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Limit Distribution Theory for f -divergences

Sreejith Sreekumar, Ziv Goldfeld, Kengo Kato

Abstract

f -divergences, which quantify discrepancy between probability distributions, are ubiquitous in information theory,

machine learning, and statistics. While there are numerous methods for estimating f -divergences from data, a limit

distribution theory, which quantifies fluctuations of the estimation error, is largely obscure. As limit theorems are

pivotal for valid statistical inference, to close this gap, we develop a general methodology for deriving distributional

limits for f -divergences based on the functional delta method and Hadamard directional differentiability. Focusing

on four prominent f -divergences—Kullback-Leibler divergence, χ2 divergence, squared Hellinger distance, and total

variation distance—we identify sufficient conditions on the population distributions for the existence of distributional

limits and characterize the limiting variables. These results are used to derive one- and two-sample limit theorems

for Gaussian-smoothed f -divergences, both under the null and the alternative. Finally, an application of the limit

distribution theory to auditing differential privacy is proposed and analyzed for significance level and power against

local alternatives.

Index Terms

f -divergence, limit theorem, Hadamard differentiability, functional delta method, auditing differential privacy

I. INTRODUCTION

Statistical inference often boils down to estimation of certain functional of underlying probability measures.

Discrepancy measures between probability distributions, also known as statistical divergences, such as f -divergences

[3], [4], Rényi divergences [5], [6], integral probability metrics [7], [8], Wasserstein distances [9], [10], etc., form

an important class of such functionals. They play a fundamental role in information theory, signal processing,

and statistics, with some arising naturally as operational quantities characterizing the fundamental limits of data

compression, hypothesis testing, and communication [11], [12]. Moreover, statistical divergences are potent tools

for modeling, analysis, and design of machine learning algorithms, encompassing generative modeling [13]–[17],

homogeneity/goodness-of-fit/independence testing [18]–[20], anomaly detection [21], [22], to name a few.

In data-driven applications, one only has samples from the population distributions, which necessitates estimating

f -divergences. While there is an abundance of consistent estimators with known convergence rates (see the literature
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review in Section I-A), a limit distribution theory for the empirical estimation error has remained partial and

premature. For µ, ¿ * P(Rd) and an f -divergence Df (·‖·), limit theorems seek to identify the scaling rate rn ³>
and the limiting variable G, such that the following convergence in distribution holds1

rn
(
Df (µn‖¿)2 Df (µ‖¿)

) d2³ G, (1)

where µn is an estimate of µ from samples. As such, these results characterize the probability laws governing the

random fluctuations of the error and serve as a central constituent for valid statistical inference. Indeed, distributional

limits enable constructing confidence intervals, devising consistent resampling methods, proving guarantees for

applications of hypothesis testing, and more.

To address the aforementioned gap, we develop a unified methodology for deriving limit distributions for f -

divergences under general regularity conditions. Our approach relies on the functional delta method over normed

vector spaces [23], [24] and Hadamard directional differentiability of f -divergence over a certain class of probability

distributions. The Hadamard differentiability analysis captures how the f -divergence functional changes due to

small perturbations of the considered distributions within the said class. However, f -divergence functionals (e.g.,

KL divergence) are generally non-smooth and highly sensitive to support mismatch, which may cause them to

degenerate or even blow up. This irregular behaviour also carries over to their derivatives. It is therefore pivotal to

identify appropriate regularity conditions under which the Hadamard directional derivatives and the corresponding

distributional limits exist and can be characterized. In particular, there is a trade-off between how strict the imposed

regularity is and the class of distributions that the theory accounts for. Consequently, a key technical challenge is to

discern the right normed space in which the densities of the considered distributions should reside, so as to obtain

a limit distribution theory that accounts for the largest possible class of distributions.

Existing approaches for deriving limit distributions for f -divergences are mostly limited to discrete distributions

or compactly supported continuous distributions with smooth densities bounded away from zero, in which case

the f -divergence functional as well as its derivatives become smooth. Our approach disposes of such restrictive

assumptions and extends these results to the general case. We leverage the Taylor expansion of the considered

f -divergences to ascertain minimal primitive regularity conditions on the population distributions that guarantee

the existence of the Hadamard derivative. In particular, we identify a certain L2(·) space, where the measure

· is defined in terms of the populations (µ, ¿), in which the Hadamard directional derivatives exist and can be

characterized. Having that, the functional delta method enables lifting weak convergence of the estimates of the

underlying distributions to convergence of the f -divergence between them, with the limiting variable identified in

terms of this derivative.

The general framework is instantiated to obtain the one- and two-sample distributional limits, under both the null

(µ = ¿) and the alternative (µ 6= ¿), of four popular f -divergences—Kullback-Leibler (KL) divergence, chi-squared

(Ç2) divergence, squared Hellinger (H2) distance, and total variation (TV) distance. These results hold under the high-

level weak convergence assumptions on the empirical estimates of µ, ¿ with a given scaling law rn. To obtain limit

1The two-sample problem, i.e., when the first divergence term is Df (µn‖¿n), is also of interest.
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theorems under basic conditions on the population distributions with explicit rates, we consider Gaussian-smoothed

f -divergences, i.e., Df (µ 7 ³Ã‖¿ 7 ³Ã) where ³Ã = N (0, Ã2Id), and estimate µ, ¿ by the empirical measures

µ̂n = n21
∑n

i=1 ·Xi and ¿̂n = n21
∑n

i=1 ·Yi , respectively. Under this setup, we derive primitive conditions2 on

µ, ¿ that guarantees weak convergence of the smooth empirical measures µ̂n 7³Ã, ¿̂n 7³Ã, utilizing the central limit

theorem (CLT) in L2 spaces [25, Proposition 2.1.11]. For KL divergence, Ç2 divergence, and H2 distance under

the null, we identify the scaling law as rn = n and the limiting variable as a weighted sum of independent and

identically distributed (i.i.d.) Ç2 random variables. Under the alternative, we show that rn =
:
n and the limit is

a centered Gaussian. The TV distance behaves slightly differently, with rn =
:
n in both cases and the limiting

variables having a certain integral form. By virtue of our Hadamard differentiability analysis, we automatically

obtain consistency of the bootstrap, which yields a computationally tractable resampling method for estimating the

distributional limits.

As an application of our limit distribution theory, we consider auditing ë-differential privacy (DP). An audit of a

black-box privacy mechanism seeks to certify whether it satisfies a promised DP guarantee. While existing auditing

methods are heuristic [26], [27] or lack in formal guarantees [28], we propose a principled hypothesis testing pipeline

for DP auditing with a full (asymptotic) analysis of significance level and power against local alternatives. The key

idea is to relax the ë-DP constraint3 to a KL divergence bound, which is further relaxed to the Gaussian-smoothed

KL divergence via the data-processing inequality [29, Theorem 2.15]. We then test for the smooth KL divergence

value and leverage our limit theorems for the significance and power analysis. We also establish a stability lemma

that bounds the gap due to smoothing, namely
∣
∣DKL (µ 7 ³Ã‖¿ 7 ³Ã)2DKL (µ‖¿)

∣
∣. This enables lifting the audit to

test for the KL divergence value itself, for which we show that any non-zero significance level along with power

1 can be achieved asymptotically.

A. Related Work

Statistical analysis of divergence estimators has been an active area of research in recent years. Convergence

rates for various estimators, which subsumes entropy and mutual information as special cases, have been studied

in [30]–[42] (see also references therein). Literature on limit distributions for f -divergences mainly focused on

analyzing specific estimators on a case-by-case basis. In [43], limit distributions for f -divergences between maximum

likelihood estimates of probability distributions over a certain parametric class is established, with the limit variable

shown to be either normal or Ç2. The authors of [32] study plugin methods of kernel density estimator and

show asymptotic normality subject to high Hölder smoothness and compact support of the densities. The case

when the density estimates are constructed using k-nearest neighbour technique is treated in [44]. One-sample null

distributional limits of Gaussian-smoothed TV distance and Ç2 divergence have been derived in [1] by invoking

the CLT in L1(Rd) and L2(Rd), respectively. Limit distributions for plug-in estimators of entropy and mutual

information in the discrete setting have been considered in [45], [46]. Differing from these, the unified methodology

2The primitive conditions shown here are sharp in the one-sample null case, see e.g., Proposition 2(i).

3ë-DP corresponds to an ë bound on the infinite order Rényi divergence between the output distribution of the mechanism applied to two
neighboring databases.
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developed herein enables obtaining distributional limits of f -divergences based on plugin of arbitrary estimators

under general (oftentimes sufficient and necessary) conditions. In particular, our results subsume those of [1] and

considerably generalize the scope of this preliminary work via markedly different proof techniques.

Apart from the f -divergence class, limit distribution theory for other divergences such as Wasserstein distances has

been extensively studied [47]–[55]. There is also a surge of interest in regularized optimal transport distances driven

by computational and statistical gains, encompassing techniques like smoothing, slicing, and entropic penalization.

Limit theorems under these frameworks for the optimal transport cost, plan, map, and dual potentials can be found

in [17], [53], [56]–[65].

B. Organization

The rest of the paper is organized as follows. Section II collects background material on Hadamard differentiability

and the functional delta method. Section III formalizes the Hadamard differentiability framework for f -divergences.

Section IV obtains limit distributions for f -divergences between random probability measures under general reg-

ularity conditions, with Section V focusing specifically on Gaussian-smoothed divergences. Section VI studies the

application of the limit distribution theory to auditing DP. Proofs are provided in Section VII, while Section VIII

provides concluding remarks and discusses future research directions.

II. BACKGROUND AND PRELIMINARIES

A. Notation

Let (Ω,A,P) be a sufficiently rich probability space on which all random variables are defined. Let (S,S) be

a separable measurable space equipped with a Ã-finite measure Ã. When S is a topological space, we use B(S)

to denote the Borel Ã-field on S. In the sequel, we adapt Ã on a case-by-case basis, but given Ã, all considered

measures are assumed to be absolutely continuous w.r.t. it. For · j Ã, we write p· = d·/dÃ for the Radon-Nikodym

derivative of · w.r.t. Ã. ··n stands for the n-fold product measure, and ·x represents the Dirac measure at x. 1E

denotes the indicator of an event E .

We use P(S) to denote the space of probability measures on (S,S), leaving the Ã-field implicit. When S = Rd,

we always take S = B(Rd) and P(Rd) as the set of Borel probability measures. For µ, ¿ * P(Rd), µ 7 ¿ denotes

the convolution of µ and ¿; likewise, f 7 g represents convolution of two measurable functions f, g : Rd ³ R.

We write ³Ã = N(0, Ã2Id) for the centered Gaussian distribution on Rd with covariance matrix Ã2Id, and use

×Ã(x) = (2ÃÃ2)2d/2e2‖x‖2/(2Ã2) (x * Rd) for the corresponding density. We say that µ * P
(
Rd
)

is ³-sub-

Gaussian for ³ g 0, if X > µ satisfies E
[
e³·(X2E[X])

]
f exp

(
³2 ‖³‖2 /2

)
, for all ³ * Rd. Let

w2³ and
d2³

denote weak convergence4 of Borel measurable maps (or their laws) and convergence in distribution of random

variables, respectively.

For 1 f r f >, let Lr(Ã) = Lr(S,S, Ã) be the space of all real-valued measurable functions f on S such that

‖f‖r,Ã :=
( ∫

S
|f |r dÃ

)1/r
<>, with the usual identification of functions that are equal Ã-almost everywhere (a.e.).

4A sequence of Borel measurable maps Xn converges weakly to a Borel measurable map X if E[f(Xn)] ³ E[f(X)] for all bounded

continuous functions f . This is denoted by Xn
w

2³ X .
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For 1 f r < >, the space (Lr, ‖·‖r,Ã) is a separable Banach (and hence, Polish) space. When Ã is the Lebesgue

measure » on Rd, we use ‖·‖r to denote the corresponding Lr norm. ‖·‖ designates Euclidean norm. Lr+(Ã) denotes

the subset of positive functions in Lr(Ã). The support of a measurable function f : S³ R̄, i.e., {s * S : f(s) 6= 0}
is denoted by spt(f). For a multi-index ³ = (³1, . . . , ³d) * Nd0 with |³| = ∑d

j=1 ³j (N0 = N * {0}), we use

D³ for the differential operator D³ = "|³|

"x
³1
1 ···"x³d

d

with D0f = f , and employ the shorthand x³ =
∏d
i=1 x

³i
i . The

shorthand a . b designates a f cb for a universal constant c > 0. The values of constants may change from line

to line of a certain derivation. Lastly, we adopt the convention 0/0 = 0, c/0 = > for c > 0, > · 0 = 0, and

0 log(c/0) = 0 for c g 0.

B. f -Divergences

f -divergences form a broad class of discrepancy measures between probability distributions, as defined next.

Definition 1 (f -divergence) Let f : [0,>]³ (2>,>] be a convex function such that f(1) = 0 and f(0) = f(0+).

For µ, ¿ * P(S), the f -divergence of µ from ¿ is

Df (µ‖¿) :=
∫

S

f ç
(
pµ
p¿

)

d¿. (2)

The class of f -divergences includes several popular dissimilarity measures, such as KL divergence, Ç2 divergence,

H
2 distance, TV distance, and many more. Every f -divergence satisfies nonnegativity (Df (µ‖¿) g 0, "µ, ¿) and

joint convexity in the pair (µ, ¿), with additional properties holding for specific instances, as mentioned below.

1) KL divergence: Setting f(x) = fKL(x) := x log x in (2) yields KL divergence, DKL (µ‖¿) :=
∫

S
log (pµ/p¿) dµ

for µj ¿, and DKL (µ‖¿) =>, otherwise.

2) χ2 divergence: Setting f(x) = fÇ2(x) := (x21)2 in (2) leads to Ç2 divergence, Ç2 (µ‖¿) :=
∫

S
(pµ/p¿21)2d¿

for µj ¿, and Ç2 (µ‖¿) =>, otherwise.

3) H
2 distance: Setting f(x) = fH2(x) := (

:
x21)2 in (2) leads to H

2 distance, H2 (µ, ¿) :=
∫

S

(:
pµ2:p¿

)2
dÃ.

H
2 distance is symmetric in its arguments, and 0 f H

2 (µ, ¿) f 2 for all µ, ¿ * P(S).
4) TV distance: Setting f(x)= fTV(x) := |x2 1| /2 in (2) yields the TV distance, ‖µ2 ¿‖

TV
:= 1

2

∫

S
|pµ 2 p¿ | dÃ

= supA*S |µ(A) 2 ¿(A)|. TV distance is symmetric in its arguments, and 0 f ‖µ2 ¿‖
TV
f 1 for all µ, ¿ * P(S).

C. Functional delta method

We derive limit distribution theory for f -divergences via the functional delta method, which relies on the concept

of Hadamard directional differentiability. The ideas are introduced below.

Definition 2 (Hadamard directional differentiability [23]–[25]) Let D and E be linear topological spaces, and

consider a function Φ : Θ ¦ D³ E.

(i) Φ is first order Hadamard directionally differentiable at » * Θ tangentially to Θ if there exists a map

Φ2
» : TΘ(»)³ E such that

lim
n³>

Φ(» + tnhn)2 Φ(»)

tn
= Φ2

»(h), (3)
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for any h * TΘ(»), tn ³ 0+ and hn ³ h in D such that » + tnhn * Θ, where

TΘ(») :=

{

h * D : h = lim
n³>

»n 2 »
tn

for some »n ³ » with »n * Θ and tn ³ 0+
}

is the tangent cone to Θ at ».

(ii) For convex Θ,5 we say that Φ is second order Hadamard directionally differentiable at » * Θ tangentially to

Θ if it is first order Hadamard directionally differentiable at » and there exists a map Φ22
» : TΘ(»)³ E such

that

Φ22
» (h) = lim

n³>
Φ(» + tnhn)2 Φ(») 2 tnΦ2

»(hn)
1
2 t

2
n

, (4)

for any tn ³ 0+ and hn ³ h in D (note: the convexity of Θ implies that hn * TΘ(»), so that Φ2
»(hn) is

well-defined).

The functions Φ2
» and Φ22

» are called the first and second order Hadamard directional derivatives of Φ at ».

For Hadamard directionally differentiable maps we have the following adaptation of the functional delta method

[23]–[25]. Let int(C) and "C denote the interior and boundary of a set C, respectively.

Lemma 1 (Functional delta method) Let D and E be metrizable linear topological spaces, Θ ¦ DΦ ¦ D, and

Φ : DΦ ³ E be Hadamard directionally differentiable at » * Θ tangentially to Θ with derivative Φ2
» : TΘ(»)³ E.

Let Zn : Ω ³ DΦ, n * N, be measurable maps such that rn(Zn 2 ») w2³ Z for some sequence rn ³ >, where

Z is a random variable that takes values in TΘ(»).

(i) If DΦ = Θ, then we have

rn
(
Φ(Zn)2 Φ(»)

) d2³ Φ2
»(Z),

and if Θ is convex then rn
(
Φ(Zn)2 Φ(»)

)
= Ç2»

(
rn(Zn 2 »)

)
+ oP(1).

(ii) If DΦ = Θ is convex and Φ is also second order Hadamard directionally differentiable at » * Θ tangentially

to Θ, with derivative Φ22
» , then

r2n
(
Φ(Zn)2 Φ(»)2 Φ2

»(Zn 2 »)
) d2³ 1

2
Φ22
» (Z),

and r2n
(
Φ(Zn)2 Φ(»)2 Φ2

»(Zn 2 »)
)
= 1

2Φ
22
»

(
rn(Zn 2 »)

)
+ oP(1).

(iii) For a convex Θ ¦ DΦ, suppose that Zn and Z satisfy P7(Zn /* Θ)³ 0 and P
(
Z * "TΘ(»)

)
= 0, where P7

denotes outer probability (see [25]). Then, Part (i) and (ii) above holds.

Part (i) and (ii) above are standard in the literature, while Part (iii) which incorporates probabilistic constraints

is new and is useful for our purposes to derive limit distribution results under more general conditions. To establish

this claim, we prove an adaptation of the extended continuous mapping theorem [25, Theorem 1.11.1] as stated

next, which may be of independent interest.

5When Θ is convex, we have TΘ(») = cl
({

(»̃ 2 »)/t : »̃ * Θ, t > 0
})

for all » * cl(Θ); see [24].
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Theorem 1 (Generalized extended continuous mapping theorem) Let D and E be metrizable linear topological

spaces, Dn,Dg ¦ D, and D³
n ¦ Dn, for all n * N. Suppose measurable functions gn : Dn ³ E and g : Dg ³ E

satisfy the following: if hn ³ h with hn * D³
n for all sufficiently large n and h * Dg, then gn(hn) ³ g(h).

Let Hn : Ω ³ Dn and H : Ω ³ Dg be measurable maps such that Hn
w2³ H , P(H * D7) = 0 and

P(H * D>) = 1, where D> = {h * D : #(hn)n*N, hn ³ h and hn * D
³
n " n sufficiently large} and

D7 = +>m=1*>n=m(D \D³
n ). Then, gn(Hn)

w2³ g(H).

The proofs of Part (iii) of Lemma 1 and Theorem 1 are given in Appendices A-1 and A-2, respectively.

III. HADAMARD DIFFERENTIABILITY FRAMEWORK FOR f -DIVERGENCES

We specialize the Hadamard differentiability framework to treat f -divergences. The framework is first described

in abstract terms, after which we instantiate it to the case of KL divergence for concreteness (see Example 1

below). The key idea is to find the right normed space over which Df (·‖·) can be set up as a first and second order

Hadamard directionally differentiable functional w.r.t. that norm. The construction is as follows.

Let Ç : R̄g0 × R̄g0 ³ R̄, where R̄ is the extended reals and R̄g0 is its nonnegative part.

Assumption 1 Ç(1, 1) = 0, Ç(0, 0) = limy³0 Ç(0, y), Ç is continuous at (0, c) for c > 0, and all its partial

derivatives of order two exists and are continuous in (0,>)×(0,>), possibly taking the values ±> only when at

least one of its arguments is 0 or >.

Let gæ1 , g
æ
2 * L1

+(Ã) be such that ‖gæ1‖1,Ã * ‖gæ2‖1,Ã f 1. For a multi-index ³ * N2
0 with |³| = 2, let Ë³ :

Rg0 × Rg0 ³ Rg0 be measurable functions, and ·1, ·2 j Ã be positive measures on S defined via their relative

densities w.r.t. Ã as

p·1 := 1 +
∣
∣Ë2,0 ç (gæ1 , gæ2)

∣
∣+
∣
∣Ë1,1 ç (gæ1 , gæ2)

∣
∣,

p·2 := 1 +
∣
∣Ë0,2 ç (gæ1 , gæ2)

∣
∣+
∣
∣Ë1,1 ç (gæ1 , gæ2)

∣
∣.

(5)

Given gæ1 , gæ2 , and Ë := (Ë2,0, Ë0,2, Ë1,1) as above, we define the normed space

Dgæ1 ,g
æ
2 ,Ë

:=
{

(g1 2 gæ1 , g2 2 gæ2) : g1, g2 * L1(Ã), ‖(g1 2 gæ1 , g2 2 gæ2)‖Dgæ1 ,g
æ
2 ,Ë

<>
}

, (6)

where ‖(g, g̃)‖
Dgæ1 ,g

æ
2 ,Ë

:= ‖g‖2,·1 +‖g̃‖2,·2 . We henceforth use the shorthands D and ‖ ·‖D for the space Dgæ1 ,g
æ
2 ,Ë

and its norm.

Setting Θ2 :=
{
(g1 2 gæ1 , g2 2 gæ2) * D : g1 g 0, g2 g 0, spt(g1) ¦ spt(g2), ‖g1‖1,Ã * ‖g2‖1,Ã f 1

}
and

Θ22 :=
{
(g1 2 gæ1 , g2 2 gæ2) * D : g1 g 0, g2 g 0, ‖g1‖1,Ã * ‖g2‖1,Ã f 1

}
, let Θ be a convex subset of Θ2 or Θ22

that contains (0, 0), and consider the functional Φ : Θ³ R̄ given by

Φ(»1, »2) :=

∫

S

Ç(gæ1 + »1, g
æ
2 + »2)dÃ. (7)

In addition to Assumption 1, the following assumptions are needed to state our Hadamard differentiability result.
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Assumption 2 At least one of the following conditions hold:

(i) D(1,0)Ç ç (gæ1 , gæ2), D(0,1)Ç ç (gæ1 , gæ2) * L2(Ã).

(ii) D(1,0)Ç ç (gæ1 , gæ2) * L2(Ã) and Θ is such that »2 = 0 for all (»1, »2) * Θ.

(iii) D(0,1)Ç ç (gæ1 , gæ2) * L2(Ã) and Θ is such that »1 = 0 for all (»1, »2) * Θ.

Assumption 3 Φ is well-defined 6 on Θ and |Φ(»1, »2)| <> for all (»1, »2) * Θ.

Assumption 4 For any ³ * N2
0 with |³| = 2, there exists v³ * L1([0, 1], »), such that for all » = (»1, »2) * Θ

and Ç * [0, 1], we have

(1 2 Ç)
∣
∣»³D³ Ç ç

(
(gæ1 , g

æ
2) + Ç(»1, »2)

)∣
∣ . |»³Ë³ ç (gæ1 , gæ2)| v³(Ç) Ã2 a.e. (8)

Under these assumptions, we have the desired Hadamard differentiability result.

Proposition 1 (i) If Assumptions 1-4 hold for Θ ¦ Θ2, then Φ, as defined in (7), is second order Hadamard

differentiable at »æ := (0, 0) * Θ tangentially to Θ with

Φ2
»æ(h1, h2) =

∫

S

(
h1D

(1,0)Çç(gæ1 , gæ2)+h2D(0,1)Çç(gæ1 , gæ2)
)
dÃ, (9)

Φ22
»æ(h1, h2) =

∫

S

(
h21D

(2,0)Çç(gæ1 , gæ2)+h22D(0,2)Ç ç (gæ1 , gæ2) + 2h1h2D
(1,1)Ç ç (gæ1 , gæ2)

)
dÃ, (10)

for all (h1, h2) * TΘ(»
æ) = cl

({
»/t : » = (»1, »2) * Θ, t > 0

})
.

(ii) The above claim further extends to Θ ¦ Θ22 provided Ç is also continuous at (0, 0).

The following example instantiates the above framework to the case of KL divergence.

Example 1 (KL divergence) Consider the KL divergence DKL (µ‖¿) between probability measures µj ¿ * P(S),

in which case we may take Ã = ¿. Assume pµ > 0. The setup above specializes the KL divergence case with

Ç(x, y) = x log x, gæ1 = pµ, and gæ2 = 1, whereby DKL (µ‖¿) = Φ(0, 0) (see (7)). Further set Ë2,0(x, y) =

D(2,0)Ç(x, y) = 1/x, Ë1,1(x, y) = D(1,1)Ç(x, y) = 0, and Ë0,2(x, y) = D(0,2)Ç(x, y) = 0. The measures ·1

and ·2 are defined through the densities p·1 = 1 + Ë2,0 ç (pµ, 1) = 1 + 1/pµ and p·2 = 1 (note that ·2 = ¿).

The spaces of interest are taken as D =
{
(g1 2 pµ, g2 2 1) : g1, g2 * L1(Ã), ‖g1 2 pµ‖·1 + ‖g2 2 1‖¿ < >

}
,

Θ = {(g12pµ, 0) * D : g1 g 0, ‖g1‖1,¿ = 1}. The function v³, ³ * N2
0, to satisfy (8) is chosen as v0,2 = v1,1 = 0,

and v2,0 = 1. Indeed, the former null values are sufficient since D(2,0)Ç = D(1,1)Ç = 0, while for the latter, with

» = (»1, »2) = (g1 2 gæ1 , g2 2 gæ2), we have

(12 Ç)
∣
∣
∣»21D

(2,0)Çç
(
(gæ1 , g

æ
2)+Ç(»1, »2)

)
∣
∣
∣=

(12Ç)»21
(12Ç)gæ1+Çg1

f »21
gæ1

=
∣
∣»21Ë2,0 ç(gæ1 , gæ2)

∣
∣.

Here, the inequality holds since g1 g 0. Note that TΘ(»
æ) = cl

({(
(g1 2 pµ)/t, 0

)
: (g1 2 pµ, 0) * Θ, t > 0

})
.

Corresponding choices for other f -divergences can be found in Lemma 5 (in Section VII-B) below.

6When Ç is convex and Ã is a finite measure, Jensen’s inequality and Assumption 1 automatically imply that Φ is well-defined and nonnegative.
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IV. LIMIT DISTRIBUTION FOR f -DIVERGENCES

We instantiate the above unified framework to derive a flexible limit distribution theory under general regularity

conditions for several popular f -divergences—KL divergence, Ç2 divergence, H2 distance, and TV distance. To

maintain versatility, we model generic estimators of population probability distribution as random probability

measures. These can be substituted with a specific estimator depending on the application.

Definition 3 (Random probability measure) A random probability measure on S is a map · : Ω × S ³ [0, 1]

satisfying

(i) for every C * S, Ë ³ ·(Ë, C) is measurable from (Ω,A) to (R,B(R));
(ii) for every Ë * Ω, ·(Ë, ·) * P(S).

Let µ, ¿ * P(S). Consider a sequence (µn, ¿n)n*N of random probability measures on S such that (µn, ¿n)

converges weakly to (µ, ¿). Accordingly, (µn, ¿n) can be viewed as an instance of weakly convergent estimators

of the population distribution (µ, ¿). Below, the one- and two-sample settings refer to when only µ or both (µ, ¿)

are approximated by µn or (µn, ¿n), respectively. We also use the terms ‘null’ and ‘alternative’ for when µ = ¿

or µ 6= ¿, respectively. In the following results, (rn)n*N denotes a diverging sequence, q, q1, and q2 represent

measurable functions. Also, inequalities involving relative densities, e.g. pµ > 0, are to be interpreted as holding

Ã a.e., and regularity conditions involving random measures, e.g. DKL (µn‖¿) < >, are required to hold only for

sufficiently large n.

A. KL divergence

Theorem 2 (Limit distribution for KL divergence) The following hold:

(i) (One-sample null) Let µn j µ = Ã be such that DKL (µn‖µ) <> almost surely (a.s.). If rn(pµn 2 1)
w2³ B

in L2(µ), then

r2nDKL (µn‖µ) d2³ 1

2

∫

S

B2dµ. (11)

(ii) (One-sample alternative) Let µn j µ j ¿ = Ã satisfy 1spt(pµ) log pµ * L2(¿), DKL (µ‖¿) < >, and

DKL (µn‖¿) <> a.s. If rn(pµn 2 pµ)
w2³ B in L2(·), where · has relative density p· = 1+ (1spt(pµ)/pµ),

then

rn
(
DKL (µn‖¿)2 DKL (µ‖¿)

) d2³
∫

spt(pµ)

B log pµd¿. (12)

(iii) (Two-sample null) Let µn j ¿n j µ = Ã be such that DKL (µn‖¿n) <> and pµn/p¿n f q a.s. Let ·1 = µ

and ·2 be the measure with relative density p·2 = 1 + q. If
(
rn(pµn 2 1), rn(p¿n 2 1)

) w2³ (B1, B2) in

L2(·1)× L2(·2), then

r2nDKL (µn‖¿n) d2³ 1

2

∫

S

(B1 2B2)
2dµ. (13)
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(iv) (Two-sample alternative) Let µn j ¿n j ¿ = Ã and µn j µ j ¿ satisfy pµ,1spt(pµ) log pµ * L2(¿),

DKL (µ‖¿) <>, DKL (µn‖¿n) <> and pµn/p¿n f q a.s. Let ·1 and ·2 be measures with relative densities

p·1 = 1+ (1spt(pµ)/pµ) and p·2 = 1+ pµ + q, respectively. If
(
rn(pµn 2 pµ), rn(p¿n 2 1)

) w2³ (B1, B2) in

L2(·1)× L2(·2), then

rn
(
DKL (µn‖¿n)2 DKL (µ‖¿)

) d2³
∫

spt(pµ)

B1 log pµd¿ 2
∫

spt(pµ)

B2dµ. (14)

The proof of Theorem 2 utilizes the functional delta method in Lemma 1 and Proposition 1. For the purpose

of applying the latter result, we note that the KL divergence functional can be written in the form (7) with an

appropriate Ç in each of the cases above such that Assumptions 1-4 are satisfied under the conditions therein (see

Example 1).

Remark 1 (Limit distribution under probabilistic constraints) Let Qn = {Ë * Ω : pµn(Ë, ·)/p¿n(Ë, ·) f q(·)}. It

is possible to replace the constraints pµn/p¿n f q a.s. by the more relaxed constraint P7(Ω \Qn)³ 0 if (B1, B2)

is continuous. Here, P7 denotes outer probability which is needed since Qn may be non-measurable, in general.

The continuity of (B1, B2) means that for every Borel set C * L2(·1)×L2(·2), P
(
(B1, B2) * "C

)
= 0, where "C

denotes the boundary of C. This holds, for instance, if (B1, B2) is Gaussian. The proof of the claim (see Appendix

A-3) follows similarly to that of Theorem 2 by using Part (iii) of Lemma 1 in place of Part (i) and (ii). Similar

remarks apply to Theorem 3 and 4 which are omitted for brevity.

A few remarks about the regularity conditions in Theorem 2 are in order. In the one-sample null case, the

condition rn(pµn 2 1)
w2³ B is the weak convergence of the (centered) density of µn in L2(µ), which is a natural

requirement for the existence of the KL limit. In the one-sample alternative case, we require the integrability

condition 1spt(pµ) log pµ * L2(¿) along with rn(pµn 2 pµ)
w2³ B in L2(·). Using |log x| f |x2 1| *

∣
∣12 x21

∣
∣,

the former condition is holds if pµ,1spt(pµ)/pµ * L2(¿). For the latter (weak convergence) condition to hold it

is sufficient that rn(pµn 2 pµ)
w2³ B in L2(¿), so long as 1spt(pµ)/pµ * L>(¿). The corresponding two-sample

results hold under similar conditions plus a requirement of existence of a function q that dominates the ratio of the

(random) densities of µn and ¿n, i.e., pµn/p¿n f q a.s., which can be relaxed to a probabilistic constraint given

in Remark 1 provided the limit variables are continuous. We emphasize that this additional regularity condition

necessitates that the one- and two-sample cases are stated separately, even though the one-sample limit distribution

may be obtained from the two-sample result by setting (B1, B2) = (B, 0).

To gain further insight into the applicability of Theorem 2, we next consider several important examples.

1) Finite support: Let S be a finite set, µj ¿, and (X1, . . . , Xn) and (Y1, . . . , Yn) be i.i.d. samples from µ and ¿,

respectively. Set the empirical distributions µn = n21
∑n
i=1 ·Xi and ¿n = (n212n22)

∑n
i=1 ·Yi+n

21µn as the

random measures, where we add a vanishing regularization term n21µn so that µn j ¿n and DKL (µn‖¿n) <>.

Clearly, µn j ¿n j ¿ and µn j µ j ¿. Notice also that all the other regularity conditions in Theorem 2

are satisfied. In particular, the relevant weak convergences of random measures to Gaussian limits follow from

the multivariate CLT. Moreover, by Hoeffding’s inequality, there exists a constant c such that P(‖pµn/p¿n‖> >
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c)³ 0. Hence, Remark 1 applies with q = c implying that (11)-(14) hold with rn = n1/2 and B, (B1, B2) as

Gaussian vectors (and, of course, integral replaced by summation).

2) Compact support with smoothed empirical measures: Consider compactly supported and continuous distribu-

tions µ j ¿ on Rd with Lebesgue densities bounded from above and away from zero on the support. In this

case, the vanilla empirical distributions as defined above are not absolutely continuous w.r.t. µ and ¿, respectively.

To resolve this and obtain a well-posed empirical approximation setting, we convolve the empirical distributions

with a mollifier7 (or bump function). Let µn and ¿n denote the smoothed empirical distributions with Lebesgue

densities pµn = n21
∑n

i=1 ·Xi 7 ¿ and p¿n = (n21 2 n22)
∑n

i=1 ·Yi 7 ¿ + n21pµn , respectively, where ¿

denotes a non-negative mollifier with ‖¿‖1 = 1. It follows by CLT in Lr spaces (see Theorem 6 below) that

the weak-convergence requirements in Theorem 2 hold with µ 7 ¿, ¿ 7 ¿ in place of µ, ¿ and with rn = n1/2

and B, (B1, B2) as appropriate Gaussian processes indexed by a compact subset S of Rd. Moreover, using

concentration bounds for separable sub-Gaussian processes (see e.g., [66, Theorem 5.29]) indexed by compact

S, one can show that there exists a constant c such that P(‖pµn/p¿n‖> > c) ³ 0. It can be verified that the

other regularity conditions in Theorem 2 also hold, and consequently the result applies via Remark 1.

3) Unbounded support with Gaussian smoothing: In Proposition 2 below, we further specialize Theorem 2 to

Gaussian-smoothed empirical distributions on Rd. This provides an instance of smooth distributions with un-

bounded support, for which we characterize the limit laws and derive primitive conditions in terms of µ and ¿

for their existence.

We mention here that while Theorem 2 provides general regularity conditions for existence of limit distributions

for KL divergence, certain assumptions therein are arguably stronger than what is necessary. For instance, the

requirement 1spt(pµ) log pµ * L2(¿) for (12) to hold arises from Assumption 2, which furnishes sufficient conditions

for the first order Hadamard derivatives to exist. However, from the proof of Proposition 1, it is evident that alternative

sufficient conditions in lieu of Assumption 2 are plausible by setting up the function space D of perturbations via the

norm ‖(g, g̃)‖
D
:= ‖g‖r,·1 +‖g̃‖r,·2 for some r g 1. Then, the relevant condition for existence of limit distribution

on account of Lemma 4 would be 1spt(pµ) log pµ * Lr
2
(¿), where r2 is the Hölder conjugate of r. Thus, there is

some flexibility possible in the regularity conditions required for (12) to hold. That said, we do not delve into this

aspect further within this paper.

B. Ç2 divergence

Theorem 3 (Limit distribution for Ç2 divergence) The following hold:

(i) (One-sample null) Let µn j µ = Ã satisfy Ç2 (µn‖µ) <> a.s. If rn(pµn 2 1)
w2³ B in L2(µ), then

r2nÇ
2 (µn‖µ) d2³

∫

S

B2dµ. (15)

7A mollifier is a function f : Rd ³ R which is both smooth (i.e., has continuous derivatives of all orders) and compactly supported, e.g.,

¿(x) = ce21/(12‖x‖2) for ‖x‖ < 1 and zero elsewhere for some normalizing constant c.
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(ii) (One-sample alternative) Let µ, µn j ¿ = Ã satisfy Ç2 (µ‖¿) < > and Ç2 (µn‖¿) < > a.s. If rn(pµn 2
pµ)

w2³ B in L2(¿), then

rn
(
Ç2 (µn‖¿) 2 Ç2 (µ‖¿)

) d2³ 2

∫

S

Bdµ. (16)

(iii) (Two-sample null) Let µn j ¿n j µ = Ã be such that Ç2 (µn‖¿n) <> and pµn/p¿n f q a.s. Let ·1 and ·2 be

measures with relative densities p·1 = 1+q and p·2 = p·1+q
2, respectively. If

(
rn(pµn21), rn(p¿n21)

) w2³
(B1, B2) in L2(·1)× L2(·2), then

r2nÇ
2 (µn‖¿n) d2³

∫

S

(B1 2B2)
2dµ. (17)

(iv) (Two-sample alternative) Let µn j ¿n j ¿ = Ã and µn j µ j ¿ satisfy pµ * L4(¿), Ç2 (µ‖¿) < >,

Ç2 (µn‖¿n) <> and pµn/p¿n f q a.s. Let ·1 and ·2 be measures with relative densities p·1 = 1 + pµ + q

and p·2 = p·1 + q2 + p2µ, respectively. If
(
rn(pµn 2 pµ), rn(p¿n 2 1)

) w2³ (B1, B2) in L2(·1)×L2(·2), then

rn
(
Ç2 (µn‖¿n)2 Ç2 (µ‖¿)

) d2³ 2

∫

S

B1dµ2
∫

S

B2pµdµ. (18)

Theorem 3 utilizes similar proof methodology as in Theorem 2 via the machinery from Section III, except that

Parts (i) and (ii) follow in a simpler manner via the continuous mapping theorem [25, Theorem 1.3.6] owing to the

specific structure of the Ç2 divergence functional. Also note that the one- and two-sample null limits of the Ç2 and

KL divergences are the same up to a factor of 0.5, which is in line with the fact that KL divergence is locally Ç2

(see [29, Theorem 7.18]). Via an argument similar to that in Remark 1, we observe that Theorem 3 applies to

discrete and smoothed compactly supported distributions (as discussed after Theorem 2 above), with rn = n1/2 and

Gaussian B, (B1, B2). An application to Gaussian-smoothed empirical distributions will be given in Proposition 6

in Appendix E-A.

C. H
2 distance

Theorem 4 (Limit distribution for H2 distance) The following hold:

(i) (One-sample null) Let µn, µ j Ã for some finite measure Ã such that pµ > 0. If rn(pµn 2 pµ)
w2³ B in

L2(·), where · has relative density p· = 1 + (1/pµ), then

r2nH
2 (µn, µ)

d2³ 1

4

∫

S

B2

pµ
dÃ. (19)

(ii) (One-sample alternative) Let µn, µ, ¿ j Ã for some finite measure Ã such that pµ, p¿ > 0, and suppose that

p¿/pµ * L1(Ã). If rn(pµn 2 pµ)
w2³ B in L2(·), where · has relative density p· = 1 +

(
p
1/2
¿ /p

3/2
µ

)
, then

rn
(
H

2 (µn, ¿)2 H
2 (µ, ¿)

) d2³ 2
∫

S

(
p¿
pµ

) 1
2

BdÃ. (20)

(iii) (Two-sample null) Let µn, ¿n, µj Ã for some finite measure Ã such that pµ > 0, pµn f q1 and p¿n f q2 a.s.

Let ·1 and ·2 be measures with relative densities p·1 = 1 + (1/pµ) +
(
q
1/2
2 /p

3/2
µ

)
and p·2 = 1 + (1/pµ) +
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(
q
1/2
1 /p

3/2
µ

)
, respectively. If

(
rn(pµn 2 pµ), rn(p¿n 2 pµ)

) w2³ (B1, B2) in L2(·1)× L2(·2), then

r2nH
2 (µn, ¿n)

d2³ 1

4

∫

S

(B1 2 B2)
2

pµ
dÃ. (21)

(iv) (Two-sample alternative) Let µn, ¿n, µ, ¿ j Ã for some finite measure Ã such that pµ, p¿ > 0, p¿/pµ, pµ/p¿ *
L1(Ã), pµn f q1 and p¿n f q2 a.s. Let ·1 and ·2 be measures with relative densities

p·1 = 1 +
(

p
1
2
¿ + q

1
2
2

)

p
2 3

2
µ + p

2 1
2

µ p
2 1

2
¿ ,

p·2 = 1 +
(

p
1
2
µ + q

1
2
1

)

p
2 3

2
¿ + p

2 1
2

µ p
2 1

2
¿ ,

respectively. If
(
rn(pµn 2 pµ), rn(p¿n 2 p¿)

) w2³ (B1, B2) in in L2(·1)× L2(·2), then

rn
(
H

2 (µn, ¿n)2 H
2 (µ, ¿)

) d2³ 2
∫

S

(
p¿
pµ

) 1
2

B1dÃ2
∫

S

(
pµ
p¿

) 1
2

B2dÃ. (22)

The proof of Theorem 4 is similar to that of Theorem 2, and is given in Section VII-B3. Note that in contrast

to Theorem 2 and 3, the two-sample alternative limit distribution is symmetric in µ and ¿, which is to be expected

given the symmetry of H2 (µ, ¿) itself. Also, observe that the regularity conditions in Theorem 4 are satisfied for the

case of discrete (when µjk ¿) and compactly supported smoothed empirical distributions considered in Section

IV-A. Consequently, (19)-(22) hold with rn = n1/2 and Gaussian B, (B1, B2). In Proposition 7 in Appendix E-B,

we will further discuss the application of Theorem 4 to Gaussian-smoothed empirical distributions.

D. TV distance

Theorem 5 (Limit distribution for TV distance) Let sgn(x) = x/|x| for x 6= 0, and for given µ, ¿ j Ã, let

Q := {s * S : pµ(s) = p¿(s)}. Then, the following hold:

(i) (One-sample null and alternative) Let µn, µ, ¿ j Ã for some measure Ã. If rn(pµn 2 pµ)
w2³ B in L1(Ã),

then

rn
(
‖µn 2 ¿‖TV 2 ‖µ2 ¿‖TV

) d2³1

2

∫

Q
|B| dÃ+ 1

2

∫

S\Q
sgn
(
pµ 2 p¿

)
BdÃ. (23)

(ii) (Two-sample null and alternative) Let µn, ¿n, µ, ¿ j Ã for some measure Ã. If 8 rn(pµn2p¿n2pµ+p¿)
w2³ B

in L1(Ã), then

rn
(
‖µn 2 ¿n‖TV 2 ‖µ2 ¿‖TV

) d2³ 1

2

∫

Q
|B| dÃ+ 1

2

∫

S\Q
sgn
(
pµ 2 p¿

)
BdÃ. (24)

The proof for the one-sample and two-sample null cases above follow via an application of the continuous

mapping theorem. The proof of the alternative requires an argument different from the divergences considered

until now. To see why, recall from (2) that TV distance corresponds to an f -divergence with f = |x2 1| /2,

which is not differentiable at x = 1. Hence, Proposition 1 does not apply for computing the Hadamard derivative

8Alternatively, we may state the weak convergence requirement in terms of the stronger condition
(

rn(pµn 2 pµ), rn(p¿n 2 p¿)
) w
2³

(B1, B2) which implies rn(pµn 2 p¿n 2 pµ + p¿)
w

2³ B with B = B1 2B2.
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since Assumption 1 is violated. However, utilizing the equivalence of Hadamard differentiability to Gâteaux

differentiability under Lipschitzness of the functional (see [23]), we instead compute the latter simpler quantity

via a direct argument. From there, the claims follow as usual via an application of the functional delta method. We

note that Theorem 5 applies to the case of discrete and compactly supported smoothed empirical distributions in

Section IV-A. Its application to Gaussian-smoothed case is discussed in Appendix E-C (Proposition 8).

V. LIMIT DISTRIBUTION THEORY FOR GAUSSIAN-SMOOTHED f -DIVERGENCES

We study distributional limits of Gaussian-smoothed f -divergence, i.e., the population objective is Df (µ7³Ã‖¿ 7
³Ã), where ³Ã = N(0, Ã2Id) is the isotropic Gaussian kernel [67]. Our goal is to approximate µ (or both µ and ¿)

from samples, while assuming that the Gaussian kernel is known. The Gaussian smoothing alleviates mismatched

support issues that f -divergences often suffer from and gives rise to a well-posed empirical approximation setting.

This setup was studied in our preliminary work [1] for the Ç2 divergence and the TV distance under the one-sample

null setting. The results herein significantly generalize and broaden those of [1]. We focus on the Gaussian-smoothed

KL divergence in this section and relegate analogous results for Ç2 divergence, H2 distance and TV distance to

Appendix E for brevity. Throughout this section, we assume S = Rd and S = B
(
Rd
)
. Some preliminaries are due

before stating the results.

Empirical measures: In defining the empirical measures of µ and ¿ we allow arbitrary correlation between their

samples, which is necessary for the application to auditing DP studied in Section VI. Let (X,Y ) > Ã * P(Rd×Rd)
with X,Y marginals µ, ¿, respectively. Set µ̂n = n21

∑n
i=1 ·Xi as the empirical distribution of (X1, . . . , Xn) and

¿̂n = n21
∑n

i=1 ·Yi be that of (Y1, . . . , Yn), where (Xi, Yi) > Ã, 1 f i f n, are i.i.d. Recalling that ×Ã denotes

the density of ³Ã , the Lebesgue densities of µ̂n 7 ³Ã and ¿̂n 7 ³Ã are µ̂n 7 ×Ã and ¿̂n 7 ×Ã , respectively. We study

distributional limits of Df (µ̂n 7 ³Ã‖¿ 7 ³Ã) as well as its two-sample analogues, under the null (µ = ¿) and the

alternative (µ 6= ¿).

Gaussian process: Our limit variables are characterized as integral forms of a certain Gaussian process, which is in-

troduced next. Consider the 2-dimensional centered Gaussian process (Gµ,Ã, G¿,Ã):=
(
Gµ,Ã(x), G¿,Ã(y)

)

(x,y)*Rd×Rd

with covariance function Σµ,¿,Ã : (Rd × Rd)× (Rd × Rd)³ R2×2 given by

Σµ,¿,Ã
(
(x, y), (x̃, ỹ)

)
: =

[
E
[
Gµ,Ã(x)Gµ,Ã(x̃)

]
E
[
Gµ,Ã(x)G¿,Ã(ỹ)

]

E
[
G¿,Ã(y)Gµ,Ã(x̃)

]
E
[
G¿,Ã(y)G¿,Ã(ỹ)

]

]

(25)

=

[
cov
(
×Ã(x2X), ×Ã(x̃2X)

)
cov
(
×Ã(x2X), ×Ã(ỹ 2 Y )

)

cov
(
×Ã(y 2 Y ), ×Ã(x̃2X)

)
cov
(
×Ã(y 2 Y ), ×Ã(ỹ 2 Y )

)

]

.

For i, j * {1, 2}, denote the (i, j)-th entry of Σµ,¿,Ã by Σ
(i,j)
µ,¿,Ã . Note that each such entry depends only on two

coordinates among
(
(x, y), (x̃, ỹ)

)
. Hence, by some abuse of notation, we omit the redundant coordinates and use

the remaining coordinates in the same order they appear, e.g., Σ
(2,1)
µ,¿,Ã

(
y, x̃
)

for Σ
(2,1)
µ,¿,Ã

(
(x, y), (x̃, ỹ)

)
. Further, when

¿ = µ (and consequently X
d
= Y ), we denote G¿,Ã by G̃µ,Ã to avoid confusion with Gµ,Ã .
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Asymptotic variance: When the limiting variable is Gaussian, the asymptotic variance for different f -divergences

can be expressed in a unified form, using the following definitions. For a function f corresponding to an f -divergence

(see Definition 1), let

v21,f (µ, ¿, Ã) :=

∫

Rd

∫

Rd

Σ(1,1)
µ,¿,Ã(x, y)L1,f (x)L1,f (y)dx dy,

v22,f (µ, ¿, Ã) :=
∑

1fi,jf2

∫

Rd

∫

Rd

Σ(i,j)
µ,¿,Ã(x, y)Li,f (x)Lj,f (y)dx dy,

where

L1,f (x) := L1,f,µ,¿,Ã(x) := f 2
(
µ 7 ×Ã(x)
¿ 7 ×Ã(x)

)

,

L2,f (x) := L2,f,µ,¿,Ã(x) := f

(
µ 7 ×Ã(x)
¿ 7 ×Ã(x)

)

2 µ 7 ×Ã(x)
¿ 7 ×Ã(x)

f 2
(
µ 7 ×Ã(x)
¿ 7 ×Ã(x)

)

.

Here, f 2 denotes the derivative of f and v21,f (µ, ¿, Ã), v
2
2,f (µ, ¿, Ã) will be well-defined and finite in the settings

we consider below. The quantities give the asymptotic variance of Gaussian-smoothed f -divergence (except TV

distance) in the one-sample and two-sample alternative cases, respectively.

A. KL Divergence

The following proposition characterizes the limit distribution for Gaussian-smoothed KL divergence.

Proposition 2 (Limit distribution for Gaussian-smoothed KL divergence) The following hold:

(i) (One-sample null) If
∫

Rd

Varµ

(
×Ã(x2 ·)

)

µ 7 ×Ã(x)
dx <>, (26)

then there exists a version of Gµ,Ã such that Gµ,Ã/
:
µ 7 ×Ã is L2(Rd)-valued, and

nDKL (µ̂n 7 ³Ã‖µ 7 ³Ã) d2³ 1

2

∫

Rd

G2
µ,Ã(x)

µ 7 ×Ã(x)
dx, (27)

where the limit can be represented as a weighted sum of i.i.d. Ç2 random variables with 1 degree of freedom

(see Remark 2). In particular, (26) and (27) holds for ³-sub-Gaussian µ with ³ < Ã. Conversely, if (26) is

violated, then we have lim infn³> nE
[
DKL (µ̂n 7 ³Ã‖µ 7 ³Ã)

]
=>.

(ii) (One-sample alternative) If (26) holds,
∥
∥(¿ 7 ×Ã)2/µ 7 ×Ã

∥
∥
> <>, log

(
µ 7 ×Ã/¿ 7 ×Ã

)
* L2(¿ 7 ×Ã) and

∫

Rd

Varµ

(
×Ã(x2 ·)

)

¿ 7 ×Ã(x)
dx <>, (28)

then

n
1
2

(
DKL (µ̂n 7 ³Ã‖¿ 7 ³Ã)2 DKL (µ 7 ³Ã‖¿ 7 ³Ã)

) d2³N
(
0, v21,fKL(µ, ¿, Ã)

)
, (29)

where v21,fKL(µ, ¿, Ã) is given in (58). In particular, (29) holds for ³-sub-Gaussian µ with ³ < Ã such that

¿ j µj ¿ and ‖dµ/d¿‖> * ‖d¿/dµ‖> <>.
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(iii) (Two-sample null) If µ has compact support, then there exists a version of Gµ,Ã , G̃µ,Ã such that Gµ,Ã/
:
µ 7 ×Ã

and G̃µ,Ã/
:
µ 7 ×Ã are L2(Rd)-valued, and

nDKL (µ̂n 7 ³Ã‖¿̂n 7 ³Ã) d2³ 1

2

∫

Rd

(
Gµ,Ã(x)2 G̃µ,Ã(x)

)2

µ 7 ×Ã(x)
dx, (30)

where the limit can be represented as a weighted sum of i.i.d. Ç2 random variables with 1 degree of freedom.

(iv) (Two-sample alternative) If µ, ¿ have compact supports, then

n
1
2

(
DKL (µ̂n 7 ³Ã‖¿̂n 7 ³Ã)2 DKL (µ 7 ³Ã‖¿ 7 ³Ã)

) d2³ N
(
0, v22,fKL(µ, ¿, Ã)

)
, (31)

where v22,fKL(µ, ¿, Ã) is given in (69).

The proof of bulk of the claims in Proposition 2 hinges on Theorem 2 by identifying primitive conditions in

terms of µ, ¿, and Ã that guarantee the regularity assumptions in Theorem 2. The proof of the final claim in Part

(i) above, i.e., the necessity of Condition (26), relies on the following lemma, which is also applicable to other

f -divergences with a twice differentiable f .

Lemma 2 (Lower bound on expected f -divergence limit) Consider the f -divergence in Definition 1. Assume that

f is continuously twice differentiable in (0,>) with a nonnegative second derivative f 22. Then,

lim inf
n³>

nE
[
Df (µ̂n 7 ³Ã‖µ 7 ³Ã)

]
g f 22(1)

2

∫

Rd

Varµ

(
×Ã(x2 ·)

)

µ 7 ×Ã(x)
dx. (32)

The proof of Lemma 2 is given in Section VII-C2, and is based on Taylor’s theorem.

Remark 2 (Simplified null limit distribution) The RHS of (27) and (30) admit a representation as a weighted

sum of i.i.d. Ç2 random variables (with 1 degree of freedom). This follows since centered L2(Rd)-valued Gaussian

random variables admit a representation of the form
∑

i*N
Wibi, where (Wi)n*N is an i.i.d. sequence of standard

Gaussian (real) random variables, and (bi)i*N is an orthonormal basis of the reproducing kernel Hilbert space

(see [68, Theorem 4.3]) associated with the L2(Rd)-valued Gaussian variable. Hence, the RHS of (27) and (30)

can be represented as
∑

i*N
‖bi‖22W 2

i /2, from which the claim follows. The same conclusion also applies to the

other divergences, except for TV distance.

Remark 3 (Unequal sample sizes) While we consider equal number of samples from both µ and ¿ for simplicity,

the results readily extend to the mismatched scenario. Suppose n and m denote the number of samples from µ and

¿, respectively, such that m/(n+m)³ Ç for some Ç * (0, 1) as m,n³>. By minor modifications to the proof

of (29) and (31), one may verify that under the same respective conditions, we have

nm

n+m
DKL (µ̂n 7 ³Ã‖¿̂m 7 ³Ã) d2³ 1

2

∫

Rd

(:
ÇGµ,Ã(x) 2

:
12 ÇG̃µ,Ã(x)

)2

µ 7 ×Ã(x)
dx, (33)
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and

(
nm

n+m

) 1
2 (

DKL (µ̂n 7 ³Ã‖¿̂m 7 ³Ã)2 DKL (µ 7 ³Ã‖¿ 7 ³Ã)
) d2³ N

(
0, v̄22,fKL(Ç, µ, ¿, Ã)

)
,

where v̄22,fKL(Ç, µ, ¿, Ã) :=
∑

1fi,jf2

∫

Rd

∫

Rd
ci,j(Ç)Σ

(i,j)
µ,¿,Ã(x, y)Li,fKL(x)Lj,fKL(y)dx dy, with c1,1(Ç) = Ç , c1,2(Ç) =

c2,1(Ç) =
√

Ç(1 2 Ç), and c2,2(Ç) = 12 Ç . Similar claims hold for other f -divergences. Also, note that Remark 2

applies to (33) as
(:
ÇGµ,Ã 2

:
12 ÇG̃µ,Ã

)
/
:
µ 7 ×Ã is an L2(Rd)-valued Gaussian random variable.

1) Bootstrap consistency: The limit distribution from Theorem 2 are non-pivotal in the sense that they depend

on the population distributions µ and ¿, which are unknown in practice. To circumvent this difficulty and enable

inference (e.g., construction of confidence intervals) we apply the bootstrap, which is a computationally tractable

resampling method for estimating distributional limits. This section establishes consistency of the bootstrap for the

Gaussian-smoothed KL divergence.

Given the data (X1, Y1), . . . , (Xn, Yn), let (XB
1 , . . . , X

B
n ) > µ̂·n

n and (Y B1 , . . . , Y Bn ) > ¿̂·nn denote bootstrap

samples drawn independently from empirical distributions µ̂n and ¿̂n, respectively. Set µ̂Bn = n21
∑n
i=1 ·XBi

and ¿̂Bn = n21
∑n

i=1 ·Y Bi as the bootstrap empirical distributions. Denoting by PB the conditional probability

given (X1, Y1), . . . , (Xn, Yn), we have the following bootstrap consistency claim for the Gaussian-smoothed KL

divergence limit distribution from Proposition 2.

Corollary 1 (Bootstrap consistency for KL divergence limit distribution) Consider the setting of Proposition 2,

and let v21,fKL(µ, ¿, Ã) and v22,fKL(µ, ¿, Ã) be as given in (58) and (69), respectively. Then, the following hold:

(i) (One-sample null and alternative) Under the conditions of Proposition 2(ii),

sup
t*R

∣
∣
∣PB

(

n
1
2

(
DKL

(
µ̂Bn 7 ³Ã‖¿ 7 ³Ã

)
2 DKL (µ̂n 7 ³Ã‖¿ 7 ³Ã)

)
f t
)

2 P(W1 f t)
∣
∣
∣ = oP(1),

where W1 > N
(
0, v21,fKL(µ, ¿, Ã)

)
.

(ii) (Two-sample null and alternative) If µ, ¿ have compact supports, then

sup
t*R

∣
∣
∣PB

(

n
1
2

(
DKL

(
µ̂Bn 7 ³Ã‖¿̂Bn 7 ³Ã

)
2 DKL (µ̂n 7 ³Ã‖¿n 7 ³Ã)

)
f t
)

2 P(W2 f t)
∣
∣
∣ = oP(1),

where W2 > N
(
0, v22,fKL(µ, ¿, Ã)

)
.

The proof follows from [69, Theorem 23.9] and the linearity of the first order Hadamard derivative of the KL

divergence functional (see Proposition 1), once we verify that the tangent cone (domain of the Hadamard derivative)

contains a non-trivial linear subspace. The details are provided in Section VII-C3. Bootstrap consistency results for

other f -divergences (except TV distance) may be derived in an analogous manner, but we skip the formal statements

below for brevity.

VI. APPLICATION TO AUDITING DIFFERENTIAL PRIVACY

We consider the application of our limit distribution theory to auditing DP, which was introduced in [70] as an

approach for quantifying privacy leakage of privatization mechanisms. We recall some DP notions that are relevant
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to our setting. Consider a set U with a relation > such that u > v, for u, v * U, denotes that u and v are adjacent.

In the DP context, U is a set of databases and u > v denotes that u and v are adjacent databases, differing on a

single entry.

Definition 4 (DP mechanisms [70]–[72]) Let ë, · g 0. A randomized (measurable) mechanism f : U³ Rd is

(i) ë-differentially private if P (f(u) * T ) f eë P (f(v) * T ) for every u > v and T * B(Rd);
(ii) (ë, ·)-differentially private if P (f(u) * T ) f eë P (f(v) * T ) + · for every u > v and T * B(Rd);

(iii) ë-KL differentially private if DKL (µu‖µv) f ë for every u > v, where µu * P(Rd) is the distribution of f(u).

In addition, we say that a privacy mechanism is ë-smoothed KL differentially private if DKL (µu 7 ³Ã‖µv 7 ³Ã) f ë
for every u > v, where Ã > 0 is a pre-specified parameter.

Standard noise-injection mechanisms for DP operate as follows. Consider g : U ³ Rd, a (deterministic) query

function to be published about the database and define its 3r-sensitivity as ∆r(g) := supu,v*U:u>v ‖g(u)2
g(v)‖r. A noise-injection DP mechanism is given by f(·) = g(·) +W , where W is an additive noise random

variable. For instance, the Laplace mechanism [73] takes W > Lap(0, b)·d (i.e., whose Lebesgue density is

? e2‖ · ‖1/b) with b g ∆1(g)/ë, which guarantees ë-DP. Similarly, the Gaussian mechanism sets W > ³Ã with

Ã g ∆2(g)
√

2 log(1.25/·)/ë, which guarantees (ë, ·)-DP. While the above DP mechanisms add unbounded noise,

a privacy mechanism that adds bounded noise in an adaptive query setting and ensures (ë, ·)-DP (asymptotically)

for any · > 0 is proposed in [74]. As ë-DP is equivalent to supu>v D>(µu‖µv) f ë, where D> is the >-order

Renyi divergence, it is clear that KL DP is a relaxation of DP.9 By the data processing inequality, we further have

that smoothed KL DP is a relaxation of KL DP.

In practice, given output samples from a privacy mechanism, one encounters the problem of ascertaining whether

the mechanism is differentially private or not, referred to as auditing DP. In [28], a hypothesis test for auditing DP

using regularized kernel Rényi divergence is proposed, where the null hypothesis is that the mechanism satisfies

(ë, ·)-DP. The authors propose a decision rule achieving any non-zero significance level (type I error probability),

leaving the characterization of the power (equivalently, type II error probability) open. Here, utilizing the limit

distribution theory from Section V, we put forth a principled hypothesis testing pipeline for DP auditing using the

Gaussian-smoothed and classic KL divergence as the privacy measures of interest. Our analysis accounts for both

significance and power of the test. We start from the smoothed KL DP test.

A. Smoothed KL DP test

The main objective of a privacy audit is to identify violations. For that reason, we set up an hypothesis test where

the null H0 corresponds to when privacy holds, and consider a sequence of local alternatives H1,n that become

harder to distinguish from H0 as n grows. This models a situation where the alternative hypothesis is arbitrarily

close to the null, and we seek a powerful test that successfully rejects the null, even under these local alternatives.

9In particular, ë-DP implies ë
(

1 ' (eë 2 1)
)

-KL DP by [73, Lemma 3.18].
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To define the local alternatives, we consider a sequence of privacy mechanisms that violate ë-smoothed KL DP by

an O(n21/2) amount.

Fix Ã, ë, b, C > 0 and, for n * N0, let fn : U ³ Ib := [2b, b]d be a sequence of privacy mechanisms.

Denote a pair adjacent databases10 by (U, V ) > Ã̃ * P(U× U). Let Ãn := (fn, fn)#Ã̃ be the joint distribution of
(
fn(U), fn(V )

)
, where # is the pushforward operation. The first and second marginals of Ãn are denoted by µn

and ¿n, respectively. We impose the following assumption on the sequence (Ãn)n*N0 .

Assumption 5 The sequence (Ãn)n*N0 is such that

(i) there exists 0 6= h * L2(Ã0) with nH2 (Ãn, Ã0)³ ‖h/2‖22,Ã0
,
∫

Rd×Rd
h dÃ0 = 0, and

(

n1/2

(
µn 7 ×Ã 2 µ0 7 ×Ã

¿0 7 ×Ã

)

, n1/2

(
¿n 7 ×Ã
¿0 7 ×Ã

2 1

))

2³
(
EÃ0 [h(X,Y )×Ã(· 2X)]

¿0 7 ×Ã
,
EÃ0 [h(X,Y )×Ã(· 2 Y )]

¿0 7 ×Ã

)

in L>(»)× L>(»). (34)

(ii) DKL (µ0 7 ³Ã‖¿0 7 ³Ã) f ë and DKL (µn 7 ³Ã‖¿n 7 ³Ã) g ën,C := ë+ Cn21/2 for all n sufficiently large.

Observe that Assumption 5(ii) implies that f0 satisfies ë-smoothed KL DP while fn violates it for all n sufficiently

large. On the other hand, Assumption 5(i) is a technical requirement which ensures that Gaussian-smoothed KL

divergence limit theorems relevant for our purpose continue to hold in the local alternatives setting in which Ãn

changes with n. Proposition 4 below presents an explicit construction of (Ãn)n*N0 that satisfies Assumption 5 for

any Ã, ë, b, C > 0. For now, under this assumption, consider the following binary hypothesis test with a sequence

of alternatives:

H0 : DKL (µ0 7 ³Ã‖¿0 7 ³Ã) f ë,

H1,n : DKL (µn 7 ³Ã‖¿n 7 ³Ã) g ën,C .
(35)

Let (X1, Y1), . . . , (Xn, Yn) > Ã be pairwise i.i.d. samples of the privacy mechanism’s output when acting on

i.i.d. pairs of adjacent databases, where Ã = Ã0 under H0 and Ã = Ãn under H1,n. Denote the empirical measures

of (X1, . . . , Xn) and (Y1, . . . , Yn) by µ̂n and ¿̂n, respectively. For a test statistic Tn = Tn(X1, . . . , Xn, Y1, . . . ,

Yn), a standard class of tests rejects H0 if Tn > tn, where tn is a critical value chosen according to the desired

level Ç * (0, 1). The operational meaning of rejecting H0 is declaring that ë-smoothed KL DP is violated, and

hence, also ë-DP itself. We say that such a sequence has asymptotic level Ç if lim supn³> P(Tn > tn|H0) f Ç .

The power of a test is the probability that it correctly rejects H0, i.e., P(Tn > tn|H1,n), and the asymptotic power

is lim infn³> P(Tn > tn|H1,n). Lastly, the sequence of tests is called asymptotically consistent if its asymptotic

power is 1. The above definitions specialize to the case of a fixed alternative H1 by taking H1,n = H1 and Ãn = Ã1

for all n * N.

10The results in this section do not depend on the database distribution Ã̃ per say. Also, note that the current model subsumes the case of
deterministic (U, V ) by taking Ã̃ to be a point mass on a pair of adjacent databases. In this case, the randomness in

(

fn(U), fn(V )) only
comes from the mechanism.
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For Ç * [0, 1], let Q21(Ç) = inf
{
z * R : (2Ã)21/2

∫>
z e2u

2/2du f Ç
}

be the inverse complimentary cumulative

distribution function of N(0, 1). The following proposition provides a test statistic for the above hypothesis test

and characterizes its asymptotic level and asymptotic power against local alternatives.

Proposition 3 (Smoothed KL DP audit) Suppose Assumption 5 holds. For 0 < Ç, Ç 2 f 1, let Cb,d,Ã,Ç,Ç 2 =

cb,d,Ã
(
Q21(Ç) 2 Q21(1 2 Ç 2)

)
, where cb,d,Ã is given in (79). Then the test statistic Tn = DKL (µ̂n 7 ³Ã‖¿̂n 7 ³Ã)

with critical value tn = ë+cb,d,ÃQ
21(Ç)n21/2 achieves an asymptotic level Ç and asymptotic power at least 12Ç 2

for the test in (35), whenever C > Cb,d,Ã,Ç,Ç 2 * 0.

The proof of the above claim relies on the limit distribution result for smoothed KL divergence given in (31)

along with its refinement to account for the local alternatives scenario, i.e., to account for a sequence of distributions

(µn 7 ³Ã, ¿n 7 ³Ã)n*N instead of a fixed one. This refinement (see (76)) is derived under Assumption 5 by invoking

Le Cam’s third lemma [25, Theorem 3.10.7]. Given these results and the fact that the relevant limit distributions are

Gaussian, the claim in Proposition 3 follows by an analysis of the asymptotic level and power via the Portmanteau

theorem [25, Theorem 1.3.4]. Note that the constant Cb,d,Ã,Ç,Ç 2 is positive whenever Ç + Ç 2 < 1, which is when

the requirement C > Cb,d,Ã,Ç,Ç 2 is active. Operationally, Ç + Ç 2 < 1 means that the sum of type I and type II

error probabilities is less than 1, which is the interesting regime for hypothesis testing; otherwise, a test based on

a random coin flip is preferable.

We conclude this part by providing an explicit construction of a sequence of couplings (Ãn)n*N0 that satisfies

Assumption 5.

Proposition 4 (Construction satisfying Assumption 5) (i) Let Ã0 * P(Rd×Rd) be such that µ0 6= ¿0, ¿0·µ0 j
Ã0, ‖d(¿0 · µ0)/dÃ0‖>,Ã0

<> and ‖hÃ0,c̄‖2,Ã0
<>, where

hÃ0,c̄ := c̄

(
d(µ0 · ¿0)

dÃ0
2 d(¿0 · µ0)

dÃ0

)

, (36)

and c̄ > 0 is an arbitrary constant. Let Ãn j Ã0 be the probability measure specified by the relative density

dÃn
dÃ0

= 1 + n2 1
2 hÃ0,c̄, (37)

whenever the RHS is non-negative Ã0-a.s.; otherwise, set Ãn = Ã0. Then, Ãn satisfies Assumption 5(i) with

h = hÃ0,c̄.

(ii) Let Ã0 * P(Ib×Ib) and Ã be such that µ0 6= ¿0, ¿0·µ0 j Ã0, ‖d(¿0 · µ0)/dÃ0‖>,Ã0
*‖d(µ0 · ¿0)/dÃ0‖2,Ã0

<> and DKL (µ0 7 ³Ã‖¿0 7 ³Ã) = ë. Then, there exists a sufficiently large c̄, such that Ãn as defined in (37)

satisfies Assumption 5 with h = hÃ0,c̄ for any C > 0.

Proposition 4(ii), which is proven in Section VII-E, provides a method of constructing Ãn for the hypothesis

test in (35), given Ã0 that satisfies the aforementioned regularity assumptions. This can be achieved, for instance,

by choosing Ã0 such that µ0 jk ¿0 j », ‖d¿0/dµ0‖> * ‖dµ0/d¿0‖> <> and DKL (µ0 7 ³Ã‖¿0 7 ³Ã) = ë.
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B. KL DP test

A more stringent DP audit is realized via a hypothesis test for detecting ë-KL DP violations, rather than its

Gaussian-smoothed version. We next provide such a test against a fixed alternative, namely:

H0 : DKL (µ0‖¿0) f ë,

H1 : DKL (µ1‖¿1) g ë̃,
(38)

where ë̃ > ë > 0. For this test, we again employ the test statistic Tn from Proposition 3 with appropriately chosen

Ã. Doing so requires additional assumption on the output distributions of the DP mechanism, namely that µi, ¿i,

for i = 0, 1, to have smooth Lebesgue densities belonging to the following class.

Definition 5 (Lipschitz class, see [75]) For r * (0,>], m * N, and f * Lr
(
Rd
)
, the m-th modulus of smoothness

of f is

»m,r(f, t) := sup
y*Rd,‖y‖ft

∥
∥∆m

y f
∥
∥
r
, (39)

where ∆m
y f(x) =

∑m
j=0(21)m2jf(x + jy). For 0 < s f 1 and X ¦ Rd, the Lipschitz class with smoothness

parameter s and norm parameter M is

Lips,r(M,X ) :=
{
f * Lr

(
Rd
)
: ‖f‖Lip(s,r) fM, spt(f) ¦ X

}
,

where ‖f‖Lip(s,r) := ‖f‖r + supt>0 t
2s»1,r(f, t) is the Lipschitz seminorm.

Assumption 6 For i = 0, 1, the Lebesgue densities pµi , p¿i*Lips,1(M, Ib) and ‖pµi/p¿i‖> *‖p¿i/pµi‖> f M

for some 0 < s f 1 and M > 0. Further, DKL (µ0‖¿0) f ë and DKL (µ1‖¿1) g ë̃ for some ë̃ > ë > 0.

Assumption 6 is not very restrictive in practice. Indeed, the definition of DP itself necessitates that ‖pµu/pµv‖>
is bounded uniformly for all u, v * U with u > v. Moreover, the class of Lipschitz functions grows as we shrink the

smoothness parameter s, and thus *Mg0Lip1,1(M, Ib) ¦ *Mg0Lips,1(M, Ib) under our assumption that 0 < s f 1.

As the class of functions with bounded variation (for d = 1) over Ib is contained in *Mg0Lip1,1(M, Ib), Assumption

6 allows for most densities of practical interest.

We are now ready to state the ë-KL DP audit result. As it may be unrealistic to assume that the exact values of

M , s, and ë̃ are known when constructing Tn and choosing critical values, the following proposition only requires

the existence of known constants M̄ ,ë̄,
¯
s, and s̄ such that M f M̄ <>, ë < ë̄ f ë̃, and 0 <

¯
s f s f s̄ f 1.

Proposition 5 (KL DP audit) Suppose Assumption 6 holds. Let 0 < Ç f 1 and 0 < Ã < Ãë,ë̄,
¯
s,s̄,d,M̄ , where

Ãë,ë̄,
¯
s,s̄,d,M̄ is the solution of (81). Then the test statistic Tn = DKL (µ̂n 7 ³Ã‖¿̂n 7 ³Ã) with critical value tn =

ë+ cb,d,ÃQ
21(Ç)n21/2, where cb,d,Ã is given in (79), is asymptotically consistent and achieves an asymptotic level

Ç for the test in (38).

The key difference between the proof of this claim and Proposition 3 is that given M̄ , ë̄,
¯
s, and s̄, it is possible

to choose Ã > 0 small enough so that DKL (µ1 7 ³Ã‖¿1 7 ³Ã) > ë while DKL (µ0 7 ³Ã‖¿0 7 ³Ã) f ë. Choosing such
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a Ã, the claim then follows by utilizing (31) along with the Portmanteau theorem to bound the type I and type II

error probabilities associated with Tn. The aforementioned choice of Ã relies on a stability lemma for smoothed

KL divergence given next, which may be of independent interest.

Lemma 3 (Stability lemma for smoothed KL divergence) Let X ¦ Rd, and µ, ¿ * P(X ) have Lebesgue densities

pµ and p¿ , respectively. Further, assume that pµ, p¿ * Lips,1(M,X ) and ‖pµ/p¿‖> * ‖p¿/pµ‖> f M for some

M g 1. Then,

|DKL (µ‖¿)2 DKL (µ 7 ³Ã‖¿ 7 ³Ã)| f cd,sM (M + 1 + logM)Ãs, (40)

where cd,s :=
∫

Rd
‖z‖s ×1(z)dz.

The proof of Lemma 3 upper bounds the left-hand side (LHS) of (40) using Taylor’s theorem, and then exploits

the boundedness and Lipschitzness of the densities to control the resulting terms.

VII. PROOFS

This section contains proofs of the results from Section III-VI.

A. Proof of Proposition 1

The derivation uses the following lemma whose proof is given in Appendix B for completeness.

Lemma 4 (Generalized Slutsky’s theorem) Let r, r2 g 1 be conjugate indices, i.e., 1/r + 1/r2 = 1. The following

hold:

(i) If fn ³ f in Lr(Ã) and gn ³ g in Lr
2
(Ã), then fngn ³ fg in L1(Ã).

(ii) If Yn
w2³ Y in Lr(Ã) and Zn

w2³ z in Lr
2
(Ã), where z is deterministic, then YnZn

w2³ Y z in L1(Ã).

Having that, recall that all partial derivatives of Ç of order two exists in (0,>) × (0,>). Consequently, the

multivariate second-order Taylor’s expansion of Ç(x, y) around Ç(xæ, yæ), where x, y, xæ, yæ > 0, yields

Ç(x, y) = Ç(xæ, yæ) + (x2 xæ)D(1,0)Ç(xæ, yæ) + (y 2 yæ)D(0,1)Ç(xæ, yæ) + (x2 xæ)2
∫ 1

0

D(2,0)Ç(uÇ )(1 2 Ç)dÇ

+ (y 2 yæ)2
∫ 1

0

D(0,2)Ç(uÇ )(1 2 Ç)dÇ + 2(x2 xæ)(y 2 yæ)
∫ 1

0

D(1,1)Ç(uÇ )(1 2 Ç)dÇ,

where uÇ := (1 2 Ç)(xæ, yæ) + Ç(x, y). Substituting g1(x), g
æ
1(x), g2(y), g

æ
2(y) for x, xæ, y, yæ, respectively, in the

above equation, and setting uj,Ç = (12 Ç)gæj + Çgj for j = 1, 2, » = (»1, »2) =
(
g1 2 gæ1 , g2 2 gæ2

)
, we obtain

Çç(g1, g2) = Çç(gæ1 , gæ2) + »1D
(1,0)Ç ç (gæ1 , gæ2) + »2D

(0,1)Ç ç (gæ1 , gæ2)+
∫ 1

0

»21D
(2,0)Çç(u1,Ç , u2,Ç )(12 Ç)dÇ

+

∫ 1

0

»22D
(0,2)Ç ç (u1,Ç , u2,Ç )(1 2 Ç)dÇ + 2

∫ 1

0

»1»2D
(1,1)Ç ç (u1,Ç , u2,Ç)(1 2 Ç)dÇ,

for all (x, y) with g1(x), g
æ
1(x), g2(y), g

æ
2(y) > 0. The validity of the above equation when g1(x) g 0, and

g2(y), g
æ
1(x), g

æ
2(y) > 0 then follows by taking limits g1(x) ³ 0 via Assumption 1 (specifically, the continuity of Ç at



23

(0, c) for c > 0, and the continuity of second order partial derivatives) along with the dominated convergence theorem

applied to the last three integrals using Assumption 4. Likewise, the above equation extends to the case g1(x) = 0,

g2(y) g 0 and gæ1(x), g
æ
2(y) > 0 by taking limits g2(y) ³ 0 and using limz³0 Ç(0, z) = Ç(0, 0) in Assumption 1.

Note that the above scenarios correspond to the constraints {(g1, g2) : g1 g 0, g2 g 0, spt(g1) ¦ spt(g2)} in the

definition of Θ2. In a similar vein, the above equation also generalizes to the case g1(x), g2(y) g 0, gæ1(x), g
æ
2(y) > 0

by taking limits g1(x), g2(y) ³ 0, provided that Ç is continuous at (0, 0). This corresponds to the constraints defining

the set Θ22.

Integrating w.r.t. Ã then gives

Φ(»1, »2) = Φ(0, 0) +

∫

S

»1D
(1,0)Ç ç (gæ1 , gæ2)dÃ+

∫

S

»2D
(0,1)Ç ç (gæ1 , gæ2)dÃ

+

∫

S

∫ 1

0

»21D
(2,0)Ç ç (u1,Ç , u2,Ç )(12 Ç)dÇdÃ +

∫

S

∫ 1

0

»22D
(0,2)Ç ç (u1,Ç , u2,Ç )(12 Ç)dÇdÃ

+ 2

∫

S

∫ 1

0

»1»2D
(1,1)Ç ç (u1,Ç , u2,Ç )(1 2 Ç)dÇdÃ, (41)

where we have used the definition of Φ in (7). The terms in (41) are well-defined and finite due to the following

reasons. The finiteness of Φ(»1, »2) and Φ(0, 0) is straightforward from Assumption 3, while that of the first two

integrals is a consequence of Assumption 2 and Hölder’s inequality. The remaining integrals exists and are finite

since for any ³ with |³| = 2, we have

∫

S

∫ 1

0

∣
∣»21D

(2,0)Çç(u1,Ç ,u2,Ç )+»22D(0,2)Çç(u1,Ç ,u2,Ç )+2»1»2D
(1,1)Çç(u1,Ç ,u2,Ç )

∣
∣(12Ç)dÇdÃ

.

∫

S

(∣
∣»21D

(2,0)Ë2,0 ç (gæ1 , gæ2)
∣
∣+
∣
∣»22D

(0,2)Ë0,2 ç (gæ1 , gæ2)
∣
∣+
∣
∣»1»2D

(1,1)Ë1,1 ç (gæ1 , gæ2)
∣
∣

)

dÃ

f
∫

S

(∣
∣»21D

(2,0)Ë2,0 ç (gæ1 , gæ2)
∣
∣+
∣
∣»22D

(0,2)Ë0,2 ç (gæ1 , gæ2)
∣
∣

)

dÃ

+

(∫

S

»21
∣
∣D(1,1)Ë1,1 ç (gæ1 , gæ2)

∣
∣dÃ

) 1
2
(∫

S

»22
∣
∣D(1,1)Ë1,1 ç (gæ1 , gæ2)

∣
∣dÃ

) 1
2

<>, (42)

where the first step uses (8) and v³ * L1
+([0, 1], »), the second one invokes the Cauchy-Schwarz inequality, while

the finiteness follows from (5) and (»1, »2) * Θ ¢ D.

Given the expansion from (41), setting (»1,n, »2,n) = (g1,n 2 gæ1 , g2,n 2 gæ2) * Θ and hj,n = »j,n/tn, tn > 0,

j = 1, 2, we obtain

Φ
(
tnh1,n, tnh2,n

)
2 Φ(0, 0)

tn
=

∫

S

(

h1,nD
1,0Ç ç (gæ1 , gæ2) + h2,nD

(0,1)Ç ç (gæ1 , gæ2)
)

dÃ+ Jn, (43)

where Jn := tn
∫

S
(h21,nI1,n + h22,nI2,n + h1,nh2,nI3,n)dÃ with

I1,n :=

∫ 1

0

D(2,0)Ç ç (gæ1 + Çtnh1,n, g
æ
2 + Çtnh2,n)(1 2 Ç)dÇ,

I2,n :=

∫ 1

0

D(0,2)Ç ç (gæ1 + Çtnh1,n, g
æ
2 + Çtnh2,n)(1 2 Ç)dÇ,



24

I3,n := 2

∫ 1

0

D(1,1)Ç ç (gæ1 + Çtnh1,n, g
æ
2 + Çtnh2,n)(1 2 Ç)dÇ.

We will show that the limit of the RHS of (43) as n ³ > evaluates to the RHS of (9) for all tn ³ 0+ and

(h1,n, h2,n) ³ (h1, h2) in D for some (h1, h2) * TΘ(»
æ), which will prove (9). Here, TΘ(»

æ) is as given in

Proposition 1 since Θ is convex and »æ * Θ.

Under Assumption 2, the first two terms in (43) converge to the RHS of (9) by Lemma 4(i) since h1,n ³ h1

and h2,n ³ h2 in L2(Ã). Thus, it remains to show that Jn converges to zero. To that end we will show that

every subsequence of Jn has a further subsequence that converges to 0. Fix (tn, h1,n, h2,n)n*N and consider a

subsequence (nk)k*N of N. Since (h1,nk , h2,nk) ³ (h1, h2) in D implies hi,nk ³ hi in L2(·i), for i = 1, 2, and

L2 convergence implies convergence in measure, there exists a further subsequence (nkl)l*N such that hi,nkl ³ hi

·i-a.e., for i = 1, 2. Consequently, (8) with v³ * L1
+([0, 1], ») and dominated convergence theorem implies that

Ã-a.e.,

lim
l³>

I1,nkl +I2,nkl +I3,nkl =
1

2

(

D(2,0)Ç ç (gæ1 , gæ2) +D(0,2)Ç ç (gæ1 , gæ2) + 2D(1,1)Ç ç (gæ1 , gæ2)
)

.

Next, we claim that
(
h21,nkl

I1,nkl +h
2
2,nkl

I2,nkl +h1,nklh2,nkl I3,nkl
)

l*N
is uniformly integrable w.r.t. Ã. This along

with the above equation and Vitali’s convergence theorem then leads to

lim
l³>

∫

S

(
h21,nkl

I1,nkl + h22,nkl
I2,nkl + h1,nklh2,nkl I3,nkl

)
dÃ

=
1

2

∫

S

(

h21D
(2,0)Ç ç (gæ1 , gæ2) + h22D

(0,2)Ç ç (gæ1 , gæ2) + 2h1h2D
(1,1)Ç ç (gæ1 , gæ2)

)

dÃ, (44)

and hence, liml³> Jnkl = 0 as tnkl ³ 0
+. Thus, every subsequence (Jnk)k*N has a further subsequence (Jnkl )l*N

which converges to 0, which implies limn³> Jn = 0 and shows that

lim
n³>

Φ
(
tnh1,n, tnh2,n

)
2 Φ(0, 0)

tn
=

∫

S

(

h1D
1,0Ç ç (gæ1 , gæ2) + h2D

(0,1)Ç ç (gæ1 , gæ2)
)

dÃ.

Since the above holds for any tn ³ 0+ and (h1,n, h2,n)³ (h1, h2), (9) follows.

To show the uniform integrability claim mentioned above, note that for any D ¢ S

∫

S

1D
∣
∣
∣h21,nkl

I1,nkl + h22,nkl
I2,nkl + h1,nklh2,nkl I3,nkl

∣
∣
∣ dÃ

f
∫

S

1D
∣
∣
∣h21,nkl

I1,nkl

∣
∣
∣ dÃ+

∫

S

1D
∣
∣
∣h22,nkl

I2,nkl

∣
∣
∣ dÃ+

∫

S

1D
∣
∣
∣h1,nklh2,nkl I3,nkl

∣
∣
∣ dÃ

.

∫

S

1D
(

h21,nkl

∣
∣Ë2,0 ç (gæ1 , gæ2)

∣
∣+ h22,nkl

∣
∣Ë0,2 ç (gæ1 , gæ2)

∣
∣

)

dÃ

+

(∫

S

1Dh
2
1,nkl

∣
∣Ë1,1 ç (gæ1 , gæ2)

∣
∣dÃ

) 1
2
(∫

S

1Dh
2
2,nkl

∣
∣Ë1,1 ç (gæ1 , gæ2)

∣
∣dÃ

) 1
2

.
∥
∥
∥1Dh1,nkl

∥
∥
∥

2

2,·1
+
∥
∥
∥1Dh2,nkl

∥
∥
∥

2

2,·2
.

where the penultimate inequality above follows via similar steps leading to the bound in (42). Also, recall that

hi,nkl ³ hi in L2(·i) implies uniform integrability of (hi,nkl )l*N, for i = 1, 2. This along with the above equation
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then shows the desired uniform integrability.

To compute the second order Hadamard derivative, from (43), we have

Φ(tnh1,n, tnh2,n)2 Φ(0, 0)2 tnΦ2
Θ(h1,n, h2,n)

t2n
=

∫

S

(h21,nI1,n + h22,nI2,n + h1,nh2,nI3,n)dÃ.

Using similar argument leading to (44) one readily shows that the RHS multiplied by 2 above converges to the

RHS of (10). Since this holds for any tn ³ 0+ and (h1,n, h2,n)³ (h1, h2), (10) follows, thus completing the proof

of the proposition.

B. Proofs for Section IV

We first state a lemma that shows that Assumption 1 and Assumption 4 are satisfied by the functionals corre-

sponding to f -divergences.

Lemma 5 Consider Ã, gæ1 , g
æ
2 and Θ as in Section III. The following hold:

(i) The functions

ÇKL(x, y) := yfKL(x/y) = x log(x/y),

ÇÇ2 (x, y) := yfÇ2(x/y) = (x2 y)2/y,

ÇH2(x, y) := yfH2(x/y) = (
:
x2:y)2,

are convex and satisfy Assumption 1. Moreover, ÇH2 is continuous in Rg0 × Rg0, while ÇKL and ÇÇ2 are

continuous in [0,>)× (0,>).

(ii) The above functions satisfy Assumption 4 under conditions enumerated below:

(a) ÇKL with Ë2,0 ç
(
gæ1 , g

æ
2

)
= 1/gæ1, Ë0,2 ç

(
gæ1 , g

æ
2

)
= gæ1/g

æ2
2 + q/gæ2 , Ë1,1 ç

(
gæ1 , g

æ
2

)
= 1/gæ2 , v2,0 = v0,2 =

v1,1 = 1, and

Θ ¦ Θ̄(q) :=

ù

üú

üû

(g1 2 gæ1 , g2 2 gæ2) * D : g1 g 0, g2 g 0, spt(g1) ¦ spt(g2), ‖g1‖1,Ã * ‖g2‖1,Ã f 1,

|g1/g2| f q, Ã-a.e.

ü

üý

üþ

.

(45)

(b) ÇÇ2 with Ë2,0 ç
(
gæ1 , g

æ
2

)
= 1/gæ2 , Ë0,2 ç

(
gæ1 , g

æ
2

)
= gæ21 /g

æ3
2 + (q2/gæ2), Ë1,1 ç

(
gæ1 , g

æ
2

)
= gæ1/g

æ2
2 + q/gæ2 ,

v2,0 = v0,2 = v1,1 = 1, and Θ ¦ Θ̄(q);

(c) ÇH2 with Ë2,0 ç
(
gæ1 , g

æ
2

)
=
(
g
æ1/2
2 +q

1/2
2

)
/g
æ3/2
1 , Ë0,2 ç

(
gæ1 , g

æ
2

)
=
(
g
æ1/2
1 +q

1/2
1

)
/g
æ3/2
2 , Ë1,1 ç

(
gæ1 , g

æ
2

)
=

(
gæ1g

æ
2

)21/2
, v2,0 = v0,2 = Ç1/2(12 Ç)21/2, v1,1 = 1, and

Θ ¦ Θ̌(q1, q2):=
{

(g1 2 gæ1 , g2 2 gæ2)*D : g1, g2 g 0, ‖g1‖1,Ã*‖g2‖1,Ãf1, |g1| f q1, |g2| f q2, Ã-a.e.

}

.

The proof of Lemma 5 is given in Appendix C. We proceed with the proofs of the results in Section IV.

1) Proof of Theorem 2: We will invoke Proposition 1 to prove the claim. To that end, we specialize the Hadamard

differentiability framework of Section III by identifying the relevant quantities and showing that the required
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assumptions hold. For brevity, we will only prove the two-sample case and highlight its differences with the

one-sample case at the end.

Part (iii): Let Ã = µ, gæ1 = gæ2 = 1, Ë2,0 ç (1, 1) = Ë1,1 ç (1, 1) = 1, Ë0,2 ç (1, 1) = 1+ q, v2,0 = v0,2 = v1,1 = 1,

p·1 = 3 and p·2 = 3+ q. Note that DKL (µn‖¿n) = Φ(pµn 2 1, p¿n 2 1) with Ç(x, y) = ÇKL(x, y) = x log(x/y) in

(7). Also, observe that under the assumptions of Part (i) of Theorem 2, we have (pµn 2 1, p¿n 2 1) * Θ a.s., where

Θ =

ù

üú

üû

(g1 2 1, g2 2 1) * D :g1 g 0, g2 g 0, spt(g1) ¦ spt(g2), ‖g1‖1,µ = ‖g2‖1,µ = 1,

|g1/g2| f q, µ-a.s.

ü

üý

üþ

,

D =
{
(g1, g2) : g1, g2 * L1(µ), ‖(g1 2 1, g2 2 1)‖

D
<>

}
.

(46)

Note that Θ ¦ Θ̄(q) as defined in (45). Then, Part (ii)(a) of Lemma 5 implies that Assumption 1 and 4 are satisfied,

while Assumption 3 holds by hypothesis. Assumption 2 holds since from (86a), we obtain D(1,0)ÇKL ç (1, 1) = 1

and D(0,1)ÇKL ç (1, 1) = 21. Proposition 1(i) and (86a) then yield

Φ2
»æ(h1, h2) =

∫

S

h1dµ2
∫

S

h2dµ, and Φ22
»æ(h1, h2) =

∫

S

(
h1 2 h2

)2
dµ,

for all (h1, h2) * TΘ(»
æ) = cl

({(
(g1 2 1)/t, (g2 2 1)/t

)
: (g1 2 1, g2 2 1) * Θ, t > 0

})
(note that Θ is convex).

Next, note that Φ(0, 0) = Φ2
»æ(h1, h2) = 0 for all (h1, h2) * TΘ(»

æ). The latter follows from that fact that if

(h1, h2) * TΘ(»
æ), then h1, h2 * L1(µ) and there exists a sequence (h1,n, h2,n)n*N, where h1,n = (g1,n 2 1)/tn,

h2,n = (g2,n2 1)/tn, (g1,n2 1, g2,n2 1) * Θ, such that ‖h1,n 2 h1‖1,µ * ‖h2,n 2 h2‖1,µ ³ 0. As
∫

S
h1,ndµ = 0

due to ‖g1,n‖1,µ = 1 for every n, we further have

∣
∣
∣
∣

∫

S

h1dµ

∣
∣
∣
∣
=

∣
∣
∣
∣
lim
n³>

∫

S

h1dµ2
∫

S

h1,ndµ

∣
∣
∣
∣
f lim

n³>

∫

S

|h1 2 h1,n| dµ = 0. (47)

Hence,
∫

S
h1dµ = 0 and similarly,

∫

S
h2dµ = 0.

To conclude, we observe that
(
rn(pµn 2 1), rn(p¿n 2 1)

) w2³ (B1, B2) in D (w.r.t. norm of L2(·1) × L2(·2))

and that
(
rn(pµn 2 1), rn(p¿n 2 1)

)
and (B1, B2) take values in TΘ(»

æ). An application of Lemma 1(ii) then

yields (13).

Part (iv): Taking Ã = ¿, first consider the case when pµ > 0. Let gæ1 = pµ, gæ2 = 1, Ë2,0 ç
(
pµ, 1

)
= 1/pµ,

Ë1,1 ç
(
pµ, 1

)
= 1, Ë0,2 ç

(
pµ, 1

)
= pµ + q, v2,0 = v0,2 = v1,1 = 1, p·1 = 2 + (1/pµ) and p·2 = 2 + pµ + q. We

have DKL (µn‖¿n) = Φ(pµn 2 pµ, p¿n 2 1) with Ç(x, y) = ÇKL(x, y) = x log(x/y) in (7). Under the hypothesis in

Part (iv), (pµn 2 pµ, p¿n 2 1) * Θ a.s., where

Θ =

ù

üú

üû

(g1 2 pµ, g2 2 1) * D : g1 g 0, g2 g 0, spt(g1) ¦ spt(g2), ‖g1‖1,¿ = ‖g2‖1,¿ = 1,

|g1/g2| f q, ¿-a.s.

ü

üý

üþ

,

D =
{
(g1, g2) : g1, g2 * L1(¿), ‖(g1, g2)‖D <>

}
.

(48)

Observe that Θ ¦ Θ̄(q) as given in (45), and that Assumptions 1, 3, and 4 are satisfied (via Part (i) and (ii)(a)

of Lemma 5). Assumption 2 also holds since D(1,0)ÇKL ç (pµ, 1) = 1 + log pµ * L2(¿) and D(0,1)ÇKL ç (pµ, 1) =
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2pµ * L2(¿) (see (86a)) by hypothesis. It then follows from Proposition 1(i) and (86a) that

Φ2
»æ(h1, h2) =

∫

S

(
1 + log pµ

)
h1d¿ 2

∫

S

h2pµd¿ =

∫

S

h1 log pµ d¿ 2
∫

S

h2dµ, (49)

for all (h1, h2) * TΘ(»
æ) = cl

({(
(g12 pµ)/t, (g22 1)/t

)
: (g12 pµ, g22 1) *Θ, t > 0

})
. Noting that Φ(0, 0) =

DKL (µ‖¿), we obtain (14) from Lemma 1(i) and the fact that
(
rn(pµn 2 pµ), rn(p¿n 2 1)

) w2³ (B1, B2) in D

taking values in TΘ(»
æ).

Finally, consider the case pµ o 0. To handle this scenario, we restrict the probability measures to the support of

pµ, i.e., S = spt(pµ), and apply Proposition 1(ii). Set Ã = ¿̃ := ¿|spt(pµ)
, where ¿|spt(pµ)

denotes the aforementioned

restriction of ¿. Then, observe that µ̃ := µ|spt(pµ)
and µ̃n := µn|spt(pµ)

are probability measures since µn j µ, while

¿̃ and ¿̃n := ¿n|spt(pµ)
are possibly deficient probability measures, i.e., 0 < ¿̃(spt(pµ)) f 1 and 0 f ¿̃n(spt(pµ)) f

1. Defining

Θ =

ù

üú

üû

(g1 2 pµ, g2 2 1) * D : g1 g 0, g2 g 0, spt(g1) ¦ spt(g2), ‖g1‖1,¿̃ = 1, ‖g2‖1,¿̃ f 1,

|g1/g2| f q, ¿-a.s.

ü

üý

üþ

,

we have (pµ̃n2pµ̃, p¿̃n21) * Θ a.s. It now follows that
(
rn(pµ̃n2pµ̃), rn(p¿̃n21)

) w2³ (B̃1, B̃2), where (B̃1, B̃2)

is the restriction of (B1, B2) to spt(pµ). Having that, the same argument as above with pµ, pµn , p¿n , ¿ replaced

by pµ̃, pµ̃n , p¿̃n , ¿̃, respectively, yields

rn
(
DKL (µ̃n‖¿̃n)2 DKL (µ̃‖¿̃)

) d2³
∫

spt(pµ)

B̃1 log pµd¿ 2
∫

spt(pµ)

B̃2dµ =

∫

spt(pµ)

B1 log pµd¿ 2
∫

spt(pµ)

B2dµ.

The claim then follows by noting that DKL (µ̃n‖¿̃n) = DKL (µn‖¿n) and DKL (µ̃‖¿̃) = DKL (µ‖¿).
The proof for the one-sample null follows via similar arguments to the two-sample null by considering Ã = µ,

gæ1 = gæ2 = 1, Ë2,0 ç
(
gæ1 , g

æ
2

)
= 1, Ë0,2 = Ë1,1 = 0, v2,0 = v0,2 = v1,1 = 1, ·1 = 2µ, ·2 = µ, and

D =
{
(g1 2 1, g2 2 1) : g1, g2 * L1(µ), ‖(g1 2 1, g2 2 1)‖

D
<>

}
,

Θ =
{

(g1 2 1, 0) * D : g1 g 0, ‖g1‖1,µ = 1
}

.

Likewise, the proof for the one-sample alternative is obtained via analogous steps to the two-sample alternative

by taking µ j ¿ = Ã, gæ1 = pµ, gæ2 = 1, Ë2,0 ç
(
gæ1 , g

æ
2

)
= 1/pµ, Ë0,2 = Ë1,1 = 0, v2,0 = v0,2 = v1,1 = 1,

p·1 = 1 + (1/pµ), p·2 = 1, and

D =
{
(g1 2 pµ, g2 2 1) : g1, g2 * L1(¿), ‖(g1 2 pµ, g2 2 1)‖

D
<>

}
,

Θ =
{

(g1 2 pµ, 0) * D : g1 g 0, ‖g1‖1,¿ = 1
}

.

This completes the proof of the theorem.

2) Proof of Theorem 3: For proving Part (i) and (ii), the continuous mapping theorem suffices, while for Part

(iii) and (iv), we will use the functional delta method.

Part (i): The claim follows from the continuous mapping theorem [25, Theorem 1.3.6], by noting that r2nÇ
2 (µn‖µ)
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=
∫

S

(
rn(pµn 2 1)

)2
dµ, rn(pµn 2 1)

w2³ B in L2(µ), and f 7³ ‖f‖22,µ is a continuous functional in L2(µ). Also,

observe that rn(pµn 2 1) * L2(µ) implies that Ç2 (µn‖µ) = ‖pµn 2 1‖22,µ <>.

Part (ii): Note that

Ç2 (µn‖¿) = ‖pµn 2 1‖22,¿ = ‖pµn 2 pµ‖22,¿ + ‖pµ 2 1‖22,¿ + 2

∫

S

(pµn 2 pµ)(pµ 2 1)d¿.

Hence,

rn
(
Ç2 (µn‖¿)2 Ç2 (µ‖¿)

)
=

∫

S

(

r
1
2
n

(
pµn 2 pµ

))2

d¿ + 2

∫

S

rn(pµn 2 pµ)(pµ 2 1)d¿

=

∫

S

(

r
1
2
n

(
pµn 2 pµ

))2

d¿ + 2

∫

S

rn(pµn 2 pµ)pµd¿.

Since rn(pµn 2 pµ)
w2³ B in L2(¿), Slutsky’s theorem implies that r

1/2
n (pµn 2 pµ)

w2³ 0 in L2(¿). Consequently,

first term in the RHS above converges weakly to zero in L2(¿) by the continuous mapping theorem applied

to the continuous functional ‖·‖22,¿ . Next, note that Ç2 (µ‖¿) < > and Ç2 (µn‖¿) < > imply pµ * L2(¿)

and pµn * L2(¿), respectively. Lemma 4(ii) together with the fact that rn(pµn 2 pµ)
w2³ B then imply that

rn(pµn 2 pµ)pµ
w2³ Bpµ in L1(¿). Having that, the claim follows from the continuous mapping theorem since

f 7³
∫

S
f d¿ is a continuous functional in L1(¿).

Part (iii): Let Ã = µ, gæ1 = gæ2 = 1, Ë2,0ç(1, 1) = 1, Ë1,1ç(1, 1) = 1+q, Ë0,2ç(1, 1) = 1+q2, v2,0 = v0,2 = v1,1 =

1, p·1 = 3+q and p·2 = 3+q+q2. We have Ç2 (µn‖¿n) = Φ(pµn21, p¿n21) with Ç(x, y) = ÇÇ2(x, y) = (x2y)2/y
in (7). Also, under the hypothesis in Part (iii), we have p¿n > 0 and (pµn 2 1, p¿n 2 1) * Θ = Θ̄(q) a.s., where

Θ̄(q) and the ambient space D are given in (46). To prove (17), we next verify that Assumptions 1-4 hold in this

setting and then invoke Proposition 1.

Observe that Part (ii)(b) of Lemma 5 implies that Assumption 1 and Assumption 4 are satisfied. Furthermore, As-

sumption 3 holds by hypothesis, while Assumption 2 is satisfied since
∣
∣D(1,0)ÇÇ2 ç (1, 1)

∣
∣ =

∣
∣D(0,1)ÇÇ2 ç (1, 1)

∣
∣= 0

from (86b). Then, it follows via Proposition 1(i) and (86b) that

Φ2
»æ(h1, h2) = 0 and Φ22

»æ(h1, h2) =

∫

S

2
(
h1 2 h2

)2
dµ,

for all (h1, h2) * TΘ(»
æ) = cl

({(
(g12 1)/t, (g22 1)/t

)
: (g12 1, g22 1) * Θ, t > 0

})
. Lastly, since Φ(0, 0) = 0,

(
rn(pµn 2 1), rn(p¿n 2 1)

) w2³ (B1, B2) in D, and
(
rn(pµn 2 1), rn(p¿n 2 1)

)
as well as (B1, B2) take values in

TΘ(»
æ), the convergence in (17) follows from Lemma 1(ii).

Part (iv): Let Ã = ¿ and assume first that pµ > 0. Set gæ1 = pµ, gæ2 = 1, Ë2,0ç
(
pµ, 1

)
= 1, Ë0,2ç

(
pµ, 1

)
= p2µ+q

2,

Ë1,1 ç
(
pµ, 1

)
= pµ + q, v2,0 = v0,2 = v1,1 = 1, p·1 = 2 + pµ + q and p·2 = 1 + pµ + q + p2µ + q2. We have

Ç2 (µn‖¿n) = Φ(pµn 2 pµ, p¿n 2 1) with Ç(x, y) = ÇÇ2 (x, y) = (x 2 y)2/y in (7). Under the hypothesis in Part

(iii), (pµn 2 pµ, p¿n 2 1) * Θ = Θ̄(q) a.s., where Θ̄(q) and D are as in (48). Assumptions 1, 3, and 4 are satisfied

for the same reason as in Part (iii). Assumption 2 holds since (86b) together with the hypothesis pµ * L4(¿)

implies D(1,0)ÇÇ2 ç (pµ, 1) = 2(pµ 2 1) * L2(¿) and D(0,1)ÇÇ2 ç (pµ, 1) = 12 p2µ * L2(¿). Applying Proposition
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1(i) while using (86b), we have

Φ2
»æ(h1, h2) =

∫

S

2
(
pµ 2 1

)
h1d¿ +

∫

S

(
12 p2µ

)
h2d¿ = 2

∫

S

h1 dµ2
∫

S

h2pµdµ,

for all (h1, h2) * TΘ(»
æ) = cl

({(
(g12 pµ)/t, (g22 1)/t

)
: (g12 pµ, g22 1) * Θ, t > 0

})
. Here, the last equality

follows since
∫

S
h1d¿ =

∫

S
h2d¿ = 0 for (h1, h2) * TΘ(»

æ), similarly to (47). Finally, (18) follows from the

above equation and Lemma 1(i) by noting that Φ(0, 0) = Ç2 (µ‖¿) and
(
rn(pµn 2 pµ), rn(p¿n 2 1)

) w2³ (B1, B2)

in D, taking values in TΘ(»
æ). Finally, the case pµ o 0 is handled by restricting the space to spt(pµ) as given at

the end of the proof of Theorem 2, Part (iv). The claim then follows by noting that Ç2 (µ̃n‖¿̃n) = Ç2 (µn‖¿n) and

Ç2 (µ̃‖¿̃) = Ç2 (µ‖¿), where µ̃n, ¿̃n, µ̃ and ¿̃ are as defined therein.

3) Proof of Theorem 4: The proof uses Proposition 1 by identifying the relevant quantities in the Hadamard

differentiability framework of Section III and showing that the pertinent assumptions hold. Again, we only prove

the two-sample case, delineating the difference for the one-sample case at the end.

Part (iii): Let µn, ¿n, µj Ã for some finite measure Ã, and set gæ1 = gæ2 = pµ, Ë2,0ç
(
pµ, pµ

)
=
(
p
1/2
µ +q

1/2
2

)
/p

3/2
µ ,

Ë0,2 ç
(
pµ, pµ

)
=
(
p
1/2
µ + q

1/2
1

)
/p

3/2
µ , Ë1,1 ç

(
pµ, pµ

)
= 1/pµ, v2,0 = v0,2 = Ç1/2(1 2 Ç)21/2, v1,1 = 1, p·1 =

p·2 = 1 + (1/pµ) +
(
q1/2/p

3/2
µ

)
, and

D =
{
(g1 2 pµ, g2 2 pµ) : g1, g2 * L1(Ã), ‖(g1 2 pµ, g2 2 pµ)‖D <>

}
,

Θ =
{

(g1 2 pµ, g2 2 pµ) * D : g1, g2 g 0, ‖g1‖1,Ã = ‖g2‖1,Ã = 1, |g1| * |g2| f q, Ã-a.e.
}

.

The hypothesis in Part (iii) entails (pµn2pµ, p¿n2pµ) * Θ a.s. Further, H2 (µn, ¿n) = Φ(pµn2pµ, p¿n2pµ) with

Ç(x, y) = ÇH2(x, y) = (
:
x2:y)2 in (7). Consequently, Parts (i) and (ii)(c) of Lemma 5 shows that Assumptions

1 and 4 are satisfied since Θ ¦ Θ̌(q1, q2) and ÇH2 is continuous at (0, 0). Assumption 3 holds by boundedness of

H
2 distance. Assumption 2 follows since D(1,0)ÇH2 ç (pµ, pµ) = D(0,1)ÇH2 ç (pµ, pµ) = 0 from (86c). Proposition

1(ii) and (86c) now yield

Φ2
»æ(h1, h2) = 0 and Φ22

»æ(h1, h2) =

∫

S

(
h1 2 h2

)2

2pµ
dÃ,

for all (h1, h2) * TΘ(»
æ) = cl

({(
(g1 2 pµ)/t, (g2 2 pµ)/t

)
: (g1 2 pµ, g2 2 pµ) * Θ, t > 0

})
.

The convergence in (21) is then a consequence of Lemma 1(ii), together with Φ(0, 0) = 0,
(
rn(pµn2pµ), rn(p¿n2

pµ)
) w2³ (B1, B2) in D, where

(
rn(pµn 2 pµ), rn(p¿n 2 pµ)

)
and (B1, B2) take values in TΘ(»

æ).

Part (iv): Let µn, ¿n, µ, ¿ j Ã for some finite measure Ã, and set gæ1 = pµ, gæ2 = p¿ , Ë2,0 ç
(
pµ, p¿

)
=
(
p
1/2
¿ +

q
1/2
2

)
/p

3/2
µ , Ë0,2 ç

(
pµ, p¿

)
=
(
p
1/2
µ + q

1/2
1

)
/p

3/2
¿ , Ë1,1 ç

(
pµ, p¿

)
= 1/

(
pµp¿

)1/2
, v2,0 = v0,2 = Ç1/2(12 Ç)21/2,

and v1,1 = 1. Further define the densities

p·1 = 1 +
(

p
1
2
¿ + q

1
2
2

)

p
2 3

2
µ + p

2 1
2

µ p
2 1

2
¿ and p·2 = 1 +

(

p
1
2
µ + q

1
2
1

)

p
2 3

2
¿ + p

2 1
2

µ p
2 1

2
¿ ,
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and consider the spaces

Θ = Θ̌(q1, q2) =
{

(g1 2 pµ, g2 2 p¿) * D : g1, g2 g 0, ‖g1‖1,Ã = ‖g2‖1,Ã = 1, |g1| f q1, |g2| f q2, Ã-a.e.
}

,

D =
{
(g1 2 pµ, g2 2 p¿) : g1, g2 * L1(Ã), ‖(g1 2 pµ, g2 2 p¿)‖D <>

}
.

Note that under the hypothesis in Part (iv), (pµn2pµ, p¿n2p¿) * Θ a.s., and H
2 (µn, ¿n) = Φ(pµn2pµ, p¿n2p¿)

with Ç(x, y) = ÇH2(x, y) = (
:
x2:y)2 in (7). Assumptions 1 and 4 as well as the continuity of ÇH2 at (0, 0) holds

via Lemma 5, Parts (i) and (ii)(c), while Assumption 3 follows by boundedness of H2. Assumption 2 is satisfied

since from (86c), we have both D(1,0)ÇH2 ç (pµ, p¿) = 1 2 p1/2¿ p
21/2
µ and D(0,1)ÇH2 ç (pµ, p¿) = 1 2 p1/2µ p

21/2
¿

belonging to L2(Ã) because p¿/pµ, pµ/p¿ * L1(Ã) and Ã is a finite measure. Invoking Proposition 1(ii) and (86c),

we obtain

Φ2
»æ(h1, h2) =

∫

S

(

12 p
1
2
¿ p

2 1
2

µ

)

h1dÃ+

∫

S

(

12 p
1
2
µ p

2 1
2

¿

)

h2dÃ = 2
∫

S

p
1
2
¿ p

2 1
2

µ h1dÃ2
∫

S

p
1
2
µp

2 1
2

¿ h2dÃ,

for all (h1, h2) * TΘ(»
æ) = cl

({(
(g1 2 pµ)/t, (g2 2 p¿)/t

)
: (g1 2 pµ, g2 2 p¿) * Θ, t > 0

})
.

The desired result, namely (22), then follows from Lemma 1(i), along with Φ(0, 0) = H
2 (µ, ¿),

(
rn(pµn 2

pµ), rn(p¿n 2 p¿)
) w2³ (B1, B2) in D with

(
rn(pµn 2 pµ), rn(p¿n 2 p¿)

)
and (B1, B2) taking values in TΘ(»

æ).

The proof for the one-sample null follows via analogous arguments to the two-sample null by taking µn, µj Ã

for some finite measure Ã, gæ1 = gæ2 = pµ, Ë2,0 ç
(
pµ, pµ

)
= 1/pµ, Ë0,2 = Ë1,1 = 0, v2,0 = (1 2 Ç)21/2,

v0,2 = v1,1 = 1, p·1 = 1+ (1/pµ), ·2 = Ã, and

D =
{
(g1 2 pµ, g2 2 pµ) : g1, g2 * L1(Ã), ‖(g1 2 pµ, g2 2 pµ)‖D <>

}
,

Θ =
{

(g1 2 pµ, 0) * D : g1 g 0, ‖g1‖1,Ã = 1
}

.

In a similar vein, the proof for the one-sample alternative is akin to the two-sample alternative, by considering

µn, µ, ¿ j Ã for some finite measure Ã, and set gæ1 = pµ, gæ2 = p¿ , Ë2,0 ç
(
pµ, p¿

)
= p

1/2
¿ /p

3/2
µ , Ë0,2 = Ë1,1 = 0,

v2,0 = (12 Ç)21/2, v0,2 = v1,1 = 1, p·1 = 1 +
(
p
1/2
¿ /p

3/2
µ

)
, ·2 = Ã, and

D =
{
(g1 2 pµ, g2 2 p¿) : g1, g2 * L1(Ã), ‖(g1 2 pµ, g2 2 p¿)‖D <>

}
,

Θ =
{

(g1 2 pµ, 0) * D : g1 g 0, ‖g1‖1,Ã = 1
}

.

4) Proof of Theorem 5: We prove the one- and two-sample null cases together. Then, we prove both statements

under the alternative.

(One-sample and two-sample null): The results in these cases follow directly by the continuous mapping theorem.

To see this, note that f 7³ ‖f‖
TV

= ‖f‖1,Ã /2 is a continuous functional in L1(Ã). With that, the convergence of

rn(pµn 2 pµ)
w2³ B and rn(pµn 2 p¿n)

w2³ B in L1(Ã) imply

rn ‖µn 2 µ‖TV
d2³ 1

2

∫

S

|B| dÃ and rn ‖µn 2 ¿n‖TV
d2³ 1

2

∫

S

|B| dÃ,

respectively. Note that the above limit distributions are special cases of (23) and (24) for µ = ¿, since Q = S in
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this case and the second terms in the respective equations vanish.

(One-sample and two-sample alternative): Note that ‖µ2 ¿‖
TV

= Φ(0, 0) with Ç(x, y) = |x2 y| /2, gæ1 = pµ

and gæ2 = p¿ in (7). Hence Assumption 1 is violated (at x = y), and the Hadamard differentiability framework in

Section III does not apply directly. To circumvent that, we provide a direct argument for computing the Hadamard

directional derivative in this case.

Let D = L1(Ã), gæ1 , g
æ
2 * L1(Ã) be arbitrary, set

Θ̂ =
{
g = g1 2 g2 : g1, g2 * L1(Ã), g1, g2 g 0, ‖g1‖1,Ã = ‖g2‖1,Ã = 1

}
,

and consider the functional Υ : Θ̂³ Rg0 given by Υ(g) =
∫

S
|g| /2 dÃ. We will show that Υ is locally Lipschitz

at »æ = gæ1 2 gæ2 * Θ̂, whereby its Hadamard directional derivative at »æ coincides with the Gâteaux directional

derivative [23], [24], which is defined by

Υ2
»æ(h) = lim

tn³0+
Υ(gæ1 2 gæ2 + tnh)2Υ(gæ1 2 gæ2)

tn
, h * D.

For the local Lipschitzness, observe that

Υ(g)2Υ(g̃) =
1

2

∫

S

|g| dÃ2 1

2

∫

S

|g̃| dÃ f 1

2

∫

S

|g 2 g̃| dÃ =
1

2
‖g 2 g̃‖1,Ã ,

and switch the roles of g and g̃ to conclude that |Υ(g)2Υ(g̃)| f ‖g 2 g̃‖1,Ã /2.

To compute the Gâteaux derivative of Υ, set Qæ := {s * S : gæ1(s) = gæ1(s)} and write

Υ(gæ1 2 gæ2 + th)2Υ(gæ1 2 gæ2)
t

=
1

2

∫

Qæ
|h| dÃ+ 1

2

∫

S\Qæ

|gæ1 2 gæ2 + th| 2 |gæ1 2 gæ2 |
t

dÃ. (50)

Note that the integrand in the last term above is dominated by |h| * L1(Ã) Ã-a.e. and that on S \ Qæ, we have

lim
t³0+
|gæ1 2 gæ2 + th| 2 |gæ1 2 gæ2 |

t
= sgn

(
gæ1 2 gæ2

)
h,

where sgn(x) = x/|x| for x 6= 0 and sgn(0) = 0. An application of dominated convergence theorem to the last

term in (50) then yields the Gâteaux derivative at »æ given by

Υ2
»æ(h) := lim

t³0+
Υ(gæ1 2 gæ2 + th)2Υ(gæ1 2 gæ2)

t
=

1

2

∫

Qæ
|h| dÃ+ 1

2

∫

S\Qæ
sgn
(
gæ1 2 gæ2

)
hdÃ, (51)

which coincides with the Hadamard derivative due to the aforementioned local Lipschitzness of the functional.

We are now in place to prove the limit distribution results. For the one-sample alternative case, let µn, µ, ¿ j Ã

for some measure Ã, set »æ = pµ 2 p¿ , and consider

Θ =
{
g1 2 p¿ : g1 * L1(Ã), g1 g 0, ‖g1‖1,Ã = 1

}
¢ Θ̂.

Note that TΘ(»
æ) = cl

({(
g1 2 pµ)/t : g1 2 p¿ * Θ, t > 0

})
since Θ is convex. Setting Q := {s * S : pµ(s) =
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p¿(s)}, the Hadamard directional derivative of Υ at »æ is

Υ2
»æ(h) =

1

2

∫

Q
|h| dÃ+ 1

2

∫

S\Q
sgn
(
pµ 2 p¿

)
hdÃ, h * TΘ(»

æ).

Lemma 1(i) along with the fact that rn(pµn 2 pµ)
w2³ B in L1(Ã) with rn(pµn 2 pµ) and B taking values in

TΘ(»
æ), leads to

rn
(
‖pµn 2 p¿‖TV 2 ‖pµ 2 p¿‖TV

)
= rn

(
Υ(pµn 2 p¿)2Υ(pµ 2 p¿)

) d2³ Υ2
»æ(B),

which proves (23).

For two-sample case, let µn, ¿n, µ, ¿ j Ã for some measure Ã, »æ = pµ 2 p¿ , and Θ = Θ̂. Again, TΘ(»
æ) =

cl
({(

g 2 (pµ 2 p¿)
)
/t : g * Θ, t > 0

})
since Θ is convex. The claim in (24) then follows using same arguments

as above via Lemma 1(i) together with rn
(
pµn 2p¿n2 (pµ2p¿)

) w2³ B in L1(Ã) with rn
(
pµn 2p¿n2 (pµ2p¿)

)

and B supported in TΘ(»
æ). This completes the proof.

C. Proofs for Section V

To establish the limit distribution for Gaussian-smoothed f -divergences, we first use the CLT in Lr spaces to

deduce weak convergence of the smooth empirical process, and then invoke the general limit distribution theorems

from Section IV. The CLT in Lr spaces is stated next.

Theorem 6 (Proposition 2.1.11 in [25]) Let 1 f r < >, and Z,Z1, . . . , Zn be i.i.d. Lr(S,S, Ã)-valued random

variables (recall Ã is Ã-finite) with zero mean (in the sense of Bochner). The following are equivalent:

(i) There exists a centered Gaussian process G in Lr with same covariance function as Z such that n21/2
∑n
i=1 Zi

converges weakly in Lr to G.

(ii)
∫

S

(
E
[
|Z(s)|2

])r/2
dÃ(s) <> and P(‖Z‖r,Ã g t) = o(t22) as t³>.

Henceforth, in this section, we apply the general results from Section 4, namely, Theorems 1-4, with µ± µ7³Ã ,

¿ ± ¿ 7 ³Ã , µn = µ̂n 7 ³Ã and ¿n = ¿̂n 7 ³Ã . The reference measure Ã will be adapted on a case-by-case basis and

specified in the proofs below.

1) Proof of Proposition 2 : Part (i): To prove (27), we apply Theorem 2(i) with Ã = µ 7 ³Ã . To verify that the

required conditions hold, first observe that µ 7 ³Ã jk µ̂n 7 ³Ã . Furthermore, for X̂ > µ̂n and X > µ independent

of Y > µ, we have

E
[
DKL (µ̂n 7 ³Ã‖µ 7 ³Ã)

]
= E

[

DKL

(

Eµ̂n
[
N
(
X̂, Ã2Id

)]
∥
∥
∥Eµ

[
N
(
Y, Ã2Id

)]) ]

(a)

f E
[

DKL

(
N
(
X, Ã2Id

)∥
∥N
(
Y, Ã2Id

)) ]

(b)
=

1

2Ã2
E
[

‖X 2 Y ‖2
]

<>,

where (a) is by Jensen’s inequality applied to KL divergence which is jointly convex in its arguments, (b) uses

the closed-form expression for KL divergence between multivariate Gaussian distributions (see [76]), and the last
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inequality is because all moments of a sub-Gaussian distribution are finite (see [77]). Since KL divergence is

nonnegative, this implies that DKL (µ̂n 7 ³Ã‖µ 7 ³Ã) <> a.s. Setting rn = n1/2, (27) follows from (11) provided

that

n1/2

(
µ̂n 7 ×Ã
µ 7 ×Ã

2 1

)

w2³ Gµ,Ã
µ 7 ×Ã

in L2(µ 7 ³Ã). (52)

It thus remains to establish (52), for which we use Theorem 6. Note that n1/2
(
(µ̂n 7 ×Ã/µ 7 ×Ã) 2 1

)
=

n21/2
∑n

i=1 Zi, where

Zi =
×(· 2Xi)2 µ 7 ×Ã

µ 7 ×Ã
, i = 1, . . . , n, (53)

are centered i.i.d. random variables with the same distribution as Z =
(
×(·2X)2µ7×Ã

)
/µ7×Ã . Further observe

that the process Zi is jointly measurable when viewed as a map from
(
Ω × Rd,A × B(Rd)

)
to R, and has paths

a.s. in L2(µ 7 ³Ã); indeed,

E
[
‖Zi‖22,µ7³Ã

]
=

∫

Rd

Eµ

[

|Zi(x)|2
]

µ 7 ×Ã(x)dx =

∫

Rd

Varµ

(
×Ã(x2 ·)

)

µ 7 ×Ã(x)
dx <>, (54)

by Fubini’s theorem and the assumption in (26). This finiteness also implies the conditions in Theorem 6(ii). The

first follows directly from the equation above, while for the second, we show that if P(‖Z‖2,µ7³Ã g t) = o(t22) as

t³> does not hold, then E
[
‖Zi‖22,µ7³Ã

]
<> is contradicted. To see this, note that the violation of the former

condition implies that there exists constants c > 0 and t0 g 1 such that for all t g t0, P(‖Z‖2,µ7³Ã g t) g ct22.

Then

E
[
‖Z‖22,µ7³Ã

]
=

∫ >

0

P(‖Z‖2,µ7³Ã g
:
t)dt g

∫ >

t0

ct21dt =>,

which is the desired contradiction. Hence, the conditions in Theorem 6(ii) are satisfied under (26). Consequently,

by Theorem 6(i), there exists a centered Gaussian process Gµ,Ã/µ 7 ×Ã such that

n21/2
n∑

i=1

Zi
w2³ Gµ,Ã

µ 7 ×Ã
in L2(µ 7 ³Ã),

which completes the proof of (27).

The claim that (26) and (27) holds for ³-sub-Gaussian µ with ³ < Ã follows from Proposition 1 in [78] by noting

that the LHS of (26) equals IÇ2 (V ;W ), where IÇ2 (V ;W ) := Ç2 (PV,W ‖PV × PW ) is the Ç2 mutual information

between V and W = V + Z , where V > µ and Z > ³Ã are independent. Finally, we observe that if (26) is

violated then lim infn³> nE
[
DKL (µ̂n 7 ³Ã‖µ 7 ³Ã)

]
=>. This is a consequence of Lemma 2, by noting that fKL

is continuously twice differentiable with positive second derivative.

Part (ii): To prove (29), we use Theorem 2(ii) with Ã = ¿ 7 ³Ã. Note that µ 7 ³Ã, µ̂n 7 ³Ã, ¿ 7 ³Ã are all mutually

absolutely continuous, and pµ7³Ã = µ7×Ã/¿ 7×Ã > 0. Moreover, log
(
µ7×Ã/¿ 7×Ã

)
* L2(¿ 7×Ã) by assumption,

and using similar steps as in Part (i), we have DKL (µ 7 ³Ã‖¿ 7 ³Ã) < > and DKL (µ̂n 7 ³Ã‖¿ 7 ³Ã) < > a.s.
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Hence, we have from (12) with rn = n1/2 that

n
1
2

(
DKL (µ̂n 7 ³Ã‖¿ 7 ³Ã)2 DKL (µ 7 ³Ã‖¿ 7 ³Ã)

) d2³
∫

Rd

Gµ,Ã(x) log

(
µ 7 ×Ã(x)
¿ 7 ×Ã(x)

)

dx, (55)

provided

n1/2

(
µ̂n 7 ×Ã
¿ 7 ×Ã

2 µ 7 ×Ã
¿ 7 ×Ã

)

w2³ Gµ,Ã
¿ 7 ×Ã

in L2(·), (56)

where · has relative density p· = 1+ (¿ 7 ×Ã/µ 7 ×Ã). To prove (29), it remains to show that (56) holds and that

the RHS of (55) is N
(
0, v21,fKL(µ, ¿, Ã)

)
.

We first show that (56) holds given (26), (28), and
∥
∥(¿ 7 ×Ã)2/µ 7 ×Ã

∥
∥
> < >. The latter along with the fact

that ¿ 7 ³Ã is a probability measure implies that · is Ã-finite. Next, observe that n1/2(µ̂n 7×Ã 2 µ 7×Ã)/¿ 7×Ã =

n21/2
∑n

i=1 Zi, where Zi =
(
×(· 2Xi)2 µ 7 ×Ã

)
/¿ 7 ×Ã , for i = 1, . . . , n, are centered and i.i.d. with the same

distribution as Z =
(
×(· 2 X) 2 µ 7 ×Ã

)
/¿ 7 ×Ã . The claim then follows from Theorem 6(ii), given that the

conditions therein are satisfied. Akin to the proof of Part (i) above, the process Zi is jointly measurable with paths

a.s. in L2(·). Indeed

E
[
‖Zi‖22,·

]
=

∫

Rd

Eµ

[

|Zi(x)|2
]
(

¿ 7 ×Ã(x) +
(
¿ 7 ×Ã(x)

)2

µ 7 ×Ã(x)

)

dx

=

∫

Rd

Varµ

(
×Ã(x2 ·)

)

¿ 7 ×Ã(x)
dx+

∫

Rd

Varµ

(
×Ã(x2 ·)

)

µ 7 ×Ã(x)
dx <>, (57)

where the first equality is by Fubini’s theorem and last inequality is due to (26) and (28). This finiteness implies

the conditions in Theorem 6(ii): the first follows trivially, while the second follows via similar arguments as in Part

(i). Invoking Theorem 6, there exists a centered Gaussian process Gµ,Ã/¿ 7 ×Ã such that (56) holds.

Next, we claim that the RHS of (55) is zero mean Gaussian random variable with variance v21,fKL(µ, ¿, Ã). This

follows from the dual characterization of a random variable B taking values in a Banach space B as Gaussian

if and only if f(B) is a real-valued Gaussian random variable for every f in the topological dual space of

continuous linear functionals on B (see [79, Page 55]). Hence, the RHS of (55) is a real Gaussian random variable

because Gµ,Ã/
:
¿ 7 ×Ã is L2(Rd)-valued Gaussian random variable and

:
¿ 7 ×Ã log

(
µ 7 ×Ã/¿ 7 ×Ã

)
* L2(Rd)

(by assumption). Computing the mean and variance explicitly leads to the claim above with

v21,fKL(µ, ¿, Ã) =

∫

Rd

∫

Rd

Σ(1,1)
µ,¿,Ã(x, y) log

(
µ 7 ×Ã(x)
¿ 7 ×Ã(x)

)

log

(
µ 7 ×Ã(y)
¿ 7 ×Ã(y)

)

dx dy, (58)

where we used
∫

Rd

∫

Rd
Σ

(1,1)
µ,¿,Ã(x, y)dxdy =

∫

Rd

∫

Rd
cov
(
×Ã(x2X), ×Ã(y2X)

)
dxdy = 0, which in itself follows

from Fubini’s theorem and
∫

Rd
×Ã(x2 ·)dx = 1.

To prove the final claim in Part (ii), we note that for every x * Rd,

∣
∣
∣
∣

µ 7 ×Ã(x)
¿ 7 ×Ã(x)

∣
∣
∣
∣
=

∣
∣
∣
∣

Eµ[×Ã(x2 ·)]
E¿ [×Ã(x2 ·)

∣
∣
∣
∣
f
∥
∥
∥
∥

dµ

d¿

∥
∥
∥
∥
>
<>, (59)

which implies ‖µ 7 ×Ã/¿ 7 ×Ã‖> <>. Similarly, ‖¿ 7 ×Ã/µ 7 ×Ã‖> <>. This leads to
∥
∥(¿ 7 ×Ã)2/µ 7 ×Ã

∥
∥
> <
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> and log
(
µ 7 ×Ã/¿ 7 ×Ã

)
* L2(¿ 7 ×Ã). On the other hand, for ³-sub-Gaussian µ with ³ < Ã, (26) holds using

the same argument as in Part (i), while (28) follows since

∫

Rd

Varµ

(
×Ã(x2 ·)

)

¿ 7 ×Ã(x)
dx f

∥
∥
∥
∥

µ 7 ×Ã
¿ 7 ×Ã

∥
∥
∥
∥
>

∫

Rd

Varµ

(
×Ã(x2 ·)

)

µ 7 ×Ã
dx <>. (60)

Hence, all the conditions needed for (29) are satisfied.

Part (iii): We apply Theorem 2(iii) with Ã = µ 7 ³Ã . We have that µ 7 ³Ã , µ̂n 7 ³Ã , ¿̂n 7 ³Ã are all mutually

absolutely continuous, and p¿̂n7³Ã = ¿̂n 7 ³Ã/µ 7 ×Ã > 0. Moreover, we have DKL (µ̂n 7 ³Ã‖¿̂n 7 ³Ã) <> a.s. via

steps similar to those in Part (i). Also, since µ has compact support and spt(µ̂n), spt(¿̂n) ¢ spt(µ), we have

∣
∣
∣
∣

µ̂n 7 ×Ã(x)
¿̂n 7 ×Ã(x)

∣
∣
∣
∣
=

∑n
i=1 e

2‖x2Xi‖2

2Ã2

∑n
i=1 e

2‖x2Yi‖2

2Ã2

f max
1fifn

e2
‖x2Xi‖2

2Ã2
+

‖x2Yi‖2

2Ã2 f c2ec‖x‖, (61)

for some constants c, c2 > 0 that depend only on Ã and spt(µ). Taking q(x) = c2ec‖x‖, we have

d·1
dx

(x) = µ 7 ×Ã(x),
d·2
dx

(x) = µ 7 ×Ã(x) + µ 7 ×Ã(x) c2ec‖x‖.

Recall that n1/2
(
(µ̂n 7×Ã/µ7×Ã)2 1

)
= n21/2

∑n
i=1 Zi, where Zi is given in (53). Let Z̃i be defined similarly

with Xi replaced by Yi, so that n1/2
(
(¿̂n 7×Ã/µ 7×Ã)2 1

)
= n21/2

∑n
i=1 Z̃i. Setting rn = n1/2, it follows from

(13) that

nDKL (µ̂n 7 ×Ã‖¿̂n 7 ×Ã) d2³ 1

2

∫

S

(
Gµ,Ã(x)2 G̃µ,Ã(x)

)

µ 7 ×Ã(x)

2

dx

so long that

(

n21/2
n∑

i=1

Zi, n
21/2

n∑

i=1

Z̃i

)

w2³
(

Gµ,Ã
µ 7 ×Ã

,
G̃µ,Ã
µ 7 ×Ã

)

in L2(·1)× L2(·2),

where
(
Gµ,Ã, G̃µ,Ã

)
:=
(
Gµ,Ã(x), G̃µ,Ã(y)

)

(x,y)*Rd×Rd
is a 2-dimensional Gaussian process.

A sufficient condition for the joint weak convergence above is

n21/2
n∑

i=1

Zi
w2³ Gµ,Ã

µ 7 ×Ã
in L2(·1) and n21/2

n∑

i=1

Z̃i
w2³ G̃µ,Ã

µ 7 ×Ã
in L2(·2). (62)

To see this, first observe that both ·1 and ·2 are finite measures on
(
Rd,B(Rd)

)
, and hence L2(·1) and L2(·2) are

Polish. Furthermore, given (62),
(
n21/2

∑n
i=1 Z̃i

)

n*N
and

(
n21/2

∑n
i=1 Z̃i

)

n*N
are both asymptotically tight and

asymptotically measurable in L2(·1) and L2(·2), respectively [25, Lemma 1.3.8]. This implies that
(
n21/2

∑n
i=1 Z̃i,

n21/2
∑n

i=1 Z̃i
)

n*N
are jointly asymptotically tight and jointly measurable in L2(·1)×L2(·2) [25, Lemma 1.4.3 and

1.4.4]. Then, by Polishness of L2(·1)×L2(·2), the desired joint weak convergence holds if the finite-dimensional

marginals of the joint process converge weakly (see [64, Lemma 16]), i.e., for every x1, . . . , xm, x̃1, . . . , x̃l * Rd,

(

n21/2
n∑

i=1

Zi(x1), . . . , n
21/2

n∑

i=1

Zi(xm), n21/2
n∑

i=1

Z̃i(x̃1), . . . ,

n∑

i=1

Z̃i(x̃l)

)

(63)
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converges weakly. The latter follows from the multivariate CLT.

Next, we apply Theorem 6 to show that the sufficient condition given in (62) is satisfied when µ, ¿ have compact

supports. As in Part (i), the process Zi above is jointly measurable, has paths a.s. in L2(·1), and satisfies the

conditions in Theorem 6(ii). This follows by a similar argument as in Part (i), under the assumption in (26) holds.

Hence, by Theorem 6, there exists a centered Gaussian process Gµ,Ã/µ 7 ×Ã such that the first weak convergence

claim in the equation above holds. The second weak convergence claim holds via a similar argument with Zi and

·1 replaced by Z̃i and ·2, respectively, provided that

∫

Rd

Varµ

(
×Ã(x2 ·)

)

µ 7 ×Ã(x)
(
1 + ec‖x‖

)
dx <>.

Thus, to prove (30), it remains to show that the above equation holds when µ has compact support. This follows

via a direct computation:

∫

Rd

Varµ

(
×Ã(x 2 ·)

)

µ 7 ×Ã(x)
dx+

∫

Rd

Varµ

(
×Ã(x2 ·)

)

µ 7 ×Ã(x)
ec‖x‖dx

f
∫

Rd

Eµ
[
×2
Ã(x2 ·)

]

µ 7 ×Ã(x)
dx+

∫

Rd

Eµ
[
×2
Ã(x2 ·)

]

µ 7 ×Ã(x)
ec‖x‖dx

f
∫

Rd

∫

Rd
e2

‖x2y‖2
Ã2 dµ(y)

∫

Rd
e2

‖x2y‖2
2Ã2 dµ(y)

dx+

∫

Rd

∫

Rd
e2

‖x2y‖2
Ã2 dµ(y)

∫

Rd
e2

‖x2y‖2
2Ã2 dµ(y)

ec‖x‖dx

f
∫

Rd

e2
‖x‖2
2Ã2

∫

Rd
e

2x·y2‖y‖2
Ã2 dµ(y)

∫

Rd
e

2x·y2‖y‖2
2Ã2 dµ(y)

dx+

∫

Rd

e2
‖x‖2
2Ã2

∫

Rd
e

2x·y2‖y‖2

Ã2 dµ(y)
∫

Rd
e

2x·y2‖y‖2

2Ã2 dµ(y)
ec‖x‖dx

f
∫

Rd

e2
‖x‖2
2Ã2

∫

Rd
e

2‖x‖‖y‖2‖y‖2

Ã2 dµ(y)
∫

Rd
e

22‖x‖‖y‖2‖y‖2
2Ã2 dµ(y)

dx+

∫

Rd

e2
‖x‖2
2Ã2

∫

Rd
e

2‖x‖‖y‖2‖y‖2

Ã2 dµ(y)
∫

Rd
e

22‖x‖‖y‖2‖y‖2
2Ã2 dµ(y)

ec‖x‖dx

f c2
∫

Rd

e2
‖x‖2
2Ã2 ec‖x‖dx <>, (64)

for some constants c, c2 > 0 which depends on Ã and spt(µ).

Part (iv): To prove (31), we utilize Theorem 2(iv) with Ã = ¿ 7 ³Ã . The positivity and absolute continuity of the

probability measures as well as finiteness of KL divergences required in Theorem 2(iv) follow from similar steps

as above, which are thus omitted. Likewise, (61) holds (possibly with different constants c, c2) since µ and ¿ have

compact supports. Moreover, using Jensen’s inequality and steps similar to those leading to (64), we have

¿ 7 ×Ã(x)2
µ 7 ×Ã(x)

f E¿
[
×2
Ã(x2 ·)

]

µ 7 ×Ã(x)
= e2

‖x‖2
2Ã2

∫

Rd
e

2‖x‖‖y‖2‖y‖2

Ã2 d¿(y)
∫

Rd
e

22‖x‖‖y‖2‖y‖2
2Ã2 dµ(y)

f c2e2
‖x‖2
2Ã2 ec‖x‖ f c̃,

¿ 7 ×Ã(x)
µ 7 ×Ã(x)

f
∫

Rd
e

2‖x‖‖y‖2‖y‖2
2Ã2 d¿(y)

∫

Rd
e

22‖x‖‖y‖2‖y‖2

2Ã2 dµ(y)
f c2ec‖x‖, (65)

for some constants c, c2, c̃ > 0 which depends only on Ã and the supports of µ, ¿. Hence,
∥
∥¿ 7 ×2

Ã/µ 7 ×Ã
∥
∥
> <>

and µ 7 ×Ã, log
(
µ 7 ×Ã/¿ 7 ×Ã

)
* L2(¿ 7 ×Ã) (note the above inequalities also hold with µ and ¿ interchanged).



37

Next, observe that the measures ·1 and ·2 given in Theorem 2(iv) with q(x) = c2ec‖x‖ have Lebesgue densities

d·1
dx

(x) = ¿ 7 ×Ã(x) +
(
¿ 7 ×Ã(x)

)2

µ 7 ×Ã(x)
,

d·2
dx

(x) = ¿ 7 ×Ã(x) + c2¿ 7 ×Ã(x) ec‖x‖ + µ 7 ×Ã(x), (66)

and hence are finite measures based on the inequalities above. Then, the Polishness of L2(·1) × L2(·2) and the

discussion in Part (iii) implies via (14) with rn = n1/2 that

n
1
2

(
DKL (µ̂n 7 ³Ã‖¿̂n 7 ³Ã)2 DKL (µ 7 ³Ã‖¿ 7 ³Ã)

)

d2³
∫

Rd

Gµ,Ã(x) log

(
µ 7 ×Ã(x)
¿ 7 ×Ã(x)

)

dx2
∫

Rd

G¿,Ã(x)
µ 7 ×Ã(x)
¿ 7 ×Ã(x)

dx, (67)

provided that

n1/2

(
µ̂n 7 ×Ã
¿ 7 ×Ã

2 µ 7 ×Ã
¿ 7 ×Ã

)

w2³ Gµ,Ã
¿ 7 ×Ã

in L2(·1),

n1/2

(
¿̂n 7 ×Ã
¿ 7 ×Ã

2 1

)

w2³ G¿,Ã
¿ 7 ×Ã

in L2(·2).

(68)

Resorting to Theorem 6 once more, we next show that the weak convergence requirements in (68) hold if

∫

Rd

Varµ

(
×Ã(x2 ·)

)

¿ 7 ×Ã(x)
dx+

∫

Rd

Varµ

(
×Ã(x2 ·)

)

µ 7 ×Ã(x)
dx <>,

and

∫

Rd

Var¿

(
×Ã(x 2 ·)

)

¿ 7 ×Ã(x)
(
1 + ec‖x‖

)
dx+

∫

Rd

Var¿

(
×Ã(x2 ·)

)
µ 7 ×Ã(x)

(
¿ 7 ×Ã(x)

)2 dx <>,

respectively. To see this, note that the second term in the penultimate equation and the first term in the last equation

can be bounded as shown in Part (iii). For the remaining terms, we have from (59) via steps leading to (64)-(65)

that

∫

Rd

Var¿

(
×Ã(x2 ·)

)
µ7×Ã(x)

(
¿ 7 ×Ã(x)

)2 dx f c2
∫

Rd

e2
‖x‖2
2Ã2 ec‖x‖

µ7×Ã(x)
¿ 7×Ã(x)

dx f c22
∫

Rd

e2
‖x‖2
2Ã2 e2c‖x‖dx <>,

and

∫

Rd

Varµ

(
×Ã(x2 ·)

)

¿ 7 ×Ã(x)
dx f

∫

Rd

Eµ
[
×2
Ã(x2 ·)

]

¿ 7 ×Ã(x)
dx f c2

∫

Rd

e2
‖x‖2
2Ã2 ec‖x‖ dx <>.

Finally, the proof of the claim is completed by noting that the RHS of (67) is a zero mean Gaussian random variable

with variance

v22,fKL(µ, ¿, Ã) :=
∑

1fi,jf2

∫

Rd

∫

Rd

Σ(i,j)
µ,¿,Ã(x, y)Li,fKL(x)Lj,fKL(y)dx dy

=
∑

1fi,jf2

∫

Rd

∫

Rd

Σ(i,j)
µ,¿,Ã(x, y)L̃i,fKL(x)L̃j,fKL(y)dx dy, (69)
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where L̃1,fKL := log (µ 7 ×Ã/¿ 7 ×Ã) and L̃2,fKL := 2µ 7 ×Ã/¿ 7 ×Ã . The second equality above uses

∫

Rd

∫

Rd

Σ(1,1)
µ,¿,Ã(x, y)dxdy =

∫

Rd

∫

Rd

cov
(
×Ã(x 2X), ×Ã(y 2X)

)
dxdy = 0.

2) Proof of Lemma 2: Without loss of generality, we may assume that there exists a subsequence (nk)k*N such

that E
[
Df (µ̂nk 7 ³Ã‖µ 7 ³Ã)

]
<> for all k * N, since otherwise the LHS of (32) is infinite and there is nothing to

prove. Henceforth, we take n within such a subsequence. Note that since µ̂n 7³Ã j µ7³Ã , Df (µ̂n 7 ³Ã‖µ 7 ³Ã) =
Eµ7³Ã

[
f ç (µ̂n 7×Ã/µ 7×Ã)

]
. Applying Taylor’s expansion of f(x) at x = 1 and observing that f(1) = 0, we have

f

(
µ̂n 7 ×Ã(x)
µ 7 ×Ã(x)

)

= f 2(1)

(
µ̂n 7 ×Ã(x)
µ 7 ×Ã(x)

21

)

+

∫ 1

0

(12 Ç)f 22
(

(12Ç)+Ç µ̂n 7 ×Ã(x)
µ 7 ×Ã(x)

)(
µ̂n 7 ×Ã(x)
µ 7 ×Ã(x)

21

)2

dÇ.

(70)

Let Ón(x) := n1/2
(
µ̂n 7 ×Ã(x) 2 µ 7 ×Ã(x)

)
. Taking expectation first w.r.t. to µ 7 ³Ã and then w.r.t. µ·n in the

above equation, and observing that the first term on the RHS integrates to zero, we obtain

nE
[
Df (µ̂n 7 ³Ã‖µ 7 ³Ã)

]
= E

[
∫

Rd

∫ 1

0

(1 2 Ç)f 22
(

µ 7 ×Ã(x) + Çn2 1
2 Ón(x)

µ 7 ×Ã(x)

)

Ó2n(x)

µ 7 ×Ã(x)
dÇdx

]

=

∫

Rd

∫ 1

0

(12 Ç)E
[

f 22
(

µ 7 ×Ã(x) + Çn2 1
2 Ón(x)

µ 7 ×Ã(x)

)

Ó2n(x)

µ 7 ×Ã(x)

]

dÇdx,

where the final equality uses Fubini’s theorem. Noting that the integrand is nonnegative (by non-negativity of f 22),

Fatou’s lemma implies

lim inf
n³>

nE
[
Df (µ̂n 7 ³Ã‖µ 7 ³Ã)

]
g
∫

Rd

∫ 1

0

(12 Ç) lim inf
n³>

E

[

f 22
(

µ 7 ×Ã(x) + Çn2 1
2 Ón(x)

µ 7 ×Ã(x)

)

Ó2n(x)

µ 7 ×Ã(x)

]

dÇdx.

(71)

Next, observe that since Ón(x) =
∑n

i=1 Zi(x)/
:
n with Zi(x) = ×Ã(x2Xi)2µ7×Ã(x) and |Zi(x)| f (2ÃÃ2)2d/2,

the CLT implies that for every k * N, we have

lim
n³>

E

[

f 22
(

µ 7 ×Ã(x) + Çn2 1
2Ón(x)

µ 7 ×Ã(x)

)

Ó2n(x) ' k
]

= E
[
f 22(1)G2

µ,Ã(x) ' k
]
. (72)

Indeed, this will follow by the definition of weak convergence applied to the bounded continuous map y 7³ y ' k,

provided that

f 22
(

µ 7 ×Ã(x) + Çn2 1
2 Ón(x)

µ 7 ×Ã(x)

)

Ó2n(x)
d2³ f 22(1)G2

µ,Ã(x), "x * Rd.

However, the above come from the CLT, whereby Ón(x)
d2³ Gµ,Ã(x), and the extended continuous mapping

theorem (see [25, Theorem 1.11.1]) applied to the sequence of functions gn,x(y) = f 22((µ 7 ×Ã(x) + Çn2 1
2 y)/µ 7

×Ã(x)
)
y2 satisfying limn³> gn,x(yn) = gx(y) := y2f 22(1) for yn ³ y (the latter follows by continuity of f 22).

Then, taking k ³> in (72) and using monotone convergence theorem yields

lim
n³>

E

[

f 22
(

µ 7 ×Ã(x) + Çn2 1
2Ón(x)

µ 7 ×Ã(x)

)

Ó2n(x)

]

= f 22(1)E
[
G2
µ,Ã(x)

]
.
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Substituting the above in (71) and evaluating the integral, we conclude that

lim inf
n³>

nE
[
Df (µ̂n 7 ³Ã‖µ 7 ³Ã)

]
g f 22(1)

2

∫

Rd

E
[
G2
µ,Ã(x)

]

µ 7 ×Ã(x)
dx =

f 22(1)

2

∫

Rd

Varµ

(
×Ã(x2 ·)

)

µ 7 ×Ã(x)
dx.

3) Proof of Corollary 1: As already noted, the claim follows from [69, Theorem 23.9] and the linearity of the first

order Hadamard derivative of the KL divergence functional, provided the tangent cone TΘ(»
æ) contains a non-trivial

linear subspace. We show this below by considering the one-sample case. The proof for the two-sample case uses

identical arguments, and hence is omitted.

Recall that DKL (µ̂n 7 ³Ã‖¿ 7 ³Ã) = Φ
(
pµ̂n7³Ã 2 pµ7³Ã , 0) with Ç(x, y) = ÇKL,1(x, y) = x log x in (7), where

pµ̂n7³Ã = µ̂n 7 ×Ã/¿ 7 ×Ã and pµ7³Ã = µ 7 ×Ã/¿ 7 ×Ã (see the proof of Theorem 2(ii)). The first order Hadamard

derivative is given by

Φ2
»æ(h1, h2) =

∫

Rd

h1(x) log
(
pµ7³Ã(x)

)
¿ 7 ×Ã(x) dx,

for all (h1, h2) * TΘ(»
æ) = cl

({(
(g1 2 pµ7³Ã)/t, 0

)
: (g1 2 pµ7³Ã , 0) * Θ, t > 0

})
, where

Θ =
{

(g1 2 pµ7³Ã , 0) * D : g1 g 0, ‖g1‖1,¿7³Ã = 1
}

,

D =
{

(g1 2 pµ7³Ã , g2 2 1) : g1, g2 * L1(¿ 7 ³Ã), ‖g1 2 pµ7³Ã‖2,· + ‖g2 2 1)‖2,¿7³Ã <>
}

,

and · that has Lebesgue density ¿ 7×Ã+(¿ 7×Ã)2/µ7×Ã. Further, the proof of Proposition 2(ii) shows that under

the conditions therein, · is a Ã-finite measure and

n1/2 (pµ̂n7³Ã 2 pµ7³Ã)
w2³ Gµ,Ã

¿ 7 ×Ã
in L2(·). (73)

As
(
n1/2 (pµ̂n7³Ã 2 pµ7³Ã ) , 0

)
takes values in TΘ(»

æ), the Portmanteau theorem guarantees that spt
(
Gµ,Ã/¿ 7×Ã

)

is contained in TΘ(»
æ). As L2(·) is a separable Banach space and Gµ,Ã/¿ 7 ×Ã is a centered L2(·)-valued

Gaussian random variable, [68, Lemma 5.1] then guarantees that TΘ(»
æ) contains the reproducing kernel Hilbert

space corresponding to Gµ,Ã/¿ 7 ×Ã , and hence, in particular, a linear subspace.

Given the above, [69, Theorem 23.9] applies and we obtain

n
1
2

(
DKL

(
µ̂Bn 7 ³Ã‖¿ 7 ³Ã

)
2 DKL (µ̂n 7 ³Ã‖¿ 7 ³Ã)

) d2³
∫

Rd

Gµ,Ã(x) log

(
µ 7 ×Ã(x)
¿ 7 ×Ã(x)

)

dx > N
(
0, v21,fKL(µ, ¿, Ã)

)
,

(74)

so long that

n1/2

(
µ̂Bn 7 ×Ã
¿ 7 ×Ã

2 µ̂n 7 ×Ã
¿ 7 ×Ã

)

w2³ Gµ,Ã
¿ 7 ×Ã

in L2(·),

where both convergences are conditionally in probability. However, the last weak convergence above holds via [80,

Remark 2.5, Page 860] provided that (73) is satisfied.

Next, note by [25, Theorem 1.12.4] (and the discussion preceding it) that (74) is equivalent to

sup
f*BL1(R)

EB

[∣
∣
∣f
(

n
1
2

(
DKL

(
µ̂Bn 7 ³Ã‖¿ 7 ³Ã

)
2 DKL (µ̂n 7 ³Ã‖¿ 7 ³Ã)

))

2 f(W1)
∣
∣
∣

]

= oP(1),
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where EB denotes the conditional expectation given (X1, . . . , Xn, Y1, . . . , Yn), BL1(R) is the set of bounded 1-

Lipschitz continuous functions, and W1 > N
(
0, v21,fKL(µ, ¿, Ã)

)
. Conclude by noting that the last equation implies

the claim in Corollary 1(i), which is equivalent to convergence in distribution conditionally in probability, since

the so-called Dudley metric dBL1
(µ, ¿) := supf*BL1(R) |Eµ[f ]2 E¿ [f ]| metrizes weak convergence in R.

D. Proof of Proposition 3

We will use the following reformulation of a result given in [81].

Lemma 6 (Corollary 2 in Appendix A.9 of [81]) Suppose (Ãn)n*N0 is such that there exists h * L2(Ã0) with

limn³> nH2 (Ãn, Ã0) = ‖h/2‖22,Ã0
and

∫

Rd×Rd
h dÃ0 = 0. For (Xn, Y n) > Ã·n

0 , define Λn,Ãn,Ã0(X
n, Y n) :=

∑n
i=1 log

(
dÃn(Xi, Yi)/dÃ0(Xi, Yi)

)
and Ãh := ‖h‖2,Ã0

. Then

Λn,Ãn,Ã0(X
n, Y n)2 n2 1

2

n∑

i=1

h(Xi) + 0.5Ã2
h = oP(1),

Λn,Ãn,Ã0(X
n, Y n)

d2³ N
(
2 0.5Ã2

h, Ã
2
h

)
.

(75)

A short proof of the above claim is given in Appendix D for completeness.

For analyzing the type II error probability of the hypothesis test in (35), we require a refined version of the limit

distribution result in (31) that accounts for the dependence of Ãn on n. More specifically, we will show that for

(Xn, Y n) > Ã·n
n ,

n
1
2

(
DKL (µ̂n 7 ³Ã‖¿̂n 7 ³Ã)2 DKL (µn 7 ³Ã‖¿n 7 ³Ã)

)

d2³
∫

Rd

Gµ0,Ã(x) log

(
µ0 7 ×Ã(x)
¿0 7 ×Ã(x)

)

dx2
∫

Rd

G¿0,Ã(x)
µ0 7 ×Ã(x)
¿0 7 ×Ã(x)

dx

> N
(
0, v22,fKL(µ0, ¿0, Ã)

)
, (76)

where (Gµ0,Ã, G¿0,Ã) is a centered Gaussian process with covariance function Σµ0,¿0,Ã as given in (25) and

v22,fKL(µ0, ¿0, Ã) is specified in (69). We shall establish the above under Assumption 5(i) using Lemma 6 and

an application of Le Cam’s third lemma [25, Theorem 3.10.7]. Note that (Ãn)n*N0 satisfying Assumption 5 also

fulfills the conditions in Lemma 6, and hence (75) holds for (Xn, Y n) > Ã·n
0 . Consequently, so long that (68)

holds with (µ, ¿) = (µ0, ¿0), we have

(

n1/2

(
µ̂n 7 ×Ã
¿0 7 ×Ã

2 µ0 7 ×Ã
¿0 7 ×Ã

)

, n1/2

(
¿̂n 7 ×Ã
¿0 7 ×Ã

2 1

)

,Λn,Ãn,Ã0

)

w2³
(
Gµ0,Ã

¿0 7 ×Ã
,
G¿0,Ã
¿0 7 ×Ã

,W

)

,

in L2(·1) × L2(·2) × R, where ·1 and ·2 as given in (66) are finite measures for compactly supported (µ0, ¿0),

W > N
(
2 0.5Ã2

h, Ã
2
h

)
, and the centered Gaussian process

(
Gµ0,Ã(x), G¿0,Ã(y),W

)

(x,y)*Rd×Rd
has covariance

function Σ̃µ,¿,Ã : (Rd × Rd)× (Rd × Rd)³ R3×3 given by

Σ̃µ0,¿0,Ã

(
(x, y), (x̃, ỹ)

)
:=

þ

ÿ
ÿ
ÿ
ø

E
[
Gµ0,Ã(x)Gµ0,Ã(x̃)

]
E
[
Gµ0,Ã(x)G¿0,Ã(ỹ)

]
E
[
Gµ0,Ã(x)h(X,Y )

]

E
[
G¿0,Ã(y)Gµ0,Ã(x̃)

]
E
[
G¿0,Ã(y)G¿0,Ã(ỹ)

]
E
[
G¿0,Ã(y)h(X,Y )

]

E
[
h(X,Y )Gµ0,Ã(x̃)

]
E
[
h(X,Y )G¿0,Ã(ỹ)

]
Ã2
h

ù

ú
ú
ú
û



41

=

þ

ÿ
ÿ
ø

cov
(
×Ã(x2X), ×Ã(x̃2X)

)
cov
(
×Ã(x2X), ×Ã(ỹ 2 Y )

)
E
[
×Ã(x2X)h(X,Y )

]

cov
(
×Ã(y 2 Y ), ×Ã(x̃2X)

)
cov
(
×Ã(y 2 Y ), ×Ã(ỹ 2 Y )

)
E
[
×Ã(y 2 Y )h(X,Y )

]

E
[
h(X,Y )×Ã(x̃2X)

]
E
[
h(X,Y )×Ã(ỹ 2 Y )

]
Ã2
h

ù

ú
ú
û
,

for (X,Y ) > Ã0. This follows by (75), the convergence of finite-dimensional marginals of the joint process (via

the multivariate CLT), and the separability of L2(·1)× L2(·2)× R; see arguments leading to (63).

Having the above, Le Cam’s third lemma [25, Theorem 3.10.7 and Example 3.10.8] implies that for (Xn, Y n) >
Ã·n
n , we have

(

n1/2

(
µ̂n 7 ×Ã
¿0 7 ×Ã

2 µ0 7 ×Ã
¿0 7 ×Ã

)

, n1/2

(
¿̂n 7 ×Ã
¿0 7 ×Ã

2 1

))

w2³
(
Ḡµ0,Ã,h

¿0 7 ×Ã
,
Ḡ¿0,Ã,h
¿0 7 ×Ã

)

in L2(·1)×L2(·2), where the Gaussian process
(
Ḡµ0,Ã,h, Ḡ¿0,Ã,h

)
has mean function (m1,h,m2,h) :=

(
EÃ0

[
h(X,Y )

×Ã(·2X)
]
,EÃ0

[
h(X,Y )×Ã(·2Y )

])
and covariance function Σµ,¿,Ã as given in (25). Since µn and ¿n are compactly

supported (on [2b, b]d), the proof of Proposition 2(iv) applies and results in

n
1
2

(
DKL (µ̂n 7 ³Ã‖¿̂n 7 ³Ã)2 DKL (µ0 7 ³Ã‖¿0 7 ³Ã)

)

d2³
∫

Rd

Ḡµ0,Ã,h(x) log

(
µ0 7 ×Ã(x)
¿0 7 ×Ã(x)

)

dx2
∫

Rd

Ḡ¿0,Ã,h(x)
µ0 7 ×Ã(x)
¿0 7 ×Ã(x)

dx.

Next, note that the finite measures ·1 and ·2 from (66) have bounded Lebesgue densities. Consequently, the

convergence given in (34) in L>(»)×L>(») implies the same in L>(·1)×L>(·2) and L2(·1)×L2(·2). It then

follows via the definition of the Hadamard first derivative (see (49)), similarly to (67), that

n
1
2

(
DKL (µn 7 ³Ã‖¿n 7 ³Ã)2 DKL (µ0 7 ³Ã‖¿0 7 ³Ã)

)

d2³
∫

Rd

m1,h(x) log

(
µ0 7 ×Ã(x)
¿0 7 ×Ã(x)

)

dx2
∫

Rd

m2,h(x)
µ0 7 ×Ã(x)
¿0 7 ×Ã(x)

dx.

Subtracting the last equation from the penultimate one leads to (76).

Armed with (76), we proceed to analyze the type I and type II error probabilities, i.e., e1,n(Tn) := P(Tn >

tn|H0) and e2,n(Tn) := P(Tn f tn|H1,n), respectively. Consider the test statistic Tn = DKL (µ̂n 7 ³Ã‖¿̂n 7 ³Ã)
with critical value tn = ë + cn21/2 for some constant c that will be specified later. Define the event En,ë,c :=
{
DKL (µ̂n 7 ³Ã‖¿̂n 7 ³Ã) > ë+cn21/2

}
. Note that (2>, c) and [c,>) are continuity sets for the Gaussian measure

on R, i.e., with boundary measure zero. Then, with Zn,0 := n1/2
(
DKL (µ̂n 7 ³Ã‖¿̂n 7 ³Ã)2DKL (µ0 7 ³Ã‖¿0 7 ³Ã)

)
,

we have

lim sup
n³>

e1,n(Tn) = lim sup
n³>

P
(
En,ë,c|H0

)
f lim sup

n³>
P
(
Zn,0 > c|H0

)
= Q

(
c/v2,fKL(µ0, ¿0, Ã)

)
, (77)

where v2,fKL(µ0, ¿0, Ã) is as given in (69) and Q is the Q-function (or complementary error function) given by

Q(x) = (2Ã)21/2
∫>
x e2z

2/2dz. The inequality above is due to DKL (µ0 7 ³Ã‖¿0 7 ³Ã) f ë, while the final equality

uses the Portmanteau theorem and (31) (the latter applies since µ0, ¿0 have compact supports). Similarly, defining

Zn,1 := n1/2
(
DKL (µ̂n 7 ³Ã‖¿̂n 7 ³Ã) 2 DKL (µn 7 ³Ã‖¿n 7 ³Ã)

)
and Ēn,ë,c :=

{
DKL (µ̂n 7 ³Ã‖¿̂n 7 ³Ã) f ë +
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cn21/2
}

, for the type II error probability we have

lim sup
n³>

e2,n(Tn) = lim sup
n³>

P
(
Ēn,ë,c|H1,n

)

= lim sup
n³>

P
(

Zn,1 f 2n1/2
(
DKL (µn 7 ³Ã‖¿n 7 ³Ã)2 ë

)
+ c |H1,n

)

f lim sup
n³>

P
(
Zn,1 f c2 C|H1,n

)

= 12Q
(
(c2 C)/v2,fKL(µ0, ¿0, Ã)

)
, (78)

where the last inequality uses DKL (µn 7 ³Ã‖¿n 7 ³Ã) g ë + n21/2C and the final equality uses the Portmanteau

theorem together with (76).

To arrive at the result in Proposition 3, it remains to appropriately upper bound v2,fKL(µ0, ¿0, Ã). By using

Cauchy-Schwarz inequality and the fact that second moment upper bounds variance, we have

cov
(
×Ã(x2X), ×Ã(y 2X)

)2 f Eµ0

[
×2
Ã(x2X)

]
Eµ0

[
×2
Ã(y 2X)

]

= (2ÃÃ2)22d

∫

Rd

e2
‖x2z‖2
Ã2 dµ0(z)

∫

Rd

e2
‖y2z‖2
Ã2 dµ0(z)

f (2ÃÃ2)22de
2b2d
Ã2 e2

(‖x‖2+‖y‖2)

2Ã2 ,

where the last inequality uses ‖x2 z‖2 g ‖x‖2 /22 ‖z‖2. Hence

Σ(1,1)
µ0,¿0,Ã(x, y) = cov

(
×Ã(x2X), ×Ã(y 2X)

)
f (2ÃÃ2)2de

b2d
Ã2 e2

(‖x‖2+‖y‖2)

4Ã2 .

By following similar steps, for all 1 f i, j f 2, we have

Σ(i,j)
µ0,¿0,Ã(x, y) f (2ÃÃ2)2de

b2d
Ã2 e2

(‖x‖2+‖y‖2)

4Ã2 .

Also,

e
2b2d
2Ã2 e

22b
:
d‖x‖

Ã2 f
∫

Rd
e

22‖x‖‖z‖2‖z‖2
2Ã2 dµ0(z)

∫

Rd
e

2‖x‖‖z‖2‖z‖2
2Ã2 d¿0(z)

f µ0 7 ×Ã(x)
¿0 7 ×Ã(x)

f
∫

Rd
e

2‖x‖‖z‖2‖z‖2
2Ã2 dµ0(z)

∫

Rd
e

22‖x‖‖z‖2‖z‖2
2Ã2 d¿0(z)

f e b
2d

2Ã2 e
2b

:
d‖x‖
Ã2 .

Combining the above bounds, we have from (69) that

v22,fKL(µ0, ¿0, Ã) =
∑

1fi,jf2

∫

Rd

∫

Rd

Σ(i,j)
µ0,¿0,Ã(x, y)L̃i,fKL(x)L̃j,fKL(y)dx dy

f (2ÃÃ2)2de
b2d
Ã2

∫

Rd

∫

Rd

e2
(‖x‖2+‖y‖2)

4Ã2

(
(b2d+ 4b

:
d ‖x‖)(b2d+ 4b

:
d ‖y‖)

4Ã4

+ e
2b2d+4b

:
d(‖x‖+‖y‖)

2Ã2 + e
b2d+4b

:
d‖x‖

2Ã2
(b2d+ 4b

:
d ‖y‖)

2Ã2

+ e
b2d+4b

:
d‖y‖

2Ã2
(b2d+ 4b

:
d ‖x‖)

2Ã2

)

dx dy

=: cb,d,Ã. (79)
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For 0 < Ç, Ç 2 f 1, setting c = cb,d,ÃQ
21(Ç), the claim of Proposition 3 follows from (77) and (78) with Cb,d,Ã,Ç,Ç 2 =

c2 cb,d,ÃQ21(12 Ç 2).

E. Proof of Proposition 4

Part (i): Since ‖d(¿0 · µ0)/dÃ0‖> <>, there exists n0 * N such that the RHS of (37) is non-negative Ã0-a.s.,

and henceforth, we take n g n0. Further, observe that Ãn specified by (37) is a valid joint probability measure as

∫

Rd×Rd

dÃn =

∫

Rd×Rd

dÃ0 + c̄n2 1
2 (d(µ0 · ¿0)2 d(¿0 · µ0) = 1.

Via Taylor’s theorem applied to fH2(x) = (
:
x2 1)2 around x = 1 and using f 2(1) = f 22(1) = 0, we have

fH2 ç dÃn
dÃ0

=
1

2

∫ 1

0

(12 Ç)
(

(12 Ç) + Ç dÃndÃ0

) 3
2

(
dÃn
dÃ0
2 1

)2

dÇ =
1

2

∫ 1

0

(12 Ç)
(

(1 2 Ç) + Ç dÃndÃ0

) 3
2

h2Ã0,c̄dÇ.

Multiplying by n and taking expectation w.r.t. Ã0 leads to

nH2 (Ãn, Ã0) =

∫

Rd×Rd

∫ 1

0

(12 Ç)

2
(

(1 2 Ç) + Ç dÃndÃ0

)3/2
h2Ã0,c̄dÇdÃ0.

Note that the integrand in the RHS above is dominated by 0.5(12Ç)21/2h2Ã0,c̄, which is integrable w.r.t. the product

measure Ç · Ã0 under the assumption ‖hÃ0,c̄‖2,Ã0
<>. Taking limit, the dominated convergence theorem and the

fact that dÃn/dÃ0 converges pointwise to 1, imply that

lim
n³>

nH2 (Ãn, Ã0) =
1

4
‖hÃ0,c̄‖22,Ã0

.

Moreover, it is readily verified that
∫

Rd×Rd
hÃ0,c̄dÃ0 = 0. Finally, the marginals of Ãn satisfy dµn = dµ0 +

n21/2c̄
(
dµ0 2 d¿0

)
and d¿n = d¿0 + n21/2c̄

(
d¿0 2 dµ0

)
, which implies

µn 7 ×Ã = µ0 7 ×Ã + n21/2c̄
(
µ0 7 ×Ã 2 ¿0 7 ×Ã

)
,

¿n 7 ×Ã = ¿0 7 ×Ã + n21/2c̄
(
¿0 7 ×Ã 2 µ0 7 ×Ã

)
,

(80)

and thus

n1/2

(
µn 7 ×Ã 2 µ0 7 ×Ã

¿0 7 ×Ã

)

=
c̄(µ0 7 ×Ã 2 ¿0 7 ×Ã)

¿0 7 ×Ã
=

EÃ0 [hÃ0,c̄(X,Y )×Ã(· 2X)]

¿0 7 ×Ã
,

n1/2

(
¿n 7 ×Ã 2 ¿0 7 ×Ã

¿0 7 ×Ã

)

=
c̄(¿0 7 ×Ã 2 µ0 7 ×Ã)

¿0 7 ×Ã
=

EÃ0 [hÃ0,c̄(X,Y )×Ã(· 2 Y )]

¿0 7 ×Ã
.

Hence, (34) is satisfied (with pointwise equality), verifying all the requirements in Assumption 5(i) and concluding

the proof of Part (i).

Part (ii): Note that ‖hÃ0,c̄‖2,Ã0
< > as ‖d(¿0 · µ0)/dÃ0‖>,Ã0

, ‖d(µ0 · ¿0)/dÃ0‖2,Ã0
< >. Hence all the

assumptions in Part (i) are fulfilled thereby implying via the proof above that Assumption 5(i) is satisfied. So, we
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only need to verify that Assumption 5(ii) holds. By Taylor’s theorem applied to ÇKL(x, y) = x log(x/y), we have

µn 7 ×Ã log
(
µn 7 ×Ã
¿n 7 ×Ã

)

2 µ0 7 ×Ã log
(
µ0 7 ×Ã
¿0 7 ×Ã

)

=

(

1 + log

(
µ0 7 ×Ã
¿0 7 ×Ã

))

(µn 7 ×Ã 2 µ0 7 ×Ã)2
µ0 7 ×Ã
¿0 7 ×Ã

(¿n 7 ×Ã 2 ¿0 7 ×Ã)

+ (µn 7 ×Ã 2 µ0 7 ×Ã)2
∫ 1

0

(1 2 Ç)dÇ
(12 Ç)µ0 7 ×Ã + Çµn 7 ×Ã

+ (¿n 7 ×Ã 2 ¿0 7 ×Ã)2
∫ 1

0

(12 Ç)
(
(12 Ç)µ0 7 ×Ã + Çµn 7 ×Ã

)
dÇ

(12 Ç)¿0 7 ×Ã + Ç¿n 7 ×Ã

2 2 (µn 7 ×Ã 2 µ0 7 ×Ã) (¿n 7 ×Ã 2 ¿0 7 ×Ã)
∫ 1

0

(12 Ç)dÇ
(12 Ç)¿0 7 ×Ã + Ç¿n 7 ×Ã

.

Taking integral w.r.t. Lebesgue measure and simplifying using (80), we obtain

DKL (µn 7 ³Ã‖¿n 7 ³Ã)2 DKL (µ0 7 ³Ã‖¿0 7 ³Ã)

= n2 1
2 c̄
(
DKL (µ0 7 ³Ã‖¿0 7 ³Ã) + DKL (¿0 7 ³Ã‖µ0 7 ³Ã) + Ç2 (µ0 7 ³Ã‖¿0 7 ³Ã)

)

+
c̄2

n

∫

Rd

(µ0 7 ×Ã 2 ¿0 7 ×Ã)2
∫ 1

0

(1 2 Ç)
(12 Ç)µ0 7 ×Ã + Çµn 7 ×Ã

dÇdx

+
c̄2

n

∫

Rd

(¿0 7 ×Ã 2 µ0 7 ×Ã)2
∫ 1

0

(12 Ç)
(
(1 2 Ç)µ0 7 ×Ã + Çµn 7 ×Ã

)

(12 Ç)¿0 7 ×Ã + Ç¿n 7 ×Ã
dÇdx

+
2c̄2

n

∫

Rd

(
¿0 7 ×Ã 2 µ0 7 ×Ã

)2
∫ 1

0

(1 2 Ç)
(12 Ç)¿0 7 ×Ã + Ç¿n 7 ×Ã

dÇdx

> n2 1
2 c̄
(
DKL (µ0 7 ³Ã‖¿0 7 ³Ã) + DKL (¿0 7 ³Ã‖µ0 7 ³Ã) + Ç2 (µ0 7 ³Ã‖¿0 7 ³Ã)

)
,

where the final inequality is due to the omitted terms being positive. The proof is concluded by noting that the

RHS is larger than Cn21/2 for c̄ sufficiently large.

F. Proof of Proposition 5

We consider the test statistic Tn = DKL (µ̂n 7 ³Ã‖¿̂n 7 ³Ã) with critical value tn = ë+cn21/2 for an appropriately

chosen Ã (small enough) and c, and analyze the resulting asymptotic error probabilities of the hypothesis test in

(38). The choice of Ã relies on the stability lemma (see Lemma 3) which quantifies the deviation of KL divergence

from its smoothed version as a function of Ã.

Recall that M̄, ë̄,
¯
s, s̄ are known constants such that M f M̄ < >, ë < ë̄ f ë̃, and 0 <

¯
s f s f s̄ f 1. Let

Ãë,ë̄,
¯
s,s̄,d,M̄ equal x such that

cd,s̄M̄
(
M̄ + 1 + log M̄

)
(x¯
s * xs̄) = ë̄2 ë. (81)

Choose any Ã < Ãë,ë̄,
¯
s,s̄,d,M̄ , whereby cd,sM

(
M + 1 + logM

)
Ãs < ë̄ 2 ë. Hence, (40) and DKL (µ1‖¿1) g ë̃

imply DKL (µ1 7 ³Ã‖¿1 7 ³Ã) > ë. On the other hand, the data processing inequality along with the fact that

DKL (µ0‖¿0) f ë imply DKL (µ0 7 ³Ã‖¿0 7 ³Ã) f ë. Then, for the test statistic Tn, we obtain via steps leading to
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(77) that

lim sup
n³>

e1,n(Tn) f Q
(
c/v2,fKL(µ0, ¿0, Ã)

)
.

Setting Zn,1 := n1/2
(
DKL (µ̂n 7 ³Ã‖¿̂n 7 ³Ã)2 DKL (µ1 7 ³Ã‖¿1 7 ³Ã)

)
, we further have

lim sup
n³>

e2,n(Tn) f lim sup
n³>

P
(
Zn,1 f 2n1/2(DKL (µ1 7 ³Ã‖¿1 7 ³Ã)2 ë) + c|H1

)
= 12Q(2>) = 0,

where the penultimate equality uses the Portmanteau theorem applied to Zn,1 converging weakly to a Gaussian

random variable (via (31) with v22,fKL(µ1, ¿1, Ã) f cb,d,Ã similar to (79)), and c2 n1/2(DKL (µ1 7 ³Ã‖¿1 7 ³Ã) 2ë)
diverging to 2> due to DKL (µ1 7 ³Ã‖¿1 7 ³Ã) > ë. Choosing c = cb,d,ÃQ

21(Ç) (see (79)) completes the proof.

G. Proof of Lemma 3

For Ç * [0, 1], let zµ,Ç (x) := (12 Ç)pµ(x) + Çµ 7×Ã(x) and z¿,Ç (x) := (12 Ç)p¿(x) + Ç¿ 7×Ã(x). By Taylor’s

theorem, we have

µ 7 ×Ã(x) log
(
µ 7 ×Ã(x)
¿ 7 ×Ã(x)

)

= pµ(x) log

(
pµ(x)

p¿(x)

)

+
(
µ 7 ×Ã(x) 2 pµ(x)

)
∫ 1

0

(

1 + log
zµ,Ç (x)

z¿,Ç (x)

)

dÇ

2
(
¿ 7 ×Ã(x) 2 p¿(x)

)
∫ 1

0

zµ,Ç (x)

z¿,Ç (x)
dÇ.

Note that 1/M f pµ(x)/p¿(x) fM by assumption, which implies 1/M f µ 7×Ã(x)/¿ 7 ×Ã(x) fM , and hence

1

M
f pµ(x)

p¿(x)
' µ 7 ×Ã(x)
¿ 7 ×Ã(x)

f zµ,Ç (x)

z¿,Ç (x)
f pµ(x)

p¿(x)
* µ 7 ×Ã(x)
¿ 7 ×Ã(x)

fM, "x * Rd.

Integrating w.r.t. Lebesgue measure in the above equation, we then obtain (note that M g 1)

|DKL (µ‖¿)2 DKL (µ 7 ³Ã‖¿ 7 ³Ã)| f (1 + logM)

∫

Rd

|µ 7 ×Ã(x) 2 pµ(x)| dx+M

∫

Rd

|¿ 7 ×Ã(x) 2 p¿(x)| dx.

(82)

The first integral is bounded as follows:

∫

Rd

|pµ(x) 2 µ 7 ×Ã(x)| dx =

∫

Rd

∣
∣
∣
∣
pµ(x) 2 Ã2d

∫

Rd

pµ(y)×1

(
(x2 y)Ã21

)
dy

∣
∣
∣
∣
dx

=

∫

Rd

∣
∣
∣
∣
pµ(x) 2

∫

Rd

pµ(x2 Ãz)×1(z)dz

∣
∣
∣
∣
dx

=

∫

Rd

∣
∣
∣
∣

∫

Rd

(
pµ(x)×1(z)2 pµ(x2 Ãz)×1(z)

)
dz

∣
∣
∣
∣
dx

(a)

f
∫

Rd

(∫

Rd

|pµ(x+ Ãz)2 pµ(x)| dx
)

×1(z)dz

(b)

f
∫

Rd

»1,1 (pµ, Ã ‖z‖)×1(z)dz

(c)

f MÃs
∫

Rd

‖z‖s ×1(z)dz,

where (a) uses Fubini’s theorem, (b) is by the definition of the modulus of smoothness in Definition 5, while (c)

is because pµ * Lips,1(M,X ). Following similar steps with µ replaced by ¿, the same bound holds for the second
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integral term in (82), which concludes the proof.

VIII. CONCLUDING REMARKS

This paper provided a unified methodology for deriving one- and two-sample limit distributions for f -divergences,

under both the null (i.e., when the population distributions are equal) and the alternative. We focused on four

prominent examples, namely, KL divergence, Ç2 divergence, squared Hellinger distance, and total variation distance.

The general limit theorems were stated under technical conditions on the distributions which guarantee Hadamard

differentiability of the relevant f -divergence functional. The framework allows arbitrary estimators of the population

measures and accounts for dependent data, which renders it rather flexible and broadly applicable. We instantiate the

general limit distribution theory to the setting of Gaussian-smoothed f -divergence, showing that the limit (except

for TV distance) is Gaussian under the alternative, or can be represented as a weighted sum of i.i.d. Ç2 random

variables under the null. In contrast, the limit distribution for smoothed TV distance in both the above scenarios

is non-Gaussian. We also proposed a hypothesis testing pipeline for auditing DP and characterized its asymptotic

level and power by utilizing our distributional limits.

While this work focuses on f -divergences, a limit distribution theory for other classes of divergences, such as

integral probability metrics and Bregman divergences, are largely unexplored and worth pursuing. We believe that our

approach based on the functional delta method and Hadamard directional differentiability can be extended to cover

those cases as well. Another appealing research avenue is to explore asymptotic distributions of more sophisticated

(non plug-in) estimators of f -divergences. This includes approaches based on bias correction mechanisms (e.g., [32],

[39], [40]) or variational methods (e.g., [35], [42]). While such estimators are known to achieve better minimax rates

over appropriate classes of distributions, the main challenge here is to establish regularity conditions under which the

Hadamard derivative of the relevant functional exists. Towards that end, recent results on Hadamard differentiability

of supremum-type functionals [82] may be useful for deriving limit theorems of variational estimators. Yet another

intriguing question pertains to establishing Berry-Esseen type results, which would reveal the convergence rate of

the empirical f -divergence to its distributional limit. However, deriving such results is highly non-trivial and would

require different tools and technical approaches than the empirical process theory-based techniques employed in

this work.

APPENDIX A

PROOFS OF PART (iii) OF LEMMA 1, THEOREM 1, AND THE CLAIM IN REMARK 1

1) Proof of Part (iii) of Lemma 1: We will use similar steps as in [24, Theorem 1] and [24, Theorem 2] with

the extended continuous mapping theorem replaced by Theorem 1. We highlight the relevant steps for the claim

that Part (i) of Lemma 1 holds. The proof that Part (ii) holds is similar and omitted.

Recall that since Θ is convex, the tangent cone is given by (see [24])

TΘ(») :=

{

h * D : h = lim
n³>

»n 2 »
tn

for some »n ³ » with »n * Θ and tn ³ 0+
}

= cl
({

(»̃ 2 »)/t : »̃ * Θ, t > 0
})
.
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Since TΘ(») is closed, its boundary is a Borel set. Set Dn = {h * D : » + (h/rn) * DΦ}, D³
n = {h * D :

»+(h/rn) * Θ}, Dg = D> = TΘ(»), g = Φ2
», gn(h) = rn

(
Φ(»+(h/rn))2Φ(»)

)
, Hn = rn(Zn2») and H = Z .

Then, the claim will follow from Theorem 1, provided that P
(
H * int

(
TΘ(»)

))
= 1 and D7 ¦ D \ int

(
TΘ(»)

)
,

since these imply P (H * D>) = 1 and P (H * D7) = 0.

The first condition above follows from

P
(
H * int

(
TΘ(»)

)) (a)
= 12 P (H /* TΘ(»))

(b)
= 12 lim

n³>
P (Hn /* TΘ(»))

(c)

g 12 lim
n³>

P7 (Zn /* Θ) = 1,

where (a) is because P
(
H * "TΘ(»)

)
= 0, (b) is since Hn

w2³ H and Portmanteau theorem, (c) is due to

Zn * Θ implies Hn * TΘ(»), and the final equality follows from P7 (Zn /* Θ)³ 0. To show the second condition,

suppose h * int
(
TΘ(»)

)
. We claim that there exists m * N such that h * int

(
D³
n

)
for all n g m which implies

that h /* *ngmD \D³
n § D7 as desired. To see this, note that h = (»̃ 2 »)/t for some t > 0 and »̃ * int

(
Θ
)
.

Let »̂³ := ³»̃ + (1 2 ³)» for ³ * [0, 1]. We have »̂³ * Θ since Θ is convex. Then, by definition of D³
n ,

³nrn(»̃ 2 ») = rn(»̂³n 2 ») * D³
n . Hence, for n g m = min{n : rnt g 1}, we have h * int

(
D³
n

)
by choosing

³n = 1/(trn). Hence, all the conditions in Theorem 1 are satisfied under the assumptions in Part (iii) of Lemma 1,

and consequently rn
(
Φ(Zn)2Φ(»)

) d2³ Φ2
»(Z) follows. The proof of rn

(
Φ(Zn)2Φ(»)

)
= Ç2»

(
rn(Zn2»)

)
+oP(1)

and Part (ii) follows similarly to [24] with the relevant steps adapted as above, and hence omitted.

2) Proof of Theorem 1: Since the proof follows closely to that of [25, Theorem 1.11.1], we only highlight the

differences. Following similar steps as therein, we have that g restricted to Dg + D> is continuous, and hence

g(H) is Borel measurable.

Consider a closed set C ¦ E. Then, we have

+>n=1*>m=ng
21
m (C) ¦ g21(C) *

(
D \ (D> +Dg)

)
*D7, (83)

where C̄ denotes the closure of the set C. Indeed, if h is in the set on the left, then one of the following condition

must hold: (i) there exists a divergent sequence (nk)k*N such that hnk * g21
nk

(C)+D³ and d(hnk , h)³ 0, where

d(·, ·) denotes the metric of D; or (ii) there exists a divergent sequence (nk)k*N such that hnk * g21
nk (C)+(D\D³

n )

and d(hnk , h)³ 0. If (i) holds, then by the assumption in the theorem, either gnk(hnk)³ g(h) (if h * D>+Dg)

or h * D \ (D>+Dg). If gnk(hnk)³ g(h), then g(h) * C since gnk(hnk) * C and C is a closed set. On the other

hand, if (ii) holds, then this implies that h * +>m=1*>k=mg21
nk (C) + (D \D³

nk
) ¦ +>m=1*>k=m(D \D³

nk
) ¦ D7.

Hence, (83) holds. Then, we have for any fixed k that

lim sup
n³>

P (gn(Hn) * C) f lim sup
n³>

P
(

Hn * *>m=kg
21
m (C)

)

f P
(

H * *>m=kg
21
m (C)

)

, (84)

where the final inequality follows from Hn
w2³ H and Portmanteau theorem [25, Theorem 1.3.4]. Taking limit

k ³>, we have

lim sup
n³>

P (gn(Hn) * C) f P
(

H * +>k=1*>m=kg
21
m (C)

)

(a)

f P(H * g21(C)) + P
(
H * D \ (D> +Dg)

)
+ P

(
H * D7

)
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(b)
= P(g(H) * C), (85)

where (a) is due to (83), and (b) is because P(H * D7) = 0 by assumption and

P
(
H * D \ (D> +Dg)

)
= 12 P

(
H * D> +Dg

)
= 12 P

(
H * D>

)
= 0.

Since C is an arbitrary closed set, gn(Hn)
w2³ g(H) again follows from (85) by Portmanteau theorem.

3) Proof of the claim in Remark 1: The proof follows by using Part (iii) of Lemma 1 in the proof of Part

(iii) and (iv) of Theorem 2. Recall that Qn := {Ë * Ω : pµn(Ë, ·)/p¿n(Ë, ·) f q(·)}, and let Q̃n := {Ë * Ω :

Zn(Ë, ·) = (pµn(Ë, ·)2 pµ, p¿n(Ë, ·)2 1) * Θ}. Note that under the conditions in Part (iii) and (iv) of Theorem

2 sans the requirement pµn/p¿n f q a.s., Ω \ Q̃n = (Ω \ Qn) * N0 for some null set N0 of outer probability

zero. Hence, P7(Zn /* Θ) = P7(Ω \ Qn) ³ 0 under the assumption in Remark 1. Also, Z = (B1, B2) being

continuous implies P
(
Z * "TΘ(»)

)
= 0. Hence, all the conditions in Part (iii) of Lemma 1 are satisfied, and the

result follows.

APPENDIX B

PROOF OF LEMMA 4

Since gn ³ g in Lr
2
(Ã), for every ë > 0, there exists n0(ë) * N such that ‖gn‖r2,Ã f ‖g‖r2,Ã + ë for all

n g n0(ë). Thus, for every n g n0(ë), we have by Minkowski’s and Hölder’s inequality that

‖fngn 2 fg‖1,Ã f ‖fngn 2 fgn‖1,Ã + ‖fgn 2 fg‖1,Ã

f ‖fn 2 f‖r,Ã ‖gn‖r2,Ã + ‖f‖r,Ã ‖gn 2 g‖r2,Ã .

f ‖fn 2 f‖r,Ã (‖g‖r2,Ã + ë) + ‖f‖r,Ã ‖gn 2 g‖r2,Ã .

The RHS converges to zero since fn ³ f in Lr(Ã) and gn ³ g in Lr
2
(Ã), thus proving Part (i). The claim in

Part (ii) follows from [25, Example 1.4.7 (Slutsky’s lemma)] by the separability of Lr(Ã) spaces for 1 f r <>,

and the continuous mapping theorem applied to the continuous map (f, g) 7³ fg from Lr(Ã) × Lr2(Ã) ³ L1(Ã)

by Part (i).

APPENDIX C

PROOF OF LEMMA 5

Part (i): The convexity of ÇKL, ÇÇ2 and ÇH2 follows since these are perspectives11 of the convex functions fKL,

fÇ2 and fH2 , respectively (see [83]). Computing the partial derivatives yields

D(1,0)ÇKL(x, y) = 1 + log

(
x

y

)

, D(0,1)ÇKL(x, y) = 2
x

y
,

D(1,1)ÇKL(x, y) = 2
1

y
, D(2,0)ÇKL(x, y) =

1

x
, D(0,2)ÇKL(x, y) =

x

y2
,

(86a)

11The perspective of a convex function f : R ³ R is the function fp : R× R+ ³ R given by fp(x, t) = tf(x/t).
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D(1,0)ÇÇ2 (x, y) =
2(x2 y)

y
, D(0,1)ÇÇ2(x, y) = 12 x2

y2
,

D(1,1)ÇÇ2 (x, y) = 22x

y2
, D(2,0)ÇÇ2 (x, y) =

2

y
, D(0,2)ÇÇ2(x, y) =

2x2

y3
,

(86b)

D(1,0)ÇH2(x, y) = 12 y 1
2x2

1
2 , D(0,1)ÇH2(x, y) = 12 x 1

2 y2
1
2 ,

D(1,1)ÇH2(x, y) = 21

2
x2

1
2 y2

1
2 , D(2,0)ÇH2(x, y) =

1

2
x2

3
2 y

1
2 , D(0,2)ÇH2(x, y) =

1

2
y2

3
2 x

1
2 .

(86c)

These partial derivatives obviously satisfy the continuity conditions in Assumption 1 and those mentioned in the

statement of Lemma 5 (i), thus completing the proof of Part (i).

Part (ii): For (ii)(a), first note that for g1, g2 g 0 and gæ1 , g
æ
2 > 0, we have

∣
∣
∣D(2,0)ÇKL ç

(
(1 2 Ç)(gæ1 , gæ2) + Ç(g1, g2)

)
∣
∣
∣ (12 Ç) = (12 Ç)

(1 2 Ç)gæ1 + Çg1
f 1

gæ1
.

The case of D(1,1)ÇKL is similar, while for D(0,2)ÇKL, we have for (g1, g2) * Θ̄(q) that

∣
∣
∣D(0,2)ÇKL ç

(
(12 Ç)(gæ1 , gæ2) + Ç(g1, g2)

)
∣
∣
∣ (12 Ç) =

(12 Ç)
(
(12 Ç)gæ1 + Çg1

)

(
(12 Ç)gæ2 + Çg2

)2 f gæ1
gæ22

+
g1

2gæ2g2
f gæ1
gæ22

+
q

gæ2
.

For (ii)(b), the case of D(1,1)ÇÇ2 and D(2,0)ÇÇ2 again can be shown as above, while

∣
∣
∣D(0,2)ÇÇ2 ç

(
(12 Ç)(gæ1 , gæ2) + Ç(g1, g2)

)
∣
∣
∣ (1 2 Ç) =

2(12 Ç)
(
(12 Ç)gæ1 + Çg1

)2

(
(12 Ç)gæ2 + Çg2

)3 .
gæ21
gæ32

+
g21
gæ2g

2
2

f gæ21
gæ32

+
q2

gæ2
.

Finally, for (ii)(c), let (g1, g2), (g
æ
1 , g

æ
2) * Θ̌(q1, q2). We have

∣
∣
∣D(1,1)ÇH2 ç

(
(12 Ç)(gæ1 , gæ2)+Ç(g1, g2)

)
∣
∣
∣(12 Ç). (1 2 Ç)

(
(12 Ç)gæ2 + Çg2

) 1
2
(
(1 2 Ç)gæ1 + Çg1

) 1
2

f 1
(
gæ1g

æ
2

) 1
2

,

∣
∣
∣D(2,0)ÇH2 ç

(
(1 2 Ç)(gæ1 , gæ2) + Ç(g1, g2)

)
∣
∣
∣ (1 2 Ç) .

(1 2 Ç)
(
(12 Ç)gæ2 + Çg2

) 1
2

(
(12 Ç)gæ1 + Çg1

) 3
2

f g
æ 1

2
2

g
æ 3

2
1

+
g

1
2
2 Ç

1/2

g
æ 3

2
1 (12 Ç) 1

2

f g
æ 1

2
2

g
æ 3

2
1

+
q

1
2
2 Ç

1
2

g
æ 3

2
1 (12 Ç) 1

2

,

where Ç1/2(12 Ç)2 1
2 * L1([0, 1], »). The bound for D(0,2)ÇH2 can be shown similarly, thus completing the proof.

APPENDIX D

PROOF OF LEMMA 6

The claim follows from the proof of [81, Appendix A.9, Corollary 2] (see Page 500-501) by noting that the

condition (a), (b) and (c) given therein which suffices for the proof to hold are satisfied under the conditions here.

Specifically, condition (a) is equivalent to limn³> nH2 (Ãn, Ã0) = ‖h/2‖22,Ã0
(with · = h/2 and µ = Ã0 in the

notation therein) which in turn also implies (b), while (c) is equivalent to
∫

Rd×Rd
h dÃ0 = 0.
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APPENDIX E

LIMIT DISTRIBUTION FOR GAUSSIAN-SMOOTHED Ç2 DIVERGENCE, H2 DISTANCE AND TV DISTANCE

A. Ç2 divergence

We consider distributional limits for the Gaussian-smoothed Ç2 divergence.

Proposition 6 (Limit distribution for Gaussian-smoothed Ç2 divergence) The following hold:

(i) (One-sample null) If (26) is satisfied, then there exists a version of Gµ,Ã such that Gµ,Ã/
:
µ 7 ×Ã is L2(Rd)-

valued, and

nÇ2 (µ̂n 7 ³Ã‖µ 7 ³Ã) d2³
∫

Rd

G2
µ,Ã(x)

µ 7 ×Ã(x)
dx, (87)

where the limit can be represented as a weighted sum of i.i.d. Ç2 random variables with 1 degree of

freedom. In particular, (87) holds for ³-sub-Gaussian µ with ³ < Ã. Conversely, if (26) is violated, then

E
[
Ç2 (µ̂n 7 ³Ã‖µ 7 ³Ã)

]
=> for every n * N.

(ii) (One-sample alternative) If (28) holds and Ç2 (µ 7 ×Ã‖¿ 7 ×Ã) <>, then

n
1
2

(
Ç2 (µ̂n 7 ³Ã‖¿ 7 ³Ã)2 Ç2 (µ 7 ³Ã‖¿ 7 ³Ã)

) d2³ N
(
0, v21,f

Ç2
(µ, ¿, Ã)

)
, (88)

where v21,f
Ç2
(µ, ¿, Ã) is given in (92). In particular, (88) holds for ³-sub-Gaussian µ with ³ < Ã such that

µj ¿ and ‖dµ/d¿‖> <>.

(iii) (Two-sample null) If µ has compact support, then there exists a version of Gµ,Ã , G̃µ,Ã such that Gµ,Ã/
:
µ 7 ×Ã

and G̃µ,Ã/
:
µ 7 ×Ã are L2(Rd)-valued, and

nÇ2 (µ̂n 7 ³Ã‖¿̂n 7 ³Ã) d2³
∫

Rd

(
Gµ,Ã(x) 2 G̃µ,Ã(x)

)2

µ 7 ×Ã(x)
dx, (89)

where the limit can be represented as a weighted sum of i.i.d. Ç2 random variables with 1 degree of freedom.

(iv) (Two-sample alternative) If µ, ¿ have compact supports, then

n
1
2

(
Ç2 (µ̂n 7 ³Ã‖¿̂n 7 ³Ã)2 Ç2 (µ 7 ³Ã‖¿ 7 ³Ã)

) d2³ N
(
0, v22,f

Ç2
(µ, ¿, Ã)

)
, (90)

where v22,f
Ç2
(µ, ¿, Ã) is given in (94).

Proof. Since the general idea of the proof is similar to that of Proposition 2, we only provide a sketch of the proof,

while highlighting the differences.

Part (i): We apply Theorem 3(i) with Ã = µ 7 ³Ã . We have

E
[
Ç2 (µ̂n 7 ³Ã‖µ 7 ³Ã)

] (a)
=

1

n2

∫

Rd

E

þ

ÿ
ø

(
∑n
i=1

(
×Ã(x2Xi)2 µ 7 ×Ã(x)

))2

µ 7 ×Ã(x)

ù

ú
û dx
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(b)
=

1

n

∫

Rd

E

[(
×Ã(x2X)2 µ 7 ×Ã(x)

)2

µ 7 ×Ã(x)

]

dx

=
1

n

∫

Rd

Varµ

(
×Ã(x2 ·)

)

µ 7 ×Ã(x)
dx, (91)

where (a) is by Fubini’s theorem and (b) uses that X1, . . . , Xn are i.i.d. Consequently, under (26), we obtain

Ç2 (µ̂n 7 ³Ã‖µ 7 ³Ã) <> a.s. The rest of the proof leading to (87) via Theorem 3(i) is similar to that of Proposition

2(i) and proceeds by showing that the conditions in Theorem 6(ii) are satisfied; we omit the details to avoid

repetition. The claim that (87) holds for ³-sub-Gaussian µ with ³ < Ã is a consequence of [78, Proposition 1] by

noting that the LHS of (26) equals IÇ2(V ;V + Z), with V > µ and Z > ³Ã independent of each other. The final

claim is obvious from (91).

Part (ii): Note that

E
[
Ç2 (µ̂n 7 ³Ã‖¿ 7 ³Ã)

]
=

∫

Rd

1

n2¿ 7 ×Ã(x)
E

þ

ø

(
n∑

i=1

(
×Ã(x2Xi)2 ¿ 7 ×Ã(x)

)

)2
ù

û dx

(a)

f
∫

Rd

1

¿ 7 ×Ã(x)
Eµ

[(
×Ã(x2X)2 ¿ 7 ×Ã(x)

)2
]

dx

(b)
=

∫

Rd

Varµ

(
×Ã(x2 ·)

)

¿ 7 ×Ã(x)
dx + Ç2 (µ 7 ×Ã‖¿ 7 ×Ã) ,

where (a) uses the convexity of the map x 7³ x2 while (b) is because X1, . . . , Xn are i.i.d. Since the RHS of the

above equation is finite by assumption, we conclude that Ç2 (µ̂n 7 ³Ã‖µ 7 ³Ã) <> a.s. Also, under (28), it follows

that

n1/2

(
µ̂n 7 ×Ã
¿ 7 ×Ã

2 µ 7 ×Ã
¿ 7 ×Ã

)

w2³ Gµ,Ã
¿ 7 ×Ã

in L2(¿ 7 ×Ã),

via similar arguments to those in proof of Proposition 2(ii). Then, (88) is a direct consequence of Theorem 3(ii)

with Ã = ¿ 7 ³Ã , which implies

n
1
2

(
Ç2 (µ̂n 7 ³Ã‖¿ 7 ³Ã)2 Ç2 (µ 7 ³Ã‖¿ 7 ³Ã)

) d2³ 2

∫

Rd

Gµ,Ã(x)
µ 7 ×Ã(x)
¿ 7 ×Ã(x)

dx > N
(
0, v21,f

Ç2
(µ, ¿, Ã)

)
,

where

v21,f
Ç2
(µ, ¿, Ã) = 4

∫

Rd

∫

Rd

Σ(1,1)
µ,¿,Ã(x, y)

µ 7 ×Ã(x)
¿ 7 ×Ã(x)

µ 7 ×Ã(y)
¿ 7 ×Ã(y)

dx dy. (92)

Finally, the last claim follows from the first since (28) is satisfied for ³-sub-Gaussian µ with ³ < Ã and

‖dµ/d¿‖> <> due to (60), and by (59)

Ç2 (µ 7 ×Ã‖¿ 7 ×Ã) =
∫

Rd

(
µ 7 ×Ã(x)
¿ 7 ×Ã(x)

2 1

)2

¿ 7 ×Ã(x) dx f 2

(∥
∥
∥
∥

µ 7 ×Ã
¿ 7 ×Ã

∥
∥
∥
∥

2

>
+ 1

)

<>.

Part (iii): We specialize Theorem 3(iii) with Ã = µ 7 ³Ã. First, note that the absolute continuity requirements on

the distributions are satisfied, and p¿̂n7³Ã > 0. Also, Ç2 (µ̂n 7 ³Ã‖¿̂n 7 ³Ã) <> a.s. since with X̂ > µ̂n, Ŷ > ¿̂n,
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X > µ independent of Y > µ, we have

E
[
Ç2 (µ̂n 7 ³Ã‖¿̂n 7 ³Ã)

]
= E

[
Ç2
(

N(X̂, Ã2Id)
∥
∥
∥N(Ŷ, Ã2Id)

) ]

(a)

f E
[
Ç2
(
N(X, Ã2Id)

∥
∥N(Y, Ã2Id)

) ]

(b)
= E

[

e
‖X2Y ‖2

Ã2

]
(c)
< >. (93)

Here, (a) follows by convexity of Ç2 divergence, (b) uses the closed form expression for Ç2 divergence between

multi-variate isotropic Gaussians [84], and (c) is because µ has compact support. On the other hand, taking q(x) =

c2ec‖x‖ such that µ̂n 7 ×Ã(x)/¿̂n 7 ×Ã(x) f q(x) a.s. based on (61), we have

d·1
dx

(x) =
(
1 + c2ec‖x‖

)
µ 7 ×Ã(x),

d·2
dx

(x) =
(
1 + c2ec‖x‖ + c22e2c‖x‖

)
µ 7 ×Ã(x).

Setting rn = n1/2, it follows from (17) and the arguments in the proof of Part (iii) that

nÇ2 (µ̂n 7 ×Ã‖¿̂n 7 ×Ã) d2³
∫

S

(
Gµ,Ã(x) 2 G̃µ,Ã(x)

)

µ 7 ×Ã(x)

2

dx,

provided that (62) holds. By the same arguments as in the proof of Proposition 2(iii), this holds if

∫

Rd

Varµ

(
×Ã(x2 ·)

)

µ 7 ×Ã(x)
(
1 + e2c‖x‖

)
dx <>,

which in turn is satisfied because spt(µ) is compact (see the derivation leading to (64)).

Part (iv): We employ Theorem 3(iv) with Ã = ¿ 7³Ã. The required positivity and absolute continuity requirements

of the probability measures are readily verified. Also, using Jensen’s inequality and (93), we have

Ç2 (µ 7 ³Ã‖¿ 7 ³Ã) f E
[
Ç2 (µ̂n 7 ³Ã‖¿̂n 7 ³Ã)

]
<>,

which implies Ç2 (µ̂n 7 ³Ã‖¿̂n 7 ³Ã) <> a.s. Moreover,

∫

Rd

(
µ 7 ×Ã(x)

)4

(
¿ 7 ×Ã(x)

)3 dx =

∫

Rd

(
∫

Rd
e2

‖x2y‖2
2Ã2 dµ(y)

)4

(
∫

Rd
e2

‖x2y‖2
2Ã2 d¿(y)

)3 dx

=

∫

Rd

e2
‖x‖2
2Ã2

(
∫

Rd
e

2x·y2‖y‖2
2Ã2 dµ(y)

)4

(
∫

Rd
e

2x·y2‖y‖2
2Ã2 d¿(y)

)3 dx

f
∫

Rd

e2
‖x‖2
2Ã2 ec‖x‖dx <>.

Taking q(x) = c2ec‖x‖ with µ̂n 7 ×Ã(x)/¿̂n 7 ×Ã(x) f q(x) a.s. (see (61)), we have

d·1
dx

(x) = ¿ 7 ×Ã(x) + µ 7 ×Ã(x) + ¿ 7 ×Ã(x) c2ec‖x‖,
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d·2
dx

(x) =
d·1
dx

(x) + ¿ 7 ×Ã(x) c22e2c‖x‖ +
(
µ 7 ×Ã(x)

)2

¿ 7 ×Ã(x)
.

Similarly to the proof of Proposition 6(iv), setting rn = n1/2 in (18), yields

n
1
2

(
Ç2 (µ̂n 7 ³Ã‖¿̂n 7 ³Ã)2Ç2 (µ 7 ³Ã‖¿ 7 ³Ã)

) d2³ 2

∫

Rd

Gµ,Ã(x)
µ 7 ×Ã(x)
¿ 7 ×Ã(x)

dx+

∫

Rd

G¿,Ã(x)

(
µ 7 ×Ã(x)
¿ 7 ×Ã(x)

)2

dx

> N
(
0, v22,f

Ç2
(µ, ¿, Ã)

)
,

provided that (68) holds. Here, the variance is given by

v22,f
Ç2
(µ, ¿, Ã) :=

∑

1fi,jf2

∫

Rd

∫

Rd

Σ(i,j)
µ,¿,Ã(x, y)Li,fÇ2 (x)Lj,fÇ2 (y)dx dy

=
∑

1fi,jf2

∫

Rd

∫

Rd

Σ(i,j)
µ,¿,Ã(x, y)L̃i,fÇ2 (x)L̃j,fÇ2 (y)dx dy, (94)

with L̃1,f
Ç2 :=2 (µ 7 ×Ã/¿ 7 ×Ã) and L̃2,f

Ç2 :=(µ 7×Ã/¿ 7×Ã)2. Finally, Theorem 6 implies that (68) is satisfied if

∫

Rd

Varµ

(
×Ã(x2 ·)

)

¿ 7 ×Ã(x)
(
1 + ec‖x‖

)
dx+

∫

Rd

Varµ

(
×Ã(x2 ·)

)
µ 7 ×Ã(x)

(
¿ 7 ×Ã(x)

)2 dx <>,

∫

Rd

Var¿

(
×Ã(x2 ·)

)

¿ 7 ×Ã(x)
(
1 + e2c‖x‖

)
dx+

∑

j=1,2

∫

Rd

Var¿

(
×Ã(x 2 ·)

)(
µ 7 ×Ã(x)

)j

(
¿ 7 ×Ã(x)

)j+1 dx <>,

which holds for compactly supported µ, ¿, akin to (64). This completes the proof.

B. H
2 distance

The following proposition obtains limit distributions for Gaussian-smoothed squared Hellinger distance.

Proposition 7 (Limit distribution for Gaussian-smoothed H
2 distance) The following hold:

(i) (One-sample null) If (26) holds, then there exists a version of Gµ,Ã such that Gµ,Ã/
:
µ 7 ×Ã is L2(Rd)-valued,

and

nH2 (µ̂n 7 ³Ã, µ 7 ³Ã) d2³ 1

4

∫

S

G2
µ,Ã(x)

µ 7 ×Ã(x)
dx, (95)

where the limit can be represented as a weighted sum of i.i.d. Ç2 random variables with 1 degree of

freedom. In particular, (95) holds for ³-sub-Gaussian µ with ³ < Ã. Conversely, if (26) is violated, then

lim infn³> nE
[
H

2 (µ̂n 7 ³Ã, µ 7 ³Ã)
]
=>.

(ii) (One-sample alternative) If

∫

Rd

Varµ

(
×Ã(x2 ·)

)

µ 7 ×Ã(x)
dx+

∫

Rd

Varµ

(
×Ã(x2 ·)

)

µ 7 ×Ã(x)

(
¿ 7 ×Ã(x)
µ 7 ×Ã(x)

) 1
2

dx <>, (96)

then

n
1
2

(
H

2 (µ̂n 7 ³Ã, ¿ 7 ³Ã)2 H
2 (µ 7 ³Ã, ¿ 7 ³Ã)

) d2³ N
(
0, v21,f

H2
(µ, ¿, Ã)

)
, (97)
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where v21,f
H2
(µ, ¿, Ã) is given in (102). In particular, (97) holds for ³-sub-Gaussian µ with ³ < Ã and ¿ j µ

such that ‖d¿/dµ‖> <>.

(iii) (Two-sample null) If
∫

Rd

Varµ

(
×Ã(x2 ·)

)

(
µ 7 ×Ã(x)

)3/2
dx <>, (98)

then there exists a version of Gµ,Ã , G̃µ,Ã such that Gµ,Ã/
:
µ 7 ×Ã and G̃µ,Ã/

:
µ 7 ×Ã are L2(Rd)-valued,

and

nH2 (µ̂n 7 ³Ã, ¿̂n 7 ³Ã) d2³ 1

4

∫

Rd

(
Gµ,Ã(x) 2 G̃µ,Ã(x)

)2

µ 7 ×Ã(x)
dx, (99)

where the limit can be represented as a weighted sum of i.i.d. Ç2 random variables with 1 degree of freedom.

In particular, (98) and (99) holds for ³-sub-Gaussian µ with ³ < Ã/
:
6.

(iv) (Two-sample alternative) If either of the following conditions hold

a) µ, ¿ have compact supports;

b) ‖dµ/d¿‖> <>, and

∫

Rd

Varµ

(
×Ã(x2 ·)

)

(
µ 7 ×Ã(x)

)3/2
dx +

∫

Rd

Var¿

(
×Ã(x2 ·)

)

µ 7 ×Ã(x)
dx +

∫

Rd

Var¿

(
×Ã(x2 ·)

)

(
¿ 7 ×Ã(x)

)3/2
dx <> ; (100)

c) The conditions in (b) hold with the role of µ and ¿ interchanged;

then

n
1
2

(
H

2 (µ̂n 7 ³Ã, ¿̂n 7 ³Ã)2 H
2 (µ 7 ³Ã, ¿ 7 ³Ã)

) d2³ N
(
0, v22,f

H2
(µ, ¿, Ã)

)
, (101)

where v22,f
H2
(µ, ¿, Ã) is specified in (105). In particular, (101) holds for ³-sub-Gaussian µ, ¿ with ³ < Ã/

:
6

such that µjk ¿ and ‖dµ/d¿‖> * ‖d¿/dµ‖> <>.

Proof. The proof relies on Theorem 4 by ensuring that the relevant conditions therein are fulfilled.

Part (i): We apply Theorem 4(i) with Ã = µ 7 ³Ã . Observe that p· = 2 and that the positivity and absolute

continuity assumptions are satisfied. Then, (95) will follow from (19), provided (52) holds, which in turn is fulfilled

under (26) (see (54) and the following discussion). The penultimate claim is because ³-sub-Gaussian µ with ³ < Ã

satisfies (26), as mentioned in the proof of Proposition 2(i). The final claim follows by instantiating Lemma 2 to

H
2 distance and noting that fH2 satisfy the regularity conditions therein.

Part (ii): We apply Theorem 4(ii) with Ã = µ 7 ³Ã . Note that ‖¿ 7 ×Ã/µ 7 ×Ã‖1,µ7×Ã = 1 and d·/dx =

µ 7 ×Ã +
(
µ 7 ×Ã

)1/2(
¿ 7 ×Ã

)1/2
, which implies that · is a finite measure. Thus, provided that

n1/2

(
µ̂n 7 ×Ã
µ 7 ×Ã

2 1

)

w2³ Gµ,Ã
µ 7 ×Ã

in L2(·),
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we obtain from (20) the limit distribution

n
1
2

(
H

2 (µ̂n 7 ³Ã, ¿ 7 ³Ã)2 H
2 (µ 7 ³Ã, ¿ 7 ³Ã)

) d2³
∫

Rd

(
¿ 7 ×Ã(x)
µ 7 ×Ã(x)

) 1
2

Gµ,Ã(x) dx > N
(
0, v21,f

H2
(µ, ¿, Ã)

)
,

where

v21,f
H2
(µ, ¿, Ã) =

∫

Rd

∫

Rd

Σ(1,1)
µ,¿,Ã(x, y)

(
¿ 7 ×Ã(x)
µ 7 ×Ã(x)

) 1
2
(
¿ 7 ×Ã(y)
µ 7 ×Ã(y)

) 1
2

dx dy. (102)

To establish the weak convergence condition we again verify Condition (ii) of Theorem 6, which uses the assumption

from (96), and then invoke Theorem 6(i) (see the proof of Proposition 2). The final claim follows as the LHS of

(96) is finite for ³-sub-Gaussian µ with ³ < Ã and ‖d¿/dµ‖> <>, based on (59) and the arguments at the end

of proof of Proposition 2(i).

Part (iii): We specialize Theorem 4(iii) with Ã = µ7³Ã . Setting q1 = q2 = cd,Ã/µ7³Ã where cd,Ã = (2ÃÃ2)2d/2,

we have that ·1 = ·2 = · is a Ã-finite measure specified by the Lebesgue density d·/dx = 2µ7×Ã+
(
cd,Ã µ7×Ã

)1/2

(note that both terms are bounded on Rd). Then, from (21), we obtain

nH2 (µ̂n 7 ×Ã, ¿̂n 7 ×Ã) d2³ 1

4

∫

S

(
Gµ,Ã(x)2 G̃µ,Ã(x)

)

µ 7 ×Ã(x)

2

dx,

provided that

n1/2

(
µ̂n 7 ×Ã
µ 7 ×Ã

2 1

)

w2³ Gµ,Ã
µ 7 ×Ã

and n1/2

(
¿̂n 7 ×Ã
µ 7 ×Ã

2 1

)

w2³ G̃µ,Ã
µ 7 ×Ã

in L2(·).

Applying Theorem 6(ii), the above weak convergence holds once (98) is satisfied.

To prove the final claim in Part (iii), we first note that

∫

Rd

Varµ

(
×Ã(x2 ·)

)

(
µ 7 ×Ã(x)

) 3
2

dx f
∫

Rd

∫

Rd

×2
Ã(x 2 y)

(
µ 7 ×Ã(x)) 3

2

dx dµ(y)

=

∫

Rd

e2‖y‖2/Ã2 1

(2ÃÃ2)d

∫

Rd

e2y·x/Ã
22‖x‖2/Ã2

(
µ 7 ×Ã(x)) 3

2

dx dµ(y).

Since ‖x2 y‖2 f (1 + Ç)‖x‖2 + (1 + Ç21)‖y‖2, " Ç * (0, 1), Jensen’s inequality implies

(
µ 7 ×Ã(x)

) 3
2 g Eµ

[

×
3
2
Ã (x 2 ·)

]

g e23(1+Ç)‖x‖2/(4Ã2)

(2ÃÃ2)
3d
4

∫

Rd

e23(1+Ç21)‖y‖2/(4Ã2)dµ(y)

︸ ︷︷ ︸
=:cµ,Ç

.

Then

1

(2ÃÃ2)d

∫

Rd

e2y·x/Ã
22‖x‖2/Ã2

(
µ 7 ×Ã(x)) 3

2

dx f 2
3d
4 Ã

d
2 Ã

d
4

(12 3Ç)
d
2 cµ,Ç

∫

Rd

e2y·x/Ã
2

×:
2Ã/

:
123Ç (x)dx =

2
3d
4 Ã

d
2 Ã

d
4

(12 3Ç)
d
2 cµ,Ç

e
4‖y‖2

(123Ç)Ã2 ,

where in the last equation we used E
[
e³·W

]
= e‖³‖

2Ã2/2 for W > N(0, Ã2Id). Conclude that

∫

Rd

Varµ

(
×Ã(x 2 ·)

)

(
µ 7 ×Ã(x)) 3

2

dx f 2
3d
4 Ã

d
2 Ã

d
4

(12 3Ç)
d
2 cµ,Ç

∫

Rd

e
3(1+Ç)‖y‖2
(123Ç)Ã2 dµ(y) f 2

3d
4 Ã

d
2 Ã

d
4

(1 2 3Ç)
d
2 cµ,Ç

(

12 6(1 + Ç)³2

(1 2 3Ç)Ã2

)2 d
2

,
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provided that 3(1 + Ç)/
(
(1 2 3Ç)Ã2

)
< 1/(2³2), i.e., ³ < Ã

:
12 3Ç/

√

6(1 + Ç). Here, the final inequality uses

that for any ³-sub-Gaussian X with mean zero and 0 f Ç 2 < 1/(2³2), we have E
[
eÇ

2‖X‖2] f (1 2 2³2Ç 2)2d/2

(see [1, Equation 7]). Since Ç * (0, 1) is arbitrary and cµ,Ç > 0 for Ç > 0, the desired result follows.

Part (iv): We use Theorem 4(iv) with Ã = µ 7 ³Ã. Observe that ‖¿ 7 ×Ã/µ 7 ×Ã‖1,µ7×Ã = 1, and since

‖dµ/d¿‖> < > by assumption, we further have µ 7 ×Ã/¿ 7 ×Ã * L1(µ 7 ³Ã). With q1 = q2 = cd,Ã/µ 7 ³Ã,

the measures ·1 and ·2 in Theorem 4(iv) are specified by the Lebesgue densities

d·1
dx

= µ 7 ×Ã +
(
µ 7 ×Ã ¿ 7 ×Ã

) 1
2 +

(
cd,Ã µ 7 ×Ã

) 1
2 +

(
µ 7 ×Ã

) 3
2
(
¿ 7 ×Ã

)2 1
2 , (103)

d·2
dx

= µ 7 ×Ã +
(
µ 7 ×Ã

) 5
2
(
¿ 7 ×Ã

)2 3
2 + c

1
2

d,Ã

(
µ 7 ×Ã

)2(
¿ 7 ×Ã

)2 3
2 +

(
µ 7 ×Ã

) 3
2
(
¿ 7 ×Ã

)2 1
2 . (104)

Thus, if the weak convergence conditions

n1/2

(
µ̂n 7 ×Ã
µ 7 ×Ã

2 1

)

w2³ Gµ,Ã
µ 7 ×Ã

in L2(·1),

n1/2

(
¿̂n 7 ×Ã
µ 7 ×Ã

2 ¿ 7 ×Ã
µ 7 ×Ã

)

w2³ G¿,Ã
µ 7 ×Ã

in L2(·2).

hold, then (22) yields

n
1
2

(
H

2 (µ̂n 7 ³Ã, ¿̂n 7 ³Ã)2 H
2 (µ 7 ³Ã, ¿ 7 ³Ã)

)

d2³
∫

Rd

(
¿ 7 ×Ã(x)
µ 7 ×Ã(x)

) 1
2

Gµ,Ã(x) dx +

∫

Rd

(
µ 7 ×Ã(x)
¿ 7 ×Ã(x)

) 1
2

G¿,Ã(x) dx

> N
(
0, v22,f

H2
(µ, ¿, Ã)

)
,

where

v22,f
H2
(µ, ¿, Ã) :=

∑

1fi,jf2

∫

Rd

∫

Rd

Σ(i,j)
µ,¿,Ã(x, y)Li,fH2 (x)Lj,fH2 (y)dx dy

=
∑

1fi,jf2

∫

Rd

∫

Rd

Σ(i,j)
µ,¿,Ã(x, y)L̃i,fH2 (x)L̃j,fH2 (y)dx dy, (105)

with L̃1,f
H2

:= (¿ 7 ×Ã/µ 7 ×Ã)1/2 and L̃2,f
H2

:= (µ 7 ×Ã/¿ 7 ×Ã)1/2. Since ‖dµ/d¿‖> < > by assumption, ·1

and ·2 are Ã-finite measures because the terms in the RHS of (103) and (104) either have finite Lebesgue integrals

or are bounded on Rd. Hence, the above weak convergences hold if the conditions in Theorem 6(ii) are satisfied.

This in turn happens if

∫

Rd

Varµ

(
×Ã(x2 ·)

)

(
µ 7 ×Ã(x)

)3/2
dx+

∫

Rd

Varµ

(
×Ã(x2 ·)

)

(
µ 7 ×Ã(x)¿ 7 ×Ã(x)

)1/2
dx <>,

and
∫

Rd

Var¿

(
×Ã(x2 ·)

)

µ 7 ×Ã(x)
dx+

∫

Rd

Var¿

(
×Ã(x2 ·)

)

(
¿ 7 ×Ã(x)

)3/2
dx+

∫

Rd

Var¿

(
×Ã(x2 ·)

)

(
µ 7 ×Ã(x)¿ 7 ×Ã(x)

)1/2
dx <>.

The above conditions simplify to that in (100) when ‖dµ/d¿‖> < >, thus proving the desired claim under the

conditions in (b). The validity of (101) under conditions in (c) is a consequence of the symmetry of H2 distance in its
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arguments. For Condition (a), we need to show that (100) holds when µ, ¿ have compact supports. Using steps similar

to those in (65), one readily verifies (100), as well as that ·1 and ·2 are Ã-finite, and µ 7×Ã/¿ 7×Ã * L1(µ 7 ³Ã).
Hence, all the sufficient conditions required for (101) to hold are verified.

The final claim in Part (iv) follows from the proof of the final claim in Part (iii) which shows that the first and

last terms in the LHS of (100) are finite for ³-sub-Gaussian µ, ¿ with ³ < Ã/
:
6, and

∫

Rd

Var¿

(
×Ã(x 2 ·)

)

µ 7 ×Ã(x)
dx =

∫

Rd

Var¿

(
×Ã(x2 ·)

)

¿ 7 ×Ã(x)
¿ 7 ×Ã(x)
µ 7 ×Ã(x)

dx

f
∥
∥
∥
∥

d¿

dµ

∥
∥
∥
∥
>

∫

Rd

Var¿

(
×Ã(x2 ·)

)

¿ 7 ×Ã(x)
dx

f (2ÃÃ2)2d/4
∥
∥
∥
∥

d¿

dµ

∥
∥
∥
∥
>

∫

Rd

Var¿

(
×Ã(x2 ·)

)

(
¿ 7 ×Ã(x)

)3/2
dx <>.

This completes the proof.

C. TV distance

Before stating limit distributions for Gaussian-smoothed TV distance, we recall the definition of tightness or

stochastic boundedness of a sequence of random variables. A sequence of real-valued random variables Zn, n * N,

is tight if for any ë > 0, there exists a constant cë such that P(|Zn| > cë) f ë for all n [25].

Proposition 8 (Gaussian-smoothed TV distance limit distribution) Let Ã = », Q = {s * Rd : pµ7³Ã(s) = p¿7³Ã(s)}
and sgn(x) = x/|x| for x 6= 0. Then, the following hold:

(i) (One-sample null and alternative) If

∫

Rd

√

Varµ

(
×Ã(x2 ·)

)
dx <>, (106)

then there exists a version of Gµ,Ã which is L1(Rd) valued, and

n
1
2

(
‖µ̂n 7 ³Ã 2 ¿ 7 ³Ã‖TV 2 ‖µ 7 ³Ã 2 ¿ 7 ³Ã‖TV

)

d2³ 1

2

∫

Q
|Gµ,Ã| dx+

1

2

∫

S\Q
sgn
(
pµ7³Ã 2 p¿7³Ã

)
Gµ,Ãdx. (107)

In particular, (106) and (107) holds if µ has finite (2d + ë) moment for some ë > 0, i.e., E[‖X‖2d+ë] < >
for X > µ. Conversely, if (106) is violated, then the sequence n1/2 ‖µ̂n 7 ³Ã 2 µ 7 ³Ã‖TV is not tight.

(ii) (Two-sample null and alternative) If

∫

Rd

√

Varµ

(
×Ã(x2 ·)

)
dx+

∫

Rd

√

Var¿

(
×Ã(x 2 ·)

)
dx <>, (108)

then there exists a version of Gµ,Ã and G¿,Ã which are L1(Rd) valued such that

n
1
2

(
‖µ̂n 7 ³Ã 2 ¿̂n 7 ³Ã‖TV 2 ‖µ 7 ³Ã 2 ¿ 7 ³Ã‖TV

)

d2³ 1

2

∫

Q
|Gµ,Ã 2G¿,Ã| dx+

1

2

∫

S\Q
sgn
(
pµ7³Ã 2 p¿7³Ã

)(
Gµ,Ã 2G¿,Ã

)
dx. (109)
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In particular, (108) and (109) holds if µ and ¿ have finite (2d+ ë) moments for some ë > 0. Conversely, if

µ = ¿ and (108) does not hold, then n1/2 ‖µ̂n 7 ³Ã 2 ¿̂n 7 ³Ã‖TV is not tight.

We note here that in contrast to Proposition 2, 6, and 7, the limit distribution for smoothed TV distance in

the one- and two-sample alternative is not Gaussian. This is a consequence of the non-linearity of the first-order

Hadamard derivative (see (51)).

Remark 4 (Upper bound for (106)) To establish that (106) holds if µ has finite (2d+ ë) moments for some ë > 0,

we show in the proof that for X > µ,

∫

Rd

√

Varµ(×Ã(x 2 ·))dx f 8d/2 +
2d/2+1

ÃdΓ(d/2)

∫ >

0

td21
√

P(‖X‖ > t)dt, (110)

where Γ denotes the Gamma function. The RHS is then finite by Markov’s inequality provided E[‖X‖2d+ë] <>.

Proof. We apply Theorem 5 with Ã = ».

Part (i): Observe that (107) is a direct consequence of (23), provided that

n1/2 (µ̂n 7 ³Ã 2 µ 7 ³Ã) w2³ Gµ,Ã in L1(Rd).

Let Zi(x) = ×Ã(x 2Xi) 2 µ 7 ×Ã(x) and Z(x) = ×Ã(x 2X) 2 µ 7 ×Ã(x), where X > µ. Note that ‖Z‖1 f 2

a.s. and
:
n
(
µ̂n 7 ³Ã 2 µ 7 ³Ã

)
= (1/

:
n)
∑n
i=1 Zi. Since P(‖Z‖1 g t) = 0 for t > 2, Theorem 6(ii) implies that

the weak convergence above holds if

∫

Rd

(

E
[
|Z(x)|2

])
1
2

dx =

∫

Rd

(

Varµ

(
×Ã(x2 ·)

))
1
2

dx <>.

The penultimate and final claim in Proposition 8(i) come from [1, Lemma 1] and [1, Proposition 1], respectively,

whose proofs we repeat here for completeness. To prove the former, note that for X > µ, one has

Varµ

(
×Ã(x2 ·)

)
f E[×2

Ã(x2X)] =
1

(2ÃÃ2)d

∫

Rd

e2‖x2y‖2/Ã2

dµ(y). (111)

Splitting the integral over Rd into ‖y‖ f ‖x‖/2 and ‖y‖ > ‖x‖/2, we further obtain

∫

Rd

e2‖x2y‖2/Ã2

dµ(y) f
∫

‖y‖f‖x‖/2
e2‖x2y‖2/Ã2

dµ(y) + P
(
‖X‖ > ‖x‖/2

)
. (112)

Changing to polar coordinates leads to

∫

Rd

√

P
(
‖X‖ > ‖x‖/2

)
dx =

2d+1Ãd/2

Γ(d/2)

∫ >

0

td21
√

P
(
‖X‖ > t

)
dt. (113)

Next, using ‖x2 y‖2 g ‖x‖2/22 ‖y‖2, we have

∫

‖y‖f‖x‖/2
e2‖x2y‖2/Ã2

dµ(y) f e2‖x‖2/(4Ã2)

∫

‖y‖f‖x‖/2
dµ(y) f e2‖x‖2/(4Ã2), (114)

and the square root of the RHS integrates to (16ÃÃ2)d/2. Combining (111)–(114), we obtain inequality (110).
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Finally, if µ has finite (2d+ ë) moments, then by Markov’s inequality

td21
√

P
(
‖X‖ > t

)
f td21 '

√

E[‖X‖2d+ë]t212(ë/2).

The RHS is integrable on [0,>), thus showing that (106) (and consequently (107)) holds under the assumption

that µ has a finite (2d+ ë)-th moment, for some ë > 0.

The proof of the final claim is divided into two steps. We first show that if
(:
n ‖µ̂n 7 ×Ã 2 µ 7 ×Ã‖TV

)

n*N
is

tight, then its first moment is uniformly bounded for all n. Then we prove that under this uniform boundedness,

Condition (106) holds.

For the first step, define Si=
∑i

j=1

(
×Ã(x2Xj)2µ7×Ã(x)

)
for 1f if n, and note that

:
n ‖µ̂n 7 ×Ã 2 µ 7 ×Ã‖TV

= ‖Sn/
:
n‖1/2. We want to show that if ‖Sn/

:
n‖1/2 is tight, then

sup
n

E
[
‖Sn/

:
n‖1
]
= sup

n

:
nE
[
‖µ̂n 7 ×Ã 2 µ 7 ×Ã‖TV

]
<>.

By Hoffmann-Jørgensen’s inequality (see [79, Proposition 6.8]), we have

E
[
‖Sn‖1

]
. E

[

max
1fifn

∥
∥Zi
∥
∥
1

]

+ tn,0,

where tn,0 = inf
{
t > 0 : P

(
max1fifn ‖Si‖1 > t

)
f 1/8

}
. The first term on the RHS is bounded by 2. In

addition, by Montgomery-Smith’s inequality [85, Corollary 4], there exists a universal constant c such that

tn,0 f inf
{
t > 0 : P

(
‖Sn‖1 > c t

)
f c
}
.

Thus, if ‖Sn/
:
n‖1/2 is tight (uniformly for all n), then supn tn,0/

:
n <>, which implies supn E

[
‖Sn/

:
n‖1
]
<

>, as desired.

Next, we prove that the uniform boundedness of
:
nE
[
‖µ̂n 7 ×Ã 2 µ 7 ×Ã‖TV

]
implies Condition (106) holds.

Let k be any positive integer. With Zi(x) = ×Ã(x2Xi)2 µ 7 ×Ã(x) and Zn = (1/n)
∑n
i=1 Zi, Fubini’s theorem

yields

:
nE
[

‖µ̂n 7 ×Ã 2 µ 7 ×Ã‖TV
]

g 1

2

∫

Rd

E
[(:

n
∣
∣Zn(x)2 µ 7 ×Ã(x)

∣
∣ ' k

]
dx.

Since |Zi(x)| f (2ÃÃ2)2d/2, the CLT implies that for any x * Rd,

lim
n³>

E
[(:

n
∣
∣Zn(x)2 µ 7 ×Ã(x)

∣
∣
)
' k
]

= E
[∣
∣Gµ,Ã(x)

∣
∣ ' k

]

.

Indeed, this follows from the CLT, i.e.,
:
n
(
Zn(x) 2 µ 7 ×Ã(x)

∣
∣
) d2³ N(0, Ã2

x) with Ã2
x = Varµ

(
×Ã(x 2 ·)

)
, and

the definition of weak convergence since y 7³ |y| ' k is bounded (by k) and (Lipschitz) continuous. Together with

Fatou’s lemma, we have

lim inf
n³>

:
nE
[
‖µ̂n 7 ×Ã 2 µ 7 ×Ã‖TV

]
g 1

2

∫

Rd

E[|Gµ,Ã(x)| ' k] dx.
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Taking k ³>, we conclude by monotone convergence theorem that

lim inf
n³>

:
nE
[

‖µ̂n 7 ×Ã 2 µ 7 ×Ã‖TV
]

g 1

2

∫

Rd

E
[∣
∣Gµ,Ã(x)

∣
∣
]
dx =

1:
2Ã

∫

Rd

(

Varµ

(
×Ã(x2 ·)

))
1
2

dx,

where the second equality is because E[|W |] =
√

2E[W 2]/Ã for a centered Gaussian variable W . This completes

the proof of Part (i).

Part (ii): The claim follows from (24), provided that

n1/2 (µ̂n 7 ×Ã 2 ¿̂n 7 ×Ã 2 µ 7 ³Ã + ¿ 7 ³Ã) w2³ Gµ,Ã 2G¿,Ã in L1(Rd),

where Gµ,Ã and G¿,Ã are L1(Rd)-valued Gaussian random variables. Since L1(Rd) is Polish, arguments similar to

those in the proof of Proposition 2(iii), imply that the above weak convergence holds if

n1/2 (µ̂n 7 ×Ã 2 µ 7 ³Ã) w2³ Gµ,Ã and (¿̂n 7 ×Ã 2 ¿ 7 ³Ã) w2³ G¿,Ã in L1(Rd).

The latter holds under (108) by Theorem 6(ii) via similar arguments to those presented in the proof of Part (i) above.

The proof of the converse claim is again analogous to that in Part (i) with Sn =
∑n

i=1 ×Ã(· 2Xi)2 ×Ã(· 2 Yi);
details are omitted. This concludes the proof.
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