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Optimal transport (OT) is a versatile framework for comparing probability measures, with many
applications to statistics, machine learning, and applied mathematics. However, OT distances suffer
from computational and statistical scalability issues to high dimensions, which motivated the study
of regularized OT methods like slicing, smoothing, and entropic penalty. This work establishes a
unified framework for deriving limit distributions of empirical regularized OT distances, semiparametric
efficiency of the plug-in empirical estimator, and bootstrap consistency. We apply the unified framework
to provide a comprehensive statistical treatment of: (i) average- and max-sliced p-Wasserstein distances,
for which several gaps in existing literature are closed; (ii) smooth distances with compactly supported
kernels, the analysis of which is motivated by computational considerations; and (iii) entropic OT,
for which our method generalizes existing limit distribution results and establishes, for the first time,
efficiency and bootstrap consistency. While our focus is on these three regularized OT distances as
applications, the flexibility of the proposed framework renders it applicable to broad classes of functionals
beyond these examples.

Keywords: bootstrap consistency; entropic optimal transport; limit distribution; semiparametric
efficiency; sliced Wasserstein distance; smooth Wasserstein distance.

1. Introduction

Optimal transport (OT) theory [80, 96] provides a versatile framework for comparing probability
distributions. Introduced by Monge [64] and later formulated by Kantorovich [49], the OT problem
between two Borel probability measures i, v on RY is defined by

Te(u,v):= inf ,y)d V), 1.1
('u V) nellir(lu,v)./D?dedC(x y) 7'[,'()6 y) (1.D

where IT(u, v) is the set of couplings between u and v. The special case of the p-Wasserstein distance

for p € [1,00) is given by W, (1, V) := (TH_Hp(u,v))l/p. Thanks to an array of favorable properties,
including the Wasserstein metric structure, a convenient duality theory, robustness to support mismatch,
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and the rich geometry induced on the space of probability measures, OT and the Wasserstein distance
have seen a surge of applications in statistics, machine learning, and applied mathematics. These include
generative modeling [4, 8, 18, 45, 88], robust/adversarial machine learning (ML) [10, 98], domain
adaptation [21, 85], image recognition [54, 77, 79], vector quantile regression [16, 20, 38, 46], Bayesian
estimation [7], and causal inference [89]. Unfortunately, OT distances are generally hard to compute
and suffer from the curse of dimensionality in empirical estimation, whereby the number of samples
needed for reliable estimation grows exponentially with dimension.

These deficits have motivated the introduction of regularized OT methods that aim to alleviate
the said computational and statistical bottlenecks. Three prominent regularizations are: (1) slicing
via lower-dimensional projections [6, 14, 66, 67, 75]; (2) smoothing via convolution with a chosen
kernel [11, 17, 40, 41, 42, 43, 44, 47, 68, 78, 101]; and (3) convexification via entropic penalty
[1,22,29, 37,52, 60, 82]. These techniques preserve many properties of classic OT but avoid the curse
of dimensionality, which enables a scalable statistical theory. As reviewed below', much effort was
devoted to exploring dimension-free empirical convergence rates and limit distributions, bootstrapping,
and other statistical aspects of regularized OT, although several notable gaps in the literature remain.
Furthermore, proof techniques for such results are typically on a case-by-case basis and do not follow
a unified approach, despite evident similarities between the three regularization methods as complexity
reduction techniques of the classic OT framework.

The present paper develops a unified framework for deriving limit distributions, semiparametric
efficiency bounds, and bootstrap consistency for a broad class of functionals that, in particular,
encompasses the empirical regularized OT distances mentioned above (Section 3). As example
applications of the general framework, we explore a comprehensive treatment of the following
problems:

+ Average- and max-sliced W, (Section 4): Our limit distribution theory closes existing gaps in the
literature (e.g., a limit distribution result for sliced W, was assumed in [67] but left unproven), with
the efficiency and bootstrap consistency results providing additional constituents for valid statistical
inference.

o Smooth W, with compactly supported kernels (Section 5): Gaussian-smoothed OT was
previously shown to preserve the classic Wasserstein structure while alleviating the curse of
dimensionality. Motivated by computational considerations, herein we study smoothing with
compactly supported kernels. We explore the metric, topological, and statistical aspects previously
derived under Gaussian smoothing.

« Entropic OT (Section 6): A central limit theorem (CLT) for empirical entropic OT (EOT) was
derived [29, 60] for independent data via a markedly different proof technique than proposed herein.
Revisiting this problem using our general machinery, we rederive this CLT allowing for dependent
data, and also obtain new results on semiparametric efficiency and bootstrap consistency.

The unified limit distribution framework, stated in Proposition 1, relies on the extended functional
delta method for Hadamard directionally differentiable functionals [76, 83]. To match the delta method
with the regularized OT setup, we focus on a functional on a space of probability measures that is (a)
locally Lipschitz with respect to (w.r.t.) the sup-norm for a Donsker function class and (b) Gateaux
directionally differentiable at the population distribution. To apply this framework, we seek to: (i) set
up the regularized distance as a locally Lipschitz functional § w.r.t. || - || 7 = sup ¢ z | - |; (ii) show .7
to be Donsker to obtain convergence of the empirical process in £*°(%); (iii) characterize the Giteaux

! We postpone the literature review on each regularization method to its respective section.
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directional derivative of § at yt. For each regularized distance (sliced, smooth, and entropic), we identify
the appropriate function class .% and establish the desired Lipschitz continuity and differentiability,
relying on OT duality theory. Regularization enforces the dual potentials to possess smoothness or
low-dimensionality properties, which are leveraged to show that .# is Donsker. Of note is that our
framework does not require independent and identically distributed (i.i.d.) data and can be applied for
any estimate (not only the empirical distribution) of the population distribution, so long as the uniform
limit theorem mentioned in (ii) holds true.

As the general framework stems from the extended functional delta method, the limiting variable
of the (scaled and centered) empirical regularized distance is given by the directional derivative of
0 at the population distribution. Linearity of the derivative implies that the limit variable is centered
Gaussian. In this case, it is natural to ask whether the empirical distance attains the semiparametric
efficiency lower bound (cf. [93, Chapter 25]). Semiparametric efficiency bounds serve as analogs of
Cramér-Rao lower bounds in semiparametric estimation and account for the fundamental difficulty
of estimating functionals of interest. We show that the asymptotic variance of the empirical distance
indeed agrees with the semiparametric efficiency bound, relative to a certain tangent space. Still, even
when the limiting variable is Gaussian, direct analytic estimation of the asymptotic variance may be
nontrivial. To account for that, we explore bootstrap consistency for empirical regularized OT distances.
Altogether, the limit distribution theory, semiparametric efficiency, and bootstrap consistency provide a
comprehensive statistical account of the considered regularized OT distances.

A unifying approach of a similar flavor to ours, but for classic OT distances, was proposed in
[48]. Focusing solely on the supremum functional, they used the extended functional delta method
to derive limit distributions for classic W, with p > 2, for compactly supported distributions under
the alternative in dimensions d < 3. In comparison, our approach is more general and can treat any
functional that adheres to the aforementioned local Lipschitz continuity and differentiability. This
is crucial for analyzing regularized OT distances as some instances do not amount to a supremum
functional. For instance, average-sliced Wasserstein distances correspond to mixed L'-L* functionals,
which are not accounted for by the setup from [48]. The functional delta method was also used in
[86, 87] to derive limit distributions for OT between discrete population distributions by parametrizing
them using simplex vectors. This result was extended to semi-discrete OT in [30] by exploiting the
fact that complexity of the optimal potentials class is reduced when one of the measures is supported
on a discrete set. Another recent application can be found in [44], where this approach was leveraged
for Gaussian-smoothed W, by embedding the domain of the Wasserstein distance into a certain dual
Sobolev space.

The paper is organized as follows. Section 2 presents notation used throughout the paper and
background on Wasserstein distances and the extended functional delta method. Section 3 presents a
unified framework for deriving limit distributions, bootstrap consistency, and semiparametric efficiency
bounds for regularized OT distances. The tools developed therein will be applied to sliced Wasserstein
distances in Section 4, smooth Wasserstein distances with compactly supported kernels in Section 5,
and EOT in Section 6. Section 7 leaves some concluding remarks. Proofs for the results in Sections 2—6
are found in Appendices ??-2?.

2. Background and Preliminaries

This section collects notation used throughout the paper and sets up necessary background on
Wasserstein distances and the extended functional delta method.
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2.1. Notation

Let || - || denote the Euclidean norm and B(x, r) be the open ball with center x € R? and radius r > 0.

For a subset A of a topological space S, let A° denote the closure of A; if the space S is clear from
the context, then we simply write A for the closure. The space of Borel probability measures on S is
denoted by Z(S). When S is a normed space with norm || - ||s, we denote Z2,(S) := {u € Z(S):
Jllxl|§dp(x) < oo} for 1 < p < eo. The (topological) support of u € Z(S) is denoted as spt(u). For
any finite signed Borel measure y on S, we identify y with the linear functional f — y(f) = [ fdy. For

u € Z(S) and a p-integrable function z on S, hu denotes the signed measure hdp. Let $,i>, and

P, denote weak convergence of probability measures, convergence in distribution of random variables,
and convergence in probability, respectively. When necessary, convergence in distribution is understood
in the sense of Hoffmann-Jgrgensen (cf. Chapter 1 in [92]). For any nonempty set S, let £<(S) be the
Banach space of bounded real functions on S equipped with the sup-norm || - ||les = sup,cg| - |. For
any measure space (5,7, 1) and 1 < p < oo, let LP(u) = LP(S,.#, 1) denote the Banach space of
measurable functions f : S — R with || f{|p(u) = (/ |f|Pdu)"/P < oo, If  is o-finite and . is countably
generated, then the space is separable. For two numbers a and b, we use the notation a A b = min{a,b}
and aVV b = max{a,b}.

2.2. Wasserstein distances

The Wasserstein distance is a specific instance of the OT problem from (1.1), defined as follows.

Definition 1 (Wasserstein distance) Let 1 < p < oo, The p-th Wasserstein distance between L,V €
2,(RY) is defined as

1/p

W, (u,v) = inf | [ —y|Pd 2.1
)= ot [ eslranten] @

where TI(lL, V) is the set of couplings of |L and V.

The p-Wasserstein distance is a metric on ﬂ,,([Rd) and metrizes weak convergence plus convergence
of pth moments, i.e., W,(t,, 1) — 0 if and only if w, > u and [ |x]|Pdu,(x) — [ ||x||Pdp(x).
Wasserstein distances admit the following dual form (cf. [96, Theorem 5.9]):

WE(i,v) = sup U pdu-+ | dev}, (2.2)
peLi(u) L/R? R¢

where @°(y) = inf, ga [||lx — y||P — @(x)] is the c-transform of ¢ (for the cost c(x,y) = [lx—y||?). A
function f : RY — [—oo, o) is called c-concave if f = g¢ for some function g : R — [—oco,c0). There is
at least one c-concave ¢ € L'(u) that attains the supremum in (2.2), and we call this ¢ an OT potential
from u to v for W,. Further, when 1 < p < o and u is supported on a connected set with negligible
boundary and has a (Lebesgue) density, then the OT potential from g to v is unique on int(spt(u))
up to additive constants [28, Corollary 2.7]. Various smoothness properties of the potentials can be
established under appropriate regularity conditions on the cost and u, v—a fact that we shall leverage
in our derivations.
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Remark 1 (Literature review on W, limit distribution theory) Distributional limits of
\/ﬁ(Wﬁ(ﬂn, v) —Wh(u, v)) and its two-sample analogue for discrete WL,V under both the null © = v
and the alternative L # v were derived in [86, 87]. Similar results for general distributions are known
only in the one-dimensional case. Specifically, for p = 1,2, [25, 26] leverage the representations of
W, in d =1 as the LP norm between distribution functions (p = 1) and quantile functions (p = 2)
to derive distributional limits under the null. Limit distributions in d = 1 for p > 2 under the
alternative (U # v) were derived in [27]. In arbitrary dimension, [24] establish asymptotic normality
of \/ﬁ(W%(ﬂn,V) — [E[W%(ﬂn,v)]) under the alternative | # v by deriving an asymptotic linear
representation using the Efron-Stein inequality. This was extended to general transportation costs
satisfying certain regularity conditions in [28]. The main limitation of these results is the centering
around the expected empirical distance (and not the population one), which does not enable performing
inference for W . This gap was addressed in [58], where a CLT for \/ﬁ(W%(ﬁm V) — W% (u, v)) was
established, but for a wavelet-based estimator [i, of W (as opposed to the empirical distribution),
while assuming several technical conditions on the Lebesgue densities of W,V. As mentioned in the
introduction, [48] leverage the extended functional delta method for the supremum functional to obtain
limit distributions for W,, with p > 2, for compactly supported distributions under the alternative in
dimensions d < 3.

2.3. Extended functional delta method

Our unified framework for deriving limit distributions of empirical regularized OT distances relies on
the extended functional delta method, which we set up next. Let ®, & be normed spaces and ¢ : ® C
© — ¢ be a map. Following [76, 83], we say that ¢ is Hadamard directionally differentiable at 0 € ®
if there exists a map ¢p : o (6) — € such that

n—oo ty

for any h € Jp(0), 1, ] 0, and h, — h in D such that 6 + 1,1, € ©. Here Jp(0) is the tangent cone to
® at O defined as

To(0) = {he@ : h= lim 9nt—9 for some 6, — 0 in@andt,,iO}.

n—oo n

The tangent cone J(0) is closed, and if ® is convex, then J5(0) coincides with the closure in © of
{(—0)/t: ¥ € ®,r > 0}. The derivative ¢y is positively homogeneous and continuous but need not
be linear.

Lemma 1 (Extended functional delta method [34, 36, 76, 84]) Let ®, & be normed spaces and ¢ : © C
D — € be a map that is Hadamard directionally differentiable at 6 € © with derivative ¢p : To(0) —

€. Let T, : Q — O be maps such that r,(T, — 0) i> T for some r, — o and Borel measurable map

T : Q — D with values in Jo(0). Then, r,(¢(T,) — ¢(0)) 4 0¢(T). Further, if © is convex, then we
have ry (§(T,,) — ¢(6)) — ¢4 (ra(T, — 6)) — O in outer probability.

Lemma 1 is at the core of our framework for deriving limit distributions. It is termed the “extended”
functional delta method as it extends the (classical) functional delta method for Hadamard differentiable
maps to directionally differentiable ones.
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While Hadamard directional differentiability is sufficient to derive limit distributions, bootstrap
consistency often requires (full) Hadamard differentiability. Recall that the map ¢ is Hadamard
differentiable at 0 tangentially to a vector subspace Do C D if there exists a continuous linear map
0y : Do — € satisfying (2.3) for any h € Dy, t, — 0 (t, # 0), and h, — h in D such that 6 +1,h, € O.
The differences from Hadamard directional differentiability is that the derivative ¢, must be linear and
thus the domain must be a vector subspace of ©, and the sequence #, — 0 must be a generic (nonzero)
sequence converging to zero. The next lemma is useful for verifying Hadamard differentiability from
the directional one.

Lemma2 Let ¢ :® C D — € be Hadamard directionally differentiable at 6 € © with derivative ¢y :
To(0) — €. If To(0) contains a subspace Dg on which ¢y is linear, then ¢ is Hadamard differentiable
at 0 tangentially to .

3. Unified Framework for Statistical Inference

This section develops a general framework for deriving limit distributions, bootstrap consistency,
and semiparametric efficiency bounds for regularized OT distances. We first treat the former two
aspects together, and then move on to discuss efficiency. Throughout this section, u, designates an
arbitrary random probability measure and not necessarily the empirical measure (unless explicitly stated
otherwise).

3.1. Limit distributions and bootstrap consistency

The following result is an adaptation of the extended functional delta method from Lemma 1 to the
space of probability measures, which enables directly applying it to empirical regularized OT.

Proposition 1 (Limit distributions) Consider the setting:

(Setting ®) Let .F be a class of Borel measurable functions on a topological space S with a
finite envelope F. For a given L € P(S), let 0 be a map from Py C P(S) into a Banach space
(& |- le), where Py is a convex subset such that . € Py and [ Fdv < e for all v € P

Further suppose that

(a) Wy :Q— Py are random probability measures with values in P for all n € N, such that there
exists a tight random variable G, in (= (.F) with \/n(u, — 1) 4 Gy inl>(F);

(b) 6 is locally Lipschitz continuous at | with respect 10 || - ||, #, in the sense that there exist constants
€ > 0and C < o such that

V= ttlleez VIV =tz <& = [[6(v)=8(V)lle <CIIV—V']w.5:

(c) Forevery v € P, the mapping t — & ([.L +t(v— [.L)) is right differentiable at t = 0, and denote its
right derivative by

6;(\/—#)zlim‘S(““("_”))—‘s(#). 3.1)

tl0 t
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Then (i) 5& uniquely extends to a continuous, positively homogeneous map on the tangent cone of ¥
at \:

(%)
Ty (1) = {t(vfl.t): VG@o,t>0} ;
(i) Gy € T, (1) almost surely (a.s.); and (iii) /n(8(w,) — 8(1)) — 8 (v/n(, — 1)) — 0 holds
in outer probability. Consequently, we have the following convergence in distribution \/n (5 (Un) —

(1) % 8,(Gy).

The proof first identifies & as a map defined on a subset of £*(.%). Formally, let T: %y > v —
(f = v(f)) € £°(F), and we identify § with § : T — € defined by §(tv) = §(V), where P, =
{ve P :||v—plws < €} The local Lipschitz condition (b) guarantees that the map & is well-
defined (indeed, without the local Lipschitz condition, § may not be well-defined as T may fail to be
one-to-one). With this identification, we apply the extended functional delta method, Lemma 1, by
establishing Hadamard directional differentiability of & at p. The latter essentially follows by local
Lipschitz continuity (condition (b)) and Géateaux directional differentiability (condition (c)). Since the
derivative 5;1 is a priori defined only on % ¢ — 11, we need to extend the derivative to the tangent cone
Tz, (1), for which we need completeness of the space &; see the proof in ?? for details.

For i.i.d. data Xi,...,X, ~ u and u, = I, as the empirical measure, to apply Proposition 1 we
will: (i) find a p-Donsker function class .% such that the functional & is locally Lipschitz w.r.t.
|| - ||,z at p; and (ii) find the Gateaux directional derivative (3.1). In our applications to regularized
OT, such a function class .# will be chosen to contain dual potentials corresponding to a proper
class of distributions. Regularization enforces dual potentials to possess certain smoothness or low-
dimensionality properties, guaranteeing that .% is indeed p-Donsker. The dual OT formulation also
plays a crucial role in finding the Gateaux directional derivative (3.1).

Remark 2 (On Proposition 1)  We now clarify certain aspects of Proposition 1.

(Relaxed condition): When O(l,) is well-defined, the condition that U, takes values in Py can be
relaxed to U, € Py with inner probability approaching one.

(Data generating process): Proposition 1 does not impose any dependence conditions on the data. In
particular, it can be applied to dependent data as long as one can verify the uniform limit theorem in
Condition (a). See, e.g., [2, 3, 5, 23, 33, 53, 70] on uniform CLTs for dependent data.

(Convexity of Py): The assumption that P is convex can be replaced with the condition that & is a
convex subset of {°(F ). Namely, using the mapping T: Py > v (f — v(f)) € £2(F), we only need
that t Py = {1v : v € Py} C L>(F) is convex. Condition (c) then should read that t — §((1 —t)Tu +
1Tv) is differentiable from the right at t = 0 with derivative & (u—Vv) = lim, ¢ {6((1—1)tu+
ttv) — () }, where 8(tv) = 8(v). This modification is needed to cover the two-sample setting; see,
e.g., the proof of Theorem 1 Part (ii).

3.1.1. Bootstrap consistency

In applications of Proposition 1, the obtained limit distribution is often non-pivotal in the sense that it
depends on the population distribution tt, which is unknown in practice. To circumvent the difficulty of
estimating the distribution of 5[1(6“) directly, one may apply the bootstrap. When .% is u-Donsker and
U, = [, is the empirical distribution of i.i.d. data from u, then the bootstrap (applied to the functional



8 GOLDFELD ET AL.

d) is consistent for estimating the distribution of J/, (G ) provided that the map v + &(v) is Hadamard
differentiable w.r.t. || - || # at v = u tangentially to a subspace of /*(.%) that contains the support of
Gy; cf. Theorem 23.9 in [93] or Theorem 3.9.11 in [94]. The following corollary is useful for invoking
such theorems under the setting of Proposition 1.

Corollary 1 (Bootstrap consistency via Hadamard differentiability) Consider the setting of
Proposition 1. If, in addition, G, is a mean-zero Gaussian variable in (. ), then spt(G,) is a vector
subspace of (=(F). If further &, is linear on spt(Gy), then v v (V) is Hadamard differentiable w.rt.
|- |lo,# at v = u tangentially to spt(Gy).

In general, when the functional is Hadamard directionally differentiable with a nonlinear derivative,
the bootstrap fails to be consistent; cf. [34, 36]. An alternative way to estimate the limit distribution
in such cases is to use subsampling or the “m-out-of-n”" bootstrap [34, 74]; see Lemma 3 for the max-
slicing case.

3.2. Semiparametric efficiency

In Proposition 1, if 6[1 is linear and Gy is mean-zero Gaussian, then the limit distribution EL(G,L)
is mean-zero Gaussian as well. In such cases, it is natural to ask if the plug-in estimator d(L,) is
asymptotically efficient in the sense of [93, p. 367], relative to a certain tangent space. Informally,
the semiparametric efficiency bound at (t is computed as the largest Cramér-Rao lower bound among
one-dimensional submodels passing through L.

Formally, consider estimating a functional x : & C Z(S) - R at p € & from i.id. data
Xi,..., Xy ~ 1. We consider submodels {g, : 0 <7 < €'} with gy = u such that, for some measurable
score function # : § — R, we have

1/2

dy,"—du'? 1 1/2 ’
—— —=hd 0
/ t K -

where dy; and du are Radon-Nikodym densities w.r.t. a common dominating measure and the
integration is taken w.r.t. the dominating measure. Score functions are square integrable w.r.t. 4 and -
mean zero. A tangent set ,@u C L*(u) of the model &2 at u is the set of score functions corresponding
to a collection of such submodels. If @“ is a vector subspace of L* (), then it is called a tangent space.
Relative to a given tangent set &7, the functional k : & — R is called differentiable at p if there exists
a continuous linear functional Ky, : L?(u) — R such that, for every h € 9’3# and a submodel ¢ — p; with
score function 4,

k() — K1)

; — kyh, 110

The semiparametric efficiency bound for estimating x at u, relative to 52,1, is defined as

kyh)?
2= sup el

2 )
helin(2y) Hh”sz)
where lin(@u) is the linear span of 9#. In particular, the N (0, G,i ,) distribution serves as the “optimal”
limit distribution for estimating x at u in the sense of the Hijek-Le Cam convolution theorem and also
in the local asymptotic minimax sense; see Chapter 25 in [93] for details.
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The next proposition concerns the computation of the semiparametric efficiency bound.

Proposition 2 (Semiparametric efficiency) For Setting ® from Proposition 1 with € = R, consider
estimating 8 : Py — R at U from i.i.d. data X1, ..., X, ~ W. Set

Pou={h: h:S— Ris bounded and measurable with [L-mean zero}.

Suppose that (a) the function class F is |W-pre-Gaussian, i.e., there exists a tight mean-zero Gaussian
process Gy = (G (f))fef/" in (= (F) with covariance function Cov(Gy(f),Gu(g)) = Covyu(f,8); (b)

foreveryh € 3207“, (1+th)u € Py for sufficiently small t > 0; and (c) there exists a continuous linear
functional &), : £*(F) — R such that (3.1) holds for every v € 2 of the form v = (1+h)u for some

he 370#. Then, the semiparametric efficiency bound for estimating 0 at | relative to the tangent space
Po.u agrees with Var (8}, (Gy,)).

Proposition 2 can be thought of as a variant of Theorem 3.1 in [91], which asserts that a Hadamard
differentiable functional (tangentially to a sufficiently large subspace) of an asymptotically efficient
estimator is again asymptotically efficient; see Remark ?? for more details. In ??, we provide a
direct and self-contained proof of Proposition 2. We note that Proposition 2 covers a slightly more
general situation than [91, Theorem 3.1] since it only requires Gateaux differentiability of the map
6, and choosing a pre-Gaussian function class .% in such a way that the derivative 5& extends to a
continuous linear functional on ¢ (.% ). In particular, the efficiency bound computation in Proposition 2
is applicable even when Proposition 1 is difficult to apply. For instance, when the Gateaux derivative 5"1
in (3.1) is a point evaluation, 8, (v —u) = (v — u)(f*) for some function f* € L?(u), we can choose
# ={f*} (singleton) and apply Proposition 2 to conclude that Var, (f*) agrees with the semiparametric
efficiency bound, relative to %, (note that the function class .% in Proposition 2 need not be the same
as the one in Proposition 1).

~ The following corollary covers the two-sample case. Define Qo,v analogously to @07“ and set
920’” D @0’\/ = {h] ®hy:h € @0’”7]12 S e@o,v}.

Corollary 2 (Semiparametric efficiency in two-sample setting) Let & be a class of Borel measurable
functions on a topological space S with finite envelope F, and for given 1,v € Z(S), let Po i, Po.v
be subsets of 2 (S) containing W, v, respectively, such that [ Fdp < oo for all p € Py, U Pyy. Let
Pou®@ Poy={p1@p2:p1 € Poyu,p2 € Poy}. Consider estimating & : Py & Poy — Rat u@v
Sfrom i.id. data (X1,11),...,(Xn,Yn) ~ UL ® V. Suppose that (a) the function class F is pre-Gaussian
w.rt. W and v; (b) for every hy ® hy € 3207” ® Py, ((l —th)/.t) ® ((1 +th2)v) € Pou @ Py for
sufficiently small t > 0; (c) there exist continuous linear functionals &), : ¢*(F) — R and &, : £=(F ) —
R such that t ' {8 (1 +th1)p) @ (1 +1th)v)) = S(u@ V) } — &) (ki) + 8, (hav) as t | 0 for every
hi&h € 320# @ 320’\,. Then, the semiparametric efficiency bound for estimating 8 at L Q v relative to
the tangent space f@o,# &) ﬁo,v agrees with Var(ﬁl’l(Gu)) + Var(5"l(Gv)), where Gy and Gy are tight
W- and v-Brownian bridges in (°(F), respectively.

Remark 3 (Efficiency of wavelet-based estimator of Wy)  Theorem 18 in [58] establishes a CLT for a
wavelet-based estimator Wy (fi,, v) for W (U, V) in the one-sample case under high-level assumptions
that include global regularity of the OT potential ¢. Their result reads as \/n(W3(fi,,v) —W3 (i, v)) 4
N (0, Var, ((p)) Their proof first establishes a CLT for the expectation centering (similarly to [24]) and
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then shows that the bias is negligible. To obtain the same result via Proposition 1, one would have to
assume a uniform bound on the Holder norm of OT potentials corresponding to a local neighborhood of
. Unfortunately, such uniform bounds on global regularity of OT potentials are currently unavailable,
except for a few limited cases (cf. the discussion after Theorem 3 in [58]). For instance, when the
marginals are defined on the flat torus and admit sufficiently smooth densities that are bounded away
from 0 and o, Theorem 5 in [58] provides such a bound, rendering Proposition 1 applicable. Moreover,
in the setting of Theorem 18 in [58], it is readily verified that p — W (p, V) is Gateaux differentiable
at u with derivative (p — l)(@) (cf. the proof of Lemma ??), so Vary (@) indeed coincides with the
semiparametric efficiency bound.

4. Sliced Wasserstein distances
This section studies statistical aspects of sliced Wasserstein distances, deriving limit distributions,
bootstrap consistency, and semiparametric efficiency.

4.1. Background

Average- and max-sliced Wasserstein distances are defined next.

Definition 2 (Sliced Wasserstein distances) Let 1 < p < oo. The average-sliced and max-sliced p-
Wasserstein distances between L,V € @p(ﬂ?d) are defined, respectively, as

1/p o
W, 00,v)i= | [, WS 8)d0(0)]| and W (aev)i= max Wy (o1 ),
where p9 : RY — R is the projection map x — 0Tx, & is the uniform distribution on the unit sphere
S4li={xeR?: ||x|| = 1}, and pf,u = po(p®) =" is the pushforward of u under p®.

The sliced distances W, and Wp are metrics on @p(Rd) and, in fact, induce the same topology
as W, [6]. Sliced Wasserstein distances are efficiently computable using the closed-form expression
for W, between distributions on R using quantile functions. For u € 2(R4) and 6 € 5?1, denote by
Fu(-;6) and F/ 1(-;0) the distribution and quantile functions of pf U, respectively, i.e.,

Fu(t:0)=p({xeR?:07x<t}) and Fu_l( 0) =inf{t € R: Fy(t;0) > t}.

Then, W,,(p? u, pé’ v) equals the L”-norm between the corresponding quantile functions,
WA (pd . pfv) /|F (1:0) —F, '(1;0)|"dr,

which further simplifies for p = 1 to the L' distance between the corresponding distribution functions.
Also, sliced Wasserstein distances between projected empirical distributions is readily computed
using order statistics. Let fl, :=n~'Y,_, 8, and ¥, := n"'Y,_; &, be the empirical distributions

of Xi,...,X, and Y1,....Y,. For each 6 € 7!, let X;(0) = 07X;, and let X(;)(6) < --- < X,,)(6)
be the order statistics. Deﬁne Y( )(6) - < ¥(,(8) analogously. By Lemma 4.2 in [13], we have
Wﬁ(pfﬂn,p’?f/n) =1y |X4(8) — Y (6 |p. The sliced distances W, and W), can be computed by

integrating or maximizing the above over € 541,



STATISTICAL INFERENCE WITH REGULARIZED OPTIMAL TRANSPORT 11

4.1.1. Literature review

Sliced Wasserstein distances have been applied to various statistical inference and machine learning
tasks, including barycenter computation [75], generative modeling [31, 32, 66, 67], and autoencoders
[51]. The statistical literature on sliced distances mostly focused on expected value analysis.
Specifically, [69] show that if u satisfies a T,(0?) inequality with g € [1,2], then E[W,,(f,, )] <
o (n=1/) 4+ p1/a=1/P)+ | /(dlogn)/n) up to a constant that depends only on p. Further results on
empirical convergence rates can be found in [55], where both W, and Wp were treated, while replacing
the transport inequality assumption of [69] with exponential moment bounds (via Bernstein’s tail
conditions) or Poincaré type inequalities. A limit distribution result for one-sample sliced W; was
mentioned in [67] but was left as an unproven assumption. Extensions to sliced W, and two-sample
results, all of which are crucial for principled statistical inference, are currently open. Consistency of
the bootstrap and efficiency bounds are also unaccounted for by the existing literature.’

4.2. Statistical analysis

‘We move on to the statistical aspects of sliced W, closing the aforementioned gaps. The p > 1 case is
treated under the general framework of Section 3 for compactly supported distributions. For p = 1, we
present a separate derivation that leverages its simplified form to obtain the results under mild moment
assumptions.

4.2.1. Order p > 1

The next theorem characterizes limit distributions for average-sliced p-Wasserstein distances under both
the one- and two-sample settings. It also states asymptotic efficiency of the empirical plug-in estimator,
and consistency of the bootstrap. The latter facilitates statistical inference by providing a tractable
estimate of the limiting distribution, and is set up as follows. Given the data Xi,...,X,, let XlB yee ,Xf
be an independent sample from fl,,, and set A8 :=n=1Y" | 8X,-B as the bootstrap empirical distribution.

Define 92 analogously and let P? denote the conditional probability given the data.

Theorem 1 (Limit distribution, efficiency, and bootstrap consistency for Wﬁ) Let 1 < p < oo, and
suppose that |1, v are compactly supported, such that [ is absolutely continuous and spt(lL) is convex.
For every 8 € $471 let % be an OT potential from p?u to pi?vfor W,,, which is unique up to additive
constants on int(spt(pi?p,)). Also, set w® = [@9]¢ as the c-transform of @° for c(s,t) = |s —1t|P. The
following hold.

(i) We have
V(W (R, v) = WE(,v)) 5 N (0,1),

where vlz, = [ Covy(9®op® @Y 0p?)do(0)do(V), which is well-defined under the current

2

assumption. The asymptotic variance v,

coincides with the semiparametric efficiency bound for

2 After the first version of the present paper was posted on the arXiv, we became aware that the latest update of [59] (arXiv
update: April 4, 2022) contains limit distribution and bootstrap results for W, with p > 1 under the alternative. Our work is
independent of [59] and our approach is distinct; see Remark 5. After our paper was posted, [100] proved similar results to ours
for W, and W, under a similar set of assumptions to us (see Remark 8 for details) and [99] derived limit distributions for p > 1
uniformly in the slicing direction under the assumption of compact support and uniqueness of optimal potentials, but did not cover
the max-slicing case in full generality. Neither of these works addressed asymptotic efficiency.
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estimating Wﬁ(-, V) at U. Also, provided that vf, > 0, we have

sup| P (Va(WE (RS, v) Wi (i, v)) <1) =P(N(0,13) <1)| 50,

teR

(ii) Ifin addition v is absolutely continuous with convex support, then
A A d
V(W (fin, ) = WD (1, v)) 5 N (0,75 +w7)

where vlz7 is given in (i) and wlz7 = [[ Covy (y® op® y? op¥)do(0)do (). The asymptotic variance
vlz, + wlz, coincides with the semiparametric efficiency bound for estimating W5 (-,-) at (i, V). Also,
provided that vlz, + wf, > 0, we have

sup | PP (V/a(WH(RE, ) — Wh (. 9,)) <1) = P(N(O,v2 +w2) <1)] 0.

teR

The derivation of the limit distributions in Theorem 1 follows from Proposition 1. We outline the
main idea for the one-sample case. The functional of interest is set as the pth power of the average-sliced
p-Wasserstein distance. Leveraging compactness of supports, we then show that W/ is Lipschitz w.r.t.

W (cf. Lemma ??). From the Kantorovich-Rubinstein duality, W can be expressed as Wy (u,Vv) =
[t = Vw7 with F = {@op®: 6 € 577! ¢ € Lip; o(R)}, which is shown to be yi-Donsker (Lip; o(R)
denotes the class of 1-Lipschitz functions ¢ on R with ¢(0) = 0). Evaluating the Giteaux directional
derivative of the sliced distance, we have all the conditions needed to invoke Proposition 1, which in
turn yields the distributional limits. For W, the corresponding derivative turns out to be linear (in a
suitable sense), so that asymptotic efficiency of the plug-in estimator and the bootstrap consistency
follow from Proposition 2 and Corollary 1 combined with Theorem 23.9 in [93].

For the two-sample case, we think of Wp(u, V) as a functional of the product measure it ® v, as
the correspondence between (i,Vv) and U ® v is one-to-one. With this identification, the rest of the
argument is analogous to the one-sample case. We note that in the two-sample case, the semiparametric
efficiency bound is defined relative to the tangent space

{h\ & hy : hy and hy are bounded measurable functions with (1) = v(h2) =0}.

This convention is adopted throughout when discussing semiparametric efficiency bounds in the two-
sample case.

The asymptotic variances in Theorem 1 involve potentials between all slices of the marginal
distributions, so direct estimation of the asymptotic variances seems highly nontrivial from a
computational standpoint. Hence, the bootstrap offers a particularly appealing alternative for estimating
the sampling distributions of empirical sliced Wasserstein distances.

Remark 4 (Removing pth power) While Theorem 1 states limit distributions for the pth power of
W, we can readily obtain corresponding results for the average-sliced p-Wasserstein distance itself by

invoking the delta method for the map s — s'/?.
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Remark 5 (Comparison with [59]) Theorem 4 in [59] derives limit distributions and bootstrap
consistency for empirical W, under the alternative, subject to the assumption that the projected
densities { fu(-;0)}gega—1 and {fv(-;0)}gcca-1 are uniformly integrable with

1 1
SUp  esSSUPg<y < oo,

vV
pesi_i Su(Fy'(1:0):0)  fy(Fy ! (1:6):6)

Here fy(-;0) and Fﬂ_l(-;e) are the (Lebesgue) density and quantile function of pgu, and their
composition is the so-called I-function; cf. [13, Equation (5.2)]. Verification of this condition for
given distributions seems nontrivial. The proof of [59, Theorem 4] exploits the quantile function
representation of W), in d = 1 along with a linearization step (of quantile functions). Our limit theorem,
on the other hand, assumes that |l has a density with compact and convex support, and employs a
markedly different proof via the general framework of Proposition 1.

We next provide one- and two-sample limit distributions for the max-sliced Wasserstein distance. In
this case, the Hadamard directional derivative is nonlinear and therefore the limit is non-Gaussian and
the nonparametric bootstrap is inconsistent (cf. [34, 36]).

Theorem 2 (Limit distribution for W,,) Consider the assumption of Theorem 1.

(i) Setting S,y :={0 € S4! :Wp(pgu,pgv) =W, (u,v)}, we have

V(W) (V) =Wy (i, v) % sup Gu(6),
0,y

where (Gﬂ (6)) pegd—1 18 a centered Gaussian process with continuous paths and covariance
function Cov(G(8),Gu(0)) = Covy ((p6 op?, @? opﬁ), which is well-defined.

(ii) Ifin addition v is also absolutely continuous with convex support, then

ﬁ(WZ(ﬂm%)—WZwvv))ﬁesgp [ (6)+ 6, (0)], @.1)
EGuy

where (@’\,(9)) gcgd—1 1S independent of Gy given in (i) and defined analogously.

Observe that, for p,v € 2,(R?), the map 6 — Wp(pt?u,pfv) is continuous, so the set &, y is
nonempty. The proof of Theorem 2 also relies on the general framework of Proposition 1. As in the
average case, Wp is Lipschitz w.r.t. Wj. This reduces the argument to characterizing the Gateaux
directional derivative, which requires extra work.

The nonlinearity of the Hadamard directional derivative means that the nonparametric bootstrap
is inconsistent for Wp. Nevertheless, subsampling or the m-out-of-n bootstrap can still consistently
estimate the limit law. The next lemma deals with the m-out-of-n bootstrap. Below, we say
that the bootstrap quantity SZ converges in distribution to a nonrandom law p in probability if
SUP,eBL, (R) |EB[g(S5)] — Es~p[g(S)]| — 0 in probability, where BL;(R) denotes the class of (bounded)
1-Lipschitz functions g : R — [—1,1] and 5 is the conditional expectation given the sample.
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Lemma3 Let Xf; v, XB and YlB .-, YB be independent samples from [i, and V,, respectively, where

m=my, — oo withm = o(n). Set i, =m=1Y" | 8yp and V5, =m™' Y| 8,5. Under the setting of
’ i ’ i

Theorem 1 and conditionally on the data, the sequence /m (Wﬁ(ﬂ,ﬁn, Vh ) — Wﬁ(ﬂn, Vu)) converges
in distribution to the limit in (4.1), in probability.

Remark 6 (Bias of plug-in estimator for W, and correction) In general, the limit distributions for
the max-sliced distance in Theorem 2 have positive means, which implies that empirical W,, tends to
be upward biased at the order of n= Y2, Such an upward bias commonly appears in plug-in estimation
of the maximum of a nonparametric function (cf. [19]). One may correct this bias using a precision
correction similar to [19]. Namely, define W, () := Wﬁ (ftn, V) — ko //n, where kg is the a-quantile
of supges, , (G (0)+GC,(0)], which can be estimated via the subsampling or the m-out-of-n bootstrap.
Provided that ko, is a continuity point of the distribution function of the limit variable, this estimator
is upward a-quantile unbiased, and in particular, median unbiased when o = 1/2, meaning that

P(Wp(a) < W (i, v)) = o +o(1).

Remark 7 (Extensions) We address two possible extensions of Theorems 1 and 2.

(Null case): As @ op® and w® op® are constant u- and v-a.e., respectively, for each 0 € S, the limit
distributions in Theorems | and 2 degenerate to zero under the null, i.e., Lt = V. Ind =1, [26] derived
a limit distribution for W (fl,,1t) using the quantile function representation of \W,, which requires
several technical conditions concerning the tail of the Lebesgue density of U. Their argument hinges
on approximating the (general) sample quantile process by the uniform quantile process, and applying
results for the latter. This argument does not directly extend to the sliced distances, as the quantile
process is indexed by the additional projection parameter 6 € S, Also, it seems nontrivial to find
simple conditions on W itself under which the projected distributions pg U satisfy the conditions from
[26] for all (or uniformly over) 6 € S~ We leave null limit distributions for W, and W,, for future
research.

(Unbounded support): For compactly supported distributions, dual potentials are Lipschitz continuous
whose Lipschitz constants depend only on the order p and the radius of the support. This is a key result
when we apply Proposition 1 to sliced Wasserstein distances; see also the discussion after Theorem 1.
For distributions with unbounded supports, the recent work of [57] derives local Lipschitz estimates
for dual potentials under a high-level anti-concentration assumption (see the discussion around their
Lemma 11), but for empirical distributions, the local Lipschitz constants depend on the sample size n,
which hinders the application of Proposition I (the function class being dependent on n does not bring
any difficulty to finding error bounds but would require a very delicate argument for limit theorems). The
extension of Theorems 1 and 2 to simple moment conditions would require highly technical arguments
and hence is beyond the scope of the present paper.

422, Order p=1
The analysis for W, relies on the explicit expression of W between distributions on R as the L' distance
between distribution functions, whereby

wl(y,v):/SH/[R\Fu(z;e)—Fv(t;e)|d¢da(9). 4.2)
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For W, the Kantorovich-Rubinstein duality yields

Wi(p,v)= sup  sup [ / P(0Tx)d(u—Vv)(x)] . (4.3)
0341 pcLip o(R)

Here Lip; o(R) denotes the class of 1-Lipschitz functions ¢ on R with ¢(0) = 0. These explicit

expressions enable us to derive a limit distribution theory for W, and W under mild moment conditions,
as presented next.
To state the result, set A as the Lebesgue measure on R and denote

sign(t) = 1(g.e0) (1) = Lo 0) (1)

Recall that a stochastic process (Y (t)) ;e indexed by a measurable space T is called measurable if
(t,0) — Y (¢, ) is jointly measurable.

Theorem 3 (Limit distribution for W, and W;) Let € > 0 be arbitrary.

(i) Ifu € Pre(RY) and v € P\(RY), then there exists a measurable, centered Gaussian process
Gy = (Gu(,0)) (1.6)cRxsd-1 With paths in L' (2 ® 6) and covariance function

Cov(Gu(s,0),Gu(t,0)) = pu({x e RY: 0Tx <5,0Ty <1}) — Fu(s5:0)Fu(1:9),  (44)
such that

V(W (B V) — W, (11, V) $// [sign(Fu—Fv)]G,ldldG—i—//F _ [Gulardo.  @3)

(i) Ifp,v € Prie(RY), then
\/ﬁ(W1 (B, V) — W, ([.L,V))

4 / / [sign(F — Fy)] (G — G} )dAdo + / / Gy — G, |dAdo,
Fu=Fy
where G\, is independent of Gy given in (i) and defined analogously.
(iii) Assume L € Pyie(RY) and v € 21 (R?). Consider the function class
F = {(pope 9esilpe Lipm(na)}.

Then, there exists a tight jL-Brownian bridge process G, in {*(F ) such that

V(Wi (f1n, v) = Wi (1, v)) i>fs;p Gulf),

where My, = {f € F" . u(f—=v(f) =Wi(u,v)} and F" is the completion of F for the
standard deviation pseudometric (f,g) — /Vary(f —g).
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(iv) Ifu,v € Py e(RY), then there exists a tight v-Brownian bridge process G, in {*(.F ) independent
of Gy above such that

V(W (R, %) =W (1,v)) % sup [Gu(f) — Gl(£)],

feMy .y

where M}, \, = {f € F (= v)(f) = Wi(u,v)} and F"" is the completion of F for the
pseudometric (f,g) — /Vary (f —g) + /Vary,(f — g).

While Theorem 1 requires distributions to have compact and convex support, Theorem 3 holds
under mild moment assumptions. The derivation for W, uses the CLT in L' to deduce convergence
of empirical projected distribution functions in L'(A ® ¢). The limit distribution is then obtained via
the functional delta method by casting W, as the L' (A ® ) norm between distribution functions and
characterizing the corresponding Hadamard directional derivative. For W, we use the Kantorovich-
Rubinstein duality in conjunction with the fact that the class of projection 1-Lipschitz functions is
Donsker under the said moment condition. In Part (iii), if 4 = v, then M,y = ?ﬂ, and since G
has uniformly continuous paths w.r.t. the standard deviation pseudometric, the limit variable becomes
supsc 7 Gu(f). Likewise, in Part (iv), the limit variable becomes sup s &[Gy (f) — G, (f)] when = v.

For W, if the second term on the right-hand side of (4.5) is zero, then the asymptotic normality
holds. We state this result including its two-sample analogue next.

Corollary 3 (Asymptotic normality for W,) For u € 2(RY) and 6 € $¢7!, define Zz = sup spt(pg u)
and Iy, = infspt(pf ). The following hold.
(i) Under the assumption of Theorem 3 Part (i), if in addition F,,(t;0) # Fy(t;0) for (A ® ©)-almost
all (1,0) € {(s,0) s € [13,1],0 € 411, then

V(W (s V) = W, (11,v) 5 N(0,1)),

where V3 is the variance of [[ [sign(Fy — Fy)| GudAdo. The asymptotic variance v3 agrees with the
semiparametric efficiency bound for estimating W, (-, v) at [L.
(ii)  Under the assumption of Theorem 3 Part (ii), if in addition Fy(t;0) # Fy(t;0) for (A ® o)-almost

all (1,0) € {(5,0) s € I3 ALY, T VIy], 0 € S, then

Lvotu

(1. 1 d
VAW, (B 92) = Wy (1, V) 5 NO0,F +w),

where v} is as above and w3 is the variance of [[ [sign(Fy — Fy)| G\, dAdc. The asymptotic variance

v% + W% agrees with the semiparametric efficiency bound for estimating W, at (i, v).
Finally, bootstrap consistency (as in Theorem 1) holds for both cases (i) and (ii).

As an example, the above asymptotic normality holds when the population distributions are both
Gaussian.
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Example 1 Consider p = N(§,%,) and v = N(&,%2). Then pu = N(67&;,67%160) and pfu =
N(67&,,07%,0). In this case, as long as &y # & or L1 £ X, we have ({0 : 0T =07&, and 67X, 0 =

07%,0}) = 0, which follows from the fact that ﬁ ~ o for Z ~ N(0,1;) and Lemma 1 in [73]. Thus,

Fu(t;0) # Fy(;0) for (A® 0)-almost all (t,0) € R x S~ and the conclusion of Corollary 3 applies.

Remark 8 (Comparison with [100]) The work [100], which appeared after our paper was posted on
the arXiv, derived limit distribution results for W, and W similar to the above. For the average-slicing
in the one-sample case, they assume the slightly weaker moment condition [ /P(||X|| >t)dt < oo,
where X ~ . Their proof strategy is essentially the same as ours and the above condition is imposed to
verify a CLT for the empirical projected distribution function in L' (A ® ©), as stated in the beginning
of Step 1 in the proof of our Theorem 3(i). Our assumption, which requires finite (2 + €)-th moment, is
meant to provide an elementary moment condition to guarantee the said CLT in L' (A ® &), and it is not
difficult to see that the weaker (yet more high-level) condition [ \/P(||X|| > t)dt < oo suffices for our
proof to go through; see the discussion around equation (??). For the max-slicing case (with p = 1),
[99] assume the exact same moment condition, although they do not cover the alternative case.

5. Smooth Wasserstein Distance with Compactly Supported Kernels

We study smooth Wasserstein distances with compactly supported kernels, namely, when the considered
distributions are convolved with a mollifier (also known as a bump function). Smoothing by means
of the Gaussian kernel was extensively studied before for structural and statistical properties (see
literature review below), but it remains unclear how to efficiently compute the Gaussian-smoothed
Wasserstein distance.® Despite recent advancement in computation of continuous-to-continuous OT
between distributions with smooth densities [65, 90], these approaches cannot handle the Gaussian-
smoothed W/, since they assume compactly supported distributions.* Furnishing a smoothed framework
that enjoys the structural and statistical virtues as the Gaussian-smoothed Wasserstein distance, while
being amenable for efficient computation via the aforementioned approaches is the main motivation of
this section. The main use case of compactly supported kernel paradigm is thus when the population
distributions are also compactly supported. For the sake of generality, we next define the distance
and provide structural properties for arbitrary u,v € @([Rd ) distributions (possibly with unbounded
support), but restrict to the compactly supported case for the statistical analysis. In ??, we provide a
thorough account of how to lift the algorithm from [90] to compute our smooth distance.

5.1. Background

To set up the smooth Wasserstein distance, we first define a smoothing kernel as follows. Let y €
C~(R?) be any non-negative function with [rs % (x)dx = 1 and [ga ||x||Px(x)dx < oo, for all 1 < p <
co. Then, for any ¢ > 0, define yo = 6 9x(-/0) € C*(R?) and let Ny € Z(R?) be a probability
measure whose (Lebesgue) density is Y. We call g a smoothing kernel of parameter ¢, and define
the corresponding smooth Wasserstein distance as follows.

3 While the empirical Gaussian-smoothed Wasserstein distance can be evaluated by sampling the kernel and applying
computational methods for classic W, this approach fails to exploit the smoothness of this framework and sacrifices the statistical
advantages pertaining to estimation and inference.

4 Convolution with a Gaussian kernel does not preserve compact support. In applications where compact support of the convolved
distributions is immaterial, the Gaussian kernel is, however, a natural choice.
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Definition 3 (Smooth Wasserstein distances) Let 1 < p < oo and N be a smoothing kernel. The
associated smooth p-Wasserstein distance between L,V € f@p(ﬂ?d) is

W,';"’(M,V) = Wp(ll * Mo, V*1g).

Example 2 (Standard mollifier) A canonical example of a smooth compactly supported function is the
standard mollifier

1 1 .
x(x) = {C"exp () o<t (5.1)

0 otherwise

where Cy = [ra XdA, from which a compactly supported kernel is readily constructed. Our results,
however, are not specialized to the mollifier kernel and hold for any 1ns as described above.

As reviewed next, Gaussian-smoothed Wasserstein distances, i.e., when N = Y5 := N(O0, 0'21[1),
have been extensively studied for their structural and statistical properties.

5.1.1. Literature review

Gaussian-smoothed Wasserstein distances were introduced in [43] as a means to mitigate the curse of
dimensionality in empirical estimation. Indeed, [43] demonstrated that E[W}° (fi,, )] = O(n~'/?), for
p = 1,2, in arbitrary dimension provided that u is sufficiently sub-Gaussian (cf. the recent preprint [11]
for sharp bounds on the sub-Gaussian constant for which the rate is parametric when p = 2). Structural
properties of W{" were explored in [40], showing that it metrizes the classic Wasserstein topology
and establishing regularity in o. These structural and statistical results were later generalized to Wg"
for any p > 1 [68], and asymptotics of the smooth distance as ¢ — oo were explored [17]. Relations
between W;" and maximum mean discrepancies were studies in [101], and nonparametric mixture
model estimation under W,};" was considered [47], again demonstrating scalability of error bounds with
dimension. The study of limit distributions for empirical WZ" was initiated in [42] for p = 1 in the
one-sample case, extended to the two-sample setting in [78], and generalized to arbitrary p > 1 via a
non-trivial application of the functional delta method in [44]. These works also considered bootstrap
consistency and applications to minimum distance estimation and homogeneity testing. To date, a
relatively complete limit distribution theory of W%" in arbitrary dimension is available, as opposed
to the rather limited account of classic W,,.

5.2. Structural properties

We henceforth consider a compactly supported smoothing kernel 71 and adopt the shorthand Wg =

Wg". We start by revisiting structural properties previously established for the Gaussian-smoothed case
and demonstrate that they remain valid for Wg.

Proposition 3 (Stability of W)  Forany 1 <p <, 6 >0, and l1,v € P(R?), we have
WO (1, v) < W (1,v) < WS (1,v) + 20 (En, [|[X[|P])'/7.
In particular, limg o Wy (1, V) = W, (1, V).

The first bound is due to contractivity of W, w.r.t. convolution. Constructing a coupling between
p € Z(RY) and p * N with total cost o(Ep, [||X]|?])!/? proves the second. Since ¢ is compactly
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supported, spt(n;) is contained in a ball of radius » > 0, whereby (Ep, [||X||?])!/? < r which contrasts
the dimension dependent gap for Gaussian kernels; cf. [40, 68].

As the smooth distance converges to the standard distance as ¢ — 0, it is natural to expect that
optimal couplings converge as well. This is stated in the next proposition.

Proposition 4 (Stability of transport plans) For 1 < p < oo, u,v € 2,(RY), and o} | 0. Let m be an
optimal coupling for Wg" (u,Vv) for each k € N. Then, there exists an optimal coupling T for W, (i, v)

for which 7, — 1 along a subsequence.

The proof of this result follows that of Theorem 4 in [40] and [44] with only minor changes and is
hence omitted. Note that when the limiting 7 is unique (e.g., when p > 1 and u has a density), then
extraction of a subsequence is not needed.

We next show that W} is indeed a metric on 2,(R?) that induces the Wasserstein topology.

Proposition 5 (Metric and topological structure)  For 1 < p <eoand 6 >0, Wy is a metric on &), (R4)
inducing the same topology as W .

The proof of Proposition 5 follows by observing that the characteristic function of 14 vanishes on
at most a null set.

5.3. Statistical analysis

This section studies empirical convergence rates and limit distributions for the smooth Wasserstein
distances with compactly supported kernels and population distributions. Let 2~ C R be compact,
set Z5 := 2 + B(0,0), and assume for simplicity that the density of 75 is positive on B(0,0), and
identically zero on R?\ B(0,5). For any u € (), the set 2 contains the support of the convolved
measure [ * TNg.

5.3.1. Limit distributions for p > 1 under the alternative

Building on the unified framework from Proposition 1, the next theorem establishes asymptotic
normality of empirical Wy under the alternative. The null case and the p = 1 setting are treated in
the sequel.

Theorem 4 (Limit distributions for Wg under the alternative) Set 1 < p < oo, 6 >0, Vg = [Wg]p ,
and let u,v € P (L") be such that int(spt(U * Ne)) is connected. Let ¢ be an OT potential from L * N
to VMg for W, which is unique on int(spt(l * N )) up to additive constants. The following hold.

(i) We have
A d 2
Vi (V5 (B, v) = V5 (1,v)) =N (0,v,)
where v%, := Vary (¢ * X5 ). The asymptotic variance vlzj coincides with the semiparametric effiency

bound for estimating V!‘,’(~, V) at U. Also, provided that v[% > 0, we have

PP (Va(Vg (8, v) = V3 (f,v) <1) ~P(N(0,3) <1)] 0.

sup
teR
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(ii) Ifin addition v x N has connected support, then

ﬁ(vg(ﬂna Ofl) _V]c;(uv V)) i>N (O,V?y +W?7) ’

where v% is as in (i) and w?, := Vary (¢° * s ). The asymptotic variance v%, + w?, coincides with the
semiparametric efficiency bound for estimating VI‘,7 at (U, Vv). Also, provided that v2 + w2 >0, we
have

sup [PB(\/E(V,‘,’(Af, 08) = VS (R, D) < t) —P(N(O,2+w?) <1) ] Eo.

teR

The proof of Theorem 4 applies Proposition 1 to the functional p * g — W5 (p * Ng, V * ) for
p € P(Z) with spt(p) C spt(u). To this end, we show that this functional is Lipschitz continuous
W..L. || || p for the unit ball B in L?(. 25 ), which follows by duality (2.2) and uniform bounds on the
OT potentials (cf. Remark 1.13 in [95]). The differentiability result follows by adapting the Gaussian
kernel case (cf. Lemma 3.3 of [44]). To prove weak convergence of the smoothed empirical process
Vi(f, — p) ¥ ng in £°(B), we employ the CLT in L?(.2) and use a linear isometry from L?(2) into
£ (B). Linearity of the derivative yields asymptotic efficiency and bootstrap consistency.

Remark 9 (Connectedness assumption) By ?? ahead, the condition from Theorem 4 that int(spt( *
No)) is connected holds whenever L itself has connected support.

The ideas from the proof of Theorem 4 coupled with Hilbertian structure of L?(.2) yield rates of
convergence in expectation for empirical Wg.

Proposition 6 (Parametric rate) For 1 < p <o, 6 >0, and t,ve P(Z") with W#V, we have

E (WS (i, V) = WS (11, 9)]] < 2] o]/ A (B0, 0)) A (o) diam( 25)” (W (,v)]' "2,

5.3.2. Limit distributions for p = 2 under the null

We derive limit distributions for WS under the null. Our approach relies on the CLT in Hilbert spaces
and is thus limited to p = 2. Let C7’ denote the space of infinitely differentiable, compactly supported
real functions on R?.

Definition 4 (Sobolev spaces and their duals) The Sobolev seminorm of a differentiable function f :
RY — Rw.rt. a reference measure u € 2 (R?) is denoted by 1Al 20y = IV £l 2(0)- The homogeneous
Sobolev space is defined as the completion of Ci + R with respect to || a2 The dual Sobolev space
H12 () is the topological dual of H'? ().

Definition 5 (2-Poincaré inequality) A probability measure u € P(RY) is said to satisfy the
2-Poincaré inequality if there exists C < oo, such that

1f =D l2y <CIVAl2urey  fEG,

where L*(1;R¥) is the space of Borel maps f:R? — RF with ||fHL2 (RN’ = [pallf]]2dp < oo.

With these definitions in place, we state the limit distribution for Wg .
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Theorem 5 (Limit distributions for WS under the null) Let u € Z2(2") be such that | * N satisfies
the 2-Poincaré inequality and set ¢ > 0. The following hold.

(i) We have
VWS (B, 1) 5 [l -12 e
where (G (f))f€H1'2(M*%) is a centered Gaussian process with paths in H~'2 (U* 1) a.s. and
covariance function Cov(Gy(f),Gu(g)) = Covyu(f * X, 8 * Xo)-
(ii) Additionally, if L = v, then

A A d
\/’;Wg(lina vi’l) — ||Gﬂ - G;.L ‘|H"=2(u*nc)’
where (B;l is an independent copy of Gy,.

The proof of Theorem 5 follows a similar approach to the Gaussian kernel case. In contrast to
the proof of Proposition 3.1 in [44], to show weak convergence of the smoothed empirical process
in H='2 (1), we apply the CLT in Hilbert spaces. To this end, we first verify that the smoothed
empirical process has paths in H~'? (u % 1¢). This step requires control of the inverse of the density
of U * 1g, which decays to zero near the boundary of its support; see the proof of ??. The extension to
general 1 < p < oo requires a much finer analysis than provided in the proof of ??, and thus we focus
on the p = 2 case.

Remark 10 (Poincaré inequality) In Theorem 5, a sufficient condition for | *x N to satisfy the 2-
Poincaré inequality is that both |l and N satisfy 2-Poincaré inequalities (see Proposition 1.1 in [97]).
The kernel can always be chosen to satisfy 2-Poincaré by simply constructing it from the standard
mollifier from Example 2. In that case, N is a log-concave measure (cf. [56, 81]) and hence satisfies
the 2-Poincaré inequality [12, 63].

Analogously to Proposition 6, parametric rates for empirical WS under the null follow from
Hilbertian structure of H~ "2 (1 * ) and the ideas from the proof of Theorem 5.

Proposition 7 (Parametric rate) For ¢ > 0and pu € P (L) for which U x N satisfies the 2-Poincaré
inequality with constant Cy, s, we have

E WS (1)) < 2Cu 1/ (1V ][ 22]|)A(Zo)n /2.

5.3.3. Limit distributions for p =1

We now treat the limit distributions for W{ under both the null and the alternative. The Kantorovich-
Rubinstein duality for W enables us to do so in the absence of the additional assumptions required when
p > 1. In what follows, let Lip,  denote the set of 1-Lipschitz functions f on RY with £(0) =0 and .5 =
{f*Xo : f € Lip;o}. Observe that WY (u,v) = supsc 7, (1t — v)(f) by the Kantorovich-Rubinstein
duality.

Theorem 6 (Limit distributions for W)  Let 6 >0 and u,v € Z(Z"). There exist independent, tight
U- and v-Brownian bridge process G, and G, in {*(Fs), respectively, such that:
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(i) We have

V(WS (B, v) = WS (11,v)) % sup Gu(f),
feEMs

where M = {f € 2 w(f=v(f) =Wg(u,v)} and F' is the completion of F for the

pseudometric (f,g) — +/Vary(f — g).

(ii) We have

V(WY (fi, V) *W?(H’V))gfsgg [Gu(f) = Gy (F)]:

where My = {f € ?ﬁ’v S =v)(f) =W (u,v)} and ?ﬁ’v is the completion of F¢ for the
pseudometric (f,8) — \/Vary (f —g) + V/ Vary (f —g).

Theorem 6 follows by showing that the function class .%4 is Donsker combined with the extended
functional delta method for the supremum functional. The proof of Theorem 6 also establishes
parametric rates for empirical WY .

Corollary 4 (Parametric rate) For 6 >0, i € P2(Z’), we have E[W (fL,,u)] = O(n~1/?).

We conclude this section by referring the reader to Appendix ?? for an account of computational
aspects for smooth Wasserstein distances. There, we outline the algorithm from [90], show how to lift
it to compute WY, and discuss limitations of that method.

6. Entropic Optimal Transport

EOT is an efficiently-computable convexification of the OT problem. The general machinery of
Proposition 1 enables deriving limit theorems for empirical EOT, generalizing previously available
statements to allow for dependent data. Our theory also provides new results on semiparametric
efficiency of empirical EOT and consistency of the bootstrap estimate.

6.1. Background
EOT regularizes OT by the Kullback-Leibler (KL) divergence as

S&(u,v):= inf c(x,y)dm(x,y) + €DkL(m||u @ V), (6.1)
well(u,v) JRI xRE

where € > 0 and Dy (¢||v) := [log(du/dv)dp if u < v and +eo otherwise [52, 82]. We consider
the quadratic cost c(x,y) = ||x — y||*/2, assume that € = 1, and use the shorthand S(u,v) =
S\l\-HZ /2(“’ V). The assumption that € = 1 comes without loss of generality by a rescaling argument,

since ST (W, V) = £S(He, Ve ), where e = fe it for fe(x) = g /2y,
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To apply Proposition 1 to empirical EOT, we rely on the duality theory for EOT, whereby

Su,v) = sup / wdu+/ de—/ PV du v 1,
(@.w)eL! (w)xL! (v) /R R RY xR

with (¢ @ y)(x,y) = @(x) + w(y). Assuming u,v € Z,(R?), the supremum is attained by a pair
(@, w) € L' (1) x L' (v) satisfying the so-called Schrodinger system

P+y () —c(xy") " — ; d

/[Rde dv(y')=1 p-ae.xeR%,
(6.2)

PO Fy () —c(x'y) " — ; d

/[Rde du(x')=1 v-ae.yeR%

We refer to such (@, ) as optimal EOT potentials (from 1 to v for ¢ and vice versa for y). Optimal
EOT potentials are unique (4 ® v)-almost everywhere up to additive constants. Conversely, any
(o, w) € L'(u) x L'(v) that admit (6.2) are optimal EOT potentials. See Section 1 in [71] and the
references therein for details of the duality results for EOT.

6.1.1. Literature review

The entropic penalty transforms the OT linear optimization problem into a strongly convex one,
allowing efficient computation via the Sinkhorn algorithm [1, 22]. While EOT forfeits the metric
and topological structure of Wp,5 it attains fast empirical convergence in certain cases. Specifically,
empirical EOT converges as n~1/2 for smooth costs and compactly supported distributions [37], or for
the squared cost with sub-Gaussian distributions [60].

Limit distributions for EOT (and the Sinkhorn divergence) for c¢(x,y) = ||x — y||? in the discrete
support case were provided in [9, 50]. Their approach is to parameterize each marginal by a finite-
dimensional simplex vector and find the derivative of the EOT cost w.r.t. the simplex vector to apply the
standard delta method; arguably, this approach does not directly extend to general distributions. A CLT
for EOT between sub-Gaussian distribution was first derived in [60], showing asymptotic normality of
Vi (S(fn,v) —E[S(fLy,v)]) and its two-sample analog using the Efron-Stein inequality similar to [24].
The main limitation of this result is that the centering term is the expected empirical EOT, which is
undesirable because it does not enable performing inference for S(u, v). This limitation was addressed
in the recent preprint [29], see the discussion in Remark 11. We provide here an alternative derivation
of the CLT that relies on establishing the Hadamard derivatives of the EOT cost w.r.t. the marginals
following the unified framework from Proposition 1, which automatically leads to asymptotic efficiency
of empirical EOT and consistency of the bootstrap estimate, as well as the extension for dependent
data. The Hadamard differentiability result (implicit in the proof) may be of independent interest as it
pertains to stability analysis of EOT, which has attracted growing interest in the mathematics literature
[35, 39, 61, 62, 72].

6.2. Statistical analysis

We next state the CLT, asymptotic efficiency, and bootstrap consistency for empirical EOT.

3 Indeed, e.g., SE(u, u) # 0; while this can be fixed via centering EOT to obtain the so-called Sinkhorn divergence, it is still not
a metric since it lacks the triangle inequality [9].
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Theorem 7 (CLT, efficiency, and bootstrap consistency for EOT) Suppose that u,v € 2(R?) are
sub-Gaussian. Let (¢, y) be optimal EOT potentials for (1, V). Then, the following hold.

(i) We have /n(S(fly,v) —S(i,v)) 4 N(0,0%) with v} = Var,(@). The asymptotic variance v}
coincides with the semiparametric efficiency bound for estimating S(-,v) at W. Finally, provided
that U% > 0, we have

sup| P2 (Vi (S(2,v) — S(fn,v) < 1) — P(N(0,03)) <1)| 0.

teR

(ii)  We have /n(S(fln, V) — S(1,V)) 4 N(0,0% 4 03) where v} is as in (i) and v3 = Var,(y). The
asymptotic variance n% + b% coincides with the semiparametric efficiency bound for estimating
S(-,-) at (4, V). Finally, provided that v +v3 > 0, we have

sup ][PB (\/ﬁ(smf,of) — S ({1, 0)) < t) — P(N(0,03 +v3) <1) ) % o.

teR

Remark 11 (Comparison with [29]) As mentioned in Section 6.1.1, a CLT for one- and two-sample
EOT was derived in Theorem 3.6 of [29], whose proof first expands the empirical EOT cost around its
expectation and then shows that the bias is negligible. We rederive this result via a markedly different
proof technique, relying on the unified framework from Proposition 1, which automatically also implies
bootstrap consistency and asymptotic efficiency via Corollary 1 and Proposition 2, both of which were
not addressed in [29]. In addition, as Proposition I does not assume i.i.d. data, the above result readily
extends to dependent data, which falls outside the framework of [29]. For instance, suppose that {X; };cz
is a stationary B-mixing process with compactly supported marginal distribution [. Then, by Theorem
1in [33],

Vil —p) 5 G in7(Fs),

where Fs is the function class given in (??) ahead with s = max{|d/2] + 1,2} and sufficiently
large o > 0, while G is a tight centered Gaussian process in {*(Fs) with covariance function
Cov(G(f),G(g)) = Lsez Cov(f(Xo),8(X:)). Conclude from the proof of Theorem 7 that

VA(S(Bas V) = S(1,v)) 4 G(9) ~ N (0,1, Cov(0(X0), 9(X)) ).

Likewise, a CLT result holds for other forms of dependent data, such as exchangeable arrays [23].
Furthermore, for the EOT case, the corresponding Hadamard derivative is linear, so suitable dependent
bootstrap methods, such as the block bootstrap for mixing data [15] and the (extended) pigeonhole
bootstrap for exchangeable arrays [23], are consistent for the empirical EOT cost, provided that the
bootstrap processes satisfy a uniform CLT for .

7. Concluding Remarks

This work developed a unified framework for proving limit distribution results for empirical regularized
OT distances, semiparametric efficiency of the plug-in empirical estimator, and consistency of the
bootstrap. As applications, we focused on three prominent OT regularization methods—smoothing,
slicing, and entropic penalty—and provided a comprehensive statistical treatment thereof. We closed
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existing gaps in the literature (e.g., a limit distribution theory for sliced W) and provided several new
results concerning empirical convergence rates, asymptotic efficiency, and bootstrap consistency. In
particular, for the smooth Wasserstein distance, we explored compactly supported smoothing kernels,
which were shown to inherit the structural and statistical properties of the well-studied Gaussian-
smoothed framework. The analysis of compactly supported kernels is motivated by computational
considerations, as we demonstrated how to lift the efficient algorithm from [90] for computing W%
between smooth densities to the considered smooth OT distance.

Our framework is flexible and can treat a broad class of functionals, potentially well beyond the
three examples considered herein. For instance, straightforward adaptations of our arguments for
sliced W, would yield limit distributions, efficiency, and bootstrap consistency of the projection-
robust Wasserstein distance from [55], when the projected subspace is of dimension k < 3 (indeed, the
class of projected OT potentials is still Donsker in that case). Going forward, we also plan to explore
applicability of the unified framework to empirical OT maps or certain functionals thereof (e.g., inner
product with a smooth test function).
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