage twice differentiability of ν �→ ϕν |S to establish
the second derivative of ν �→ ϕν using (12). As in the proof of Lemma 4, we
only deal with the first potential. Recall the notation ξν and Υ that appeared
in the proof of Lemma 4 and observe that ϕν

1 = −ε log(Υ(ν)). Precisely, ϕν
1

agrees with the composition of the maps f ∈ C+(X ) �→ −ε log(f) ∈ C(X ) with
C+(X ) = {f ∈ C(X ) : f > 0} and Υ : Pμ1 × Pμ2 → C+(X ). The former
map is twice Hadamard (indeed Fréchet) differentiable and its domain C+(X )
is open in C(X ), so the tangent cone TC+(X )(f) agrees with C(X ) for every
f ∈ C+(X ). From the second-order chain rule for Hadamard differentiable maps
(see Lemma 12), it suffices to establish second-order Hadamard differentiability

of Υ at µ tangentially to Mμ1
�∞(Bs) × Mμ2

�∞(Bs)
. As such, with µt and γt

as above, recalling the expression of the derivative of Υ from (16) and that
[ϕµ

2 |S2 ]′(γt) = [ϕµ
2 ]′(γt) on S2 (see Remark 12), we have

Υ(µt) − Υ(µ) − tΥ′
µ(γt)

t2/2

= (2/t2)

∫
{

ξµt(·, x2) − ξµ(·, x2) − tε−1ξµ(·, x2)[ϕµ
2 ]′(γt)(x2)

}
dμ2(x2)

+ (2/t)

∫

{ξµt(·, x2) − ξµ(·, x2)} dγ2
t (x2),

As t ↓ 0, the first term on the right-hand side converges to the second-order
Hadamard derivative of the map ν ∈ Pμ1 × Pμ2 �→

∫
ξν(·, x2) dμ2(x2) ∈ C(X )

at µ, which agrees with
∫ {

ε−2ξµ(·, x2) ([ϕµ
2 ]′(γ)(x2))

2
+ ε−1ξµ(·, x2)[ϕµ

2 |S2 ]′′(γ)(x2)
}

dμ2(x2)

by the chain rule and twice differentiability of the restricted potentials.
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As (x1, x2) ∈ X × X �→ e
ϕν

2 (x2)−c(x1,x2)

ε extends ξν , the second term satisfies

sup
x1∈X

∣
∣
∣
∣
t−1

∫
{

ξµt(x1, ·) − ξµ(x1, ·)
}

dγ2
t − ε−1

∫

ξµ(x1, ·)[ϕµ
2 ]′(γ)(·) dγ2

∣
∣
∣
∣

≤ sup
x1∈X

∥
∥
∥e

ϕ
µ

2 −c(x1,·)

ε

(

t−1
(

e
ϕ

µt
2 −ϕ

µ

2
ε − 1

)

− ε−1[ϕµ
2 ]′(γ)(·)

)∥
∥
∥

Cs(X )
‖γ2

t ‖∞,Bs

+ sup
x1∈X

∥
∥
∥ε−1e

ϕ
µ

2 −c(x1,·)

ε [ϕµ
2 ]′(γ)(·)

∥
∥
∥

Cs(X )
‖γ2

t − γ2‖∞,Bs .

(21)
As in Step 1, one can show that the right-hand side of (21) converges to 0 as
t ↓ 0.

Consequently, Υ is twice Hadamard differentiable at µ with derivative

Υ′′
µ(γ) =

∫

ε−2ξµ(·, x2)
(
[ϕ2|µS2

]′(γ)(x2)
)2

dμ2(x2)

+

∫

ε−1ξµ(·, x2)[ϕ2|µS2
]′′(γ)(x2) dμ2(x2)

+ 2ε−1

∫

ξµ(x1, ·)[ϕ2|µS2
]′(γ)(·) dγ2, γ ∈ Mμ1

�∞(Bs) × Mμ2
�∞(Bs)

,

and hence [ϕµ
1 ]′′(γ) = εe

2ϕ
µ

1
ε

(
Υ′

µ(γ)
)2 − εe

ϕ
µ

1
ε Υ′′

µ(γ) by the chain rule. Finally,
continuity and positive homogeneity (of degree 2) of [ϕµ]′′ follow from the con-
struction.

6.3. Proof of Lemma 3

We divide the proof into two steps. Since the Sinkhorn divergence is invariant
w.r.t. the choice of reference points and γi(a) = 0 for every constant a ∈ R, we
may assume without loss of generality that x◦

1 = x◦
2.

Step 1. The map ν = (ν1, ν2) �→ Sc,ε(ν1, ν2), Pμ1×Pμ2 ⊂ �∞(Bs)×�∞(Bs) →
R is Hadamard differentiable at µ tangentially to Mμ1

�∞(Bs) ×Mμ2
�∞(Bs)

with
derivative

[
S

µ
c,ε

]′
(γ) =

∫

ϕµ
1 dγ1 +

∫

ϕµ
2 dγ2.

Given regularity of EOT potentials (Lemma 1), the proof follows similarly to
the proof (or its argument) of Theorem 7 in [48], with small modifications. To
avoid repetitions, we omit the details.

Step 2. The conclusion of the lemma follows by Step 1 and noting that

ϕ
(μi,μi)
1 = ϕ

(μi,μi)
2 by symmetry of the cost function.
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6.4. Proof of Theorem 5

As before, we may assume without loss of generality that x◦
1 = x◦

2. Using (9),
we can expand S̄c,ε(μ1

t , μ2
t ) as

S̄c,ε(μ1
t , μ2

t ) =

∫

(ϕ
(μ1

t ,μ2
t )

1 − ϕ
(μ1

t ,μ1
t )

1 ) dμ1
t +

∫

(ϕ
(μ1

t ,μ2
t )

2 − ϕ
(μ2

t ,μ2
t )

2 ) dμ2
t

=

∫

(ϕ
(μ1

t ,μ2
t )

1 − ϕ
(μ1

t ,μ1
t )

1 ) dμ +

∫

(ϕ
(μ1

t ,μ2
t )

2 − ϕ
(μ2

t ,μ2
t )

2 ) dμ

+ t

∫

(ϕ
(μ1

t ,μ2
t )

1 − ϕ
(μ1

t ,μ1
t )

1 ) dγ1
t + t

∫

(ϕ
(μ1

t ,μ2
t )

2 − ϕ
(μ2

t ,μ2
t )

2 ) dγ2
t .

By Theorem 3, we have

ϕ
(μ1

t ,μ2
t )

i − ϕ
(μ,μ)
i

t
→ [ϕ

(μ,μ)
i ]′(γ1, γ2) in Cs(X )

as t ↓ 0, while

ϕ
(μi

t,μi
t)

i − ϕ
(μ,μ)
i

t
→ [ϕ

(μ,μ)
i ]′(γi, γi) in Cs(X ).

Since γi
t → γi in �∞(Bs) as t ↓ 0, we have

∫

(ϕ
(μ1

t ,μ2
t )

i − ϕ
(μi

t,μi
t)

i ) dγi
t = t

∫

[ϕ
(μ,μ)
i ]′(γ1 − γi, γ2 − γi) dγi + o(t).

On the other hand, by Theorem 4, we have

ϕ
(μ1

t ,μ2
t )

1 − ϕ
(μ1

t ,μ1
t )

1 − t[ϕ
(μ,μ)
1 ]′(0, γ2

t − γ1
t )

t2/2

→ [ϕ
(μ,μ)
1 ]′′(γ1, γ2) − [ϕ

(μ,μ)
1 ]′′(γ1, γ1) in C(X ) × C(X ).

A similar expansion holds for ϕ
(μ1

t ,μ2
t )

2 − ϕ
(μ2

t ,μ2
t )

2 . Hence, we have

∫

(ϕ
(μ1

t ,μ2
t )

1 − ϕ
(μ1

t ,μ1
t )

1 ) dμ +

∫

(ϕ
(μ1

t ,μ2
t )

2 − ϕ
(μ2

t ,μ2
t )

2 ) dμ

= t

∫
(
[ϕ

(μ,μ)
1 ]′(0, γ2

t − γ1
t ) + [ϕ

(μ,μ)
2 ]′(γ1

t − γ2
t , 0)

)
dμ

+
t2

2

∫ ( 2∑

i=1

(
[ϕ

(μ,μ)
i ]′′(γ1, γ2) − [ϕ

(μ,μ)
i ]′′(γi, γi)

))

dμ + o(t2).

(22)

As the cost function is symmetric, we have

[ϕ
(μ,μ)
2 ]′(γ1

t − γ2
t , 0) = [ϕ

(μ,μ)
1 ]′(0, γ1

t − γ2
t ) = −[ϕ

(μ,μ)
1 ]′(0, γ2

t − γ1
t ),
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so that the first term on the right-hand side of (22) vanishes. Conclude that

lim
t´0

S̄c,ε(μ1
t , μ2

t )

t2/2
=

∫ ( 2∑

i=1

(
[ϕ

(μ,μ)
i ]′′(γ1, γ2) − [ϕ

(μ,μ)
i ]′′(γi, γi)

))

dμ

+ 2

2∑

i=1

∫

[ϕ
(μ,μ)
i ]′(γ1 − γi, γ2 − γi) dγi =: ∆μ(γ).

Continuity and positive homogeneity (of degree 2) of ∆μ follows immediately
(or from its construction).

6.5. Proofs for Section 3 (except Proposition 2)

In what follows, let

Mμi =
{

gdμi : g : X → R is bounded and measurable with μi-mean zero
}

,

where gdμi should be understood as a signed measure A �→
∫

A
gdμi.

For a (generic) probability measure μ and a function class F ⊂ L2(μ), a
stochastic process G = (G(f))f∈F is called a μ-Brownian bridge if it is a Gaus-
sian process with mean zero and covariance function E[G(f)G(g)] = Covμ(f, g);
furthermore, if G is a tight measurable map into �∞(F), then we call G a tight
μ-Brownian bridge in �∞(F). Recall that a (zero-mean) Gaussian process that
is a tight measurable map into �∞(F) is an �∞(F)-valued Gaussian random
variable (with mean zero) in the Banach space sense; see Lemma 3.9.8 in [91].

Lemma 9. Let s be a positive integer with s > d/2. Then, for every µ =
(μ1, μ2) ∈ P(X ) × P(X ), we have

√
n(µ̂n − µ)

d→ G
µ =

(
G

μ1

1 ,Gμ2

2

)
in �∞(Bs) × �∞(Bs), (23)

where G
μ1

1 and G
μ2

2 are independent, tight μ1- and μ2-Brownian bridges in

�∞(Bs) and �∞(Bs), respectively. Furthermore, spt(Gµ) ⊂ Mμ1
�∞(Bs)

× Mμ2
�∞(Bs)

.

Proof of Lemma 9. The set Bs is μi-Donsker by Theorem 2.7.1 in [91]. Since
the samples are independent, by Example 1.4.6 in [91] (combined with Lemma
3.2.4 in [35] concerning measurable covers), we obtain the weak convergence
result (23). The second claim follows by Lemma 17.

The following lemma will be used to prove the second claim of Theorem 2.

Lemma 10. Consider the setting of Theorem 5 and assume that S̄c,ε is non-
negative. Let W be a tight random variable with values in �∞(Bs) × �∞(Bs)
whose support is a cone �= {0}. Then, unless ∆μ is identically zero, the support
of ∆μ(W ) agrees with [0, ∞).
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Proof of Lemma 10. Consider the restriction of ∆μ on spt(W ), which we denote
by the same symbol. The restriction is still continuous and positively homoge-
neous of degree 2 (the latter follows as spt(W ) is a cone). The functional ∆μ is
nonnegative by construction. By positive homogeneity, ∆μ is either identically
zero or onto [0, ∞). In our setting, ∆μ is onto [0, ∞). For every open interval
(a, b) ⊂ [0, ∞), the inverse image ∆−1

μ ((a, b)) is nonempty and open in spt(W ),
and hence by the definition of support, we have P(∆μ(W ) ∈ (a, b)) > 0, which
implies that spt(∆μ(W )) = [0, ∞).

We are now ready to prove Theorem 1, Corollary 1, Proposition 1, and The-
orem 2.

Proof of Theorem 1. The theorem follows from the Hadamard differentiability
result (Theorem 3) combined with the functional delta method. Let s > d/2,
so that the weak convergence (23) holds. Since

√
n(µ̂n − µ) ∈ Pμ1 × Pμ2

a.s. (as spt(μ̂i
n) ⊂ spt(μi) a.s.) and spt(Gµ) ⊂ Mμ1

�∞(Bs) × Mμ2
�∞(Bs) ⊂

Mμ1
�∞(Bs) × Mμ2

�∞(Bs)
(or the inclusion spt(Gµ) ⊂ Mμ1

�∞(Bs) × Mμ2
�∞(Bs)

follows from the portmanteau theorem), we may apply the functional delta
method (Lemma 11) to conclude that

√
n
(
ϕ̂n − ϕµ

) d→ [ϕµ]′(Gµ) in Cs(X ) × Cs(X ).

Also, since Mμ1
�∞(Bs) × Mμ2

�∞(Bs)
is a closed subspace of �∞(Bs) × �∞(Bs)

and the restriction of [ϕµ]′ to Mμ1
�∞(Bs) × Mμ2

�∞(Bs)
is a continuous linear

operator, we see that [ϕµ]′(Gµ) is a zero-mean Gaussian random variable with
values in Cs(X ) × Cs(X ). The result for the s ≤ d/2 case follows by the fact the
inclusion map f �→ f, Cs(X ) → Cs′

(X ) with s′ < s is continuous.

Proof of Corollary 1. Since the map f �→ ∇f, Cs(X ) → Cs−1(X ;Rd) is con-

tinuous and linear, we have
√

n(T̂n − T µ) = −∇√
n(ϕ̂n

1 − ϕµ
1 )

d→ −∇Gµ
1 in

Cs−1(X ;Rd) and the limit −∇Gµ
1 is again a zero-mean Gaussian variable.

Proof of Proposition 1. Given the weak convergence and Hadamard differen-
tiablity results (Lemmas 9 and 3), the first claim follows by applying the func-
tional delta method.

For the second claim, assume S̄c,ε(μ1, μ2) �= 0 and spt(μ1) ∩ spt(μ2) �= ∅. For
simplicity of notation, assume without loss of generality that ε = 1 and x◦

1 = x◦
2,

and define the shorthands ϕµ
i = ϕi and ϕ

(μi,μi)
i = ψi, for i = 1, 2. Suppose on

the contrary that σ2
µ = 0, which entails Varμi(ϕi − ψi) = 0, so ψi = ϕi + ai

μi-a.e. for some ai ∈ R for i = 1, 2. The Schrödinger system (6) implies that

1 =

∫

eϕ1⊕ϕ2−c dμ2 = e−a1−a2

∫

eψ1⊕ψ2−c dμ2 = e−a1−a2+ψ1−ψ2

where we used the fact that ϕ
(μ2,μ2)
1 = ϕ

(μ2,μ2)
2 = ψ2. The equality above holds

μ1-a.e., so ψ1 −ψ2 = a1 +a2 μ1-a.e. By symmetry, we also have ψ2 −ψ1 = a1 +a2
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μ2-a.e. Since ψ1 and ψ2 are continuous, we have ψ1 − ψ2 = a1 + a2 on spt(μ1)
and ψ2 − ψ1 = a1 + a2 on spt(μ2), and as spt(μ1) ∩ spt(μ2) �= ∅, we must have
a1 + a2 = 0. However, the duality formula (9) then entails S̄c,ε(μ1, μ2) = 0,
which is a contradiction.

Proof of Theorem 2. Given the second-order Hadamard differentiability result
(Theorem 5), the first claim of the theorem follows by applying the second-

order functional delta method (Lemma 13), nS̄c,ε(μ̂1
n, μ̂2

n)
d→ ∆μ(G(μ,μ))/2. The

second claim follows by Lemma 10, upon noting that spt(G(μ,μ)) is a vector
subspace of �∞(Bs) × �∞(Bs) (cf. the proof of Lemma 17 or Lemma 5.1 in
[92]).

6.6. Proof of Proposition 2

The proof uses techniques from U -processes. We refer to [29] as an excellent
reference on U -processes. Assume π = πV ⊗ πW . For notational convenience,
set π̂◦

n = π̂V
n ⊗ π̂W

n . Let Bs be the unit ball in Cs(X ) with s > 2d (recall that
d = d1 + d2 and X = V × W). We will derive a joint limit distribution for√

n(π̂n − π) and
√

n(π̂◦
n − π) in �∞(Bs) × �∞(Bs). As in [2], define for f ∈ Bs,

hf (x1, x2) = hf ((v1, w1), (v2, w2))

:= f(v1, w1) + f(v2, w2) − f(v1, w2) − f(v2, w1).
(24)

The function hf is symmetric with ‖hf ‖Cs(X ×X ) ≤ 4. As Vi and Wi are in-
dependent, the mean of hf (X1, X2) is zero: E[hf (X1, X2)] = 0. Consider the
U -statistic with kernel hf :

Un(hf ) =
1

n(n − 1)

∑

1≤i �=j≤n

hf (Xi, Xj).

Then, keeping in mind Xi = (Vi, Wi), we can expand Un(hf ) as

Un(hf ) =
2

n

n∑

i=1

f(Xi) − 2

n(n − 1)

∑

1≤i �=j≤n

f(Vi, Wj)

=
2

n

n∑

i=1

f(Xi) − 2

n2

n∑

i,j=1

f(Vi, Wj)

+
2

n3 − n2

∑

1≤i �=j≤n

f(Vi, Wj) +
2

n2

n∑

i=1

f(Xi)

︸ ︷︷ ︸

=:An(f)

= 2
(
π̂n(f) − π̂◦

n(f)
)

+ An(f),

that is,

π̂◦
n(f) = π̂n(f) − 1

2
Un(hf ) +

1

2
An(f).
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Since |f | ≤ 1, we have |An(f)| ≤ 4/n. We will approximate Un(hf ) by the Hajék
process. Apply the Hoeffding decomposition to hf :

h
(1)
f (x) =

∫

hf (x, x′) dπ(x′), h
(2)
f (x, x′) = hf (x, x′) − h

(1)
f (x) − h

(1)
f (x′).

Then, we can decompose Un(hf ) as Un(hf ) = 2π̂n(h
(1)
f ) + Un(h

(2)
f ).

Now, since {hf : f ∈ Bs} ⊂ {h ∈ Cs(X × X ) : ‖h‖Cs(X ×X ) ≤ 4} and the

t-entropy number of the latter function class w.r.t. ‖ · ‖∞,X ×X is of order t−2d/s

as t ↓ 0 by Theorem 2.7.1 in [91], applying Corollary 5.6 in [19] with k = 2, we
have

E[‖Un(h
(2)
f )‖∞,Bs ] ≤ O(n−1) ×

∫ 1

0

t−2d/sdt = O(n−1).

Summarizing, we have E
[∥
∥
√

n
(
π̂◦

n(f) − π̂n(f − h
(1)
f )

)∥
∥

∞,Bs

]
→ 0.

For notational convenience, set Gn =
√

n(π̂n − π) and h̃f = f − h
(1)
f . We will

show that
((
Gn(f)

)

f∈Bs ,
(
Gn(h̃f )

)

f∈Bs

)
converges in distribution a tight limit

in �∞(Bs) × �∞(Bs). To this end, we will apply Lemma 18. Again, by Theorem
2.7.1 in [91], Bs and H̃ := {h̃f : f ∈ Bs} are both π-Donsker. Finite-dimensional
convergence follows trivially, so by Lemma 18,

((
Gn(f)

)

f∈Bs ,
(
Gn(h)

)

h∈H̃

) d→ Gπ in �∞(Bs) × �∞(H̃)

for some tight limit Gπ. Finally, since the map ¼ : �∞(Bs)×�∞(H̃) → �∞(Bs)×
�∞(Bs) defined by

(¼z)1(f) = z1(f) and (¼z)2(f) = z2(h̃f ), z = (z1, z2) ∈ �∞(Bs) × �∞(H̃)

is continuous, we conclude that

((
Gn(f)

)

f∈Bs ,
(
Gn(h̃f )

)

f∈Bs

) d→ ¼Gπ =: G̃π in �∞(Bs) × �∞(Bs).

The limit variable G̃π = (G̃π
1 , G̃π

2 ) is a two-dimensional Gaussian process with
mean zero and covariance structure

Cov(G̃π
1 (f), G̃π

1 (g)) = Covπ(f, g), Cov(G̃π
2 (f), G̃π

2 (g)) = Covπ(h̃f , h̃g),

and Cov(G̃π
1 (f), G̃π

2 (g)) = Covπ(f, h̃g).

In view of the discussion above, the same limit holds for
(√

n(π̂n − π),
√

n(π̂◦
n −

π)
)
. Now, combining Theorem 4 and the second-order functional delta method

(Lemma 13), we conclude that

nDn = nS̄c,ε(π̂n, π̂◦
n)

d→ 1

2
∆π(G̃π).

Finally, the second claim of the proposition follows by Lemma 10, upon noting
that the support of G̃π is a vector subspace of �∞(Bs)× �∞(Bs); cf. Lemma 5.1
in [92]. This completes the proof.
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6.7. Proof of Proposition 3

(i). We first note that, as hdμ2 ∈ Mμ2
�∞(Bs)

, by Hadamard differentiability, κn

satisfies √
n
(
κn(h) − κn(0)

)
→ δ′

μ2(hdμ2) =: κ̇(h).

Since h �→ hdμ2 is linear and continuous from H into �∞(Bs) (cf. Example
1.5.10 in [91]), κ̇ : H → B is a continuous linear map, establishing regularity of
the parameter sequence κn(h).

Next, we shall verify regularity of the empirical EOT map T̃n. Hadamard
differentiability enables finding limit distributions under local alternatives. By
the second claim of the functional delta method (Lemma 11), we have

√
n
(
T̃n − T µ

)
− δ′

μ2(
√

n(μ̂2
n − μ2)) → 0

in probability under Pn,0. From the proof of Theorem 3.10.12 in [91],

(√
n(μ̂2

n − μ2),
dPn,h

dPn,0

)
d→ (Gμ2

2 , Λ) in �∞(Bs) × R

under Pn,0, and the law L on �∞(Bs) defined by L(A) = E[1A(Gμ2

2 )Λ] agrees

with the law of Gμ2

2 + hdμ2 (note: hdμ2 should be understood as an element of
�∞(Bs)). Combining these two displays above yields that

(√
n(T̃n − T µ),

dPn,h

dPn,0

)
d→ (δ′

μ2(Gμ2

2 ), Λ) in B × R

under Pn,0. Hence, by Le Cam’s third lemma (Theorem 3.10.7 in [91]),
√

n(T̃n −
T µ)

d→ δ′
μ2(Gμ2

2 + hdμ2) under Pn,h. Note that G
μ2

2 + hdμ2 ∈ Mμ2
�∞(Bs)

. By

linearity of the derivative, we have δ′
μ2(Gμ2

2 + hdμ2) = δ′
μ2(Gμ2

2 ) + δ′
μ2(hdμ2).

Conclude that

√
n(T̃n − T µ)

d→ δ′
μ2(Gμ2

2 ) + δ′
μ2(hdμ2) in B

under Pn,h. This immediately implies that T̃n is regular, that is,
√

n(T̃n −
T (μ1,μ2

n,h))
d→ δ′

μ2(Gμ2

2 ) under Pn,h.
Now, in view of Theorem 3.11.2 in [91], the last claim follows by verifying

that δ′
μ2(Gμ2

2 )
d
= G, where G is a Gaussian random variable in B such that for

every b∗ ∈ B
∗, b∗G is Gaussian with mean zero and variance

sup
h∈H:‖h‖L2(μ2)=1

(b∗κ̇(h))2 = sup
h∈H:‖h‖L2(μ2)=1

(
b∗δ′

μ2(hdμ2)
)2

.

By construction δ′
μ2,b∗ := b∗◦δ′

μ2 is a continuous linear functional on Mμ2
�∞(Bs)⊃

spt(Gμ2

2 ) with Mμ2 = {hdμ2 : h ∈ H} (Lemma 17). Note that Mμ2
�∞(Bs)

is a
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closed subspace of �∞(Bs). Arguing as in the proof of Proposition 2 in [48], we
obtain

Var(b∗G) = sup
h∈H

‖h‖L2(μ2)=1

(
δ′

μ2,b∗(hdμ2)
)2

= Var
(
δ′

μ2,b∗(Gμ2

2 )
)

= Var(b∗δ′
μ2(Gμ2

2 )).

Conclude that δ′
μ2(Gμ2

2 )
d
= G.

(ii). Given the result of Part (i), Part (ii) follows directly from Theorem 3.11.5
in [91].

7. Discussions

We have established limit distributions for the EOT potentials, map, and
Sinkhorn divergence. The main ingredient of our proofs was Hadamard dif-
ferentiability of the relevant maps. Importantly, the Hadamard differentiabil-
ity results yield not only limit distributions but also bootstrap consistency and
asymptotic efficiency. Regarding the Sinkhorn divergence, our main contribution
is the derivation of the null limit distribution for compactly supported distri-
butions. When the population measures agree, the first Hadamard derivative of
the Sinkhorn divergence vanishes, which necessitates looking into higher-order
Hadamard derivatives. For this, Hadamard differentiability of the EOT map in
(sufficiently regular) Hölder spaces plays an important role. As another contribu-
tion, we have derived the null limit distribution of the Sinkhorn independence
test statistic and determined the precise order of the test statistic under the
null, which was not available before. We end this paper with discussions of two
possible extensions.

7.1. Unbounded supports

In the present paper, we have assumed that the marginals μ1 and μ2 are com-
pactly supported, which excludes, for instance, Gaussian distributions (one ex-
ception is Proposition 1, where the compactness assumption can be relaxed to a
sub-Gaussian condition when c is quadratic; see [31, 48]).Indeed, the compact-
ness assumption is essential to formulate the Hadamard differentiability results,
where we first regard the dual potentials as a mapping into the Hölder space with
arbitrary smoothness level (cf. Lemma 1 (ii)), and then embed each marginal
into the topological dual of the Hölder space (cf. Remark 9). The second step is
natural in view of the Schrödinger system, since whenever ϕ1, ϕ2 ∈ Cs(X ), the
exponentiated functions

e
ϕ1(x1)+ϕ2(·)−c(x1,·)

ε and e
ϕ1(·)+ϕ2(x2)−c(·,x2)

ε (25)

both lie in Cs(X ) for every x1, x2 ∈ X .



1018 Z. Goldfeld et al.

For certain smooth costs, even when the marginals are not compactly sup-
ported, as long as they have sufficiently light tails, we may uniformly upper
bound derivatives of EOT potentials by a polynomial of 1 + ‖ · ‖ (cf. [65]), so a
natural idea would be to replace the Hölder space with a certain weighted Hölder
space (cf. [71]). However, even when the dual potentials lie in a weighted Hölder
space, the exponentiated functions in (25) need not lie in the same weighted
Hölder space, so it is nontrivial to find a suitable normed space into which the
marginals are embedded when they are not compactly supported. In particular,
the desired space should enable extending Lemma 6 (ii) to the unboundedly
supported setting to ensure that the Fréchet derivative Ψ̇µ is injective with
a continuous inverse. While these properties are crucial for our argument, they
seem challenging to establish for marginals with unbounded supports. We there-
fore leave this exploration for future work.

It is worth mentioning that [53] derive a Hadamard derivative for the EOT
plan w.r.t. the marginals when the supports are countable. They use a curvature-
type condition on the cost to allow for unbounded supports (see Remark 5.9 in
[53]; see also [52] for a similar condition), but their proof technique is restricted
to the countable support case where we may naturally embed the marginals into
a sequence space, and does not directly extend to a more general case.

7.2. Multimarginal EOT

The results of the present paper extend to the multimarginal case, as long as
we deal with compactly supported marginals. Multimarginal optimal transport
finds applications spanning from economics [16, 21, 38], through density func-
tional theory in quantum chemistry [23, 26], to generative modeling in machine
learning [11]. The multimarginal problem is also intimately related to Wasser-
stein barycenters; cf., e.g., [1], where entropic regularization is often applied to
attain computational tractability [28].

Given a smooth cost function c : (Rd)N → R+ and marginals μ1, . . . , μN ∈
P(X ) with N ≥ 2 arbitrary, the multimarginal EOT problem reads as

inf
π∈Π(μ1,...,μN )

∫

c dπ + εDKL(π‖m), m = μ1 ⊗ · · · ⊗ μN , (26)

where Π(μ1, . . . , μN ) is the set of Borel probability measures on X N with
marginals μ1, . . . , μN . To simplify notation, we set ε = 1. The corresponding
dual problem is

sup
(ϕ1,...,ϕN )∈

∏N
i=1 L∞(μi)

N∑

i=1

∫

ϕidμi−
∫

e
∑N

i=1 ϕi(xi)−c(x1,...,xN )dm(x1, . . . , xN )+1.

Bounded functions ϕ = (ϕ1, . . . , ϕN ) solve the dual problem if and only if they
satisfy the Schrödinger system, i.e.,
∫

e
∑N

j=1 ϕj(xj)−c(x1,...,xN )dm−i(x−i) − 1 = 0 for μi-a.e. xi, i = 1, . . . , N, (27)
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where m−i = ⊗j �=iμ
j and x−i = (x1, . . . , xi−1, xi+1, . . . , xN ). See [17]. The-

orem 4.3 in [17] shows that the Schrödinger system (27) admits a solution

ϕ = (ϕ1, . . . , ϕN ) ∈ ∏N
i=1 L∞(μi), which is unique in the sense that if ϕ̃ =

(ϕ̃1, . . . , ϕ̃N ) ∈ ∏N
i=1 L∞(μi) is another solution to the Schrödinger system (27),

then
∑N

i=1 ϕ(xi) =
∑N

i=1 ϕ̃i(xi) for m-a.e. (x1, . . . , xN ), i.e., there exist con-
stants a1, . . . , aN that sum to zero such that (ϕ̃1, . . . , ϕ̃N ) = (ϕ1 + a1, . . . , ϕN +
aN ) for m-a.e. (x1, . . . , xN ). We call ϕ EOT potentials. Then, the (unique)
optimal solution to the multimarginal EOT problem (26) is given by

dπ�(x1, . . . , xN ) = e
∑N

i=1 ϕi(xi)−c(x1,...,xN )dm(x1, . . . , xN ).

Given these preparations, it is not difficult to see that Lemma 1 naturally
extends to the multimarginal setting. For simplicity, we choose a common ref-
erence point x◦ ∈ X . Then, for every µ = (μ1, . . . , μN ) ∈ ∏N

i=1 P(X ), there

exists a unique set of functions ϕµ = (ϕµ
1 , . . . , ϕµ

N ) ∈ ∏N
i=1 C(X ) satisfying the

Schrödinger system (27) for every xi ∈ X for each i = 1, . . . , N , and such that
ϕµ

1 (x◦) = · · · = ϕµ
N (x◦). Furthermore, for every s ∈ N, there exists a constant Rs

such that max1≤i≤N ‖ϕµ
i ‖Cs(X ) ≤ Rs for all µ ∈ ∏N

i=1 P(X ). Then, Theorem 3
extends to the multimarginal setting as follows.

Theorem 6. For every s ∈ N and µ = (μ1, . . . , μN ) ∈ ∏N
i=1 P(X ), the map

ν �→ ϕν ,
∏N

i=1 Pμi ⊂ ∏N
i=1 �∞(Bs) → ∏N

i=1 Cs(X ) is Hadamard differentiable

tangentially to
∏N

i=1 Mμi

�∞(Bs)
.

The proof is similar to the two-marginal case, so omitted for brevity. Note
that the proof of Lemma 6 relies on the results of [17], but their results cover the
multimarginal case. Other results extend similarly. For example, let μ̂i

n denote
the empirical distribution of n i.i.d. data from μi and assume the samples from
different marginal distributions are independent. Then, for ϕ̂n = ϕµ̂n , we have
that

√
n(ϕ̂n − ϕµ) converges in distribution to a zero-mean Gaussian random

variable in
∏N

i=1 Cs(X ).

Appendix A: m-out-of-n bootstrap for Sinkhorn null limit

We consider estimating the Sinkhorn null limit distribution in Theorem 2 by the
two-sample m-out-of-n bootstrap. Let µ = (μ1, μ2) ∈ P(X )×P(X ) be arbitrary.
For each i = 1, 2, let Xi

1, . . . , Xi
n be i.i.d. data from μi with μ̂i

n = n−1
∑n

j=1 δXi
j
.

Consider the pooled empirical distribution ρ̂n = (2n)−1
∑n

j=1(δX1
j

+ δX2
j
), and

let ZB
1 , . . . , ZB

2m be an independent sample from ρ̂n, where m = mn → ∞. Set

ρ̂1,B
m,n =

1

m

m∑

j=1

δZB
j

and ρ̂2,B
m,n =

1

m

2m∑

j=m+1

δZB
j

.

The following proposition shows that the m-out-of-n bootstrap can consistently
estimate the null limit law in Theorem 2 when μ1 = μ2 = μ. Recall that BL1(R)
denotes the collection of 1-Lipschitz functions g : R → [−1, 1].
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Proposition 4. Consider the above setting and set ρ = (μ1 + μ2)/2. Assume
m = o(n). Then, we have

sup
g∈BL1(R)

∣
∣
∣E

B
[

g
(
mS̄c,ε(ρ̂1,B

m,n, ρ̂2,B
m,n)

)]

− E
[
g(χρ)

]
∣
∣
∣ → 0 (28)

in probability, where EB denotes the conditional expectation given the sample
and χρ follows the limit law in Theorem 2 with μ replaced by ρ.

Remark 15. Since BL1(R) is compact w.r.t. the topology of locally uniform
convergence by the Ascoli-Arzelà theorem, the left-hand side of (28) reduces to
the supremum over a countable subcollection of BL1(R) and hence is a proper
random variable.

Proof. Fix s > d/2. Set G
i,B
m,n =

√
m(ρ̂i,B

m,n − ρ̂n) for i = 1, 2. Given the sample,

(G1,B
m,n,G2,B

m,n

)
has only finitely many possible values, so induces the conditional

distribution defined on the Borel σ-field on �∞(Bs) × �∞(Bs). Then, since Bs

is uniformly bounded and Donsker for μ1 and μ2, arguing as in the proof of
Theorem 3.7.1 in [91], we have

(G1,B
m,n,G2,B

m,n

) d→ (Gρ
1,Gρ

2) in �∞(Bs) × �∞(Bs)

given almost every sequence X1
1 , X1

2 , . . . , X2
1 , X2

2 , . . . , where G
ρ
1 and G

ρ
2 are

independent tight ρ-Brownian bridges in �∞(Bs). Furthermore, E[‖√
m(ρ̂n −

ρ)‖∞,Bs ] = O(
√

m/n) = o(1) by Theorem 2.14.1 in [91] and the assump-
tion that m = o(n), so ‖√

m(ρ̂n − ρ)‖∞,Bs → 0 in probability by Markov’s
inequality. Pick any subsequence n′ of n and choose a further subsequence
n′′ for which ‖

√
m′′(ρ̂n′′ − ρ)‖∞,Bs → 0 a.s. with m′′ = mn′′ . Now, since√

m(ρ̂i,B
m,n − ρ) = G

i,B
m,n +

√
m(ρ̂n − ρ), we have

(√
m′′(ρ̂1,B

m′′,n′′ −ρ),
√

m′′(ρ̂2,B
m′′,n′′ −ρ)

) d→ (Gρ
1,Gρ

2) in �∞(Bs)×�∞(Bs) (29)

given almost every sequence X1
1 , X1

2 , . . . , X2
1 , X2

2 , . . . Then, by the second-order
Hadamard differentiability of S̄c,ε (Theorem 5) and the second-order functional
delta method (Lemma 13) 6, we have

m′′
S̄c,ε(ρ̂1,B

m′′,n′′ , ρ̂2,B
m′′,n′′)

d→ 1

2
∆ρ

(
G

ρ
1,Gρ

2

) d
= χρ

given almost every sequence X1
1 , X1

2 , . . . , X2
1 , X2

2 , . . . Since the limit is indepen-
dent of the choice of subsequence n′, we obtain the result.

A.1. Numerical experiments

We present numerical experiments to assess the scaling for the Sinkhorn null
limit in Theorem 2 as well as the finite sample performance of the two-sample
m-out-of-n bootstrap procedure.

6We have chosen a suitable subsequence for which the weak convergence (29) holds for
almost every sequence X1

1
, X1

2
, . . . , X2

1
, X2

2
, . . . . Therefore, for every fixed such sequence, we

may apply the second-order functional delta method.
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Fig 1. The top row consists (from left to right) of a histogram of Ŝn = nS̄c,ε(µ̂1

n, µ̂
2

n)
for n = 2500, and P-P plots of Ŝn generated using the methodology described in Ap-
pendix A.1 with m = 0.1n and m = 0.2n respectively along with a red 45◦ reference
line. The bottom row compiles analogous plots for n = 5000. See Appendix A.2 for
additional implementation details.

Throughout, the cost function c is the squared Euclidean distance, ε = 1,
and μ1 = μ2 is taken to be the uniform distribution on (0, 1/2)2. Figure 1 con-
sists of two experiments. The first (top row) involves plotting a histogram of

Ŝn = nS̄c,ε(μ̂1
n, μ̂2

n) for n = 2500 based on 1500 repetitions along with cor-

responding P-P plots for Ŝn. As the limit distribution χμ in Theorem 2 is

not defined explicitly, we compute the coverage probabilities, P(Ŝn ≤ τ̂n,α) for
³ ∈ (0, 1), where τ̂n,α is the ³-quantile of the subsampled distribution. Precisely,
for each of the 1500 repetitions, we construct the subsampled distribution func-
tion F̂ B

m,n of mS̄c,ε(ρ̂1,B
m,n, ρ̂2,B

m,n) for m = 0.1n and m = 0.2n based on 1000

repetitions; for each such repetition, we compute the rank of Ŝn w.r.t. F̂ B
m,n

(i.e., F̂ B
m,n(Ŝn)), and then approximate P(Ŝn ≤ τ̂n,α) by the number of ranks

with value less than ³. The second experiment (bottom row) is performed sim-
ilarly, but with n = 5000 rather than 2500 to see how these results vary with
increasing n.

From these experiments, one can see that the empirical distribution of Ŝn is
observed to be reasonably stable in the finite sample regime, which is consistent
with Theorem 2, and the coverage probabilities P(Ŝn ≤ τ̂n,α) are close to the
45◦ line uniformly over ³ ∈ (0, 1), so the m-out-of-n bootstrap aproximates well

the sampling distribution of Ŝn.
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A.2. Implementation details and theoretical guarantees

To compute the relevant EOT quantities, we use the standard implementation
of Sinkhorn’s algorithm from the Python Optimal Transport package [40] (see
also Algorithm 3 in [84]). To estimate the EOT plan Π� ∈ R

N×N between
measures μ1, μ2 supported on N points (x1,i)N

i=1, (x2,i)N
i=1 ⊂ X with weights

w1 = (μ1(x1,1), . . . , μ1(x1,N )), w2 = (μ2(x2,1), . . . , μ2(x2,N )), Sinkhorn’s algo-
rithm leverages the representation (5) to iteratively construct matrices Πk ∈
R

N×N satisfying Πk
1N = w1, where 1N ∈ R

N is the vector of 1’s. Convergence
of this implementation of Sinkhorn’s algorithm to Π� follows from the note on
p. 731 in [42] with only minor modifications. Two stopping conditions are imple-
mented in this version of Sinkhorn’s algorithm. The first limits the total number
of iterations to 1000, while the second sets a desired threshold on the violation
of the marginal constraint ‖(Πk)ᵀ1N − w2‖ ≤ 1e−9.

Given the linear scaling from Theorem 2, to obtain statistically meaningful
simulation results we must compute Ŝn = nS̄c,ε(μ̂1

n, μ̂2
n), for a fixed ε > 0, to

within oP (n−1) precision. To the best of our knowledge, past works concerning
computational complexity of Sinkhorn’s algorithm do not provide guarantees
for this setting. Rather, they focus on approximating the unregularized OT cost
within a desired precision (cf., e.g., [4, Theorem 1] and [36, Theorem 2]), which
requires scaling ε ↘ 0 and treating the entropy term as a type of bias.

To bridge this gap, we analyze the total number of Sinkhorn iterations re-
quired to achieve accuracy oP (n−1) when computing Ŝn with fixed ε > 0. Corol-
lary 2 ahead states that oP (log (n log(n))) iterations are sufficient, and we recall
that each iteration requires O(n2) arithmetic operations [27]. As this setting has
not been treated before, we believe that this result may be of independent in-
terest.

To arrive at the iteration complexity bound, we start by setting some nota-
tion. For positive vectors a, b ∈ R

n, define

dH(a, b) = log

(

max
1≤i,j≤n

aibj

biaj

)

= max
1≤i≤n

log

(

ai

bi

)

− min
1≤i≤n

log

(

ai

bi

)

,

and, fixing K ∈ R
n×n with positive entries, let

EK =
{

A ∈ R
n×n : A = diag(u)Kdiag(v), Aij > 0

}
.

Define a metric d on EK × EK via

d(A, B) = dH(x,1n) + dH(y,1n), for x, y satisfying A = diag(x)Bdiag(y).

For a positive matrix K ∈ R
n×n, let

λ(K) :=

√

η(K) − 1
√

η(K) + 1
< 1, η(K) := max

1≤i,j≤n
1≤k,l≤n

KikKjl

KjkKil
.
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In the sequel we let C ∈ R
n×n be the matrix of pairwise costs Cij = c

(
x1,i, x2,j

)

and K ∈ R
n×n be given by Kij = e−Cij/ε for i, j ∈ {1, . . . , n}.

Proposition 5. Fix ε > 0, δ > 0, and assume that μ̂1
n, μ̂2

n are supported on
(
x1,i

)n

i=1
,
(
x2,i

)n

i=1
respectively. Then, Sinkhorn’s algorithm produces a matrix

Π̃ ∈ R
n×n that achieves a cost of S̃c,ε(μ̂1

n, μ̂2
n) for the discrete EOT primal

functional (3) satisfying

∣
∣Sc,ε

(
μ̂1

n, μ̂2
n

)
− S̃c,ε

(
μ̂1

n, μ̂2
n

)∣
∣ ≤

(
6‖c‖∞,X ×X + 2ε log(n)

) (
eδ − 1

)
+ εδ

in O
(

log(1/δ)
)

iterations. This cost estimate is also satisfied by Π̃ = Πk when

the termination condition ‖(Πk)ᵀ1n − 1n/n‖ ≤ 1
n

δ(1−λ(K))+2−
√

δ2(1−λ(K))2+4
2

is met, which requires O
(

n
δ log n

)
iterations.

Proof. It follows from equation (28) in [84] and the surrounding discussion that
the iterates Πk of Sinkhorn’s algorithm achieve d(Π�, Πk) ≤ δ in at most

1 +
1

2 log ((λ(K))−1)
log

(

dH((Π1)ᵀ1n, 1n

n )

δ(1 − λ(K))

)

,

iterations, recalling that λ(K) < 1. Further, the 2-norm termination condition
is met in at most

1 +
4n

δ(1 − λ(K)) + 2 −
√

δ2(1 − λ(K))2 + 4
log

(

e‖C‖∞/εn

)

iterations; the value for the termination condition is set as to guarantee that if
Π̃ satisfies this termination condition, then d(Π�, Π̃) ≤ δ (see Proposition 31 in
[84]). Observing that λ(K) is independent of n, we proceed with showing that
dH

(
(Π1)ᵀ1n, 1n

n

)
is independent of n, such that the claimed dependencies on δ

and n hold.
As Π1 = diag(u1)Kdiag(v1), for u1 = 1

n1n/(K(1n/(Kᵀ
1n))) and v1 =

1n/(Kᵀ
1n), where division is understood componentwise (cf. e.g. Algorithm 3

in [84]), we have

dH

(

(Π1)ᵀ1n,
1n

n

)

= max
1≤i≤n

log(n((Π1)ᵀ1n)i) − min
1≤i≤n

log(n((Π1)ᵀ1n)i)

= max
1≤i≤n

log(((Π1)ᵀ1n)i) − min
1≤i≤n

log(((Π1)ᵀ1n)i),

and we note that

n
n

min
i,j=1

Kji ≤ (Kᵀ
1n)i =

n∑

j=1

Kji ≤ n
n

max
i,j=1

Kji,

n
n

min
i,j=1

Kij ≤ (K1n)i =

n∑

j=1

Kij ≤ n
n

max
i,j=1

Kij ,
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so

1

n

(
minn

i,j=1 Kij

)2

(
maxn

i,j=1 Kij

)2 ≤ ((Π1)ᵀ1n)i) ≤ 1

n

(
maxn

i,j=1 Kij

)2

(
minn

i,j=1 Kij

)2 ,

such that

2 log

(

minn
i,j=1 Kij

maxn
i,j=1 Kij

)

≤ dH

(

(Π1)ᵀ1n,
1n

n

)

≤ 2 log

(
maxn

i,j=1 Kij

minn
i,j=1 Kij

)

.

Conclude that dH

(
(Π1)ᵀ1n, 1n

n

)
can be bounded independently of n.

We now lift the bound d(Π�, Π̃) ≤ δ to a bound on
∣
∣Sc,ε(μ̂1

n, μ̂2
n)−S̃c,ε(μ̂1

n, μ̂2
n)

∣
∣,

where S̃c,ε(μ̂1
n, μ̂2

n) is the discrete EOT primal functional (3) evaluated at Π̃

(note that Π̃ is not necessarily a coupling, but is positive with entries summing
to 1). By Lemma 3.9 in [42], it holds that, for any i, j ∈ {1, . . . , n},

e−δ − 1 ≤
Π�

ij

Π̃ij

− 1 ≤ eδ − 1, so |Π�
ij − Π̃ij | ≤ Π̃(eδ − 1). (30)

It follows that
∥
∥Π� − Π̃

∥
∥

1
≤ ∑n

i,j=1 Π̃ij(eδ−1) = eδ−1, where the 1-norm is

taken over all entries. From (30), we also obtain −δ ≤ log(Π�
ij) − log(Π̃ij) ≤ δ,

and so
∥
∥ log(Π�) − log

(
Π̃
)∥
∥

∞
≤ δ,

where the ∞-norm is taken over entries. Now, note that

|Sc,ε(μ̂1
n, μ̂2

n) − S̃c,ε(μ̂1
n, μ̂2

n)|

=

∣
∣
∣
∣
∣
∣

n∑

i,j=1

Cij(Π�
ij − Π̃ij) + ε

n∑

i,j=1

(
Π�

ij log
(
n2Π�

ij

)
− Π̃ij log

(
n2Π̃ij

))

∣
∣
∣
∣
∣
∣

.
(31)

We control each term as follows,

∣
∣
∣
∣
∣
∣

n∑

i,j=1

Cij(Π�
ij − Π̃ij)

∣
∣
∣
∣
∣
∣

≤ ‖C‖∞‖Π� − Π̃‖1 ≤ ‖C‖∞(eδ − 1), (32)

where the first inequality is due to Hölder’s inequality. Similarly,

∣
∣
∣
∣
∣
∣

n∑

i,j=1

(
Π�

ij log
(
Π�

ij

)
− Π̃ij log

(
Π̃ij

))

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

n∑

i,j=1

(
Π�

ij log
(
Π�

ij

)
− Π̃ij log

(
Π�

ij

)
+ Π̃ij log

(
Π�

ij

)
− Π̃ij log

(
Π̃ij

))

∣
∣
∣
∣
∣
∣

≤
∥
∥Π� − Π̃

∥
∥

1
‖ log (Π�) ‖∞ +

∥
∥Π̃

∥
∥

1

∥
∥ log(Π�) − log

(
Π̃
)∥
∥

∞

≤ (eδ − 1)‖ log (Π�) ‖∞ + δ.

(33)
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It suffices, therefore, to bound ‖ log (Π�) ‖∞. From (5), we have, for i, j ∈
{1, . . . , n},

n2Π�
ij = e

ϕ1

(

x1,i
)

+ϕ2

(

x2,j
)

−c
(

x1,i,x2,j
)

ε ,

such that log(Π�
ij) = ε−1

(
ϕ1

(
x1,i

)
+ ϕ2

(
x2,j

)
− c

(
x1,i, x2,j

))
− 2 log(n). Con-

sequently, ‖ log(Π�)‖∞ ≤ 5ε−1‖c‖∞,X ×X + 2 log(n), choosing a version of the
EOT potentials (ϕ1, ϕ2) satisfying (6) with ‖ϕ1‖∞,X ∨ ‖ϕ2‖∞,X ≤ 2‖c‖∞,X ×X

(see Lemma 2.1 in [74]). Combining (31)-(33) with this bound proves the claimed
result,

∣
∣Sc,ε

(
μ̂1

n, μ̂2
n

)
− S̃c,ε

(
μ̂1

n, μ̂2
n

)∣
∣ ≤ (6‖c‖∞,X ×X + 2ε log(n))

(
eδ − 1

)
+ εδ.

The iteration complexity required to achieve the desired precision of oP (n−1)
for approximating Sc,ε

(
μ̂1

n, μ̂2
n

)
is provided next.

Corollary 2. In the setting of Proposition 5, Sinkhorn’s algorithm produces an
approximation S̃c,ε(μ̂1

n, μ̂2
n) of Sc,ε(μ̂1

n, μ̂2
n) with

∣
∣Sc,ε(μ̂1

n, μ̂2
n) − S̃c,ε(μ̂1

n, μ̂2
n)

∣
∣ =

oP (n−1) in oP (log (n log(n))) iterations. The oP (n−1) cost approximation also
holds when using Π̃ = Πk, which satisfies the termination condition ‖(Πk)ᵀ1n−
1n/n‖ = oP

(
1

n2 log(n)

)

, which, in turn, requires oP

(
n2(log n)2

)
iterations.

Proof. The result follows from Proposition 5 by setting δ(n) = oP

(
1

n log(n)

)

, as

eδ(n) − 1 = δ(n) + O((δ(n))2) as n → ∞,

such that

(
6‖c‖∞,X ×X + 2ε log(n)

) (

eδ(n) − 1
)

+ εδ(n) = oP (n−1),

whereby
∣
∣Sc,ε

(
μ̂1

n, μ̂2
n

)
− S̃c,ε

(
μ̂1

n, μ̂2
n

)∣
∣ = oP (n−1).

In light of (8), the implications of Corollary 2 also hold for the Sinkhorn
divergence by approximating Sc,ε(μ̂1

n, μ̂2
n), Sc,ε(μ̂1

n, μ̂1
n), and Sc,ε(μ̂2

n, μ̂2
n) using

Sinkhorn’s algorithm. In our experiments, n = 5000 and the termination condi-
tion ‖(Πk)ᵀ1n − 1n/n‖ ≤ 1e−9 is always met prior to the completion of 1000
iterations. As 1

50002 log(5000) ∼ 4.7e−9, the chosen threshold, 1e−9, is of a reason-

able magnitude.

Appendix B: Auxiliary proofs

B.1. Proof of Lemma 1

The results are standard (except possibly (iii)), but we include the proof for
completeness.
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(i). The argument is similar to Proposition 6 in [65]. Pick any pair of EOT
potentials (ϕ◦

1, ϕ◦
2). Update (ϕ◦

1, ϕ◦
2) as

ϕ1(x1) = −ε log

∫

e
ϕ◦

2 (x2)−c(x1,x2)

ε dμ2(x2), x1 ∈ X ,

ϕ2(x2) = −ε log

∫

e
ϕ1(x1)−c(x1,x2)

ε dμ1(x1), x2 ∈ X .

The functions (ϕ1, ϕ2) are well-defined pointwise by Jensen’s inequality. By

construction,
∫

e
ϕ1(x′

1)+ϕ2(x2)−c(x′
1,x2)

ε dμ1(x′
1) − 1 = 0 for all x2 ∈ X . Also, by

Jensen’s inequality,

∫

(ϕ1 − ϕ◦
1) dμ1 +

∫

(ϕ2 − ϕ◦
2) dμ2

= −ε

∫

log e
ϕ◦

1 −ϕ1
ε dμ1 − ε

∫

log e
ϕ◦

2 −ϕ2
ε dμ2

≥ −ε log

∫

e
ϕ◦

1 −ϕ1
ε dμ1 − ε log

∫

e
ϕ◦

2 −ϕ2
ε dμ2

= −ε log

∫

e
ϕ◦

1 ⊕ϕ◦
2 −c

ε d(μ1 ⊗ μ2) − ε log

∫

e
ϕ1⊕ϕ◦

2 −c

ε d(μ1 ⊗ μ2)

= 0,

so that (ϕ1, ϕ2) is a pair of EOT potentials and the inequality above is an equal-

ity. In particular,
∫

log e
ϕ◦

2 −ϕ2
ε dμ2 = log

∫
e

ϕ◦
2 −ϕ2

ε dμ2, and by strict concavity

of the logarithm, we have e
ϕ◦

2 −ϕ2
ε = 1, i.e., ϕ◦

2 = ϕ2 μ2-a.e. Thus,

∫

e
ϕ1(x1)+ϕ2(x′

2)−c(x1,x′
2)

ε dμ2(x′
2) =

∫

e
ϕ1(x1)+ϕ◦

2 (x′
2)−c(x1,x′

2)

ε dμ2(x′
2) = 1

for all x1 ∈ X . The other claims are straightforward.
(ii). This follows from the expressions

ϕµ
1 (x1) = −ε log

∫

e
ϕ

µ

2 (x2)−c(x1,x2)

ε dμ2(x2), x1 ∈ X ,

ϕµ
2 (x2) = −ε log

∫

e
ϕ

µ

1 (x1)−c(x1,x2)

ε dμ1(x1), x2 ∈ X .

First, by Lemma 2.1 in [74], there exists a version of EOT potentials (ϕ1, ϕ2)
satisfying (6) with ‖ϕ1‖∞,X ∨ ‖ϕ2‖∞,X ≤ 2‖c‖∞,X ×X . By uniqueness, ϕµ

1 =
ϕ1 − 1

2 (ϕ1(x◦
1) − ϕ2(x◦

2)) and ϕµ
2 = ϕ2 + 1

2 (ϕ1(x◦
1) − ϕ2(x◦

2)), so ‖ϕµ
1 ‖∞,X ∨

‖ϕµ
2 ‖∞,X ≤ 3‖c‖∞,X ×X . Derivatives of ϕµ

1 and ϕµ
2 can be evaluated by inter-

changing differentiation and integration, which is guaranteed under the current
assumption. See [44, 65] for similar arguments.

(iii). For notational convenience, let ϕn = ϕµn and ϕ = ϕµ. By Part (ii),
the Ascoli-Arzelà theorem, and the diagonal argument, for every subsequence
n′, there exists a further subsequence n′′ along which the derivatives Dkϕn,i
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converge in C(X ) for all i = 1, 2 and k ∈ N
d
0 with |k| ≤ s, which implies

that ϕn′′,i is Cauchy in Cs(X ) for i = 1, 2. By completeness of Cs(X ), we have
ϕn′′,i → ϕ̄i in Cs(X ) for i = 1, 2. By assumption, μi

n converges weakly to μi,
which implies that supf∈BL1(X ) |

∫
fd(μi

n − μi)| → 0, where BL1(X ) is the class
of 1-Lipschitz functions f : X → [−1, 1] (cf. Chapter 1.12 in [91]). Again, by
Part (ii), we see that

sup
n∈N

sup
(x1,x2)∈X ×X

∥
∥
∥∇xi

(
e

ϕn,1(x1)+ϕn,2(x2)−c(x1,x2)

ε

)
∥
∥
∥ < ∞.

Hence, for each fixed x1 ∈ X ,

∫

e
ϕ

n′′,1
(x1)+ϕ

n′′,2
(x2)−c(x1,x2)

ε dμ2
n′′(x2)

=

∫

e
ϕ

n′′,1
(x1)+ϕ

n′′,2
(x2)−c(x1,x2)

ε dμ2(x2) + o(1)

=

∫

e
ϕ̄1(x1)+ϕ̄2(x2)−c(x1,x2)

ε dμ2(x2) + o(1),

where the second equality follows as ‖ϕn′′,i − ϕ̄i‖∞,X → 0. Since the left-hand

side is ≡ 1, we conclude that
∫

e
ϕ̄1⊕ϕ̄2−c

ε dμ2 ≡ 1. By symmetry, we also have
∫

e
ϕ̄1⊕ϕ̄2−c

ε dμ1 ≡ 1. By construction, ϕ̄1(x◦
1) = ϕ̄2(x◦

2), so that ϕ̄ = ϕ, i.e.,
ϕn′′ → ϕ in Cs(X ) × Cs(X ). Since the limit does not depend on the choice of
subsequence, we have ϕn → ϕ in Cs(X ) × Cs(X ).

B.2. Proof of Lemma 6

The proof relies on the results from [17]. We will use the following observation
throughout the proof: for any continuous functions f, g on Si = spt(μi), if
f = g μi-a.e., then f ≡ g. Indeed, for every A ⊂ Si with μi-measure 1, its
closure A agrees with Si, since otherwise Si \ A is a nonempty open set in Si,
so μi(Si \ A) > 0, which contradicts the assumption that A has μi-measure 1.
Also, for any continuous function f on Si, we have ‖f‖L∞(μi) = ‖f‖∞,Si .

(i). Consider the map T : L∞(μ1) × L∞(μ2) → L∞(μ1) × L∞(μ2) defined by

T (ϕ) =

(∫

e
ϕ1⊕ϕ2−c

ε dμ2,

∫

e
ϕ1⊕ϕ2−c

ε dμ1

)

.

By Theorem 4.3 in [17], T is injective in the sense that, if T (ϕ) = T (ϕ̃) (μ1⊗μ2)-
a.e., then there exists a constant a ∈ R such that (ϕ̃1, ϕ̃2) = (ϕ1 + a, ϕ2 − a)
(μ1 ⊗ μ2)-a.e. If ϕ, ϕ̃ ∈ Θs, then (ϕ̃1, ϕ̃2) ≡ (ϕ1 + a, ϕ2 − a) on S, but because
of the normalization ϕ1(x◦

1) = ϕ2(x◦
2) and ϕ̃1(x◦

1) = ϕ̃2(x◦
2), we have a = 0, i.e.,

ϕ̃ ≡ ϕ. This shows injectivity of Ψµ.
To show that the inverse of Ψµ is continuous at 0, it suffices to show that

ϕn ∈ Θs, ‖Ψµ(ϕn)‖D → 0 ⇒ ‖ϕn − ϕµ|S‖D → 0.
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Recall Ψµ(ϕµ|S) ≡ 0 on S. Observe that the map Ψµ makes sense on D and is
continuous from D into D. Since ϕn ∈ Θs, by the Ascoli-Arzelà theorem, for any
subsequence n′, there exists a further subsequence n′′ along which ϕn′′ → ϕ̄ in
D for some ϕ̄ ∈ D. Since Ψµ is continuous from D into D, we have Ψµ(ϕ̄) ≡ 0.
By construction, ϕ̄1(x◦

1) = ϕ̄2(x◦
2), so by Lemma 1 (i), we have ϕ̄ ≡ ϕµ|S . Since

the limit ϕµ|S is independent of the choice of subsequence, we have ϕn → ϕµ|S
in D.

(ii). The first claim is straightforward. To show the second claim, it suffices
to show that

inf
h∈lin(Θs),‖h‖D=1

‖Ψ̇µ(h)‖D > 0.

Consider the map Ṫµ : L∞(μ1) × L∞(μ2) → L∞(μ1) × L∞(μ2) defined by

Ṫµ(h) =

(

ε−1

∫

e
ϕ

µ

1 ⊕ϕ
µ

2 −c

ε (h1 ⊕ h2) dμ2, ε−1

∫

e
ϕ

µ

1 ⊕ϕ
µ

2 −c

ε (h1 ⊕ h2) dμ1

)

.

Equip L∞(μ1) × L∞(μ2) with a product norm ‖h‖L∞(µ) := ‖h1‖L∞(μ1) ∨
‖h2‖L∞(μ2). By Proposition 3.1 in [17],

inf
‖h‖

L∞(µ)
=1,

∫
h1 dμ1=0

‖Ṫµ(h)‖L∞(µ) > 0.

For h ∈ lin(Θs), define h̄ = (h1−
∫

h1 dμ1, h2+
∫

h1 dμ1). Then ‖Ṫµ(h̄)‖L∞(µ) =

‖Ṫµ(h)‖L∞(µ) = ‖Ψ̇µ(h)‖D. It remains to show that

inf
h∈lin(Θs),‖h‖D=1

‖h̄‖D > 0.

Suppose on the contrary that infh∈lin(Θs),‖h‖D=1 ‖h̄‖D = 0. Then, there exists a

sequence hn ∈ lin(Θs) with ‖hn‖D = 1 such that ‖h̄n‖D → 0. Since
∫

hn,1 dμ1 is
bounded, there exists a subsequence along which

∫
hn,1 dμ1 → a for some a ∈ R.

Along the subsequence, ‖hn−(a, −a)‖D → 0. However, since hn,1(x◦
1) = hn,2(x◦

2)
by construction, we must have a = 0, i.e., ‖hn‖D → 0, which contradicts the
assumption that ‖hn‖D = 1.

Appendix C: Technical tools

C.1. Hadamard differentiability and functional delta method

In this appendix, we review concepts of Hadamard differentiability and the
functional delta methods. Our exposition mostly follows [85]. Other standard
references are [91, 90].

Let D,E be normed spaces and φ : Θ ⊂ D → E be a map. We say that
φ is Hadamard directionally differentiable at » ∈ Θ if there exists a map φ′

θ :
TΘ(») → E such that

lim
t´0

φ(»t) − φ(»)

t
= φ′

θ(h) (34)



Limit theorems for entropic maps and the Sinkhorn divergence 1029

for any sequence (»t)t>0 ⊂ Θ with t−1(»t − ») → h as t ↓ 0, where TΘ(») is the
tangent (or adjacent) cone to Θ at »,

TΘ(») =

{

h ∈ D : h = lim
t´0

»t − »

t
for some »t → » in Θ, t ↓ 0

}

.

The derivative φ′
θ is continuous (cf. Proposition 3.1 in [89]) and positively ho-

mogeneous (but need not be linear). Furthermore, the tangent cone TΘ(») is
closed, and: (i) if Θ is open, then TΘ(») agrees with D; and (ii) if Θ is convex,

then TΘ(») agrees with {t(ϑ − ») : ϑ ∈ Θ, t > 0}D (cf. Chapter 4 in [5]).7

If (34) only holds for h ∈ D0 for a subset D0 ⊂ TΘ(»), then we say that φ is
Hadamard directionally differentiable at » ∈ Θ tangentially to D0. In that case,
the derivative φ′

θ is defined only on D0. Finally, if the derivative φ′
θ is linear,

then we say that φ is Hadamard differentiable at » (tangentially to D0 if φ′
θ

is defined only on D0). The tangent set D0 need not be a vector subspace of
D, so by linearity, we mean that, for any ³1, . . . , ³J ∈ R and h1, . . . , hJ ∈ D0,
whenever

∑J
j=1 ³jhj = 0, it holds that

∑J
j=1 ³jφ′

θ0
(hj) = 0, which is equivalent

to φ′
θ0

admitting a linear extension to the linear hull of D0 by Lemma 2.5.3 in
[35].

Lemma 11 (Functional delta method; [85]). Let D,E be normed spaces and
φ : Θ ⊂ D → E be a map that is Hadamard directionally differentiable at
» ∈ Θ tangentially to a set D0 ⊂ TΘ(»). Let Tn : Ω → Θ be maps such that

rn(Tn − »)
d→ T for some rn → ∞ and Borel measurable map T : Ω → D

with values in a separable subset of D0. Then the following hold: (i) rn

(
φ(Tn) −

φ(»)
) d→ φ′

θ(T ); (ii) If in addition Θ is convex and D0 = TΘ(»), then rn

(
φ(Tn)−

φ(»)
)

− φ′
θ(rn(Tn − »)) → 0 in outer probability.

Remark 16. Our definition of Hadamard differentiability is slightly different
from [91, 90], in that those references do not require the tangent set D0 to be a
subset of TΘ(»). Our modification is made to be consistent with the definition
of Hadamard directional differentability in [85]. However, this modification is
innocuous since, for any sequence (»t)t>0 ⊂ Θ with h := limt´0 t−1(»t − ») (if
exists), we must have h ∈ TΘ(»).

The proof of Theorem 2 relies on the second-order functional delta method,
which we describe next. We say that a map φ : Θ ⊂ D → E (with Θ being
convex) is second-order Hadamard directionally differentiable at » ∈ Θ if it is
(first-order) Hadamard directionally differentiable at » and there exists a map
φ′′

θ : TΘ(») → E such that

lim
t´0

φ(»t) − φ(») − tφ′
θ(ht)

t2/2
= φ′′

θ (h)

7Indeed, [85] defines the Hadamard derivative on the (Bouligand) contingent cone, which is
in general slightly bigger than the adjacent cone. For our purpose, this difference is immaterial.
Note that both concepts agree when Θ is convex.
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for any sequence (»t)t>0 ⊂ Θ with ht := t−1(»t − ») → h as t ↓ 0 (note: as Θ is
convex, ht ∈ TΘ(»), so that φ′

θ(ht) is well-defined). The map φ′′
θ is continuous

and positively homogeneous of degree 2.

Lemma 12 (Second-order chain rule). Let D,E,F be normed spaces, Θ ⊂ D,
Ξ ⊂ E be convex, φ : Θ → Ξ be a map that is twice Hadamard directionally
differentiable at » ∈ Θ, and ψ : Ξ → F be twice Hadamard directionally differ-
entiable at φ(») with linear first-order derivative at φ(») defined on the linear
hull of TΞ(φ(»)). Then, the composition ψ ◦ φ : Θ → F is twice Hadamard
directionally differentiable at » with

[ψ ◦ φ]′′θ = ψ′′
φ(θ) ◦ φ′

θ + ψ′
φ(θ) ◦ φ′′

θ .

Proof. Let (»t)t>0 ⊂ Θ be such that ht := t−1(»t −») → h in D as t ↓ 0. Observe
that (φ(»t))t>0 ⊂ Ξ with t−1(φ(»t) − φ(»)) → φ′

θ(h) as t ↓ 0, so that

ψ(φ(»t)) − ψ(φ(»)) = tψ′
φ(θ)(t

−1(φ(»t) − φ(»))) +
t2

2
ψ′′

φ(θ)(φ
′
θ(h)) + o(t2).

By linearity of ψ′
φ(θ),

tψ′
φ(θ)(t

−1(φ(»t) − φ(»))) − tψ′
φ(θ)(φ

′
θ(ht)) = ψ′

φ(θ)(φ(»t) − φ(») − tφ′
θ(ht)).

It follows from continuity and positive homogeneity of ψ′
φ(θ) that

lim
t´0

ψ(φ(»t)) − ψ(φ(»)) − tψ′
φ(θ)(φ

′
θ(ht))

t2/2
= ψ′′

φ(θ)(φ
′
θ(h)) + ψ′

φ(θ)(φ
′′
θ (h)).

Lemma 13 (Second-order functional delta method; [85]). Let D,E be normed
spaces, Θ ⊂ D be convex, and φ : Θ → E be a map that is second-order
Hadamard directionally differentiable at » ∈ Θ. Let Tn : Ω → Θ be maps such

that rn(Tn − »)
d→ T for some rn → ∞ and Borel measurable map T : Ω → D

with values in a separable subset of TΘ(»). Then, r2
n

(
φ(Tn)−φ(»)−φ′

θ(Tn−»)
) d→

1
2 φ′′

θ (T ) and r2
n

(
φ(Tn)−φ(»)−φ′

θ(Tn−»)− 1
2 φ′′

θ (Tn−»)
)

→ 0 in outer probability.

C.2. Hadamard differentiability of Z-functional

Let D be a Banach space, Θ be an arbitrary nonempty subset of D, and L be
another Banach space. Let Z(Θ,L) be the subset of �∞(Θ,L) consisting of all
maps with at least one zero, and let φ : Z(Θ,L) → Θ be a map that assigns one
of its zeros of to each z ∈ Z(Θ,L). Following [91], we call φ the Z-functional.
We say that a map Ψ : Θ ⊂ D → L is Fréchet differentiable at »0 ∈ Θ if there
exists a bounded linear operator Ψ̇θ0 : lin(Θ) → L such that

lim
‖h‖D³0
θ0+h∈Θ

‖Ψ(»0 + h) − Ψ(»0) − Ψ̇θ0(h)‖L
‖h‖D

= 0.
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The following is taken from Lemma 3.9.34 in [91], with a minor modification to
adapt to our definition of Hadamard differentiability; cf. Remark 16.

Lemma 14 (Hadamard derivative of Z-functional). Suppose that (i) Ψ : Θ → L

is uniformly norm-bounded, one-to-one, possesses a zero at »0 ∈ Θ, and has an
inverse that is continuous at 0, and (ii) Ψ is Fréchet differentiable at »0 ∈ Θ
with derivative Ψ̇θ0 that is one-to-one and such that its inverse is continuous on
Ψ̇θ0(lin(Θ)). Then, φ is Hadamard differentiable at Ψ tangentially to the set

ZΨ =
{

z ∈ �∞(Θ,L) : z = lim
t´0

zt − Ψ

t
for some zt → Ψ in Z(Θ,L), t ↓ 0

}

⋂{

z ∈ �∞(Θ,L) : z is continuous at »0

}

.

The derivative is given by φ′
Ψ(z) = −Ψ̇−1

θ0
(z(»0)).

Remark 17. It is a priori not clear whether z(»0) is in the domain of Ψ̇−1
θ0

,
but this follows from the proof of Lemma 3.9.34 in [91]. Indeed, let (zt)t>0 ⊂
�∞(Θ,L) be such that Ψ + tzt ∈ Z(Θ,L) for t sufficiently small, zt → z as t ↓ 0,
and z is continuous at »0. Set »t = φ(Ψ+tzt). Arguing as in the proof of Lemma
3.9.34 in [91], we have Ψ(»t) = Ψ̇θ0(»t −»0)+R(t) with ‖R(t)‖L = o(t) as t → 0,
so that t−1{Ψ(»t) − R(t)} = Ψ̇θ0

(
t−1(»t − »0)

)
∈ Ψ̇θ0(lin(Θ)) while t−1{Ψ(»t) −

R(t)} = −zt(»t) − t−1R(t) → −z(»0) in L. Hence z(»0) ∈ Ψ̇θ0(lin(Θ))
L

.

The following lemma concerns the second-order Hadamard derivative for the
Z-functional, which is used in the proof of Theorem 4.

Lemma 15 (Second-order Hadamard derivative of Z-functional). Consider the
assumption of the preceding lemma. Assume further that Ψ is twice Fréchet
differentiable at »0, in the sense that there exists a continuous operator Ψ̈θ0 :

lin(Θ)
D → L positively homogeneous of degree 2 such that

lim
‖h‖D³0
θ0+h∈Θ

‖Ψ(»0 + h) − Ψ(»0) − Ψ̇θ0(h) − 1
2 Ψ̈θ0(h)‖L

‖h‖2
D

= 0.

Let (zt)t>0 ∈ �∞(Θ,L) be a sequence of maps such that (i) Ψ + tzt ∈ Z(Θ,L)
for t sufficiently small, (ii) zt → z as t ↓ 0 for some z that is continuous at »0,

(iii) zt(»0) ∈ Ψ̇θ0(lin(Θ))
L

for t sufficiently small, and (iv) there exists a limit
t−1(zt(»t) − zt(»0)) → żθ0 in L as t ↓ 0 with »t = φ(Ψ + tzt). Then, we have

φ(Ψ + tzt) − φ(Ψ) − tφ′
Ψ(zt)

t2/2
→ −Ψ̇−1

θ0

(
2żθ0 + Ψ̈θ0(φ′

Ψ(z))
)

.

The above definition of second Fréchet derivative differs from the standard
one (cf. [95]), but suffices for our purpose.

Proof. Recall »t = φ(Ψ + tzt), i.e., Ψ(»t) + tzt(»t) = 0. Arguing as in the proof
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of Lemma 3.9.34 in [91], we have ‖»t − »0‖ = O(t). Thus,

Ψ(»t)
︸ ︷︷ ︸

−tzt(θt)

− Ψ(»0)
︸ ︷︷ ︸

=0

= Ψ̇θ0(»t − »0) +
1

2
Ψ̈θ0(»t − »0) + o(t2).

Subtracting −tzt(»0) from both sides, we have

−t(zt(»t) − zt(»0)) = Ψ̇θ0(»t − »0 − tφ′
Ψ(zt)) +

1

2
Ψ̈θ0(»t − »0) + o(t2).

Since t−1(»t − »0) → φ′
Ψ(z) by the preceding lemma, we have

Ψ̈θ0(»t − »0) = t2Ψ̈θ0(φ′
Ψ(z)) + o(t2).

Also, by assumption,

−t(zt(»t) − zt(»0)) = −t2żθ0 + o(t2).

Conclude that

»t − »0 − tφ′
Ψ(zt)

t2/2
→ −Ψ̇−1

θ0

(
2żθ0 + Ψ̈θ0(φ′

Ψ(z))
)

.

Appendix D: Other auxiliary results

Lemma 16 (Convergence in �∞(Bs) implies weak convergence). Let X ⊂ R
d

be a compact set that agrees with the closure of its interior. Pick any s ∈ N and
set Bs to be the unit ball in Cs(X ). For μn, μ ∈ P(X ), if μn → μ in �∞(Bs),
then μn → μ weakly.

Proof. Pick any bounded 1-Lipschitz function f on X . By the Kirszbraun-
McShane theorem, we may extend f to a 1-Lipschitz function on R

d, which
we denote by the same symbol f . Let K : Rd → R be a compactly supported
smooth density function and approximate f by ft = t−d

∫

Rd f(y)K((y−·)/t)dy =
∫

Rd f(· + tz)K(z)dz for t > 0. As f is 1-Lipschitz, ft is smooth and 1-Lipshitz
with ‖f − ft‖∞,Rd ≤ t. The restriction of ft to X belongs to Cs(X ), so that for
any t > 0,

∫

X

f dμn ≤
∫

X

ft dμn + t ≤
∫

X

f dμ + 2t + o(1), n → ∞.

The reverse inequality follows similarly, so that we have lim supn³∞ |
∫

X
fd(μn−

μ)| ≤ 2t. Sending t ↓ 0, we have
∫

X
f dμn →

∫

X
f dμ, implying μn → μ

weakly.

Lemma 17 (Support of Brownian bridge). Let μ be a probability measure on a
measurable space S and F ⊂ L2(μ) be a μ-pre-Gaussian class, i.e., there exists
a tight μ-Brownian bridge Gμ in �∞(F). Let

Mμ =
{

g dμ : g is a bounded measurable function on S with μ-mean zero
}

.

Then spt(Gμ) ⊂ Mμ
�∞(F)

.
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Proof. Let Cu(F) denote the space of uniformly continuous functions on F rel-
ative to the pseudometric dμ(f, g) =

√

Varμ(f − g). Since F is μ-pre-Gaussian,
F is totally bounded for dμ (so that Cu(F) is a closed subspace of �∞(F)) and
Gμ ∈ Cu(F) a.s. (cf. Example 1.5.10 in [91]). For every f ∈ F and g1, g2 ∈ L2(μ)
with μ-mean zero,

∫

f(g1 − g2) dμ =

∫

(f −
∫

f dμ)(g1 − g2) dμ ≤
√

Varμ(f)dμ(g1 − g2)

by the Cauchy-Schwarz inequality. Since supf∈F Varμ(f) < ∞ by total bound-

edness of F w.r.t. dμ, we have that g dμ ∈ Mμ
�∞(F)

for every g ∈ L2(μ) with
mean zero.

By Lemma 5.1 in [92], the support spt(Gμ) agrees with the ‖ · ‖∞,F -closure
of the reproducing kernel Hilbert space (RKHS) for Gμ (think of Gμ as a zero-
mean Gaussian random variable in Cu(F), which is a separable Banach space).
There are two ways to define the RKHS for Gμ; by viewing Gμ as a stochastic
process or as a random variable with values in the Banach space Cu(F). In this
case, however, they both agree; see Theorem 2.1 in [92]. With this in mind, any
element of the RKHS for Gμ is of the form

f �→ E[Gμ(f)X], X ∈ lin{Gμ(g) : g ∈ F}L2(P)
.

For X =
∑s

i=1 ³iGμ(gi) with ³i ∈ R and gi ∈ F , we have

E[Gμ(f)X] =

s∑

i=1

³iE[Gμ(f)Gμ(gi)] =

s∑

i=1

³iCovμ(f, gi)

=

∫

f
( s∑

i=1

³i(gi −
∫

gi dμ)
)

dμ,

so that E[Gμ(·)X] ∈ Mμ
�∞(F)

. Further, for any X ∈ lin{Gμ(g) : g ∈ F}L2(P)
,

choose Xn ∈ lin{Gμ(g) : g ∈ F} such that E[|Xn − X|2] → 0. Then,

‖E[Gμ(·)Xn] − E[Gμ(·)X]‖∞,F ≤
√

sup
f∈F

Varμ(f)
√

E[|Xn − X|2] → 0,

which shows that E[Gμ(·)X] ∈ Mμ
�∞(F)

. Conclude that spt(Gμ) ⊂ Mμ
�∞(F)

.

Lemma 18 (Weak convergence in product space). Let S, T be nonempty sets
and let Xn = (Xn(s))s∈S , Yn = (Yn(t))t∈T be sequences of stochastic processes
with bounded paths. Suppose that, marginally, Xn and Yn converge in distri-
bution to tight random variables in �∞(S) and �∞(T ), respectively. Then, if
the finite-dimensional distributions of (Xn, Yn) converge weakly, i.e., for every
s1, . . . , sm ∈ S, t1, . . . , t� ∈ T , (Xn(s1), . . . , Xn(sm), Yn(t1), . . . , Yn(t�)) jointly

converges in distribution (in R
m+�), then (Xn, Yn)

d→ (X, Y ) in �∞(S) × �∞(T )
for some tight limit (X, Y ).
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Proof. The lemma follows from Prohorov’s theorem, upon observing that a tight
limit is uniquely determined by the finite-dimensional convergence. One way to
show the latter is to apply Lemma 1.3.12 in [91]. We present another more direct
proof. Let (X, Y ) : Ω → �∞(S) × �∞(T ) be a tight (Borel measurable) random
variable. Then, X is tight in �∞(S), so there exists a pseudometric ρS on S
that makes S totally bounded and such that X ∈ Cu(S) a.s., where Cu(S) is the
space of ρS-uniformly continuous functions on S equipped with the sup-norm
‖ · ‖∞,S ; see Chapter 1.5 in [91]. Consider the Borel σ-field on Cu(S). Define
Cu(T ) analogously. Since Cu(S) and Cu(T ) are separable, the Borel σ-field on
Cu(S) × Cu(T ) (defined w.r.t. the product topology) agrees with the product σ-
field. In turn, the Borel σ-field on Cu(S) agrees with the cylinder σ-field (i.e., the
smallest σ-field that makes every coordinate projection f �→ f(s) measurable).
For s1, . . . , sm ∈ S, let πS

s1,...,sm
: Cu(S) → R

m be the projection onto s1, . . . , sm,

i.e., πS
s1,...,sm

(f) = (f(s1), . . . , f(sm)). Define πT
t1,...,t�

analogously. Then, the
collection of sets of the form

[πS
s1,...,sm

]−1(A) × [πT
t1,...,t�

]−1(B) ⊂ Cu(S) × Cu(T ),

si ∈ S, tj ∈ T, A ⊂ R
m, B ⊂ R

� : Borel sets

is a π-system that generates the Borel σ-field on Cu(S) × Cu(T ). Hence, the
joint law of (X, Y ) is uniquely determined by the collection of the joint laws of
random vectors of the form (X(s1), . . . , X(sm), Y (t1), . . . , Y (t�)).

The rest of the proof is standard. Since Xn and Yn are marginally asymp-
totically tight and asymptotically measurable (Lemma 1.3.8 in [91]), (Xn, Yn)
is jointly asymptotically tight and asymptotically measurable (Lemmas 1.4.3
and 1.4.4 in [91]). By Prohorov’s theorem (Theorem 1.3.9 in [91]), every subse-
quence has a further subsequence weakly convergent to a tight law. By finite-

dimensional convergence, the weak limit is unique. Hence (Xn, Yn)
d→ (X, Y ) in

�∞(S) × �∞(T ) for some tight limit (X, Y ).
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