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Abstract: We study limit theorems for entropic optimal transport (EOT)
maps, dual potentials, and the Sinkhorn divergence. The key technical tool
we use is a first and second-order Hadamard differentiability analysis of
EOT potentials with respect to the marginals, which may be of independent
interest. Given the differentiability results, the functional delta method is
used to obtain central limit theorems for empirical EOT potentials and
maps. The second-order functional delta method is leveraged to establish
the limit distribution of the empirical Sinkhorn divergence under the null.
Building on the latter result, we further derive the null limit distribution
of the Sinkhorn independence test statistic and characterize the correct
order. Since our limit theorems follow from Hadamard differentiability of
the relevant maps, as a byproduct, we also obtain bootstrap consistency and
asymptotic efficiency of the empirical EOT map, potentials, and Sinkhorn
divergence.
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1. Introduction
1.1. Overview

Optimal Transport (OT) [55] quantifies the discrepancy between Borel proba-
bility measures p', z? on R? as

OT.(u*,p?) := inf /c dm, (1)

mell(pt,pu?)

where ¢ : R x RY — R, = [0,00) is the cost function and II(u', u?) is the
set of couplings (or plans) between pu! and p2. Under certain conditions on
the marginals and the cost function, the OT plan 7 that achieves the infimum
in (1) concentrates on the graph of a deterministic map 7', called the OT map or
the Brenier map when c¢ is quadratic [10, 43]. OT tools have been successfully
employed for various applications, encompassing machine learning, statistics,
and applied mathematics; see [78, 77, 8, 88] and references therein. We refer the
reader to [93, 94, 87] as standard references on OT theory.

Statistical OT seeks to estimate and carry out inference for OT and related
objects thereof based on data. Two central objects of interest are the OT cost,
which has natural applications to minimum distance estimation and testing, and
the OT map, which is useful for transfer learning and domain adaptation tasks.
Alas, despite its widespread applicability, the OT problem suffers from compu-
tational and statistical scalability issues. In general, the OT cost is difficult to
compute and its plug-in empirical estimator converges towards the ground truth
at the rate n=1/¢ [34, 41, 62, 72|, which is known to be minimax optimal without
further assumptions [73]. Estimation of the Brenier map encounters similar dif-
ficulties, as the results of [54] suggest that the minimax rate would be n=!/¢ in
general (though formally a conjecture). Imposing smoothness on the marginals
or the Brenier map can speed up minimax rates, but verification of such as-
sumptions is nontrivial and computations of the minimax optimal estimators
tend to be burdensome [30, 54, 63].

Entropic OT (EOT) has emerged as an appealing alternative to the classic
Kantorovich formulation that circumvents these statistical and computational
difficulties. EOT regularizes the transportation cost by the Kullback-Leibler
(KL) divergence as [60]

See(p',p®) == inf ¢ dr + eDy (7l|pt @ p?), (2)
' mel(ul,u?)

where £ > 0 is a regularization parameter. As ¢ — 0, the EOT problem converges
towards OT, not only in terms of the transportation cost but also in optimal
plans and dual potentials [3, 6, 15, 18, 22, 24, 59, 66, 69, 74, 76]. For fixed
e > 0, EOT alleviates the computational and statistical challenges associated
with classic OT. Indeed, EOT between discrete distributions (e.g., empirical
distributions) can be efficiently solved via the Sinkhorn algorithm [27, 4], whose
time complexity scales quadratically in the number of support points. Regarding
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empirical estimation, EOT and its centered version S, . (u', u?) = S (u', p?) —
(Se.e(pt, ut) + See(p?, 1?))/2 (known as the Sinkhorn divergence) enjoy the
parametric n~'/2 convergence rate under several settings [32, 44, 65, 83]. Recent
work has further established central limit theorems (CLTs) for the EOT cost in
certain cases [9, 32, 48, 57, 65] as well as estimation rate results for EOT maps
and plans [80, 82, 83]; see a literature review below. Still, much is left to be
desired on deeper understanding of limit behaviors of EOT and related objects,
such as EOT potentials, maps, and Sinkhorn divergences, whose analysis poses
a significant challenge from a probabilistic perspective.

1.2. Contributions

The present paper contributes to the growing literature on statistical OT by es-
tablishing limit theorems of the aforementioned objects: EOT potentials, maps,
and the Sinkhorn divergence. The key ingredient of our derivations is a first and
second-order Hadamard differentiability analysis of the EOT potentials with re-
spect to (w.r.t.) the marginal distributions. Importantly, we establish Hadamard
differentiability of the EOT potentials as maps into Holder function spaces. The
derivation first establishes Hadamard differentiability as maps into the space of
continuous functions (C-space) using the Schrédinger system, which character-
izes EOT potentials, and a version of the implicit function theorem. We then lift
the Hadamard differentiability to Holder spaces by showing that derivatives of
the EOT potentials are again Hadamard differentiable as maps into the C-space.
Having this result, the functional delta method [85] yields a CLT for the em-
pirical EOT potentials, which, in turn, implies a CLT for the EOT map under
the quadratic cost via the continuous mapping theorem. Both limit variables
are characterized as Gaussians with values in the appropriate function spaces.

Hadamard differentiability results for the EOT potentials further enable de-
veloping a limit distribution theory for the Sinkhorn divergence. While asymp-
totic normality under the alternative (when p' # p?) is a straightforward con-
sequence of existing EOT limit theorems [32, 48], the null case (when u' = p?)
for general distributions is significantly more challenging and is a subject of
this paper. The difficulty originates from the first-order Hadamard derivative
of the Sinkhorn divergence nullifying when pu! = p? (as the functional achieves
its global minimum there), which implies that the variance of the empirical
Sinkhorn divergence vanishes under the null and the limit degenerates. To over-
come this, we employ the second-order functional delta method [85], which
requires second-order Hadamard derivatives of the EOT potentials and the
Sinkhorn divergence. The Hadamard differentiability result of EOT potentials
in Holder spaces is key to finding such higher-order derivatives. Application of
the second-order functional delta method then yields a distributional limit for
the empirical Sinkhorn divergence at the rate of n=!. To the best of our knowl-
edge, the null limit distribution for the Sinkhorn divergence beyond the discrete
case has been an open problem, and our result closes this gap.

The Sinkhorn divergence was applied to independence testing in [61], al-
though the null limit distribution of the test statistic was not obtained in that
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work. [61] proposed critical values of order n~/2 derived from concentration
inequalities, which is at odds with the n~! order fluctuations under the null
implied by our limit theorem. Building on the second-order Hadamard differ-
entiability result for the Sinkhorn divergence and techniques for analysis of
U-processes [19, 29], we establish the null limit distribution of the Sinkhorn
independence test statistic and the correct n~! order. Finally, the Hadamard
differentiability results automatically yield bootstrap consistency and asymp-
totic efficiency of the empirical EOT potentials, map, and Sinkhorn divergence
(under the alternative), which is another virtue of our approach.

1.3. Literature review

Statistical and probabilistic analyses of EOT and related objects have seen ac-
tive research in the past couple of years. Regarding limit distribution theory,
[9, 57] derived CLTs for the EOT cost with ¢(x1, y2) = ||x1—22||? (p € [1,00)) for
finitely discrete distributions. [9] also derived the null limit of the Sinkhorn di-
vergence in the discrete case by parameterizing it by finite-dimensional simplex
vectors and directly finding the Hessian w.r.t. the simplex vectors. This approach
does not directly extend to the general case. For general sub-Gaussian distribu-
tions, [65] showed asymptotic normality of \/7(S|. 2, (i, #?)—E[S|. 2, (AL, #2)])
and its two-sample analog. The main limitation of this result is that the cen-
tering term is the expected empirical EOT cost, which precludes performing
inference for Syj.2,-(u', u?) itself. This limitation was addressed in [32], who de-
rived a limit theorem for the population centering by combining the CLT from
[65] with a bias bound of the form E[S|.2 c (4%, 1%)] =S j2.e (1, p2) = o(n=1/2).
The recent work by the present authors [48] generalized this result to dependent
data and further complemented it with asymptotic efficiency of the empirical
EOT cost and consistency of the bootstrap estimate. It is worth noting that [32]
derived the n~! rate for the empirical Sinkhorn divergence under the null but
did not derive its limit distribution.

Estimation of the EOT plan and map were also studied as a means to obtain
computationally efficient proxies of the OT plan and the Brenier map, respec-
tively. [82] considered estimation of the Brenier map under the quadratic cost
via an entropic approximation; see also [80]. They analyzed the empirical EOT
map and established a rate toward the Brenier map by taking ¢ = ¢, — 0,
which is however sub-optimal. [83] established the parametric rate toward the
EOT map with € > 0 fixed. CLTs for the empirical EOT plan were studied
in [57, 53] for discrete distributions and [51] for more general cases. The latter
work also obtained a limit theorem for the EOT potentials in the C-space, which
is derived via a significantly different proof technique than ours (not relying on
Hadamard differentiability) and is weaker than the convergence in Holder spaces
established herein. Hadamard differentiability in Holder spaces is crucial for ob-
taining the null limit distribution of the empirical Sinkhorn divergence, which is
one of our main contributions. Furthermore, our argument based on Hadamard
differentiability of EOT potentials yields not only limit distributions but also
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asymptotic efficiency and consistency of the bootstrap. Finally, [52] derived limit
theorems for a different entropic regularization that makes the optimal solution
explicit and thus relies on analysis techniques that significantly differ from ours.

Our Hadamard differentiability results also contribute to the study of stability
of EOT, which has attracted growing interest in the mathematics literature
[14, 17, 33, 37, 45, 67, 68, 75], and hence would be of independent interest
beyond statistical applications. Those references study stability of EOT-related
objects w.r.t. varying marginals (e.g., weak convergence of marginals) under
general settings, but do not contain differentiability results like ours. The recent
preprint [84] studies stability of the cost and dual potentials of the quadratic
Gromov-Wasserstein distance with entropic penalty, leveraging the variational
form from [96] that represents it as an infimum of a sequence of EOT problems.

1.4. Concurrent work

The concurrent and independent work [50] establishes similar results concern-
ing limit distributions of EOT potentials and the Sinkhorn divergence, but via
a markedly different proof technique that does not involve Hadamard deriva-
tives or the functional delta method. They also do not discuss bootstrapping
or asymptotic efficiency. Our overlapping results—a mean-zero Gaussian limit
for the EOT potentials in the Holder space and a non-Gaussian limit for the
Sinkhorn divergence under the null (with a scaling factor of n)—are consistent
with each other, although they derive explicit forms of the limit distributions.
Compared with [50], our contribution is to formulate and derive Hadamard dif-
ferentiability for the EOT potentials and the Sinkhorn divergence, including
higher-order ones, from which the limit distributions, consistency of resampling
methods, and asymptotic efficiency of the empirical estimators automatically fol-
low. The resampling methods enable performing inference without knowing the
explicit limits, and our semiparametric efficiency result implies that, though the
limit is not explicit, it is the best one can hope for. Furthermore, the Hadamard
differentiability results enable deriving limit distributions beyond the empirical
estimators, such as for the Sinkhorn independence statistic. As such, we view
the contributions of our work and that of [50] as complementary to each other.

Another related work is [49], which appeared after the initial version of this
paper was posted on arXiv. That work derived several limit theorems for EOT-
related objects for nonsmooth costs, combining the approaches of [50] and [83],
but their scope and proof techniques are substantially different.

1.5. Organization

The rest of the paper is organized as follows. In Section 2, we collect background
material on the EOT problem, potentials, map, and Sinkhorn divergence. In
Section 3, we derive limit distributions of these objectives. We also derive the
null limit distribution of the Sinkhorn independence test statistic in [61]. In
Section 4, we collect Hadamard differentiability results for the relevant maps,
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including higher-order ones. In Section 5, we discuss bootstrap consistency and
asymptotic efficiency of the empirical estimators. Section 6 contains proofs for
Sections 3 and 4. Section 7 leaves some concluding remarks and discussions on
the extensions to the unbounded support case and multimarginal EOT. The
Appendix contains additional results concerning the m-out-of-n bootstrap for
the Sinkhorn null limit (including small-scale numerical experiments), proofs
that are omitted from the main text, technical tools used in the proofs, and
other auxiliary results.

1.6. Notation

For a subset A of a topological space S, let A° denote the closure of A. We use
P(S) to denote the set of Borel probability measures on S. For u € P(.S), spt(u)
denotes its support. For a nonempty set S, let £°°(.S) denote the Banach space of
bounded real functions on S equipped with the sup-norm || - |0, = SUP,eg | - |-
For every compact set X C RY, let C(X') denote the Banach space of continuous
functions on X equipped with the sup-norm | - ||oo,x. For every multi-index
k= (ki,...,ka) € Nd with |k| = Z‘;:l k;j (No = NU{0}), define the differential
operator DF by DF = % with D°f = f. For every s € Ny and nonempty
Ty 0T

compact set X C R? that agrees with the closure of its interior, C*(X') denotes
the set of functions f on X such that f has continuous derivatives of all orders
< s on int(X) and the derivatives have continuous extensions to X (C°(X) =
C(X)). Define the norm ||fllcs(x)y = Z;:O max|g|=; | DF f|loo,ime(); (C*(X), | -
llcs(xy) is a separable Banach space [see Problem 5.1 in [47]; separability follows
by noting that f — (Dkf)wgs is isomorphic from C?(X) onto a closed subspace
of [ T4 k<5 C(X)]. We often identify a finite signed Borel measure v on R? with
the linear functional f — ~(f) := [ f dv defined on the bounded Borel functions
on RY. For two real numbers a and b, let a V b = max{a, b}.

2. Background and preliminaries
2.1. EOT problem

In this paper, we study EOT problems with smooth cost functions for compactly
supported distributions on R%. We briefly review basic definitions and results
concerning EOT problems. Let ¢ : RY x R? — R, be a smooth (i.e., infinitely
differentiable) cost function. To simplify exposition concerning the Sinkhorn
divergence, we will assume that ¢ is symmetric, i.e., ¢(x1, 23) = ¢(x2,x1) for all
71,79 € RL A canonical example is the quadratic cost c¢(x1, z2) = ||z1 —22|?/2.
The corresponding EOT problem for compactly supported distributions p!, u?
on R? is defined as

Sec(pt,p®) = inf c dr + eD(r||pt @ p?), (3)
' mell(pt,p?)
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where ¢ > 0 is a regularization parameter, IT(u!, u?) is the set of couplings of
(u*, u?), and Dk is the Kullback-Leibler divergence defined by

[log(da/dB) do if a < B
400 otherwise -

Di(al|B) :== {

The EOT problem admits a unique solution 7*, which we call the EFOT plan.
Throughout this paper, we assume that the regularization parameter € > 0 is
fixed, so we often omit the dependence on ¢.

The EOT problem admits strong duality, which reads as

&3] —c
SC,E(vaﬂQ) = sup /901 d/ul +/302 dM2 _E‘/ew1 e d,ul ®M2+57 (4)
p=(p1,$2)

where (¢1 @ 2)(z1,22) = p1(x1) + @2(z2) and the supremum is taken over
all @ = (p1,92) € LY (u') x LY (u?). There exist functions ¢ = (p1,p2) €
LY (p') x L'(p?) that achieve the supremum in the dual problem (4), which we
call FOT potentials. EOT potentials are a.e. unique up to additive constants in
the sense that if (@1, P2) is another pair of EOT potentials, then there exists a
constant @ € R such that @; = ¢ + a p'-a.e. and Py = 3 — a p-a.e. A pair
of functions ¢ € L' (u') x L'(u?) are EOT potentials if and only if they satisfy
the so-called Schrddinger system

/em@:rc dpd —1=0 pi-ae.,ij,

where 17 acts on the j-th coordinate, i.e.,

p1®p2—c e1()tea(z2)—c(,z2)
/e < du? :/e : dp®(z2).

Given EOT potentials (o1, ¢2), the (unique) EOT plan 7* can be expressed as

P1Ppa—c

dr* = ¢ E (! © 422). (5)

See Section 1 in [74] and the references therein for the above results.

2.2. EOT potentials

In what follows, we deal with distributions supported in a compact set X C R?.
We will maintain the following assumption throughout the paper:

the set X € R? is a bounded closed ball,

where we implicitly assume that the radius of X is sufficiently large to contain
the supports of the population distributions.

Our limit theorems rely on regularity properties of EOT potentials. These
properties are summarized in the following lemma (proved in Appendix B),
where the notation = is used to represent equality that holds everywhere on the
domain.
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Lemma 1 (Regularity of EOT potentials). Pick and fix an arbitrary reference
point (x5,x9) € X x X. The following hold.

(i) For every p = (u', u?) € P(X)xP(X), there exist EOT potentials (o1, pa) €
C(X) x C(X) such that

/ekﬁl(-)%ﬂz(:z)*c(w@z) d/},2($2) 1= 07/6<P1($1)+LP2E(~)7C(701,‘) d,u,l(il'l) _1=o0.
(6)

Furthermore, if (¢1,P2) is another pair of EOT potentials satisfying (6),
then there exists a € R such that (¢1,92) = (v1 + a,p2 — a). Hence, there
exists a unique pair of functions o* = (o', k) € C(X) x C(X) that satis-
fies (6) and @ (2%) = @ (a3).

(ii) For every s € N, there exists Ry > 0 that may depend on c,e,d, X, such that
I lerey V Iellcxcay < Ry for all s € P(X) x P(X).

(iii) Fiz arbitrary s € N and equip P(X) with the topology of weak convergence.
Then, the map p — @*, P(X)XP(X) — C5(X)xC*(X) is continuous, i.e., if
each pl, converges weakly to u' (i = 1,2), then @hr — @* in C5(X) xC*(X).

2.3. EOT map

The EOT map is an efficiently computable surrogate of the Brenier map. Recall
that the (vanilla) OT problem with the quadratic cost between (u',u?) with
absolutely continuous p! admits a (u'-a.e.) unique OT map (called the Brenier
map) T : R? — R¢ and the (unique) OT plan concentrates on the graph of T,
{(z1,T(z1)) : 71 € spt(u!)}. Hence, the Brenier map agrees with the conditional
expectation of the second coordinate given the first under the OT plan (also
called the barycenter projection). Motivated by this observation, [82] considered
the following EOT analog of the Brenier map.

Definition 1 (EOT map). Consider the quadratic cost c(z1,x2) = |21 —22/%/2.
For p = (p', pu?) € P(X) x P(X), the EOT map is defined by

TH =E[Xo | X1 =], (X1, X2) ~ 77,
where 7* is the unique EOT plan for (u!, u?).

The EOT map is a priori defined only p!-a.e. However, as noted in [82], using
the expression (5) of the EOT plan, we may define a version of the conditional
expectation for all z; € X (and indeed z; € RY) as

@b (z9)—llzy —=za1%/2

[y z2e : dp® (x2)

I _JX

TH(x1) = o) —llmr=wal?/2 , Tmed. (7)
er € d:“' (’1}2)

We always choose this version throughout the paper. Just as the Brenier map,
the EOT map can be characterized in terms of the gradient of the EOT potential.

Lemma 2 (Proposition 2 in [82]). Under the setting of Definition 1, we have
TH(z1) =z — Vi (x1) for z; € X.
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[82] used the EOT map as a means to estimate the (original) Brenier map
by taking € = ¢, — 0. Here, we view the EOT map T* as an object of interest
on its own right, rather than approximating the Brenier map.

Example 1 (Vector quantile function). The Brenier map can be interpreted as
a vector version of the quantile function when ' is taken as a known reference
measure, such as p! = Unif[0, 1]¢ [13, 20, 46]. Indeed, for d = 1, the Brenier
map sending p' = Unif[0, 1] to u? agrees with the quantile function of u? [87].
The EOT map T* can thus be viewed as an efficiently computable surrogate of
the vector quantile function [12].

2.4. Sinkhorn divergence

One drawback of EOT in (3) is that it is not a metric even for distance-like costs,
such as ¢(z1, x2) = |21 —x2||P, p > 1. In fact, EOT is not even a divergence since
See(pt, p?) # 0 when p' = p?, which renders it incompatible for applications
to homogeneity and independence testing.! To remedy this issue, a popular
approach is center EOT to obtain the Sinkhorn divergence:

_ 1

SC,E(HlaH2) = SC,s(Ula ,UQ) - 5(56,6(U1a ,Ul) + SC,E(szﬂz))- (8)
Under certain regularity conditions on the cost function (satisfied by the quadrat-
ic cost), the Sinkhorn divergence satisfies S, .(u', u?) > 0 and S, (u', pu?) =0
if and only if u! = u? [39]. . o

Assuming 5 = 3, by duality (4) and cp%”z’”l) = @é’ﬂ’”z) (which follows by

symmetry of the cost function), the Sinkhorn divergence admits the following
expression [80]:

— 1 2 1 1 1 2 2 2
5078(/‘17”2) _ /(tpgl‘ N (pgu S ))dﬂl _~_/(¢éﬂ N (péu S ))dlﬂ. (9)

We will use this expression when studying the null limit distribution of the
empirical Sinkhorn divergence.

3. Main results

In this section, we derive limit distributions for the empirical EOT potentials,
map, and Sinkhorn divergence. For pi € P(X), i = 1,2, let i, denote the
empirical distribution of a sample of n independent observations from ¢, i.e.,
i, =n"t Y0 dx:, where Xi,..., X! are ii.d. according to u’. The samples

from p' and p? are assumed to be independent, and we set fi,, = (fi}, i2).

LA divergence on the space of probability distributions is a mapping to the extended reals
that is nonnegative and nullifies if and only if the distributions are the same.
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3.1. Limit theorems for EOT potentials and maps

Lemma 1 (ii) implies that EOT potentials lie in the Holder space C*(X) for arbi-
trary s € N. The first main result concerns a limit distribution for the empirical
EOT potentials in C*(X) x C*(X), which, in view of Lemma 2, automatically
yields a limit distribution for the empirical EOT map in C*~!(X’; R?). Recall that
a random variable G with values in a (real) Banach space B is called Gaussian
if for every b* € B* (the topological dual of B), b*G is a real-valued Gaussian
random variable. We say that G has mean zero if b*G does so for every b* € B*.

Let % denote convergence in distribution. When necessary, convergence in dis-
tribution is understood in the sense of Hoffmann-Jegrgensen (cf. Chapter 1 in
[91]). For the product of two metric (or normed) spaces, we always consider a
product metric (or norm).

Theorem 1 (Limit theorem for EOT potentials). Let s € N and p = (u*, pu?) €
P(X) x P(X) be arbitrary. Then, for ¢, = @, we have as n — oo,

Vi(@n — ") 5 G in C5(X) x C*(X),

where G* = (G, GY) is a zero-mean Gaussian random variable with values in

C3(X) x C*(X).

Theorem 1 immediately implies the following corollary concerning the limit
distribution of the empirical EOT map. For s € Ny, let C*(X;R?) denote
the space of vector-valued functions f = (fi,...,fs) : X — R? whose co-
ordinate functions belong to C*(X), equipped with the norm ||f|

d
> i1 I filles(xy-

Corollary 1 (Limit theorem for EOT map). Let s € N and p = (ut,u?) €
P(X) x P(X) be arbitrary. Consider the quadratic cost c(x1,22) = |21 —x912/2
and the EOT map TH given in (7). Then, for T,, = T~ , we have as n — oo,

Cs(X;RY) —

~

VT, —TH) & —vG*  in 3 (X5 RY).

The limit —NVGY is a zero-mean Gaussian random variable in C*~1(X;R?).

The recent work of [32] shows that E[||@¢} — '] gS(X)] VE[||@5 — @b %s(x)]
O(n~1). Theorem 1 complements their result by further showing distributional
convergence of \/n(p, — @) in C5(X) x C3(X).

The proof of Theorem 1 employs Hadamard differentiability of the map
= pHin C5(X) x C5(X) (stated in Theorem 3 ahead) and the functional
delta method; see Appendix C.1 for a review of Hadamard differentiability and
the functional delta method. To this effect, we embed P(X) into £>°(B*), where
B* is the unit ball in C*(X). Since B* is p*-Donsker for i = 1,2 when s > d/2
(cf. Theorem 2.7.1 in [91]), the conclusion of Theorem 1 follows from the func-
tional delta method. The case of s < d/2 follows by noting that the inclusion
map f — f,C°(X) — CSI(X), with s < s is continuous. Having Theorem 1,
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Corollary 1 follows by Lemma 2 and the fact that the gradient f — V f is con-
tinuous from C*(X) into C5~1(X; R?). The corollary can also be deduced directly
from Hadamard differentiability of the map p + Vt' in C571(X;R?). The co-
variance structure of the limiting Gaussian random variables in Theorem 1 and
Corollary 1 can be inferred from their respective proofs.

Remark 1 (One-sample case). We have only presented the two-sample limit
distribution results for the EOT potentials and map, but as evident from the
proof strategy, analogous conclusions continue to hold for the one-sample case
where either ' or y? is known (cf. Example 1).

Remark 2 (Measurability). Since (z1,...,2,) — n~! D i Oy X" = P(X) s
weakly continuous, in view of Lemma 1 (iii), ¢, is a proper, C*(X) x C*(X)-
valued random variable. Likewise, the empirical EOT map T}, is a proper,
C*~1(X; R%)-valued random variable.

Remark 3 (Higher-order fluctuations). More can be said about higher-order
fluctuations of the empirical EOT potentials. In Theorem 4, we will establish
second-order Hadamard differentiability of the EOT potentials, which implies
that

n(pn — " = ("] (fon — 1))

converges in distribution in C(X) x C(X), where [¢*]" is the first Hadamard
derivative at p (cf. Theorem 3).

Remark 4 (Comparison with [51]). Theorem 1 in the latest update of [51] (up-
dated on July 9, 2022 on arXiv)? states a limit distribution result for the EOT
potentials in C(S7) x C(S2), where S; := spt(u?) is a compact convex set (in
fact [51] consider the multimarginal setting, but we focus our discussion on
the two-marginal case). Their proof differs from ours in that they do not de-
rive Hadamard differentiability of EOT potentials (nor does the proof contain
Hadamard differentiability results). Importantly, the Hadamard differentiabil-
ity result is stronger than just deriving a limit distribution, as it automatically
yields bootstrap consistency and asymptotic efficiency of the empirical estima-
tors; see Section 5 for further discussion. The question of asymptotic efficiency is
not accounted for in [51]. Furthermore, Hadamard differentiability of the EOT
potentials in C*(X) x C*(X) plays a crucial role in deriving the null limit dis-
tribution of the empirical Sinkhorn divergence that involves the second-order
Hadamard derivative of the EOT potentials in C(X) x C(X).

3.2. Limit theorems for Sinkhorn divergence

The second main result concerns limit distributions for the empirical Sinkhorn
divergence. We first state an asymptotic normality result for the empirical
Sinkhorn divergence.

2The initial version stated a weak convergence result in L™ (u!) x L°(u?).
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Proposition 1 (Limit theorem for Sinkhorn divergence). For every p=(u*, u?) €
P(X) x P(X), we have

VI (Se e (fih f2) = Sec(pt, 12)) 5 N(0,02), asn — oo,

1 1 2 2
where o}, = Var, (o — <pg” " )) + Var,2 (o — @é“ o )). Furthermore, the
asymptotic variance Ji
spt(p?) # 2.
Remark 5. Since (u', %) — Sc.(p!, p?) is weakly continuous (this follows by
Lemma 1 and the duality formula), S..(fi}, i) is a proper random variable.

is strictly positive whenever S, o (u', u?)#0 and spt(p)N

The first claim of this proposition follows from relatively minor modifications
to the proof of Theorem 7 in [48] that establishes asymptotic normality of the
empirical EOT for the quadratic cost (or [32]). The (two-sample) asymptotic
variance for the (uncentered) EOT cost S is Var,: (¢f") + Var,z (¢h), while
that for the Sinkhorn divergence SC’E involves debiased EOT potentials. The
second claim provides conditions under which the limiting Gaussian distribution
is nondegenerate. If 5675 is a valid divergence (e.g., when the cost is quadratic),
then S, .(u', u?) # 0 if and only if u' # p2. The assumption that spt(u') N
spt(u?) # @ can not be dropped in general. Indeed, if u' and p? are point
masses at distinct points, we have o2 = 0 but u! # p2.

"

In Proposition 1, when p! = p2, we have oi = 0, which entails that

VnSec(fit, i2) — 0 in probability. Indeed, [32] show that E[S..(fl,[2)] =
O(n™') under p' = p? for the quadratic cost, which implies that nS, . (fi}, 42)
is uniformly tight. The next theorem shows that, when u' = u2, nS. (i}, i2)
in fact has a weak limit, thereby determining a more precise random fluctuation

of the empirical Sinkhorn divergence under the null.

Theorem 2 (Limit theorem for Sinkhorn divergence under null). Suppose that
pt = p? = p € P(X). Then, nS..(ik, i2) S Xp as n — oo for some random
variable x,. Furthermore, assuming nonnegativity of Sc., the support of xu
agrees with [0,00), unless x,, = 0 a.s.

The proof of Theorem 2 is significantly more involved than that of Propo-
sition 1 and relies on the second-order functional delta method. To this end,
we establish second-order Hadamard differentiability of the map (v!,v?)
See(v',v?) at (v',v%) = (u,p), which in turn involves the second-order
Hadamard derivative of the EOT potentials. The limit variable is given by a
nonlinear functional of a certain Gaussian process, but it seems highly nontriv-
ial to derive an explicit expression of the limit distribution from our derivation;
an implicit expression is provided in the proof.? Still, the limit distribution can
be consistently estimated by the (two-sample version of) subsampling or the
m-~out-of-n bootstrap [7, 79]. See Appendix A for details. The proof of the con-
sistency of the m-out-of-n bootstrap again relies on second-order Hadamard
differentiability of the Sinkhorn divergence w.r.t. the marginals.

3The concurrent work [50] derives an explicit expression of the Sinkhorn null limit, albeit
with a different technique.
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The second claim of the theorem shows that the limit variable x,, is nonde-
generate in most cases. Indeed, assuming that either p! or x? is not a point mass,
in view of Lemma 10 below, x, = 0 a.s. if and only if the second Hadamard
derivative of S.. at (u,u) is identically zero.* Otherwise, the support of x,
agrees with [0, 0o).

Remark 6 (One-sample case). Analogous results hold for the one-sample case.
For example, when i is known, v/n(Se,c (1}, p2)—Se.c (1, p?)) 4 N (0, Var,: (4
1 1 —
- gogﬂ o ))) under the setting of Proposition 1, while nS. (4, 1) has a weak
limit under the setting of Theorem 2. The alternative limit in the one-sample
case may degenerate even when the supports of the two marginals overlap. In-
deed, when c is quadratic, p* = 26_; + 361, and p? = Unif[—1, 1], by symmetry
1 2 1 1
considerations, gog“ o j — cpgﬂ ) g pt-a.s. constant, so the limit distribution
for /n(Se,e(fin, #1*) — Se,c(p', 1?)) degenerates to 0.°
Remark 7 (Higher-order fluctuations). The proof of Theorem 2 reveals that in
general (i.e., u! # p? is allowed), the following stochastic expansion holds:

2 o
VI (See(Bh, 82) = See(pt,12)) = Y valas, — ui) (ot — o)) 402,
=1

where 7, converges in distribution as m — oco. This expansion characterizes
more precise random fluctuations of S. (4L, 42); similar expansions hold for
the (uncentered) EOT cost S ..

Remark 8 (Comparison with [9]). A version of Theorem 2 was derived in [9]
when the (common) distribution p is finitely discrete, where the limit is given
by a weighted sum of independent x?-random variables. When y is finitely dis-
crete, it may be parameterized by a finite-dimensional simplex vector. Using this
parameterization, [9] directly computed the Hessian matrix of the Sinkhorn di-
vergence w.r.t. the simplex vectors and applied the second-order delta method.
Clearly, this proof technique is restricted to the finitely discrete case and does
not directly extend to the general case of Theorem 2. Indeed, the major chal-
lenge in the proof of Theorem 2 stems from the fact that in the general case,
the problem is inherently infinite-dimensional and requires delicate functional
analytic arguments. This is accounted for by the second-order Hadamard differ-
entiability result of the Sinkhorn divergence, stated in Theorem 5.

3.2.1. Independence testing with Sinkhorn divergence. Let (V;, W;) €
R% x R%,j = 1,...,n be iid. with common distribution 7. Set d = d; + ds
and X; = (V;,W;) € R¢. Let 7V and 7% denote the marginal distributions of V;
and W;, respectively. Assume that 7" and 7" are compactly supported and let

4For finitely discrete marginals, [9] show that the Sinkhorn divergence, as a function of the
simplex vectors representing discrete distributions, is e-strongly convex in the first argument.
This implies nondegeneracy of the Sinkhorn null limit, unless p is a point mass. Extending
their argument to general compactly supported marginals appears to be nontrivial and is not
pursued here.

5We thank an anonymous referee for this counterexample.
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X C R% be a closed ball containing spt(m") x spt(7"). Consider independence
testing

Hy:m=7a"@sV vs. H:n#x" @xV.

Motivated by computational considerations, [61] proposed a test based on the

Sinkhorn divergence that compares the empirical distribution of X; = (V;, W;)

with the product of the marginal empirical distributions of V; and W;. [61]

focused on the quadratic cost, but we allow here a general smooth cost. Specif-

ically, [61] proposed a test that rejects the null for large values of the statistic
Dn = Sc,s(Anaﬁ}‘L/ ® /frW)’

n

where &, = n"! 3" 6x,,fy =nt> " 0y, and 7)Y =n"' Y " w,. The
rationale behind this test is as follows. By Varadarajan’s theorem, it holds that
fn — mand 7Y @ 7% — 7V @ W weakly a.s., so by Lemma 1 (iii) and
duality, we have D, — gcyg(ﬂ',wv ®@ ) a.s. At least for the quadratic cost,
See(mnV @) =0if and only if 7 = 7V @ 7", so it is reasonable to reject
Hy when D, is large.

[61] suggested a critical value of order n~'/2 derived from a finite sample
deviation inequality for D,,. However, under Hy, both 7, and 4} @7V converge
to the same limit, so Theorem 2 suggests that the correct order of D,, under the
null should be n~!. The next proposition confirms this, thereby determining the
precise rate for D,, under the null.

Proposition 2 (Null limit of Sinkhorn independence test). Consider the setting

as stated above. Then, under the null Hy, we have nD, LS Nr asn — oo
for some random variable .. Furthermore, assuming nonnegativity of S¢ ., the
support of Ny agrees with [0, 00), unless Ny =0 a.s.

Note that Proposition 2 does not immediately follow from Theorem 2 since
7V @#W is not an empirical process but a two-sample V-process [29], and #,, and
#V @V are dependent. The proof first finds a joint limit distribution of v/n(#,, —
7) and \/n(7Y @& —7) in £°(B?®) x £>°(B*) with s > 2d using techniques from
U-processes [19], and then applies the second-order functional delta method.
Additionally, as in Theorem 2, unless m degenerates to a point mass or the
second derivative of 5675 at (m,7) with 7 = 7¥ ® 7" is identically zero, the
support of the limit variable X, agrees with [0, 00), yielding nondegeneracy of
the limit law. An implicit expression for the derived limiting random variable is
provided in the proof.

4. Differentiability of EOT potentials and Sinkhorn divergence

As already stated, the main ingredients of the proofs of the results in the pre-
ceding section are the first and second-order Hadamard differentiability results
for the EOT potentials and Sinkhorn divergence. The present section collects
those results.
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4.1. Hadamard differentiability of EOT potentials

Our goal is to establish Hadamard differentiability of the map pu — ¢*. Since
P(X) x P(X) is a priori not a vector space, we embed the preceding map into
a normed space as follows. Note that # is fully characterized as the solution
of (6) (subject to the normalization ¢;(z9) = w2(23)), and whenever p; € C*(X)
for i = 1,2, we have

€ CH(X)XCHX), Y(z1,22) € X XX,

21O +ea(@a)—c(,®2)
e € N

e1(z)+ea()—cley,-) )
e €

for s € N arbitrary. With this in mind, it is natural to think of x* as a functional
on C*(X), and we identify P(X) x P(X) as a subset of £*°(B*) x £>°(B*), where

B = {f €C*(X) : | flles(a) < 1}-

Formally, defining 7 : P(X) x P(X) — £>2°(B*®) x {*(B?®) by (tpn); = (f —
[ fdu')seps, i = 1,2, we identify the map v — ¢” with 7v — ¢”. Since 7
is one-to-one (cf. Lemma 16), the latter map is well-defined. Equip ¢>°(B?) x
£°°(B*) with the norm ||y ||oo, 5= V||V?|| 00,55 for v = (71, 4?) € £2°(B*) x£>°(B?).
Finally, for n € P(X), set

P, ={v € P(X) :spt(v) Cspt(n)} and M, = {t(v—n):veP,t>0}

Elements of M,, are signed measures with total mass zero supported in spt(n).
Observe that M, C ¢>°(B?). These definitions are an artifact of our proof
technique.

Theorem 3 (Hadamard differentiability of EOT potentials). For every s € N
and p = (pt, p?) € P(X) x P(X), the map v — @¥, P x P2 C L2°(B*) x
{>*(B®) — C°(X) x C*(X) is Hadamard differentiable at p tangentially to
Mule (B*) X/\/luzl B*)

The first step of the proof of Theorem 3 is to establish Hadamard differen-
tiability in C(&X) x C(X) instead of C*(X) x C*(X). To this effect, we regard
p* as a solution to the system of functional equations (6) and use a version of
the implicit function theorem to prove Hadamard differentiability of the map
p— @ in C(X) x C(X). Precisely, Hadamard differentiability of the EOT po-
tentials is first established in C(spt(u')) x C(spt(u?)), then the EOT potentials
are extended to X x X via (6) and differentiability in C(X') x C(X) follows readily.

To lift the Hadamard differentiability to C*(X) x C*(X), we again use the
expression from (6),

(

e—wf/e(xi):/ew;‘(xj)—c(m,m))/eduj(xj>7 .

and show that derivatives of ¢! are Hadamard differentiable in C(X). This
argument is partly inspired by the proof of Theorem 4.5 in [32]. Completeness
of C*(X) then yields that the map p — ¢! is Hadamard differentiable in C5(X).
See the proof in Section 6.1 for the full details.
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Remark 9 (Tangent cone). Since P,1 x P,z is convex, the set Mﬂléw(Bs) X
Muze ) agrees with the tangent cone to P,1 X P2 at p in £>°(B*) x £>°(B*)
(cf. Chapter 4 in [5]; see also Appendix C.1). Each element of Muie (B extends
uniquely to a bounded linear functional on C*(&X) (cf. Lemma 1 in [70]). Hence,

. ——~(B
by the Riesz-Markov-Kakutani theorem, each v* € M, (B°) corresponds to
finite signed Borel measures (7} )pend, jkj<s o0 X supported in spt(p') such that

Yi(f) = Z|k\§stkf dvi for f € C*(X). We remark that this action also

makes sense for a function f € C(spt(p’)) that merely admits some extension
f € C*(X). Indeed, let v, € M, converge to v* in £>°(B¥), then ~i(f) =

Y (f) = YU(f) as spt(v7) C spt(u?); the first equality also shows that the limit
is independent of the choice of extension, hence we may define v*(f) := v*(f).
Abusing notation, we often denote the action of 4* on f € C(spt(x*)) admitting
a C*® extension to X or f € C*(X) as v (f) = [ fdy'.

Remark 10 (Functional delta method). Recalling that s in Lemma 1 (ii) is
arbitrary, if we choose s > d/2, then B*® is u‘-Donsker for each i = 1,2 (cf.
Theorem 2.7.1 in [91]). We use this fact in the proof of the limit theorem for
EOT potentials from Theorem 1. Sincgo thse support of a tight pi-Brownian
bridge in ¢°°(B?) is contained in M—mé ) (see Lemma 17), the functional
delta method (see Lemma 11) immediately applies to the map p — @*. Similar

comments apply to other Hadamard differentiability results.
The derivation of the null limit distribution of the empirical Sinkhorn diver-

gence involves the second-order Hadamard derivative of EOT potentials, which
is given next.

Theorem 4 (Second-order Hadamard differentiability of EOT potentials). For
every s € N and p = (ut, p?) € P(X) x P(X), there exists a continuous map
[H]” : Mule B ]\/luzz B, C(X) x C(X) such that for every sequence
()50 C Pur X Pz with v :=t7 (g — p) — v in £°(B*) x £°(B*%) ast | 0,
we have

Mt — 30‘12—/;[90”]/(775) — [¢*]"(v) inC(X) x C(X).

The map [@H]" is positively homogeneous of degree 2, i.e., [p*]" (tv)=t2[*]" ()
for everyt >0 and v € MHIE (B ./\/luze (B,

To prove this theorem, we extend Lemma 3.9.34 in [91] to the second-order
Hadamard derivative, which is presented in Lemma 15. It is worth noting that,
while the second-order Hadamard differentiability result is stated in terms of
C(X)xC(X), its proof requires the (first-order) Hadamard derivative in C*(X") x
C*(X) to verify Condition (iv) in Lemma 15. See the proof in Section 6.2 for
details.




Limit theorems for entropic maps and the Sinkhorn divergence 997
4.2. Hadamard differentiability of Sinkhorn divergence

In this section, we study Hadamard derivatives of the Sinkhorn divergence. The
following lemma follows relatively easily from the proof of Theorem 7 in [48].

Lemma 3 (Hadamard derivative of Sinkhorn divergence). For every s € N
and p = (pt, p?) € P(X) x P(X), the map v = (v',1?) — S..(v',12), P x
P2 C L2°(B%) x £>°(B®) — R is Hadamard differentiable at p tangentially to

0°(B%) _ =t (B%)
Mﬂl X 2

with derivative

M,

[S4.]) (v) = / (ot — o) dy? +/(s0§‘ — QY dy?

t=(B%) £7(B”)

for v = (v1,7?) €M, M,

When p! = p?, we have [555]1(7) = 0. Therefore, to explore the limit dis-
tribution of the empirical Sinkhorn divergence under the null u! = ;2, we need
to look at the second-order Hadamard derivative of the Sinkhorn divergence,
which is given next.

Theorem 5 (Second-order Hadamard derivative of Sinkhorn divergence). For
every s € N and p = (u',u?) € P(X) x P(X), there exists a continuous
functional A, : /\/TLZ B /\/T/ (B) — R such that for every sequence
(i, p2) € Py x P, with t71(pi — p) = % in £°(B*) ast | 0 fori = 1,2,
we have B
Se.c(pi, i)

t2/2 — AH(’Y)

with v = (v*,7?). The functional A, is positively homogeneous of degree 2.

Given the first and second-order Hadamard differentiability results for the
EOT potentials, the proof of Theorem 5 is reasonably straightforward. Indeed,
1 2 k3 [3
the proof consists of expanding go,E“t #4) and gogl”’”t) up to the second-order and

plugging these expansions into the dual expression (9) of S, . (uf, 117).

5. Bootstrap consistency and asymptotic efficiency

As discussed before, our limit theorems in Theorem 1, Corollary 1, and Propo-
sition 1 follow by establishing Hadamard differentiability of the relevant maps.
Importantly, Hadamard differentiability results automatically also yield boot-
strap consistency and asymptotic efficiency (cf. Chapter 3.11 in [91] and Chapter
25 in [90]) of the empirical estimators of the EOT potentials, map, and Sinkhorn
divergence (with p! # u?). To simplify our discussion, we focus here on estimat-
ing the EOT map for the quadratic cost with known u! (i.e., the one-sample
case); other cases are similar. The setting of known u! is motivated by the con-
nection of the EOT map to the vector quantile function (Example 1). Consider
the setting of Corollary 1.
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5.1. Bootstrap consistency

Let T, = T(+" /%) be the empirical EOT map, and T.Z be its bootstrap analog,
ie, TP = T(“l’ﬂi’B), where (28 is the empirical distribution of a bootstrap
sample from fi2 of size n (cf. Chapter 3.6 in [91] and Chapter 23 in [90]).

Pick any s,s’ € Ny with s/ < s and s > d/2. Lemma 2 and Theorem 3
yield that the map § : v2 s TW ) P2 € (°(B*) — €' (X;RY) is Hadamard
differentiable at v? = pu? tangentially to Muzz (B%)
—[Vh)(0,4?). The tangent cone Mﬂzé

2
which a tight g?-Brownian bridge G4 in ¢°°(B®) concentrates (cf. Lemma 17;
note that B® with s > d/2 is p?-Donsker). Hence, by the functional delta
method, we have

with derivative 522 (v?) =

contains a vector subspace on

VT, —T#) 4 50.(GE) in ¢ (A;RY).

Furthermore, by Theorems 3.6.1 and 3.9.11 in [91], the following bootstrap con-
sistency holds:

sup BB [A(VA(TE - Tn))] —E[h(5,:(G4)]| =0 (10)
REBLy (C#' (X;R4))

in outer probability, where EP denotes the conditional expectation given the
sample and BL; (C* (X;R?)) is the class of 1-Lipschitz functions h : C* (X; RY) —
[-1,1].

Example 2 (Confidence bands for EOT map). Consider constructing confi-
dence bands for Tj* with T# = (Tf',...,T}"). The continuous mapping the-

orem yields that |y/(Tos — T ot % 118(G)]j ooy For a given a €
(0,1), let §1—_q denote the conditional (1 — «r)-quantile of H\/ﬁ(TfJ — T i)l
given the data. The bootstrap consistency result (10) yields that {[7}(z1) &
Q1-a/Vn] : 21 € X} is a valid confidence band for T, ie., P(TV(x1) €
[T}’(ml) + Gi—o/v/n] forall z; € X) — 1 — .

Remark 11 (Statistical inference for unregularized Brenier maps). When the
source measure u' is absolutely continuous, Brenier’s theorem [10] guarantees
the existence of the pu!-a.e. unique map (called the Brenier map) given by the
gradient of a convex function transporting p' onto p2. The EOT map approx-
imates the (unregularized) Brenier map as ¢ — 0 (cf. [18, 66]). However, all
the limit theorems in the present paper crucially rely on the fact that the reg-
ularization parameter € > 0 is fixed and do not directly extend to the case
where € = ¢, — 0. Indeed, estimation of the unregularized Brenier map suffers
from the curse of dimensionality [54], so /n-consistency toward the unregular-
ized Brenier map does not hold in general for ¢ = ¢,, — 0. One exception is
the semidiscrete case where p! is absolutely continuous and p? is finitely dis-
crete, for which [81] establish the parametric convergence rate of empirical EOT
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maps with vanishing regularization parameters under the squared L2-loss. For
the semidiscrete case, the recent preprint [86] by a subset of the authors stud-
ies statistical inference for the empirical (unregularized) Brenier map. Beyond
the semidiscrete case, however, limiting distributional results for the (unregular-
ized) Brenier are still rather limited. The recent preprint [64], which appeared on
arXiv after the present work, derives pointwise limiting distributions for kernel-
based estimates of the Brenier map for densities supported on the flat torus.
For finitely discrete marginals, [56] derives limit laws for the unregularized OT
plan, which in particular, specialize to the Brenier map, provided that the latter
exists.

5.2. Asymptotic efficiency

Regarding asymptotic efficiency, we follow Chapter 3.11 in [91]. Consider the
setting of Corollary 1 and fix (u!, u?) € P(X) x P(X). As before, let s,s" € Ny
be such that s’ < s and s > d/2. For notational convenience, set B = C* (X; R?).

By linearity of the derivative, the limit variable 5;3 (Gh 2) is zero-mean Gaussian
in B.

To apply the results of Chapter 3.11 in [91], we need to specify statisti-
cal experiments (X, A, Ppn : h € H) indexed by a vector subspace H of a
Hilbert space and local parameters k,(h). Choose H to be the set of bounded
measurable functions on X with p?-mean zero equipped with the L2(u?)-inner
product, and set X,, = X", A,, = (Borel o-field on &™), P, , = (ﬂfb)h)‘g’" with
i, = (1+h/ym)dp?, and ko (h) = 6(u2 ) = TW #en) . H — B. Note that
for each h € H, Ni,h is a valid probability measure for sufficiently large n. By
Lemma 3.10.11 in [91], the sequence of experiments (X,, A, Pyp : h € H) is
asymptotically normal in the sense of [91, p 412]. Under this setup, the fol-
lowing proposition regarding asymptotic efficiency of the empirical EOT map
holds. We say that the parameter sequence r,(h) is regular if there exists a
continuous linear operator & : H — B such that /n(k,(h) — kn(0)) = &(h) for
every h € H; a sequence of (Borel measurable) estimators 7,, is called regular
if the limit law of \/n(T, — kn(h)) under P, exists for every h € H and is
independent of h. Additionally, a function ¢ : B — R, is called subconvez if for
every ¢ € R, the level set £71([0, c]) is closed, convex, and symmetric.

Proposition 3 (Asymptotic efficiency of empirical EOT map). Consider the
above setting. Then the following hold.

(i) (Convolution) The sequences of parameters k., (h) and estimators T, are reg-
ular. For every reqular sequence of Borel measurable estimators T, based on
X3Z,..., X2, the limit law of \/n(T, —T*) under P, o equals the distribution

of the sum 5;2 ((G’Q‘Q)—FW for some B-valued random variable W independent

of 8,2(GY).

(i) (Local asymptotic minimazity) For every sequence of Borel measurable esti-
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mators T, based on X32,..., X2 and every subconvex function £ : B — R,

sup liminfsuplEy, [@(\/ﬁ(ﬂ — :‘in(h)))] > EV((S,IB (GSQ))}

ICH:finite "% hel
where Ky, denotes the expectation under P, j,.

The regularity of the parameter sequence k., (h) follows from Hadamard differ-
entiability of the map 2 — T# ") The regularity of the empirical EOT map
follows from the Hadamard differentiability result and Le Cam’s third lemma.
The second claim of Proposition 3 (i) follows from applying Theorem 3.11.2 in
[91]. To this effect, we need to verify that the law of the Gaussian variable ap-
pearing in the cited theorem agrees with that of 47, (GY 2) in our setting, which
follows by adapting the argument in the proof of Proposition 2 in [48]. Given
(i), Proposition 3 (ii) directly follows from Theorem 3.11.5 in [91].

Proposition 3 (i) shows that the limit law 4/, (G‘;) of the empirical EOT
map is the most concentrated around zero among all regular estimators for
Kn(h). Furthermore, by regularity of the empirical EOT map, for every bounded
continuous function ¢ : B — R, and every finite set I C H,

lim supE, {é(\/ﬁ(fn - fin(h))ﬂ =E {4(5;2 (ng))}

n—oo hel

showing that T}, is asymptotically minimax in a local sense.

6. Proofs for Sections 3 and 4

6.1. Proof of Theorem 3

As noted in Section 4.1, we will first establish Hadamard differentiability of the
map v — " in C(X) x C(X).

Lemma 4. Consider the setting of Theorem 3. Then, the map v — @Y, Py1 X
P2 C £°(B*) x E:O(Ejs) — C(;l;) XSC(X) is Hadamard differentiable at p tan-
gentially to Mulz (B%) X M2 (B ).

The proof of Lemma 4 proceeds as follows. Fix p = (u!, u?) € P(X) x P(X)
with S; := spt(u?) for i = 1,2. For notational convenience, set S := S; x S
and D := C(S1) x C(S2). We equip D with a product norm, |[(¢1,¢2)|lp =
lo1lloo,s1 V [l@2]lco,5,- Choose an arbitrary fixed reference point (z9,z3) € S.
With Lemma 1 in mind, consider

0 = {(e1lsi walsn) : (o1, 2) € C7(X) x C(),

ce) < Royp1(25) = p2(a5) } € D.

llellesx) V @2l

Define the map W : (P,1 x P,2) x ©° — D by

\Il(l/,go) _ </6¢1®fzcdyz _ L/ém@:z—zzdyl _ 1) (11)
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for v = (v, 1?) € P x Pz and @ = (p1,92) € ©%. Given v € P,1 X P2,
the corresponding EOT potentials ¥ are fully characterized by its restriction
to S, ¢¥ls = (¢¥]s,,¥5]s,) € OF, being the unique solution to ¥(v,¢) = 0
on S. We will decompose the map v — " into the composition of the maps
v U, ¥(v,)) = @Y|s, and ¢¥|s — ¢¥, and separately show their
Hadamard differentiability.

To formulate Hadamard differentiability of the map ¥ (v, ) — ¢”|s, we con-
sider the following setting (cf. Section 3.9.4.7 in [91]; see also Appendix C.2). Let
(0%, D) be the Banach space of all uniformly norm-bounded maps z : ©° — D
equipped with the norm |[|z||s=(esp) = SuPuee- [[2(¢)|lp. Also, let Z(©°,D)
be the subset of £>°(©%,D) consisting of all maps with at least one zero. Let
¢ : Z(0°,D) — ©° be a map that assigns each z € Z(0°,D) to one of its zeros
6(2), Le., 2(6(2)) = 0.

For a given v € Py X P2, U(v,-) 1 ¢ — ¥(v,¢) is a uniformly norm-
bounded map from ©° into D with a zero at ¢¥|s, guaranteeing that ¥(v,-) €
Z(0*%,D). Uniqueness of the EOT potentials then yields that

P[s =¢oVU(v,).
Furthermore, in light of (6), we have the following representation of the EOT
potentials ¢ for v € Py X P2,

P¥ s, (@2)—c(m2) Yis, D) —e(er,)
P = —¢ <log (/e S : du2(x2)> ,log </ew1 A dyl(xl))>

(12)

which depends on the potentials only through their restrictions to S; and Ss.

We will establish Hadamard differentiability of ¢ at ¥(u,-) by invoking
Lemma 3.9.34 in [91] (see also Lemma 14). Hadamard differentiability of the
map v — U(v, ) is straightforward. The chain rule for Hadamard differentiable
maps (cf. Lemma 3.9.3 in [91]) then yields Hadamard differentiability of the
map v — ¢Y|g in D. Hadamard differentiability of v — ¢* in C(X) x C(X)
follows readily.

We shall first verify Hadamard differentiability of the map v — ¥(v, ), P,1 x
P2 CUX(B%) x £>*(B*%) — Z(©°,D) C £°(©°,D). For notational convenience,
define ¢ : P,p x Py = Z(©°,D) by ¥(v) = ¥(v,-).

Lemma 5. The map @ : P, x P2 C £°(B°) x (*(B*) — Z(©°,D) C

€°°(@S D) s Hadamard diﬁerentiable at p tangentially to MM/OO(BS)
X M2 B) with derivative Y e (B Mﬂzz (B (0%, D) given
by

¥ () () = </e e “’l@e‘“cdvl), »

o= (p1.92) €0°y = (1,7 e M xR,

As before, 77 acts on the j-th coordinate, i.e.,

<01€9¢’2 c 21 +ea(za)—c(,ma)
/e dv? /e E dy? ().
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Proof. Let 91; denote the space of finite signed Borel measures on X supported
in S; = spt(u). The definition (13) makes sense for v € My x My, and the
extended map ¢’ : My x My — £°°(0*,D) is linear. For every ¢ = (p1,¢2) €
©°, let ¢ = (¢1,p2) € C°(X) x C*(X) denote an arbitrary C*-extension with
l@1llcs 2y V | @2llcs (x) < Rs. Observe that

P1(z1)+@a()—c(xy,)
€

R = sup sup e
($1,I2)€X><X ((p1,<,02)€@5 CS(X) (14)
P1(D+@a(xza)—c(,x3)
V|l
C*(X)
Since ¥/ (7)(p) = ¥'(7)(@)|s for every v € My x My, we have
19" (Nl (o0,m) < B (17 oo, V 172 ]loo,52).- (15)
, . . . ——>(B")
Hence, ¢’ extends uniquely to a continuous linear operator from 9, X
%Z ® into (>*(0°,D).
0= (B%) (B )
Second, for every v € M1 X M2 , pick a sequence of pairs of

signed Borel measures (7; )¢~ with total mass zero such that p+tvy, € P, X P2
for sufficiently small ¢ and vy, — « in £°°(B*) x £>°(B?) as t | 0. Then, as ¢t | 0,

O+ tye) — Y (n)
4

=1'(m) = ' (y) n>(0°,D).
This completes the proof. O

Next, we shall establish Hadamard differentiability of the map ¢ : Z(0°,D) C
(>*(©°,D) - D at ¥, := ¥(u,-). To this end, we apply Lemma 3.9.34 in [91].
The following lemma verifies the required conditions to apply the lemma. The
proof, which we defer to Appendix B, relies on the results from [17].

Lemma 6. The following hold.

(i) The map ¥, : ©° 3 @ — Y(u,p) € D is injective and its inverse (defined
on ¥, (©%)) is continuous at 0. .

(it) The map ¥, is Fréchet differentiable at ¢ = pH|s with derivative ¥, :
lin(0©°%) — D given by

ool —c ool —c

W, (h)=¢c"! (/e < (h1®h2) d,u27/e = (h1® h2) du1>

for h = (hi, hy) € lin(©°), where lin(©°) is the linear hull of ©°. Further-
more, ¥,, : (lin(0©%), || - ||lp) — D is injective and its inverse is continuous.

. —————D
Extend W, continuously to ¥,,(1in(©%)) . Now, Lemma 3.9.34 in [91] implies
the following. See also Appendix C.2.
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Lemma 7. The map ¢ : Z(©°,D) C £°(0°,D) — D is Hadamard differentiable
at ¥, = U(w, ) tangentially to the set

-
Z, :{z €L*(O%D): 2= ltifél & ; B for some z, — W, in Z(0°,D), t | 0}
m {z € (°(0°,D) : z is continuous at Lp“\g}.

The derivative is given by ¢y, (z) = —\i';l(z(cp“|g)).

Hadamard differentiability of the map v € Py x P2 = ¢¥|g € D at p now
follows directly from Lemmas 5 and 7.

Lemma 8. The map v — @"|g, P2 x P2 C £°(B*%) x {>*°(B*) — D is

Hadamard differentiable at p tangentially to Mﬂlzm(Bs) X ./\/lﬂzeoo(Bs).

Proof. Given Lemmas 5 and 7, the lemma follows from the chain rule for
Hadamard differentiable maps; see Lemma 3.9.3 in [91]. The only thing we
need to verify is that, for every v = (y%,42) € ./\/l—ﬂlé (B°) X M#zé (B ), it
holds that ¢'(y) € Z,. Let (p)i>0 C Pur x Pu2 be a sequence such that
Yo =t — p) — v in £°°(B%) x £°°(B*). Then ¥, € Z(©% D) and
N W, — U) = Y'(v) = ¢(y) in £2°(0°,D). It remains to show that
¢'(y) is continuous at ¢*|s. By construction, for every n > 0, there exists
¥ = (34,4%) € My x Myz such that [[v! = 3 le=(pe) V 172 = 72 lem(pe) <
n. By (15), we have [[¢'(y) — ¥'(¥)[l¢=(0s,py < R'n with R’ given by (14).
Since 4 is a pair of signed measures, for every sequence ¢, € ©° with ||¢, —
PH[s|lp — 0, we see that [|YV'(7)(en) — ¥'(7)(¢*]s)[lp — 0. We thus conclude
that Timsup, . [[4/(7)(@n) ~ ' (7)(9"|5) |5 < 2Ry, and as n > 0 is arbitrary,
we have shown that ¢’(«) is continuous at ¢*|s. Hence, the chain rule applies,

and the Hadamard derivative [p*|s]" : Mméw(m) X Muzew(Bs) — D is given

by [p#[s]'(7) = =¥ (' (V) (¢*]s))- U

Now, Lemma 8 and the formula for the potentials (12) together yield Lemma 4.

Proof of Lemma 4. We show Hadamard differentiability of the map v — ¢Yf
at p; differentiability of the second potential follows analogously. To simplify
notation, define

@Y ls,y (22)—c(zy,22)

& i (xy,29) EX X Se e c

By the formula (12) and the chain rule, it suffices to show that the map T :
v e Py x Pz [€(,2)dv?(zs) € C(X) is Hadamard differentiable at p

tangentially to Mulzw(Bs) X Muzem(Bs). To this effect, let (pt;)i>0 C Ppur X P2

be such that ~v; ==t~ (uy — p) — ~ in £°(B*) x £°>°(B*), and consider

7 (T () = T(w) = /fl (€91 (-, a) = €1(, 22)) dp®(x2)
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+ [ e (za) driea)

As t | 0, the first term on the right-hand side converges to the Hadamard
derivative of the map v € Py x P2 = [&¥(-,x2) du?(z2) € C(X) at p, which
agrees with e=! [ ¢# (-, z2) (04 |s,]'(7)(22) du?(22) by Lemma 8 and the chain
rule.

Pertaining to the second term, since spt(y?) C S, we have

sup | [ (ar,aa)dri (o) = [ € (ar,m) a2 (02)

r1EX
wt I
eht () —c(e1,) eh () =c(@1,9) 5
< sup |le : —e c ‘ 17 oo, B#
r1EX CS(X)
n
p5 ()—eclzy,9) 2 9
+sup e 92 = AP
r1EX Cs(X)

The right-hand side converges to 0 as t | 0 since ||77]|co,5= = O(1), |7 —
Y?|loo.Bs = 0(1), and @h* — 4 in C5(X) by Lemma 1 (iii) (note that pu, — p
in £>°(B?%) x £>°(B*) and hence pu! — u' weakly for i = 1,2 by Lemma 16).

Conclude that, for v € Mulg B Muze (B ),

T (y) = ¢! / €0 () [P 50 (7) (2) dp? (1) + / €4 (- x2) dr* (), (16)

I
and hence [p}'] (v) = —eeT T}, (v) by the chain rule. O

Remark 12 (Compatibility of derivatives of EOT potentials). As Lemmas 8
and 4 establish, respectively, the Hadamard derivatives of the maps v € P,1 x
P @¥|ls€Dand v € Py x P2 = ¥ € C(X) x C(X), the latter derivative
should extend the former. Indeed, for every ~ € ./\/l—ule B M sz (5% and
(1e)t>0 C Pur x Ppz for which ¢ 71 (py — p) — 7 in £°°(B*) x £°(B*), t (¢t —
@) = [@H]'(7) in C(X) xC(X) and hence also in . So, [#]'(v)|s = [¢*[s]'(7),
as desired.

Remark 13 (Choice of reference point). We have chosen a reference point (25, ©3)
from S in the proof of Lemma 4, but this is immaterial. Indeed, for a different
choice of reference point (Z7,#3) € X x X, the functions @} = ¢! — (1 (23) —
©2(29)) and @5 = b + L(p1(&7) — 2(&7)) are EOT potentials satisfying the
constraint @4 (Z9) = @4 (Z3). Clearly, by construction, the map v — @, P,1 x
P2 CLX(B%) x{>(B*) = C(X)xC(X) is Hadamard differentiable at pu. Hence
the conclusion of Lemma 4 holds for an arbitrary reference point (z9,z3) €
X x X.

We are now ready to prove Theorem 3.

Proof of Theorem 3. We divide the proof into two steps.
Step 1. Pick any multi-index k& = (ky,...,kq) € N¢ with 0 < |k| < s. In
what follows, i € {1,2} is arbitrary. Also, u=! = p? and p=2 = p!. Similar
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conventions apply to z_; etc. We will show that the map
v DFQY P x P2 C €°(B%) x £°°(B%) — C(X)

is Hadamard differentiable at p. Observe that

o (@i)/e _ /e(@’ii(w—i)*c(wlﬂ”?))/gdl/*i(xii)’

so that by interchanging differentiation and integration, D’;i (e*‘P?(wi)/ € ) can be
expressed as a linear combination of functions of the form

J
/H I:Diic(xlny)]mj % e(%"ii(ﬂﬂfi)—(:(ﬂm,acz))/ady—i(xii)7
j=1

where 1 < J < |k|, and my,...,m; € Nand ¢1,...,¢; € Ng\ {0} are such that
mily+---+myly = k. Combining the fact that (logy)™ = (—1)"*1(n—1)ly™"
and the multivariate Fad di Bruno formula (cf. Theorem 2.1 in [25]), we see that
DF@¥(x;) = —eDFlog(e %7 (#1)/¢) can be expressed as a linear combination of
products of functions of the form

[ ¢l wa)e@hile=—clorea ey =iz
f e(w'ii(i—i)*c(wl,$2))/€dy—i(x_i)

T (z1)+¢5 (@) —c(zy,x3) .
= / (ar,wp)e ™ IR i),

where ¢ is a smooth function on R? x R? that depends only on the cost ¢ and

multi-index k. For example, for y = (y1, ..., y4),
o3 log(f(y)) = Wﬂy) B ﬁf@/) ang(y)
R () fw) W)
W) ape I W) W) 5 I W) 5 fW)
f(y) f(y) fy)  fly)  f)

Hence, it suffices to show that, for every smooth function ¢ on R? x R, the map

P (z1)+e¥ (z)—c(zy,22)
€

Vi /C(wl,xg)e dv(z_;),

Pt x Pz C £°(B%) x [°(B*) = C(X)

is Hadamard differentiable at p.
Let (pt)t>0 C Pu1 X P2 be a sequence such that v, := ¢t~ (py — p) — v in
{>2(B®) x >°(B®) as t | 0 with v = (71,72). Define

o't (@) +oht (wn)—c(x1,22)

gi(x1,22) = ((z1,22)e = , >0
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with g = p. We have shown in Lemma 4 that ¢t=1(pt* — of) — [¢#](5) in
C(X) ast ] 0, so that

= (ge — g0) = e {Ie) (7) @ [08) (M) }g0 =t h(7)  in C(X x X).

Observe that
/gt(xh@)dﬂfi(ffi) = /9t(9€17$2)dﬂ_i(x4) +t/9t(ff17$2)dW;i($7i)-
As t ] 0, we have
t {/gt(xlva)dﬂi(x—i) —/go($17$2)dﬂi($—i)}
—>/ )21, 29) dp(x_;) in C(X).

To control [ g(x1,22)dy; "(x_;), observe that

' [otaras) arias) - [onteren) d?en)

< ‘ (o= g0, 2 w2)

<|lge(1,-) — go(x1, ")

n ] [ oot =)o)

172 lloe. 5 + llgo(1, ) ¢ =7 lloo,5e-

We have [[77]|oo,p: = O(1) and |77 — ¥?||oo,B: = 0(1) as ¢ | 0 by construction,
and sup,, ¢y [|go(1, ") Lemma 1 (ii). Since p} converges weakly to
ptast ] 0 (as convergence in £°°(B*) implies weak convergence; cf. Lemma 16),
Lemma 1 (iii) implies that ¢t — @* in C*(X) x C*(X), which in turn implies
that sup,, ¢y [|9¢(z1,-) — go(1,-)l|les () = o(1) as t | 0. Hence, we have

/ gt 2) dn? (2) — / go(22) d7*(z2) in C(X).

Likewise, we have [ gi(z1,-)dyi (z1) — [ go(z1,-) dy*(z1) in C(X). Conclude
that

o an) o) = [t |
—>/ V1, 22) dp™ i(x,i)—I—/go(xl,xg)dv_i(x,i) in C(X).

The limit is linear and continuous from Mﬂléx(Bs) X M2 ) into C(X).
Step 2. As in Step 1, let (p4)i>0 C Pur X P2 be a sequence such that ~; :
t™ Ny — p) — v in £°(B*%) x £2°(B*%) as t | 0. By Lemma 4 and Step

for every multi-index k € N& with |k| < s, the map v — D*¥¢¥, P,1 X P2

N~ '||
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£>°(B®) x> (B*®) — C(X) is Hadamard differentiable at p. Denote its derivative
by [D*H]] so that

tH(DFt — DFt) — [DFH] (v)  in C(X).

Pick any sequence t, | 0. Then, ¢, (¢! — ) is Cauchy in C*(X), so by
completeness of C*(X), the limit in C*(X) exists, i.e., t; (! — o¥) = &;
in C*(X). The limit @, satisfies that D*p; = [DF¢])'(v) for every multi-index
k € N¢ with |k| < s, which shows that [p!]'(v) € C*(X) with D*[p¥) (v) =
[DF ) () for every multi-index k € N& with |k| < s. Since the map ~
[¢#] (%) is linear and continuous from M—MZ B W@ P into C5(X), we
obtain the desired result. O

Remark 14. Another possible approach would be to employ the implicit function
theorem for Banach spaces (see, e.g., Theorem 1.5.9 in [58]), which asks Fréchet
differentiability of the map p — *. However, in our problem, it seems highly
nontrivial to verify the required conditions to directly apply the implicit function
theorem. For statistical purposes, Hadamard differentiability is sufficient in most
cases; cf. Chapter 3.9 in [91].

6.2. Proof of Theorem /

We divide the proof into two steps.

Step 1. We first show twice Hadamard differentiability of the mapping v —
p” in D. Recall that @*t|s = ¢ o ¥(p, ). Observe that U(py, ) = ¥(p,-) +
ty'(v¢). We will apply Lemma 15 below with © = 0D = D,L = D, ¥ =
U(p,-), 00 = ¢*|s,0: = g, and z; = ' (:). To this end, we shall verify the
conditions in Lemma 15.

Twice Fréchet differentiability of ¥(u,-) is straightforward to verify, with

second derivative given by

B, (hy, hy) =72 (/ ¢TE (hy @ ho)? i, / ¢ (hy @ hy)? dul) .

We have already verified Conditions (i)—(ii) of Lemma 15 in the proof of Lemma 8.
Regarding Condition (iii), since ¢’(7;) € Z,, (cf. the proof of Lemma 8), in view

— D
of Remark 17 after Lemma 14, it holds that ¥'(v:)(¢*|s) € ¥, (lin(©%)) . It
remains to verify Condition (iv) in Lemma 15. Observe that, as spt(v{) C S;,

7Y () (@™ ]5) = ¢ () ("))}
=t ! (/ (ewﬁbt@fgt_c — eﬁe;f;_c) de,/ (eﬁt@:ghc — ekp?@f;_c) d%1> .

By symmetry, it suffices to show convergence of the first coordinate. Recall from
Theorem 3 that ¢~1(¢#* — o) — [¢*]'(v) in C*(X) for i = 1,2. We shall show
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that
1 it (@) el () —e(@1,) o @)tk ()—clz1,)
sup ||t {e B —e 2 }
r1EX ( 7)
1
IR Y s eff @) +eb () —c(e1,0)
—e H{letT (V@) + [P (1 () be : - 0.
Co(X)

Indeed, since 42 — ~2 in £°°(B*®), (17) implies that

Ly teoktoc Ghapkoc _ Pl oeh —e
/tl(e T—e )dV?—”1/{[s0i‘]’(7)€9[<p5‘]’(7)}6 dy?

in C(X), yielding the desired result in view of Remark 9.
Observe that, in general, for f,g € C*(X), it holds that

Il fallcsx) < K| f]

Cs(X) ||9||cs(x)

for some constant K that depends only on s,d. Now, since

< 0

sup o)

T1EX

)+l ()—c(=1,0) ‘
e €

by Lemma 1 (ii), the left-hand side of (17) is bounded by

€

1 eteD-ef @Dt O-B O
sup ||t {e — 1}
r1EX

(18)
— e [T (@) + (5T () ()}

€2(X)

up to a constant independent of ¢. It is not difficult to see that (18) converges
to zero when || - [|¢s(xy is replaced by || - ||oo,x. We shall show that for every
multi-index k € Ng with 0 < [k| < s,

Pt ) - (@) +eb T ()—eb ()

71D (e . ) —e D5 (51 () ()

sup
T1EX

00,X

By the multivariate Fad di Bruno formula (cf. Theorem 2.1 in [25]),

t_lD’;2 (e

At (@)=l (1) + bt (22)— o8 (22) )
£

can be expressed as a linear combination of functions of the form

At (z1) ok () +obt (22)— o8 (22)
£

J .
‘ Xle[Dié(so‘z”(wz)—soé‘(:cz))] (20
j=1
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where 1 < J < |k|, and my,...,m; € Nand ¢;,...,¢; € N¢\ {0} are such that
mily + - +myly = k. The coefficient for the leading term with J = 1 and
my = 11is e~1. Except for the leading term, the order of (20) is O(t) as t | 0 in
C(X x X), so we arrive at the following expansion in C(X x X):

-1k
¢~ 1Dk

( w‘ftwl)—wﬁ‘(zl)w‘;t<w2>—¢§‘(w2>)
e £

1 et (@) =k (@) +ebt (2)— b (w2)
== 6 e €

Xt Dy, (" (x2) — @ (22)) +o(1).

The right-hand side converges to e ' D _[0h7/ (v)(z2) in C(X x X) as t 7 (ot —
o) = [ () in C5(X) for i = 1,2, which leads to (19) as desired.
Therefore, Lemma 15 guarantees that the limit

y PHts — s — tlp*|s] (Vi)
1m
10 t2/2

exists in D. By our construction, the limit depends on « but not on the choice
of sequence py, so denote the limit by [¢*]s]” ().

Step 2. Next, we leverage twice differentiability of v — ¢¥|s to establish
the second derivative of v — " using (12). As in the proof of Lemma 4, we
only deal with the first potential. Recall the notation ¥ and Y that appeared
in the proof of Lemma 4 and observe that ¢¥ = —elog(Y(v)). Precisely, ¢¥
agrees with the composition of the maps f € C1(X) — —elog(f) € C(X) with
Ci(X) ={fecCX):f>0}and T : Py x P2 — Cy(X). The former
map is twice Hadamard (indeed Fréchet) differentiable and its domain Cy(X)
is open in C(X), so the tangent cone T (x)(f) agrees with C(X) for every
f € C+(X). From the second-order chain rule for Hadamard differentiable maps
(see Lemma 12), it suffices to establish second-order Hadamard differentiability
of T at p tangentially to Wé (B WZ (B ). As such, with p; and ~;
as above, recalling the expression of the derivative of T from (16) and that
[0 5,) (7)) = [©5] (7v+) on Sy (see Remark 12), we have

T(pe) = Y(p) — L, ()
t2/2

= (2/2) [ e (mz) = €80) — 17 )l () o)} (o)
(/) / (694 (- 02) — €9 (- 22)} dn (),

As t | 0, the first term on the right-hand side converges to the second-order
Hadamard derivative of the map v € Py X P2 — [&Y(-, x2) dp?(x2) € C(X)
at p, which agrees with

[ {726 Coma) (1 0 a))? + 726 i) (0 w2)} i (o2)

by the chain rule and twice differentiability of the restricted potentials.
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#8 (zg)—c(zxy,22)

As (z1,22) e X x X =€~ ¢ extends £, the second term satisfies
sup 61 [ e (an) = (@)} dif =<7 [ @ on T ()
T1€
eh—c(z1,) oht—of _
< sup [ (7 (T < 1) = T 0| IHPle.ne
r1EX Cb(X)
s [ e @B 0| bt -
sup |le" e = . — ¥ |loo, B
mex e R

(21)
As in Step 1, one can show that the right-hand side of (21) converges to 0 as
tl0.
Consequently, T is twice Hadamard differentiable at g with derivative

T (y) = / 261 (- 1) ([t ' (9) (22)) dp (2)
4 / e (-, ) ol )" () (2) dp? (1)
———t(B*)

oct! / (a1, gl V(N () dr?, € My

L°°(B*®)
X MMQ y

off B
and hence [p}']"(v) = ce (T;‘('y))Q — e T Y7, (v) by the chain rule. Finally,
continuity and positive homogeneity (of degree 2) of [¢p*]” follow from the con-
struction. O

6.3. Proof of Lemma 3

We divide the proof into two steps. Since the Sinkhorn divergence is invariant
w.r.t. the choice of reference points and v*(a) = 0 for every constant a € R, we
may assume without loss of generality that 7 = 3.

Step 1. Themap v = (v*,v?) = Sc (V! 1?), P x P2 C £°(B*) x> (B*) —

T M P with

R is Hadamard differentiable at p tangentially to M le M2

derivative
!
St ] (v) = / ot dy' + / ol dy’.

Given regularity of EOT potentials (Lemma 1), the proof follows similarly to
the proof (or its argument) of Theorem 7 in [48], with small modifications. To
avoid repetitions, we omit the details.

Step 2. The conclusion of the lemma follows by Step 1 and noting that

wgul’”l) = gaé’“’”l) by symmetry of the cost function. O
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6.4. Proof of Theorem 5

As before, we may assume without loss of generality that 2§ = 3. Using (9),
we can expand S. . (uf, u7) as

q 101 L o s s
Sy i) = /(‘Pgm’m) - wﬁ“"“t))dug + /((pgm,m) _ @éﬂ“#t))du?
" T 1,2 2 2
- /(‘AM“M —wgﬂ“’lt))dw/(wé“““‘) — ) dp
101 L s -
_|_t/( (N’t’“t) _ gog."*t’l"t))d,ytl —&-t/((pg”“m) _ <Pgut’ut))d’}/t2.

By Theorem 3, we have

(g -17) (79
wi gpz . S
e S [T () i et()
as t | 0, while
(Pgut 1) SDEH D)

. = [ ( ) in (),

Since v} — v in £>°(B?) as t | 0, we have
/(wf“””t) — ) dni = t/[@ﬁ”’”)]’(vl =772 =) dy' +o(t).
On the other hand, by Theorem 4, we have
(i u?) (ntng) t[apgu’“)]’(o,wf — b

¥1 — %Y1
t2/2

= [P M) (Y42 = [ (AN i C(X) x C(X).

9 . Hence, we have

A similar expansion holds for @(M““t) — wé”t e

102 101 1,2 2 2
/(Lpgu“ut) _ wg#t’l‘t)>du+ /(gpéﬂt’/"t) _ Lpé”““t))d,u
=t/([<ﬁ§”’“)]'(0mf—7§)+[ $) (4f = 42,0)) dps (22)

+ % (Z (o™ (7% = [l H)]H(’Yiﬁi))) dp+ o(t?).

As the cost function is symmetric, we have

[ (e, M)] ( (/LvlL):I ( (/LvlL)] (

0,% — 1),

v —2,0) = [p 0,% — ) =—l¢



1012 Z. Goldfeld et al.

so that the first term on the right-hand side of (22) vanishes. Conclude that

ng(Ntlth _ 2 (u u) // 2 (op) g i i

=1

+2Z/ P (=4t =) dy = Au(),

Continuity and positive homogeneity (of degree 2) of A, follows immediately
(or from its construction). O

6.5. Proofs for Section 3 (except Proposition 2)
In what follows, let

M i

i = {gd,ui : g : X = R is bounded and measurable with y’-mean zero},

where gdu® should be understood as a signed measure A fA gdp’.

For a (generic) probability measure p and a function class F C L?(u), a
stochastic process G = (G(f)) ser is called a p-Brownian bridge if it is a Gaus-
sian process with mean zero and covariance function E[G(f)G(g)] = Cov,(f,9);
furthermore, if G is a tight measurable map into £°°(F), then we call G a tight
p-Brownian bridge in £°°(F). Recall that a (zero-mean) Gaussian process that
is a tight measurable map into ¢>°(F) is an £*°(F)-valued Gaussian random
variable (with mean zero) in the Banach space sense; see Lemma 3.9.8 in [91].

Lemma 9. Let s be a positive integer with s > d/2. Then, for every p =
(u', p?) € P(X) x P(X), we have

Vil — 1) 5 G = (G, GE) in ((BY) x (<(B%),  (23)

where G’fl and ng are independent, tight p'- and p?-Brownian bridges in
£°(B®) and (>°(B®), respectively. Furthermore, spt(G*) C Smuf (B%)
X 9)?”2 . ),

Proof of Lemma 9. The set B* is p*-Donsker by Theorem 2.7.1 in [91]. Since
the samples are independent, by Example 1.4.6 in [91] (combined with Lemma

3.2.4 in [35] concerning measurable covers), we obtain the weak convergence
result (23). The second claim follows by Lemma 17. O

The following lemma will be used to prove the second claim of Theorem 2.

Lemma 10. Consider the setting of Theorem 5 and assume that 5076 is non-
negative. Let W be a tight random variable with values in £°°(B*®) x £°°(B?)
whose support is a cone # {0}. Then, unless A, is identically zero, the support

of AL (W) agrees with [0, 00).



Limit theorems for entropic maps and the Sinkhorn divergence 1013

Proof of Lemma 10. Consider the restriction of A,, on spt(W'), which we denote
by the same symbol. The restriction is still continuous and positively homoge-
neous of degree 2 (the latter follows as spt(W) is a cone). The functional A, is
nonnegative by construction. By positive homogeneity, A, is either identically
zero or onto [0,00). In our setting, A, is onto [0,00). For every open interval
(a,b) C [0,00), the inverse image A;*((a, b)) is nonempty and open in spt(W),
and hence by the definition of support, we have P(A,(W) € (a,b)) > 0, which
implies that spt(A,(W)) = [0, 00). O

We are now ready to prove Theorem 1, Corollary 1, Proposition 1, and The-
orem 2.

Proof of Theorem 1. The theorem follows from the Hadamard differentiability
result (Theorem 3) combined with the functional delta method. Let s > d/2,
so that the weak convergence (23) holds. Since /n(ft, — p) € Py X P2
a.s. (as spt(il) C spt(u®) a.s.) and spt(GH) C Sﬁulé (B zmurf (B%)
(> (B®) ——(B®) . . -———{(B?)

M X M2 (or the inclusion spt(G*) C M,x X M,2
follows from the portmanteau theorem), we may apply the functional delta
method (Lemma 11) to conclude that

Vi(@n — @) 5 [ (GH) in C*(X) x C*(X).

> (B®) > (B*

X M2 ) is a closed subspace of £>°(B*) x {>°(B?)
oo BS oo Ba‘
and the restriction of [¢*]’ to smuf B zm#/ B is a continuous linear

operator, we see that [p*]'(G*) is a zero-mean Gaussian random variable with
values in C*(X') x C*(X). The result for the s < d/2 case follows by the fact the
inclusion map f +— f,C*(X) — C* (X) with s’ < s is continuous. O

Also, since 9,1

Proof of Corollary 1. Since the map f +— Vf,C*(X) — C*~}X;R%) is con-
tinuous and linear, we have \/n(T,, — TH) = —V/n(@} — o) < —VGY in
C*~1(X;RY) and the limit —VG% is again a zero-mean Gaussian variable. [

Proof of Proposition 1. Given the weak convergence and Hadamard differen-
tiablity results (Lemmas 9 and 3), the first claim follows by applying the func-
tional delta method.

For the second claim, assume S, . (u', u?) # 0 and spt(u') Nspt(u?) # @. For
simplicity of notation, assume without loss of generality that ¢ = 1 and x9 = 3,
and define the shorthands ¢} = ¢; and @E”l’”b) = 1;, for i = 1,2. Suppose on
the contrary that O’i = 0, which entails Varui(cpi — ;) =0, 80 ¥; = @; + a;
p'-a.e. for some a; € R for i = 1,2. The Schrodinger system (6) implies that

1= /690169902—0 d’u2 — g a1—az /e¢1@¢2—c d’u2 — g~ a1—azt1—¢2

2 2 2 2
where we used the fact that gpgu ) — @(2” ) — 4. The equality above holds
pl-a.e., 50 Y1 —1Py = ay +ay pl-a.e. By symmetry, we also have ¢, —1); = a; +as
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p2-a.e. Since 1y and vy are continuous, we have 1), — ¥ = a; + as on spt(ul)
and 1y — 11 = ay + az on spt(p?), and as spt(u') Nspt(u?) # I, we must have
a1 + ag = 0. However, the duality formula (9) then entails S..(u', u?) = 0,
which is a contradiction. O

Proof of Theorem 2. Given the second-order Hadamard differentiability result
(Theorem 5), the first claim of the theorem follows by applying the second-

order functional delta method (Lemma 13), nS,. (), i2) 4 A (G /2. The
second claim follows by Lemma 10, upon noting that spt(G*#)) is a vector
subspace of ¢*°(B*) x £>°(B?) (cf. the proof of Lemma 17 or Lemma 5.1 in
[92]). O

6.6. Proof of Proposition 2

The proof uses techniques from U-processes. We refer to [29] as an excellent
reference on U-processes. Assume 7 = 7V ® 7". For notational convenience,
set 72 = 7V @ #W. Let B* be the unit ball in C*(X) with s > 2d (recall that
d =dy +dyand X =V x W). We will derive a joint limit distribution for
Vn(fty, — ) and /n(72 — ) in £°°(B?®) x £>°(B*). As in [2], define for f € B*,

(1, 2) = hy((vi,wi), (v2, w2))
= f(vr,w1) + f(v2, w2) — fv1, w2) — f(v2,w1).
The function hy is symmetric with [[hf|lcs(xxx) < 4. As Vi and W; are in-

dependent, the mean of h;(X1, Xs) is zero: E[h;(X;,X2)] = 0. Consider the
U-statistic with kernel hy:

(24)

Unlhf) = —— > hp(X;, X;).

1<17é]<n

Then, keeping in mind X; = (V;, W;), we can expand U, (hy) as

Un(hf):*Zf Z F(Vi, W)

1<275j<n

%;fo@)—%z; (V;, ;)

o 2 0 b3 )
<itj<

i=1

—Aa(f)
= 2(7,(f) = 72()) + An(f),

that is,
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Since | f| < 1, we have |A,,(f)| < 4/n. We will approximate U, (hs) by the Hajék
process. Apply the Hoeffding decomposition to h:

W (@) = / hy(w,a')dr(a'), B (@,a') = hy(z,2") = B§ (@) = B ().

Then, we can decompose Uy (hy) as U, (hy) = Qﬁn(h;l)) + Un(hgcz)).

Now, since {hy : f € B°} C {h € C*(X x X) : ||h]lcs(xxx) < 4} and the
t-entropy number of the latter function class w.r.t. || - o, xx is of order t—2d/s
as t | 0 by Theorem 2.7.1 in [91], applying Corollary 5.6 in [19] with k = 2, we
have

1
E[[[U (h?) | se,5:] < O(n™") x / 1=20/5 g — O(nY).
0

Summarizing, we have E[||v/n(#3(f) — #n(f — hgcl))) H

For notational convenience, set G,, = \/n(#t, —7) and hy = f — h;l). We will
show that ((G"(f))feBs’ (Gn(ﬁf))feBs) converges in distribution a tight limit
in £>°(B*) x £(B?*). To this end, we will apply Lemma 18. Again, by Theorem
2.7.1in [91], B® and H := {hy : f € B*} are both m-Donsker. Finite-dimensional
convergence follows trivially, so by Lemma 18,

| —o.

00,B*

(Ga(h)) jeper (Gu(h) ) > G™ i 0(B*) x £*(H)

for some tight limit G™. Finally, since the map ¢ : £°(B*) x £>°(H) — £>°(B*®) x
£>°(B?) defined by

(2)1(f) =2(f) and (12)2(f) = 22(hy), 2 = (21, 22) € £2°(B%) x £2(H)

is continuous, we conclude that
> d T T . 00 s 00 s
((G"(f))feBS’(G”(hf))feBS) = 1G" = G™ in (>°(B?%) x £°(B’).

The limit variable G™ = (G7,G%) is a two-dimensional Gaussian process with
mean zero and covariance structure

Cov(G7(£). G7(9)) = Cova(f.g), Cov(G5(f). G5(9)) = Covalhy, hy),
and  Cov(GT(f),G3(9)) = Cova(f, hy).

In view of the discussion above, the same limit holds for (v/n(#, — ), V/n(#5 —
7)). Now, combining Theorem 4 and the second-order functional delta method
(Lemma 13), we conclude that

n

_ 1 .
nDy, = nS, < (fn, 72) > 58:(G7).

Finally, the second claim of the proposition follows by Lemma 10, upon noting
that the support of G™ is a vector subspace of £*°(B?®) x £>°(B?); cf. Lemma 5.1
in [92]. This completes the proof. O
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6.7. Proof of Proposition 3

(i). We first note that, as hdu? € MMQKW(BS), by Hadamard differentiability, «,,
satisfies

Vn(in(h) = £,(0)) = 6,2 (hdp?) =: i(h).

Since h + hdu? is linear and continuous from H into ¢*°(B*) (cf. Example
1.5.10 in [91]), & : H — B is a continuous linear map, establishing regularity of
the parameter sequence ,,(h).

Next, we shall verify regularity of the empirical EOT map 7). Hadamard
differentiability enables finding limit distributions under local alternatives. By
the second claim of the functional delta method (Lemma 11), we have

V(T = TH) = 6, (Vn(fi;, — p*)) = 0
in probability under P, ¢. From the proof of Theorem 3.10.12 in [91],

dPp p,
’ deO

(Va2 = i), S22 ) 5 (GEA) in £2(B*) xR
under P, o, and the law L on ¢>°(B*) defined by L(A) = E[IIA(GQLZ)A] agrees

with the law of ng + hdp? (note: hdu? should be understood as an element of
£°(B*#)). Combining these two displays above yields that

~ dPn d 2 .

(\/H(Tn _THy, ﬁ’ﬁ) 4 (2(C5),A) inBxR

under P, o. Hence, by Le Cam’s third lemma (Theorem 3.10.7 in [91]), v/n(T), —

TH) 4 82 (ng + hdp?) under P, . Note that G’;Q + hdp? € E)J?#zg &9, By
2 2

linearity of the derivative, we have 0/, (Gy + hdp?) = &)2(Gh ) + 97,2 (hdp?).

Conclude that

V(T = TH) % 51.(GE) + 82 (hdp?) in B

under P, ;. This immediately implies that T,, is regular, that is, /n(T), —
Twhunny 4 62 (ng) under P, j,.
Now, in view of Theorem 3.11.2 in [91], the last claim follows by verifying

2
that d (GY) 4 G, where G is a Gaussian random variable in B such that for
every b* € B*, b*(G is Gaussian with mean zero and variance

* o * 2
sup (b*i(h))? = sup (0*8,2 (hdp®))".
hEH:|[h|| 2,2, =1 heH:||hllp2(,2y=1
. , Y . . . a7 (B%)
By construction ¢/, . :=b 06u2 is a continuous linear functional on 90,2 D

spt(GQLQ) with 9,2 = {hdp? : h € H} (Lemma 17). Note that Emuzeoo(BS) is a
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closed subspace of £>°(B?). Arguing as in the proof of Proposition 2 in [48], we
obtain

* 2 2 * 42
Var(b*G) = 222 (8,2 4+ (hdp?))™ = Var (82 . (G ) = Var(b*6/,2(Gh")).
lAllL2,.2)=1
Conclude that §. (G‘;) La.

(ii). Given the result of Part (i), Part (ii) follows directly from Theorem 3.11.5
in [91]. O

7. Discussions

We have established limit distributions for the EOT potentials, map, and
Sinkhorn divergence. The main ingredient of our proofs was Hadamard dif-
ferentiability of the relevant maps. Importantly, the Hadamard differentiabil-
ity results yield not only limit distributions but also bootstrap consistency and
asymptotic efficiency. Regarding the Sinkhorn divergence, our main contribution
is the derivation of the null limit distribution for compactly supported distri-
butions. When the population measures agree, the first Hadamard derivative of
the Sinkhorn divergence vanishes, which necessitates looking into higher-order
Hadamard derivatives. For this, Hadamard differentiability of the EOT map in
(sufficiently regular) Holder spaces plays an important role. As another contribu-
tion, we have derived the null limit distribution of the Sinkhorn independence
test statistic and determined the precise order of the test statistic under the
null, which was not available before. We end this paper with discussions of two
possible extensions.

7.1. Unbounded supports

In the present paper, we have assumed that the marginals x' and p? are com-
pactly supported, which excludes, for instance, Gaussian distributions (one ex-
ception is Proposition 1, where the compactness assumption can be relaxed to a
sub-Gaussian condition when ¢ is quadratic; see [31, 48]).Indeed, the compact-
ness assumption is essential to formulate the Hadamard differentiability results,
where we first regard the dual potentials as a mapping into the Hélder space with
arbitrary smoothness level (cf. Lemma 1 (ii)), and then embed each marginal
into the topological dual of the Holder space (cf. Remark 9). The second step is
natural in view of the Schrodinger system, since whenever 1, o € C*(X), the
exponentiated functions

p1(z)tea()—c(zy,") e1()+pa(za)—c(,z3)
€ €

and (25)

both lie in C*(X) for every z1,22 € X.
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For certain smooth costs, even when the marginals are not compactly sup-
ported, as long as they have sufficiently light tails, we may uniformly upper
bound derivatives of EOT potentials by a polynomial of 1+ || - || (cf. [65]), so a
natural idea would be to replace the Holder space with a certain weighted Holder
space (cf. [7T1]). However, even when the dual potentials lie in a weighted Holder
space, the exponentiated functions in (25) need not lie in the same weighted
Holder space, so it is nontrivial to find a suitable normed space into which the
marginals are embedded when they are not compactly supported. In particular,
the desired space should enable extending Lemma 6 (ii) to the unboundedly
supported setting to ensure that the Fréchet derivative ‘il” is injective with
a continuous inverse. While these properties are crucial for our argument, they
seem challenging to establish for marginals with unbounded supports. We there-
fore leave this exploration for future work.

It is worth mentioning that [53] derive a Hadamard derivative for the EOT
plan w.r.t. the marginals when the supports are countable. They use a curvature-
type condition on the cost to allow for unbounded supports (see Remark 5.9 in
[53]; see also [52] for a similar condition), but their proof technique is restricted
to the countable support case where we may naturally embed the marginals into
a sequence space, and does not directly extend to a more general case.

7.2. Multimarginal EOT

The results of the present paper extend to the multimarginal case, as long as
we deal with compactly supported marginals. Multimarginal optimal transport
finds applications spanning from economics [16, 21, 38], through density func-
tional theory in quantum chemistry [23, 26], to generative modeling in machine
learning [11]. The multimarginal problem is also intimately related to Wasser-
stein barycenters; cf., e.g., [1], where entropic regularization is often applied to
attain computational tractability [28].

Given a smooth cost function ¢ : (R¥)"N — R, and marginals p',...,u" €
P(X) with N > 2 arbitrary, the multimarginal EOT problem reads as

inf /cdﬂ+€DKL(7r\|m), m=u' @ -eu’, (26)
Fen(ul,‘.A,/AN)

where TI(p!,...,u"V) is the set of Borel probability measures on XV with

marginals u', ..., V. To simplify notation, we set ¢ = 1. The corresponding
dual problem is
N N
sup > / iy — / eXia POt ) A ) 1.
(p1,eon) €T, Lo (1) =1

Bounded functions ¢ = (¢1,...,pn) solve the dual problem if and only if they
satisfy the Schrodinger system, i.e.,

/ez.;v:l S9]‘(11)*‘:(””1*""‘/’“\’)dnfi(;U,Z-) —1=0 forpl-ae z;, i=1,...,N, (27)
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where m™ = ®;4p and v_; = (z1,...,%i—1,Tit1,...,2N). See [17]. The-
orem 4.3 in [17] shows that the Schrodinger system (27) admits a solution
@ = (p1,...,oN) € Hf\il L (ut), which is unique in the sense that if ¢ =
(B1,-..,0N) € Hf\;l L% () is another solution to the Schrodinger system (27),
then Zfil o(z;) = Zfil @i(x;) for m-a.e. (x1,...,2N), i.e., there exist con-
stants aq, ..., ay that sum to zero such that (¢1,...,¢n) = (p1+a1,..., o8+
ay) for m-a.e. (z1,...,2y5). We call ¢ EOT potentials. Then, the (unique)
optimal solution to the multimarginal EOT problem (26) is given by

dr*(x1,...,xN) = eXila “""’(m")_c(ml’”'"zN)dm(xl, C TN

Given these preparations, it is not difficult to see that Lemma 1 naturally
extends to the multimarginal setting. For simplicity, we choose a common ref-
erence point z° € X. Then, for every pu = (u!,...,uV) € vazl P(X), there
exists a unique set of functions " = (p¥,...,ok) € Hf\il C(X) satisfying the
Schrodinger system (27) for every x; € X for each i = 1,..., N, and such that
o (x°) = -+ = ¢y (x°). Furthermore, for every s € N, there exists a constant R
such that maxi<;<n ||| cs(x) < Rs for all p € Hf\;l P(X). Then, Theorem 3
extends to the multimarginal setting as follows.

Theorem 6. For every s € N and p = (pb,...,uV) € Hivzl P(X), the map
v go”,HlN:l P, C Hf\;l (>*(B*%) — Hivz1 C*(X) is Hadamard differentiable
tangentially to Hfil WZ (B%),

The proof is similar to the two-marginal case, so omitted for brevity. Note
that the proof of Lemma 6 relies on the results of [17], but their results cover the
multimarginal case. Other results extend similarly. For example, let 4!, denote
the empirical distribution of n i.i.d. data from p* and assume the samples from
different marginal distributions are independent. Then, for ¢,, = ”», we have
that v/n(p, — ¢*) converges in distribution to a zero-mean Gaussian random
variable in Hf\]:l C*(X).

Appendix A: m-out-of-n bootstrap for Sinkhorn null limit

We consider estimating the Sinkhorn null limit distribution in Theorem 2 by the
two-sample m-out-of-n bootstrap. Let u = (u', u?) € P(X)x P(X) be arbitrary.
For each i = 1,2, let X{,..., X}, be iid. data from p* with fif, = n=" 37 dx:.

Consider the pooled empirical distribution p, = (2n)~! 2?21(5)(]1 + dx2), and

let ZE,...,Z8 be an independent sample from p,,, where m = m,, — 0o. Set
1 m 1 2m
~1,B __ 42, B _
Pmn = m Z(SZ;B and Pmn = m Z 6Zf'
j=1 j=m+1

The following proposition shows that the m-out-of-n bootstrap can consistently
estimate the null limit law in Theorem 2 when u! = ;2 = p. Recall that BL; (R)
denotes the collection of 1-Lipschitz functions g : R — [—1,1].
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Proposition 4. Consider the above setting and set p = (u* + p?)/2. Assume
m = o(n). Then, we have

sup B2 [g(mSe (015, #25))] ~ Elgx,)] | = 0 (28)
g€BL1 (R)

in probability, where BB denotes the conditional expectation given the sample
and x, follows the limit law in Theorem 2 with p replaced by p.

Remark 15. Since BL;(R) is compact w.r.t. the topology of locally uniform
convergence by the Ascoli-Arzela theorem, the left-hand side of (28) reduces to
the supremum over a countable subcollection of BL;(R) and hence is a proper
random variable.

Proof. Fix s > d/2. Set G35, = \/m(p;5, — pn) for i = 1,2. Given the sample,
(G},ﬁl, G%,ﬁl) has only finitely many possible values, so induces the conditional
distribution defined on the Borel o-field on £°°(B*) x ¢>°(B?). Then, since B*
is uniformly bounded and Donsker for u! and p?, arguing as in the proof of
Theorem 3.7.1 in [91], we have

(GLE,GHE) 4 (G4, GE) in £2(B*) x £2(B°)

m,n?

given almost every sequence Xi,X3,...,X? X2, ..., where G} and G} are
independent tight p-Brownian bridges in £°°(B%). Furthermore, E[||\/m(p, —
P)lloo,B:] = O(y/m/n) = o(1) by Theorem 2.14.1 in [91] and the assump-
tion that m = o(n), so ||[vm(pn — p)|lcc,p= — 0 in probability by Markov’s
inequality. Pick any subsequence n’ of n and choose a further subsequence
n” for which ||[v'm”(ppr — p)|leo.zs — 0 a.s. with m” = m,». Now, since

VIE, ~ p) = Gi, & (), we have
(VAP Dl =) NP0 =) S (GR.G8) i £2(BY) < (BY) (29)

given almost every sequence X; 1,X3,..., X% X3,... Then, by the second-order
Hadamard differentiability of S . (Theorem 5) and the second-order functional
delta method (Lemma 13) ¢, we have

& (B 2B a1 d
mHSCvE(pm”,n” ’ pm”,n”) — iAP (G§)7 GFQ)) = XP
given almost every sequence Xi, XJ,..., X%, X2 ... Since the limit is indepen-
dent of the choice of subsequence n’, we obtain the result. O

A.1. Numerical experiments

We present numerical experiments to assess the scaling for the Sinkhorn null
limit in Theorem 2 as well as the finite sample performance of the two-sample
m-out-of-n bootstrap procedure.

6We have chosen a suitable subsequence for which the weak convergence (29) holds for
almost every sequence X{,X3,..., X2 X2 .... Therefore, for every fixed such sequence, we
may apply the second-order functional delta method.
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n = 2500 m = 250 m = 500

10.0 1.0 1.0
b & 0.8 0.8
(.0 —_ —
= £ 0.6 & 06 7
g 50 VI Vi
% - 0.4 < 0.4 -
e v w
25 B 0.2 4 B 02
0.0 0.0 T 0.0 :
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g - 0.4 - 0.4 -
B “ “
%5 B 0.2 B 0.2
0.0 0.0 : 0.0 -

0.0 0.5 0.0 0.5 1.0 0.0 0.5 1.0

Fic 1. The top row consists (from left to right) of a histogram of S, = nS... (b, i2)
for n = 2500, and P-P plots of S, generated using the methodology described in Ap-
pendiz A.1 with m = 0.1n and m = 0.2n respectively along with a red 45° reference
line. The bottom row compiles analogous plots for n = 5000. See Appendix A.2 for
additional implementation details.

Throughout, the cost function c¢ is the squared Euclidean distance, ¢ = 1,
and p! = p? is taken to be the uniform distribution on (0,1/2)2. Figure 1 con-
sists of two experiments. The first (top row) involves plotting a histogram of
S, = nSec(fih, i2) for n = 2500 based on 1500 repetitions along with cor-
responding P-P plots for én As the limit distribution x, in Theorem 2 is
not defined explicitly, we compute the coverage probabilities, IP’(Sn < Tp.a) for
a € (0,1), where 7, o is the a-quantile of the subsampled distribution. Precisely,

for each of the 1500 repetitions, we construct the subsampled distribution func-

tion Fﬁn of mgcﬁ(ﬁ},’li,ﬁfﬁi) for m = 0.1n and m = 0.2n based on 1000

repetitions; for each such repetition, we compute the rank of §n w.r.t. ﬁ}]jn
(i-e., an(én)), and then approximate P(S,, < #,.,) by the number of ranks
with value less than «. The second experiment (bottom row) is performed sim-
ilarly, but with n = 5000 rather than 2500 to see how these results vary with
increasing n.

From these experiments, one can see that the empirical distribution of S, is
observed to be reasonably stable in the finite sample regime, which is consistent
with Theorem 2, and the coverage probabilities ]P’(gn < 7p,a) are close to the
45° line uniformly over a € (0, 1), so the m-out-of-n bootstrap aproximates well
the sampling distribution of S,.
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A.2. Implementation details and theoretical guarantees

To compute the relevant EOT quantities, we use the standard implementation
of Sinkhorn’s algorithm from the Python Optimal Transport package [40] (see
also Algorithm 3 in [84]). To estimate the EOT plan II* € RV*YN between
measures p!, u? supported on N points (25N, (#29)N | < X with weights
wh = (pt(xbY), . pt @), w? = (pP(2*Y),. .., p?(2>")), Sinkhorn’s algo-
rithm leverages the representation (5) to iteratively construct matrices II*¥ €
RN*N gatisfying TI* 1y = w!, where 1 € R is the vector of 1’s. Convergence
of this implementation of Sinkhorn’s algorithm to IT* follows from the note on
p. 731 in [42] with only minor modifications. Two stopping conditions are imple-
mented in this version of Sinkhorn’s algorithm. The first limits the total number
of iterations to 1000, while the second sets a desired threshold on the violation
of the marginal constraint ||(TT*)T1y — w?|| < 1le™°.

Given the linear scaling from Theorem 2, to obtain statistically meaningful
simulation results we must compute S, = nSec(fih, i2), for a fixed € > 0, to
within op(n~!) precision. To the best of our knowledge, past works concerning
computational complexity of Sinkhorn’s algorithm do not provide guarantees
for this setting. Rather, they focus on approximating the unregularized OT cost
within a desired precision (cf., e.g., [4, Theorem 1] and [36, Theorem 2]), which
requires scaling € \, 0 and treating the entropy term as a type of bias.

To bridge this gap, we analyze the total number of Sinkhorn iterations re-
quired to achieve accuracy op(n~!) when computing S,, with fixed & > 0. Corol-
lary 2 ahead states that op (log (nlog(n))) iterations are sufficient, and we recall
that each iteration requires O(n?) arithmetic operations [27]. As this setting has
not been treated before, we believe that this result may be of independent in-
terest.

To arrive at the iteration complexity bound, we start by setting some nota-
tion. For positive vectors a,b € R", define

aibj \ _ ai . a;
dH(a, b) B 10g <1é1112§n biaj> B 1I£ia§anog <b_z> B 1ISnil£n log (b_z>’

and, fixing K € R™*"™ with positive entries, let

Ex = {A e R"": A = diag(u) Kdiag(v), A;; > 0}.
Define a metric d on Fg X Ex via
d(A,B) =dg(z,1,) +du(y, 1,), for x,y satisfying A = diag(x)Bdiag(y).
For a positive matrix K € R™*", let

K. Kj

MK - n(K) -1

=4t ——=— <1, n(K):= max .
Vn(K)+1 1siisn K, Ky
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In the sequel we let C' € R™*" be the matrix of pairwise costs C;; = ¢ (2%, 22)
and K € R"" be given by K;; = e~Cii/ fori,j € {1,...,n}.

Proposition 5. Fiz ¢ > 0, § > 0, and assume that fil, 02 are supported on
( L, Z)l 12 (1‘2’1)?:1 respectively. Then, Sinkhorn’s algorithm produces a matriz

II € R™™ that achieves a cost of S..(fih,i2) for the discrete EOT primal
functional (3) satisfying

[Se.e (fns i) = Se.e (s i) | < (6llclloc, 20 + 2€log(n)) (€ — 1) + &0

in O(log(1/8)) iterations. This cost estimate is also satisfied by II = I1* when
the termination condition ||(TI*)T1, — 1,/n| < %6(1_>‘(K))+2_ V252(1_)‘(K))2+4

is met, which requires O (% log n) iterations.

Proof. Tt follows from equation (28) in [84] and the surrounding discussion that
the iterates IT* of Sinkhorn’s algorithm achieve d(IT*, II¥) < § in at most

dp ()71, Le >>

M g (&) ) ( 51— N(K))

iterations, recalling that A(K) < 1. Further, the 2-norm termination condition
is met in at most

4n O R TeTy
1+6(1—)\(K))+2—\/62(1—>\(K))2+41g( )

iterations; the value for the termination condition is set as to guarantee that if
IT satisfies this termination condition, then d(IT*, II) < § (see Proposition 31 in
[84]). Observing that A(K) is independent of n, we proceed with showing that
dH((Hl)T 1,, ]l;) is independent of n, such that the claimed dependencies on §
and n hold.

As II' = diag(u')Kdiag(v'), for v! = 11, /(K(1,/(KT1,))) and v' =
1,/(KT1,), where division is understood componentwise (cf. e.g. Algorithm 3
in [84]), we have

i (172,22 ) = o ogn(IT)71,):) = i, Tog(n((IT)71,))

1<i<n

= max log(((TI')T1,);) — min log(((II")T1y);),

1<i<n 1<i<n

and we note that

nmanﬂg (KT1,) ZK §nmaxKﬂ,
1,5=1

nmln Kl] <(K1,) ZK” < nmaxKU,
i,j= = i,5=
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SO

2
L K)o (e, < L 00ihoms K)
" (max};_y Kij) " (minf;_; Kij)
such that
min K 1 max’’ K;;
21 Y et R M R T, —2 ) <21 # _
o8 (max” (Kii | i | (I0) L, n )= min;_; K

Conclude that dy ((IT')T1,, 22) can be bounded independently of n.
We now lift the bound d(IT*, IT) < § to a bound on ‘5075(/21” (12)=Sec (k. p2)
where S..(fi},/i2) is the discrete EOT primal functional (3) evaluated at IT

(note that IT is not necessarily a coupling, but is positive with entries summing
to 1). By Lemma 3.9 in [42], it holds that, for any 7,5 € {1,...,n},

)

*
—5_1§ ~Z]
ij

—1<e’ —1, so [I}; — IL;;| < TI(e’ — 1). (30)

It follows that ||H* - ﬁ”1 < ZZ]‘:1 IT;; (e’ ') = €', where the 1-norm is
taken over all entries. From (30), we also obtain —¢ < log(TI};) — log(T1;;) < 4,

and so
H log(IT*) — log ( H

where the co-norm is taken over entries. Now, note that
IS, 8(.“;’!]31) Sc,a(ﬂ}mﬂi”
= * s ] 277 (31)
Z Ci;(I1}; — IL;;) + ¢ Z log ) —1II,; log (n Hij)) )
,j=1 5,j=1

We control each term as follows,

Y Gy — )| < |Cllee T —TI[l1 < [Clloo(e” = 1), (32)

i,j=1

where the first inequality is due to Holder’s inequality. Similarly,

3 (01 o (113 T o (11,)
| (0T o (1) — 11 b () + L o (1T) — T, o (11, )) | (39
< [T T, o (11 o -+ [ 050 — o (1)

< (¢’ = 1) log (IT*) [loc + 6.
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It suffices, therefore, to bound | log (IT*) ||oo. From (5), we have, for i,j €
{1,...’771},
() rea() el o)
n21"[fj e o )

such that log(IT};) = e™! (1 (2% + @2 (z*7) — ¢ (21, 2%7)) — 21og(n). Con-
sequently, || log(IT*)||oc < 5e7 Y| c[loo,xxx + 2log(n), choosing a version of the
EOT potentials (¢1, ¢2) satisfying (6) with [|¢1|leo,x V [|€2]lco,.x < 2||¢|loo,xxx
(see Lemma 2.1 in [74]). Combining (31)-(33) with this bound proves the claimed
result,

Sc.e (fims fi2) = Sece (i 1) | < (6]|c)loo,x 2 + 2e1og(n)) (e — 1) + €4

O

The iteration complexity required to achieve the desired precision of op(n=1)
for approximating S, . (ﬂ}l, ﬂ%) is provided next.

Corollary 2. In the setting of Proposition 5, Sinkhorn’s algorithm produces an

approzimation Se.o(jit,, i3) of Se.e(fihs %) with [Se.e(fin, A7) — Se.e(i, i3)] =
op(n~') in op (log (nlog(n))) iterations. The op(n™") cost approzimation also
holds when using IT = TI¥ | which satisfies the termination condition ||(TT¥)T1,,—

1,/n| =op (#g(n)), which, in turn, requires op (n?(logn)?) iterations.

Proof. The result follows from Proposition 5 by setting §(n) = op (#g(n)), as

™ — 1 =5(n) + O0((5(n))?) as n — oo,

such that
(6]|cloo,0x 2 + 2e1og(n)) (e‘s(") - 1) +ed(n) = op(n™1),
Whereby ‘5075 (ﬂ}wﬂ%) - 5075 (/:Lvlw ﬂ%)| = OP(n_l)' o
In light of (8), the implications of Corollary 2 also hold for the Sinkhorn

divergence by approximating S. (i, i2),S. (i, ik), and S, (42, [2) using

Sinkhorn’s algorithm. In our experiments, n = 5000 and the termination condi-
tion ||(TT¥)T1,, — 1,,/n| < 1le™® is always met prior to the completion of 1000
iterations. As 50002 Tog(5000) " 4.7¢79, the chosen threshold, 1e™?, is of a reason-
able magnitude.

Appendix B: Auxiliary proofs
B.1. Proof of Lemma 1

The results are standard (except possibly (iii)), but we include the proof for
completeness.
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(i). The argument is similar to Proposition 6 in [65]. Pick any pair of EOT
potentials (%, ¢3). Update (4%, ¢3) as

S(xzg)—c(z1,x2)
w1(x1) :falog/eq)2 =t duz(xg), r1 € X,
(@1)—c(e.29)
palan) = —elog [ Qi) mp e

The functions (p1,¢2) are well-defined pointwise by Jensen’s inequality. By
TLintizatgl e gl dut(z)) — 1 = 0 for all 23 € X. Also, by

construction, [e
Jensen’s inequality,

/(901 — ) du' + /(@2 — ¢5) du®
= fs/logewl:&l dut fzs/logewz?2 dp?
> —slog/e%?l dpt —610g/e%?’2 dp?

= —fslog/eyﬁ@:rcd(,u1 ® u?) — EIOg/em@?_cd(u1 ® u?)

=0,

so that (1, p2) is a pair of EOT potentials and the inequality above is an equal-
»S— ©3—p2

ity. In particular, [loge A = log [e = du?, and by strict concavity

of the logarithm, we have e = 1, i.e., 95 = @2 p?-a.e. Thus,

e1(z1)+ea(zh)—c(ey,zh) e1(@1)+¢S (xh)—c(xy,h)
/e : a(ah) = [ o : A () = 1

for all 1 € X. The other claims are straightforward.
(ii). This follows from the expressions

b (wg)—c(z1,22)

o (z1) = —Elog/e : dp*(z2), @1 € X,

o (z1)—c(zy,20)

b (z2) = —elog/e : dpt(z1), z2 € X.

First, by Lemma 2.1 in [74], there exists a version of EOT potentials (1, ¢2)
satisfying (6) with [|¢1lco,x V [[92]lce,x < 2|¢|loo,xxa- By uniqueness, ¢} =
p1 — 3(p1(29) — p2(23)) and @§ = @o + 3(p1(2]) — p2(23)), 50 [l¥} [lec,x V
|05 | co. 20 < 3ll¢|loo,xxx- Derivatives of ¢f" and ¢4 can be evaluated by inter-
changing differentiation and integration, which is guaranteed under the current
assumption. See [44, 65] for similar arguments.

(iii). For notational convenience, let ¢, = @*» and ¢ = p*. By Part (ii),
the Ascoli-Arzela theorem, and the diagonal argument, for every subsequence
n', there exists a further subsequence n” along which the derivatives D¥g,, ;
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converge in C(X) for all i = 1,2 and k € N¢ with |k| < s, which implies
that @,~; is Cauchy in C*(X) for i = 1,2. By completeness of Cs( ), we have
Ynri — @i in C5(X) for ¢ = 1,2. By assumption, p;, converges weakly to u’,
which implies that sup gy, (x) |ffd (pi — uh)| — 0, where BLy(X) is the class
of 1-Lipschitz functions f : X — [—1,1] (cf. Chapter 1.12 in [91]). Again, by
Part (ii), we see that

Pn,1(z1)+en,2(z2)—clzy,z2)
e

sup sup HV% H < 00.

neEN (z1,22)EX XX

Hence, for each fixed x; € X,

Ppt (@) e, g (@2)—c(zy,22) 9
e : dptr (2)
Ppt (@) e g (@2)—e(zy,22) 9
yp : a2 (3) + o(1)

p1(z1)+ @2 (@) —c(zy,22)
:/em 1)+o2 E2 1.2 du2($2)+0(1),

where the second equality follows as ||@n; — @illco,x — 0. Since the left-hand

P1®p2—c
€

side is = 1, we conclude that [e du? = 1. By symmetry, we also have

fe%@frc du' = 1. By construction, ¢1(z9) = @2(23), so that ¢ = ¢, i.e.,
@nr — @ in C5(X) x C*(X). Since the limit does not depend on the choice of
subsequence, we have ¢, — ¢ in C*(X) x C*(X). O

B.2. Proof of Lemma 6

The proof relies on the results from [17]. We will use the following observation
throughout the proof: for any continuous functions f,g on S; = spt(u?), if
f = g p-ae., then f = g. Indeed, for every A C S; with p’-measure 1, its
closure A agrees with S;, since otherwise S; \ A is a nonempty open set in Si,
so p'(S; \ A) > 0, which contradicts the assumption that A has p’-measure 1.
Also, for any continuous function f on S;, we have || f|| 1o (ui) = || flloo,s:-

(i). Consider the map T : L>(u') x L>®(u?) — L (u') x L*°(u?) defined by

7-(90) _ </€<P169<P2 c d,u / @1@:2*c d/j,1> ‘

By Theorem 4.3 in [17], T is injective in the sense that, if 7 () = T (@) (ut®@p?)-
a.e., then there exists a constant a € R such that (¢1,P2) = (p1 + a, 92 — a)
(u* @ p?)-ae. If o, @ € ©F, then (P1,P2) = (1 + a,p2 —a) on S, but because
of the normalization 1 (z3) = p2(x9) and @1 (x9) = P2(3), we have a = 0, i.e.,
@ = . This shows injectivity of ¥,,.

To show that the inverse of W,, is continuous at 0, it suffices to show that

#n € 0%, [Wpulpn)llp = 0= [lon — ¢|sllp = 0.
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Recall ¥, (¢*|s) =0 on S. Observe that the map ¥, makes sense on D and is
continuous from D into D. Since ¢,, € ©%, by the Ascoli-Arzela theorem, for any
subsequence n’, there exists a further subsequence n’ along which ¢,,» — @ in
D for some ¢ € D. Since ¥, is continuous from D into D, we have ¥, (¢) = 0.
By construction, ¢ (25) = @2(x3), so by Lemma 1 (i), we have ¢ = ¢*|g. Since
the limit ¢*|g is independent of the choice of subsequence, we have ¢,, — @*|g

in D.
(ii). The first claim is straightforward. To show the second claim, it suffices
to show that .
netin(er} o= | #PID >0

Consider the map Ty, : L= (u') x L= (u?) — L®(u') x L®(p?) defined by

- _ —1 ool—c 2 1 Ploek—c 1
n(h) =\e€ e E (h1 D h2) d,u ,E e B (h1 D hg) d,u .

Equip L>®(p') x L*°(p?) with a product norm ||h||pe(u) = [|h1 gy V
|h2|| Lo (u2)- By Proposition 3.1 in [17],

[T (R)|| Lo () > 0.

inf
IRl =1,[ hy dp'=0

Lo° ()
For h € lin(©°), define h = (hy— [ hy dpt, ho+ [ hy dpt). Then || T, ()| o (u) =
||77L(h)||Loo(pl) = || ¥, (h)|p- Tt remains to show that

inf Al > 0.
h€lin(©3),||h|p=1

Suppose on the contrary that infpeiinos),|h|p=1 |h||p = 0. Then, there exists a
sequence h,, € lin(©%) with ||k, ||p = 1 such that ||k, ||p — 0. Since [ h, 1 du' is
bounded, there exists a subsequence along which [ hy, 1 du' — a for some a € R.
Along the subsequence, ||k, —(a, —a)|lp — 0. However, since hy, 1(25) = hn 2(23)
by construction, we must have a = 0, i.e., |h,||p — 0, which contradicts the
assumption that ||h,||p = 1. O

Appendix C: Technical tools
C.1. Hadamard differentiability and functional delta method

In this appendix, we review concepts of Hadamard differentiability and the
functional delta methods. Our exposition mostly follows [85]. Other standard
references are [91, 90].

Let ®, & be normed spaces and ¢ : © C © — €& be a map. We say that
¢ is Hadamard directionally differentiable at 8 € © if there exists a map ¢y :

To(0) — € such that
66— o(0)

10 (34)
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for any sequence (0;)s~o C © with t=1(6; — 0) — h as t | 0, where Tg () is the
tangent (or adjacent) cone to © at 6,

6, — 6
‘39(9){h€®:hlti§)1 tt forsome@tﬁﬂine),tiO}.

The derivative ¢ is continuous (cf. Proposition 3.1 in [89]) and positively ho-
mogeneous (but need not be linear). Furthermore, the tangent cone Tg(0) is
closed, and: (i) if © is open, then Tg(f) agrees with ©; and (ii) if © is convex,
then Tg(0) agrees with {t(J —60) : ¥ € ©,¢ > 0}9 (cf. Chapter 4 in [5]).”

If (34) only holds for h € D for a subset D¢ C To(#), then we say that ¢ is
Hadamard directionally differentiable at 6 € © tangentially to ®g. In that case,
the derivative ¢, is defined only on ®. Finally, if the derivative ¢ is linear,
then we say that ¢ is Hadamard differentiable at 6 (tangentially to D if ¢j
is defined only on Dg). The tangent set Dy need not be a vector subspace of
9, so by linearity, we mean that, for any ay,...,a; € R and hy,...,h; € Dy,
whenever ijl ajhj =0, it holds that Z;-Izl @y, (hj) = 0, which is equivalent
to ¢,90 admitting a linear extension to the linear hull of ®y by Lemma 2.5.3 in
[35].

Lemma 11 (Functional delta method; [85]). Let ©, € be normed spaces and
¢ : 0O C D — € be a map that is Hadamard directionally differentiable at
0 € O tangentially to a set Dy C To(0). Let T, : @ — O be maps such that

T (Th — 0) a4 for some r, — oo and Borel measurable map T : Q@ — D
with values in a separable subset of Dg. Then the following hold: (i) ry (¢(Ty) —

gb(&)) 4 ¢p(T); (i) If in addition © is convex and D¢ = Te(8), thenry, ((b(Tn)f
#(0)) — ¢y(rn(T, — 6)) — 0 in outer probability.

Remark 16. Our definition of Hadamard differentiability is slightly different
from [91, 90], in that those references do not require the tangent set Dg to be a
subset of Tg(f). Our modification is made to be consistent with the definition
of Hadamard directional differentability in [85]. However, this modification is
innocuous since, for any sequence (0;);~0 C © with h := limjot~1(6; — 0) (if
exists), we must have h € Tg(0).

The proof of Theorem 2 relies on the second-order functional delta method,
which we describe next. We say that a map ¢ : © C ® — € (with © being
convex) is second-order Hadamard directionally differentiable at 6 € © if it is
(first-order) Hadamard directionally differentiable at 6 and there exists a map

v : To(d) — € such that

ltlfg Qj)(at) — (25]5(29/)2_ t¢/9 (ht) — Iel(h)

"Indeed, [85] defines the Hadamard derivative on the (Bouligand) contingent cone, which is
in general slightly bigger than the adjacent cone. For our purpose, this difference is immaterial.
Note that both concepts agree when © is convex.
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for any sequence (0;)s~o C © with hy :=t=1(0; — ) — h as t | 0 (note: as © is
convex, hy € To(0), so that ¢j(h;) is well-defined). The map ¢} is continuous
and positively homogeneous of degree 2.

Lemma 12 (Second-order chain rule). Let ®, & § be normed spaces, © C D,
2 C € be conver, ¢ : © — = be a map that is twice Hadamard directionally
differentiable at 0 € O, and i : E — § be twice Hadamard directionally differ-
entiable at ¢(0) with linear first-order derivative at ¢(0) defined on the linear
hull of T=(¢(0)). Then, the composition ¥ o ¢ : © — §F is twice Hadamard
directionally differentiable at 0 with

[1 0 By = iy p) © Do + Viy(ey © Bo-

Proof. Let (6;);>0 C © be such that h; :=t"1(,—0) — hin D ast | 0. Observe
that (¢(6)),-0 C Z with t7(¢(6) — ¢(0)) — ¢p(h) as t 0, so that

2
D(D(0:) — Y($(0)) = tibye) (™ (0(6:) — 6(0))) + %w;’w)(aﬁ’e(h)) +o(t?).
By linearity of 1/}%(0)7
0yt (9(0:) — 0(8))) — 1) (D (he)) = Vi) (B(8:) — B(6) — td(Pe))-
It follows from continuity and positive homogeneity of 1/1;(9) that

(0(0)) — $(6(60) — 0 (65 (A)
tlfg t2/2

= Y50 ($6(R)) + Vi) (85 (h))-

O

Lemma 13 (Second-order functional delta method; [85]). Let ©, & be normed
spaces, ©® C ® be convex, and ¢ : © — & be a map that is second-order
Hadamard directionally differentiable at 6 € ©. Let T,, :  — © be maps such

that (T, — 0) 4T for some r, — oo and Borel measurable map T : Q) — ®
with values in a separable subset of Te(6). Then, r2(d(T)—d(0)—dy(T,—0)) 4
305(T) and r2 (¢(T,) —4(0) — o (T, —0) — 2 ¢y (T,,—6)) — 0 in outer probability.

C.2. Hadamard differentiability of Z-functional

Let D be a Banach space, © be an arbitrary nonempty subset of D, and L be
another Banach space. Let Z(©,1L) be the subset of £>°(0©,1L) consisting of all
maps with at least one zero, and let ¢ : Z(©,L) — © be a map that assigns one
of its zeros of to each z € Z(©,L). Following [91], we call ¢ the Z-functional.
We say that a map ¥ : © C D — L is Fréchet differentiable at 6y € © if there
exists a bounded linear operator \ifgo :1lin(©) — L such that

lim W (0o + h) = U(0o) — Uy, (M)

|[hlo—0 1A]lp
Op+he®

=0.
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The following is taken from Lemma 3.9.34 in [91], with a minor modification to
adapt to our definition of Hadamard differentiability; cf. Remark 16.

Lemma 14 (Hadamard derivative of Z-functional). Suppose that (i) ¥ : © — L
is uniformly norm-bounded, one-to-one, possesses a zero at 8y € ©, and has an
inverse that is continuous at 0, and (i) U is Fréchet differentiable at 6y € ©
with derivative Wy, that is one-to-one and such that its inverse is continuous on
W, (in(©)). Then, ¢ is Hadamard differentiable at U tangentially to the set
ze— U

Zy :{z € r®(O,L): z = lim =
t10

for some zz = VU in Z(O,L), t] O}
ﬂ {z € (*°(O,L) : z is continuous at 90}.

The derivative is given by ¢4, (z) = —\i/;ol(z(@o)),

Remark 17. It is a priori not clear whether z(6p) is in the domain of \il(;ul,
but this follows from the proof of Lemma 3.9.34 in [91]. Indeed, let (2¢)i>0 C
£>*(©,L) be such that ¥ +tz; € Z(0,L) for ¢ sufficiently small, z; — z as ¢ | 0,
and z is continuous at 6. Set 0; = ¢(¥ +t2;). Arguing as in the proof of Lemma
3.9.34 in [91], we have W (0;) = Wy, (0, —0p) + R(t) with || R(t)[|L = o(t) as t — 0,
so that t~1{U(6;) — R(t)} = Vg, (t71 (0, — b)) € Wy, (lin(©)) while t~1{¥(4;) —

.—IL

R(t)} = —2(0;) —t *R(t) — —2(0) in L. Hence z() € ¥y, (lin(O)) .
The following lemma concerns the second-order Hadamard derivative for the

Z-functional, which is used in the proof of Theorem 4.

Lemma 15 (Second-order Hadamard derivative of Z-functional). Consider the
assumption of the preceding lemma. Assume further that W is twice Fréchet
differentiable at 6y, in the sense that there exists a continuous operator Wy, :

——D
lin(©) — L positively homogeneous of degree 2 such that

f (0 b) = W) — by, () ~ S0, (B

hlp—0 h||?
it e

=0.

Let (z¢)t=0 € £°(O,1L) be a sequence of maps such that (i) U + tz; € Z(O,1L)

for t sufficiently small, (i) zz — z as t | 0 for some z that is continuous at 6y,
- L

(7i7) z(00) € Yo, (lin(O)) for t sufficiently small, and (iv) there exists a limit

t71(24(0y) — 2¢(600)) — 29, in L ast | 0 with 6; = ¢(V + tz;). Then, we have

ST + tz,) _t?%q/) — ey (z) — Wt (220, + Vo, (04(2))) -

The above definition of second Fréchet derivative differs from the standard
one (cf. [95]), but suffices for our purpose.

Proof. Recall 0; = ¢(V + tz), i.e., U(0;) + tz:(0;) = 0. Arguing as in the proof
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of Lemma 3.9.34 in [91], we have [|0; — p|| = O(t). Thus,

\I}(gt> — \11(00) = \:[100 (Qt — 00) + §\Ij00(0t — 00) + O(t2).
—— \T
—tz¢(01) =l

Subtracting —tz;(6g) from both sides, we have
~t(z0(00) — 4(680)) = Wi, (60 — B — 1% (20) + 5, (61 — ) + o(?).
Since t~(0; — 6y) — ¢y (2) by the preceding lemma, we have
W, (6: — 00) = t*Wg, (¢5(2)) + 0(t?).
Also, by assumption,
—t(20(0;) — z(00)) = —t 29, + o(t*).

Conclude that

0¢ — 0o — t¢(p(zt)
t2/2

— —\i}e_ol (22:’00 + \.1.190 (¢&/(Z))) . H

Appendix D: Other auxiliary results

Lemma 16 (Convergence in ¢>°(B*) implies weak convergence). Let X C R?
be a compact set that agrees with the closure of its interior. Pick any s € N and
set B® to be the unit ball in C*(X). For pin,u € P(X), if pn — p in £°(B%),
then p, — p weakly.

Proof. Pick any bounded 1-Lipschitz function f on X. By the Kirszbraun-
McShane theorem, we may extend f to a 1-Lipschitz function on R?, which
we denote by the same symbol f. Let K : R — R be a compactly supported
smooth density function and approximate f by f; =t~ [, f(y)K((y—)/t)dy =
Jgpa f(- +t2)K(z)dz for t > 0. As f is 1-Lipschitz, f; is smooth and 1-Lipshitz
with || f — ft|lo,ra < t. The restriction of f; to X belongs to C*(X), so that for
any t > 0,

[ st < [ fidmres [ pausoro, no .
X X X

The reverse inequality follows similarly, so that we have limsup,, . | | 2 fd(pn—
p)] < 2t. Sending t | 0, we have [, fdu, — [, fdu, implying p, — p
weakly. O

Lemma 17 (Support of Brownian bridge). Let v be a probability measure on a
measurable space S and F C L*(u) be a p-pre-Gaussian class, i.e., there exists
a tight p-Brownian bridge G, in (>°(F). Let

m, = {g du : g is a bounded measurable function on S with pu-mean zero}.

Then spt(G,) C Dﬁ_fw(}-),
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Proof. Let C,(F) denote the space of uniformly continuous functions on F rel-
ative to the pseudometric d,,( = /Var,(f — g). Since F is p-pre-Gaussian,
F is totally bounded for d, (so that Cu(F) is a closed subspace of £>°(F)) and
G, € Cy(F) as. (cf. Example 1.5.10 in [91]). For every f € F and g1, g2 € L?(p)

with pu-mean zero,

/f(gl —g2)dp = /(f — [ fdu)(g1 — g2) du < \/Var,(f)d,(g1 — g2)

by the Cauchy-Schwarz inequality. Since sup ;¢ }- Var,(f) < oo by total bound-

edness of F w.r.t. d,, we have that gdu € 93? ~)

mean zero.

By Lemma 5.1 in [92], the support spt(G,,) agrees with the || - ||, 7-closure
of the reproducing kernel Hilbert space (RKHS) for G, (think of G, as a zero-
mean Gaussian random variable in C,(F), which is a separable Banach space).
There are two ways to define the RKHS for G,; by viewing G, as a stochastic
process or as a random variable with values in the Banach space C,(F). In this
case, however, they both agree; see Theorem 2.1 in [92]. With this in mind, any
element of the RKHS for G, is of the form

for every g € L?(u) with

- L?(P)
= E[G.(f)X], X €lin{G,(9) : g € F}
For X =>7 | 2;G,(g;) with ; € R and g; € F, we have

= > G ()Ga()] = 3 asCovi(f,0)

_ /f(iai(gi — [ gi du)) dp,

2
so that E[G,()X] € sm e . Further, for any X € lin{G,(g): g € ]—'}L (P),
choose X,, € lin{G,(g) : g € .F} such that E[|X,, — X|?] — 0. Then,

[E[GL()Xn] = ElGL() X][loo, 7 < JsclelgVaru(f)\/]E[an —XP]=0

— (> (F

which shows that E[G,(-)X] € M, . Conclude that spt(G,) C W/w(}-)

O

Lemma 18 (Weak convergence in product space). Let S,T be nonempty sets
and let X, = (Xn(8))ses, Yn = (Ya(t))ter be sequences of stochastic processes
with bounded paths. Suppose that, marginally, X, and Y, converge in distri-
bution to tight random wvariables in £>°(S) and €>°(T), respectively. Then, if
the finite-dimensional distributions of (X,,,Y,) converge weakly, i.e., for every
S1y-ey8m € Sit1,..te € T, (Xn(51),--o s Xn(8m), Yu(t1), ..., Yau(te)) jointly
converges in distribution (in R™*¢), then (X,,Y,) 4 (X,Y) in £°(S) x £>(T)
for some tight limit (X,Y).
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Proof. The lemma follows from Prohorov’s theorem, upon observing that a tight
limit is uniquely determined by the finite-dimensional convergence. One way to
show the latter is to apply Lemma 1.3.12 in [91]. We present another more direct
proof. Let (X,Y) : Q@ — €°°(S) x £>°(T) be a tight (Borel measurable) random
variable. Then, X is tight in ¢°°(S), so there exists a pseudometric ps on S
that makes S totally bounded and such that X € C,(S) a.s., where C,(S) is the
space of pg-uniformly continuous functions on S equipped with the sup-norm
Il - l|so.s; see Chapter 1.5 in [91]. Consider the Borel o-field on C,(S). Define
C.(T') analogously. Since C,(S) and C,(T) are separable, the Borel o-field on
Cu(S) x Cy(T) (defined w.r.t. the product topology) agrees with the product o-
field. In turn, the Borel o-field on C, (.5) agrees with the cylinder o-field (i.e., the
smallest o-field that makes every coordinate projection f +— f(s) measurable).

For s1,...,8, € 5, let 7rfh__.7sm : Cy(S) — R™ be the projection onto si, . .., Sm,
ie., wfhn_?sm(f) = (f(s1),---, f(sm)). Define 7{, _, analogously. Then, the
collection of sets of the form

(7o) H(A) X [ ] 7H(B) € CulS) X Cu(T),

sieS,t;jeT, ACR™,BC R’ : Borel sets

is a m-system that generates the Borel o-field on C,(S) x C,(T). Hence, the
joint law of (X,Y) is uniquely determined by the collection of the joint laws of
random vectors of the form (X (s1),..., X (sm), Y (t1),..., Y (t)).

The rest of the proof is standard. Since X,, and Y, are marginally asymp-
totically tight and asymptotically measurable (Lemma 1.3.8 in [91]), (X,,Ys)
is jointly asymptotically tight and asymptotically measurable (Lemmas 1.4.3
and 1.4.4 in [91]). By Prohorov’s theorem (Theorem 1.3.9 in [91]), every subse-
quence has a further subsequence weakly convergent to a tight law. By finite-

dimensional convergence, the weak limit is unique. Hence (X,,,Y,,) 4 (X,Y) in
£°(S) x £>°(T) for some tight limit (X,Y). O
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