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Optimal transport (OT) is a versatile framework for comparing probability measures, with many

applications to statistics, machine learning, and applied mathematics. However, OT distances suffer

from computational and statistical scalability issues to high dimensions, which motivated the study

of regularized OT methods like slicing, smoothing, and entropic penalty. This work establishes a

unified framework for deriving limit distributions of empirical regularized OT distances, semiparametric

efficiency of the plug-in empirical estimator, and bootstrap consistency. We apply the unified framework

to provide a comprehensive statistical treatment of: (i) average- and max-sliced p-Wasserstein distances,

for which several gaps in existing literature are closed; (ii) smooth distances with compactly supported

kernels, the analysis of which is motivated by computational considerations; and (iii) entropic OT,

for which our method generalizes existing limit distribution results and establishes, for the first time,

efficiency and bootstrap consistency. While our focus is on these three regularized OT distances as

applications, the flexibility of the proposed framework renders it applicable to broad classes of functionals

beyond these examples.

Keywords: bootstrap consistency; entropic optimal transport; limit distribution; semiparametric

efficiency; sliced Wasserstein distance; smooth Wasserstein distance.

1. Introduction

Optimal transport (OT) theory [80, 96] provides a versatile framework for comparing probability

distributions. Introduced by Monge [64] and later formulated by Kantorovich [49], the OT problem

between two Borel probability measures µ,ν on Rd is defined by

Tc(µ,ν) := inf
π∈Π(µ,ν)

∫

Rd×Rd
c(x,y)dπ(x,y), (1.1)

where Π(µ,ν) is the set of couplings between µ and ν . The special case of the p-Wasserstein distance

for p ∈ [1,∞) is given by Wp(µ,ν) :=
(
T∥·∥p(µ,ν)

)1/p
. Thanks to an array of favorable properties,

including the Wasserstein metric structure, a convenient duality theory, robustness to support mismatch,
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and the rich geometry induced on the space of probability measures, OT and the Wasserstein distance

have seen a surge of applications in statistics, machine learning, and applied mathematics. These include

generative modeling [4, 8, 18, 45, 88], robust/adversarial machine learning (ML) [10, 98], domain

adaptation [21, 85], image recognition [54, 77, 79], vector quantile regression [16, 20, 38, 46], Bayesian

estimation [7], and causal inference [89]. Unfortunately, OT distances are generally hard to compute

and suffer from the curse of dimensionality in empirical estimation, whereby the number of samples

needed for reliable estimation grows exponentially with dimension.

These deficits have motivated the introduction of regularized OT methods that aim to alleviate

the said computational and statistical bottlenecks. Three prominent regularizations are: (1) slicing

via lower-dimensional projections [6, 14, 66, 67, 75]; (2) smoothing via convolution with a chosen

kernel [11, 17, 40, 41, 42, 43, 44, 47, 68, 78, 101]; and (3) convexification via entropic penalty

[1, 22, 29, 37, 52, 60, 82]. These techniques preserve many properties of classic OT but avoid the curse

of dimensionality, which enables a scalable statistical theory. As reviewed below1, much effort was

devoted to exploring dimension-free empirical convergence rates and limit distributions, bootstrapping,

and other statistical aspects of regularized OT, although several notable gaps in the literature remain.

Furthermore, proof techniques for such results are typically on a case-by-case basis and do not follow

a unified approach, despite evident similarities between the three regularization methods as complexity

reduction techniques of the classic OT framework.

The present paper develops a unified framework for deriving limit distributions, semiparametric

efficiency bounds, and bootstrap consistency for a broad class of functionals that, in particular,

encompasses the empirical regularized OT distances mentioned above (Section 3). As example

applications of the general framework, we explore a comprehensive treatment of the following

problems:

• Average- and max-sliced Wp (Section 4): Our limit distribution theory closes existing gaps in the

literature (e.g., a limit distribution result for sliced W1 was assumed in [67] but left unproven), with

the efficiency and bootstrap consistency results providing additional constituents for valid statistical

inference.

• Smooth Wp with compactly supported kernels (Section 5): Gaussian-smoothed OT was

previously shown to preserve the classic Wasserstein structure while alleviating the curse of

dimensionality. Motivated by computational considerations, herein we study smoothing with

compactly supported kernels. We explore the metric, topological, and statistical aspects previously

derived under Gaussian smoothing.

• Entropic OT (Section 6): A central limit theorem (CLT) for empirical entropic OT (EOT) was

derived [29, 60] for independent data via a markedly different proof technique than proposed herein.

Revisiting this problem using our general machinery, we rederive this CLT allowing for dependent

data, and also obtain new results on semiparametric efficiency and bootstrap consistency.

The unified limit distribution framework, stated in Proposition 1, relies on the extended functional

delta method for Hadamard directionally differentiable functionals [76, 83]. To match the delta method

with the regularized OT setup, we focus on a functional on a space of probability measures that is (a)

locally Lipschitz with respect to (w.r.t.) the sup-norm for a Donsker function class and (b) Gâteaux

directionally differentiable at the population distribution. To apply this framework, we seek to: (i) set

up the regularized distance as a locally Lipschitz functional δ w.r.t. ∥ · ∥∞,F = sup f∈F | · |; (ii) show F

to be Donsker to obtain convergence of the empirical process in ℓ∞(F ); (iii) characterize the Gâteaux

1 We postpone the literature review on each regularization method to its respective section.
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directional derivative of δ at µ . For each regularized distance (sliced, smooth, and entropic), we identify

the appropriate function class F and establish the desired Lipschitz continuity and differentiability,

relying on OT duality theory. Regularization enforces the dual potentials to possess smoothness or

low-dimensionality properties, which are leveraged to show that F is Donsker. Of note is that our

framework does not require independent and identically distributed (i.i.d.) data and can be applied for

any estimate (not only the empirical distribution) of the population distribution, so long as the uniform

limit theorem mentioned in (ii) holds true.

As the general framework stems from the extended functional delta method, the limiting variable

of the (scaled and centered) empirical regularized distance is given by the directional derivative of

δ at the population distribution. Linearity of the derivative implies that the limit variable is centered

Gaussian. In this case, it is natural to ask whether the empirical distance attains the semiparametric

efficiency lower bound (cf. [93, Chapter 25]). Semiparametric efficiency bounds serve as analogs of

Cramér-Rao lower bounds in semiparametric estimation and account for the fundamental difficulty

of estimating functionals of interest. We show that the asymptotic variance of the empirical distance

indeed agrees with the semiparametric efficiency bound, relative to a certain tangent space. Still, even

when the limiting variable is Gaussian, direct analytic estimation of the asymptotic variance may be

nontrivial. To account for that, we explore bootstrap consistency for empirical regularized OT distances.

Altogether, the limit distribution theory, semiparametric efficiency, and bootstrap consistency provide a

comprehensive statistical account of the considered regularized OT distances.

A unifying approach of a similar flavor to ours, but for classic OT distances, was proposed in

[48]. Focusing solely on the supremum functional, they used the extended functional delta method

to derive limit distributions for classic Wp, with p g 2, for compactly supported distributions under

the alternative in dimensions d f 3. In comparison, our approach is more general and can treat any

functional that adheres to the aforementioned local Lipschitz continuity and differentiability. This

is crucial for analyzing regularized OT distances as some instances do not amount to a supremum

functional. For instance, average-sliced Wasserstein distances correspond to mixed L1-L∞ functionals,

which are not accounted for by the setup from [48]. The functional delta method was also used in

[86, 87] to derive limit distributions for OT between discrete population distributions by parametrizing

them using simplex vectors. This result was extended to semi-discrete OT in [30] by exploiting the

fact that complexity of the optimal potentials class is reduced when one of the measures is supported

on a discrete set. Another recent application can be found in [44], where this approach was leveraged

for Gaussian-smoothed Wp by embedding the domain of the Wasserstein distance into a certain dual

Sobolev space.

The paper is organized as follows. Section 2 presents notation used throughout the paper and

background on Wasserstein distances and the extended functional delta method. Section 3 presents a

unified framework for deriving limit distributions, bootstrap consistency, and semiparametric efficiency

bounds for regularized OT distances. The tools developed therein will be applied to sliced Wasserstein

distances in Section 4, smooth Wasserstein distances with compactly supported kernels in Section 5,

and EOT in Section 6. Section 7 leaves some concluding remarks. Proofs for the results in Sections 2–6

are found in Appendices ??–??.

2. Background and Preliminaries

This section collects notation used throughout the paper and sets up necessary background on

Wasserstein distances and the extended functional delta method.
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2.1. Notation

Let ∥ · ∥ denote the Euclidean norm and B(x,r) be the open ball with center x ∈ Rd and radius r > 0.

For a subset A of a topological space S, let A
S

denote the closure of A; if the space S is clear from

the context, then we simply write A for the closure. The space of Borel probability measures on S is

denoted by P(S). When S is a normed space with norm ∥ · ∥S, we denote Pp(S) := {µ ∈ P(S) :∫ ∥x∥p
Sdµ(x) < ∞} for 1 f p < ∞. The (topological) support of µ ∈ P(S) is denoted as spt(µ). For

any finite signed Borel measure γ on S, we identify γ with the linear functional f 7→ γ( f ) =
∫

f dγ . For

µ ∈ P(S) and a µ-integrable function h on S, hµ denotes the signed measure hdµ . Let
w→,

d→, and
P→ denote weak convergence of probability measures, convergence in distribution of random variables,

and convergence in probability, respectively. When necessary, convergence in distribution is understood

in the sense of Hoffmann-Jørgensen (cf. Chapter 1 in [92]). For any nonempty set S, let ℓ∞(S) be the

Banach space of bounded real functions on S equipped with the sup-norm ∥ · ∥∞,S = supx∈S | · |. For

any measure space (S,S ,µ) and 1 f p < ∞, let Lp(µ) = Lp(S,S ,µ) denote the Banach space of

measurable functions f : S → R with ∥ f∥Lp(µ) = (
∫ | f |pdµ)1/p < ∞. If µ is σ -finite and S is countably

generated, then the space is separable. For two numbers a and b, we use the notation a'b = min{a,b}
and a(b = max{a,b}.

2.2. Wasserstein distances

The Wasserstein distance is a specific instance of the OT problem from (1.1), defined as follows.

Definition 1 (Wasserstein distance) Let 1 f p < ∞. The p-th Wasserstein distance between µ,ν ∈
Pp(R

d) is defined as

Wp(µ,ν) := inf
π∈Π(µ,ν)

[∫

Rd×Rd
∥x− y∥p dπ(x,y)

]1/p

, (2.1)

where Π(µ,ν) is the set of couplings of µ and ν .

The p-Wasserstein distance is a metric on Pp(R
d) and metrizes weak convergence plus convergence

of pth moments, i.e., Wp(µn,µ) → 0 if and only if µn
w→ µ and

∫ ∥x∥pdµn(x) →
∫ ∥x∥pdµ(x).

Wasserstein distances admit the following dual form (cf. [96, Theorem 5.9]):

Wp
p(µ,ν) = sup

ϕ∈L1(µ)

[∫

Rd
ϕdµ +

∫

Rd
ϕcdν

]
, (2.2)

where ϕc(y) = infx∈Rd

[
∥x− y∥p −ϕ(x)

]
is the c-transform of ϕ (for the cost c(x,y) = ∥x− y∥p). A

function f : Rd → [−∞,∞) is called c-concave if f = gc for some function g : Rd → [−∞,∞). There is

at least one c-concave ϕ ∈ L1(µ) that attains the supremum in (2.2), and we call this ϕ an OT potential

from µ to ν for Wp. Further, when 1 < p < ∞ and µ is supported on a connected set with negligible

boundary and has a (Lebesgue) density, then the OT potential from µ to ν is unique on int(spt(µ))
up to additive constants [28, Corollary 2.7]. Various smoothness properties of the potentials can be

established under appropriate regularity conditions on the cost and µ,ν—a fact that we shall leverage

in our derivations.
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Remark 1 (Literature review on Wp limit distribution theory) Distributional limits of√
n
(
W

p
p(µ̂n,ν)−W

p
p(µ,ν)

)
and its two-sample analogue for discrete µ,ν under both the null µ = ν

and the alternative µ ̸= ν were derived in [86, 87]. Similar results for general distributions are known

only in the one-dimensional case. Specifically, for p = 1,2, [25, 26] leverage the representations of

Wp in d = 1 as the Lp norm between distribution functions (p = 1) and quantile functions (p = 2)

to derive distributional limits under the null. Limit distributions in d = 1 for p g 2 under the

alternative (µ ̸= ν) were derived in [27]. In arbitrary dimension, [24] establish asymptotic normality

of
√

n
(
W2

2(µ̂n,ν)− E
[
W2

2(µ̂n,ν)
])

under the alternative µ ̸= ν by deriving an asymptotic linear

representation using the Efron-Stein inequality. This was extended to general transportation costs

satisfying certain regularity conditions in [28]. The main limitation of these results is the centering

around the expected empirical distance (and not the population one), which does not enable performing

inference for Wp. This gap was addressed in [58], where a CLT for
√

n
(
W2

2(µ̃n,ν)−W2
2(µ,ν)

)
was

established, but for a wavelet-based estimator µ̃n of µ (as opposed to the empirical distribution),

while assuming several technical conditions on the Lebesgue densities of µ,ν . As mentioned in the

introduction, [48] leverage the extended functional delta method for the supremum functional to obtain

limit distributions for Wp, with p g 2, for compactly supported distributions under the alternative in

dimensions d f 3.

2.3. Extended functional delta method

Our unified framework for deriving limit distributions of empirical regularized OT distances relies on

the extended functional delta method, which we set up next. Let D,E be normed spaces and φ : Θ ¢
D→ E be a map. Following [76, 83], we say that φ is Hadamard directionally differentiable at θ ∈ Θ

if there exists a map φ ′
θ : TΘ(θ)→ E such that

lim
n→∞

φ(θ + tnhn)−φ(θ)

tn
= φ ′

θ (h) (2.3)

for any h ∈ TΘ(θ), tn ³ 0, and hn → h in D such that θ + tnhn ∈ Θ. Here TΘ(θ) is the tangent cone to

Θ at θ defined as

TΘ(θ) :=

{
h ∈D : h = lim

n→∞

θn −θ

tn
for some θn → θ in Θ and tn ³ 0

}
.

The tangent cone TΘ(θ) is closed, and if Θ is convex, then TΘ(θ) coincides with the closure in D of

{(ϑ −θ)/t : ϑ ∈ Θ, t > 0}. The derivative φ ′
θ is positively homogeneous and continuous but need not

be linear.

Lemma 1 (Extended functional delta method [34, 36, 76, 84]) Let D,E be normed spaces and φ : Θ¢
D→ E be a map that is Hadamard directionally differentiable at θ ∈ Θ with derivative φ ′

θ : TΘ(θ)→
E. Let Tn : Ω → Θ be maps such that rn(Tn − θ)

d→ T for some rn → ∞ and Borel measurable map

T : Ω →D with values in TΘ(θ). Then, rn

(
φ(Tn)−φ(θ)

) d→ φ ′
θ (T ). Further, if Θ is convex, then we

have rn

(
φ(Tn)−φ(θ)

)
−φ ′

θ

(
rn(Tn −θ)

)
→ 0 in outer probability.

Lemma 1 is at the core of our framework for deriving limit distributions. It is termed the “extended”

functional delta method as it extends the (classical) functional delta method for Hadamard differentiable

maps to directionally differentiable ones.
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While Hadamard directional differentiability is sufficient to derive limit distributions, bootstrap

consistency often requires (full) Hadamard differentiability. Recall that the map φ is Hadamard

differentiable at θ tangentially to a vector subspace D0 ¢ D if there exists a continuous linear map

φ ′
θ : D0 → E satisfying (2.3) for any h ∈D0, tn → 0 (tn ̸= 0), and hn → h in D such that θ + tnhn ∈ Θ.

The differences from Hadamard directional differentiability is that the derivative φ ′
θ must be linear and

thus the domain must be a vector subspace of D, and the sequence tn → 0 must be a generic (nonzero)

sequence converging to zero. The next lemma is useful for verifying Hadamard differentiability from

the directional one.

Lemma 2 Let φ : Θ ¢D→ E be Hadamard directionally differentiable at θ ∈ Θ with derivative φ ′
θ :

TΘ(θ)→E. If TΘ(θ) contains a subspace D0 on which φ ′
θ is linear, then φ is Hadamard differentiable

at θ tangentially to D0.

3. Unified Framework for Statistical Inference

This section develops a general framework for deriving limit distributions, bootstrap consistency,

and semiparametric efficiency bounds for regularized OT distances. We first treat the former two

aspects together, and then move on to discuss efficiency. Throughout this section, µn designates an

arbitrary random probability measure and not necessarily the empirical measure (unless explicitly stated

otherwise).

3.1. Limit distributions and bootstrap consistency

The following result is an adaptation of the extended functional delta method from Lemma 1 to the

space of probability measures, which enables directly applying it to empirical regularized OT.

Proposition 1 (Limit distributions) Consider the setting:

(Setting ») Let F be a class of Borel measurable functions on a topological space S with a

finite envelope F. For a given µ ∈ P(S), let δ be a map from P0 ¢ P(S) into a Banach space

(E,∥ · ∥E), where P0 is a convex subset such that µ ∈ P0 and
∫

Fdν < ∞ for all ν ∈ P0.

Further suppose that

(a) µn : Ω → P0 are random probability measures with values in P0 for all n ∈ N, such that there

exists a tight random variable Gµ in ℓ∞(F ) with
√

n(µn −µ)
d→ Gµ in ℓ∞(F );

(b) δ is locally Lipschitz continuous at µ with respect to ∥ ·∥∞,F , in the sense that there exist constants

ε > 0 and C < ∞ such that

∥ν −µ∥∞,F (∥ν ′−µ∥∞,F < ε =⇒ ∥δ (ν)−δ (ν ′)∥E fC∥ν −ν ′∥∞,F ;

(c) For every ν ∈ P0, the mapping t 7→ δ
(
µ + t(ν −µ)

)
is right differentiable at t = 0, and denote its

right derivative by

δ ′
µ(ν −µ) = lim

t³0

δ
(
µ + t(ν −µ)

)
−δ (µ)

t
. (3.1)
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Then (i) δ ′
µ uniquely extends to a continuous, positively homogeneous map on the tangent cone of P0

at µ:

TP0
(µ) :=

{
t(ν −µ) : ν ∈ P0, t > 0

}ℓ∞(F )
;

(ii) Gµ ∈ TP0
(µ) almost surely (a.s.); and (iii)

√
n
(
δ (µn)− δ (µ)

)
− δ ′

µ

(√
n(µn − µ)

)
→ 0 holds

in outer probability. Consequently, we have the following convergence in distribution
√

n
(
δ (µn)−

δ (µ)
) d→ δ ′

µ(Gµ).

The proof first identifies δ as a map defined on a subset of ℓ∞(F ). Formally, let τ : P0 ∋ ν 7→
( f 7→ ν( f )) ∈ ℓ∞(F ), and we identify δ with δ̄ : τP0,ε → E defined by δ̄ (τν) = δ (ν), where P0,ε =
{ν ∈ P0 : ∥ν − µ∥∞,F < ε}. The local Lipschitz condition (b) guarantees that the map δ̄ is well-

defined (indeed, without the local Lipschitz condition, δ̄ may not be well-defined as τ may fail to be

one-to-one). With this identification, we apply the extended functional delta method, Lemma 1, by

establishing Hadamard directional differentiability of δ at µ . The latter essentially follows by local

Lipschitz continuity (condition (b)) and Gâteaux directional differentiability (condition (c)). Since the

derivative δ ′
µ is a priori defined only on P0,ε −µ , we need to extend the derivative to the tangent cone

TP0
(µ), for which we need completeness of the space E; see the proof in ?? for details.

For i.i.d. data X1, . . . ,Xn ∼ µ and µn = µ̂n as the empirical measure, to apply Proposition 1 we

will: (i) find a µ-Donsker function class F such that the functional δ is locally Lipschitz w.r.t.

∥ · ∥∞,F at µ; and (ii) find the Gâteaux directional derivative (3.1). In our applications to regularized

OT, such a function class F will be chosen to contain dual potentials corresponding to a proper

class of distributions. Regularization enforces dual potentials to possess certain smoothness or low-

dimensionality properties, guaranteeing that F is indeed µ-Donsker. The dual OT formulation also

plays a crucial role in finding the Gâteaux directional derivative (3.1).

Remark 2 (On Proposition 1) We now clarify certain aspects of Proposition 1.

(Relaxed condition): When δ (µn) is well-defined, the condition that µn takes values in P0 can be

relaxed to µn ∈ P0 with inner probability approaching one.

(Data generating process): Proposition 1 does not impose any dependence conditions on the data. In

particular, it can be applied to dependent data as long as one can verify the uniform limit theorem in

Condition (a). See, e.g., [2, 3, 5, 23, 33, 53, 70] on uniform CLTs for dependent data.

(Convexity of P0): The assumption that P0 is convex can be replaced with the condition that P0 is a

convex subset of ℓ∞(F ). Namely, using the mapping τ : P0 ∋ ν 7→ ( f 7→ ν( f )) ∈ ℓ∞(F ), we only need

that τP0 = {τν : ν ∈ P0} ¢ ℓ∞(F ) is convex. Condition (c) then should read that t 7→ δ̄ ((1− t)τµ +
tτν) is differentiable from the right at t = 0 with derivative δ ′

µ(µ − ν) = limt³0 t−1
{

δ̄ ((1− t)τµ +

tτν)− δ̄ (τµ)
}

, where δ̄ (τν) = δ (ν). This modification is needed to cover the two-sample setting; see,

e.g., the proof of Theorem 1 Part (ii).

3.1.1. Bootstrap consistency

In applications of Proposition 1, the obtained limit distribution is often non-pivotal in the sense that it

depends on the population distribution µ , which is unknown in practice. To circumvent the difficulty of

estimating the distribution of δ ′
µ(Gµ) directly, one may apply the bootstrap. When F is µ-Donsker and

µn = µ̂n is the empirical distribution of i.i.d. data from µ , then the bootstrap (applied to the functional
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δ ) is consistent for estimating the distribution of δ ′
µ(Gµ) provided that the map ν 7→ δ (ν) is Hadamard

differentiable w.r.t. ∥ · ∥∞,F at ν = µ tangentially to a subspace of ℓ∞(F ) that contains the support of

Gµ ; cf. Theorem 23.9 in [93] or Theorem 3.9.11 in [94]. The following corollary is useful for invoking

such theorems under the setting of Proposition 1.

Corollary 1 (Bootstrap consistency via Hadamard differentiability) Consider the setting of

Proposition 1. If, in addition, Gµ is a mean-zero Gaussian variable in ℓ∞(F ), then spt(Gµ) is a vector

subspace of ℓ∞(F ). If further δ ′
µ is linear on spt(Gµ), then ν 7→ δ (ν) is Hadamard differentiable w.r.t.

∥ · ∥∞,F at ν = µ tangentially to spt(Gµ).

In general, when the functional is Hadamard directionally differentiable with a nonlinear derivative,

the bootstrap fails to be consistent; cf. [34, 36]. An alternative way to estimate the limit distribution

in such cases is to use subsampling or the “m-out-of-n” bootstrap [34, 74]; see Lemma 3 for the max-

slicing case.

3.2. Semiparametric efficiency

In Proposition 1, if δ ′
µ is linear and Gµ is mean-zero Gaussian, then the limit distribution δ ′

µ(Gµ)
is mean-zero Gaussian as well. In such cases, it is natural to ask if the plug-in estimator δ (µn) is

asymptotically efficient in the sense of [93, p. 367], relative to a certain tangent space. Informally,

the semiparametric efficiency bound at µ is computed as the largest Cramér-Rao lower bound among

one-dimensional submodels passing through µ .

Formally, consider estimating a functional κ : P ¢ P(S) → R at µ ∈ P from i.i.d. data

X1, . . . ,Xn ∼ µ . We consider submodels {µt : 0 f t < ε ′} with µ0 = µ such that, for some measurable

score function h : S → R, we have

∫ [
dµ

1/2
t −dµ1/2

t
− 1

2
hdµ1/2

]2

→ 0,

where dµt and dµ are Radon-Nikodym densities w.r.t. a common dominating measure and the

integration is taken w.r.t. the dominating measure. Score functions are square integrable w.r.t. µ and µ-

mean zero. A tangent set Ṗµ ¢ L2(µ) of the model P at µ is the set of score functions corresponding

to a collection of such submodels. If Ṗµ is a vector subspace of L2(µ), then it is called a tangent space.

Relative to a given tangent set Ṗµ , the functional κ : P → R is called differentiable at µ if there exists

a continuous linear functional κ̇µ : L2(µ)→ R such that, for every h ∈ Ṗµ and a submodel t 7→ µt with

score function h,
κ(µt)−κ(µ)

t
→ κ̇µ h, t ³ 0.

The semiparametric efficiency bound for estimating κ at µ , relative to Ṗµ , is defined as

σ2
κ,µ = sup

h∈lin(Ṗµ )

(κ̇µ h)2

∥h∥2
L2(µ)

,

where lin(Ṗµ) is the linear span of Ṗµ . In particular, the N(0,σ2
κ,µ) distribution serves as the “optimal”

limit distribution for estimating κ at µ in the sense of the Hájek-Le Cam convolution theorem and also

in the local asymptotic minimax sense; see Chapter 25 in [93] for details.
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The next proposition concerns the computation of the semiparametric efficiency bound.

Proposition 2 (Semiparametric efficiency) For Setting » from Proposition 1 with E = R, consider

estimating δ : P0 → R at µ from i.i.d. data X1, . . . ,Xn ∼ µ . Set

Ṗ0,µ = {h : h : S → R is bounded and measurable with µ-mean zero}.

Suppose that (a) the function class F is µ-pre-Gaussian, i.e., there exists a tight mean-zero Gaussian

process Gµ =
(
Gµ( f )

)
f∈F

in ℓ∞(F ) with covariance function Cov
(
Gµ( f ),Gµ(g)

)
= Covµ( f ,g); (b)

for every h ∈ Ṗ0,µ , (1+ th)µ ∈ P0 for sufficiently small t > 0; and (c) there exists a continuous linear

functional δ ′
µ : ℓ∞(F )→ R such that (3.1) holds for every ν ∈ P0 of the form ν = (1+h)µ for some

h ∈ Ṗ0,µ . Then, the semiparametric efficiency bound for estimating δ at µ relative to the tangent space

Ṗ0,µ agrees with Var
(
δ ′

µ(Gµ)
)
.

Proposition 2 can be thought of as a variant of Theorem 3.1 in [91], which asserts that a Hadamard

differentiable functional (tangentially to a sufficiently large subspace) of an asymptotically efficient

estimator is again asymptotically efficient; see Remark ?? for more details. In ??, we provide a

direct and self-contained proof of Proposition 2. We note that Proposition 2 covers a slightly more

general situation than [91, Theorem 3.1] since it only requires Gâteaux differentiability of the map

δ , and choosing a pre-Gaussian function class F in such a way that the derivative δ ′
µ extends to a

continuous linear functional on ℓ∞(F ). In particular, the efficiency bound computation in Proposition 2

is applicable even when Proposition 1 is difficult to apply. For instance, when the Gâteaux derivative δ ′
µ

in (3.1) is a point evaluation, δ ′
µ(ν − µ) = (ν − µ)( f ⋆) for some function f ⋆ ∈ L2(µ), we can choose

F = { f ⋆} (singleton) and apply Proposition 2 to conclude that Varµ( f ⋆) agrees with the semiparametric

efficiency bound, relative to Ṗ0,µ (note that the function class F in Proposition 2 need not be the same

as the one in Proposition 1).

The following corollary covers the two-sample case. Define Ṗ0,ν analogously to Ṗ0,µ and set

Ṗ0,µ ·Ṗ0,ν = {h1 ·h2 : h1 ∈ Ṗ0,µ ,h2 ∈ Ṗ0,ν}.

Corollary 2 (Semiparametric efficiency in two-sample setting) Let F be a class of Borel measurable

functions on a topological space S with finite envelope F, and for given µ,ν ∈ P(S), let P0,µ ,P0,ν

be subsets of P(S) containing µ,ν , respectively, such that
∫

Fdρ < ∞ for all ρ ∈ P0,µ ∪P0,ν . Let

P0,µ ¹P0,ν = {ρ1 ¹ρ2 : ρ1 ∈ P0,µ ,ρ2 ∈ P0,ν}. Consider estimating δ : P0,µ ¹P0,ν → R at µ ¹ν
from i.i.d. data (X1,Y1), . . . ,(Xn,Yn) ∼ µ ¹ ν . Suppose that (a) the function class F is pre-Gaussian

w.r.t. µ and ν; (b) for every h1 · h2 ∈ Ṗ0,µ · Ṗ0,ν ,
(
(1+ th1)µ

)
¹
(
(1+ th2)ν

)
∈ P0,µ ¹P0,ν for

sufficiently small t > 0; (c) there exist continuous linear functionals δ ′
µ : ℓ∞(F )→ R and δ ′

ν : ℓ∞(F )→
R such that t−1

{
δ
((
(1+ th1)µ

)
¹
(
(1+ th2)ν

))
−δ (µ ¹ν)

}
→ δ ′

µ(h1µ)+δ ′
ν(h2ν) as t ³ 0 for every

h1 ·h2 ∈ Ṗ0,µ ·Ṗ0,ν . Then, the semiparametric efficiency bound for estimating δ at µ ¹ν relative to

the tangent space Ṗ0,µ ·Ṗ0,ν agrees with Var
(
δ ′

µ(Gµ)
)
+Var

(
δ ′

µ(Gν)
)
, where Gµ and Gν are tight

µ- and ν-Brownian bridges in ℓ∞(F ), respectively.

Remark 3 (Efficiency of wavelet-based estimator of W2) Theorem 18 in [58] establishes a CLT for a

wavelet-based estimator W2(µ̃n,ν) for W2(µ,ν) in the one-sample case under high-level assumptions

that include global regularity of the OT potential ϕ . Their result reads as
√

n
(
W2

2(µ̃n,ν)−W2
2(µ,ν)

) d→
N
(
0,Varµ(ϕ)

)
. Their proof first establishes a CLT for the expectation centering (similarly to [24]) and
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then shows that the bias is negligible. To obtain the same result via Proposition 1, one would have to

assume a uniform bound on the Hölder norm of OT potentials corresponding to a local neighborhood of

µ . Unfortunately, such uniform bounds on global regularity of OT potentials are currently unavailable,

except for a few limited cases (cf. the discussion after Theorem 3 in [58]). For instance, when the

marginals are defined on the flat torus and admit sufficiently smooth densities that are bounded away

from 0 and ∞, Theorem 5 in [58] provides such a bound, rendering Proposition 1 applicable. Moreover,

in the setting of Theorem 18 in [58], it is readily verified that ρ 7→W2(ρ,ν) is Gâteaux differentiable

at µ with derivative (ρ − µ)(ϕ) (cf. the proof of Lemma ??), so Varµ(ϕ) indeed coincides with the

semiparametric efficiency bound.

4. Sliced Wasserstein distances

This section studies statistical aspects of sliced Wasserstein distances, deriving limit distributions,

bootstrap consistency, and semiparametric efficiency.

4.1. Background

Average- and max-sliced Wasserstein distances are defined next.

Definition 2 (Sliced Wasserstein distances) Let 1 f p < ∞. The average-sliced and max-sliced p-

Wasserstein distances between µ,ν ∈ Pp(R
d) are defined, respectively, as

Wp(µ,ν) :=

[∫

Sd−1
Wp

p(p
θ
q µ,pθ

q ν)dσ(θ)

]1/p

and Wp(µ,ν) := max
θ∈Sd−1

Wp(p
θ
q µ,pθ

q ν),

where pθ : Rd → R is the projection map x 7→ θ⊺x, σ is the uniform distribution on the unit sphere

Sd−1 := {x ∈ Rd : ∥x∥= 1}, and pθ
q µ := µ ◦ (pθ )−1 is the pushforward of µ under pθ .

The sliced distances Wp and Wp are metrics on Pp(R
d) and, in fact, induce the same topology

as Wp [6]. Sliced Wasserstein distances are efficiently computable using the closed-form expression

for Wp between distributions on R using quantile functions. For µ ∈ P(Rd) and θ ∈ Sd−1, denote by

Fµ(· ;θ) and F−1
µ (· ;θ) the distribution and quantile functions of pθ

q µ , respectively, i.e.,

Fµ(t;θ) = µ
(
{x ∈ R

d : θ⊺x f t}
)

and F−1
µ (τ;θ) = inf{t ∈ R : Fµ(t;θ)g τ}.

Then, Wp(p
θ
q µ,pθ

q ν) equals the Lp-norm between the corresponding quantile functions,

Wp
p(p

θ
q µ,pθ

q ν) =
∫ 1

0

∣∣F−1
µ (τ;θ)−F−1

ν (τ;θ)
∣∣p

dτ,

which further simplifies for p = 1 to the L1 distance between the corresponding distribution functions.

Also, sliced Wasserstein distances between projected empirical distributions is readily computed

using order statistics. Let µ̂n := n−1 ∑i=1 δXi
and ν̂n := n−1 ∑i=1 δYi

be the empirical distributions

of X1, . . . ,Xn and Y1, . . . ,Yn. For each θ ∈ Sd−1, let Xi(θ) = θ⊺Xi, and let X(1)(θ) f ·· · f X(n)(θ)
be the order statistics. Define Y(1)(θ) f ·· · f Y(n)(θ) analogously. By Lemma 4.2 in [13], we have

W
p
p(p

θ
q µ̂n,p

θ
q ν̂n) =

1
n ∑

n
i=1

∣∣X(i)(θ)−Y(i)(θ)
∣∣p

. The sliced distances Wp and Wp can be computed by

integrating or maximizing the above over θ ∈ Sd−1.



STATISTICAL INFERENCE WITH REGULARIZED OPTIMAL TRANSPORT 11

4.1.1. Literature review

Sliced Wasserstein distances have been applied to various statistical inference and machine learning

tasks, including barycenter computation [75], generative modeling [31, 32, 66, 67], and autoencoders

[51]. The statistical literature on sliced distances mostly focused on expected value analysis.

Specifically, [69] show that if µ satisfies a Tq(σ
2) inequality with q ∈ [1,2], then E

[
Wp(µ̂n,µ)

]
≲

σ
(
n−1/(2p) + n(1/q−1/p)+

√
(d logn)/n

)
up to a constant that depends only on p. Further results on

empirical convergence rates can be found in [55], where both Wp and Wp were treated, while replacing

the transport inequality assumption of [69] with exponential moment bounds (via Bernstein’s tail

conditions) or Poincaré type inequalities. A limit distribution result for one-sample sliced W1 was

mentioned in [67] but was left as an unproven assumption. Extensions to sliced Wp and two-sample

results, all of which are crucial for principled statistical inference, are currently open. Consistency of

the bootstrap and efficiency bounds are also unaccounted for by the existing literature.2

4.2. Statistical analysis

We move on to the statistical aspects of sliced Wp, closing the aforementioned gaps. The p > 1 case is

treated under the general framework of Section 3 for compactly supported distributions. For p = 1, we

present a separate derivation that leverages its simplified form to obtain the results under mild moment

assumptions.

4.2.1. Order p > 1

The next theorem characterizes limit distributions for average-sliced p-Wasserstein distances under both

the one- and two-sample settings. It also states asymptotic efficiency of the empirical plug-in estimator,

and consistency of the bootstrap. The latter facilitates statistical inference by providing a tractable

estimate of the limiting distribution, and is set up as follows. Given the data X1, . . . ,Xn, let XB
1 , . . . ,X

B
n

be an independent sample from µ̂n, and set µ̂B
n := n−1 ∑

n
i=1 δXB

i
as the bootstrap empirical distribution.

Define ν̂B
n analogously and let PB denote the conditional probability given the data.

Theorem 1 (Limit distribution, efficiency, and bootstrap consistency for Wp
p) Let 1 < p < ∞, and

suppose that µ,ν are compactly supported, such that µ is absolutely continuous and spt(µ) is convex.

For every θ ∈ Sd−1, let ϕθ be an OT potential from pθ
q µ to pθ

q ν for Wp, which is unique up to additive

constants on int(spt(pθ
q µ)). Also, set ψθ = [ϕθ ]c as the c-transform of ϕθ for c(s, t) = |s− t|p. The

following hold.

(i) We have
√

n
(
Wp

p(µ̂n,ν)−Wp
p(µ,ν)

) d→ N
(
0,v2

p

)
,

where v2
p =

∫∫
Covµ

(
ϕθ ◦ pθ ,ϕϑ ◦ pϑ

)
dσ(θ)dσ(ϑ), which is well-defined under the current

assumption. The asymptotic variance v2
p coincides with the semiparametric efficiency bound for

2 After the first version of the present paper was posted on the arXiv, we became aware that the latest update of [59] (arXiv

update: April 4, 2022) contains limit distribution and bootstrap results for Wp with p > 1 under the alternative. Our work is

independent of [59] and our approach is distinct; see Remark 5. After our paper was posted, [100] proved similar results to ours

for W1 and W1 under a similar set of assumptions to us (see Remark 8 for details) and [99] derived limit distributions for p > 1

uniformly in the slicing direction under the assumption of compact support and uniqueness of optimal potentials, but did not cover

the max-slicing case in full generality. Neither of these works addressed asymptotic efficiency.
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estimating Wp
p(·,ν) at µ . Also, provided that v2

p > 0, we have

sup
t∈R

∣∣∣PB
(√

n
(
Wp

p(µ̂
B
n ,ν)−Wp

p(µ̂n,ν)
)
f t

)
−P

(
N(0,v2

p)f t
)∣∣∣ P→ 0.

(ii) If in addition ν is absolutely continuous with convex support, then

√
n
(
Wp

p(µ̂n, ν̂n)−Wp
p(µ,ν)

) d→ N
(
0,v2

p +w2
p

)
,

where v2
p is given in (i) and w2

p =
∫∫

Covν

(
ψθ ◦pθ ,ψϑ ◦pϑ

)
dσ(θ)dσ(ϑ). The asymptotic variance

v2
p +w2

p coincides with the semiparametric efficiency bound for estimating Wp
p(·, ·) at (µ,ν). Also,

provided that v2
p +w2

p > 0, we have

sup
t∈R

∣∣∣PB
(√

n
(
Wp

p(µ̂
B
n , ν̂

B
n )−Wp

p(µ̂n, ν̂n)
)
f t

)
−P

(
N(0,v2

p +w2
p)f t

)∣∣∣ P→ 0.

The derivation of the limit distributions in Theorem 1 follows from Proposition 1. We outline the

main idea for the one-sample case. The functional of interest is set as the pth power of the average-sliced

p-Wasserstein distance. Leveraging compactness of supports, we then show that Wp
p is Lipschitz w.r.t.

W1 (cf. Lemma ??). From the Kantorovich-Rubinstein duality, W1 can be expressed as W1(µ,ν) =
∥µ −ν∥∞,F with F = {ϕ ◦pθ : θ ∈ Sd−1,ϕ ∈ Lip1,0(R)}, which is shown to be µ-Donsker (Lip1,0(R)
denotes the class of 1-Lipschitz functions ϕ on R with ϕ(0) = 0). Evaluating the Gâteaux directional

derivative of the sliced distance, we have all the conditions needed to invoke Proposition 1, which in

turn yields the distributional limits. For Wp, the corresponding derivative turns out to be linear (in a

suitable sense), so that asymptotic efficiency of the plug-in estimator and the bootstrap consistency

follow from Proposition 2 and Corollary 1 combined with Theorem 23.9 in [93].

For the two-sample case, we think of Wp(µ,ν) as a functional of the product measure µ ¹ ν , as

the correspondence between (µ,ν) and µ ¹ ν is one-to-one. With this identification, the rest of the

argument is analogous to the one-sample case. We note that in the two-sample case, the semiparametric

efficiency bound is defined relative to the tangent space

{
h1 ·h2 : h1 and h2 are bounded measurable functions with µ(h1) = ν(h2) = 0

}
.

This convention is adopted throughout when discussing semiparametric efficiency bounds in the two-

sample case.

The asymptotic variances in Theorem 1 involve potentials between all slices of the marginal

distributions, so direct estimation of the asymptotic variances seems highly nontrivial from a

computational standpoint. Hence, the bootstrap offers a particularly appealing alternative for estimating

the sampling distributions of empirical sliced Wasserstein distances.

Remark 4 (Removing pth power) While Theorem 1 states limit distributions for the pth power of

Wp, we can readily obtain corresponding results for the average-sliced p-Wasserstein distance itself by

invoking the delta method for the map s 7→ s1/p.
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Remark 5 (Comparison with [59]) Theorem 4 in [59] derives limit distributions and bootstrap

consistency for empirical Wp under the alternative, subject to the assumption that the projected

densities { fµ(·;θ)}θ∈Sd−1 and { fν(·;θ)}θ∈Sd−1 are uniformly integrable with

sup
θ∈Sd−1

esssup0<u<1

1

fµ(F
−1
ν (t;θ);θ)

( 1

fν(F
−1
ν (t;θ);θ)

< ∞.

Here fµ(·;θ) and F−1
µ (·;θ) are the (Lebesgue) density and quantile function of pθ

q µ , and their

composition is the so-called I-function; cf. [13, Equation (5.2)]. Verification of this condition for

given distributions seems nontrivial. The proof of [59, Theorem 4] exploits the quantile function

representation of Wp in d = 1 along with a linearization step (of quantile functions). Our limit theorem,

on the other hand, assumes that µ has a density with compact and convex support, and employs a

markedly different proof via the general framework of Proposition 1.

We next provide one- and two-sample limit distributions for the max-sliced Wasserstein distance. In

this case, the Hadamard directional derivative is nonlinear and therefore the limit is non-Gaussian and

the nonparametric bootstrap is inconsistent (cf. [34, 36]).

Theorem 2 (Limit distribution for Wp) Consider the assumption of Theorem 1.

(i) Setting Sµ,ν := {θ ∈ Sd−1 : Wp(p
θ
q µ,pθ

q ν) =Wp(µ,ν)}, we have

√
n
(
W

p

p(µ̂n,ν)−W
p

p(µ,ν)
) d→ sup

θ∈Sµ,ν

Gµ(θ),

where
(
Gµ(θ)

)
θ∈Sd−1 is a centered Gaussian process with continuous paths and covariance

function Cov
(
Gµ(θ),Gµ(ϑ)

)
= Covµ

(
ϕθ ◦pθ ,ϕϑ ◦pϑ

)
, which is well-defined.

(ii) If in addition ν is also absolutely continuous with convex support, then

√
n
(
W

p

p(µ̂n, ν̂n)−W
p

p(µ,ν)
) d→ sup

θ∈Sµ,ν

[
Gµ(θ)+G

′
ν(θ)

]
, (4.1)

where
(
G′

ν(θ)
)

θ∈Sd−1 is independent of Gµ given in (i) and defined analogously.

Observe that, for µ,ν ∈ Pp(R
d), the map θ 7→ Wp(p

θ
q µ,pθ

q ν) is continuous, so the set Sµ,ν is

nonempty. The proof of Theorem 2 also relies on the general framework of Proposition 1. As in the

average case, Wp is Lipschitz w.r.t. W1. This reduces the argument to characterizing the Gâteaux

directional derivative, which requires extra work.

The nonlinearity of the Hadamard directional derivative means that the nonparametric bootstrap

is inconsistent for Wp. Nevertheless, subsampling or the m-out-of-n bootstrap can still consistently

estimate the limit law. The next lemma deals with the m-out-of-n bootstrap. Below, we say

that the bootstrap quantity SB
n converges in distribution to a nonrandom law ρ in probability if

supg∈BL1(R)

∣∣EB[g(SB
n )]−ES∼ρ [g(S)]

∣∣→ 0 in probability, where BL1(R) denotes the class of (bounded)

1-Lipschitz functions g : R → [−1,1] and EB is the conditional expectation given the sample.
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Lemma 3 Let XB
1 , . . . ,X

B
m and Y B

1 , . . . ,Y B
m be independent samples from µ̂n and ν̂n, respectively, where

m = mn → ∞ with m = o(n). Set µ̂B
m,n = m−1 ∑

m
i=1 δXB

i
and ν̂B

m,n = m−1 ∑
m
i=1 δY B

i
. Under the setting of

Theorem 1 and conditionally on the data, the sequence
√

m
(
W

p

p(µ̂
B
m,n, ν̂

B
m,n)−W

p

p(µ̂n, ν̂n)
)

converges

in distribution to the limit in (4.1), in probability.

Remark 6 (Bias of plug-in estimator for Wp and correction) In general, the limit distributions for

the max-sliced distance in Theorem 2 have positive means, which implies that empirical Wp tends to

be upward biased at the order of n−1/2. Such an upward bias commonly appears in plug-in estimation

of the maximum of a nonparametric function (cf. [19]). One may correct this bias using a precision

correction similar to [19]. Namely, define Ŵp(α) :=W
p

p(µ̂n, ν̂n)− kα/
√

n, where kα is the α-quantile

of supθ∈Sµ,ν

[
Gµ(θ)+G′

ν(θ)
]
, which can be estimated via the subsampling or the m-out-of-n bootstrap.

Provided that kα is a continuity point of the distribution function of the limit variable, this estimator

is upward α-quantile unbiased, and in particular, median unbiased when α = 1/2, meaning that

P
(
Ŵp(α)fW

p

p(µ,ν)
)
= α +o(1).

Remark 7 (Extensions) We address two possible extensions of Theorems 1 and 2.

(Null case): As ϕθ ◦pθ and ψθ ◦pθ are constant µ- and ν-a.e., respectively, for each θ ∈Sd−1, the limit

distributions in Theorems 1 and 2 degenerate to zero under the null, i.e., µ = ν . In d = 1, [26] derived

a limit distribution for W2(µ̂n,µ) using the quantile function representation of W2, which requires

several technical conditions concerning the tail of the Lebesgue density of µ . Their argument hinges

on approximating the (general) sample quantile process by the uniform quantile process, and applying

results for the latter. This argument does not directly extend to the sliced distances, as the quantile

process is indexed by the additional projection parameter θ ∈ Sd−1. Also, it seems nontrivial to find

simple conditions on µ itself under which the projected distributions pθ
# µ satisfy the conditions from

[26] for all (or uniformly over) θ ∈ Sd−1. We leave null limit distributions for Wp and Wp for future

research.

(Unbounded support): For compactly supported distributions, dual potentials are Lipschitz continuous

whose Lipschitz constants depend only on the order p and the radius of the support. This is a key result

when we apply Proposition 1 to sliced Wasserstein distances; see also the discussion after Theorem 1.

For distributions with unbounded supports, the recent work of [57] derives local Lipschitz estimates

for dual potentials under a high-level anti-concentration assumption (see the discussion around their

Lemma 11), but for empirical distributions, the local Lipschitz constants depend on the sample size n,

which hinders the application of Proposition 1 (the function class being dependent on n does not bring

any difficulty to finding error bounds but would require a very delicate argument for limit theorems). The

extension of Theorems 1 and 2 to simple moment conditions would require highly technical arguments

and hence is beyond the scope of the present paper.

4.2.2. Order p = 1

The analysis for W1 relies on the explicit expression of W1 between distributions on R as the L1 distance

between distribution functions, whereby

W1(µ,ν) =
∫

Sd−1

∫

R

|Fµ(t;θ)−Fν(t;θ)|dt dσ(θ). (4.2)
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For W1, the Kantorovich-Rubinstein duality yields

W1(µ,ν) = sup
θ∈Sd−1

sup
ϕ∈Lip1,0(R)

[∫
ϕ(θ⊺x)d(µ −ν)(x)

]
. (4.3)

Here Lip1,0(R) denotes the class of 1-Lipschitz functions ϕ on R with ϕ(0) = 0. These explicit

expressions enable us to derive a limit distribution theory for W1 and W1 under mild moment conditions,

as presented next.

To state the result, set λ as the Lebesgue measure on R and denote

sign(t) = 1(0,∞)(t)−1(−∞,0)(t).

Recall that a stochastic process
(
Y (t)

)
t∈T

indexed by a measurable space T is called measurable if

(t,ω) 7→ Y (t,ω) is jointly measurable.

Theorem 3 (Limit distribution for W1 and W1) Let ε > 0 be arbitrary.

(i) If µ ∈ P2+ε(R
d) and ν ∈ P1(R

d), then there exists a measurable, centered Gaussian process

Gµ =
(
Gµ(t,θ)

)
(t,θ)∈R×Sd−1 with paths in L1(λ ¹σ) and covariance function

Cov
(
Gµ(s,θ),Gµ(t,ϑ)

)
= µ

(
{x ∈ R

d : θ⊺x f s,ϑ⊺y f t}
)
−Fµ(s;θ)Fµ(t;ϑ), (4.4)

such that

√
n
(
W1(µ̂n,ν)−W1(µ,ν)

) d→
∫∫ [

sign(Fµ −Fν)
]
Gµ dλdσ +

∫∫

Fµ=Fν

|Gµ |dλdσ . (4.5)

(ii) If µ,ν ∈ P2+ε(R
d), then

√
n
(
W1(µ̂n, ν̂n)−W1(µ,ν)

)

d→
∫∫ [

sign(Fµ −Fν)
]
(Gµ −G′

ν)dλdσ +
∫∫

Fµ=Fν

|Gµ −G′
ν |dλdσ ,

where G′
ν is independent of Gµ given in (i) and defined analogously.

(iii) Assume µ ∈ P4+ε(R
d) and ν ∈ P1(R

d). Consider the function class

F =
{

ϕ ◦pθ : θ ∈ S
d−1,ϕ ∈ Lip1,0(R)

}
.

Then, there exists a tight µ-Brownian bridge process Gµ in ℓ∞(F ) such that

√
n
(
W1(µ̂n,ν)−W1(µ,ν)

) d→ sup
f∈Mµ,ν

Gµ( f ),

where Mµ,ν =
{

f ∈ F
µ

: µ( f − ν( f )) = W1(µ,ν)
}

and F
µ

is the completion of F for the

standard deviation pseudometric ( f ,g) 7→
√

Varµ( f −g).
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(iv) If µ,ν ∈ P4+ε(R
d), then there exists a tight ν-Brownian bridge process G′

ν in ℓ∞(F ) independent

of Gµ above such that

√
n
(
W1(µ̂n, ν̂n)−W1(µ,ν)

) d→ sup
f∈M′

µ,ν

[
Gµ( f )−G′

ν( f )
]
,

where M′
µ,ν = { f ∈ F

µ,ν
: (µ − ν)( f ) = W1(µ,ν)} and F

µ,ν
is the completion of F for the

pseudometric ( f ,g) 7→
√

Varµ( f −g)+
√

Varν( f −g).

While Theorem 1 requires distributions to have compact and convex support, Theorem 3 holds

under mild moment assumptions. The derivation for W1 uses the CLT in L1 to deduce convergence

of empirical projected distribution functions in L1(λ ¹σ). The limit distribution is then obtained via

the functional delta method by casting W1 as the L1(λ ¹σ) norm between distribution functions and

characterizing the corresponding Hadamard directional derivative. For W1, we use the Kantorovich-

Rubinstein duality in conjunction with the fact that the class of projection 1-Lipschitz functions is

Donsker under the said moment condition. In Part (iii), if µ = ν , then Mµ,ν = F
µ

, and since Gµ

has uniformly continuous paths w.r.t. the standard deviation pseudometric, the limit variable becomes

sup f∈F Gµ( f ). Likewise, in Part (iv), the limit variable becomes sup f∈F [Gµ( f )−G′
ν( f )] when µ = ν .

For W1, if the second term on the right-hand side of (4.5) is zero, then the asymptotic normality

holds. We state this result including its two-sample analogue next.

Corollary 3 (Asymptotic normality for W1) For µ ∈ P(Rd) and θ ∈ Sd−1, define l
θ
µ = supspt(pθ

q µ)

and lθ
µ = infspt(pθ

q µ). The following hold.

(i) Under the assumption of Theorem 3 Part (i), if in addition Fµ(t;θ) ̸= Fν(t;θ) for (λ ¹σ)-almost

all (t,θ) ∈
{
(s,ϑ) : s ∈ [lϑ

µ , l
ϑ
µ ],ϑ ∈ Sd−1

}
, then

√
n
(
W1(µ̂n,ν)−W1(µ,ν)

) d→ N(0,v2
1),

where v2
1 is the variance of

∫∫ [
sign(Fµ −Fν)

]
Gµ dλdσ . The asymptotic variance v2

1 agrees with the

semiparametric efficiency bound for estimating W1(·,ν) at µ .

(ii) Under the assumption of Theorem 3 Part (ii), if in addition Fµ(t;θ) ̸= Fν(t;θ) for (λ ¹σ)-almost

all (t,θ) ∈
{
(s,ϑ) : s ∈ [lϑ

µ ' lϑ
ν , l

ϑ
µ ( l

ϑ
ν ],ϑ ∈ Sd−1

}
, then

√
n
(
W1(µ̂n, ν̂n)−W1(µ,ν)

) d→ N(0,v2
1 +w2

1),

where v2
1 is as above and w2

1 is the variance of
∫∫ [

sign(Fµ −Fν)
]
G′

ν dλdσ . The asymptotic variance

v2
1 +w2

1 agrees with the semiparametric efficiency bound for estimating W1 at (µ,ν).

Finally, bootstrap consistency (as in Theorem 1) holds for both cases (i) and (ii).

As an example, the above asymptotic normality holds when the population distributions are both

Gaussian.
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Example 1 Consider µ = N(ξ1,Σ1) and ν = N(ξ2,Σ2). Then pθ
q µ = N(θ⊺ξ1,θ

⊺Σ1θ) and pθ
q µ =

N(θ⊺ξ2,θ
⊺Σ2θ). In this case, as long as ξ1 ̸= ξ2 or Σ1 ̸= Σ2, we have σ({θ : θ⊺ξ1 = θ⊺ξ2 and θ⊺Σ1θ =

θ⊺Σ2θ}) = 0, which follows from the fact that Z
∥Z∥ ∼ σ for Z ∼ N(0, Id) and Lemma 1 in [73]. Thus,

Fµ(t;θ) ̸= Fν(t;θ) for (λ ¹σ)-almost all (t,θ) ∈ R×Sd−1 and the conclusion of Corollary 3 applies.

Remark 8 (Comparison with [100]) The work [100], which appeared after our paper was posted on

the arXiv, derived limit distribution results for W1 and W1 similar to the above. For the average-slicing

in the one-sample case, they assume the slightly weaker moment condition
∫ √

P(∥X∥> t)dt < ∞,

where X ∼ µ . Their proof strategy is essentially the same as ours and the above condition is imposed to

verify a CLT for the empirical projected distribution function in L1(λ ¹σ), as stated in the beginning

of Step 1 in the proof of our Theorem 3(i). Our assumption, which requires finite (2+ ε)-th moment, is

meant to provide an elementary moment condition to guarantee the said CLT in L1(λ ¹σ), and it is not

difficult to see that the weaker (yet more high-level) condition
∫ √

P(∥X∥> t)dt < ∞ suffices for our

proof to go through; see the discussion around equation (??). For the max-slicing case (with p = 1),

[99] assume the exact same moment condition, although they do not cover the alternative case.

5. Smooth Wasserstein Distance with Compactly Supported Kernels

We study smooth Wasserstein distances with compactly supported kernels, namely, when the considered

distributions are convolved with a mollifier (also known as a bump function). Smoothing by means

of the Gaussian kernel was extensively studied before for structural and statistical properties (see

literature review below), but it remains unclear how to efficiently compute the Gaussian-smoothed

Wasserstein distance.3 Despite recent advancement in computation of continuous-to-continuous OT

between distributions with smooth densities [65, 90], these approaches cannot handle the Gaussian-

smoothed Wp since they assume compactly supported distributions.4 Furnishing a smoothed framework

that enjoys the structural and statistical virtues as the Gaussian-smoothed Wasserstein distance, while

being amenable for efficient computation via the aforementioned approaches is the main motivation of

this section. The main use case of compactly supported kernel paradigm is thus when the population

distributions are also compactly supported. For the sake of generality, we next define the distance

and provide structural properties for arbitrary µ,ν ∈ P(Rd) distributions (possibly with unbounded

support), but restrict to the compactly supported case for the statistical analysis. In ??, we provide a

thorough account of how to lift the algorithm from [90] to compute our smooth distance.

5.1. Background

To set up the smooth Wasserstein distance, we first define a smoothing kernel as follows. Let χ ∈
C∞(Rd) be any non-negative function with

∫
Rd χ(x)dx = 1 and

∫
Rd ∥x∥pχ(x)dx < ∞, for all 1 f p <

∞. Then, for any σ > 0, define χσ = σ−d χ(·/σ) ∈ C∞(Rd) and let ησ ∈ P(Rd) be a probability

measure whose (Lebesgue) density is χσ . We call ησ a smoothing kernel of parameter σ , and define

the corresponding smooth Wasserstein distance as follows.

3 While the empirical Gaussian-smoothed Wasserstein distance can be evaluated by sampling the kernel and applying

computational methods for classic Wp, this approach fails to exploit the smoothness of this framework and sacrifices the statistical

advantages pertaining to estimation and inference.
4 Convolution with a Gaussian kernel does not preserve compact support. In applications where compact support of the convolved

distributions is immaterial, the Gaussian kernel is, however, a natural choice.
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Definition 3 (Smooth Wasserstein distances) Let 1 f p < ∞ and ησ be a smoothing kernel. The

associated smooth p-Wasserstein distance between µ,ν ∈ Pp(R
d) is

Wησ
p (µ,ν) :=Wp(µ ∗ησ ,ν ∗ησ ).

Example 2 (Standard mollifier) A canonical example of a smooth compactly supported function is the

standard mollifier

χ(x) =

{
1

Cχ
exp

(
− 1

1−∥x∥2

)
if ∥x∥< 1

0 otherwise
, (5.1)

where Cχ =
∫
Rd χdλ , from which a compactly supported kernel is readily constructed. Our results,

however, are not specialized to the mollifier kernel and hold for any ησ as described above.

As reviewed next, Gaussian-smoothed Wasserstein distances, i.e., when ησ = γσ := N(0,σ2Id),
have been extensively studied for their structural and statistical properties.

5.1.1. Literature review

Gaussian-smoothed Wasserstein distances were introduced in [43] as a means to mitigate the curse of

dimensionality in empirical estimation. Indeed, [43] demonstrated that E
[
W

γσ
p (µ̂n,µ)

]
= O(n−1/2), for

p = 1,2, in arbitrary dimension provided that µ is sufficiently sub-Gaussian (cf. the recent preprint [11]

for sharp bounds on the sub-Gaussian constant for which the rate is parametric when p = 2). Structural

properties of W
γσ
1 were explored in [40], showing that it metrizes the classic Wasserstein topology

and establishing regularity in σ . These structural and statistical results were later generalized to W
γσ
p

for any p > 1 [68], and asymptotics of the smooth distance as σ → ∞ were explored [17]. Relations

between W
γσ
p and maximum mean discrepancies were studies in [101], and nonparametric mixture

model estimation under W
γσ
p was considered [47], again demonstrating scalability of error bounds with

dimension. The study of limit distributions for empirical W
γσ
p was initiated in [42] for p = 1 in the

one-sample case, extended to the two-sample setting in [78], and generalized to arbitrary p > 1 via a

non-trivial application of the functional delta method in [44]. These works also considered bootstrap

consistency and applications to minimum distance estimation and homogeneity testing. To date, a

relatively complete limit distribution theory of W
γσ
p in arbitrary dimension is available, as opposed

to the rather limited account of classic Wp.

5.2. Structural properties

We henceforth consider a compactly supported smoothing kernel ησ and adopt the shorthand Wσ
p :=

W
ησ
p . We start by revisiting structural properties previously established for the Gaussian-smoothed case

and demonstrate that they remain valid for Wσ
p .

Proposition 3 (Stability of Wσ
p ) For any 1 f p < ∞, σ > 0, and µ,ν ∈ P(Rd), we have

Wσ
p (µ,ν)fWp(µ,ν)fWσ

p (µ,ν)+2σ(Eη1
[∥X∥p])1/p.

In particular, limσ³0W
σ
p (µ,ν) =Wp(µ,ν).

The first bound is due to contractivity of Wp w.r.t. convolution. Constructing a coupling between

ρ ∈ P(Rd) and ρ ∗ ησ with total cost σ(Eη1
[∥X∥p])1/p proves the second. Since ησ is compactly
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supported, spt(η1) is contained in a ball of radius r > 0, whereby (Eη1
[∥X∥p])1/p f r which contrasts

the dimension dependent gap for Gaussian kernels; cf. [40, 68].

As the smooth distance converges to the standard distance as σ → 0, it is natural to expect that

optimal couplings converge as well. This is stated in the next proposition.

Proposition 4 (Stability of transport plans) For 1 f p < ∞, µ,ν ∈ Pp(R
d), and σk ³ 0. Let πk be an

optimal coupling for W
σk
p (µ,ν) for each k ∈ N. Then, there exists an optimal coupling π for Wp(µ,ν)

for which πk
w→ π along a subsequence.

The proof of this result follows that of Theorem 4 in [40] and [44] with only minor changes and is

hence omitted. Note that when the limiting π is unique (e.g., when p > 1 and µ has a density), then

extraction of a subsequence is not needed.

We next show that Wσ
p is indeed a metric on Pp(R

d) that induces the Wasserstein topology.

Proposition 5 (Metric and topological structure) For 1f p<∞ and σ > 0, Wσ
p is a metric on Pp(R

d)
inducing the same topology as Wp.

The proof of Proposition 5 follows by observing that the characteristic function of ησ vanishes on

at most a null set.

5.3. Statistical analysis

This section studies empirical convergence rates and limit distributions for the smooth Wasserstein

distances with compactly supported kernels and population distributions. Let X ¢ Rd be compact,

set Xσ := X +B(0,σ), and assume for simplicity that the density of ησ is positive on B(0,σ), and

identically zero on Rd \B(0,σ). For any µ ∈ P(X ), the set Xσ contains the support of the convolved

measure µ ∗ησ .

5.3.1. Limit distributions for p > 1 under the alternative

Building on the unified framework from Proposition 1, the next theorem establishes asymptotic

normality of empirical Wσ
p under the alternative. The null case and the p = 1 setting are treated in

the sequel.

Theorem 4 (Limit distributions for Wσ
p under the alternative) Set 1 < p < ∞, σ > 0, Vσ

p :=
[
Wσ

p

]p
,

and let µ,ν ∈ P(X ) be such that int(spt(µ ∗ησ )) is connected. Let ϕ be an OT potential from µ ∗ησ

to ν ∗ησ for Wp, which is unique on int(spt(µ ∗ησ )) up to additive constants. The following hold.

(i) We have
√

n
(
Vσ

p (µ̂n,ν)−Vσ
p (µ,ν)

) d→N
(
0,v2

p

)

where v2
p := Varµ(ϕ ∗ χσ ). The asymptotic variance v2

p coincides with the semiparametric effiency

bound for estimating Vσ
p (·,ν) at µ . Also, provided that v2

p > 0, we have

sup
t∈R

∣∣∣PB
(√

n
(
Vσ

p (µ̂
B
n ,ν)−Vσ

p (µ̂n,ν)
)
f t

)
−P

(
N(0,v2

p)f t
)∣∣∣ P→ 0.
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(ii) If in addition ν ∗ησ has connected support, then

√
n
(
Vσ

p (µ̂n, ν̂n)−Vσ
p (µ,ν)

) d→N
(
0,v2

p +w2
p

)
,

where v2
p is as in (i) and w2

p := Varν(ϕ
c ∗ χσ ). The asymptotic variance v2

p +w2
p coincides with the

semiparametric efficiency bound for estimating Vσ
p at (µ,ν). Also, provided that v2

p +w2
p > 0, we

have

sup
t∈R

∣∣∣PB
(√

n
(
Vσ

p (µ̂
B
n , ν̂

B
n )−Vσ

p (µ̂n, ν̂n)
)
f t

)
−P

(
N(0,v2

p +w2
p)f t

)∣∣∣ P→ 0.

The proof of Theorem 4 applies Proposition 1 to the functional ρ ∗ησ 7→ W
p
p(ρ ∗ησ ,ν ∗ησ ) for

ρ ∈ P(X ) with spt(ρ) ¢ spt(µ). To this end, we show that this functional is Lipschitz continuous

w.r.t. ∥ · ∥∞,B for the unit ball B in L2(Xσ ), which follows by duality (2.2) and uniform bounds on the

OT potentials (cf. Remark 1.13 in [95]). The differentiability result follows by adapting the Gaussian

kernel case (cf. Lemma 3.3 of [44]). To prove weak convergence of the smoothed empirical process√
n(µ̂n −µ)∗ησ in ℓ∞(B), we employ the CLT in L2(Xσ ) and use a linear isometry from L2(Xσ ) into

ℓ∞(B). Linearity of the derivative yields asymptotic efficiency and bootstrap consistency.

Remark 9 (Connectedness assumption) By ?? ahead, the condition from Theorem 4 that int(spt(µ ∗
ησ )) is connected holds whenever µ itself has connected support.

The ideas from the proof of Theorem 4 coupled with Hilbertian structure of L2(Xσ ) yield rates of

convergence in expectation for empirical Wσ
p .

Proposition 6 (Parametric rate) For 1< p<∞, σ > 0, and µ,ν ∈P(X ) with µ ̸=ν , we have

E
[∣∣Wσ

p (µ̂n,ν)−Wσ
p (µ,ν)

∣∣]f 2∥χσ∥∞

√
λ (B(0,σ))λ (Xσ )diam(Xσ )

p
[
Wσ

p (µ,ν)
]1−p

n−1/2.

5.3.2. Limit distributions for p = 2 under the null

We derive limit distributions for Wσ
2 under the null. Our approach relies on the CLT in Hilbert spaces

and is thus limited to p = 2. Let C∞
0 denote the space of infinitely differentiable, compactly supported

real functions on Rd .

Definition 4 (Sobolev spaces and their duals) The Sobolev seminorm of a differentiable function f :

Rd →R w.r.t. a reference measure µ ∈P(Rd) is denoted by ∥ f∥Ḣ1,2(µ) := ∥∇ f∥L2(µ). The homogeneous

Sobolev space is defined as the completion of C∞
0 +R with respect to ∥·∥Ḣ1,2(µ). The dual Sobolev space

Ḣ−1,2 (µ) is the topological dual of Ḣ1,2 (µ).

Definition 5 (2-Poincaré inequality) A probability measure µ ∈ P(Rd) is said to satisfy the

2-Poincaré inequality if there exists C < ∞, such that

∥ f −µ( f )∥L2(µ) fC∥∇ f∥L2(µ;Rd), f ∈C∞
0 ,

where L2(µ;Rk) is the space of Borel maps f :Rd →Rk with ∥ f∥2
L2(µ;Rk)

:=
∫
Rd∥ f∥2dµ <∞.

With these definitions in place, we state the limit distribution for Wσ
2 .
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Theorem 5 (Limit distributions for Wσ
2 under the null) Let µ ∈ P(X ) be such that µ ∗ησ satisfies

the 2-Poincaré inequality and set σ > 0. The following hold.

(i) We have √
nWσ

2 (µ̂n,µ)
d→∥Gµ∥Ḣ−1,2(µ∗ησ )

,

where
(
Gµ( f )

)
f∈Ḣ1,2(µ∗ησ )

is a centered Gaussian process with paths in Ḣ−1,2 (µ ∗ησ ) a.s. and

covariance function Cov
(
Gµ( f ),Gµ(g)

)
= Covµ( f ∗χσ ,g∗χσ ).

(ii) Additionally, if µ = ν , then

√
nWσ

2 (µ̂n, ν̂n)
d→∥Gµ −G

′
µ∥Ḣ−1,2(µ∗ησ )

,

where G′
µ is an independent copy of Gµ .

The proof of Theorem 5 follows a similar approach to the Gaussian kernel case. In contrast to

the proof of Proposition 3.1 in [44], to show weak convergence of the smoothed empirical process

in Ḣ−1,2 (µ ∗ησ ), we apply the CLT in Hilbert spaces. To this end, we first verify that the smoothed

empirical process has paths in Ḣ−1,2 (µ ∗ησ ). This step requires control of the inverse of the density

of µ ∗ησ , which decays to zero near the boundary of its support; see the proof of ??. The extension to

general 1 < p < ∞ requires a much finer analysis than provided in the proof of ??, and thus we focus

on the p = 2 case.

Remark 10 (Poincaré inequality) In Theorem 5, a sufficient condition for µ ∗ ησ to satisfy the 2-

Poincaré inequality is that both µ and ησ satisfy 2-Poincaré inequalities (see Proposition 1.1 in [97]).

The kernel can always be chosen to satisfy 2-Poincaré by simply constructing it from the standard

mollifier from Example 2. In that case, ησ is a log-concave measure (cf. [56, 81]) and hence satisfies

the 2-Poincaré inequality [12, 63].

Analogously to Proposition 6, parametric rates for empirical Wσ
2 under the null follow from

Hilbertian structure of Ḣ−1,2 (µ ∗ησ ) and the ideas from the proof of Theorem 5.

Proposition 7 (Parametric rate) For σ > 0 and µ ∈ P(X ) for which µ ∗ησ satisfies the 2-Poincaré

inequality with constant Cµ,σ , we have

E [Wσ
2 (µ̂n,µ)]f 2Cµ,σ

√
(1(∥χ2

σ∥∞)λ (Xσ )n
−1/2.

5.3.3. Limit distributions for p = 1

We now treat the limit distributions for Wσ
1 under both the null and the alternative. The Kantorovich-

Rubinstein duality for W1 enables us to do so in the absence of the additional assumptions required when

p> 1. In what follows, let Lip1,0 denote the set of 1-Lipschitz functions f on Rd with f (0)= 0 and Fσ =
{ f ∗ χσ : f ∈ Lip1,0}. Observe that Wσ

1 (µ,ν) = sup f∈Fσ
(µ − ν)( f ) by the Kantorovich-Rubinstein

duality.

Theorem 6 (Limit distributions for Wσ
1 ) Let σ > 0 and µ,ν ∈P(X ). There exist independent, tight

µ- and ν-Brownian bridge process Gµ and G′
ν in ℓ∞(Fσ ), respectively, such that:
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(i) We have

√
n
(
Wσ

1 (µ̂n,ν)−Wσ
1 (µ,ν)

) d→ sup
f∈Mσ

Gµ( f ),

where Mσ =
{

f ∈ F
µ
σ : µ

(
f − ν( f )

)
= Wσ

1 (µ,ν)
}

and F
µ
σ is the completion of Fσ for the

pseudometric ( f ,g) 7→
√

Varµ( f −g).

(ii) We have

√
n
(
Wσ

1 (µ̂n, ν̂n)−Wσ
1 (µ,ν)

) d→ sup
f∈M′

σ

[Gµ( f )−G′
ν( f )],

where M′
σ =

{
f ∈ F

µ,ν
σ : (µ − ν)( f ) = Wσ

1 (µ,ν)
}

and F
µ,ν
σ is the completion of Fσ for the

pseudometric ( f ,g) 7→
√

Varµ( f −g)+
√

Varν( f −g).

Theorem 6 follows by showing that the function class Fσ is Donsker combined with the extended

functional delta method for the supremum functional. The proof of Theorem 6 also establishes

parametric rates for empirical Wσ
1 .

Corollary 4 (Parametric rate) For σ > 0, µ ∈ P(X ), we have E
[
Wσ

1 (µ̂n,µ)
]
= O(n−1/2).

We conclude this section by referring the reader to Appendix ?? for an account of computational

aspects for smooth Wasserstein distances. There, we outline the algorithm from [90], show how to lift

it to compute Wσ
2 , and discuss limitations of that method.

6. Entropic Optimal Transport

EOT is an efficiently-computable convexification of the OT problem. The general machinery of

Proposition 1 enables deriving limit theorems for empirical EOT, generalizing previously available

statements to allow for dependent data. Our theory also provides new results on semiparametric

efficiency of empirical EOT and consistency of the bootstrap estimate.

6.1. Background

EOT regularizes OT by the Kullback-Leibler (KL) divergence as

Sε
c (µ,ν) := inf

π∈Π(µ,ν)

∫

Rd×Rd
c(x,y)dπ(x,y)+ ε DKL(π∥µ ¹ν), (6.1)

where ε > 0 and DKL(µ∥ν) :=
∫

log(dµ/dν)dµ if µ j ν and +∞ otherwise [52, 82]. We consider

the quadratic cost c(x,y) = ∥x − y∥2/2, assume that ε = 1, and use the shorthand S(µ,ν) =
S1
∥·∥2/2

(µ,ν). The assumption that ε = 1 comes without loss of generality by a rescaling argument,

since Sε
∥·∥2/2

(µ,ν) = εS(µε ,νε), where µε = fε qµ for fε(x) = ε−1/2x.
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To apply Proposition 1 to empirical EOT, we rely on the duality theory for EOT, whereby

S(µ,ν) = sup
(ϕ,ψ)∈L1(µ)×L1(ν)

∫

Rd
ϕdµ +

∫

Rd
ψdν −

∫

Rd×Rd
eϕ·ψ−cdµ ¹ν +1,

with (ϕ · ψ)(x,y) = ϕ(x) + ψ(y). Assuming µ,ν ∈ P2(R
d), the supremum is attained by a pair

(ϕ,ψ) ∈ L1(µ)×L1(ν) satisfying the so-called Schrödinger system

∫

Rd
eϕ(x)+ψ(y′)−c(x,y′)dν(y′) = 1 µ-a.e. x ∈ R

d ,

∫

Rd
eϕ(x′)+ψ(y)−c(x′,y)dµ(x′) = 1 ν-a.e. y ∈ R

d .

(6.2)

We refer to such (ϕ,ψ) as optimal EOT potentials (from µ to ν for ϕ and vice versa for ψ). Optimal

EOT potentials are unique (µ ¹ ν)-almost everywhere up to additive constants. Conversely, any

(ϕ,ψ) ∈ L1(µ)× L1(ν) that admit (6.2) are optimal EOT potentials. See Section 1 in [71] and the

references therein for details of the duality results for EOT.

6.1.1. Literature review

The entropic penalty transforms the OT linear optimization problem into a strongly convex one,

allowing efficient computation via the Sinkhorn algorithm [1, 22]. While EOT forfeits the metric

and topological structure of Wp,5 it attains fast empirical convergence in certain cases. Specifically,

empirical EOT converges as n−1/2 for smooth costs and compactly supported distributions [37], or for

the squared cost with sub-Gaussian distributions [60].

Limit distributions for EOT (and the Sinkhorn divergence) for c(x,y) = ∥x− y∥p in the discrete

support case were provided in [9, 50]. Their approach is to parameterize each marginal by a finite-

dimensional simplex vector and find the derivative of the EOT cost w.r.t. the simplex vector to apply the

standard delta method; arguably, this approach does not directly extend to general distributions. A CLT

for EOT between sub-Gaussian distribution was first derived in [60], showing asymptotic normality of√
n
(
S(µ̂n,ν)−E

[
S(µ̂n,ν)

])
and its two-sample analog using the Efron-Stein inequality similar to [24].

The main limitation of this result is that the centering term is the expected empirical EOT, which is

undesirable because it does not enable performing inference for S(µ,ν). This limitation was addressed

in the recent preprint [29], see the discussion in Remark 11. We provide here an alternative derivation

of the CLT that relies on establishing the Hadamard derivatives of the EOT cost w.r.t. the marginals

following the unified framework from Proposition 1, which automatically leads to asymptotic efficiency

of empirical EOT and consistency of the bootstrap estimate, as well as the extension for dependent

data. The Hadamard differentiability result (implicit in the proof) may be of independent interest as it

pertains to stability analysis of EOT, which has attracted growing interest in the mathematics literature

[35, 39, 61, 62, 72].

6.2. Statistical analysis

We next state the CLT, asymptotic efficiency, and bootstrap consistency for empirical EOT.

5 Indeed, e.g., Sε
c (µ,µ) ̸= 0; while this can be fixed via centering EOT to obtain the so-called Sinkhorn divergence, it is still not

a metric since it lacks the triangle inequality [9].
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Theorem 7 (CLT, efficiency, and bootstrap consistency for EOT) Suppose that µ,ν ∈ P(Rd) are

sub-Gaussian. Let (ϕ,ψ) be optimal EOT potentials for (µ,ν). Then, the following hold.

(i) We have
√

n
(
S(µ̂n,ν)− S(µ,ν)

) d→ N
(
0,v2

1

)
with v2

1 = Varµ(ϕ). The asymptotic variance v2
1

coincides with the semiparametric efficiency bound for estimating S(·,ν) at µ . Finally, provided

that v2
1 > 0, we have

sup
t∈R

∣∣∣PB
(√

n
(
S(µ̂B

n ,ν)−S(µ̂n,ν)
)
f t

)
−P

(
N(0,v2

1))f t
)∣∣∣ P→ 0.

(ii) We have
√

n
(
S(µ̂n, ν̂n)− S(µ,ν)

) d→ N
(
0,v2

1 + v2
2

)
where v2

1 is as in (i) and v2
2 = Varν(ψ). The

asymptotic variance v2
1 + v2

2 coincides with the semiparametric efficiency bound for estimating

S(·, ·) at (µ,ν). Finally, provided that v2
1 +v2

2 > 0, we have

sup
t∈R

∣∣∣PB
(√

n
(
S(µ̂B

n , ν̂
B
n )−S(µ̂n, ν̂n)

)
f t

)
−P

(
N(0,v2

1 +v2
2)f t

)∣∣∣ P→ 0.

Remark 11 (Comparison with [29]) As mentioned in Section 6.1.1, a CLT for one- and two-sample

EOT was derived in Theorem 3.6 of [29], whose proof first expands the empirical EOT cost around its

expectation and then shows that the bias is negligible. We rederive this result via a markedly different

proof technique, relying on the unified framework from Proposition 1, which automatically also implies

bootstrap consistency and asymptotic efficiency via Corollary 1 and Proposition 2, both of which were

not addressed in [29]. In addition, as Proposition 1 does not assume i.i.d. data, the above result readily

extends to dependent data, which falls outside the framework of [29]. For instance, suppose that {Xt}t∈Z

is a stationary β -mixing process with compactly supported marginal distribution µ . Then, by Theorem

1 in [33], √
n(µ̂n −µ)

d→ G in ℓ∞(Fσ ),

where Fσ is the function class given in (??) ahead with s = max{+d/2,+ 1,2} and sufficiently

large σ > 0, while G is a tight centered Gaussian process in ℓ∞(Fσ ) with covariance function

Cov
(
G( f ),G(g)

)
= ∑t∈Z Cov

(
f (X0),g(Xt)

)
. Conclude from the proof of Theorem 7 that

√
n
(
S(µ̂n,ν)−S(µ,ν)

) d→ G(ϕ)∼ N
(

0,∑t∈Z
Cov

(
ϕ(X0),ϕ(Xt)

))
.

Likewise, a CLT result holds for other forms of dependent data, such as exchangeable arrays [23].

Furthermore, for the EOT case, the corresponding Hadamard derivative is linear, so suitable dependent

bootstrap methods, such as the block bootstrap for mixing data [15] and the (extended) pigeonhole

bootstrap for exchangeable arrays [23], are consistent for the empirical EOT cost, provided that the

bootstrap processes satisfy a uniform CLT for Fσ .

7. Concluding Remarks

This work developed a unified framework for proving limit distribution results for empirical regularized

OT distances, semiparametric efficiency of the plug-in empirical estimator, and consistency of the

bootstrap. As applications, we focused on three prominent OT regularization methods—smoothing,

slicing, and entropic penalty—and provided a comprehensive statistical treatment thereof. We closed
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existing gaps in the literature (e.g., a limit distribution theory for sliced Wp) and provided several new

results concerning empirical convergence rates, asymptotic efficiency, and bootstrap consistency. In

particular, for the smooth Wasserstein distance, we explored compactly supported smoothing kernels,

which were shown to inherit the structural and statistical properties of the well-studied Gaussian-

smoothed framework. The analysis of compactly supported kernels is motivated by computational

considerations, as we demonstrated how to lift the efficient algorithm from [90] for computing W2
2

between smooth densities to the considered smooth OT distance.

Our framework is flexible and can treat a broad class of functionals, potentially well beyond the

three examples considered herein. For instance, straightforward adaptations of our arguments for

sliced Wp would yield limit distributions, efficiency, and bootstrap consistency of the projection-

robust Wasserstein distance from [55], when the projected subspace is of dimension k f 3 (indeed, the

class of projected OT potentials is still Donsker in that case). Going forward, we also plan to explore

applicability of the unified framework to empirical OT maps or certain functionals thereof (e.g., inner

product with a smooth test function).
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81. A. Saumard and J. A. Wellner. Log-concavity and strong log-concavity: a review. Stat. Surv., 8:45, 2014.
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