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Abstract
Cell growth is an essential phenotype of any unicellular organism and it crucially
depends on precise control of protein synthesis. We construct a model of the feedback
mechanisms that regulate abundance of ribosomes in E. coli, a prototypical prokary-
otic organism. Since ribosomes are needed to produce more ribosomes, the model
includes a positive feedback loop central to the control of cell growth. Our analysis
of the model shows that there can be only two coexisting equilibrium states across
all 23 parameters. This precludes the existence of hysteresis, suggesting that the ribo-
some abundance changes continuously with parameters. These states are related by a
transcritical bifurcation, and we provide an analytic formula for parameters that admit
either state.

Keywords Ribosome · Ribosome abundance control · Mathematical model

1 Introduction

Protein synthesis is a complex bio-polymerization process requiring significant com-
mitment of cellular resources as well as precise regulation of hundreds of molecules.
The two stages of protein synthesis, transcription and translation, form the crucial steps
in the transfer of genetic information from DNA to protein. During the transcription
process polymerases (RNAp) copy DNA-encoded genetic information to messenger
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Fig. 1 Schematic description of the ribosome assembly control system. Ribosomes R are assembled from
ribosomal RNA r and ribosomal proteins p, which are translated by ribosomes from mRNA m. Sufficient
nutrient levels increase the pool of nucleotides n, which are building blocks of both rRNA and mRNA.
Low nutrient levels cause a rise in ppGpp (g), which hinders rRNA and mRNA production. Free ribosomal
proteins inhibit their own translation

mRNA. Translation is a similar process where ribosomes translate mRNA information
into a polypeptide chain which subsequently folds to form a protein. In prokaryotes,
both transcription and translation happen in the cytoplasm of a cell and can occur
simultaneously. Therefore regulation of gene expression in bacteria, such as E. coli,
primarily happens at the transcriptional level (Griffiths et al. 1999; Shaw 2008).

The control of bacterial growth rate centers around allocation of cellular resources
(Klumpp and Hwa 2008; Erickson et al. 2017) to two fundamental activities—the
construction of ribosomes vs. the production of all other proteins that the cell needs.
There is a tight correlation between the growth rate and the fraction of RNA that
is ribosomal RNA; when the growth rate is at its highest level, around 85% of all
RNA is ribosomal RNA (Scott et al. 2010; Erickson et al. 2017; Scott et al. 2014;
Weiße et al. 2015). On the other end of the spectrum, in sudden downshift of available
resources, bacteria must quickly re-focus their resources from ribosome production
and exponential growth to survival in the new environment. The response to such
downshift is known as stringent response (Hauryliuk et al. 2015; Srivatsan and Wang
2008; Traxler et al. 2011; Boutte and Crosson 2013).

The translation process contains an important feedback loop: ribosomes are made
up of proteins, which need to be translated by ribosomes. The goal of this paper is
to develop a mathematical model of the main feedback loops that control abundance
of ribosomes in response to external conditions, see Fig. 1. The model accounts for
the concentrations of the free ribosomes R, ribosomal RNA (rRNA) denoted by r ,
and proteins p, which are translated from mRNA m using ribosomes R. We include
direct negative feedback loops where ribosomal proteins, when in excess, slow down
their own translation. The effect of a small signaling molecule guanosine tetra- and
pentaphosphate, usually referred to as ppGpp, Hauryliuk et al. (2015), Ross et al.
(2013), Ross et al. (2016), Boutte and Crosson (2013), is also included in the model
and is denoted by g. Themodel also accounts for the effect of the abundance of building
blocks for mRNA and rRNA synthesis n. We do not include in our model multiple
constraints that restrict growth rate of the cell in a given environment. These include
allocation of energy and ribosomes to production of transport proteins, enzymes and
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ribosomes themseleves (Weiße et al. 2015; Scott et al. 2014). In particular, we focus on
the central control loop that adjusts the number of ribosomes that translate ribosomal
proteins in response to nutrient depletion and do not consider the allocation problem
between ribosomes that translate enzymes and those that translate ribosomes (Scott
et al. 2014). We will pursue incorporating the current model into the broader context
of growth control in future work (Molenaar et al. 2009; Scott et al. 2014; Weiße et al.
2015). The focus of this work is the analysis of equilibrium states and the conditions
that lead to transition between them.

The model consists of a system of six differential equations parameterized by 23
parameters. Our analysis shows that for all values of parameters, the system in (5) has
either one equilibrium S, or two equilibria S and P in the biologically feasible region
R
6+.

Equilibrium S represents the stationary state of the system where there are no free
ribosomes, no free ribosomal proteins, and both the rRNA and mRNA concentrations
remain at base level. In a broader context of allocation of cellular resources, this
corresponds to a state of the cellwhere all existing ribosomes are engaged in translation.
This is consistent with the observation that even at the lowest growth rates, a fraction of
cellular proteomeconsists of ribosomes that are engaged in translation of housekeeping
genes and ribosomal proteins. Therefore this state is consistentwith a stationary growth
phase.

The state P represents the proliferative state of the systemwhere ribosomal proteins
and ribosomes are being produced at a rate that results in ribosomes that are not needed
for ribosomal protein translation. These extra ribosomes can be allocated to enzymes
and transport complexes that allow cellular growth.

We show that P emerges from S by a transcritical bifurcation and, when P exists, it
is asymptotically stable. When only the equilibrium S exists, it is also asymptotically
stable. Since we cannot exclude existence of non-equilibrium dynamics in R

6+, we
cannot claim global convergence to either P or S in the parameter regimes when they
are stable. However, numerical simulation results have only indicated convergence to
one of these two equilibria.

Importantly, our results show that this system does not admit hysteresis between
steady states. Such hysteresis would require bistability between two stable equilibria
which in turn implies existence of a third equilibrium whose stable manifold separates
their basin of attraction. There are no parameter sets that admit three equilibria.

The key determinant of the transition between the stationary regime (i.e when S is
stable) and the proliferative regime (i.e when P is stable) is the state of the feedback
loop between ribosomes and ribosomal proteins.

As shown in Theorem 1, the proliferative equilibrium P exists if and only if the
production rate of ribosomal proteins exceeds a threshold value that is comprised of
two terms. The first describes the demand for these proteins through production of
ribosome rRNA scaffold, and the second terms describes the assembly rate of these
proteins. Both of these terms are scaled by the product of the removal rates of proteins
and mRNA.

The work identifies either parameter values or reasonable ranges for all 23 param-
eters, and we confirm existence of both stationary and proliferative states with the
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ranges of these model parameters. Furthermore, the results show that eight (8) param-
eters do not significantly influence the transition between these states; four (4) model
parameters do. These include nutrient availability I , which is a signal that the cell
responds to by adjusting the number of ribosomes. In addition, this group includes
the maximal transcription initiation rate for the rrn gene Amax , coding for rRNA,
and the rate of ribosome assembly from mRNA and proteins α. The final parameter
K = K (I ) is proportional to parameter I as it reflects the size of amino acid pool
which is proportional to the available nutrient.

2 Derivation of the System of Differential Equations

This section outlines the development of an ODE model of the system that controls
the ribosome abundance in E. coli. Ribosomes contain around 50 ribosomal proteins
organized around RNA scaffold (Condon et al. 1993, 1995; Gyorfy et al. 2015). The
concentration of ribosomal proteins is represented by p, and the concentration of free
ribosomes by R. Ribosomal proteins are translated from ribosomal proteinmRNA.The
concentration of free ribosomal protein mRNA is denoted bym. Ribosome production
is controlled by the number of available rRNA scaffolds that are transcribed from an rrn
gene; their concentration will be denoted by r . We assume that the rate of production
of R from combining rRNA scaffold and ribosomal proteins p is α; we simplify the
model by assuming that this process has stochiometry 1; that is one unit of p binds
one rRNA scaffold rather than considering all 50 different ribosomal proteins. In other
words, p represents the concentration of a prototypical ribosomal protein.

Ribosomal proteins have high affinity to RNA scaffold and lower affinity to their
own mRNA; as a result, when RNA scaffolds are limiting, ribosomal proteins will
bind to their ownmRNA, which prevents its translation, thereby down-regulating their
own production via translation inhibition. This negative feedback loop assures that the
number of ribosomal proteins closely matches the number of available scaffolds. We
model this process as a chemical reaction

m + p
k1�
k−1

C

where, as above, m is the concentration of the free ribosomal protein mRNA and C is
an inactive complex. In addition, we take into account a conservation lawm+C = m0
where m0 is the total mRNA. Assuming equilibration of this reaction is much faster
than the rate of change of both total mRNA m0 and the total protein concentration p,
we obtain the relationship C = k1

k−1
mp. Inserting this into the conservation law leads

to

m = m0

1 + kd p
=

m0
kd

1
kd

+ p
=: m0κ

κ + p
, (1)

where we used kd = k1
k−1

and κ := 1
kd
. The rate of change of the total mRNA m0

is occuring on a slower time scale than the deactivation reaction. Since we do not
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explicitly model the elongation process in this work, we equate the rate of change of
the total number of mRNA to the initiation rate of mRNA transcription B̂

ṁ0 = B̂im,

where im is the concentration of the gene fromwhich mRNA is transcribed. Due to the
differences in expected lifespan of ribosomal proteins and mRNA (Milo and Phillips
2016) (BNID 106869,108404), it is reasonable to assume that p is changing on a
slower time scale than m0. Differentiating (1) and assuming the ṗ term is negligible
leads to the approximation

ṁ = ṁ0
κ

κ + p
− m0κ

(κ + p)2
ṗ ≈ ṁ0

κ

κ + p
.

Therefore we will model the rate of production of free ribosomal protein mRNA by
the differential equation

ṁ = B̂κim
κ + p

.

An important control of the number of ribosomes in E. coli is the initiation rate
of the rrn transcription. There are two main mechanisms of this control which we
include in our model. First is the availability of nucleoside triphosphate (NTP) which
is the building block of both rRNA and mRNA, and we include the concentration of
free NTP, n, in the model. The second is a small signaling molecule ppGpp, whose
concentration is denoted by g. Both of these signals report on the nutritional state
of the cell (Murray et al. 2003). Concentrations of ppGpp and NTP regulate rRNA
synthesis primarily at the level of transcription initiation (reviewed in Paul et al. 2004).
In particular, rrn promoters are strongly inhibited when NTP concentrations are low,
such as when cells are starved for nutrients or during the transition to stationary phase
(Murray et al. 2003; Gaal et al. 1997; Paul et al. 2004). Therefore the initiation rates
Â = Â(n, g) and B̂ = B̂(n, g) of both rrn and mRNA respectively are increasing
functions of n, see (7) and (8). The abundance of n is modeled by

ṅ = I − γ n( Â + B̂). (2)

Here I represents the rate of nucleotide production in the cell, which is proportional
to the rate of nutrient supply to the cell. One could assume this rate is time dependent,
but for the current analysis, it is insightful to treat it as a parameter of interest. Therefore
we interpret the parameter I as a proxy for the available nutrient supply to the cell.
The second term is consumption of nucleotides during transcription of r and m, and
γ is rate of incorporation of n into the rRNA and mRNA, respectively during both
initiation and elongation.

The transcription initiation rate is affected both directly and indirectly by the
concentration of ppGpp in the system. The indirect affect involves the presence of sig-
nificant numbers of uncharged tRNAmolecules. A charged tRNA is a tRNAmolecule
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Fig. 2 Bifurcation diagram
illustrating Theorem 1.
Boundary equilbrium S exists
for all values of parameter K ,
but looses stability for K > K0
when the stable equilibrium P
enters the positive orthant R6+

which has an attached amino acid. When the tRNA molecule transfers the amino
acid to the polypeptide chain, the tRNA molecule loses that amino acid and must be
recharged with a new amino acid (Brackley et al. 2010). In E. coli as well as in other
bacteria, the presence of uncharged tRNAs that try to enter the ribosome is detected
as a signal of slowing growth. In particular, a pair of enzymes RelA and SpoT, that
are present at the ribosome, catalyze ppGpp in response to the presence of uncharged
tRNAs (Hauryliuk et al. 2015; Srivatsan and Wang 2008; Traxler et al. 2011; Boutte
and Crosson 2013).

In the most important direct effect, ppGpp binds directly to RNAp at two separate
sites (Ross et al. 2013, 2016), and this binding destabilizes the open complex formation
of those RNAps that transcribe the rrn gene (Hauryliuk et al. 2015; Srivatsan andWang
2008). This leads to a lower initiation rate of the rrn gene; hence, in Fig. 2, the initiation
rates of both mRNA and rRNA is reduced by the ppGpp binding. We model this effect
by multiplying initiation rates Â and B̂ by a decreasing function of g, see (7) and (8).
To model the production rate of g, we assume that g is produced when the available
nutrient I (t) falls below a reference nutrient level, I0, that corresponds to the level
required for sustained replication. This rate is then

H := −min(I − I0, 0).

We assume that the decay rate of g is η which results in

ġ = H − ηg (3)

To model production of ribosomal proteins we assume that m and R bind first and
this complex e := [mR] acts as an enzyme that transforms the substrate U of amino
acids into protein p. The binding of m and R is governed by the reaction

m + R
k3�
k−3

e
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which equilibrates at

e = k3
k−3

mR =: âmR. (4)

We note that â has units of (µM)−1.
The enzymatic reaction that turns amino acids into protein and is catalyzed by

e = mR has a form

e + U
k1�
k−1

C
k2→ p + e

We assume that the forward reaction creating the complex C has the rate k1, while
the backward rate is k−1. which correspond to initial reversible binding of tRNA
to ribosomes (Whitford et al. 2010). The second reaction creating p and e from the
complex is irreversible and has rate k2. This represents the rate atwhich a representative
ribosomal protein is produced.

We assume that the overall amount of enzyme stays constant e0 := âmR on the
time scale where protein translation takes place. Then the standard Michealis-Menten
derivation (Michaelis and Menten 1913; Keener and Sneyd 2008) gives

Km = k−1 + k2
k1

ṗ = e0
k2U

Km +U

Translating this into our problemwhere e0 = âmR (see Eq. (4)), the rate of production
of p is

ṗ = k2âmR
U

Km +U
.

Here k2 has units of s−1, â has units µM−1, both m, R are in µM and the ratio U
Km+U

is dimensionless. The supply of amino acids U scales with the nutrient supply I to
the cell U = q I + I1, for some I1 < I0. However, the proportionality constant q
depends in complex ways on the growth rate, environmental stress (Zampieri et al.
2019), pH values (Gale and Epps 1942) and the amino acid pool is under tight control
(Elf and Ehrenberg 2005).We therefore do not impose a precise numerical relationship
between U and I , but only impose this constraint at the end of the analysis.

On a longer time scale the population level of the enzyme e0 is not constant. We
assume that the initiation rate for translation is ω. Since the ribosomes are removed
from the free pool when they bind mRNA, we include the term −ωâmR in the ODE
describing the rate of change of R. On the other hand, there are usually multiple
ribosomes translating the same mRNA. Therefore we remove m from the pool of
mRNAs at the rate −ω̂âmR where ω̂ := ω

�
with � an average number of ribosomes

on ribosomal protein mRNA.
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The units of ω and ω̂ are s−1. Finally, we assume that the decay rate of proteins is
ξ , while the decay rate of rRNA and mRNA is β. We note that in the microbial growth
experiments ξ usually represents growth rate of the cell population which dilutes the
concentration of the protein. We arrive at the final model of the form

Ṙ = αrp − ωâmR − ξ R

ṗ = k2âmR
q I

(Km + q I )
− αrp − ξ p

ṙ = Âir − αrp − βr

ṁ = B̂κim
κ + p

− ω̂âmR − βm

ṅ = I − γ n( Â + B̂)

ġ = H − ηg (5)

where ir , im are concentration of the rrn and the ribosomal genes, respectively and

H = −min(I − I0, 0)

Â = Â(n, g) =
(
A2

n

κ1 + n
+ A1

)
κ2

κ2 + g

B̂ = B̂(n, g) =
(
B2

n

κ3 + n
+ B1

)
κ4

κ4 + g
(6)

We simplify the last two equations by combining parameters Amax := A2κ2, A0 :=
A1κ2, Bmax := B2κ4, B0 := B1κ4 to get

Â = Â(n, g) =
(
Amax

n

κ1 + n
+ A0

)
1

κ2 + g
(7)

B̂ = B̂(n, g) =
(
Bmax

n

κ3 + n
+ B0

)
1

κ4 + g
. (8)

After making the following substitutions

E(I ) := q I

Km + q I
, G := ωâ, K (I ) := k2

ω
E(I )

A := Âir B := B̂κim, f (p) := B

κ + p
(9)

the system of ODEs above in Eq. (5) simplifies to

Ṙ = αrp − GmR − ξ R (10)

ṗ = KGmR − αrp − ξ p (11)

ṙ = A − αrp − βr (12)
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ṁ = f (p) − G

�
mR − βm (13)

ṅ = I − γ n( Â + B̂) (14)

ġ = H − ηg (15)

where Â, B̂ are defined in (7), (8), respectively.
The system (10)–(15) depends on 23 parameters, many of which either cannot be

directly measured, or have not been measured to our present knowledge. Our goal
is to make qualitative statements about all parameters. Since all parameters are non-
negative, we define a parameter space as the positive orthant P := R

23+, and we use
s ∈ P to denote a vector of parameters in P . As we will see next, the behavior of the
system qualitatively depends on only three groups of parameters.

Theorem 1 Let A∗ and B∗ denote steady state levels of A and B in (9), which we
explicitly compute in Sect.4.1, and let

X := αA∗ ε := ξβ, Z := GB∗

be groups of parameters. Let

K0 :=
(
1 + ε

X

) (
1 + κ

ε

Z

)
. (16)

Then

• if

K (I ) < K0

then S = (0, 0,m0, r0, n∗, g∗) is the only equilibrium in R
6+, and it is locally

asymptotically stable;
• if

K (I ) > K0

then S is unstable, and there is a unique equilibrium P ∈ intR6+, P =
(R†, p†,m†, r†, n∗, g∗). If there are no non-equilibrium invariant sets in intR6+,
then P is attracting all solutions in intR6+.

Recall from Sect. 1 that the equilibrium S represents a stationary state when the
cell does not have any free ribosomes in addition to those engaged in ribsomal protein
translation. The equilibrium P represents a proliferative state where there are free
ribosomes present in the cell that are available for translation of enzymes that can
mediate biomass growth.

We now proceed with parameterization of the model and investigating those param-
eters which lead to states (phenotypes) represented by the equilibrium S and the
equilibrium P .
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3 Results

Note that Theorem 1 shows that the state of the system depends on four groups of
parameters. They are

• K (I ) = k2
ω
E(I ) is the ratio of the ribosomal protein production rate and initiation

rate of ribosomal mRNA-ribosome complexes multiplied by the supply level E(I )
of amino acids, which is proportional to nutrient supply I to the cell.

• X = αA∗ which is a product of rRNA production A∗ and rate of assembly of
rRNA into ribosomes α. Therefore X represents demand for ribosomal proteins
imposed by supply rate of rRNA scaffold.

• Z = GB∗ is product of mRNA supply B∗ and its assembly rate into ribosomal
proteins G. Therefore Z represents the assembly rate of ribosomal proteins.

• ε = ξβ is a product of protein decay (dilution) rate ξ , and mRNA decay rate β.

In order to gain insight into the role of these constants, note that ε
X is the decay

of ribosomal components divided by the demand for ribosomal proteins and ε
Z is

the decay rate of ribosomal components divided by the assembly rate of ribosomal
proteins. In order for the equilibrium P to exist, the value of K must be above the
threshold value K0 = (1 + ε

X )(1 + κ ε
Z ). When the decay rates are small the value of

the threshold K0 is small and it is easier for K to exceed the demand for ribosomal
protein imposed by ribosomal assembly and satisfy K > K0.

Our second level of model analysis uses values of biological parameters. Note that
it is not a priori clear that within biologically feasible ranges of parameters both states
S and P occur. We show not only that this is the case, but that the parameters that
are implicated in transition from P to S indeed cause this transition when moved
to lower limits of their ranges. We also show that there are many parameters that
affect this transition very weakly, if at all. We have parameterized the model using
information from existing literature on E. coli. The model contains 23 parameters,
and we have identified values for 10 of them in the literature. The description of these
10 parameter values are in group 1 of Table 1. For the remaining 13 parameters, we
identified reasonable parameter ranges for their values and listed those in Table 1. A
detailed justification and list of references for the parameter values and their ranges
can be found in Appendix A.

Analysis of the threshold K0 from Theorem 1 shows that only the second term
depends on κ . Using (9), we write

κ
ε

Z
= κ

ε

GB∗ = κ
ε

GB̂∗κim
= ε

GB̂∗im
,

which shows that K0 does not depend on the parameter κ . For this reason, we have
separated κ from all three groups, and it is included in a separate first line of Table 1.
Our goal is to explore the parameter ranges of the remaining 12 parameters in groups
2 and 3 of Table 1 and to determine how choices of these parameters result either in
state S or in state P .

We begin by setting all 12 parameters to the value in the middle of their ranges, and
we then classify the equilibrium. For this case, we found the proliferative equilibrium
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P . On the other hand, when all parameters are set to their lowest value of the range,
we find equilibrium S. This demonstrates that the model is capable of capturing the
range of predicted phenotypes over the reasonable biological range for the parameter
values.

Next we examine the effect of the 5 parameters in group 3 of Table 1. Our analysis
shows that changes in these parameters most directly influence the transition from the
proliferative equilibrium P to stationary equilibrium S. These parameters denote the
nutrient availability I , maximal transcription initiation rate for the rrn gene Amax , the
rate of ribosome assembly α and K , the ratio of ribosomal protein production rate
and its mRNA initiation rate. Lastly, two of these parameters, κ2 and κ4, represent
half-saturation constants of the effect of ppGpp on initiation rates of rrn and mRNA
for ribosomal proteins. In the absence of information that these effects are significantly
different, we assume κ2 = κ4 for the results of numerical simulations presented here;
however, we treat them as distinct in the mathematical analysis of Sect. 4.1.

Wefix the remaining 7 parameters in group 2 of Table 1 at the bottomof their ranges.
We then investigate the five dimensional parameter space formed by those parameters
in group 3 (I , Amax , α, K , κ2 = κ4) by selecting 200 samples from each range and
classifying them, using Theorem 1, as admitting either the S or P equilibrium state. To
visualize this spacewefix values of Amax ,α and κ2 at either their low, ormiddle of their
range values and vary the parameters K and I within their ranges, remembering that
K is proportional to I . On these two dimensional projections of the five dimensional
parameter space we indicate the phenotype by a color as a function of the remaining
two parameters. The pair of parameter values that admit a stationary equilibrium S are
grey, while points where the pair of parameters admit proliferative equilibrium P are
white. In all panels in Fig. 3 the value of κ2 is low, while in all panels in Fig. 4 the value
of κ2 is in the middle of its interval. In both figures, Panel (C) represents the situation
where Amax and α are at the bottom of their ranges, while Panel (B) represents the
situation where Amax and α are in the middle of their ranges.

We now apply our modeling assumption that K = K (I ) is proportional to nutrient
supply I , but that the proportionality constant depends in a complex way on factors
like growth rate, pH and environmental stresses. In spite of this uncertainty, the panels
allow us to make qualitative conclusions. Note that for any proportionality constant υ
in K = υ I , the parameters (K , I ) form a line with positive slope. We can conclude
that for the transition from proliferative equilibrium P to stationary equilibrium S to
occur, at least one of the values Amax and α must fall towards the lower limit of their
range, and the value of I must be below I = I0.

Note that nutrient availability I represents a signal that the cell responds to by
adjusting the number of ribosomes, while both maximal transcription initiation rate
for rrn gene, Amax (Griffiths et al. 1999; Shaw 2008), and the rate of ribosome assem-
bly from mRNA and proteins, have been implicated as control points for ribosome
abundance. Therefore the sensitive parameters agree with putative control points of
the real system.

We now examine how the values of the seven parameters from group 2 in Table 1
that are fixed at the bottom of their intervals in Figs. 3 and 4 impact the prevalence
of S vs. P . To achieve this, we assign all eight parameter values to the middle of
their range (see Fig. 5E–H) and compare these to the graphs in the Figs. 3, and 4 parts
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Fig. 3 Identifying phenotype using two dimensional projections of parameter space (I , Amax , α, K ). Points
in the (I , K )-plane for which the pair of parameter values admits a stationary equilibrium S are grey, while
points where the pair of parameters admit proliferative equilibrium P are white. Parameters from Group 2
in Table 1 are set to the bottom of their range

(A) and (D), which are reproduced in Fig. 5A–D. Comparing the panels in the same
column shows the impact of moving the parameters in group 2 from the bottom to the
middle of their range. For example, when comparing Fig. 5A–E, very little change in
the qualitative behavior can be observed between the two. A similar comparison can
be done with columns two, three and four of Fig. 5. Hence, we conclude that variations
in the parameters in group 2 have little influence on the prevalence of S vs. P . Overall,
we conclude that the effect of small changes in the group 2 parameters is much smaller
than the effect of varying the parameters α, Amax and κ2 = κ4.
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Fig. 4 Identifying phenotype using two dimensional projections of parameter space (I , Amax , α, K ). Points
in the (I , K )-plane for which the pair of parameter values admits a stationary equilibrium S are grey, while
points where the pair of parameters admit proliferative equilibrium P are white. Parameters from Group 2
in Table 1 are set to the bottom of their range

4 Analysis

The model is uniformly dissipative in the non-negative orthant. Indeed, last two
equations are decoupled from the first four equations and clearly dissipative. In
addition,

lim sup
t→∞

r(t) ≤ A

β
, lim sup

t→∞
m(t) ≤ B

κβ
(17)
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Fig. 5 Panels (A)–(D) correspond to the case where all parameters in Group 2 are set to the bottom of their
range and are identical to panels (A) and (D) in Figs. 3 and 4: A Fig. 3A, B Fig. 3D, C Fig. 4A, D Fig. 4D,
Panels (E)–(H) have the parameters in Group 2 set at the midpoint of their interval. Comparing panels along
columns shows the impact of moving the parameters in Group 2 from the low to the middle of their range.
This effect is much smaller than the effect of variations in the parameters α, Amax , κ2, κ4

Furthermore, since

ṙ(t) + Ṙ(t) ≤ A − min(ξ, β)(r + R),

then whileR + r > A
min(ξ,β)

then Ṙ + ṙ < 0. Therefore

lim sup
t→∞

(R(t) + r(t)) ≤ A

min(ξ, β)

and therefore also

lim sup
t→∞

R(t) ≤ A

min(ξ, β)
. (18)

Finally, from bound on lim supt→∞ m(t) in (17) and bound on lim supt→∞ R(t) in
(18) we get that

ṗ ≤ KG
B

κβ

A

min(ξ, β)
− ξ p

and therefore

lim sup
t→∞

p(t) ≤ AKGB

min(ξ, β)κβξ
.
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4.1 Equilibrium Solutions

This section describes the mathematical analysis of the equilibrium solutions for the
system in (10)–(15). The weak coupling of the system allows us to uniquely determine
two components of the equilibrium solution for a given choice of parameters. Notice
that Eq. (15) is completely decoupled from the other equations, and one can solve it
explicitly for the equilibrium solution given below.

g∗ = H

η
(19)

Substituting (19) for g in the expressions for Â and B̂ in (7)–(8), it follows from
(14) that the value n∗ solves

I = γ n( Â(n) + B̂(n)). (20)

Since both Â(n) and B̂(n) are strictly increasing functions of n, the right hand side is
a strictly increasing function of n with value zero at n = 0. This proves the following
Lemma.

Lemma 2 For all parameters s ∈ P the Eq. (2) has unique positive solution n∗.
Once g∗ and n∗ are uniquely determined by (19) and Lemma (2), respectively, the

equilibrium values of Â(n∗, g∗), B̂(n∗, g∗) are fixed by Eqs. (7) and (8). This, in turn
defines equilibrium values A∗, B∗ by (9). The values n∗, g∗, A∗ and B∗ can be used
in the Eq. (10)–(13) to compute the remaining four coordinates of the equilibria of the
system (5).

4.1.1 Remaining Coordinates of the Equilibria

In order to simplify the notation wewill drop the superscript * from equilibrium values
of A∗ and B∗. We set ṙ = 0 in (12) to obtain

r∗ = A

α p∗ + β
(21)

Substituting this into (11) and assuming ṗ = 0, we obtain

GmR∗ = p∗

K

[
ξ + αA

α p∗ + β

]
(22)

R∗ = 1

Gm∗

(
p∗

K

) [
ξ + αA

α p∗ + β

]
(23)

Setting ṁ = 0 in (13), the expression is solved form∗ as follows, where the expression
for GmR∗ has been replaced with (22).

m∗ = 1

β

[
f (p∗) − p∗

�K

(
ξ + αA

α p∗ + β

)]
(24)
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Setting Ṙ = 0 in (10), we consider

αr∗ p∗ = GmR∗ + ξ R∗ (25)

We substitute the expressions (21), (23) and (24) into (25) to obtain a nonlinear
expression for p∗.

αAp∗

α p∗ + β
= p∗

K

(
ξ + αA

α p∗ + β

)
+ ξ

Gm∗

(
p∗

K

) (
ξ + αA

α p∗ + β

)
(26)

0 = p∗

K

[(
ξ + αA

α p∗ + β

)
+ ξ

Gm∗

(
ξ + αA

α p∗ + β

)
− KαA

α p∗ + β

]
(27)

One solution of this equation is p∗ = 0, and there are solutions for the nonzero case
as well. In the following subsections, we now consider two cases separately.

1. p∗ = 0 which leads to stationary equilibrium S;
2. p∗ �= 0, which leads to proliferative equilibrium P .

4.1.2 Stationary Equilibrium S

We compute the stationary equilibrium S = (R0, p0, r0,m0, n∗, g∗). Considering the
case p∗ = p0 = 0, first note that Eq. (25) implies that if p0 = 0 then R0 = 0. Then
from Eqs. (12), (9) and (24), we get the following sets of equilibrium values for the
remaining variables.

r0 := A

β

m0 := B

βκ
(28)

These two components of the equilibrium solutions are fully determined by n∗ and
g∗, and they are as given in the previous section along with parameter choices. The
stability of S is addressed in Sect. 5.1.

4.1.3 Proliferative Equilibrium P

We now show that for K > K0 there is a unique positive equilibrium P .

Theorem 3 A unique positive equilibrium P = (R†, p†, r†,m†, n∗, g∗) exists, if, and
only if, K > K0.
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Proof Using Eq. (12) components of such equilibrium satisfy

p = p(r) = A − βr

αr
. (29)

We note that p(r) is a strictly decreasing function or r with p(r0) = 0. Observe that
positive p† requires A − βr† > 0 which is equivalent to

r† < r0. (30)

We note that this is in agreement with the dissipativity condition (17) which also
implies that

m† ≤ m0. (31)

Since p(r) is decreasing, the composite function f (p(r)) in (13) is an increasing
function of r with

f (p(r0) = f (0) = βm0 (32)

Using (29) in Eq. (11) we get

GmR =: v(r), (33)

where the function v(r) has the form

v(r) = p(r)

K
(αr + ξ) = 1

K

(
1 + ξ

αr

)
(A − βr).

A positive equilibrium r† must have v(r†) > 0 which is guaranteed by (30); we also
note that v(r0) = 0. Computing derivative

v′(r) = 1

K

[
− ξ

αr2
(A − βr) − β

(
1 + ξ

αr

)]

shows that under condition (30) the function v(r) is strictly decreasing. At this point
of the analysis, we have expressed p = p(r) and from (33) we can express R uniquely
as a function ofm and r . It follows that if we show existence of uniquem† and r† then
we can compute p† = p(r†) and from (33), one obtains R† = 1

Gm† v(r†).

To show existence of unique m†, r†, we rewrite (10) and (11), respectively, as

R

p
= αr

Gm + ξ
and

R

p
= αr + ξ

KGm
.
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Equating the right sides yields

Gm

Gm + ξ
= 1

K

(
1 + ξ

αr

)
.

We set

u(r; K ) := 1

K

(
1 + ξ

αr

)

where we emphasize the role of the parameter K . Solving for m we get

m = h(r; K ) := ξ

G

u(r; K )

(1 − u(r; K ))
.

Using straightforward differentiation it follows from ∂u
∂r < 0 and ∂u

∂K < 0 that

∂h

∂r
< 0 and

∂h

∂K
< 0. (34)

Observe that by definition of K0

m0 = h(r0; K0). (35)

Note that the function h(r; K ) > 0 with an asymptote

lim
r→r+

b

h(r; K ) → ∞ (36)

with rb = rb(K ) given by solving 1 = u(rb; K ) which gives

rb = ξ

α(K − 1)
.

Together with (30), this implies that a relevant domain of function h(r; K ) is a region
D = {(rb(K ), r0) × (1,∞)}. It follows from (35) and (34) that for K < K0 the
decreasing function m = h(r; K ) > m0 for all values of r ∈ (r1, r0). Therefore there
cannot be m† = h(r†; K ) with r† ∈ (r1, r0) for K < K0 satisfying condition (31).
If this were the case, then one would arrive at the inequality m† > m0, which would
contradict (31).

On the other hand, when K > K0 the same argument shows that m0 > h(r0, K ).
In this case, we proceed as follows. Fix a value K > K0. Since h(r; K ) is strictly
decreasing and by (36), we find the unique value of r1 = r1(K ) with 0 < rb(K ) <

r1 < r0 satisfying h(r1; K ) = m0. Similarly, there is a unique value m1 = m1(K )

such that m1 := h(r0; K ) with m1 < m0.
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We finish the argument by considering the Eq. (13). For K > K0, the positive
equilibria correspond to the roots of the equation

f (p(r)) = GmR

�
+ βm = v(r)

�
+ βh(r; K ), r ∈ (r1, r0),

and where both functions v(r) and h(r; K ), defined above, are strictly decreasing in
r . Since the function f (p(r)) is increasing in r , this equation admits at most one root.

We evaluate both sides of the equation at the ends of interval (r1, r0), holding K
fixed. At r = r1, since r1 < r0 we estimate using (32)

f (p(r1)) < f (p(r0)) = βm0

Since m0 = h(r1; K ) and v(r) ≥ 0 for r ∈ (r1, r0) by (30) this implies

βm0 <
v(r1)

�
+ βh(r1; K )

and hence

f (p(r1)) <
v(r1)

�
+ βh(r1; K ).

Evaluating at r = r0, since m1 < m0, v(r0) = 0, and m1 = h(r0; K ), we get

f (p(r0)) = βm0 > βm1 = v(r0)

�
+ βh(r0; K ).

Consequently, there is a unique intersection (r†,m†) between the function f (p(r))
and v(r)

�
+ βh(r; K ) on interval (r1(K ), r0) for all K > K0. As noted earlier, the

remaining coordinates p† = p(r†) and R† = 1
Gm† v(r†) give unique equilibrium P

for all K > K0. ��

5 Stability of Equilibrium Solutions

The system of equations in (10)–(15) has the Jacobian matrix of the form

J(R, p, r ,m, n, g) =

⎡
⎢⎢⎢⎢⎢⎢⎣

−Gm − ξ αr α p −GR 0 0
KGm −αr − ξ −α p KGR 0 0
0 −αr −α p − β 0 
1 
2

−G
�
m �1 0 −G

�
R − β 
3 
4

0 0 0 0 
5 
6
0 0 0 0 0 −η

⎤
⎥⎥⎥⎥⎥⎥⎦
(37)
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where


1 = γ1Amax

[ κ1

(κ1 + n)2

]


2 = −
(
Amax

n

κ1 + n
+ A0

)
1

(κ2 + g)2
= − Âγ1


3 = 1

κ + p
γ2Bmax

[ κ3

(κ3 + n)2

]


4 = − 1

κ + p

(
Bmax

n

κ3 + n
+ B0

)
1

(κ4 + g)2
= − γ2

κ + p
B̂


5 = −γ ( Â + B̂) − γ n
[
γ1Amax

κ1

(κ1 + n)2
+ γ2Bmax

κ3

(κ3 + n)2

]


6 = γ n
[(

Amax
n

κ1 + n
+ A0

)
1

(κ2 + g)2
+

(
Bmax

n

κ3 + n
+ B0

)
1

(κ4 + g)2

]

= γ n
[
Âγ1 + B̂γ2

]

�1 = −B

(κ + p)2

and

γ1 = 1

κ2 + g
and γ2 = 1

κ4 + g
.

Inwhat follows,we analyze the stability of the equilibrium solutions using the Jacobian
matrix.

5.1 Stability of S

Evaluating the Jacobian matrix in (37) at the equilibrium solution S leads to

J(S) =

⎡
⎢⎢⎢⎢⎢⎢⎣

−Gm0 − ξ αr0 0 0 0 0
KGm0 −αr0 − ξ 0 0 0 0

0 −αr0 −β 0 
1 
2

−G
�
m0 �1 0 −β 
3 
4
0 0 0 0 
5 
6
0 0 0 0 0 −η

⎤
⎥⎥⎥⎥⎥⎥⎦

Using the determinant expansion of J(S), four of the six eigenvalues are identified
immediately as

λ1 = −η

λ2 = 
5 < 0

λ3 = −β

λ4 = −β,
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and the remaining two are eigenvalues of the 2 × 2 matrix

J2 =
[ −Gm0 − ξ αr0

KGm0 −αr0 − ξ

]

which is the 2 by 2 block matrix in the upper left corner of the Jacobian matrix above.
Note that the trace and determinant of this 2 × 2 block are given by

Trace(J2) = −Gm0 − αr0 − 2ξ < 0

Det(J2) = (Gm0 + ξ)(αr0 + ξ) − KGαm0r0.

When Det(J2) > 0 the equilibrium S is locally asymptotically stable and when
Det(J2) < 0 the equilibrium is a saddle. At Det(J2) = 0, stability changes in a
bifurcation. The condition Det(J2) > 0 is equivalent to

K <
(Gm0 + ξ)(αr0)

Gαm0r0
=

(
1 + ξ

Gm0

) (
1 + ξ

αr0

)

=
(
1 + κξβ

GB

) (
1 + ξβ

αA

)
=

(
1 + κ

ε

Z

) (
1 + ε

X

)

= K0.

It follows that

Lemma 4 If K < K0, then S is locally asymptotically stable. If K > K0, then S is a
saddle.

Proof of main theorem.
We first note that the stationary equilibrium S always exists by Sect. 4.1.2. Theo-

rem 3 proves the existence part of Theorem 1, and the stability of S is guaranteed by
Lemma 4. If there are no other invariant sets but P in the interior ofR6+, then the easy
observation that the flow of the system (5) is dissipative guarantees stability of P .

6 Discussion

Growth rate of prokaryotic cells usually determines evolutionary success since higher
growth rate leads to shorter time to division and hencemore offspring. Since ribosomes
are needed to assemble every protein in the cell, including those proteins that form the
ribosome, and since ribosomes are costly for the cell to produce, ribosomal abundance
control is crucial for cells to respond to changes in environmental conditions.

In this paper we develop a model of the feedback process that controls ribosome
abundance. It models the concentration of ribosomes, ribosomal RNA, ribosomal pro-
teins and their mRNA while incorporating several control mechanisms. In particular,
the elongation of rrn and mRNA is influenced by the well known control molecule
ppGpp, as well as the abundance of rRNA and mRNA building blocks that, in turn,
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depends on abundance of cellular resources. The model presented here is a simplifi-
cation of the complexity of control mechanisms in real cells. In particular, we do not
consider trade-offs where cells need to commit limited resources (i.e carbon) towards
transport proteins, the enzymes to process the resources and the ribosomes to build
them.

In this work we analyze the equilibria of the control model. We find that the system
can operate in two states: the stationary state S where there are no free ribosomes
and no free ribosomal proteins; therefore, the ribosome assembly balances with its
use in ribosomal protein translation and protein decay. We interpret this state as a
stationary state of the cell. On the other hand at the proliferative state P , there are
both free ribosomes and free ribosomal proteins, which we interpret as a state of
growth for the cell, since these free ribosomes may engage in biomass growth. The
transition between the equilibria depends on a relation between supply of building
blocks of ribosomal proteins (aminoacids) and demand for ribosomal proteins. The
supply rate is represented by K (I )where I is nutrient supply to the cell and the demand
is represented by a complex expression of parameters that define the threshold K0.
Our main result is that when the supply of building blocks for ribosomes exceeds the
demand for them, the cell will have free ribosomes that are available to build protein
biomass beyond ribosomes themselves.

There are three main contributions of this paper. The first is the construction of a
mathematical model of a complicated biological control system. Second is the math-
ematical analysis of the equilibria of the six dimensional system. This analysis shows
the existence of equilibria that can be readily interpreted in the biological context.
Finally, we identify either parameter values or ranges of values for 23 parameters in
the model, and we show that both types of equilibria exist within this set of parame-
ters. In addition, we demonstrate that the control mechanisms indeed cause transition
between the equilibria in the expected direction. An intriguing observation is that we
do not find hysteresis in our model. Hysteresis is observed regularly in cellular biology
as it buffers system against unexpected change of parameters caused by noise. Our
model suggests that the amount of free ribosomes changes gradually as a function of
nutrient supply rather than abruptly which would be expected under hysteresis.

Themodel developed here is clearly incomplete; even the process of ribsome assem-
bly itself is immensely complicated (Davis and Willamson 2017). In particular, there
are additional control mechanisms; only some of them are likely known. However,
we hope that the model constructed and analyzed in this work and the parameters we
have identified may serve as a basis for further mathematical modeling exploration of
this fascinating control problem in cell biology.

Important questions, that we plan to pursue in the future, focus on how the ribosome
abundance control system responds to dynamic perturbation of the resources. Cellular
response to a sudden degradation of the quality or quantity of the carbon source
necessitates rapid transition away from ribosome production as cells transition from
exponential growth to either linear growth or simple survival. This so called stringent
response has been studied in systems biology for quite some time 9s Hauryliuk et al.
2015; Srivatsan and Wang 2008; Traxler et al. 2011; Boutte and Crosson 2013). Since
this is a dynamical response to a shift in resource, several factors that we do not
model in this work will rise in importance in future research. In particular, the fact that
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transcription and translation are processes that unfold in time will require us to either
model their effect by delays (Mier-y-Teran-R et al. 2010), or model them directly as
transport processes (Davis et al. 2013).

Acknowledgements This research was partially supported by NSF grant DMS-1951510. We acknowledge
the Indigenous nations and peoples who are the traditional owners and caretakers of the land on which this
work was undertaken at Montana State University.

A Parameter Values Justification

In order to parameterize the model we use numbers for E. coli. There are two chal-
lenges to successful parameterization. The first is that the numbers depend on growth
condition of E. coli so that some of the parameters (i.e. number of ribosomes in a
cell) may change by two orders of magnitude. The second challenge is that our model,
as every model, is a simplification and thus many parameters have to be interpreted
appropriately in terms of measured data. Below is the detailed justification parameter
values in Table 1.

• β = 0.14 min−1 = 0.00233 s−1 Degradation rate of mRNA and rRNA. In E. coli
mRNA lifespan is about 5min (Milo and Phillips 2016) (BNID 106869).

• ξ = 0.014 min−1 = 0.000233 s−1 Degradation rate of proteins. Rapidly
degraded proteins in E. coli have lifespan about an hour or 10 times that of mRNA
will do 50 minutes (Milo and Phillips 2016) (BNID 108404). Note that this con-
stant can be also interpreted as a dilution rate of proteins due to volume growth of
the cell.

• η = 0.2 − 0.35 min−1 = 0.0033 − 0.0058 s−1 ppGpp degradation rate (Gallant
et al. 1972).

• γ = 1100 is the number of nucleotides that are assembled into mRNA or rRNA
per initiation event. Typical mRNA in E. coli has length 370 nm and a single
nucleotide has length 0.33 nm for about 1100 nucleotides per mRNA.

• U = 1.3 µM amino acid average concentration in E. coli. The article (Yuan et al.
2006) lists concentrations for some amino acids and they range from 0.2 µmol/g
for phenylalanine to 6.81 µmol/g for alanine. With the conversion factor 0.36g/L
we get a range 0.072 − 2.45 µmol/L which is just µM. We selected number 1.3
to be the average of this range.

• Km = 0.5 µM. We chose comparable to value of U .
• I0 = 6212 µM. Concentration of NTP required for balanced growth has ben
measured by Buckstein et al. (2008), who cite numbers ATP = 3560 µM, CTP =
325 µM, GTP = 1660 µM, UTP = 667 µM.

• I = free parameter
• κ2, κ4 ∈ [30, 113] µM are half-saturation constants for ppGpp repression. During
the transition from exponential to stationary phase the ppGpp concentaration is
between 30 − 113 µM (Buckstein et al. 2008). We select comparable values of
κ2, κ4.
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• κ1, κ3 = [103, 104] µMare half-concentrations of nucleotideswhen these become
limiting. Since we derive I0 = 6212 µM:concentration of NTP required for
balanced growth below, we select κ1, κ3 to be on the same order of magnitude.

• B2 is maximal rate of mRNA initiation in s−1. Typical mRNA initiation rate is
20 min−1 = 0.33s−1 (Moran et al. 2010) (ID 111997). We will assume that
the maximal rate is larger, but does not match the rate of the rrn gene and set
B2 ∈ [1, 3] s−1. Since Bmax = B2κ2, the range of Bmax is Bmax ∈ [30, 339].

• A2 ∈ [0.46, 6.76] s−1 is the maximal rate of rrn transcription initiation. There are
4− 58 initiations/min/gene for rrn gene (Bremer and Dennis 1996), with 7 copies
of rrn gene 28-406 initiations per min. Since Amax = A2κ2, the range of Amax is
Amax ∈ [13.8, 763.88].

• B0 = 0 minimal rate of incorporation in the absence of ppGpp.
• A0 = 0 minimal rate of incorporation in the absence of ppGpp.
• � = 5.14 The average size of ribosomal proteins in E. coli is 132 amino acids
(Reuveni et al. 2017) and since each of them is encoded by 3 nt, the average length
of ribosomal protein mRNA is 396 nt. On the other hand, the average spacing of
ribosomes is 77 nt in E. coli (Siwiak and Zielenkiewicz 2013), and therefore we
assume that there are � = 396/77 = 5.14 ribosomes on mRNA.

For the remainder of the parameters, we will use frequently the following numbers.
All conversions to micromolar are done using Remark 5.

1. Number of ribosomes per cell is 6800−72000 lower value is for slow division rate
(100min) and higher value is for fast division rate (24min) (Moran et al. 2010)
(BNID 101441). This is 11.29−119.56µM

2. 80% of ribosomes are actively translating (Moran et al. 2010) (BNID 102344)
3. There are 7 rrn genes (Condon et al. 1995). This is 0.011624µM, see Remark 5.
4. The volume of E. coli is about 1 fL (Moran et al. 2010) (BNID 101788)
5. Avogadro number is 6.02214076 ∗ 1023 mol−1.
6. There are 2400−7800 copies of mRNA per E. coli cell, depending on the growth

medium (Moran et al. 2010) (BNID 112795). This is 3.98−12.95µM.
7. The mean initiation rate of translation in E. coli is about 5 initiations/min/mRNA

(Moran et al. 2010) (BNID 112001), which is 0.08 initiations/sec/mRNA.

Remark 5 We describe how to convert number per cell to units of micromolar µM. As
an examplewe take the number of copies of rrn gene inE. coli, which is 7 (Condon et al.
1995). Since the volume of E. coli is about 1 fL (Moran et al. 2010) (BNID 101788),
which is 10−15L there are 71015 rrn genes per liter. Dividing by the Avogadro number
6.02214076 ∗ 1023mol−1 we get concentration 1.1624 ∗ 10−8mol/L . Converting the
units to micromolar, which is equivalent by multiplying by 106 we get 0.011624µM.

• κ is Michealis-Menten constant for protein repression of its own mRNA.We com-
puted above typical concentration of free ribosomal protein as 11.29−119.56 µM.
We assume κ belongs to the same range.

• α in units (µMs)−1 is the rate of ribosome assembly frommRNAandproteins. This
process is rapid requiring 2min for production of a single ribosome (Chen et al.
2012; Lindahl 1975). There are between 11.29 − 119.56µM ribosomes per cell
(Moran et al. 2010). Based on Chen et al. (2015) on average 1−2% of ribosomal
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proteins are in the free pool, the rest is in ribosomes. So the typical size of the
protein pool (these are "protein complexes" of 55 proteins) is 0.11−1.19µM; the
same would be true for free ribosomal RNA. We assume that

α ∈
[

1

120
s−1 ∗ 1

0.011
(µM)−1,

1

120
s−1 ∗ 1

1.19
(µM)−1

]
= [0.007, 0.754].

• â is the 1/KD where KD is the dissociation constant for binding ribosomes to
ribsomal mRNA in units (µmol)−1. In other words,

â = active ribsomes on ribsomal mRNA

free ribosomes * free ribsomal mRNA

There are between 11.29−119.56µM ribosomes per cell (Moran et al. 2010),
80% of which are actively translating (Moran et al. 2010) (BNID 102344).
There are between 2400−7800 copies of mRNA per E. coli cell (Moran et al.
2010) (BNID 112795). Since the ribosomal protein is 9−22% of total protein,
we assume that the same proportion holds for ratio between ribosomal mRNA
and total mRNA. Therefore there are between 216 and 1716 ribosomal mRNA
per cell which is 0.216−1.716µM. If we take the lower number of ribosomes
and higher nunber of ribosomal mRNA we get â = 0.811.29∗c

0.211.291.716∗c where c is
the proportion of ribsomal mRNA/total mRNA. This constant cancels and we
get â = 0.8

0.21.716 = 2.33(µmol)−1. If we take the higher number of ribosomes
and lower number of ribosomal mRNA we get â = 0.8

0.20.216 = 18.52(µmol)−1.
Therefore

â ∈ [2.33, 18.52].

• k2 ∈ [1.05, 27.18]s−1 This is Kcat for enzymatic reaction producing a represen-
tative ribosomal protein. The start with the number of ribosomes per cell which
is 6800 to 72000 (Moran et al. 2010) (BNID 101441). We then assume that 80%
or ribosomes are actively translating (Moran et al. 2010) (BNID 102344), and the
elongation rate is 16 amino acids per ribosome per second. Then there are between
87, 040 and 921, 600 amino acids needed per second for protein synthesis. If we
take this range and assume that 9–22% of protein in the cell are ribosomal pro-
teins than ribosomal protein pool is created at the rate in the range [7834, 202752]
amino acids/sec. Since ribosomes contain 7459 amino acids (Moran et al. 2010)
(BNID 101175), the rate of production of ribosomes is 1.05−27.18 ribosomes per
second. Since in our model p represents a single protein that enters ribosome with
stochiometry 1, this range also represents rate of production of this representative
protein, which is k2.

• ir = 0.011624µMconcentration of rrn genes, since there are 7 rrn genes (Condon
et al. 1995). See Remark 5 for the conversion.

• im concentration of the ribosomal protein genes.We assume there are 55 ribosomal
protein genes, one per each protein. Using conversion one gets 0.09133µM.
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• ω ∈ [0.33, 2.64] s−1 is the rate of formation of complex mR to produce represen-
tative ribosomal protein. We equate this number with the number of translation
initiations on mRNA of that protein. The mean initiation rate of translation in E.
coli is about 5 initiations/min/mRNA (Moran et al. 2010) (BNID 112001), which
is 0.08 initiations/sec/mRNA. There are between 2400−7800 copies of mRNA
per E. coli cell, depending on the growth medium (Moran et al. 2010) (BNID
112795). Since the ribosomal protein is 9−22% of total protein, we assume that
the same proportion holds for ratio between ribosomal mRNA and total mRNA.
Therefore there are between 216 and 1716 ribosomal mRNA per cell. Using these
numbers as typical concentrations we estimate overall initiation to be in the range
[0.08 ∗ 216, 0.08 ∗ 1716] = [17.28, 137.28] initiations/sec across all ribosomal
mRNA in the cell. Since we model a representative ribosomal protein p, this range
has to be divided by 52 which is the number of ribosomal proteins in a ribosome.
This gives the range [0.33, 2.64].

• K = k2
ω
E(I ) where E(I ) = q I

Km+q I , see (9). K is not constant since it depends on
the nutrient level I . Note that the function E(I ) ∈ [0, 1]. It is also known that the
lower estimate of rate k2 and the lower estimate of ω occur at slow growth. Since
both upper estimates of these rates occur at high rates, we set K ∈ [0, 10.295]
where 10.295 is the ratio of the higher estimate of k2 and the higher estimate of ω.
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