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Abstract

f-divergences, which quantify discrepancy between probability distributions, are ubiquitous in information theory,
machine learning, and statistics. While there are numerous methods for estimating f-divergences from data, a limit
distribution theory, which quantifies fluctuations of the estimation error, is largely obscure. As limit theorems are
pivotal for valid statistical inference, to close this gap, we develop a general methodology for deriving distributional
limits for f-divergences based on the functional delta method and Hadamard directional differentiability. Focusing
on four prominent f-divergences—Kullback-Leibler divergence, x> divergence, squared Hellinger distance, and total
variation distance—we identify sufficient conditions on the population distributions for the existence of distributional
limits and characterize the limiting variables. These results are used to derive one- and two-sample limit theorems
for Gaussian-smoothed f-divergences, both under the null and the alternative. Finally, an application of the limit
distribution theory to auditing differential privacy is proposed and analyzed for significance level and power against

local alternatives.

Index Terms
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I. INTRODUCTION

Statistical inference often boils down to estimation of certain functional of underlying probability measures.
Discrepancy measures between probability distributions, also known as statistical divergences, such as f-divergences
[3], [4], Rényi divergences [5], [6], integral probability metrics [7], [8], Wasserstein distances [9], [10], etc., form
an important class of such functionals. They play a fundamental role in information theory, signal processing,
and statistics, with some arising naturally as operational quantities characterizing the fundamental limits of data
compression, hypothesis testing, and communication [11], [12]. Moreover, statistical divergences are potent tools
for modeling, analysis, and design of machine learning algorithms, encompassing generative modeling [13]-[17],
homogeneity/goodness-of-fit/independence testing [18]-[20], anomaly detection [21], [22], to name a few.

In data-driven applications, one only has samples from the population distributions, which necessitates estimating

f-divergences. While there is an abundance of consistent estimators with known convergence rates (see the literature
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review in Section I-A), a limit distribution theory for the empirical estimation error has remained partial and
premature. For i, v € P(R?) and an f-divergence D¢(-||-), limit theorems seek to identify the scaling rate r,, — 0o

and the limiting variable G, such that the following convergence in distribution holds!

7 (Ds(pn|lv) — Dy (ullv)) % G, (1)

where 1, is an estimate of p from samples. As such, these results characterize the probability laws governing the
random fluctuations of the error and serve as a central constituent for valid statistical inference. Indeed, distributional
limits enable constructing confidence intervals, devising consistent resampling methods, proving guarantees for
applications of hypothesis testing, and more.

To address the aforementioned gap, we develop a unified methodology for deriving limit distributions for f-
divergences under general regularity conditions. Our approach relies on the functional delta method over normed
vector spaces [23], [24] and Hadamard directional differentiability of f-divergence over a certain class of probability
distributions. The Hadamard differentiability analysis captures how the f-divergence functional changes due to
small perturbations of the considered distributions within the said class. However, f-divergence functionals (e.g.,
KL divergence) are generally non-smooth and highly sensitive to support mismatch, which may cause them to
degenerate or even blow up. This irregular behaviour also carries over to their derivatives. It is therefore pivotal to
identify appropriate regularity conditions under which the Hadamard directional derivatives and the corresponding
distributional limits exist and can be characterized. In particular, there is a trade-off between how strict the imposed
regularity is and the class of distributions that the theory accounts for. Consequently, a key technical challenge is to
discern the right normed space in which the densities of the considered distributions should reside, so as to obtain
a limit distribution theory that accounts for the largest possible class of distributions.

Existing approaches for deriving limit distributions for f-divergences are mostly limited to discrete distributions
or compactly supported continuous distributions with smooth densities bounded away from zero, in which case
the f-divergence functional as well as its derivatives become smooth. Our approach disposes of such restrictive
assumptions and extends these results to the general case. We leverage the Taylor expansion of the considered
f-divergences to ascertain minimal primitive regularity conditions on the population distributions that guarantee
the existence of the Hadamard derivative. In particular, we identify a certain L?(1) space, where the measure
7 is defined in terms of the populations (u,v), in which the Hadamard directional derivatives exist and can be
characterized. Having that, the functional delta method enables lifting weak convergence of the estimates of the
underlying distributions to convergence of the f-divergence between them, with the limiting variable identified in
terms of this derivative.

The general framework is instantiated to obtain the one- and two-sample distributional limits, under both the null
(. = v) and the alternative (ix # v), of four popular f-divergences—Kullback-Leibler (KL) divergence, chi-squared
(x?) divergence, squared Hellinger (H?) distance, and total variation (TV) distance. These results hold under the high-

level weak convergence assumptions on the empirical estimates of u, v with a given scaling law r,,. To obtain limit

IThe two-sample problem, i.e., when the first divergence term is D #(tnllvn), is also of interest.



theorems under basic conditions on the population distributions with explicit rates, we consider Gaussian-smoothed
[-divergences, i.e., Dy(p * V||V * 7,) where 7, = N(0,021;), and estimate u,v by the empirical measures
fin =m0 6x, and 7, = n~1 Y " | Sy, respectively. Under this setup, we derive primitive conditions® on
1, v that guarantees weak convergence of the smooth empirical measures i, * Y5, Up, * Yo, utilizing the central limit
theorem (CLT) in L? spaces [25, Proposition 2.1.11]. For KL divergence, x? divergence, and H? distance under
the null, we identify the scaling law as 7, = n and the limiting variable as a weighted sum of independent and
identically distributed (i.i.d.) x? random variables. Under the alternative, we show that 7, = /n and the limit is
a centered Gaussian. The TV distance behaves slightly differently, with 7, = y/n in both cases and the limiting
variables having a certain integral form. By virtue of our Hadamard differentiability analysis, we automatically
obtain consistency of the bootstrap, which yields a computationally tractable resampling method for estimating the
distributional limits.

As an application of our limit distribution theory, we consider auditing e-differential privacy (DP). An audit of a
black-box privacy mechanism seeks to certify whether it satisfies a promised DP guarantee. While existing auditing
methods are heuristic [26], [27] or lack in formal guarantees [28], we propose a principled hypothesis testing pipeline
for DP auditing with a full (asymptotic) analysis of significance level and power against local alternatives. The key
idea is to relax the e-DP constraint® to a KL divergence bound, which is further relaxed to the Gaussian-smoothed
KL divergence via the data-processing inequality [29, Theorem 2.15]. We then test for the smooth KL divergence
value and leverage our limit theorems for the significance and power analysis. We also establish a stability lemma
that bounds the gap due to smoothing, namely |Dkr (1 * Yo ||V * 75) — De (u]|v) |- This enables lifting the audit to
test for the KL divergence value itself, for which we show that any non-zero significance level along with power

1 can be achieved asymptotically.

A. Related Work

Statistical analysis of divergence estimators has been an active area of research in recent years. Convergence
rates for various estimators, which subsumes entropy and mutual information as special cases, have been studied
in [30]-[42] (see also references therein). Literature on limit distributions for f-divergences mainly focused on
analyzing specific estimators on a case-by-case basis. In [43], limit distributions for f-divergences between maximum
likelihood estimates of probability distributions over a certain parametric class is established, with the limit variable
shown to be either normal or x2. The authors of [32] study plugin methods of kernel density estimator and
show asymptotic normality subject to high Holder smoothness and compact support of the densities. The case
when the density estimates are constructed using k-nearest neighbour technique is treated in [44]. One-sample null
distributional limits of Gaussian-smoothed TV distance and x? divergence have been derived in [1] by invoking
the CLT in L'(R?) and L2?(R?), respectively. Limit distributions for plug-in estimators of entropy and mutual

information in the discrete setting have been considered in [45], [46]. Differing from these, the unified methodology

2The primitive conditions shown here are sharp in the one-sample null case, see e.g., Proposition 2(3).

3¢-DP corresponds to an e bound on the infinite order Rényi divergence between the output distribution of the mechanism applied to two
neighboring databases.



developed herein enables obtaining distributional limits of f-divergences based on plugin of arbitrary estimators
under general (oftentimes sufficient and necessary) conditions. In particular, our results subsume those of [1] and
considerably generalize the scope of this preliminary work via markedly different proof techniques.

Apart from the f-divergence class, limit distribution theory for other divergences such as Wasserstein distances has
been extensively studied [47]-[55]. There is also a surge of interest in regularized optimal transport distances driven
by computational and statistical gains, encompassing techniques like smoothing, slicing, and entropic penalization.
Limit theorems under these frameworks for the optimal transport cost, plan, map, and dual potentials can be found

in [17], [53], [56]-[65].

B. Organization

The rest of the paper is organized as follows. Section II collects background material on Hadamard differentiability
and the functional delta method. Section III formalizes the Hadamard differentiability framework for f-divergences.
Section IV obtains limit distributions for f-divergences between random probability measures under general reg-
ularity conditions, with Section V focusing specifically on Gaussian-smoothed divergences. Section VI studies the
application of the limit distribution theory to auditing DP. Proofs are provided in Section VII, while Section VIII

provides concluding remarks and discusses future research directions.

II. BACKGROUND AND PRELIMINARIES
A. Notation

Let (2, A,P) be a sufficiently rich probability space on which all random variables are defined. Let (&, S) be
a separable measurable space equipped with a o-finite measure p. When & is a topological space, we use B(S)
to denote the Borel o-field on &. In the sequel, we adapt p on a case-by-case basis, but given p, all considered
measures are assumed to be absolutely continuous w.r.t. it. For < p, we write p,, = dn/dp for the Radon-Nikodym
derivative of  w.rt. p. n®" stands for the n-fold product measure, and &, represents the Dirac measure at z. lg
denotes the indicator of an event £.

We use P (&) to denote the space of probability measures on (&, S), leaving the o-field implicit. When & = RY,
we always take S = B(R?) and P(R?) as the set of Borel probability measures. For u, v € P(R%), v denotes
the convolution of ; and v; likewise, f * g represents convolution of two measurable functions f,g : R — R.
We write v, = N (0, 0'21(1) for the centered Gaussian distribution on R? with covariance matrix o2I;, and use
0o (z) = (2ma?)~4/2=12I”/(20%) (3 € RY) for the corresponding density. We say that p € P(R?) is f3-sub-
Gaussian for 3 > 0, if X ~ u satisfies E [e* XEXD] < exp (82 ]|a]® /2), for all @ € R Let — and <,
denote weak convergence* of Borel measurable maps (or their laws) and convergence in distribution of random
variables, respectively.

For 1 <r < oo, let L"(p) = L"(6,S, p) be the space of all real-valued measurable functions f on & such that

£l = (J 11" dp) "

< oo, with the usual identification of functions that are equal p-almost everywhere (a.e.).

4A sequence of Borel measurable maps X, converges weakly to a Borel measurable map X if E[f(Xy)] — E[f(X)] for all bounded
continuous functions f. This is denoted by X, X,



For 1 < r < oo, the space (L", ||-[|,. ) is a separable Banach (and hence, Polish) space. When p is the Lebesgue
measure A on R, we use ||| to denote the corresponding L” norm. ||-|| designates Euclidean norm. L”, (p) denotes
the subset of positive functions in L"(p). The support of a measurable function f : & — R, i.e., {s € & : f(s) # 0}
is denoted by spt(f). For a multi-index o = (a1,...,aq) € N¢ with |a| = Z‘;:l a; (No = NU {0}), we use
D for the differential operator D = ﬁ with D°f = £, and employ the shorthand 2 = Hle x;*. The
shorthand a < b designates a < ¢b for a universal constant ¢ > 0. The values of constants may change from line
to line of a certain derivation. Lastly, we adopt the convention 0/0 = 0, ¢/0 = oo for ¢ > 0, co -0 = 0, and

0log(c/0) = 0 for ¢ > 0.

B. f-Divergences

f-divergences form a broad class of discrepancy measures between probability distributions, as defined next.

Definition 1 (f-divergence) Let f : [0, 00] — (—00, 00] be a convex function such that f(1) = 0 and f(0) = f(0T).
For p,v € P(6), the f-divergence of 1 from v is

Dy ()= [ 5o <§j—> v, @

The class of f-divergences includes several popular dissimilarity measures, such as KL divergence, x? divergence,
H? distance, TV distance, and many more. Every f-divergence satisfies nonnegativity (Ds (u|v) > 0, Vu,v) and
joint convexity in the pair (u, ), with additional properties holding for specific instances, as mentioned below.

1) KL divergence: Setting f(z) = fkL(z) := xlog x in (2) yields KL divergence, Dk (p||v) := [ log (p./pv) dp
for u < v, and Dy (u]|v) = oo, otherwise.

2) x? divergence: Setting f(z) = fy2(z) := (x—1)? in (2) leads to x? divergence, X (u||v) := [ (pp/pv—1)%dv
for < v, and x? (u||v) = oo, otherwise.

3) H? distance: Setting f(z) = fuz(z) := (v/z—1)?in (2) leads to H? distance, H? (p, v) := [ (\/p_u—\/p_,,)de.
H? distance is symmetric in its arguments, and 0 < H? (u,v) < 2 for all pu,v € P(S).

4) TV distance: Setting f(z) = frv(z) :=|z — 1| /2 in (2) yields the TV distance, || — v||1y =% [ [Py — po| dp

= sup s |(A) — v(A)|. TV distance is symmetric in its arguments, and 0 < ||p — v/||1, < 1 for all g, v € P(S).

C. Functional delta method

We derive limit distribution theory for f-divergences via the functional delta method, which relies on the concept

of Hadamard directional differentiability. The ideas are introduced below.

Definition 2 (Hadamard directional differentiability [23]-[25]) Let © and & be linear topological spaces, and
consider a function ® : © C D — €.
(i) @ is first order Hadamard directionally differentiable at 6 € © tangentially to © if there exists a map
), : To(0) — € such that

lim D0 + tphy) — D(0) — ®l(h), 3)

n— 00 tn




for any h € Tg(0), tn, } 0T and h, — h in © such that 0 + t,h,, € O, where

0, — 06

n—oo

To(0) := {h €D :h= lim for some 0,, — 0 with 0,, € © and t,, | O+}

n

is the tangent cone to © at 6.

(ii) For convex ©,° we say that ® is second order Hadamard directionally differentiable at 6 € © tangentially to
© if it is first order Hadamard directionally differentiable at 0 and there exists a map @y : To(0) — € such
that

Q0+ tphy) — P(0) — t,Py(hn)

142
§tn

oy, (h) = lim

n—00

; “)

for any t, | 07 and h, — h in © (note: the convexity of © implies that h, € Tg(0), so that ®py(h,) is
well-defined).

The functions ®f and Oy are called the first and second order Hadamard directional derivatives of ® at .

For Hadamard directionally differentiable maps we have the following adaptation of the functional delta method

[23]-[25]. Let int(C) and OC denote the interior and boundary of a set C, respectively.

Lemma 1 (Functional delta method) Let ®© and & be metrizable linear topological spaces, © C D¢ C D, and
® : D¢ — € be Hadamard directionally differentiable at 0 € © tangentially to © with derivative @) : Tg(f) — €.
Let Z,, : QQ = D4, n € N, be measurable maps such that r,(Z, — 0) = Z for some sequence 1, — 00, where

Z is a random variable that takes values in Tg(0).

(i) If Dp = O, then we have

r(®(Z,) — 0(0)) ~L y(2),

and if © is convex then 1, (®(Zy) — ®(0)) = ¢ (rn(Zn — 0)) + op(1).

(ii) If D¢ = O is convex and P is also second order Hadamard directionally differentiable at 6 € O tangentially

to ©, with derivative Oy, then

12 (B(2,) — 2(0) — (20~ 0) - J(2),

n

and r2(®(Z,) — ®(0) — ®)(Z,, — 0)) = 10 (r(Zn — 0)) + op(1).
(iii) For a convex © C D, suppose that Z, and Z satisfy P*(Z, ¢ ©) — 0 and P(Z € 0%¢(0)) = 0, where P*
denotes outer probability (see [25]). Then, Part (i) and (ii) above holds.

Part () and (i¢) above are standard in the literature, while Part (i4:) which incorporates probabilistic constraints
is new and is useful for our purposes to derive limit distribution results under more general conditions. To establish
this claim, we prove an adaptation of the extended continuous mapping theorem [25, Theorem 1.11.1] as stated

next, which may be of independent interest.

SWhen © is convex, we have T (0) = cl({(@~ —0)/t:60€O, t> 0}) for all 6 € cl(©); see [24].



Theorem 1 (Generalized extended continuous mapping theorem) Let © and € be metrizable linear topological
spaces, ©,,0, C 9, and ©,7 C D, for all n € N. Suppose measurable functions g, : O, = Eand g: Dy — &
satisfy the following: if hy, — h with h, € ®, for all sufficiently large n and h € D, then g,(h,) — g(h).
Let Hy, : Q@ — ©y, and H : Q — ©, be measurable maps such that Hy, 5 H, P(H € ©.) = 0 and
P(H € D) = 1, where Doo = {h € D : I(hp)nen, hn — hand h, € D, ¥V n sufficiently large} and
D =N U,,(D\ D). Then, gn(H,) = g(H).

The proofs of Part (ii¢) of Lemma 1 and Theorem 1 are given in Appendices A-1 and A-2, respectively.

III. HADAMARD DIFFERENTIABILITY FRAMEWORK FOR f-DIVERGENCES

We specialize the Hadamard differentiability framework to treat f-divergences. The framework is first described
in abstract terms, after which we instantiate it to the case of KL divergence for concreteness (see Example 1
below). The key idea is to find the right normed space over which D (:||-) can be set up as a first and second order

Hadamard directionally differentiable functional w.r.t. that norm. The construction is as follows.

Let ¢ : R>o x R>g — R, where R is the extended reals and R> is its nonnegative part.

Assumption 1 ¢(1,1) = 0, ¢(0,0) = limy0 ¢(0,y), ¢ is continuous at (0,c) for ¢ > 0, and all its partial
derivatives of order two exists and are continuous in (0,00) x (0,00), possibly taking the values +oo only when at

least one of its arguments is 0 or oo.

Let gt,95 € L% (p) be such that lgilly,, V llgsll;,, < 1. For a multi-index o € NZ with |a] = 2, let 9, :
R>0p x R>0 — R>( be measurable functions, and 71;, 72 < p be positive measures on S defined via their relative

densities w.r.t. p as

Py =1+ Y200 (91, 93)| + |11 0 (97, 93)|,

(5)

Py =14 Y020 (g1, 95)| + [¥1,1 0 (g1, 95)]-

Given g7, g3, and ¢ := (2,0, %0,2,%1,1) as above, we define the normed space
Dyt g5 = {(91 — 9192 =93): 91,92 € L'(p), 91 —91,02 = )llo, ., < 00} : (©)
where |\(g,g)|\©gf,g§’w = |lglly,,, +1dll5.,- We henceforth use the shorthands © and || -||o for the space Dy gz ¢

and its norm.

Setting © := {(g1 — 91,92 —95) € D : g1 > 0,92 > 0,5pt(g1)  spt(ga), ol , V llg2ll,, < 1} and
0" :={(g1 — 91,92 - 95) €D :91 20,92 >0, [lgall, , V llg2ll; , <1}, let © be a convex subset of ©' or ©”

that contains (0, 0), and consider the functional ® : © — R given by

(61, 05) = /6 o(g7 + 61, g% + 0:)dp. ™

In addition to Assumption 1, the following assumptions are needed to state our Hadamard differentiability result.



Assumption 2 At least one of the following conditions hold:

(i) D¢ o (g7, g5), DOV o (g7, g5) € L*(p).

(i) D¢ o (gF,g5) € L2(p) and © is such that 0 = 0 for all (0;,0) € ©.
(iii) DOV o (gF,g%) € L?(p) and © is such that 6, = 0 for all (61,0,) € ©.

Assumption 3 ® is well-defined® on © and |®(01,65)| < oo for all (61,02) € O.

Assumption 4 For any o € N3 with |a| = 2, there exists v, € L'([0,1],\), such that for all 0 = (6,,602) € ©

and T € [0, 1], we have
(L=7)[0°D% ¢ o ((91,93) + 7(61,62))| S 107a 0 (g1, 93)|valr) p—ace. ®
Under these assumptions, we have the desired Hadamard differentiability result.

Proposition 1 (i) If Assumptions 1-4 hold for © C ©’, then ®, as defined in (7), is second order Hadamard
differentiable at 0* := (0,0) € O tangentially to © with
. (h1, h2) = / (h1 D"Y0 (g7, g3) +ha DO Vo (g7, 3)) dp, ©)
&

oo (R, ho) = / (R D200 (g7, 95)+h3 DOV o (g7, 93) + 2hiha DMV o (g7, g3))dp, (10
S

fOV all (hl, hg) S ‘3:@(6‘*) = Cl({@/t 10 = (91,92) S @, t > 0})

(ii) The above claim further extends to © C ©" provided ¢ is also continuous at (0,0).
The following example instantiates the above framework to the case of KL divergence.

Example 1 (KL divergence) Consider the KL divergence Dk (1||v) between probability measures p < v € P(S),
in which case we may take p = v. Assume p, > 0. The setup above specializes the KL divergence case with
o(x,y) = xzlogx, gf = pu and g5 = 1, whereby Dk (p|lv) = ®(0,0) (see (7)). Further set 19 o(x,y) =
DO ¢(x,y) = 1/x, P11(x,y) = DOV(x,y) = 0, and oa(z,y) = DODé(x,y) = 0. The measures m
and 1y are defined through the densities p,, = 1+ 290 (pu,1) = 1+ 1/p, and p,, = 1 (note that ns = v).
The spaces of interest are taken as © = {(gl —Pusg2— 1)t g1,92 € LY(p), |lon —pH||771 +llg2 =1, < oo},
O ={(g1—pu,0) €D :91 >0, [lg1ll,, = 1}. The function v, o € NZ, to satisfy (8) is chosen as vo2 = v11 =0,
and v o = 1. Indeed, the former null values are sufficient since D20 ¢ = DUV = 0, while for the latter, with
0 = (01,62) = (91 — 91,92 — g3), we have
(=300 (1, 98)+r(02,00) | = S < B ot e 08|

Here, the inequality holds since g1 > 0. Note that Te(6*) = cl({((g1 — pu)/t.0) : (91 — pu,0) € ©, t > 0}).

Corresponding choices for other f-divergences can be found in Lemma 5 (in Section VII-B) below.

SWhen ¢ is convex and p is a finite measure, Jensen’s inequality and Assumption 1 automatically imply that ® is well-defined and nonnegative.



IV. LIMIT DISTRIBUTION FOR f-DIVERGENCES

We instantiate the above unified framework to derive a flexible limit distribution theory under general regularity
conditions for several popular f-divergences—KL divergence, x? divergence, H? distance, and TV distance. To
maintain versatility, we model generic estimators of population probability distribution as random probability

measures. These can be substituted with a specific estimator depending on the application.

Definition 3 (Random probability measure) A random probability measure on & is a map ¢ : @ x S — [0,1]
satisfying

(i) for every C € S, w — ((w,C) is measurable from (2, A) to (R, B(R));

(ii) for every w € Q, ((w,-) € P(S).

Let p,v € P(6). Consider a sequence (iin, Vn)nen Of random probability measures on & such that (i, vp)
converges weakly to (u, ). Accordingly, (g, v,) can be viewed as an instance of weakly convergent estimators
of the population distribution (p, /). Below, the one- and two-sample settings refer to when only p or both (u, v)
are approximated by p, or (un, V), respectively. We also use the terms ‘null’ and ‘alternative’ for when u = v
or u # v, respectively. In the following results, (r,)nen denotes a diverging sequence, ¢, q1, and g2 represent
measurable functions. Also, inequalities involving relative densities, e.g. p, > 0, are to be interpreted as holding
p a.e., and regularity conditions involving random measures, e.g. Dxi (un||V) < oo, are required to hold only for

sufficiently large n.

A. KL divergence
Theorem 2 (Limit distribution for KL divergence) The following hold:

(i) (One-sample null) Let p,, < p = p be such that D (pn||p) < oo almost surely (a.s.). If 1, (py, — 1) 5 B
in L*(p), then

a 1
2Dk (i ||p) == 5/632@- an

(ii) (One-sample alternative) Let ji, < p < v = p satisfy Lgp,)logp, € L*(v), DL (ullv) < oo, and
Dk (inllv) < 00 a.s. If 7P, — pu) — B in L?(n), where 1 has relative density p, = 1+ (Lspt(p,)/Pu)s

then
d
7n Dk (pnllv) = Dre (pllv)) — Blogp,dv. (12)
spt(pu)

(iii) (Two-sample null) Let p, < vy, < = p be such that Dy (pin||vn) < 00 and p, [py, < q a.s. Let n = 1
and ny be the measure with relative density py, = 1+ q. If (rn(pu, — 1),7n(py, — 1)) — (B1,Bo) in
L?(m1) x L?(n2), then

a 1
2Dk (fn||vm) — 5 (B1 — By)?dp. (13)

S
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(iv) (Two-sample alternative) Let ji, < vy < v = p and p, < p < v satisfy pu, Lipyp,)logp, € L3(v),

Dk (1l|v) < oo, Dk (pnllvn) < 00 and py,, /pv, < q a.s. Let n1 and 12 be measures with relative densities

Pan = 1+ (Lapipy) /Py) @nd Py = 1+ + g, respectively. If (ra(pp, — D) (o, — 1)) 2 (B, Ba) in
L2(n1) x L?(ng), then

Tn (DKL (tn]|vn) — DL (,u||u)) 4, By logp,dv — / Badyp. (14)

spt(pu) spt(py)

The proof of Theorem 2 utilizes the functional delta method in Lemma 1 and Proposition 1. For the purpose

of applying the latter result, we note that the KL divergence functional can be written in the form (7) with an

appropriate ¢ in each of the cases above such that Assumptions 1-4 are satisfied under the conditions therein (see

Example 1).

Remark 1 (Limit distribution under probabilistic constraints) Let Q, = {w € Q : p,, (w,")/py, (w,-) < q(-)}. It
is possible to replace the constraints p,,, /P, < q a.s. by the more relaxed constraint P*(Q\ Q) — 0 if (B1, Ba)
is continuous. Here, P* denotes outer probability which is needed since Q,, may be non-measurable, in general.
The continuity of (B1, Bz) means that for every Borel set C € L*(n1) x L?(n2), P((B1, Bz) € 9C) = 0, where 9C
denotes the boundary of C. This holds, for instance, if (B1, B2) is Gaussian. The proof of the claim (see Appendix
A-3) follows similarly to that of Theorem 2 by using Part (iii) of Lemma 1 in place of Part (i) and (ii). Similar

remarks apply to Theorem 3 and 4 which are omitted for brevity.

A few remarks about the regularity conditions in Theorem 2 are in order. In the one-sample null case, the
condition ry, (p,, —1) 5 B is the weak convergence of the (centered) density of s, in L?(x), which is a natural
requirement for the existence of the KL limit. In the one-sample alternative case, we require the integrability

5

condition 1y, logp,, € L2(v) along with ry(p,, — pu) — B in L*(n). Using [logz| < |z — 1|V |1 — 27!

the former condition is holds if p,, Lspe(p,) /pu € L?(v). For the latter (weak convergence) condition to hold it

is sufficient that 7y, (py, — pu) — B in L?(v), so long as Ly (p,)/pu € L°(v). The corresponding two-sample

results hold under similar conditions plus a requirement of existence of a function ¢ that dominates the ratio of the

(random) densities of u,, and vy, ie., pu, /Py, < ¢ as., which can be relaxed to a probabilistic constraint given

in Remark 1 provided the limit variables are continuous. We emphasize that this additional regularity condition

necessitates that the one- and two-sample cases are stated separately, even though the one-sample limit distribution

may be obtained from the two-sample result by setting (By, B2) = (B,0).

To gain further insight into the applicability of Theorem 2, we next consider several important examples.

1) Finite support: Let & be a finite set, u < v, and (X1,...,X,) and (Y1,...,Y},) be i.i.d. samples from u and v,
respectively. Set the empirical distributions i, =n='>""  6x, andv,, = (n "' —=n"2)>""" | by, +n "'y, as the
random measures, where we add a vanishing regularization term n !y, so that ji,, < v, and Dkp (i ||vn) < 0.
Clearly, p, < v, < v and pu,, < p < v. Notice also that all the other regularity conditions in Theorem 2
are satisfied. In particular, the relevant weak convergences of random measures to Gaussian limits follow from

the multivariate CLT. Moreover, by Hoeffding’s inequality, there exists a constant ¢ such that P(||p,., /v, ||, >
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¢) — 0. Hence, Remark 1 applies with ¢ = ¢ implying that (11)-(14) hold with r,, = n!/? and B, (By, By) as
Gaussian vectors (and, of course, integral replaced by summation).

2) Compact support with smoothed empirical measures: Consider compactly supported and continuous distribu-

tions ;1 < v on R? with Lebesgue densities bounded from above and away from zero on the support. In this
case, the vanilla empirical distributions as defined above are not absolutely continuous w.r.t. ;1 and v, respectively.
To resolve this and obtain a well-posed empirical approximation setting, we convolve the empirical distributions
with a mollifier” (or bump function). Let i, and v,, denote the smoothed empirical distributions with Lebesgue

densities p,, = n !> " 0x, *& and p,, = (n7' —n72) 3" by, * £ + n~'p,,, respectively, where &

denotes a non-negative mollifier with ||£||, = 1. It follows by CLT in L" spaces (see Theorem 6 below) that
the weak-convergence requirements in Theorem 2 hold with p % &, v % £ in place of p,v and with r, = n'/?
and B, (B, Bs) as appropriate Gaussian processes indexed by a compact subset & of RY. Moreover, using
concentration bounds for separable sub-Gaussian processes (see e.g., [66, Theorem 5.29]) indexed by compact
&, one can show that there exists a constant ¢ such that P(||p,, /pv, ||, > ¢) — 0. It can be verified that the

other regularity conditions in Theorem 2 also hold, and consequently the result applies via Remark 1.

3) Unbounded support with Gaussian smoothing: In Proposition 2 below, we further specialize Theorem 2 to

Gaussian-smoothed empirical distributions on R?. This provides an instance of smooth distributions with un-
bounded support, for which we characterize the limit laws and derive primitive conditions in terms of y and v

for their existence.

We mention here that while Theorem 2 provides general regularity conditions for existence of limit distributions
for KL divergence, certain assumptions therein are arguably stronger than what is necessary. For instance, the
requirement Ly, ) logp,, € L?(v) for (12) to hold arises from Assumption 2, which furnishes sufficient conditions
for the first order Hadamard derivatives to exist. However, from the proof of Proposition 1, it is evident that alternative

sufficient conditions in lieu of Assumption 2 are plausible by setting up the function space ® of perturbations via the

norm [|(9, 9)ll5 == llgll,.,,, +lgll,.,,, for some r > 1. Then, the relevant condition for existence of limit distribution

on account of Lemma 4 would be 1,¢(,,)logp, € LT,(I/), where 7’ is the Holder conjugate of r. Thus, there is
some flexibility possible in the regularity conditions required for (12) to hold. That said, we do not delve into this

aspect further within this paper.

B. x? divergence
Theorem 3 (Limit distribution for x? divergence) The following hold:

(i) (One-sample null) Let i, < p = p satisfy x> (un ) < 00 a.s. If r(pp, — 1) — B in L?(u), then

r2X2 (1) —2 /6 Bdy. (15)

7A mollifier is a function f : R — R which is both smooth (i.e., has continuous derivatives of all orders) and compactly supported, e.g.,
2 ..
£(z) = ce=/O=1ZlI1%) for ||z|| < 1 and zero elsewhere for some normalizing constant c.
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(i) (One-sample alternative) Let i, j1,, < v = p satisfy x> (u||v) < oo and x* (pn||v) < oo a.s. If rn(pp, —
pu) — B in L%(v), then
d
O (i) = ) ) =2 [ B (16)
S
(iii) (Two-sample null) Let j1,, < vy, < p1 = p be such that x? (jin||vn) < 0o and p,,,, /py, < q a.s. Let 1 and 1z be
measures with relative densities p,, = 1+q and py, = py, +q?, respectively. If (rn (P, — 1), rn(po, — 1)) -
(By, B2) in L2(n1) x L3(n2), then

2% (nl|vn) / (B1 — Bs)*dp. (17)
S

(iv) (Two-sample alternative) Let p, < v, < v = p and ji, < p < v satisfy p, € L*(v), x* (ul|v) < oo,
X2 (pin||vn) < o0 and py,,, /pu, < q a.s. Let 01 and n be measures with relative densities p,, = 1+ p, +q

and py, = Py, +q° —|—pi, respectively. If (rn(p#n —pu)s Tn(Pv, — 1)) N (By, B2) in L?(n1) x L?(n2), then

d
(0 (tnllom) — X2 () ) % 2 /6 Budy — / Boppd. (18)
S

Theorem 3 utilizes similar proof methodology as in Theorem 2 via the machinery from Section III, except that
Parts (¢) and (¢4) follow in a simpler manner via the continuous mapping theorem [25, Theorem 1.3.6] owing to the
specific structure of the x? divergence functional. Also note that the one- and two-sample null limits of the x? and
KL divergences are the same up to a factor of 0.5, which is in line with the fact that KL divergence is locally x>
(see [29, Theorem 7.18]). Via an argument similar to that in Remark 1, we observe that Theorem 3 applies to
discrete and smoothed compactly supported distributions (as discussed after Theorem 2 above), with 7, = n'/? and
Gaussian B, (B1, Bs). An application to Gaussian-smoothed empirical distributions will be given in Proposition 6

in Appendix E-A.

C. H? distance

Theorem 4 (Limit distribution for H? distance) The following hold:

(i) (One-sample null) Let i, pn < p for some finite measure p such that p, > 0. If rn(pu, — Pp) 5 Bin
L2(n), where 1 has relative density p, =1+ (1/p,,), then

1 B2
P2H (i 1) -5 = [ Z—dp. (19)
4 & Pu

(ii) (One-sample alternative) Let i, u,v <K p for some finite measure p such that p,,p, > 0, and suppose that

pu/pu € LY(p). If 70 (Pp, — Pp) — B in L%(n), where 1 has relative density p, = 1 + (pll,/Q/pf/z), then

(12) * Bp. (20)
Pu

d
(M () = H (1)) 5 = [
S
(iii) (Two-sample null) Let (i, vy, it <K p for some finite measure p such that p, >0, p,, < q1 and p,,, < q2 a.s.

Let m and ny be measures with relative densities p,, =1+ (1/p,) + (q;m/pzm) and pp, =1+ (1/p,) +
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(qi/z/pzm), respectively. If (rn(pun —Du), Tn (P, —pu)) 5 (By, By) in L?(m1) x L?(n3), then
1 B, — B,)?
r2H? (pin, vn) 4, 2 7( ! 2) dp. 21
4 Js Pu
(iv) (Two-sample alternative) Let iy, vy, 11, v <K p for some finite measure p such that p,,p, > 0, py/Pu, Pp/Pv €
L(p), D, < q1 and py,, < q2 a.s. Let 1 and 12 be measures with relative densities

1 1

1 1 _3 1 1
Py =1+ (pﬁ +q§)pu2 +Du’py®,

1 1 _3 1 1
Py =1+ (p[‘l +qf)pu2 +Du’py?,

respectively. If (Tn(p#n —Pu)s Tn(Pu, — pl,)) N (B1, Bo) in in L?(ny) x L*(n2), then

7 (H? (Hns vn) — H? () ) —d>—/ <p—”>2Bldp—/ <&>2Bzdp- (22)
& \Pu & \Pv

The proof of Theorem 4 is similar to that of Theorem 2, and is given in Section VII-B3. Note that in contrast
to Theorem 2 and 3, the two-sample alternative limit distribution is symmetric in g and v, which is to be expected
given the symmetry of H? (y, v) itself. Also, observe that the regularity conditions in Theorem 4 are satisfied for the
case of discrete (when p <> v) and compactly supported smoothed empirical distributions considered in Section
IV-A. Consequently, (19)-(22) hold with r,, = n'/? and Gaussian B, (B1, By). In Proposition 7 in Appendix E-B,

we will further discuss the application of Theorem 4 to Gaussian-smoothed empirical distributions.

D. TV distance
Theorem 5 (Limit distribution for TV distance) Let sgn(x) = z/|x| for x # 0, and for given p,v < p, let
Q :={se€ & :p,(s) =pu(s)}. Then, the following hold:
(i) (One-sample null and alternative) Let pu,, p, v < p for some measure p. If v, (p,, — pu) — B in L'(p),
then

d 1 1
o (Nl = vy = le = vlvy) —>—/ |Bldp + —/ sgn(py — pv) Bdp. (23)

(ii) (Two-sample null and alternative) Let ji,,, vy, i, v < p for some measure p. If 8 1, (Pun, —Pvn. —Pp+Dp0) - B
in L*(p), then
a 1 1
rn(llin = vallry =l =vllwy) =5 | |Bldp+5 | sen(pu —py)Bdp. 24)
2Jo 2 Je\o

The proof for the one-sample and two-sample null cases above follow via an application of the continuous
mapping theorem. The proof of the alternative requires an argument different from the divergences considered
until now. To see why, recall from (2) that TV distance corresponds to an f-divergence with f = |z — 1]/2,

which is not differentiable at z = 1. Hence, Proposition 1 does not apply for computing the Hadamard derivative

8 Alternatively, we may state the weak convergence requirement in terms of the stronger condition (rn (Pun — Pu)sTn(Pun — pl,)) N

(B1, B2) which implies 7, (pp,, — Pv,, — Pu + Pv) —= B with B = By — Ba.
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since Assumption 1 is violated. However, utilizing the equivalence of Hadamard differentiability to Gateaux
differentiability under Lipschitzness of the functional (see [23]), we instead compute the latter simpler quantity
via a direct argument. From there, the claims follow as usual via an application of the functional delta method. We
note that Theorem 5 applies to the case of discrete and compactly supported smoothed empirical distributions in

Section IV-A. Its application to Gaussian-smoothed case is discussed in Appendix E-C (Proposition 8).

V. LIMIT DISTRIBUTION THEORY FOR GAUSSIAN-SMOOTHED f-DIVERGENCES

We study distributional limits of Gaussian-smoothed f-divergence, i.e., the population objective is Dy (g * v, ||v *
Y5 ), where v, = N (0, azld) is the isotropic Gaussian kernel [67]. Our goal is to approximate p (or both p and v)
from samples, while assuming that the Gaussian kernel is known. The Gaussian smoothing alleviates mismatched
support issues that f-divergences often suffer from and gives rise to a well-posed empirical approximation setting.
This setup was studied in our preliminary work [1] for the y? divergence and the TV distance under the one-sample
null setting. The results herein significantly generalize and broaden those of [1]. We focus on the Gaussian-smoothed
KL divergence in this section and relegate analogous results for 2 divergence, H? distance and TV distance to
Appendix E for brevity. Throughout this section, we assume & = R? and S = B(Rd). Some preliminaries are due

before stating the results.

Empirical measures: In defining the empirical measures of ;1 and v we allow arbitrary correlation between their
samples, which is necessary for the application to auditing DP studied in Section VI. Let (X,Y) ~ m € P(R% x R9)
with X, Y marginals , v, respectively. Set fi,, = n~' > " | dx, as the empirical distribution of (X1,..., X,,) and
U =n~1Y " Oy, be that of (Vi,...,Y,), where (X;,Y;) ~ m, 1 <i < n, are i.i.d. Recalling that ¢, denotes
the density of ~,, the Lebesgue densities of [, * v, and I, % 7, are [, * p, and D, * @, respectively. We study
distributional limits of D¢ (f, * 7o ||V * 7,) as well as its two-sample analogues, under the null (¢ = v) and the

alternative (u # v).

Gaussian process: Our limit variables are characterized as integral forms of a certain Gaussian process, which is in-
troduced next. Consider the 2-dimensional centered Gaussian process (G0, Gu.0):=(Gp.o (), Gu.0 (y)) (2,5) ERIXRA

with covariance function £, .., : (R? x R?) x (R? x R?) — R**2 given by

(25)

E|Guo(2)Guo(T E[Gyo(2)Gyo (i
Eu,u,a((x,y),(:i,?])) C= [ ( ) ( )] [ ( ) (y)] ‘|

L E[GV,U(CU)G#-,U(‘%H E[GV,U(?J)GV-,U@H
—X),00(2— X)) cov(ps(z— X),05(5—Y))
Y)a%(if—X)) COV(SDG(y_Y)ﬂDa(g_Y))

Po

(o (=
cov (900 (y -
For i,5 € {1,2}, denote the (¢, j)-th entry of ¥, , , by fo,z)g Note that each such entry depends only on two
coordinates among ((:1:, y), (2, g)) Hence, by some abuse of notation, we omit the redundant coordinates and use
the remaining coordinates in the same order they appear, e.g., Eff 1,12; (y, 50) for E,(f,}?, ((w, y), (Z, g)) Further, when

v = g (and consequently X 4 Y), we denote G, , by C:’W, to avoid confusion with G, ;.
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Asymptotic variance: When the limiting variable is Gaussian, the asymptotic variance for different f-divergences
can be expressed in a unified form, using the following definitions. For a function f corresponding to an f-divergence

(see Definition 1), let

o (1,1,0) / LS @i @)L e .

/Rd /Rd E(W) if (@) Ly s (y)dx dy,

v%,f(luﬂ v, U) :
1<4,5<2

where

Ly (@) =Ly s ppe(z) = f (u*%gx))

vk pg(x)
a0 = Laole) = 7 (2]} il (el

Here, f” denotes the derivative of f and v{ ; (i, v, ), v3 ;(p,v,0) will be well-defined and finite in the settings
we consider below. The quantities give the asymptotic variance of Gaussian-smoothed f-divergence (except TV

distance) in the one-sample and two-sample alternative cases, respectively.

A. KL Divergence

The following proposition characterizes the limit distribution for Gaussian-smoothed KL divergence.

Proposition 2 (Limit distribution for Gaussian-smoothed KL divergence) The following hold:

(i) (One-sample null) If

/ w dz < o0, (26)
R J* Qo (T)

then there exists a version of G, , such that G, /\/i * ¢y is L*(RY)-valued, and

o (%)

7d, 27
ik pa(m) @7

DKL (fin * Yo |1 % 7o) = = /

where the limit can be represented as a weighted sum of i.i.d. x* random variables with 1 degree of freedom
(see Remark 2). In particular, (26) and (27) holds for B-sub-Gaussian p with 5 < o. Conversely, if (26) is

violated, then we have liminf,,_, o nIE[DKL (fin, * o || b * 70)} = o0.

(v 0o )2/ * QD(THOO < 00, log (u* 0o [V * gpg) € L*(v* ¢,) and

Var,, (¢ (z — -
/ Varu (ol =) 4 < o 28
Rd vk g ()
then
1 d 2
n? (DKL (fin * Vo[V % ¥6) = Dki (1 * Yo |V % 70) ) =N (0,07 4, (1, v, 0)), (29)

where v%-,fm (1, v,0) is given in (58). In particular, (29) holds for B-sub-Gaussian p with 8 < o such that
v pu<Lvand ||dp/dv| vV ||dv/dp| . < oo
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(iii) (Two-sample null) If 1 has compact support, then there exists a version of G o, G5 such that G, o /\/lt * Por
and G, |/t * pg are L?(R)-valued, and

= 2

. . i, 1 [ (Guo(@) = Guo())

D mn o n o a - .
DKL (fin * o [|Pn % 70) — 5 g (D)

dr, (30)

where the limit can be represented as a weighted sum of i.i.d. x> random variables with 1 degree of freedom.

(iv) (Two-sample alternative) If |1, v have compact supports, then

1 . . d
n?2 (DKL (Nn * ’70”1/71 * ’YU) - DKL (/14 * ’YU”V * 70)) — N(Oavg,fm_(ﬂu v, 0))7 (31)
where v%fKL(u, v,0) is given in (69).

The proof of bulk of the claims in Proposition 2 hinges on Theorem 2 by identifying primitive conditions in
terms of u, v, and o that guarantee the regularity assumptions in Theorem 2. The proof of the final claim in Part
(i) above, i.e., the necessity of Condition (26), relies on the following lemma, which is also applicable to other

f-divergences with a twice differentiable f.

Lemma 2 (Lower bound on expected f-divergence limit) Consider the f-divergence in Definition 1. Assume that

f is continuously rwice differentiable in (0, 00) with a nonnegative second derivative f". Then,

limint nE (D (i o+ 5)] = 252 [ VarZ(f ;i; D (32)

The proof of Lemma 2 is given in Section VII-C2, and is based on Taylor’s theorem.

Remark 2 (Simplified null limit distribution) The RHS of (27) and (30) admit a representation as a weighted
sum of i.i.d. x* random variables (with 1 degree of freedom). This follows since centered L*(R?)-valued Gaussian

random variables admit a representation of the form Wbi, where (W;)nen is an Li.d. sequence of standard

i€N
Gaussian (real) random variables, and (b;);en is an orthonormal basis of the reproducing kernel Hilbert space
(see [68, Theorem 4.3]) associated with the L? (Rd)-valued Gaussian variable. Hence, the RHS of (27) and (30)
can be represented as ), ||bl|\§ W?2/2, from which the claim follows. The same conclusion also applies to the

other divergences, except for TV distance.

Remark 3 (Unequal sample sizes) While we consider equal number of samples from both v and v for simplicity,
the results readily extend to the mismatched scenario. Suppose n and m denote the number of samples from p and
v, respectively, such that m/(n+m) — 7 for some T € (0,1) as m,n — oo. By minor modifications to the proof

of (29) and (31), one may verify that under the same respective conditions, we have

nm . R 1 TG )U.I'—\/l—Té o lx ?
Dkt (fin * Yol * 7o) — = (VG (@) o(@) dz, (33)
n+m 2 Jga 1* oq ()
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and

1
nm \? N . d _
(52 ) (O 30 #70) = Do (20l 220) ) 4 N (0.5, 7 o0201),

where T3 g (T, p1,v,0) := 321, ico Jpa Jpa ¢ij (1) S (,9) Li g (€) L g (y)dae dy, with c11(7) = 7, e1,2(7) =

c2,1(7) = \/7(1 = 7T), and c2 2(7) = 1 — 7. Similar claims hold for other f-divergences. Also, note that Remark 2

applies to (33) as (/TG — V1 — Téﬂyg)/./,u * 0o is an L*(RY)-valued Gaussian random variable.

1) Bootstrap consistency: The limit distribution from Theorem 2 are non-pivotal in the sense that they depend
on the population distributions x4 and v, which are unknown in practice. To circumvent this difficulty and enable
inference (e.g., construction of confidence intervals) we apply the bootstrap, which is a computationally tractable
resampling method for estimating distributional limits. This section establishes consistency of the bootstrap for the

Gaussian-smoothed KL divergence.

Given the data (X1,Y1),..., (X, Yn), let (XB,...,XB) ~ a®" and (YZ,...,Y,B) ~ 02" denote bootstrap
samples drawn independently from empirical distributions fi,, and 7,, respectively. Set 42 = n=! Z?:l 1) XxP
and o = n71Y0 61/1}3 as the bootstrap empirical distributions. Denoting by Pp the conditional probability
given (X1,Y1),..., (X, Y,), we have the following bootstrap consistency claim for the Gaussian-smoothed KL

divergence limit distribution from Proposition 2.

Corollary 1 (Bootstrap consistency for KL divergence limit distribution) Consider the setting of Proposition 2,
and let ’Ui fKL(u, v,0) and v% fa (1, v,0) be as given in (58) and (69), respectively. Then, the following hold:
(i) (One-sample null and alternative) Under the conditions of Proposition 2(ii),
sup [P (n? (Dww (i 7o v+ %) = Dt (n % 7o |1V 5 70)) < t) = P(W1 < 8)] = 0g(1),
teR

where Wy ~ N(O, vifKL(,u, v, a)).

(ii) (Two-sample null and alternative) If pu, v have compact supports, then

sup |Pp (”% (DKL(ﬂS *70”35 * ”Yd) — DkL (fin * Yo [V * ”YU)) < t) —P(Wy <t)| = op(1),
teR

where Wy ~ N(O7 v%fﬂ(u, v, U)).

The proof follows from [69, Theorem 23.9] and the linearity of the first order Hadamard derivative of the KL
divergence functional (see Proposition 1), once we verify that the tangent cone (domain of the Hadamard derivative)
contains a non-trivial linear subspace. The details are provided in Section VII-C3. Bootstrap consistency results for
other f-divergences (except TV distance) may be derived in an analogous manner, but we skip the formal statements

below for brevity.

VI. APPLICATION TO AUDITING DIFFERENTIAL PRIVACY

We consider the application of our limit distribution theory to auditing DP, which was introduced in [70] as an

approach for quantifying privacy leakage of privatization mechanisms. We recall some DP notions that are relevant
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to our setting. Consider a set 41 with a relation ~ such that u ~ v, for u,v € 4, denotes that v and v are adjacent.
In the DP context, il is a set of databases and u ~ v denotes that u and v are adjacent databases, differing on a

single entry.

Definition 4 (DP mechanisms [70]—[72]) Let €,6 > 0. A randomized (measurable) mechanism f : 4 — R? is
(i) e-differentially private if P (f(u) € T) < eP(f(v) € T) for every u ~ v and T € B(R?);
(ii) (e, 6)-differentially private if P (f(u) € T) < eSP(f(v) € T) + 8 for every u ~ v and T € B(R%);
(iii) e-KL differentially private if DkL (pu||pto) < € for every u ~ v, where p,, € P(R?) is the distribution of f(u).

In addition, we say that a privacy mechanism is e-smoothed KL differentially private if Dk (14 * Yo || 4o * Vo) < €

for every u ~ v, where o > 0 is a pre-specified parameter.

Standard noise-injection mechanisms for DP operate as follows. Consider g : ${ — R, a (deterministic) query
function to be published about the database and define its ("-sensitivity as A,(g) := Sup, yey. yw 9(0)—
g(v)||r. A noise-injection DP mechanism is given by f(-) = g(-) + W, where W is an additive noise random
variable. For instance, the Laplace mechanism [73] takes W ~ Lap(0,b)®? (i.e., whose Lebesgue density is
o e~/ b) with b > A;(g)/e, which guarantees e-DP. Similarly, the Gaussian mechanism sets W ~ =y, with
o > As(g)y/210g(1.25/8) /¢, which guarantees (e, §)-DP. While the above DP mechanisms add unbounded noise,
a privacy mechanism that adds bounded noise in an adaptive query setting and ensures (€, §)-DP (asymptotically)
for any § > 0 is proposed in [74]. As e-DP is equivalent to sup,,..,, Doo (ttu || ttv) < €, Where Do is the oo-order
Renyi divergence, it is clear that KL DP is a relaxation of DP.” By the data processing inequality, we further have
that smoothed KL DP is a relaxation of KL DP.

In practice, given output samples from a privacy mechanism, one encounters the problem of ascertaining whether
the mechanism is differentially private or not, referred to as auditing DP. In [28], a hypothesis test for auditing DP
using regularized kernel Rényi divergence is proposed, where the null hypothesis is that the mechanism satisfies
(¢,0)-DP. The authors propose a decision rule achieving any non-zero significance level (type I error probability),
leaving the characterization of the power (equivalently, type II error probability) open. Here, utilizing the limit
distribution theory from Section V, we put forth a principled hypothesis testing pipeline for DP auditing using the
Gaussian-smoothed and classic KL divergence as the privacy measures of interest. Our analysis accounts for both

significance and power of the test. We start from the smoothed KL DP test.

A. Smoothed KL DP test

The main objective of a privacy audit is to identify violations. For that reason, we set up an hypothesis test where
the null Hy corresponds to when privacy holds, and consider a sequence of local alternatives H; , that become
harder to distinguish from Hy as n grows. This models a situation where the alternative hypothesis is arbitrarily

close to the null, and we seek a powerful test that successfully rejects the null, even under these local alternatives.

°In particular, e-DP implies €(1 A (e — 1))-KL DP by [73, Lemma 3.18].
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To define the local alternatives, we consider a sequence of privacy mechanisms that violate e-smoothed KL DP by
an O(n~'/?) amount.

Fix 0,¢,b,C > 0 and, for n € Ny, let f, : 4 — I := [~b,b]? be a sequence of privacy mechanisms.
Denote a pair adjacent databases'® by (U, V) ~ & € P(U x U). Let 7, := (fn, fn)x7 be the joint distribution of
( fa(U), fn(V)), where # is the pushforward operation. The first and second marginals of 7, are denoted by iy,

and v,,, respectively. We impose the following assumption on the sequence (7, )nen,-

Assumption 5 The sequence (7, )nen, is such that

(i) there exists 0 # h € L?(mq) with nH? (7, 7) — ||h/2||§7770, Jgaxga hdmo =0, and

(e (e ) e (e )
(B BVl 0] YD V) 4y e v, ca

Vo * Yo VO*SDG'

(ii) DkL (po * Yo l|vo * Yo ) < € and Dkr (pn * Yo |[Vn * Vo) > €n,c := €+ Cn=2 for all n sufficiently large.

Observe that Assumption 5(#4) implies that fj satisfies e-smoothed KL DP while f,, violates it for all n sufficiently
large. On the other hand, Assumption 5(¢) is a technical requirement which ensures that Gaussian-smoothed KL
divergence limit theorems relevant for our purpose continue to hold in the local alternatives setting in which 7,
changes with n. Proposition 4 below presents an explicit construction of (7, )ren, that satisfies Assumption 5 for
any o,¢,b, C > 0. For now, under this assumption, consider the following binary hypothesis test with a sequence

of alternatives:

Hp : Dkw (ko * Yo llvo * 7o) < 6,
(35)

Hy . DL (pn * Yo llvn * Yo ) = €nc-

Let (X1,Y1),...,(X,,Ys) ~ 7 be pairwise i.i.d. samples of the privacy mechanism’s output when acting on
i.1.d. pairs of adjacent databases, where m = m under Hy and m = 7,, under H; ,. Denote the empirical measures
of (Xi,...,X,) and (Y3,...,Y,) by fi,, and ¥, respectively. For a test statistic T, = T,,(X1,..., X, Y1,. ..,
Y,.), a standard class of tests rejects Hy if T,, > t,, where ¢, is a critical value chosen according to the desired
level 7 € (0,1). The operational meaning of rejecting Hy is declaring that e-smoothed KL DP is violated, and
hence, also e-DP itself. We say that such a sequence has asymptotic level T if limsup,,_, . P(T), > t,|Hp) < 7.
The power of a test is the probability that it correctly rejects Ho, i.e., P(T), > t,|H1,,), and the asymptotic power
is liminf,, oo P(T}, > t,|H1,,). Lastly, the sequence of tests is called asymptotically consistent if its asymptotic
power is 1. The above definitions specialize to the case of a fixed alternative H; by taking H; , = H; and 7,, = m
for all n € N.

10The results in this section do not depend on the database distribution 7 per say. Also, note that the current model subsumes the case of

deterministic (U, V') by taking 7 to be a point mass on a pair of adjacent databases. In this case, the randomness in (fn (U), fn(V)) only
comes from the mechanism.
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For 7 € [0,1], let Q'(r) = inf {z € R: (2m) /2 [ ¢**/2du < 7} be the inverse complimentary cumulative
distribution function of N (0, 1). The following proposition provides a test statistic for the above hypothesis test

and characterizes its asymptotic level and asymptotic power against local alternatives.

Proposition 3 (Smoothed KL DP audit) Suppose Assumption 5 holds. For 0 < 7,7" < 1, let Cp a7 =
Ch,d,o (Q_l(T) -Q (1 - T')), where cp 4.0 is given in (79). Then the test statistic T,, = Dxr (fin * Yo ||[Pn * Vo)
with critical value t,, = €+ cp 4. oQ " (T)?’L_l/2 achieves an asymptotic level T and asymptotic power at least 1 — 1’

for the test in (35), whenever C' > Ch 4.6+ V 0.

The proof of the above claim relies on the limit distribution result for smoothed KL divergence given in (31)
along with its refinement to account for the local alternatives scenario, i.e., to account for a sequence of distributions
(4n * Yo, Vn * Yo )nen instead of a fixed one. This refinement (see (76)) is derived under Assumption 5 by invoking
Le Cam’s third lemma [25, Theorem 3.10.7]. Given these results and the fact that the relevant limit distributions are
Gaussian, the claim in Proposition 3 follows by an analysis of the asymptotic level and power via the Portmanteau
theorem [25, Theorem 1.3.4]. Note that the constant Cy g » -,/ is positive whenever 7 + 7' < 1, which is when
the requirement C' > Cj 4.5,r is active. Operationally, 7 + 7 < 1 means that the sum of type I and type II
error probabilities is less than 1, which is the interesting regime for hypothesis testing; otherwise, a test based on

a random coin flip is preferable.

We conclude this part by providing an explicit construction of a sequence of couplings (7, )nen, that satisfies

Assumption 5.

Proposition 4 (Construction satisfying Assumption 5) (i) Let mg € P(Rd de) be such that g # vo, VoQ g <K

o, [|d(vo @ po)/dmol| o g < 00 and ||hryclly, ., < 00, where

h _ _(dpo®wvy) d(vo ® po)
m,c +— C - )
’ dﬂ'o dﬂ'o

(36)

and ¢ > 0 is an arbitrary constant. Let m,, < my be the probability measure specified by the relative density

dms
ﬁ =141 iy e, (37)

whenever the RHS is non-negative mo-a.s.; otherwise, set w, = mo. Then, m, satisfies Assumption 5(i) with
h = hzy e

(ii) Let mo € P(ZyxLy) and o be such that jig # vo, vo@po < o, [|d(vo @ po)/dmoll o -, V 1d(1o @ v0)/dmolly -,
< 00 and Dgr (po * Yo ||Vo * ¥o) = €. Then, there exists a sufficiently large ¢, such that m, as defined in (37)

satisfies Assumption 5 with h = hy, & for any C > 0.

Proposition 4(ii), which is proven in Section VII-E, provides a method of constructing m,, for the hypothesis
test in (35), given 7y that satisfies the aforementioned regularity assumptions. This can be achieved, for instance,

by choosing my such that py <> vy < A, ||dvo/duol| ., V ||dpo/dwol| o, < oo and Dk (po * Yo |0 * 7)) = €.
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B. KL DP test
A more stringent DP audit is realized via a hypothesis test for detecting e-KL DP violations, rather than its
Gaussian-smoothed version. We next provide such a test against a fixed alternative, namely:

Hy : Dke (pollvo) <€,
(38)

Hy : Dii (pl[vn) > €,
where € > € > 0. For this test, we again employ the test statistic 7T}, from Proposition 3 with appropriately chosen
o. Doing so requires additional assumption on the output distributions of the DP mechanism, namely that pu;, v;,

for =0, 1, to have smooth Lebesgue densities belonging to the following class.

Definition 5 (Lipschitz class, see [75]) For r € (0,00], m € N, and f € L" (Rd), the m-th modulus of smoothness
of fis

Fmr(f,t) = sup  [[AJ] (39)

yERY, [ly[|<t

r )

where A7 f(x) = 377 ((=1)" 7 f(x + jy). For 0 < s <1 and X C RY, the Lipschitz class with smoothness

parameter s and norm parameter M is

Lips,r(M7 X) = {f € LT(Rd) : HfHLip(S,T‘) S M7 Spt(f) g X}’

where || f||1ip(s.ry = fll, + supysot™*k1,r(f, 1) is the Lipschitz seminorm.

Assumption 6 For i = 0,1, the Lebesgue densities py,;, pv, € Lip, 1(M,Zy) and ||y, /pv; |l V1IPv. /Ppill oo < M

Sor some 0 < s <1 and M > 0. Further, Dk (o||v0) < € and Dgy (p1||v1) > € for some é > ¢ > 0.

o0

Assumption 6 is not very restrictive in practice. Indeed, the definition of DP itself necessitates that ||p,, /py, [,
is bounded uniformly for all u, v € Y with u ~ v. Moreover, the class of Lipschitz functions grows as we shrink the
smoothness parameter s, and thus Uas>oLip; 1 (M, Zy) € Unr>oLipg 1 (M, Zp) under our assumption that 0 < s < 1.
As the class of functions with bounded variation (for d = 1) over Z; is contained in U MzoLiPM (M, Tp), Assumption

6 allows for most densities of practical interest.

We are now ready to state the e-KL DP audit result. As it may be unrealistic to assume that the exact values of
M, s, and € are known when constructing 7}, and choosing critical values, the following proposition only requires

the existence of known constants M |, s, and § such that M < M < o0, e <é<é and 0 < s <s<35<1.

Proposition 5 (KL DP audit) Suppose Assumption 6 holds. Let 0 < 7 < 1 and 0 < 0 < 0.z 5 411> Where
Oczssdn 1S the solution of (81). Then the test statistic Ty, = DL (fin * Vo ||0n * Vo) with critical value t, =
€+ cb7d,gQ_1(T)n_l/ 2, where cpq, is given in (79), is asymptotically consistent and achieves an asymptotic level

T for the test in (38).

The key difference between the proof of this claim and Proposition 3 is that given M, €, s, and 5, it is possible

to choose o > 0 small enough so that Dy (1 * 7, ||¥1 * 7») > € while Dk (10 * Yo ||vo * 7o) < €. Choosing such
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a o, the claim then follows by utilizing (31) along with the Portmanteau theorem to bound the type I and type II
error probabilities associated with 7T,,. The aforementioned choice of o relies on a stability lemma for smoothed

KL divergence given next, which may be of independent interest.

Lemma 3 (Stability lemma for smoothed KL divergence) Let X C R, and p,v € P(X) have Lebesgue densities
pu and p,, respectively. Further, assume that p,,p, € Lip, 1 (M, X) and |p,/pv|l. V pv/pulloc < M for some
M > 1. Then,

IDkw (p]|v) — Dkw (1 * Yo llv * ¥5)| < ca,sM (M +1+4log M) o*, (40)

where cq s == fRd 12]1° 1 (2)dz.

The proof of Lemma 3 upper bounds the left-hand side (LHS) of (40) using Taylor’s theorem, and then exploits

the boundedness and Lipschitzness of the densities to control the resulting terms.

VII. PROOFS

This section contains proofs of the results from Section III-VI.

A. Proof of Proposition 1

The derivation uses the following lemma whose proof is given in Appendix B for completeness.

Lemma 4 (Generalized Slutsky’s theorem) Let r,r' > 1 be conjugate indices, i.e., 1/r + 1/r' = 1. The following
hold:

(i) If fn, — fin L™(p) and g, — g in L" (p), then frngn — fg in L(p).
(ii) If Y, =5 Y in L7 (p) and Zn, =% = in L™ (p), where z is deterministic, then Yy, Z,, — Yz in L*(p).

Having that, recall that all partial derivatives of ¢ of order two exists in (0,00) x (0,00). Consequently, the

multivariate second-order Taylor’s expansion of ¢(z,y) around ¢(z*,y*), where z,y, z*,y* > 0, yields
1
¢(x,y) = (=", y") + (x — ") DIV (%, y*) + (y — y" ) DOV(a*, y") + (2 — x*)Q/ DO (ur)(1 = 7)dr
0
1 1
F-y [ DD =y + 2~ 5y~ y) [ DOVotu)(1 - rydr
0 0

where u, := (1 — 7)(a*,y*) + 7(x, y). Substituting g1(z), g7 (x), 92(y), g5(y) for =, z*, y, y*, respectively, in the

above equation, and setting u; , = (1 —7)g; + 7g; for j = 1,2, 6 = (61,02) = (91 — gt.92 — g3), we obtain
1
$o(g1,92) = ¢ (g7,93) + 1D b0 (g7, 93) + 02DV o (9%95”/ 01D o (u 7, us -)(1 = 7)dr
0

1 1
+ / 6‘§D(072)¢ o (u1,7,u2,7)(1 — 7)dT + 2/ 916‘2D(1’1)¢ o (u1,r,u2,7)(1 — 7)dr,
0 0

for all (z,y) with g1(x),g7(z), 92(y), g5(y) > 0. The validity of the above equation when g¢1(x) > 0, and
92(y), g5 (x), g5(y) > 0 then follows by taking limits g1 () | 0 via Assumption 1 (specifically, the continuity of ¢ at
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(0, ¢) for ¢ > 0, and the continuity of second order partial derivatives) along with the dominated convergence theorem
applied to the last three integrals using Assumption 4. Likewise, the above equation extends to the case g1 (z) = 0,
g2(y) > 0 and g7 (x), g5(y) > 0 by taking limits g2(y) { 0 and using lim, o ¢(0, 2z) = ¢(0,0) in Assumption 1.
Note that the above scenarios correspond to the constraints {(g1,92) : g1 > 0,92 > 0,spt(g1) C spt(gz)} in the
definition of ©’. In a similar vein, the above equation also generalizes to the case ¢1(z), g2(y) > 0, g7 (x), g5(y) > 0
by taking limits g1 (), g2(y) J 0, provided that ¢ is continuous at (0, 0). This corresponds to the constraints defining
the set ©".
Integrating w.r.t. p then gives

6.0V 0 (g7, g3)dp + / 020D o (g7, g5)dp
(G]

B(01,0) = 8(0,0) +/

S

1 1
+ [ [ 00000 a1 = nydrdp+ [ [ BDOD60 (ur r uz)(1 - r)drdp
S JO S JO

1
+2 / / 616D 0 (w1, uzr)(1 — 7)drdp, @1)
S JOo

where we have used the definition of ® in (7). The terms in (41) are well-defined and finite due to the following
reasons. The finiteness of ®(61,62) and ®(0,0) is straightforward from Assumption 3, while that of the first two
integrals is a consequence of Assumption 2 and Holder’s inequality. The remaining integrals exists and are finite

since for any « with |a| = 2, we have
1
/ / 03D D60 (un,7,u2,7) + 03D Do (un 7, 2,7) +2010: D Vo (ur -, ua 7| (1= 7)drdp
&Jo
< /C (!9@(2’0)1&2,0 o (gt.93)| + |03D P pg 5 0 (g7, g5)| + 6162 D 1 Vepy 5 o (9?95)!) dp
-

< [ (1D 000 (i 03)] + D0z (51,0 ) o
S

2

%
+ (Lot Do o) ([ #1010 at.05)lao)
& &
< 0, (42)
where the first step uses (8) and v, € L! ([0, 1], A), the second one invokes the Cauchy-Schwarz inequality, while
the finiteness follows from (5) and (61,602) € © C D.

Given the expansion from (41), setting (61,,62.n) = (91,0 — 9}, 92.n — g5) € © and hj,, = 6;,/ts, t,, > 0,
7 =1,2, we obtain

o (tnhl,nu tnh2,n) -
128

(0,0) -
= [ (D00 (1.95) + hanDOV6 0 (g1,05))dp+ S G43)
&
where J,, :=ty [ (7], T1n + 13, d20 + hinhonIsn)dp with
1
Il,n = / D(Q.'O)(b o (gf + Ttnhl,nvgg + TtnhQ,n)(l - T)dT,
0

1
Iy, = / DO o (g5 + Ttuhin, g5 + Ttaho.n)(1 — T)dr,
0
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1
Iy =2 / DUV o (g7 + Ttuhi g + Ttahan)(1 — T)dr.
0

We will show that the limit of the RHS of (43) as n — oo evaluates to the RHS of (9) for all ¢, | 0T and
(h1n,h2n) = (h1,h2) in © for some (hi,hs) € Te(0*), which will prove (9). Here, Tg(6*) is as given in

Proposition 1 since © is convex and 6* € O.

Under Assumption 2, the first two terms in (43) converge to the RHS of (9) by Lemma 4(i) since hq,,, — hq
and hp , — hs in Lz(p). Thus, it remains to show that J,, converges to zero. To that end we will show that
every subsequence of .J,, has a further subsequence that converges to 0. Fix (¢, k1, h2n)nen and consider a
subsequence (ny)ren of N. Since (h1 p,, h2n,) — (h1,h2) in D implies h; ,,, — h; in L?(n;), for i = 1,2, and
L? convergence implies convergence in measure, there exists a further subsequence (ny, );en such that hmkl — h;
ni-a.e., for i = 1,2. Consequently, (8) with v, € L% ([0,1],\) and dominated convergence theorem implies that
p-a.e.,

. 1
B Ty, + oy, + T3, = 5 (D@00 (97, 93) + DD 0 (g7, 95) + 2D Vo 0 (g7, 93))-

Next, we claim that (h%)nkl Iy, +h§7nkl Lo ny, +hany, 2ng, I3,m4, )leN is uniformly integrable w.r.t. p. This along

with the above equation and Vitali’s convergence theorem then leads to

: 2 2
lim (hln;C Ilﬂlk + h2 ng I27nk + hl;nk h2;71k I37nk )dp
l—oo Jg R l »Vky l l l I

1 * * * *
=3 / (th(z’% o (91, 95) + h3D ¢ o (g1, g5) + 2hiha DD o (g7, gg)) dp, (44)
.
and hence, lim; o0 Jp,, =0 as tn, | 0. Thus, every subsequence (.J,,, )ken has a further subsequence (Jny, Jien

which converges to 0, which implies lim,,_, J,, = 0 and shows that

- P (tnhin, tnhan) — ©(0,0)

n—o00 tn

= [ (D60 (gt.5) + 2DV (57 53) do.
&
Since the above holds for any ¢,, | 0" and (hy ., h2,) — (h1, h2), (9) follows.

To show the uniform integrability claim mentioned above, note that for any D C &

2 2
/ Ip ‘hl,nkl Il;nkl + h2,nkl I27nkl + hlﬂlkl h27nkl I3,nkl dp
S

2
S/ ]]-D‘hlmklll,nkl
s

S / Ip (hinkl 2,00 (91, 93)| + M3, [¥0,2 0 (gfagﬁ)’) dp
S

dp

dp+/ lD‘hg,nklb,nkl dp+/ lD‘hl,nklhz,nklfs,nkl
S S

M

1
2
+( [ 1ot !wl,lo@f,g;)\dp) ( [ 1omd.. !wl,lo@f,g;)\dp)
IS ¢ IS ¢

2
N H]]-Dhl,nkl

+ H]]-Dh2,nkl
m

2
2, 2,m2 '

where the penultimate inequality above follows via similar steps leading to the bound in (42). Also, recall that

hi-,nkl — h; in L?(n;) implies uniform integrability of (hi,nkl )ien, for i = 1,2. This along with the above equation
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then shows the desired uniform integrability.

To compute the second order Hadamard derivative, from (43), we have

Oty hy s tnhon) — (0,0) = £p B (hy s o
(tnha, 2,n) §2 ) o (hi, 2’)—:/(hinhﬂl+h%nbmf+thhlw&mym-
S

n

Using similar argument leading to (44) one readily shows that the RHS multiplied by 2 above converges to the
RHS of (10). Since this holds for any ¢, | 0" and (h1,, ho,n) — (h1, ha2), (10) follows, thus completing the proof

of the proposition.

B. Proofs for Section 1V

We first state a lemma that shows that Assumption 1 and Assumption 4 are satisfied by the functionals corre-

sponding to f-divergences.

Lemma 5 Consider p, g7, g5 and © as in Section IIl. The following hold:

(i) The functions

ok, y) == yfu(z/y) = xlog(z/y),
b2 (2,y) = yfe(x/y) = (x —y)*/y,
oz (2,y) = yfue(z/y) = (Vo — Vy)?,

are convex and satisfy Assumption 1. Moreover, ¢y is continuous in R>o X Rxo, while ¢k and ¢, are

continuous in [0, 00) x (0, 00).

(ii) The above functions satisfy Assumption 4 under conditions enumerated below:

(a) oL with 200 (g5,95) = 1/g%, o2 0 (95.95) = g1/95> + a/ g5 V1,10 (9F,95) = 1/g3, va0 = vo2 =
v1,1 = 1, and

_ (91— 97,92 —93) €D : g1 20,92 > 0,5pt(g1) Cspt(ga), llgnlly, Vllgall;, <1,

©CO(q) =

l91/92] < q, p-ae.
(45)

(b) ¢y> with a0 0 (g7, 95) = 1/95, Yoz 0 (91, 95) = 912/95° + (¢*/93), Y110 (9f,93) = 91/95> + a/95,
V2,0 = Vp,2 = V1,1 = 1, and © g (:)(q),
. . x1/2  1/2\ , *3/2 . x 1/2  1/2\ , *3/2 . x
(c) ¢u2 with 1/’2.,00(91792) = (92 / ‘HIQ/ )/91 / , 1/’0,20(91792) = (9; / —|—q1/ )/92 / , 1/’1,10(91792) =

(g{gg)_1/2, U2,0 = ’1}072 = T1/2(1 — T)_1/2, ’1}171 = 1, and

ec é(q17Q2)::{(91 — 91,92 —93) €D 1 91,92 > 0, ||gall; , Vlg2lly , <1, [g1] < a1, 92| < o, p-a.e-} :

The proof of Lemma 5 is given in Appendix C. We proceed with the proofs of the results in Section IV.
1) Proof of Theorem 2: We will invoke Proposition 1 to prove the claim. To that end, we specialize the Hadamard

differentiability framework of Section III by identifying the relevant quantities and showing that the required
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assumptions hold. For brevity, we will only prove the two-sample case and highlight its differences with the

one-sample case at the end.

Part (iii): Let p = p, g7 = g5 = 1, 200 (1,1) =¢110(1,1) = 1, Y20 (1,1) = 14+¢q, v20 = vo2 = v11 = 1,
Pny = 3 and p,,, = 3+ ¢. Note that Dxp (pn ||vn) = ®(pp, — 1,00, — 1) with ¢(z,y) = ¢kL(z,y) = xzlog(x/y) in

(7). Also, observe that under the assumptions of Part (i) of Theorem 2, we have (p,,, —1,p,, —1) € © a.s., where

(1 —1,92—1) €D :91 > 0,92 > 0,8pt(g1) C spt(g2), lgnlly . = llo2ll1 . = 1,

l91/92] < q, p-as. (46)

D ={(91,92) : 91,92 € L' (). [ (g1 — 1,92 = 1)l|p < o0}
Note that © C ©(q) as defined in (45). Then, Part (ii)(a) of Lemma 5 implies that Assumption 1 and 4 are satisfied,
while Assumption 3 holds by hypothesis. Assumption 2 holds since from (86a), we obtain D% ¢y o (1,1) = 1
and DOV ¢y o (1,1) = —1. Proposition 1(i) and (86a) then yield

). (hy, ha) = /

hudp — / hodp,  and Y. (hy, hy) = / (1 — ha)dp,

S S S

for all (hy1,ha) € Te(0*) = cl({((g1 — 1)/t, (92— 1)/t) : (91 — 1,92 — 1) € ©, t > 0}) (note that © is convex).
Next, note that ®(0,0) = ). (h1,h2) = 0 for all (hi,hs) € To(0*). The latter follows from that fact that if

(h1,h2) € To(0*), then hy, hy € L' (1) and there exists a sequence (A1, ho n)nen, Where by = (g1, — 1) /tn,

haon = (92,0 = 1) /tns (91,0 — 1, g2,n — 1) € ©, such that [|h1,n — hally , V [[hon — hally , — 0. As [ hipdp =0

due to [|g1,nll, , =1 for every n, we further have

/hldu’: lim / hldu—/hl,ndu}g lim / |h1 — hin|dp = 0. 47)

Hence, fe hidp = 0 and similarly, fG hodp = 0.

To conclude, we observe that (7, (pu, —1),7n(py, — 1)) — (B1, B2) in © (w.r.t. norm of L?(n1) x L?(n2))

and that (7, (py, — 1),7(py, — 1)) and (By, Bs) take values in To(6*). An application of Lemma 1(ii) then
yields (13).
Part (iv): Taking p = v, first consider the case when p,, > 0. Let g7 = p,, g5 = 1, ¢a9 © (p#, 1) = 1/pu,
Y110 (P, 1) =1, 020 (pus1) = pp+q v20 =v02 =v11 =1, py, =2+ (1/p,) and py, =2+ p, +q. We
have Dky (pin||vn) = ®(Pu,, — Pus Do, — 1) With ¢(z,y) = dkL(x,y) = xlog(z/y) in (7). Under the hypothesis in
Part (iv), (pu, — Pu>Pv, — 1) € O as., where

(91 = Pusg2—1) €D : g1 > 0,92 > 0,8pt(g1) C spt(g2), lgnlly, = llgall,, =1,
l91/92] < q, v-as. (48)

D= {(91792) tg1.92 € L'(v), (g1, 92)ll5 < OO}-

Observe that © C ©(q) as given in (45), and that Assumptions 1, 3, and 4 are satisfied (via Part (i) and (ii)(a)
of Lemma 5). Assumption 2 also holds since D9 ¢y o (p,,1) = 1 +logp, € L*(v) and DOV ey o (p,, 1) =
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—p, € L?(v) (see (86a)) by hypothesis. It then follows from Proposition 1(i) and (86a) that

). (hy, ha) = /

< (1 + logp#)hldu - /
s

hgp#dV:/ hilogp, du—/ hodpu, (49)
S S S

for all (hy,h2) € To(0*) = cl({((91 —pu)/t, (92— 1)/t) : (91 —Pu,g2—1) €O, £ > 0}). Noting that ®(0,0) =
Dk (k]|v), we obtain (14) from Lemma 1(i) and the fact that (r,(py, — Pu),7n(pv, — 1)) — (Bi,B2) in D
taking values in To(6*).

Finally, consider the case p, % 0. To handle this scenario, we restrict the probability measures to the support of

Py 1.e., & = spt(p,,), and apply Proposition 1(i¢). Set p =  :

= , where v denotes the aforementioned
spt(pp) spt(pp)

restriction of v. Then, observe that i : and fin = fin) (o) ATE probability measures since ., < p, while

= u‘sw(zm)
vand v, ‘= v,

1. Defining

are possibly deficient probability measures, i.e., 0 < P(spt(p,)) < 1 and 0 < 7, (spt(p,)) <

‘sm(zm)

(91 = Pusg2—1) €D 1 g1 > 0,92 > 0,5pt(g1) € spt(ge), [|g1ll; , = 1, [lg2ll, 5 < 1,
91/92] < g, v-as.
we have (pz, —pj, s, — 1) € © a.s. It now follows that (v, (p, —pa)s Tn (P, —1)) —— (Bi, Ba), where (B1, Bs)

is the restriction of (By, B) to spt(p,). Having that, the same argument as above with p,, p,,., P, . v replaced

by pz, pPi.» Po,, U, respectively, yields

e - d ~ ~
Tn (DKL (fin]|7n) — Dk (u||1/)) — By logp,dv — / Bodp = / By logp,dv — / Badyp.
spt(py) spt(py) spt(pu) spt(py)

The claim then follows by noting that Dk (fin, ||7n) = Dk (pn||vn) and Dk (i||7) = Dk (u]jv).
The proof for the one-sample null follows via similar arguments to the two-sample null by considering p = p,

g =95=11v200(g5,93) =1, o2 =11 =0, v20 =vo2 =v1,1 =1, ;1 = 2, 2 = p, and

D={(g1—1,92—1): 91,92 € L* (), (91 — 1,92 = 1) || 5 < o0},

©= {(91 ~1,00€D:91 20,]g1ll,, = 1},

Likewise, the proof for the one-sample alternative is obtained via analogous steps to the two-sample alternative
by taking p < v = p, gf = pu, 95 = L, ¥200 (91,95) = 1/Pus Y02 = ¢11 = 0, 120 = vo2 = v11 = 1,
pp =14+ (1/]9;1)’ Py =1, and

D={(g1 —pu-92—1): 91,92 € L' (), (91 — P 92 — V)|l o < o0},

0={(g1-p0) €D g1 >0.lgull,, = 1}.

This completes the proof of the theorem.
2) Proof of Theorem 3: For proving Part (i) and (i7), the continuous mapping theorem suffices, while for Part
(7i7) and (iv), we will use the functional delta method.

Part (i): The claim follows from the continuous mapping theorem [25, Theorem 1.3.6], by noting that 72 x? (g, || 1)
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= [ (rn(pu, — 1))2du, o (P, —1) —= B in L?(p), and f Hng# is a continuous functional in L?(11). Also,

observe that 7, (p,., — 1) € L?(u) implies that x (ttn | 1) = [Py, — 1/ L < 0.

Part (¢7): Note that

2 2 2
X2 (nllv) = I = U5, = P00 = Pulls, + lpp = 115, + 2/ (P — Pu) (P — 1)dv.
S

Hence,

Sl

(O (inll2) = X2 () ) = /

(v
S
= / (T
S
1/2

Since 7, (py, —pu) — B in L%(v), Slutsky’s theorem implies that 77/~ (p,.,, —p,) — 0 in L2(v). Consequently,

2
(p#n_p:“)) dV+2LTn(p#n_p#)(p#—1)dV

Sl

2
(P —pu)) dv +2 / T (P — Pp)Pudv.
S

first term in the RHS above converges weakly to zero in L?(v) by the continuous mapping theorem applied
to the continuous functional ||H§U Next, note that x? (ullv) < oo and x? (unllv) < oo imply p, € L*(v)
and p,,, € L?(v), respectively. Lemma 4(ii) together with the fact that 7,,(p,, — p,) —> B then imply that
T (Pp, — Pu)Py — Bp, in L'(v). Having that, the claim follows from the continuous mapping theorem since

[+ [ fdv is a continuous functional in L' (v).

Part (i4i): Let p = 1, g = g5 = 1, ¥200(1,1) = 1,91 10(1,1) = 14¢, to20(1,1) = 14¢>, v 9 = Vo2 = v11 =
1, py, = 3+qand py, = 3+q+¢*. We have x? (n[vn) = @(py, —1,p, —1) With ¢(2,y) = dy2(2,y) = (2—y)*/y
in (7). Also, under the hypothesis in Part (iii), we have p,,, > 0 and (p,, — 1,p,, — 1) € © = O(q) a.s., where
O(q) and the ambient space © are given in (46). To prove (17), we next verify that Assumptions 1-4 hold in this
setting and then invoke Proposition 1.

Observe that Part (i¢)(b) of Lemma 5 implies that Assumption 1 and Assumption 4 are satisfied. Furthermore, As-
sumption 3 holds by hypothesis, while Assumption 2 is satisfied since ‘D(170)¢X2 o (1, 1)| = |D(0’1)¢x2 o(1,1)|=0

from (86b). Then, it follows via Proposition 1(i) and (86b) that

(I)/O* (hl, hg) =0 and /9/* (h,l, hg) = / 2(h1 — hQ)Qd,LL,
S

for all (h1, hs) € To(0*) = cl({((g1 —1)/t, (92— 1)/t) : (91 —1,92—1) € ©, t > 0}). Lastly, since $(0,0) = 0,
(rn(ppn — 1), 7n(py, — 1)) == (B1, B2) in ©, and (ry,(pp,, — 1), 7n(ps, — 1)) as well as (By, By) take values in

To(6%), the convergence in (17) follows from Lemma 1(i).

Part (iv): Let p = v and assume first that p, > 0. Set g7 = pp, g5 = 1, 2,00 (pu, 1) = 1, Y020 (ppu, 1) = po+at
Y110 (pus1) = ppu+q v20 = vo2 = vi1 =1, py, =2+ pu +qand py, = 1+ p, + g+ pl + ¢>. We have
X2 (nllvn) = ®(Pp, — PusPv, — 1) with ¢(z,y) = ¢y2(z,y) = (x — y)?/y in (7). Under the hypothesis in Part
(ii1), (P, — Pus P, — 1) € © = O(q) a.s., where O(q) and D are as in (48). Assumptions 1, 3, and 4 are satisfied
for the same reason as in Part (4ii). Assumption 2 holds since (86b) together with the hypothesis p, € L*(v)
implies D10 ¢, 2 0 (p,, 1) = 2(p, — 1) € L*(v) and DV 2 0 (p,,1) =1 —p? € L*(v). Applying Proposition
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1(i) while using (86b), we have

é*(hl,hg):/ 2(p#—1)h1d1/+/ (l—pi)thu:2/ hld,LL—/ hgp#d,u,
S S S S

for all (h1, he) € To(0*) = cl({((g1 — pu)/t, (92— 1)/t) : (91 —Pu, 92— 1) € O, t > 0}). Here, the last equality
follows since fe hidv = fe hodv = 0 for (hy,h2) € To(6*), similarly to (47). Finally, (18) follows from the
above equation and Lemma 1() by noting that ®(0,0) = x?* (u||v) and (7 (pu,, —Pu), 7n(pu, — 1)) — (Bi, B2)
in ®, taking values in To(6*). Finally, the case p,, 0 is handled by restricting the space to spt(p,) as given at
the end of the proof of Theorem 2, Part (iv). The claim then follows by noting that x? (fi, ||7n) = x? (itn||vn) and
2 (il|7) = x* (ul|v), where fin, Up, i and ¥ are as defined therein.

3) Proof of Theorem 4: The proof uses Proposition 1 by identifying the relevant quantities in the Hadamard
differentiability framework of Section III and showing that the pertinent assumptions hold. Again, we only prove

the two-sample case, delineating the difference for the one-sample case at the end.

Part (i4i): Let i, v, p < p for some finite measure p, and set gf = g5 = pp, 12,00 (P, pu) = (pi/2+q;/2)/pi/2,
1/2 | 1/2y, 3/2 _
Yo,2 © (Puspp) = (p;/ + ql/ )/p;/ s Y110 (Puypu) = 1/pps v20 = v02 = 721 —71)"V2 vy =1, p,, =

P =1+ (1/p) + (¢/%/p/), and

D ={(g1 — pu-92 — ) : 91,92 € L*(p), |(91 — Py, 92 — pu)ll o < 0},

O ={(01 =92~ Ps) €9 90,0 > 0 llnlly, = 2l = 1. 1ga| V 19| < q, prae.}.

The hypothesis in Part (iii) entails (p,, — Py, Pu, —pu) € © a.s. Further, H? (1, ) = ®(pp,, —Pu» Pur, — Pp) With
d(z,y) = ¢nz(z,y) = (V& — /y)? in (7). Consequently, Parts (i) and (ii)(c) of Lemma 5 shows that Assumptions
1 and 4 are satisfied since © C ©(q1,¢2) and ¢y is continuous at (0,0). Assumption 3 holds by boundedness of
H? distance. Assumption 2 follows since D" ¢y o (p, ) = DOV ez 0 (p,i, pu) = 0 from (86¢). Proposition
1(74) and (86¢) now yield

(hn — ha)”

dp,
2p,

(I)Ig* (hl, hg) =0 and /0/* (hl, hg) = /
S

for all (h1,h2) € To(0*) = cl({((91 — pu)/t: (92 — Pu)/t) : (91 — Pur g2 — Pu) € O, t > 0}).
The convergence in (21) is then a consequence of Lemma 1(ii), together with ®(0,0) = 0, (7 (py,, —Pu), Tn (Pr, —
pu)) — (B1, B2) in @, where (ry(py, — ppu),Tn(py, — pyu)) and (By, Bs) take values in T (6%).

Part (iv): Let jin, vy, p, v < p for some finite measure p, and set gf = pu, g5 = pu. 2,0 © (P> Pv) = (pll,/2 +

0'?) /P2, o2 0 (puspe) = (0> +a”) /9%, w11 0 (Puspy) = 1/(p#py)l/2, V20 = Vo2 = TV2(1 —7)"1/2,

and v1,1 = 1. Further define the densities

1 1 _3 1 1 1 1 _3 1 _1
Py =14+ (p3 +q§)pﬁ +pupn® and  p,, =1+ (pﬁ +qf)pu2 +pu oy ?,
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and consider the spaces

0 =0(q1,q) = {(91 =D 92 = Pv) €D 91,92 2 0, |lgnlly , = llgall , = 1, 191] < a1,192] < 2, p-a.e.} ;

D ={(91—Pus92 = 1) : 91,92 € L'(0), [l(91 — s 92 — P )| < 00}

Note that under the hypothesis in Part (iv), (p,, =Py, Pv,, —pv) € © a.s., and H? (un,, v) = ®(pp,, —Pps Pv, —Dv)
with ¢(z,y) = ¢z (x,y) = (v/—/y)? in (7). Assumptions 1 and 4 as well as the continuity of ¢z at (0, 0) holds
via Lemma 5, Parts (i) and (i7)(c), while Assumption 3 follows by boundedness of H2. Assumption 2 is satisfied
since from (86¢c), we have both D0 ¢y o (p,,p,) = 1 — pll,/2p;1/2 and DOV e o (pu,py) =1 — pll/zp;l/2
belonging to L?(p) because p, /pu, pu/pv € L' (p) and p is a finite measure. Invoking Proposition 1(ii) and (86¢),
we obtain

®). (hy, hy) = /

1 _1 1 _1 1 _1 1 _1
(1—p3pu2)h1dp+/ (1—pﬁpu2)h2dp=—/ pﬁpﬁhldp—/ Papy * hadp,
S S S S

for all (hy, ha) € Te(0*) = cl({((91 — pu)/t: (92 = Pv)/t) : (91 — Ppr g2 —Pv) €O, t > 0}).

The desired result, namely (22), then follows from Lemma 1(i), along with ®(0,0) = H? (1, v), (rn(pu, —

Pu)sTn(Pu, — pv)) — (B1, Bs) in © with (r,(pu, — pu),n(pv, —pv)) and (By, Bs) taking values in Te(6%).
The proof for the one-sample null follows via analogous arguments to the two-sample null by taking p,, p < p

—-1/2

for some finite measure p, g7 = g5 = pu, VY2,0 © (PusPp) = 1/Pp» o2 = P11 = 0, vap = (1 —7)

vo2 =v1,1 =1, py, = 1+ (1/pu), 2 = p, and

D ={(91 = pu»92 = pu) : 91,92 € L'(p), 191 = Pps g2 — )l < 0},

0={(01-pun0) €D 9120, lnll,, = 1}.
In a similar vein, the proof for the one-sample alternative is akin to the two-sample alternative, by considering
[in, ft, v < p for some finite measure p, and set gf = py, g5 = pu, 2,0 © (P, Pv) = o2 pY2 pos = hrq =0,
vo=(1-7)"Y2 v =v11 =1, Py =1+ (pll/z/pi/g), 12 = p, and

D ={(g1 = pwg2—1): 91,92 € L' (), (91 = Pur 92 = Pl o < 20},

0 ={(91-pu0) €D 9120, llgull,, =1}

4) Proof of Theorem 5: We prove the one- and two-sample null cases together. Then, we prove both statements

under the alternative.

(One-sample and two-sample null): The results in these cases follow directly by the continuous mapping theorem.
To see this, note that f — [|f|l+y = [|fll, , /2 is a continuous functional in L(p). With that, the convergence of

n(Pu, — pp) — B and 7, (pp, — pu,) — B in L'(p) imply

a 1 a 1
rullin = pley > 5 [ 1Bldp and v lien = wiley < 5 [ [Bldp
S S

respectively. Note that the above limit distributions are special cases of (23) and (24) for 4 = v, since @ = S in
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this case and the second terms in the respective equations vanish.

(One-sample and two-sample alternative): Note that || — v| 1, = ®(0,0) with ¢(z,y) = [z —y| /2, 97 = p,
and g5 = p, in (7). Hence Assumption 1 is violated (at x = y), and the Hadamard differentiability framework in
Section IIT does not apply directly. To circumvent that, we provide a direct argument for computing the Hadamard

directional derivative in this case.

Let ® = LY(p), g7, 95 € L*(p) be arbitrary, set

O={9=g1-92:91,92 € L'(p), 91,92 > 0, [|lnll; , = llg2ll, , = 1},

and consider the functional Y : © — R given by Y(g) = Js g1 /2 dp. We will show that T is locally Lipschitz
at 0* = g7 — g5 € e, whereby its Hadamard directional derivative at 8* coincides with the Géteaux directional

derivative [23], [24], which is defined by

For the local Lipschitzness, observe that

1 1 1 1
T(g)— Y (G) = = dp—= [ 13]dp < = —Gldo==lg—3
(9) —Y(g) 2/Glgl p 2/Glgl p_2/6|g gldp =5 llg =4l
and switch the roles of g and § to conclude that [Y(g) — Y(g)| < [lg — gl , /2.

To compute the Gateaux derivative of Y, set Q* := {s € & : g{(s) = ¢7(s)} and write

T * * th _ ’r * g% 1 1 * * th _ * *
(97 — g5 + th) (91 —95) _ _/ Ih|dp + _/ lg7 — g5 +th| — |gi 92|dp. (50)
o* S\ 9o~

t 2 t

Note that the integrand in the last term above is dominated by |h| € L!(p) p-a.e. and that on & \ Q*, we have

gt — g thl — gt — g3 _ .o
lim ; = sgn(g7 — g3)h,
where sgn(z) = a/|z| for z # 0 and sgn(0) = 0. An application of dominated convergence theorem to the last

term in (50) then yields the Géiteaux derivative at 8* given by

. Y(gr —g5+th)—Y (g — g3 1 1
o) s= tyg TRV =TI 2 g [ sl - gipndp. 5D
o* 2 G\Q*

tlo+ t 2

which coincides with the Hadamard derivative due to the aforementioned local Lipschitzness of the functional.

We are now in place to prove the limit distribution results. For the one-sample alternative case, let p,, pu, v < p

for some measure p, set * = p,, — p,,, and consider

0 ={g—pv:91 €L p), 91> 0.l|gall,, =1} C 6.

Note that T (6*) = cl({(g1 — pu)/t : 1 —pv € ©, t > 0}) since O is convex. Setting Q := {s € & : p,(s) =
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p.(8)}, the Hadamard directional derivative of T at 6* is

1 1
be(h) = 5/ |h| dp + 5/ sgn(pu — pv)hdp, h e Te(0¥).
Q S\Q

Lemma 1(i) along with the fact that r,,(p,, — pu) — B in L'(p) with 7,,(p,, — p,) and B taking values in
To(0*), leads to

d
o (12w = Pollry = 10 — Pollvy ) = o (T(0p, — p0) = Y(pp — p0)) — Ty (B),
which proves (23).

For two-sample case, let iy, vy, i, v < p for some measure p, 8* = p, — p,, and © = 6. Again, Tg(0*) =
cl({ (g — (pu — p,,))/t tgEO, t> O}) since © is convex. The claim in (24) then follows using same arguments
as above via Lemma 1(i) together with 7, (p,,, — pu, — (P —pv)) — B in L'(p) with 7, (ppu, — Pu, — (P — 1))
and B supported in Tg(6*). This completes the proof.

C. Proofs for Section V

To establish the limit distribution for Gaussian-smoothed f-divergences, we first use the CLT in L” spaces to
deduce weak convergence of the smooth empirical process, and then invoke the general limit distribution theorems

from Section IV. The CLT in L" spaces is stated next.

Theorem 6 (Proposition 2.1.11 in [25]) Let 1 < r < oo, and Z,Z1,...,Z, be iid. L"(S,S, p)-valued random

variables (recall p is o-finite) with zero mean (in the sense of Bochner). The following are equivalent:

(i) There exists a centered Gaussian process G in L with same covariance function as Z such that n='/? S Z;
converges weakly in L" to G.

(ii) [s (E[ |Z(s)|2])r/2dp(s) <ooand P(|Z]|, , > t) = o(t™2) as t — oo.

Henceforth, in this section, we apply the general results from Section 4, namely, Theorems 1-4, with p1 <— p*,,
V4= V%Yo, by = fin ¥, and v, = D, *,. The reference measure p will be adapted on a case-by-case basis and
specified in the proofs below.

1) Proof of Proposition 2 : Part (3): To prove (27), we apply Theorem 2(i) with p = p * 7. To verify that the
required conditions hold, first observe that p * v, <> [i, * v,. Furthermore, for X ~ i, and X ~ p independent

of Y ~ u, we have

E Dt (in * Yo |1t %72) ] = E[DKL (]Eﬂn [N(X,0%1,)] H]EH [N (Y, aQId)}) }
¢ E[Dx (N (X, 0°1) [N (¥ 0°12)) |

w 1 2
2 SE[IX -YI?] <o,

where (a) is by Jensen’s inequality applied to KL divergence which is jointly convex in its arguments, (b) uses

the closed-form expression for KL divergence between multivariate Gaussian distributions (see [76]), and the last
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inequality is because all moments of a sub-Gaussian distribution are finite (see [77]). Since KL divergence is
nonnegative, this implies that Dgy (jin * Vo ||pt * 70 ) < 00 a.s. Setting 7, = n'/2, (27) follows from (11) provided

that

A’ﬂ o w G [ea .
nl/? (u _ 1) 0y TR i L2 (k). (52)
H* Qo B* Qo

It thus remains to establish (52), for which we use Theorem 6. Note that n/2((fi, * @o/pt * p5) — 1) =
n~Y23" | Z;, where

'_Xi - o .
7, = £ ) H*e (53)
H* Qo

are centered i.i.d. random variables with the same distribution as Z = (<p( = X)) —px (pg) /% .. Further observe
that the process Z; is jointly measurable when viewed as a map from (Q x R4, A x B(Rd)) to R, and has paths
a.s. in L2(p % 7,); indeed,

Var, (¢s(z — )

dz < oo, (54)
W g ()

E[||Zi||§,u*%] = /Rd E, [|Zi(:c)|2} W 9o (x)de = /Rd

by Fubini’s theorem and the assumption in (26). This finiteness also implies the conditions in Theorem 6(ii). The
first follows directly from the equation above, while for the second, we show that if P([|Z]|, .., >1) = o(t=?) as
t — oo does not hold, then IE[ HZ1||§ . ] < oo is contradicted. To see this, note that the violation of the former
condition implies that there exists constants ¢ > 0 and o > 1 such that for all ¢ > to, P(|Z], ,,., =>1t) > ct=2.
Then
E(1Z1 o, ] = [ PO Zls o, 2 Vit = [ et = o0,
which is the desired contradiction. Hence, the conditions in Theorem 6(ii) are satisfied under (26). Consequently,
by Theorem 6(¢), there exists a centered Gaussian process G, -/t * @, such that
n~1/2 i Z; s h in LQ(M * Yo )s
= H* o
which completes the proof of (27).

The claim that (26) and (27) holds for S-sub-Gaussian p with 8 < o follows from Proposition 1 in [78] by noting
that the LHS of (26) equals I,2(V; W), where I,2(V; W) := x* (Pv,w||Pv x Pw) is the x* mutual information
between V and W = V + Z, where V ~ p and Z ~ 7, are independent. Finally, we observe that if (26) is
violated then lim inf,, ., nE [DKL (fin, * Yo || b * %)} = oo. This is a consequence of Lemma 2, by noting that fx_

is continuously twice differentiable with positive second derivative.

Part (i2): To prove (29), we use Theorem 2(ii) with p = v x7,. Note that i * 5, fin, * Vo, ¥ %Y, are all mutually
absolutely continuous, and p., = p* s /v, > 0. Moreover, log (1# ¢, /v* @) € L?(v*¢,) by assumption,

and using similar steps as in Part (i), we have DL (4 * Yo ||V * 75) < oo and Dky (fin * Vo ||v *76) < 00 as.
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Hence, we have from (12) with r,, = n'/2 that

n? (D (fin * Vo[V * 7o) — Dit (12 % 7o |7 ¥ 70) ) — /R G0 (z)log <%) de, (55)
provided
An (o2 g w G o .
n1/2 (M *Q _ n*p ) N My in -[/2(,'7)7 (56)
V* Qo V* Qg V* Qg

where 7 has relative density p, = 1+ (v * ¢, /11 * o). To prove (29), it remains to show that (56) holds and that
the RHS of (55) is N(O,vim(u, v, 0)).

We first show that (56) holds given (26), (28), and ||(v * ¢o)?/pu % o || < oc. The latter along with the fact
that v * 7, is a probability measure implies that 7 is o-finite. Next, observe that n'/ 2(fin * Qo — ¥ o)V * 0y =
n~YV23"" | Z;, where Z; = (p(- = X3) — p* o) /v g, for i =1,...,n, are centered and i.i.d. with the same
distribution as Z = (¢(- — X) — pu % ¢5) /v * @o. The claim then follows from Theorem 6(ii), given that the
conditions therein are satisfied. Akin to the proof of Part () above, the process Z; is jointly measurable with paths

a.s. in L?(n). Indeed

2
B[12i3,] = [ E. [12)] (VW(I) . M) "

1% o (T)
_ [ Velgele =)y f Varuleale =) p
_/Rd Vrpe(@) +/]Rd PETN o7

where the first equality is by Fubini’s theorem and last inequality is due to (26) and (28). This finiteness implies
the conditions in Theorem 6(ii): the first follows trivially, while the second follows via similar arguments as in Part
(¢). Invoking Theorem 6, there exists a centered Gaussian process G, » /v * ¢, such that (56) holds.

Next, we claim that the RHS of (55) is zero mean Gaussian random variable with variance U%;.fKL (1, v, 0). This
follows from the dual characterization of a random variable B taking values in a Banach space 5 as Gaussian
if and only if f(B) is a real-valued Gaussian random variable for every f in the topological dual space of
continuous linear functionals on B (see [79, Page 55]). Hence, the RHS of (55) is a real Gaussian random variable
because G, /\/V* @o is L*(R?)-valued Gaussian random variable and /v @5 log (11 * o /v * ¢5) € L*(R?)
(by assumption). Computing the mean and variance explicitly leads to the claim above with

* Pa (T * Pg (1
o g (. 0) = /R ) /]R Si(a.y)log (M) log <w) dz dy, (58)

vk o5 (T) vk 0, (y)
where we used [ [pa SN () y)dady = Jga Jga cov (0o (@ — X), 0o (y — X))dady = 0, which in itself follows

from Fubini’s theorem and [, 0o (2 — -)dz = 1.

To prove the final claim in Part (ii), we note that for every » € RY,

[ * oo () E#[%(g;—-)]‘ < Hdu

vk oy (2)

< o0, (59)

o0

EU[SDU(*T —-) dv

dv
which implies ||y * o5 /v * 5 || < 0o. Similarly, ||V * o /1 % || o, < 00. This leads to || (v * pq)? /1 * (pUHOO <
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oo and log (u * g [V * gpg) € L%(v * ¢,). On the other hand, for 3-sub-Gaussian p with 3 < o, (26) holds using
the same argument as in Part (¢), while (28) follows since

[ v,
Rd

V() -

H* Qo
Uk Qg

/ Varu(@o @ =) 4, o, (60)
0o J R4 H* Qo

Hence, all the conditions needed for (29) are satisfied.

Part (éi2): We apply Theorem 2(iii) with p = u * v,. We have that p * 5, fin * Yo, Un * 7, are all mutually
absolutely continuous, and py, «y, = Un * Yo /@b * @ > 0. Moreover, we have Dki (fin * Vo ||Pn * 75) < 00 a.s. via
steps similar to those in Part (i). Also, since p has compact support and spt(fi,, ), spt(2y,) C spt(p), we have

ll=— |

~ n — X112 v |12
/;Ln * SOO'(‘T) _ Zl:]. e 202 _ S max 87 H zj(le +H 2:/2'LH S Clecllwll, (61)
Up * 9q () 2?21 - III;LEII 1<i<n
for some constants ¢, ¢’ > 0 that depend only on ¢ and spt(u). Taking ¢(2) = eIl we have
dm
E(f) = p* o (),
dnz

(1) = 1k 9o (2) + 1 o () el

Recall that n'/2 ((fi, * @0 /1% o) —1) = n~Y2 3" | Z;, where Z; is given in (53). Let Z; be defined similarly
with X; replaced by Y;, so that nl/z((ﬁn * Qo /o) — 1) =n" 23T Z;. Setting r,, = n'/2, it follows from
(13) that

Cruo(@) = Guo(2))
¥ Qo ()

" . d 1
nDKL (Nn * SDG'HVn * 900) — 5/ (
S

so long that

n n 5 G é
n 2Nz, RN T Z ) S | e TR in L2(n1) x L?(n2),
(s ey, v g) X L)
where (G0, Guo) = (Gpuo(2), G‘MU(y))(I J)eRixga 18 @ 2-dimensional Gaussian process.

A sufficient condition for the joint weak convergence above is

Guo

72
TS in L=(n2). (62)

" w G o w

n 2N 7 T in L) and 0?7

1* g ;
1=1 =1

To see this, first observe that both 71 and 7, are finite measures on (R%, B(R?)), and hence L?(1;) and L?(1;) are
Polish. Furthermore, given (62), (n=1/23"7" ZZ) and (n=1/2%" Z)
asymptotically measurable in L2 (1) and L? (1), respectively [25, Lemma 1.3.8]. This implies that (n='/2 37| Z;,

are both asymptotically tight and

neN neN

nTVEN L7 <y are jointly asymptotically tight and jointly measurable in L (1) x L* (1) [25, Lemma 1.4.3 and
1.4.4]. Then, by Polishness of L?(n;) x L?(n2), the desired joint weak convergence holds if the finite-dimensional

marginals of the joint process converge weakly (see [64, Lemma 16]), i.e., for every x1,...,2m,T1,...,2; € RY,

(n_1/2 Z Zi(x1), ... ,n~ 12 Z Zi(zm), n~1/?2 Z Zi(fl), cee Z Zz@l)) (63)
i=1 i=1 i=1 i=1
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converges weakly. The latter follows from the multivariate CLT.

Next, we apply Theorem 6 to show that the sufficient condition given in (62) is satisfied when p, v have compact
supports. As in Part (i), the process Z; above is jointly measurable, has paths a.s. in L2(n;), and satisfies the
conditions in Theorem 6(ii). This follows by a similar argument as in Part (i), under the assumption in (26) holds.
Hence, by Theorem 6, there exists a centered Gaussian process G, /L * ¢, such that the first weak convergence
claim in the equation above holds. The second weak convergence claim holds via a similar argument with Z; and
11 replaced by Z; and 1, respectively, provided that

/ —Var# (%T(I _ )) (1 + ec””””) dx < oo.
Re Mk Po(T)
Thus, to prove (30), it remains to show that the above equation holds when p has compact support. This follows

via a direct computation:

Var, (¢o(z =) Var, (o (@ =) efel g,
/., et ‘

p* @g (T ¥ oo ()
2 2
< / ]E# |:<P0' (I - )} dx +/ E# |:<P0' (I - )} ec”deI
Rd u*soa() R u*%()
Jrae” 2 duly d i Jra€” dp(y) cellzl g
[EE yu I EEE yu

RY fpae” 22 dpu(y) B Jgae” 202 du(y)

2z-y—|ly|? Y- uyu

= 2x- y Hy\l

112 -2 d P d
</ T fRdehy - u(y)der/ ol ) eclell g
R4 R4

Jpae 2 du(y) Jrae du(y)
2l lyll = llyl? 2|l lyll = llyll?
|2 I A @ N
S/ 67% fRd 672\\ uuyu uyu2du(y) dx+/ c H%HZ fRd 6—2\\ e Hyu2du(y) eIl dz
“ Jeae du(y) e Jrae 2 p(y)
< c’/ e_Hza2 eIl < oo, (64)
Rd

for some constants ¢,¢’ > 0 which depends on o and spt(u).

Part (iv): To prove (31), we utilize Theorem 2(iv) with p = v *v,. The positivity and absolute continuity of the
probability measures as well as finiteness of KL divergences required in Theorem 2(iv) follow from similar steps
as above, which are thus omitted. Likewise, (61) holds (possibly with different constants ¢, ¢’) since p and v have

compact supports. Moreover, using Jensen’s inequality and steps similar to those leading to (64), we have

20z vl = llvl?
UV % (pa,(:c)z < ]El/ [QD(QT(ZC — )] — HIH fRd € o2 dl/(y) < C/e \|2 Hg Cllz” < C
= = T E = ’
1 P () 1k po () JoeEm T dply)
2Azlliyl~ lyl?
o2 d
vipo(e) _ fpae v(y) < el (65)

o <Po(17) fRd ewd’u(y)

202

for some constants ¢, ¢/, ¢ > 0 which depends only on ¢ and the supports of y,

2/u* po|| < oo
and p * @, log (u * O [V * (pg) € L*(v * ¢,) (note the above inequalities also hold with y and v interchanged).



37

Next, observe that the measures 7; and 7, given in Theorem 2(iv) with ¢(z) = ¢’el*!l have Lebesgue densities

dm , . (v cpg(w))2
a e @)
%u) = 1% o(2) + v % 0o (2) eI 4 ik oy (2), (66)

and hence are finite measures based on the inequalities above. Then, the Polishness of L?(n;) x L?(n2) and the

discussion in Part (4i) implies via (14) with r, = n'/? that

n% (DKL (fin * Yo || Pn * Vo) — DL (1 * Yo ||v % 'Yo))

4 [ Go(@)log <M) da — / GU,U(x)MdI, (67)
Rd

Rd vk g () vk g ()

provided that

1/ <ﬂ" 2 “*%> oy Gy 12,
V*SD(T I/*SD(T V*SD(T

A’n, o w Gl/o- .
1/2 (& _ 1) oy Gre ey
I/*(pg I/*(pg

(68)

Resorting to Theorem 6 once more, we next show that the weak convergence requirements in (68) hold if

Varu(cpg(ac—-)) . Varu(gog(x—-)) e s
/Rd V% o (1) d+/]Rd [ * 9o () o< oo

and

dx < 00,

Var, (oq(x — - Var, (py(x — - * 0o (x

Ri V¥ Po(T) R4 (v * o (x))
respectively. To see this, note that the second term in the penultimate equation and the first term in the last equation
can be bounded as shown in Part (4i7). For the remaining terms, we have from (59) via steps leading to (64)-(65)

that

/ verbeets - '))M:%(x) dx < c’/ o elel P (T) 0’2/ e~ 5% c2ellel gy < oo,
R (v * o (x)) R Vg (x R

and

2
/ w dx < / w dr < C// e Hzm(rH; el dy < 0.
R Rd R4

vk g () vk g () -
Finally, the proof of the claim is completed by noting that the RHS of (67) is a zero mean Gaussian random variable

with variance
CANAI DY / / 209, (@) Li, o () L, e (y)da dy
1<4,j<o TR R

- / / 509 (2, 9) L g (2) L5 (v)dz dy, (69)
R4 JR4

1<i,5<2
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where Ly s, :=log (1% ¢o /v * @o) and Lo f = —p * 9o /v * . The second equality above uses

/Rd /]Rd EL{;L(x,y)d:cdy = /]Rd /Rd cov(tpg(x - X), 0o(y — X))d:z:dy =0.
2) Proof of Lemma 2: Without loss of generality, we may assume that there exists a subsequence (ng)gen such
that E[Dy (fin, * Vo|lpt *7») | < oo forall k € N, since otherwise the LHS of (32) is infinite and there is nothing to
prove. Henceforth, we take n within such a subsequence. Note that since fip, ¥V, < w* Vo, Dy (fin * Yo ||t * V5) =
Episvy, [f © (i * 9o /1% 05)]. Applying Taylor’s expansion of f(z) at « = 1 and observing that f(1) = 0, we have
f (ﬂn * ‘PU(I)) = /(1) (ﬂn * 9o (2) _ 1) +/1(1 ) ((1 _T)+Tﬂn * @g($)> (ﬂn * Po () _ 1>2d7'.
0

p* o () 1 o () px o (@) )\ o po(x)

(70)

Let U,,(2) := n'/2(fi, * ¢, (2) — p * oo (x)). Taking expectation first w.r.t. to y * v, and then w.r.t. u®" in the

above equation, and observing that the first term on the RHS integrates to zero, we obtain

1 * x TTL_% X X
nE[Dy (fun * Yol * Vo) ] ZE[/RG!/O (1—T)f”<u pol) + In( )> UAG) dex]

p* o () B o ()

g [ (@ s @) @ ],
_/]Rd/o(l )Elf< p* po() )u*%(iv)]dd’

where the final equality uses Fubini’s theorem. Noting that the integrand is nonnegative (by non-negativity of f’),

Fatou’s lemma implies

1 _% 2
liminf nE[Dy (fin * Yol * Vo) | = / / (1 —7)liminfE [f// (M*@a(w)-i-Tn ﬁn($)> U5 (@) 1 drde.
n—oo R4 Jo

n—oo 1% Qo () p* o ()
(71)
Next, observe that since U,,(z) = S, Zi(x)/v/n with Z;(z) = @, (v —X;) — px o, (z) and | Z;(z)| < (2m0?)~4/2,
the CLT implies that for every k € N, we have

e e e L

=E[f"(D)G} ,(z) NE] . (72)

Indeed, this will follow by the definition of weak convergence applied to the bounded continuous map y — y Ak,

provided that

I <u - (i)*j@ﬁn(w)) (@) =5 f1() G (e), Ve eR

However, the above come from the CLT, whereby 9, () 4, G0 (), and the extended continuous mapping
theorem (see [25, Theorem 1.11.1]) applied to the sequence of functions g, . (y) = f” (1 * ¢o () + ™ Ey)/
9o (z))y? satisfying lim, o gn.o(Yn) = go(y) := y2f”(1) for y, — y (the latter follows by continuity of f”).

Then, taking £ — oo in (72) and using monotone convergence theorem yields

lim E [f’/ <u * g (z) + méﬂn(fﬂ)> 19;‘;(17)] = ["(VE[G] 4 ()] -

n—o0 1 Po ()
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Substituting the above in (71) and evaluating the integral, we conclude that

f(1) E[G2 ,(z)] () Var, (¢q(z =)
2 x/Rd H* Qo (x) do = 2 /]Rd W * 900(1') dz.

11nH_1)1£an[Df (fn * Yol v6) | >

3) Proof of Corollary 1: As already noted, the claim follows from [69, Theorem 23.9] and the linearity of the first
order Hadamard derivative of the KL divergence functional, provided the tangent cone T (6*) contains a non-trivial
linear subspace. We show this below by considering the one-sample case. The proof for the two-sample case uses
identical arguments, and hence is omitted.

Recall that Dip (fin * Yo [V % o) = ®(Piinsre — Pusy.,0) with ¢(z,y) = dki1(z,y) = zlogz in (7), where
Diinive = fn * Qo /V % Pg aNd Ppury, = [ * Po/V * @ (see the proof of Theorem 2(i4)). The first order Hadamard

derivative is given by

). (hy, hy) = /

y hi(2)1og (Pusry, (x))v * 9o () dz,

for all (hy,h2) € Te(0*) = cl({((91 — Pusy, )/, 0) : (91 — Pusry,,0) € O, t > 0}), where

©= {(91 — Purys0) €D 1 g1 20, lg1ly oy, = 1},
D= {(91 — Pusrer 92 = 1) 01,92 € L0 % %0), |91 = Dy, [l ) + 1192 = Dllg sy, < OO} :

and 7 that has Lebesgue density v * @, + (v * 0 )% /1t * ¢, Further, the proof of Proposition 2(ii) shows that under
the conditions therein, 7 is a o-finite measure and

0 (e Do) 5 BT i L) (73)

Uk Qg
As (n'2 (P, sy, — Ppsv, ), 0) takes values in T (6*), the Portmanteau theorem guarantees that spt (G ..o /v o)
is contained in To(#*). As L%*(n) is a separable Banach space and G, ,/v * ¢, is a centered L?(n)-valued
Gaussian random variable, [68, Lemma 5.1] then guarantees that T¢(6*) contains the reproducing kernel Hilbert
space corresponding to G, » /v * ¢, and hence, in particular, a linear subspace.
Given the above, [69, Theorem 23.9] applies and we obtain

1 ~ ~ d H* Qa(X
n (DL (5 * Yo llv * 7o) — Dk (fin * Yo |V % 70)) = / G0 (x)log (L()> dz ~ N (0, vifKL(,u, v,0)),
Rd vk g (x)

(74)

so long that

/2 (ﬂf *¥o _ fn* %> wy Guo 42y
I/*SOO- I/*SOO- V*SOO'

where both convergences are conditionally in probability. However, the last weak convergence above holds via [80,
Remark 2.5, Page 860] provided that (73) is satisfied.

Next, note by [25, Theorem 1.12.4] (and the discussion preceding it) that (74) is equivalent to

sup_ Ep (|1 (n} (O (i 70 l1v 4 70) = D (in * 76l +70)) ) = £(W1)|| = 02(1),
feBLi(R)
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where Ep denotes the conditional expectation given (X1,...,X,,Y1,...,Y,), BL1(R) is the set of bounded 1-
Lipschitz continuous functions, and W; ~ N (O, vi fKL(u, v, U)). Conclude by noting that the last equation implies
the claim in Corollary 1(7), which is equivalent to convergence in distribution conditionally in probability, since

the so-called Dudley metric dgy, (1, V) := supscpy, (r) [Eu[f] — Eu[f]| metrizes weak convergence in R.

D. Proof of Proposition 3

We will use the following reformulation of a result given in [81].

Lemma 6 (Corollary 2 in Appendix A.9 of [81]) Suppose (7, )nen, is such that there exists h € L?*(m) with
limy, 00 nH? (7, M) = Hh/2||§)m) and [pa, gahdmg = 0. For (X", Y") ~ w5", define A r, z(X™,Y™) 1=
Sy log (dmn (X;,Y3)/dmo(X3,Y;)) and oy, = [Allg r,- Then

Ay o (X" Y™) =172 " h(X;) + 0507 = op(1),
i=1 (75)

Ao (X7 Y™) =5 N (= 0507, 07).
A short proof of the above claim is given in Appendix D for completeness.

For analyzing the type II error probability of the hypothesis test in (35), we require a refined version of the limit
distribution result in (31) that accounts for the dependence of 7, on n. More specifically, we will show that for

(X7 Y") ~

TL% (DKL (ﬂn * ’70”7971 * ’YU) - DKL (,Ufn * ’YUHVn * ’70))

L>/ G .o () log <L‘PU(I)) d:z:—/ Gyoyg(x)wdx
R4 Re

Vo * 0o () Vo * po ()

~ N (0, u;fKL (10, v0,0)), (76)

where (G0, Guy,0) 1s a centered Gaussian process with covariance function ¥, ., ., as given in (25) and
Ug,fm (1o, v0,0) is specified in (69). We shall establish the above under Assumption 5(7) using Lemma 6 and
an application of Le Cam’s third lemma [25, Theorem 3.10.7]. Note that (7, )nen, satisfying Assumption 5 also
fulfills the conditions in Lemma 6, and hence (75) holds for (X", Y™) ~ 71'6@". Consequently, so long that (68)
holds with (u, ) = (uo, o), we have

(n1/2 (ﬂn *Po Mo * @a) 7n1/2 (ﬁn *Po 1) uAn,wn,m)) N ( Guo,a , Guo,o ,W) ,
Vo *$Yo  Vo*Po Vo * Qo Vo * P Vo * Po
in L?(ny) x L?(n2) x R, where 71 and 72 as given in (66) are finite measures for compactly supported (0, 10),

W ~ N(—0.507,07), and the centered Gaussian process (G0 (2), Guy,o(y), W)
function ¥, ,, : (R? x RY) x (R? x R?) — R3*3 given by

() CRI xR has covariance

E[G .o (2)Gruo.o(@)]  B[G .o (@)Groo(@)]  E[Gpp.o(2)h(X,Y)]
EHOWOxU((‘T7y)’ (‘%’g)) = E[Gl/g,a’(y)G,uo,U(i)] E[Guoyd(y)Gl/mU(g)] [GVoyﬂ(y)h’(Xv Y)}
E[A(X,Y)Gupo(@)]  E[MX,Y)Gry,0(5)] o

E
E
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cov(tpg(:c —X), o (% — X)) cov(tpg(x —X), o4 — Y)) E[tpg(x — X)h(X, Y)}
= | cov(po(y = Y), (& — X)) cov(ps(y = Y),00(5 = Y)) E[ps(y = Y)R(X,Y)] |,
E[h(Xv Y)Spa(j _X)] E[h(Xv Y)Spa(g_ Y)} 0}21

for (X,Y) ~ m. This follows by (75), the convergence of finite-dimensional marginals of the joint process (via

the multivariate CLT), and the separability of L?(1;) x L?(n2) x R; see arguments leading to (63).

Having the above, Le Cam’s third lemma [25, Theorem 3.10.7 and Example 3.10.8] implies that for (X", V™) ~

<n1/2 <ﬂn *Po Mo * %7) ,n1/2 <’7n *Po 1) > N (G,uo.,a,h, Gl/o,o.,h)
Vo * Qo Vo * Yo vy * Yo Vo * Qo Vo * Qo
n2)

, where the Gaussian process (G 0,1, Gvo,0,n) has mean function (mq ,, mo ) == (Ex, [A(X,Y)

7@", we have

in L2(nm ) x L?(
9o (-—X)], Ero [M(X,Y) o (-—Y)]) and covariance function 2, ,, » as given in (25). Since j,, and v, are compactly

supported (on [—b, b]?), the proof of Proposition 2(iv) applies and results in

1 . N
n2(DK|_ (fin * Yo l|Pn * 7o) — DL /LO*”YUHVO*"YU))

—>/ 10,0, () lo g<y0*%(( ;) dr — /Rd Gyo,g,h(x)%dm

Next, note that the finite measures 7; and 72 from (66) have bounded Lebesgue densities. Consequently, the
convergence given in (34) in L>°(\) x L>()\) implies the same in L°°(n;) x L>(n2) and L?(n;) x L?(ng). It then

follows via the definition of the Hadamard first derivative (see (49)), similarly to (67), that

1
n?2 (DKL (1t % YollVn * Yo) — Dre (po * Yo llvo * 'YU))

Yo (T) Lo * o ()
4, / ma,p(z) log (70 = ) dx — y m27h(x)7yo - dz.

Subtracting the last equation from the penultimate one leads to (76).

Armed with (76), we proceed to analyze the type I and type II error probabilities, i.e., e1,,(T,) := P(T,, >
tn|Ho) and eg ,(T3,) = P(T}, < ¢,|H1,,), respectively. Consider the test statistic T, = Dk (fin * Vo ||Pn * Vo)

with critical value t,, = ¢ 4+ cn—1/2

for some constant ¢ that will be specified later. Define the event &, . :=
{DkL (fin * Vo |Pm * ¥o) > €-+en~1/2}. Note that (—oo, ¢) and [c, 00) are continuity sets for the Gaussian measure
on R, i.e., with boundary measure zero. Then, with Z,, o := n'/2(DkL (fin * Vo|Pn * Vo) — Dke (10 * Yollv0 * Vo) ).
we have

limsup ey (7)) = lim sup]ID(En757C|H0) < lim supP(Zn_ro > C|H0) = Q(c/vg_,fm(,uo, v, U)), (77

n—roo n—oo n—roo

where v 5 (fo,v0,0) is as given in (69) and @ is the Q-function (or complementary error function) given by
Q(x) = (2m) /2 [ ¢=*"/2dz. The inequality above is due to Dxi (120 * Yo ||v0 * 7o) < €, while the final equality
uses the Portmanteau theorem and (31) (the latter applies since fi, 9 have compact supports). Similarly, defining

Zn,l = n1/2 (DKL (,an * 'Ycr”ﬁn * 'Ycr) - DKL (,Um * 'Ycr”Vn * 'Ycr)) and gn,e,c = {DKL (,[Ln * '-Ya'Hﬁn * '-Ya') S €+
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en~1/2}, for the type II error probability we have

limsup es (7)) = lim sup]P( 7n1€16|H11n)

n—oo n—oo

— limsup]P’(Zml < _nl/Z(DKL (i * Yo [|[Vn * Vo) — 6) +ec |H1n)

n—oo
<limsupP(Z,1 < ¢— C|Hy )
n—oo
= 1-Q((c = O)/v2,5 (10,10, 0)). 78)

where the last inequality uses Dkp (fin * Vo ||Vn * 7o) > €+ n~Y2C and the final equality uses the Portmanteau

theorem together with (76).

To arrive at the result in Proposition 3, it remains to appropriately upper bound vg s (to, v, ). By using

Cauchy-Schwarz inequality and the fact that second moment upper bounds variance, we have

oV (o (& = X), 00y — X))* < Epy [02 (2 — X)|Epp [02(y — X)]

z—z|2 — 2|2
= (27m2)_2d/ e duo(z)/ e duo(z)
R R

_ 2024 _ U=l®+)vl?)
< (2m0?) 272" ¢ 202

where the last inequality uses ||z — z||* > |lz||* /2 — ||z||*. Hence

(1,1) on_qg P24 _U=lP+lyi®)
E#o vo, U(I’y):COV(<PU(I_X)a@a(y_X)) < (2m0°) e e 102 .

By following similar steps, for all 1 < 4,5 < 2, we have

24 (=12+]vl?)
ELZO{ZO S(2,y) < (27TU )7debcr2 e~ 43
Also,
) f f —2uzuuzgfuzu2 ( ) f 2\\z\|\|z\|;\\z\|2 ( ) . .
— —2b x [ 20 z e 20 z 2bVd ||z
e e - < =B 2= [=1° - < o fol0) < R SRR - < elet ST
f]Rd e pys>) dvo (2) Vg * Qo (CC) f]Rd e 202 dvy (Z)
Combining the above bounds, we have from (69) that
3 g (0.0.) / [ S0 o0 Li ()L () dy
1<4,5<2 R¢ JR?
/ / UEILEAH >((b2d+4b\/ﬁ|x||)(b2d+4b\/ﬁ|y|)
271'0 de (72 1
Rd JRE 4o
+ezb2d+4bi<u I+ 1wl +eb2d+§:\2/8uzu (b2d + 4bV/d ||y]|)
202
L+ laraya (bd +;1b2¢8||x||>> dedy
g

=: Cb,d,o' (79)
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For 0 < 7,7’ < 1, setting ¢ = ¢p,4,,Q (), the claim of Proposition 3 follows from (77) and (78) with Cp 4,57/ =
c—ChaocQ (1 —1).

E. Proof of Proposition 4

Part (¢): Since ||d(vo ® po)/dmol|,, < oo, there exists ng € N such that the RHS of (37) is non-negative mo-a.s.,

and henceforth, we take n > ng. Further, observe that 7, specified by (37) is a valid joint probability measure as

/ thn:/, dro +en~ 2 (d(po ® vo) — d(vo ® f10) = 1.
R4 x R4 R x R4

Via Taylor’s theorem applied to fy2(x) = (y/z — 1)? around 2 = 1 and using f’(1) = f”(1) = 0, we have

dr, 1 [* 1- dmp 2 e 1-
furo 25/ SRR (dﬂ _1> dT:i/ L
T 2 iy 2 ’
0 0 ((1—7’)+7’d”") 0 0 ((1—7’)—1—7’”")2

[N

dmo dmo

Multiplying by n and taking expectation w.r.t. my leads to

1
1—17
nH? (ﬂ'm?TO):/d d/ ( ) 3/2h3,075d7'd7ro.
BRI g (- 7) 4+ rim)

Note that the integrand in the RHS above is dominated by 0.5(1 —7)~/2h2

70,c> Which is integrable w.r.t. the product

measure 7 ® mo under the assumption ||fix, |, < oc. Taking limit, the dominated convergence theorem and the

fact that dmr,, /dmy converges pointwise to 1, imply that

2
2,71'() .

1
. 2 _: i}
nhrn nH? (7, m) = 1 | Ao el

Moreover, it is readily verified that fRded hryedmo = 0. Finally, the marginals of =, satisfy du, = duo +
nil/Qé(duo — dig) and dv, = dvy + n~'/2¢(dvy — dpo), which implies
[in * Qo = o * 0o + 1 2E(1o * @ — 10 * @),
(30)

Un * Qg = V0 * Yo + nil/zé(yo * Qo — Mo * 900)7

and thus

3

a1/2 <un * o — fio *%) _ o *po = v % g) _ Eny [hrg o(X, V)0 (- = X)]

VO*SDG' VO*SDG' Vo * Yo
pl/2 (Y *Po V0K Po | _ &(vo * oo — 1o * ¥o) _ Erg [ro,o(X, Y ) o (- = Y)]
Vo * Qo Vo * Qo Vo * Qo '

Hence, (34) is satisfied (with pointwise equality), verifying all the requirements in Assumption 5(¢) and concluding

the proof of Part (7).

Part (4¢): Note that |[hryclly ,, < 00 as [[d(vo @ po)/dmol| o x, » [1d(10 ® 10)/dmol,, ,, < oo. Hence all the

assumptions in Part (i) are fulfilled thereby implying via the proof above that Assumption 5(i) is satisfied. So, we
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only need to verify that Assumption 5(7¢) holds. By Taylor’s theorem applied to ¢k (z,y) = xlog(z/y), we have

1 o log (u) o % oo log (M)
n * Qo Vo * Yo

% %
— (1 +1og (222 (un*%—uo*%)—M(vn*%—Vo*%)
Vo * Po Vo * Qo

(1—7)dr

o * Po + Thin * Qo

o (1 (A =7)((1=7)po * @o + Tin * o )dT
+ (Un * o — Vo * Pg)
0 (1_7-)1/0*()00""7—”11*900

1
2
+:u'n*<7_/14*<7/
I

(1 —7)dr

Vo * Qo + TUp * 05

1
_2(:“71*900 _NO*QPU)(VR*QOU _VO*QPU)/
o 1-=7)
Taking integral w.r.t. Lebesgue measure and simplifying using (80), we obtain

DkL (fn * Yo llvn * 7o) — DkL (1o * Yo |[v0 * Vo)

_1_
=n"2¢(DkL (o * Yo 70 * Vo) + Dke (V0 * Yo |l 1o * Vo) + X* (10 * Yo [0 * Vo))

02/ 2 ! (1—7’)
+— [0 * P — V0 * 0o / drdx
n ]Rd( ) o (1 =7)po * po + Tiin * 0o

2

c 11— 1-— * Py + Ty * Oo
+ C_/ (VO * Yo — Mo * <Po)2/ ( T)(( T)MO ’ T Ld )dex
n Jpd 0 (1 =T * Qo + TUp * Oo

262 2 ! (1-7)
+— [ (0% ¢s — ho*¢o / drdx
R4 ( ) o (1—-17)

n Vo * Qo5 + TUn * Qo

_1_
> n"2¢ (Dke (o * Yo |10 * Vo) + Dke (0 * Yo |l o * Vo) + X* (1o * Yo [0 *70) ),

where the final inequality is due to the omitted terms being positive. The proof is concluded by noting that the

RHS is larger than Cn~'/2 for ¢ sufficiently large.

F. Proof of Proposition 5

We consider the test statistic T,, = Dky_ (fin, * Vo ||Pn * 7o) With critical value ¢,, = e-+cn~'/2 for an appropriately
chosen o (small enough) and ¢, and analyze the resulting asymptotic error probabilities of the hypothesis test in
(38). The choice of o relies on the stability lemma (see Lemma 3) which quantifies the deviation of KL divergence
from its smoothed version as a function of o.

Recall that M, €, s, § are known constants such that M < M < 0o, e < é< & and 0 < s < s < § < 1. Let

Oce.s.5.d. 01 equal z such that
casM(M +1+1logM)(z®Va®) =€e—e. (81)

Choose any o < 0. ¢, 5 4.57» Whereby cq M (M + 1+ logM)o® < € — e. Hence, (40) and Dy (u1][v1) > €
imply Dki (g1 * Yo |lv1 *95) > €. On the other hand, the data processing inequality along with the fact that

Dke (pollvo) < e imply Dkp (1o * Yo ||v0 * Vo) < €. Then, for the test statistic T},, we obtain via steps leading to
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(77) that

limsup e, (Th) < Q(¢/va, s (10, 0, 7).

n—r oo

Setting Zy,,1 := n/2(DkL (fin * Yo || Pn * Vo) — Dk (11 * Yo|[v1 % 75) ), we further have

limsup ey, (T),) < limsup]P’(Zml < —n1/2(DK|_ (11 * Yo llv1 * 7o) — €) + c|H1) =1-Q(—00) =0,

n—00 n—00

where the penultimate equality uses the Portmanteau theorem applied to Z,, ; converging weakly to a Gaussian
random variable (via (31) with v%fm (p1,v1,0) < cpa.0 similar to (79)), and ¢ — n'/2(DxL (11 * Yo |1 * Vo) —€)

diverging to —oo due to Dk (p1 * Vo ||v1 * 70) > €. Choosing ¢ = ¢p.4.,Q () (see (79)) completes the proof.

G. Proof of Lemma 3
For 7 € [0,1], let z,, - () := (1 — 7)pu(z) + T * oo (x) and 2, ,(x) := (1 — 7)pu(x) + TV * @ (x). By Taylor’s
theorem, we have

e ) tog (2220) 0105 (2220 ) (i) ) [ (14108258 ) ar

- (V * g () —p,,(x)) / Mdr

o Zur(T)

Note that 1/M < p,(x)/p.(z) < M by assumption, which implies 1/M < p % o, (x)/v * 9o (x) < M, and hence

L _pu(@)  pxee(@) o 2ur(2)

pﬂ(x) M*QDU(JI) " d
M = py(z)  vxps(z) = zr(2) = Pu() v v g (T) <M, VzeR%

Integrating w.r.t. Lebesgue measure in the above equation, we then obtain (note that M > 1)

IDw (ull) = Dic (0=l 9] < (14108 M) [ i o) = pu@)l o4 M [ 1vola) = pula)| o
(82)

The first integral is bounded as follows:

x) — Wk x)|dxr = x)—o @ 1 ((z— ot x
| oute) = nrpo@ldn = [ fpute) = [ puwen (=)o) dyd
:/Rd pul) —/de#(:zr—az)gal(z)dz dx
— [, tu@)er2) = pute = o29pa(2)) s do
Rd Rd

A
INS

/Rd (/Rd Pu(z + 02) = pu()] dil?) p1(2)dz

/ k11 (Do ||2])) 01 (2)d
Rd

INE

(©) .
< Mo [ (e
]Rd

where (a) uses Fubini’s theorem, (b) is by the definition of the modulus of smoothness in Definition 5, while (c)

is because p,, € Lip, ; (M, X). Following similar steps with 1 replaced by v, the same bound holds for the second
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integral term in (82), which concludes the proof.

VIII. CONCLUDING REMARKS

This paper provided a unified methodology for deriving one- and two-sample limit distributions for f-divergences,
under both the null (i.e., when the population distributions are equal) and the alternative. We focused on four
prominent examples, namely, KL divergence, x? divergence, squared Hellinger distance, and total variation distance.
The general limit theorems were stated under technical conditions on the distributions which guarantee Hadamard
differentiability of the relevant f-divergence functional. The framework allows arbitrary estimators of the population
measures and accounts for dependent data, which renders it rather flexible and broadly applicable. We instantiate the
general limit distribution theory to the setting of Gaussian-smoothed f-divergence, showing that the limit (except
for TV distance) is Gaussian under the alternative, or can be represented as a weighted sum of i.i.d. x? random
variables under the null. In contrast, the limit distribution for smoothed TV distance in both the above scenarios
is non-Gaussian. We also proposed a hypothesis testing pipeline for auditing DP and characterized its asymptotic
level and power by utilizing our distributional limits.

While this work focuses on f-divergences, a limit distribution theory for other classes of divergences, such as
integral probability metrics and Bregman divergences, are largely unexplored and worth pursuing. We believe that our
approach based on the functional delta method and Hadamard directional differentiability can be extended to cover
those cases as well. Another appealing research avenue is to explore asymptotic distributions of more sophisticated
(non plug-in) estimators of f-divergences. This includes approaches based on bias correction mechanisms (e.g., [32],
[39], [40]) or variational methods (e.g., [35], [42]). While such estimators are known to achieve better minimax rates
over appropriate classes of distributions, the main challenge here is to establish regularity conditions under which the
Hadamard derivative of the relevant functional exists. Towards that end, recent results on Hadamard differentiability
of supremum-type functionals [82] may be useful for deriving limit theorems of variational estimators. Yet another
intriguing question pertains to establishing Berry-Esseen type results, which would reveal the convergence rate of
the empirical f-divergence to its distributional limit. However, deriving such results is highly non-trivial and would
require different tools and technical approaches than the empirical process theory-based techniques employed in

this work.

APPENDIX A
PROOFS OF PART (iii) OF LEMMA 1, THEOREM 1, AND THE CLAIM IN REMARK 1
1) Proof of Part (iii) of Lemma 1: We will use similar steps as in [24, Theorem 1] and [24, Theorem 2] with
the extended continuous mapping theorem replaced by Theorem 1. We highlight the relevant steps for the claim
that Part (i) of Lemma 1 holds. The proof that Part (i:) holds is similar and omitted.

Recall that since © is convex, the tangent cone is given by (see [24])

n—00

To(0) = {h €®D:h= lim i for some 6,, — 0 with 8,, € © and ¢, ¢O+}

n

=cd({(@-0)/t:0€0, t>0}).
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Since To(#) is closed, its boundary is a Borel set. Set ©,, = {h € © : 0 + (h/ry,) € Do}, D, ={h € D :
0+ (h/rn) € O}, Dy = Do = T (), g = D), gn(h) = rn (P(0+ (h/rn))—@(0)), Hy = 10 (Zn—0) and H = Z.
Then, the claim will follow from Theorem 1, provided that P(H € int(Te())) =1 and D, C D \ int(Te(0)),
since these imply P (H € D) =1 and P(H € ©,) =0.

The first condition above follows from

P(Heint(To®)) Y1-P 1 ¢ To®) L1- Tim P (H, ¢ To(0)) 9y Tim P*(Z, ¢ ©) =1,
where (a) is because P(H € 8%o(f)) = 0, (b) is since H, — H and Portmanteau theorem, (c) is due to
Z,, € © implies H,, € To(0), and the final equality follows from P* (Z,, ¢ ©) — 0. To show the second condition,
suppose h € int (‘I@ (9)) We claim that there exists m € N such that h € int (@?) for all n > m which implies
that h ¢ Up>m® \ D;7 2 D, as desired. To see this, note that & = (6 — )/t for some ¢ > 0 and € int(O).
Let 0, := af + (1 — a)f for a € [0,1]. We have §, € © since © is convex. Then, by definition of D;,
antn (0 — 0) = r,,(0a, — 0) €D, Hence, for n > m = min{n : r,¢t > 1}, we have h € int(D,,’) by choosing
ay, = 1/(try,). Hence, all the conditions in Theorem 1 are satisfied under the assumptions in Part (iiz) of Lemma 1,
and consequently 7, (®(Z,) —®(6)) N ®,(Z) follows. The proof of r,, (®(Z,) —®(0)) = ¢f (rn(Z,—0))+o0r(1)
and Part (iz) follows similarly to [24] with the relevant steps adapted as above, and hence omitted.

2) Proof of Theorem 1: Since the proof follows closely to that of [25, Theorem 1.11.1], we only highlight the
differences. Following similar steps as therein, we have that g restricted to ©, N D, is continuous, and hence
g(H) is Borel measurable.

Consider a closed set C C &. Then, we have

MU gm' (€) S g7 (C) U (D \ (Do NDy)) UD., (83)

m

where C denotes the closure of the set C. Indeed, if & is in the set on the left, then one of the following condition
must hold: (i) there exists a divergent sequence (ny)ren such that h,, € g, '(C)ND_, and d(hy, ,h) — 0, where
d(-,-) denotes the metric of D; or (i) there exists a divergent sequence (ny)xen such that k., € g, '(C)N(D\D,’)
and d(hy, , h) — 0. If (7) holds, then by the assumption in the theorem, either gy, (hy,) — g(h) Gf h € Do NDy)
or h € D\ (Do NDy). If g, (hn,) — g(h), then g(h) € C since gn, (hy,) € C and C is a closed set. On the other
hand, if (i) holds, then this implies that h € N_, U g, (C)N(D\D;7) € NX_,U2, (D\D,7) C D..

k=m

Hence, (83) holds. Then, we have for any fixed & that

limsup P (gn(Hn) € C) < limsup P (Hn € U, gm! (C)) <P (H €U g (C)) , (84)

m
n—roo n—oo

where the final inequality follows from H,, —— H and Portmanteau theorem [25, Theorem 1.3.4]. Taking limit

k — oo, we have

limsup P (g () € €) < P (H € M2, U 9w (C))
n—oo
(@)
<PHeg 'C)+P(HeD\ (D NDy)) +P(H € D,)
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Y pg(H) ), (85)

where (a) is due to (83), and (b) is because P(H € ©.,) = 0 by assumption and
P(HED\ (Do NDy)) =1-P(HEDeNDy) =1—-P(H € Do) = 0.

Since C is an arbitrary closed set, g, (H,) — g(H) again follows from (85) by Portmanteau theorem.

3) Proof of the claim in Remark 1: The proof follows by using Part (éi4) of Lemma 1 in the proof of Part
(i) and (iv) of Theorem 2. Recall that Q,, := {w € Q : p,, (W,")/pu, (w,-) < q(-)}, and let Q,, := {w € Q
Zn(w, ) = (pu, (W, ") — Pu, Pu, (w,-) — 1) € O}. Note that under the conditions in Part (¢¢7) and (iv) of Theorem
2 sans the requirement p,,, /p,, < q as., 2\ O, = (2\ Q,) UNy for some null set Ny of outer probability
zero. Hence, P*(Z,, ¢ ©) = P*(Q2\ Q,) — 0 under the assumption in Remark 1. Also, Z = (Bj, Bs) being
continuous implies P(Z € 0T (#)) = 0. Hence, all the conditions in Part (iii) of Lemma 1 are satisfied, and the

result follows.

APPENDIX B

PROOF OF LEMMA 4

Since g, — g in L" (p), for every € > 0, there exists ng(e) € N such that gn]|,. , < llgll,., + € for all

n > no(e). Thus, for every n > ng(e), we have by Minkowski’s and Holder’s inequality that

1 fngn = fally, < 1fngn = fgully, + 1 fon = fall1,
<N o= Fllyplgnllyr , + I, lgn = 9l , -

<\ fu= 1, gl p + )+ Nl llgn = gl -

The RHS converges to zero since f, — f in L"(p) and g, — ¢ in L" (p), thus proving Part (i). The claim in
Part (i7) follows from [25, Example 1.4.7 (Slutsky’s lemma)] by the separability of L"(p) spaces for 1 < r < oo,
and the continuous mapping theorem applied to the continuous map (f,g) — fg from L"(p) x L™ (p) = L*(p)
by Part (4).

APPENDIX C

PROOF OF LEMMA 5

Part (i): The convexity of ¢xi, ¢,2 and ¢n2 follows since these are perspectives'! of the convex functions fi(,

fx2 and fy2, respectively (see [83]). Computing the partial derivatives yields

Do (o) = 1410g (2), DOV a9) = -2,
Y

y (86a)
x
D(072)¢KL(‘T7 y) = o

1
DYV gy (z,y) = =y DO gy ()

=
x

<

" The perspective of a convex function f : R — R is the function f, : R x Ry — R given by fp(z,t) = tf(z/t).
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2 2 ’ 2 (86b)
ZT
DIV o(z,y) = —=, DPV¢a(z,y) = " DO (2, y) = =,
DDy (z,y) =1 —y2a~ 3, DOV (a,y) =1 - a2y 2,
(86¢)

o
(M

1 1 2 1 52 1 _
DDy (a,y) = =522y, DV%e(w,y) = 5a72y2, DOVoue(a,y) = Sy

These partial derivatives obviously satisfy the continuity conditions in Assumption 1 and those mentioned in the

xTr2.

statement of Lemma 5 (i), thus completing the proof of Part ().

Part (¢2): For (ii)(a), first note that for g1, g2 > 0 and gF, g5 > 0, we have

1-— 1
D00 (1= 7). 98) + rlonsga) [ (1= ) = = < L

The case of DV ¢y is similar, while for D(*:?) ¢y , we have for (g1, g2) € ©(q) that

1-7n)(1—-7)97 +7 * *
D96 o (1~ 7)) + rlon g0)) [ (1 - 7y = LoDt o) ot o o8
(1 =7)g3 +792) 95" 29392~ 93 93

For (ii)(b), the case of DV ¢ > and D¢, > again can be shown as above, while

2
20 —-7)(1—=71)g7 + 7 *2 2 *2 2
’D<o,2>¢xzo((1_7)(9;,g;)+7(gl,92))‘(1_7): (1=7)((1 =7)g; 391) S S
(1= 7)g3 + 792) %

Finally, for (i7)(c), let (g1, 92), (g%, 93) € ©(q1,q2). We have

(1-1) 1
(1= 7)g5 +792)*((1 = P)g +701)%  (g798)°

A

DU g0 (1= 7)(g5, 95) +(01,92) (1 = 7) <

IN

‘D(2’0)¢H2 o ((1—7)(97,95) + T(91,92))‘ (1-7)% (=)@ = 7)gj + T§g2)§
(A=7)gt +791)*

*5 3_1/2 *3 3 1
g g5 T g qs T2

< i§ + *32 1 < ié + *32 2 1’
9° g (1-72 g¢g° g¢g*(1-71)

where 71/2(1 —7)~2 € L([0,1], A). The bound for D(®?)¢4> can be shown similarly, thus completing the proof.

APPENDIX D

PROOF OF LEMMA 6

The claim follows from the proof of [81, Appendix A.9, Corollary 2] (see Page 500-501) by noting that the
condition (a), (b) and (c) given therein which suffices for the proof to hold are satisfied under the conditions here.
Specifically, condition (a) is equivalent to lim,, . nH? (7, ) = Hh/2|\§)m (with § = h/2 and p = o in the

notation therein) which in turn also implies (b), while (c) is equivalent to [, a hdmo = 0.
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APPENDIX E

LIMIT DISTRIBUTION FOR GAUSSIAN-SMOOTHED X2 DIVERGENCE, H? DISTANCE AND TV DISTANCE
A. x? divergence

We consider distributional limits for the Gaussian-smoothed y? divergence.

Proposition 6 (Limit distribution for Gaussian-smoothed x? divergence) The following hold:
(i) (One-sample null) If (26) is satisfied, then there exists a version of G, » such that G, o[/ * ©o is L?(R%)-
valued, and
2
G0 (@)

Sl A 87
ik po@) ®7

~ d
nx? (fin * Yol * 7o) —>/
R

where the limit can be represented as a weighted sum of ii.d. x* random variables with 1 degree of

freedom. In particular, (87) holds for B-sub-Gaussian p with 8 < o. Conversely, if (26) is violated, then

E[X? (fin #7011 % 7) ] = 00 for every n € N.

(ii) (One-sample alternative) If (28) holds and x* (1 * @4 ||V * ps) < 00, then

1 ~ d
n2 (X* (fin * Yo lv £ 790) = X* (1 Yollv +76) ) = N (0,07 ; , (1., 0)), (88)

where ’Uif , (1, v,0) is given in (92). In particular, (88) holds for B-sub-Gaussian p with 8 < o such that
p < vand ||dup/dv|,, < oo.

(iii) (Two-sample null) If . has compact support, then there exists a version of G, o, G0 such that G, o [ \/IL * @
and G, o |/l * 9o are L*(R%)-valued, and

(Gpol@) — ()

d 5
p* 0o ()

nX2 (ﬂn *’YUHﬁn *'7(7) — /
]Rd

dz, (89)

where the limit can be represented as a weighted sum of i.i.d. x* random variables with 1 degree of freedom.

(iv) (Two-sample alternative) If i, v have compact supports, then

1 . . d
2 (0 (i * Yol #70) = X2 (15 Yol * 75) ) == N (0,03 ¢, (1, v, 0)), (90)
where v3 1o (v, 0) is given in (94).
X

Proof. Since the general idea of the proof is similar to that of Proposition 2, we only provide a sketch of the proof,

while highlighting the differences.
Part (¢): We apply Theorem 3(i) with p = p * 7,. We have

(S (ol = X0) — px po(a)) )

dx
* 9o ()

. (a) 1
E[X? (fin * Yol % 7o) | = —2/ E
n Rd
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®) 1/ El(%(:v—X)—/Mcpa(év))2 "

n 1% o ()
1 V o -
:_/_ﬂﬂa@_ﬁm, o1
nJga  p* ()
where (a) is by Fubini’s theorem and (b) uses that Xi,...,X,, are ii.d. Consequently, under (26), we obtain

X2 (fin * Yo ||t * Vo) < 00 a.s. The rest of the proof leading to (87) via Theorem 3(i) is similar to that of Proposition
2(i) and proceeds by showing that the conditions in Theorem 6(i7) are satisfied; we omit the details to avoid
repetition. The claim that (87) holds for 5-sub-Gaussian p with 8 < ¢ is a consequence of [78, Proposition 1] by
noting that the LHS of (26) equals I,2(V;V + Z), with V ~ p and Z ~ ~, independent of each other. The final

claim is obvious from (91).

Part (¢7): Note that

n 2
E[X2 (ﬂn*'YUHV*'YU” :/ ; (Z (‘PU(I_XZ')_V*‘PU(ZC))> dx

E
ra N2V *x g () P

(

S

IN

)/R #EH [(gog(x—X)—y*gpg(x))ﬂ dx

a Vk oy (x)

® [ Varu(eq(z—-)) 2
= d o o)
/Rd o) GEHX (b @ollv* ¢o)

where (a) uses the convexity of the map z — 22 while (b) is because X1, ..., X, are i.i.d. Since the RHS of the
above equation is finite by assumption, we conclude that x? (fi, * 7o ||pt * 7o) < oo a.s. Also, under (28), it follows

that

An o g w G o .
n1/2<u X Qo K >_> iy in L2(u + o),
VX Qs V* Qo V* Qo
via similar arguments to those in proof of Proposition 2(i¢). Then, (88) is a direct consequence of Theorem 3 (i)
with p = v x 7,, which implies

)u*%(fr)

1 ~ d
O o #3005 50) =8 s el 590)) 492 [ Gl B

dx ~ N(O, vif;ﬁ (1, v, J)),

where

Ty =4/ / $(L1) p*9o(@) pxeoly) oo 9
’Ulijz(,u,l/,U) re Jra “’V’U(x’y)u*wg(:r)u*wg(y) €T ay (92)

Finally, the last claim follows from the first since (28) is satisfied for -sub-Gaussian p with § < o and
ldp/dv| ., < oo due to (60), and by (59)

XQ(N*%IIV*%):/W (M—1>2V*%(x)dx§2<

vk oq(T)

H* Po
I/*SD(T

2
+1><oo.

o0

Part (ii¢): We specialize Theorem 3(ii:) with p = u * ~,. First, note that the absolute continuity requirements on

the distributions are satisfied, and pg, +v, > 0. Also, X? (fin * Yo ||0n * 75) < 00 a.s. since with X ~ fins Y ~ iy,
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X ~ p independent of Y ~ p, we have

E[x2 (fin * Yollim * 70) ] = E[x? (N(X, UQId)HN(Y, am)) ]

A
INe

E[x* (N(X,0°1q)||N(Y,0%14)) |

“vi2] (e
O [e'xﬁ ] 9 . 93)

Here, (a) follows by convexity of x? divergence, (b) uses the closed form expression for x? divergence between
multi-variate isotropic Gaussians [84], and (c) is because p has compact support. On the other hand, taking ¢(x) =

el such that fi, * 0o () /0 * 0o (x) < q(z) a.s. based on (61), we have

d
%(év) = (1+ e ) px o, (a),

d
%@ = (14 ceclel 4 2e2ellel i o, ().
X

Setting 7,, = n'/2, it follows from (17) and the arguments in the proof of Part (4i7) that

o(@ )) 2d:z:

3

wo () = Gy,
(x

2 /A ~ d
nx (un*%l\vn*%)—>/
S H* Pa T

)

provided that (62) holds. By the same arguments as in the proof of Proposition 2(#i¢), this holds if

Var(9o(@ =) (1 | c2ellel) gy < oo
/Rd o (1+ ) dx < oo,

which in turn is satisfied because spt(u) is compact (see the derivation leading to (64)).

Part (iv): We employ Theorem 3(iv) with p = v*~,. The required positivity and absolute continuity requirements

of the probability measures are readily verified. Also, using Jensen’s inequality and (93), we have

X2 (,LL*'YUHV*'YU) < E[X2 (ﬂn *FYUHﬁ" *FYU)] < 0

which implies X? (fin, * Yo ||Pn * Vo) < o0 a.s. Moreover,

[ (u*soa(x))4dx:/ (fw S duty )>4dx

(o) (o0 U(y)y

2z y—||yl|?

o (e )

= / 6 202 3
d zy—|y|?
- <fRd S dV(?J))

</ e ”z el gy < .
= )

Taking ¢(z) = /eIl with fi,, % 0, (2) /0 * o (2) < q(z) as. (see (61)), we have

dzr

dm

. (2) = U % 0o (2) + 1% po () + v % oo (x) eIl
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2

vk 05 (1)
/2 in (18), yields

12+ N 2 d B* o (T) B 9o (T) ?
O (o 3010 290) = G220l 4 90)) 52 [ G @28 to [ (0 (L2220 o

~ N(O, v%fxz (u, v, U)),

provided that (68) holds. Here, the variance is given by

Similarly to the proof of Proposition 6(iv), setting r,, = n'

Gralne)= 3 [ ] S el @)L W) dy
1<4,5<2
/ / ug)a € y 1, f 2( )L7f 2( )dl'dy, (94‘)
1<4,5<2 R4 JR4

with L, J2 =2 (ux s /v py) and Ly S =1 po [V * ¢, )?. Finally, Theorem 6 implies that (68) is satisfied if

/ Yaruleole )y, el dg +/ Var,, (g (2 — ) 1% ¢ (2)
Rd

5 dxr < 00,
Vg () Rd (v * o (x))
Varl,(cpg(x — )) 626”1” N Val’u 900 T — )) (M * ‘Po(‘r))j < 00
L e +Z/ Grm@y

which holds for compactly supported p, v, akin to (64). This completes the proof.

B. HZ? distance

The following proposition obtains limit distributions for Gaussian-smoothed squared Hellinger distance

Proposition 7 (Limit distribution for Gaussian-smoothed H? distance) The following hold

and

(i) (One-sample null) If (26) holds, then there exists a version of G, » such that G, o/ /I ¥ Do IS LQ(Rd) valued

1 G? (x)
0H2 (fin * Yo [1% Yo i>—/ LAt Y (95)
( )73 & 1* 9o ()
where the limit can be represented as a weighted sum of ii.d. x

random variables with 1 degree of
freedom. In particular, (95) holds for B-sub-Gaussian p with B < o. Conversely, if (26) is violated, then

lim inf,, s~ nE[H2 (fn * Yo, pt % ”Ya)] = 0.

(ii) (One-sample alternative) If

Ad%dx+4d Var, (o (z =) (V>l<<pg(:1c))é iz < oo,

96
p* 0o () p* oo () ©0)

then

1 ~ d
n® (H2 (fin % Yo, v+ Y0) — H2 (1% Y0, v % 75) ) == N (0,07 ¢ (11, 0)) (97)
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where ’U%_’sz (u, v, o) is given in (102). In particular, (97) holds for B-sub-Gaussian p with 8 < o and v <
such that ||dv/dp|| ., < oc.

(iii) (Two-sample null) If

Var#(<pg(:1: — )) dr <
TP T ) r < oo, (98)
/R“‘ (1% o ()™

then there exists a version of G, 5, éu,g such that G, 5 /\/lt* ¢, and éu)g/‘/u * O, are LQ(Rd)-valued,

and

~ 2
1 Gro(®) = Gpo
TLH2 (ﬂn *’Ymﬁn *'7(7) i> — ( Ll (l‘) o) (1‘))
4 Jra N*‘PU(I)

dz, 99)
where the limit can be represented as a weighted sum of i.i.d. x* random variables with 1 degree of freedom.
In particular, (98) and (99) holds for [-sub-Gaussian p with 3 < J/\/E.

(iv) (Two-sample alternative) If either of the following conditions hold

a) p,v have compact supports;

b) ||dp/dv||, < oo, and

Var, (¢o(z — ) . Var, (oo (z — ) . Var, (o (z = -)) < 00"
/Rd d+/w oz —1)) 4 +/Rd—d< . (100)

3/2 3/2
(% ¢a (@) x o (o) (v * oo (@)
c¢) The conditions in (b) hold with the role of 1 and v interchanged;
then
1 N . d
12 (H2 (fin % Yo, o * 7o) — H2 (570, v 5 %0) ) =2 N (0,03 1, (1, v,0)), (101)

where v%)fH2 (p, v, 0) is specified in (105). In particular, (101) holds for 3-sub-Gaussian j, v with 3 < o/\/6
such that p <> v and ||dp/dv||  V ||dv/dpll, < oo.

Proof. The proof relies on Theorem 4 by ensuring that the relevant conditions therein are fulfilled.

Part (¢): We apply Theorem 4(i) with p = 1 * y,. Observe that p, = 2 and that the positivity and absolute
continuity assumptions are satisfied. Then, (95) will follow from (19), provided (52) holds, which in turn is fulfilled
under (26) (see (54) and the following discussion). The penultimate claim is because S-sub-Gaussian p with 8 < o
satisfies (26), as mentioned in the proof of Proposition 2(i). The final claim follows by instantiating Lemma 2 to

H? distance and noting that fy» satisfy the regularity conditions therein.

Part (ii): We apply Theorem 4(ii) with p = p x v,. Note that ||V * ps /1 * @y = 1 and dn/dz =

H 1,pu*xps
1/2 1/2 S . . .
* Oy + (,u * gpg) (u * cp,,) , which implies that 7 is a finite measure. Thus, provided that

nt/? (L” fPo 1) 2y, Cuo oy p2gy,
n* o ¥ Po
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we obtain from (20) the limit distribution

u*%(x)>%

2
H* 900(95) GMU(:E) du N(O’v17fH2 (Ma v, 0)),

1 . d
nz(HQ(,un*vg,y*%,)—HQ(M*WG,U*WU))—> (
R

where

1 1
(11) V*‘PG(I))2 (V*¢U(y))2d d (102)
7VU ua’ €T ay.
Vg /]Rd /Rd . (u*%(:v) 1* po(y) ’

To establish the weak convergence condition we again verify Condition (i) of Theorem 6, which uses the assumption
from (96), and then invoke Theorem 6(i) (see the proof of Proposition 2). The final claim follows as the LHS of
(96) is finite for S-sub-Gaussian p with 8 < ¢ and ||dv/dp||,, < oo, based on (59) and the arguments at the end

of proof of Proposition 2(3).

Part (iii): We specialize Theorem 4(ii4) with p = p*~,. Setting ¢ = g2 = ca.o/ %7 Where cq, = (2m0?)~%2,
we have that 71 = 12 = 7 is a o-finite measure specified by the Lebesgue density dn/dx = 2uxp,+ (cd)g % gpa) 1/2

(note that both terms are bounded on R%). Then, from (21), we obtain

ol (Cuo(@) — Guo(a))®
(G}

HZ (fin * Qs Up * 05) —
provided that

(e ), G g e (Bt ), Gue oy
H* Qo H* Qo H* Qo H* Qo

Applying Theorem 6(ii), the above weak convergence holds once (98) is satisfied.

To prove the final claim in Part (ii7), we first note that

V o(x —
/ ar“(‘P D g < / / gdxdmy)
R4 R4 JRA u*(pd §

(1 * ¢o
2y-2/0” 2|/
Y L / de d
= e X .
/Rd (2702)? Jra (1 po(x))? H)

Since ||z —y[|? < (1 +7)||z]|? + (1 + 77 H)|jy||*, VT € (0,1), Jensen’s inequality implies

=3(147)lz]|?/ (40)

3
2

3 _ -1 2 /(452
(o)t 28, [dr =] 2 S [ e I ).
=:iCu,r
Then
1 / 2y-x/0”—||z]|* /o 2% oo i / ) 2 2% 5814 allyll?
dr < e2vw/o g)dr = ————— T-amo?
(2702)? Jpa  (j % oo (x))? (1-37)3c,, Jra #3157 (@) (1—37)%c,.,

where in the last equation we used E[e® W] = elIo*/2 for W ~ N(0,021,). Conclude that

/Var“(%(x_'))d < 2ot / = 2% o%ns 1_6(1+T)B2 -
R4 % R4 %

(wxeoe@)? ©  (1-37) et du) < e T s
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provided that 3(1+ 7)/((1 — 37)0?) < 1/(28?), i.e., B < 0v/1—37/1/6(1 + 7). Here, the final inequality uses
that for any 3-sub-Gaussian X with mean zero and 0 < 7/ < 1/(253?), we have IE[@T'”XHz] < (1 —2827)~ /2

(see [1, Equation 7]). Since 7 € (0, 1) is arbitrary and ¢, » > 0 for 7 > 0, the desired result follows.

Part (iv): We use Theorem 4(iv) with p = p x v,. Observe that ||V ¢y /u* @o = 1, and since

Hl,,u*gpa

ldu/dv|,, < oo by assumption, we further have 1 * @, /v * ¢, € L' 7,). With g1 = g2 = ca,0/1t * Vo,

the measures 7; and 72 in Theorem 4(iv) are specified by the Lebesgue densities

d 1 1 3 _1

% = pk o+ (k0o vk 95)* + (Cag* o) + (1*9s)? (Vo) 7, (103)

d 5 _3 1 2 _3 3 _1

% = p* s+ (M*cpa)z(l/*gpa) 2 +c§7a(u*gpa) (V*(pg) 2 4 (u*g@a)z(l/*gpa) 2. (104)
Thus, if the weak convergence conditions

A'ﬂ [ea w G g .
12 (u _ 1) w, Cwo 4 p2g,
H* Qo H* Qo
nl/? (ﬁn * QYo _ V*@") v, G"=‘7 in L2(772)-
H* Po H* Pg H* Qo
hold, then (22) yields
TL% (H2 (ﬂn * Yo, Un *’YU) —H? (M*’me*%r))
1 1
2 2
d, / (w) Gy () da +/ <m> Gy o () da
Re \ L * Qo (T) Ra \V* ©g ()
~ N(O, U%J‘m (1, v, 0)),
where
Brulur0)i= Y[ [ S )L 0L ) dy
1<i j<2 /RY /R
= > / / S (@, y) i g, o (€) Ly 1,0 (y) dee dy, (105)
1<i,j<2 /R?JRY

with Ly p, = (v * @o/p* 05)/2 and Lap, = (1 o /v * p5)1/2. Since ||du/dv||., < oo by assumption, 7;
and 7y are o-finite measures because the terms in the RHS of (103) and (104) either have finite Lebesgue integrals
or are bounded on R?. Hence, the above weak convergences hold if the conditions in Theorem 6(i7) are satisfied.
This in turn happens if

w dz + Var, (¢o (@ — 1)) dr < oo
/Rd (1+ oo (2)*? / (1% o ()0 * 0 (2)) |

and

/ wdx_i_/ WWF/ Vary (o (z — ) dr < cc.

1 * oo (2) 4 (v gpg(x))g/2 4 (oo (z)v * cp,,(:zc))l/2
The above conditions simplify to that in (100) when ||du/dv|| < oo, thus proving the desired claim under the

conditions in (b). The validity of (101) under conditions in (c) is a consequence of the symmetry of H? distance in its
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arguments. For Condition (a), we need to show that (100) holds when g, v have compact supports. Using steps similar
to those in (65), one readily verifies (100), as well as that 7; and 7, are o-finite, and p * @, /v * 0, € L (% 7).

Hence, all the sufficient conditions required for (101) to hold are verified.

The final claim in Part (iv) follows from the proof of the final claim in Part (¢i¢) which shows that the first and

last terms in the LHS of (100) are finite for S-sub-Gaussian p, v with 8 < o/ v/6, and

/ Vary oz ) -/ Varoleele ) vrole)
R4 R4

1% o () vipe(z)  pkpo(x)
< | / Varu (o )
Al Jra v *po(a)
d V v o -
< (2m0?) =44 & / L(xg/l) dr < 0.
dpt|| oo Jra (v * ¢ (2))
This completes the proof. O

C. TV distance

Before stating limit distributions for Gaussian-smoothed TV distance, we recall the definition of tightness or
stochastic boundedness of a sequence of random variables. A sequence of real-valued random variables Z,,,n € N,

is tight if for any e > 0, there exists a constant ¢, such that P(|Z,| > ¢.) < ¢ for all n [25].

Proposition 8 (Gaussian-smoothed TV distance limit distribution) Let p = A, Q = {s € R? : Do (8) = Duwry, ()}
and sgn(x) = z/|x| for x # 0. Then, the following hold:

(i) (One-sample null and alternative) If

/ \/Var, (cpg(:v — )) dx < 00, (106)
Rd

then there exists a version of G, which is LY(R?) valued, and

1 ~
12 (|lfin * Yo = v % Yollvy = I # %0 = v * Yo llry )

a1 1
= 5/ |Gw,|d;v+§/ g (Ppusy, — Puiys ) Guiode. (107)
Q S\Q

In particular, (106) and (107) holds if p has finite (2d + €) moment for some € > 0, i.e., E[|| X ||??*¢] < oo

1/2

for X ~ p. Conversely, if (106) is violated, then the sequence n'/? ||, * Yo — b * V5|1 is not tight.

(ii) (Two-sample null and alternative) If

/]Rd \/Var,(¢o(z — ) dz + /Rd \/Var, (s (z — ) do < oo, (108)

then there exists a version of G, - and G, , which are Ll(Rd) valued such that

1 N ~
nz(H/‘n*'YU _Vn*’VUHTV - H/‘*%T _V*’VU”TV)

1 1
Ay 2 / |Gpo — G| dz 4+ = / Se0 (P, — Doy ) (Guio — Guo)da.  (109)
2 /o 2 Je\e
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In particular, (108) and (109) holds if 1 and v have finite (2d + €) moments for some € > 0. Conversely, if
1 = v and (108) does not hold, then n*/? ||fin, % Vo — Un * Y5 |1y is not tight.

We note here that in contrast to Proposition 2, 6, and 7, the limit distribution for smoothed TV distance in
the one- and two-sample alternative is not Gaussian. This is a consequence of the non-linearity of the first-order

Hadamard derivative (see (51)).

Remark 4 (Upper bound for (106)) To establish that (106) holds if u has finite (2d + €) moments for some € > 0,
we show in the proof that for X ~ u,

2d/2+1

Var, (¢q(z —-))dz < 8%/ + 7/ it X|| > t)dt, 110
[ \Narutole =z < a7 VEXT> 1) (110)
where T' denotes the Gamma function. The RHS is then finite by Markov’s inequality provided E[|| X ||??+€] < oc.
Proof. We apply Theorem 5 with p = A.
Part (¢): Observe that (107) is a direct consequence of (23), provided that

02 (fin * Ve — p* Vo) — G in LH(RY).

Let Zi(x) = o2 — X;) — ¥ @o(2) and Z(z) = ¢o(x — X) — p * 9o (x), where X ~ p. Note that || Z]]; <2
a.s. and /1 (fin * Yo — p*vo) = (1/y/n) Y11 Zi. Since P(|| Z]|; > t) = 0 for ¢ > 2, Theorem 6(ii) implies that

the weak convergence above holds if

/]Rd (E“Z(CC)F])%(LT: /Rd (Varu(gpa(x— )))%dx < 00.

The penultimate and final claim in Proposition 8(i) come from [1, Lemma 1] and [1, Proposition 1], respectively,

whose proofs we repeat here for completeness. To prove the former, note that for X ~ p, one has
1 2 2
2 _ —||z—1 o
Varu (o (w =) < Elgs (v = X)] = 525 /R e I dp(y). (111)
Splitting the integral over R into ||y|| < |lz||/2 and ||y| > ||=||/2, we further obtain
lz—yll2 /o2 eyl /o2
[ty < [ e ) + B > el 2). (112)
R4 lyl<l=ll/2
Changing to polar coordinates leads to

2d+1 /2
[ ARUXT> fal2)de = e [ e ol > ) (113)

Next, using ||z — y[|* > [|z(|*/2 — ||y||*, we have

/ e Ne=vIP/0? gy (4)) < e~ 71/ (%) / duly) < e Iel*/ (%) (114)
lvli<lizl/2 PHEE

and the square root of the RHS integrates to (167702)d/ 2, Combining (111)—(114), we obtain inequality (110).
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Finally, if 4 has finite (2d + €) moments, then by Markov’s inequality

tPIX] > 1) < 07 AR RegetR)

The RHS is integrable on [0, c0), thus showing that (106) (and consequently (107)) holds under the assumption

that ¢ has a finite (2d + €)-th moment, for some ¢ > 0.

The proof of the final claim is divided into two steps. We first show that if (v/70 ||fin * o — 1 * @01y )n ey 18

tight, then its first moment is uniformly bounded for all n. Then we prove that under this uniform boundedness,
Condition (106) holds.

For the first step, define S; :Z;d (¢o(x—X;)—pxpg(x)) for 1 < i < n, and note that \/n || fin * 00 — 1 * Poll 1y
= ||Sn/v/1||1/2. We want to show that if ||S,,/+/n|l1/2 is tight, then

SupE[”Sn/\/ﬁHl] = sup \/EE[ | fin * 0o — 1% ‘pUHTV] < 0.

By Hoffmann-Jgrgensen’s inequality (see [79, Proposition 6.8]), we have
< )
EllSulh] S | max |2, ] + too,

where t, 0 = inf {t >0 ]P’(Inaxlgign I1Sill1 > t) < 1/8}. The first term on the RHS is bounded by 2. In

addition, by Montgomery-Smith’s inequality [85, Corollary 4], there exists a universal constant ¢ such that
tno <inf {t > 0:P([|Snll1 > ct) < c}.

Thus, if ||S,/v/n1/2 is tight (uniformly for all n), then sup,, t,,0/y/n < oo, which implies sup,, E[[|S,,/v/n|1] <
00, as desired.

Next, we prove that the uniform boundedness of /nE[ ||fin * ¢o — ft * @0 |1 | implies Condition (106) holds.
Let k be any positive integer. With Z;(z) = ¢, (z — X;) — p* ¢, () and Z,, = (1/n) >_i"_, Z;, Fubini’s theorem
yields

VAE| [l * 90 — % pollry | > %/Rdla[(\/ﬁ\z(x) (@) A K] de

Since |Z;(z)| < (2m0?)~%2, the CLT implies that for any = € RY,

lim E[(ﬁ’?n(x) — p* g (2)]) A k} = E[‘Gmo(x)’ A k}

n—oo

Indeed, this follows from the CLT, i.e., /n(Zn(2) — p* @0 (2)]) 45 N(0,02) with 02 = Var,, (¢ (z — -)), and
the definition of weak convergence since y — |y| A k is bounded (by k) and (Lipschitz) continuous. Together with

Fatou’s lemma, we have

N . 1
liminf VRE[ [|fin * 0o — % 0o |l1y ] = 3 /dE[|Gu,g(x)| A k]dz.
R

n—00
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Taking k — oo, we conclude by monotone convergence theorem that

o . 1 1 3
it VB« 0 = ool ] 2 5 [ E(Guol}de = o= [ (Vary(o(a =)

where the second equality is because E[|W|] = \/2E[W?2] /7 for a centered Gaussian variable W. This completes
the proof of Part (7).

Part (¢2): The claim follows from (24), provided that
1/2 (- 5 _ w _ 71 d
n (/J'n * SDG' Vp * 900 M * ’YU + vV x ’YU) — GM,O’ GV,U mn L (R )7

where G, » and G, , are L'(R%)-valued Gaussian random variables. Since L' (R?) is Polish, arguments similar to

those in the proof of Proposition 2(iii), imply that the above weak convergence holds if
M2 (fin % Qo — ¥ Vo) — Guo and  (Dn % 9o — V¥ 7,) — G,y in L'(RY).

The latter holds under (108) by Theorem 6(ii) via similar arguments to those presented in the proof of Part (i) above.
The proof of the converse claim is again analogous to that in Part (i) with S, = > | 0o(- — X;) — po (- — Y5);
details are omitted. This concludes the proof.

O
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