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ABSTRACT

Physical parameterizations (or closures) are used as representations of unresolved subgrid processes within weather and global climate mod-
els or coarse-scale turbulent models, whose resolutions are too coarse to resolve small-scale processes. These parameterizations are typically
grounded on physically based, yet empirical, representations of the underlying small-scale processes. Machine learning-based parameteri-
zations have recently been proposed as an alternative solution and have shown great promise to reduce uncertainties associated with the
parameterization of small-scale processes. Yet, those approaches still show some important mismatches that are often attributed to the
stochasticity of the considered process. This stochasticity can be due to coarse temporal resolution, unresolved variables, or simply to the
inherent chaotic nature of the process. To address these issues, we propose a new type of parameterization (closure), which is built using
memory-based neural networks, to account for the non-instantaneous response of the closure and to enhance its stability and prediction
accuracy. We apply the proposed memory-based parameterization, with differentiable solver, to the Lorenz ’96 model in the presence of a
coarse temporal resolution and show its capacity to predict skillful forecasts over a long time horizon of the resolved variables compared to
instantaneous parameterizations. This approach paves the way for the use of memory-based parameterizations for closure problems.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0131929

Turbulence, ocean, weather, and climate models involve physical

processes across different scales. Given the available computa-

tional resources, small-scale processes are typically not resolved

in those models but are rather represented by parameterization

schemes. Machine learning has been recently used to improve

existing parameterization approaches, yet those methods still

show some important mismatches that are often attributed to

stochasticity in the considered processes. This stochasticity can

be due to noisy and sparse data, unresolved physical variables,

or simply to the inherent chaotic nature of the process. In this

work, we develop a memory-based parameterization scheme that

is trained while solving the parameterized dynamical system. The

resulting parameterized model is capable of predicting skillful

forecasts of the resolved physical variables compared to instan-

taneous parameterizations. This approach paves the way for the

use of memory-based approaches for parameterization problems.

I. INTRODUCTION

Parameterization schemes, or closures, are approximate rep-
resentations of unresolved subgrid processes in turbulence, ocean,
weather, and climate models and are the most dominant source of
uncertainty in model predictions. The corresponding errors have
been reduced throughout the improvements of existing (physically
based) parameterizations and the development of new schemes, yet
these errors cannot be completely eliminated because of inherent
model structural errors, as they try to approximate complex physical
processes. To address these structural errors, recently, several groups
have started developing machine learning-based parameterizations,
which have been shown to dramatically improve the representation
of subgrid physical processes and strongly reduce parameteriza-
tion structural errors compared to standard parameterizations.1–5

Another source of uncertainty in models stems from the inherent
stochastic nature of many physical processes in nature.6–9
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Different approaches have been proposed for parameterization
schemes. We can distinguish between approaches that are exten-
sively used thanks to their physically based implementation and
model prediction improvements10–13 and statistical schemes, such as
for convection and cloud formation.14–20 Data-driven approaches are
another option to build parameterizations based on observations or
high-resolution model simulations used as truth, in order to account
for the subgrid variability that is unresolved in the lower-resolution
models.21–26 The major limitation of these approaches is that they
only have access to coarse-scale variables to represent unresolved
small-scale processes.

Machine learning-based methods have been successfully devel-
oped in order to parameterize various atmospheric1–4,27–29 and
oceanic processes,5 including turbulence,30,31 by inferring instanta-
neous closure terms that depend mostly on the current model time
step. These models might not capture any memory effect, such as
in ocean eddies or decaying turbulence. Other approaches relied on
model order reduction techniques to parameterize dynamical sys-
tems, and among these methods, the memory dependence is under-
stood within the framework of the Mori–Zwanzig formalism.16,32–36

However, most of these existing techniques require training data
for the closure term and do not learn directly from the state vari-
able observations.32,33 Some of them are also specifically developed
for first-order forward time integration with limited stability and
accuracy.33 Others use memory terms that are limited to a single
time-lag or are implemented in Fourier space with modes trun-
cation instead of a direct implementation to the time-dependent
differential equation.32 It is worth noting that the NARMAX (non-
linear autoregression moving average with exogenous input)-based
parameterization scheme, which accounts for memory, allows more
flexibility in terms of the number of time-lags and time integration
scheme.37 However, it is based on a predefined form of the closure
term with a limited number of parameters to be tuned and does not
take advantage of recent development in machine learning, includ-
ing deep neural networks and their proven expressiveness. Many
physical processes, such as turbulence, clouds, or ocean eddies, may
have substantial memory. Excluding memory from the parameter-
ization (closure) can lead to further uncertainties and appear as a
source of stochasticity, as the model will generate varying predic-
tions given only the current time state. Such modeling choice might
limit considerably the online forecasts of the parameterized model.

To overcome these limitations, we develop a memory-based
parameterization that depends not only on the current state of the
resolved variables but also on their previous states. We also rely
on a differentiable solver of the parameterized model in order to
learn the parameterization implicitly by requiring only observations
of the resolved variables and not of the closure term. Similarly to
previous work on differential programming for dynamical systems
identification,38,39 a differentiable solver is used in order to back-
propagate the gradient of the loss function with respect to the tun-
able parameters within the differential equation solver. The model is
further evaluated in an online setting, i.e., when integrating (in time)
the parameterized dynamical system based only on the resolved
variables. The time-lags defining the memory terms of the param-
eterization and the time step used to solve the parameterized model
are judiciously chosen in order to avoid data interpolation during
temporal integration of the differentiable parameterized model. We

will show that the parameterization is capable of not only implicitly
learning the coupling terms but also of accounting and correcting
for the numerical errors introduced by the temporal discretization
in online setting. We apply the proposed memory-based stochastic
parameterization to the Lorenz ’96 model using simulated observa-
tional data with a coarse temporal resolution and show its capability
of producing accurate temporal forecasts for the resolved variables
compared to instantaneous parameterizations, such as the Wilks
scheme40 or an instantaneous feedforward neural network.

The Lorenz ’96 model and the proposed memory-based param-
eterization scheme are detailed in Sec. II. The forecast results and
study of numerical error and stability of the proposed parameter-
ization schemes are presented in Sec. III. The proposed memory-
based parameterization scheme is evaluated against non-memory-
based (instantaneous) parameterization schemes. Finally, in Sec. IV,
we summarize the proposed parameterization schemes and their
results, discuss shortcomings of the proposed approach, and carve
out directions for future investigation.

II. METHODS

A. Lorenz ’96 model

The Lorenz ’96 model is a two time-scale dynamical system,
which mimics the non-linear dynamics of the extratropical atmo-
sphere with a simplified representation of multiscale interactions
and nonlinear advection.6 It consists of a set of equations coupling
variables evolving over slow Xk and fast timescales Yj,

dXk

dt
= − Xk−1(Xk−2 − Xk+1)

− Xk + F −
hc

b

kJ
∑

j=J(k−1)+1

Yj, k = 1, . . . , K, (1)

dYj

dt
= − cbYj+1(Yj+2 − Yj−1) − cYj

+
hc

b
Xb(j−1)/Jc+1, j = 1, . . . , JK. (2)

The model includes K large-scale, low-frequency (slow-
varying) variables Xk, k = 1, . . . , K. Each slow-varying variable Xk

is coupled to a larger number of small-scale, high-frequency (fast-
varying) variables Yj, j = J(k − 1) + 1, . . . , kJ. The fast time scales

impact the slow variables through the coupling term
∑kJ

j=J(k−1)+1 Yj

and the coupling strength depends on three key parameters: b, c,
and h. Parameter b determines the magnitude of the non-linear
interactions between the fast variables. Parameter c controls how
rapidly the fast-varying variables fluctuate compared to the slow-
varying variables. Finally, the parameter h governs the strength of
the coupling between the slow- and fast-varying variables.

The chaotic dynamical system Lorenz ’96 is a useful ansatz
for testing different numerical methods in atmospheric modeling
thanks to its transparency, low computational cost, and simplicity
compared to full-blown Global Climate Models (GCMs). The inter-
action between variables of different scales makes the Lorenz ’96
model of particular interest when evaluating new parameterization
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methodologies. As such, it was used in assessing different techniques
that could later be incorporated into more complex models.41,42

The Lorenz ’96 model has been extensively used and stud-
ied as a test bed in various studies, including data assimila-
tion approaches,43,44 stochastic parameterization schemes,37,45,46 and
machine learning-based parameterizations.28,29,47,48 The full Lorenz
’96 system (1) and (2) including the fast variables is considered as
the “true” model and is used to generate the dataset.

B. Standard (instantaneous) parameterizations

The main objective of the parameterizations for the Lorenz ’96
model is to replace the coupling term as a function of the resolved
slow-varying variables Xk, k = 1, . . . , K. In an instantaneous param-
eterization, this is done using the resolved variables at the current
time step,

dX∗
k

dt
= −X∗

k−1(X
∗
k−2 − X∗

k+1) − X∗
k + F + P(X∗

k biθ), k = 1, . . . , K,

(3)

where X∗
k , k = 1, . . . , K is the forecast estimate of Xk based on the

parameterized subgrid tendency P(·; ·) and θ is a vector of unknown
parameters for the parameterization, which are learned given the
available training dataset.

In our study, the goal is to infer a surrogate model for the
parameterization (closure) that replaces the coupling term. We also
aim to build a parameterization that remains accurate over long
time periods when tested online, i.e., when integrating (in time)
the parameterized dynamical system based only on the resolved
variables. As we will show, this task is typically unfeasible unless
we allow the parameterized subgrid tendency term to depend not
only on the resolved variables evaluated at the current time but
also on the previous time steps. Indeed, relying on an instanta-
neous parameterization in the form of Eq. (3) will likely not provide
an online forecast estimate X∗

k , k = 1, . . . , K, which “matches” the
“true” model variables Xk, k = 1, . . . , K, since the state of these vari-
ables at a time instance t does not only depend on their state at a
previous time instance but also on the state of the fast-varying vari-
ables Yj, j = 1, . . . , JK, at the same previous time instance. In other
words, in a forecast setting, the next time step prediction for X∗

k ,
k = 1, . . . , K, does not only depend on its current time state but
also on the current state of the inaccessible small-scale variables
Yj, j = 1, . . . JK. Our working hypothesis is that including previous
observations of coarse-scale variables may provide more informa-
tion about the current state of unobserved short-scale variables.
Equivalently, the variance of the coupling term is expected to be
lower when being conditioned on a history of observations rather
being dependent only on the instantaneous resolved variable at the
current time.

C. Memory-based parameterization

To remedy the limitations of having a parameterization that
depends only on the current state of the resolved variables, we pro-
pose a parameterized subgrid tendency that depends not only on
the resolved variables evaluated at the current time steps but also

on their states at previous time steps as follows:

dX∗
k

dt
= − X∗

k−1(X
∗
k−2 − X∗

k+1) − X∗
k + F + P

(

X∗
k(t), X

∗
k(t − τ1),

. . . , X∗
k(t − τnh

); θ
)

, k = 1, . . . , K, (4)

where τi, i = 1, . . . , nh are the time-lags that define the previous time
steps to consider for the parameterization. With such a parame-
terization, we want to assess whether the effect of the unresolved
fast-varying variables on the forecast of the resolved slow-varying
variables is (partly) embedded within the historical (previous time
steps) evolution of the resolved coarse variables. Examples of such
behavior would be convective aggregation,49–51 (decaying) turbu-
lence, or ocean eddies. Such memory-based inference can be car-
ried out using machine learning techniques based on a temporal
recurrence/memory.

One technical challenge that may result from considering a
memory-based parameterization is that the resulting dynamical sys-
tem (4) will consist of a Delay Differential Equation (DDE) instead
of an Ordinary Differential Equation (ODE). Using Runge–Kutta
schemes for DDEs may result in interpolating the existing data
in order to perform time marching,52,53 which can be an addi-
tional significant source of error for the inference task. Fourth-order
Runge–Kutta (RK4) schemes are the standard time-stepping meth-
ods that are used not only to solve the “true” model but also to
solve the parameterized one.6,29,40,46,54 Explicit RK4 schemes are suit-
able for such a parameterization problem given their stability, and
the fact that using implicit schemes would result in a computa-
tional bottleneck when using machine learning surrogate models
for the parameterization. In such a case, performing time marching
with an implicit time-stepping scheme would require solving non-
linear equations depending on the output of the machine learning
surrogate models that are used for the parameterization, which is
generally infeasible when using deep neural networks.

In order to explain the choice of the time-lags and time-
stepping for the parameterized model that are needed to avoid data
interpolation, we re-write the DDE (4) as follows:

dX
∗

dt
= f

(

X
∗(t), X∗(t − τ1), . . . , X∗(t − τnh

); θ
)

, (5)

where X
∗ refers to the K-dimensional vector concatenating X∗

k ,
k = 1, . . . , K and f(·) refers to the whole right-hand-side term of
Eq. (4).

If one chooses the time-lags as multiples of the time step 1t for
which the data are available: τi = i1t , i = 1, . . . , nh, then applying
RK4 with a time step equal to 1t to Eq. (5) gives the following time-
stepping:

X
∗(t + 1t; θ) = X

∗(t) +
1

6
(r1 + 2 r2 + 2 r3 + r4), (6)

r1 = 1t f
(

X
∗(t), X∗(t − 1t), . . . , X∗(t − nh1t); θ

)

, (7)

r2 = 1t f

(

X
∗(t) +

r1

2
, X∗

(

t −
1t

2

)

, X∗

(

t −
31t

2

)

,

. . . , X
∗

(

t −
(2nh − 1)1t

2

)

; θ

)

, (8)
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r3 = 1t f

(

X
∗(t) +

r2

2
, X∗

(

t −
1t

2

)

, X∗

(

t −
31t

2

)

,

. . . , X
∗

(

t −
(2nh − 1)1t

2

)

; θ

)

, (9)

r4 = 1t f
(

X
∗(t) + r3, X

∗(t), X∗(t − 1t), . . . , X∗
(

t − (nh − 1)1t
)

; θ
)

.

(10)

This means that if we want to solve the parameterized model in
order to fit the predicted next time-step variables, we would need
the midpoint value of the available trajectory evaluated at a time
grid with a time step equal to 1t. In order to avoid interpolating
data, we actually double the time step to integrate the parameterized
model and consider the time-lags as multiples of 2 1t: τi = 2i1t ,
i = 1, . . . , nh. Using these settings, the RK4 time-stepping of Eq. (5)
becomes

X
∗(t + 2 1t; θ) = X

∗(t) +
1

6
(r1 + 2 r2 + 2 r3 + r4), (11)

r1 = 2 1t f
(

X
∗(t), X∗(t − 2 1t), . . . , X∗(t − 2nh1t); θ

)

, (12)

r2 = 2 1t f
(

X
∗(t) +

r1

2
, X∗(t − 1t), X∗(t − 3 1t),

. . . , X
∗
(

t − (2nh − 1)1t
)

; θ
)

, (13)

r3 = 2 1t f
(

X
∗(t) +

r2

2
, X∗(t − 1t), X∗(t − 3 1t),

. . . , X
∗
(

t − (2nh − 1)1t
)

; θ
)

, (14)

r4 = 2 1t f
(

X
∗(t) + r3, X

∗(t), X∗(t − 21t),

. . . , X∗
(

t − (2nh − 2)1t
)

; θ
)

. (15)

This means that using the points {X(t − 2nh1t), X(t − (2nh

− 1)1t), . . . , X(t − 1t), X(t)} from the available dataset, we can
predict the point X

∗(t + 2 1t) and fit the model by matching it with
the data-point X(t + 2 1t). We illustrate the computational stencils
associated with the time-stepping schemes (6)–(10) and (11)–(15) in
Figs. 1(a) and 1(b), respectively.

The time-stepping scheme detailed in (11)–(15) provides a dif-
ferentiable time-solver with respect to the unknown parameters θ .
Note that in some works, an explicit second-order Runge–Kutta
(RK2) scheme was considered to solve the parameterized model
in order to represent the temporal discretization of the equations
representing the resolved dynamics in an atmospheric forecasting
model.29 The numerical property detailed above for RK4 that does
not require any time interpolation still applies for explicit RK2. We
do not detail the corresponding algebra for the sake of clarity and
conciseness, as it is similar to the derivation of the RK4 case.

As a summary, fitting discrete observations of the resolved
slow-varying variables that are available with a time step 1t by
discretizing the DDE (4) with an explicit RK4 can be carried out
without interpolating data by choosing the time-lags as multiples of
2 1t: τi = 2i1t , i = 1, . . . , nh and discretizing the DDE (4) with the
time step 2 1t.

D. Machine learning formulation

A system identification task can be formulated as follows:
Given some observations D = {X(ti), ti = i1t, i = 0, . . . , n − 1}, we
can learn the vector of the model parameters θ that best parame-
terizes the underlying dynamics (4). In practice, the observations
in D are different states from a single trajectory that is obtained
by integrating the “true” model (1) and (2). In order to learn
the model parameters θ , we define a loss function L that mea-
sures the discrepancy between the observed data and the param-

eterized model predictions: L

(

X(tj+nf+1), X
∗(tj + (nf + 1)1t; θ)

)

.

X
∗(tj + (nf + 1)1t; θ) is the parameterized prediction obtained for

the data-point X(tj+nf+1) by integrating (4) nf times and starting

from the data-point X(tj) , j = 0, . . . , n − nf − 2. In this work, we
consider the L2 norm of the error in the loss formulation (mean
squared error). nf is a hyperparameter that is tuned such that the
model’s accuracy is optimized for its integration over different time
scales by changing nf. In practice, the parameters θ are learned by
minimizing the loss functionL evaluated on a batch of data points of
size nb from the training dataset. We note that the loss function can
be evaluated for different nf values simultaneously. In this context,
using decaying weights as inference is conducted further in time can
help remedy the issue of systematically predicting the mean state for
too large nf.55

Numerical integration (e.g., doubling the time step) of the
parameterized model may be a source of additional numerical error.
However, as we will show in the numerical results, Sec. III, the
machine learning surrogate model P used in Eq. (4) is actually not
only capable of learning the coupling (closure) term but also of cor-
recting the numerical errors introduced by the discretization of the
parameterized model compared to the accuracy of the data on which
the model is trained. Indeed, the training data considered are gener-
ated by integrating the “true” model (1) and (2) with a fine time step
equal to 1t/2 and then removing half of the points to retain trajec-
tories with a time step equal to 1t. On one hand, we show that the
parameterized model (4) discretized with a time step equal to 2 1t
and trained with such a dataset can generate forecasts that closely
match the “true” model trajectories. On the other hand, using the
RK4 to solve the “true” model (1) and (2) with a time step equal to
2 1t is not even computationally stable. Hence, the parameterized
model is still numerically stable even when it is discretized with a
larger time step (time step equal to 2 1t) for training and forecasting.
This inference approach can also be applied for standard instanta-
neous parameterizations described in Sec. II B by discretizing the
parameterized dynamical system (3) with a time step 1t.

III. RESULTS

The instantaneous and memory-based parameterizations
detailed in Secs. II B and II C, respectively, are applied to the
Lorenz ’96 model (1) and (2) in the chaotic regime. Fully con-
nected neural networks are used as machine learning surrogate
models for the parameterizations. A Wilks parameterization,40 con-
sisting of a fourth-order polynomial closure and a first-order auto-
regressive stochastic process, is also considered as a reference
for another instantaneous parametric parameterization. Although
the proposed memory-based parameterization is only formulated
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FIG. 1. Computational stencils for explicit RK4 applied to a DDE of the form (5): nh is taken equal to 1 for clarity. (a) RK4 with a time step 1t and time-lags as multiples of
1t as detailed in Eqs. (6)–(10): red points indicate the needed points for time-stepping but which are not available among the dataset. (b) RK4 with a time step 2 1t and
time-lags as multiples of 2 1t as detailed in Eqs. (11)–(15).

within a deterministic framework, it is still informative to inves-
tigate its performance against this other scheme. All codes and
data presented in this section are made publicly available at
https://github.com/bhouri0412/Hist_Bayesian_Closure.

A. Problem setup

Similarly to other studies,29 we choose as the number of slow-
varying variables K = 8 and as the number of fast-varying variables
per low-frequency variable J = 32, which gives a Lorenz ’96 sys-
tem of total dimension equal to 264. The coupling constant is set to
h = 1, the spatial scale ratio to b = 10, and the temporal scale ratio
to c = 10 similarly to previous works on Lorenz ’96 model.6,29,40,46

The forcing term F is taken large enough to ensure chaotic behavior
for the resolved variables by taking it equal to the values of 15 and 18.
Such a parameter setting results in a model time unit (MTU) that is
approximately equivalent to five atmospheric (ATM) days.6,29,46 The
online parameterization schemes, detailed in Secs. II B and II C, are
built using only data of the K = 8 resolved slow-varying variables for
the closure and resulting in a dynamical system that only depends on
these resolved variables.

The “true” model (1) and (2) is integrated using the RK4
scheme with a time step equal to dt = 0.005 from t = 0 to t
= 100 MTU (500 ATM days). In order to account for potential
coarse temporal resolution, for instance, such as when using satel-
lite data, we assume that we only have access to data at each time
step equal to 1t = 2dt = 0.01. This means that the memory-based
parameterized model (4) is integrated with a time step equal to
21t = 0.02. The resulting training dataset has a total of 9995 points
for the memory-based parameterization and 9999 points for the
instantaneous parameterizations. We will show that even though the
parameterized model’s time step is 4 times the time step used to inte-
grate the “true” model, the proposed parameterization is capable of
returning time forecasts that are faithful and sufficiently accurate
compared to the “true” model’s trajectories in online testing.

B. Model initialization and hyperparameter tuning

The minimization of the loss L is carried out using the Adam
optimization.56 The proposed memory-based parameterization is
evaluated against two instantaneous parameterizations, where the

coupling term is modeled as a neural network similarly to the
memory-based scheme and as a fourth-order polynomial term and
a first-order auto-regressive stochastic process as proposed by the
Wilks parameterization.40 The only numerical difference in the
problem setting between the instantaneous parameterizations and
the memory-based closure consists in using the time step 1t = 0.01
for the former, and 21t = 0.02 for the latter, as justified by the
numerical integration scheme (see Sec. II C).

Neural network-based parameterizations are modeled by
considering fully connected neural networks. For the examples con-
sidered in this study, we did not face an issue of vanishing gradients,
which may justify using Residual Neural Networks (RNNs)57 or
Long Short-Term Memory (LSTM) networks,58 for instance, if
encountered in other problems settings. For both parameterizations,
the estimate of the model parameter θ is obtained using 15 × 103

stochastic gradient descent iterations with nf = 1, then starting from
the inferred parameter θ , 30 × 103 stochastic gradient descent itera-
tions are conducted with nf > 1 as this allows improving the model
accuracy for long-time integration in the online setting.

We note that the loss for the instantaneous parameterization is
slightly different than the memory-based one’s as the time integra-
tion is conducted with a time step of 1t instead of 21t. We con-
ducted a (non-exhaustive) hyperparameters’ search for the training,
and the corresponding results are detailed in Table I.

C. Forecasts results

The accuracy of the parameterized models forecasts will be
measured by evaluating the model root mean square errors (RMSE).
The lower the RMSE, the more accurate the forecast. The RMSE for
a trajectory defined at the time instances ti, i = 1, . . . , N is given by

RMSE(ti) =

√

√

√

√

i
∑

j=1

||X(tj) − X
∗(tj)||

2
2

/

√

√

√

√

N
∑

j=1

||X(ji)||
2
2 , (16)

where X(ti), i = 1, . . . , N are the “true” model points and X
∗(ti),

i = 1, . . . , N are the parameterized model points obtained by inte-
grating the parameterized model starting from the initial condition
(i.e., online forecasting task). Note that the metrics defined in (16)
does account for memory since for a time instance ti, it does not
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TABLE I. Hyperparameters search for deterministic training of memory-based and non-memory-based parameterizations.

Hyperparameter Range
Best for memory-based

parameterization
Best for non-memory-based

parameterization

Architecture (number of layers x
number of nodes per layer)

{2 × 16, 2 × 32, 6 × 64, 6 × 128,
12 × 128, 8 × 256, 6 × 512}

6 × 64 6 × 64

Learning rate {10−6, 10−5, 10−4, 10−3} 10−4 10−4

Batch size {128, 256, 512, 1024, 2048, 4096} 512 512
nf {2, 3, . . . , 9, 10} 5 4
nh {1, 2, 3, 4, 5, 10} 2 N/A

measure the instantaneous RMSE but rather the accumulation of
error between the “true” model points and the predictions through-
out the time integration starting from the initial condition up to
time ti. Hence, the metrics considered here (16) is a non-decreasing
function of the evaluation time.

Given the chaotic nature of the Lorenz ’96 model, the accu-
racy of the parameterized models forecasts is also measured by
evaluating a statistical metric taken as the correlation coefficient
between the “true” model points and the parameterized model
predictions obtained with online forecasting task. The correlation
coefficient is constrained between 0 and 1. The higher the corre-
lation coefficient, the more accurate the forecast. Similarly to the
RMSE (16), the correlation coefficient between the “true” model
points and the parameterized model predictions at a time instance
ti is computed by considering all points from the initial condi-
tion up to the time instance ti in order to account for the memory
effect.

The parameterizations’ performance is compared in an online
setting (i.e., in which the parameterization is coupled to the resolved
variables equations and integrated forward in time) by solving
the parameterized differential equations with the inferred closure
parameters. The parameterized models are integrated in time until
t = 20 MTU = 100 ATM days starting from the first and last point
of the training dataset.

The first two columns of Table II summarize the final cor-
relation coefficients for the resolved variables when integrating
dynamical systems starting from the first and last training points
for forcing F = 15 and 18, respectively. Figures 2(a) and 2(b)
show the temporal evolution of the resolved variables’ RMSE start-
ing from the first training points for forcing F = 15 and 18,
respectively. All these results correspond to the errors obtained

after temporal integration of the parameterized dynamical sys-
tems. When integrating the dynamical systems starting from the
first training point, the instantaneous parameterization schemes are
capable of being as accurate as the memory-based one. Indeed, for
F = 15, the instantaneous NN-based parameterization shows sim-
ilar performance to the memory-based scheme while the Wilks
parameterization clearly underperforms the other parameteriza-
tions, and for F = 18, the Wilks parameterization shows similar
performance to the memory-based scheme while the instantaneous
NN-based parameterization clearly underperforms. For a forcing
F = 15, the Wilks parameterization was trained since the corre-
sponding values are not available for such a forcing value.40 How-
ever, for a forcing F = 18, we used the Wilks parameterization
results detailed in Ref. 40. Note that the Wilks scheme in Ref. 40
was trained on trajectories with a time step equal to 1tw = 0.005,
while the proposed memory-based parameterization is trained with
data with a larger time step equal to 1t = 0.01, which may explain
the competitive results observed for the Wilks scheme in this
test.

On the other hand, the last two columns of Table II
show the final correlation coefficients for the resolved vari-
ables in the temporal extrapolation setting where parameter-
ized models are integrated in time starting from the last
training point. Figures 3(a) and 3(b) show the temporal evolu-
tion of the resolved variables’ RMSE starting from the last training
points for forcing F = 15 and 18, respectively. For this test, the
memory-based parameterization clearly outperforms both instanta-
neous schemes (the instantaneous NN-based parameterization and
Wilks scheme) for both values of forcing considered. Notably, in
the temporal extrapolation setting and for F = 18, the final correla-
tion coefficient for the memory-based parameterization is twice and

TABLE II. Parameterizations’ performance in an online task: final correlation coefficient for the resolved variablesXwith F= 15 and F= 18. Best parameterization performances

for each task are highlighted with bold for clarity.

Parameterization type
Corr. coeff. start. from
first tr. pt. for F = 15

Corr. coeff. start. from
last tr. pt. for F = 15

Corr. coeff. start. from
first tr. pt. for F = 18

Corr. coeff. start. from
last tr. pt. for F = 18

Memory-based 0.883 0.825 0.488 0.675
Instantaneous NN-based 0.923 0.457 0.432 0.316
Wilks 0.373 0.652 0.487 0.189
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FIG. 2. Temporal evolution of the resolved variables’ RMSE in an online task starting from the first training point for different parameterization schemes. (a) F = 15 and (b)
F = 18.

3.6 times the final correlation coefficient obtained for the instanta-
neous NN and Wilks schemes, respectively. Comparing the results
obtained when integrating the parameterized models from the first
and last training points forward suggests that the instantaneous
parameterization schemes tend to overfit the training data, while the
memory-based scheme is able to better distill the temporal depen-
dency of the parameterization term on the previous states of the
resolved variables and, hence, returns more accurate predictions for
future states. This claim will also be justified in Sec. III E where
the parameterized models are evaluated online (i.e., coupled to the
coarse-scale dynamics) starting from random and unseen initial
conditions.

Figures 4 and 5 show the online predictions for the resolved
slow-varying variables and the closure terms, respectively, using the

memory-based parameterization and starting from the last train-
ing point. The good agreement between the true trajectory and the
parameterized model prediction confirms the ability of the proposed
framework to learn a parameterization that is stable and also suf-
ficiently accurate when tested online. It also shows that the model
is capable of implicitly inferring the closure term correctly, without
using any data or information on closure or on the unresolved fast-
varying variables, but by only being trained on resolved variables
trajectories with coarse temporal resolution.

As expected, the actual closure (based on the fast variables)
displays higher frequencies than the inferred trajectories from the
parameterization as shown in Fig. 5. This is due to the fact that
the actual closure terms have a higher frequency than the resolved
slow-varying variables since they depend on the fast-varying

FIG. 3. Temporal evolution of the resolved variables’ RMSE in an online task starting from the last training point for different parameterization schemes. (a) F = 15 and (b)
F = 18.
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FIG. 4. Online predictions for the resolved variables using the memory-based parameterization starting from the last training point for F = 15: Predictions correspond to
solutions of the parameterized DDE (4), while true trajectories correspond to solutions of the “true” model (1) and (2).
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FIG. 5. Online predictions for the closure terms using the memory-based parameterization starting from the last training point for F = 15: Predictions correspond to the P(·)

terms of the parameterized DDE (4), while true trajectories correspond to the coupling term in (1).

variables. On the other hand, the inferred closure terms show a
lower frequency that is closer to the frequency of the slow-varying
variables than to the fast-varying variables’ one. This result is coher-
ent with the fact that the model is trained to match and predict the
slow-varying variables, while no data or information on the closure
terms or the fast-varying (high-frequency) variables are available.
Although some high frequencies of the closure terms are filtered
out by the parameterization given the inherent problem setup

considered (based on slow variables), the parameterized model is
still able to provide stable and accurate online temporal predictions
for the resolved variables.

D. Numerical error

An interesting question that can be asked for any
parameterization is: “what is the parameterization actually
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FIG. 6. Temporal evolution of the resolved variables’ RMSE starting from the first training point for the memory-based parameterized model (4) and the “true” model (1) and
(2), both being solved with a time step equal to 21t = 0.02. (a) F = 15 and (b) F = 18.

TABLE III. Parameterizations performance in the online/coupled task: final RMSE and correlation coefficients for the resolved variables when integrating the parameterized

models using 100 random initial conditions. Best parameterization performances for each task are highlighted with bold for clarity.

Parameterization
RMSE for X with

F = 15
Correlation coefficient

for X with F = 15
RMSE for X with

F = 18
Correlation coefficient

for X with F = 18

Memory-based 0.385 0.841 0.819 0.384
Instantaneous NN-based 0.535 0.710 0.898 0.315
Wilks 0.469 0.778 0.956 0.224

FIG. 7. Temporal evolution of the resolved variables’ RMSE in an online task for different parameterization schemes when integrating the parameterized models using 100
random initial conditions. (a) F = 15 and (b) F = 18.
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FIG. 8. Temporal evolution of the resolved variables’ correlation coefficient in an online task for different parameterization schemes when integrating the parameterized
models using 100 random initial conditions. (a) F = 15 and (b) F = 18.

learning?.” Although the parameterization is designed to learn some
specific terms (e.g., the coupling term of Lorenz ’96 in this work),
there is no constraint to guarantee that the learning process is
limited to these quantities.

In the problem setup considered in this work, coarse
temporal resolution (temporal coarse-graining) is an important
source of error that is accounted for and partially resolved by
the memory-based parameterization, as shown in the results
presented in Sec. III C. Indeed, the “true” model (1) and
(2) is integrated using RK4 with a time step equal to
dt = 0.005, while the memory-based parameterized model is trained
on data with a coarser time step equal to 1t = 2dt = 0.01. This
means that the memory-based parameterized model is integrated
with a time step equal to 21t = 0.02, which is 4 times the time step
used to integrate the “true” model.

A simple exercise to verify the impact of the parameterization
on correcting the numerical error introduced by the finer temporal
resolution considered for the parameterized model is to solve the
“true” model with a time step equal to 21t = 0.02 and compare its
RMSE with the error obtained for the parameterized model. For this
task, the solution of the “true” model with a time step equal to dt
= 0.005 is taken as reference.

Solving the “true” model with a time step equal to 21t
= 0.02 returns a solution that diverges at t = 1.1ATM days and
t = 0.15ATM days for F = 15 and 18, respectively. We show the
corresponding RMSEs in Figs. 6(a) and 6(b), which also includes the
RMSEs of the memory-based parameterized model (4) solved with
the same time step equal to 21t = 0.02 with F = 15 and 18, respec-
tively. This result means that the memory-based parameterization
does not only learn the coupling term but also corrects some of

FIG. 9. Histograms of the errors 1Xk , k = 1, . . . , K for different parameterization schemes: errors considered correspond to the predictions made in an online task for the
100 random initial conditions. (a) F = 15 and (b) F = 18.
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FIG. 10. Histograms of the errors 1Xk , k = 1, . . . , K for different parameterization schemes and F = 15 at different time horizons: errors considered correspond to the
predictions made in an online task for the 100 random initial conditions. (a) 50 ATM days horizon and (b) 100 ATM days horizon.

the numerical integration error introduced due to the assumed data
sparsity/coarse time step. Indeed, the data are generated by solving
the “true” model with a temporal discretization equal to dt = 0.005,
while training data observations are only considered with a time step
1t = 2dt = 0.01, showing that the differentiable solver approach
allows accounting for at least part of the numerical discretization
error.

E. Generalization to unseen initial conditions

The epistemic (structural) variance of the different
parameterization schemes is now evaluated by considering 100
random initial conditions on which the parameterized models were

not trained. Similarly to the study detailed in Sec. III C, the
parameterization performance is compared in an online setting
(i.e., in which the parameterization is coupled to the slow variables
equations and integrated forward in time) by solving the parame-
terized differential equations with the inferred closure parameters.
The parameterized models are integrated in time until t = 20 MTU
= 100 ATM days.

This test is considered to assess the generalization perfor-
mance of the parameterization schemes beyond the data on which
they were trained, similarly to the temporal integration of the
parameterized models starting from the last training point that was
considered in Sec. III C.

FIG. 11. Histograms of the errors 1Xk , k = 1, . . . , K for different parameterization schemes and F = 18 at different time horizons: errors considered correspond to the
predictions made in an online task for the 100 random initial conditions. (a) 50 ATM days horizon and (b) 100 ATM days horizon.
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FIG. 12. Temporal autocorrelation function of the inferred closure term for different parameterization schemes and forcing values when integrating the parameterized models
using 100 random initial conditions. (a) F = 15 and (b) F = 18.

Table III gathers the final model performance consisting
of RMSEs and correlation coefficients for the resolved slow-
varying variables and forcing F = 15 and 18 when integrating the
parameterized models using the 100 random initial conditions.
Figures 7 and 8(b) show the temporal evolution of the resolved
variables’ RMSE and correlation coefficient when integrating the
parameterized models using the 100 random initial conditions for
forcing F = 15 and 18. For any forcing value, the memory-based
parameterization clearly outperforms both instantaneous schemes
by returning predictions with lower RMSE and higher correlation
coefficient over the entire time integration interval. These results
for the random and unseen initial conditions confirm the improved
generalization capabilities of the parameterized model when consid-
ering the memory-based scheme as suggested in Sec. III C.

Given the number of predictions (∼2 × 105 ) performed with
the 100 random initial conditions and temporal integration until
t = 20 MTU = 100 ATM days, we can infer a statistical charac-
terization of the error for the inferred resolved variables (i.e.,
uncertainty quantification) by approximation the probability of

the discrepancy 1Xk =

√

(Xk − X
∗
k)

2, k = 1, . . . , K evaluated at the

inference time instances ti, i = 1, . . . , N given the initial condition
X(0). These errors correspond to the resolved variables discrep-
ancies obtained with the online task of solving the parameterized
dynamical systems for the 100 random initial conditions. Since
consecutive predictions can be strongly correlated, we uniformly
sub-sample the temporal errors with a factor of 5 in order to rem-
edy the data “redundancy,” resulting in an effective sample size of
∼4 × 104. Besides, since the errors for the different variables Xk,
k = 1, . . . , K vary in a very similar range and for the sake of clar-
ity, we decided to group all errors for different variables together. In
the Appendix, we provide separate histograms for the error of each
variable Xk, i = k, . . . , 8.

Figures 9(a) and 9(b) show the histograms of the errors 1Xk,
k = 1, . . . , K for different parameterization schemes and F = 15
and 18, respectively. For both forcing values, the memory-based

parameterization’s bins are higher for the lower error values com-
pared to both instantaneous schemes (Wilks and NN-based param-
eterization) and lower for the larger error values, confirming the
improved online future states predictions when accounting for the
memory effect on the closure term.

In addition to the probability distribution of errors at all
time instances, it is interesting to investigate the evolution of the
error distribution at given time instances for different horizons.
Figures 10(a) and 10(b) show the histograms of the errors 1Xk,
k = 1, . . . , K for different parameterization schemes and F = 15
at the time instances t = 50 ATM days and t = 100 ATM days,
respectively. Similarly, Figs. 11(a) and 11(b) show the errors
histograms for F = 18. These results show that the difference
between the error distributions of different parameterized models
tend to diminish for longer time horizons. However, even up to
t = 100 ATM days, the memory-based parameterization still shows
an error distribution that is clearly more centered around 0 com-
pared to the instantaneous parameterization schemes, confirming
again the improved online future states predictions, when account-
ing for the memory effect on the closure term, at different time
horizons.

As an additional test, we consider a Generative Adversar-
ial Networks (GAN) parameterization of Lorenz ’96,29 since it is
also a machine learning approach and it was tested for the same
set of Lorenz ’96 parameters. It is worth mentioning that such
a GAN parameterization scheme29 requires training data on the
resolved variables and on the closure terms, while the proposed
online memory-based parameterization does not use any informa-
tion on the closure terms, which may favor the GAN parameteri-
zation approach.29 We consider the non-normalized RMSE defined
in Eq. (10) of Ref. 29 and evaluated at t = 2 MTU which is the
final time considered in Fig. 5 of Ref. 29. We evaluate the RMSE
using the 100 random and unseen initial conditions. From Fig. 5 of
Ref. 29, the GAN-based parameterizations and the polynomial one
(based on a third-order polynomial and a first-order auto-regressive
stochastic process) return predictions with RMSE between roughly
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3.8 and 5.5. The Wilks parameterization implemented in this study
based on a fourth-order polynomial and a first-order auto-regressive
stochastic process) gives predictions with a RMSE of 4.60, while the
memory-based parameterization predictions have a RMSE of 2.86 at
t = 2 MTU when tested on the 100 random unseen initial con-
ditions. These results confirm the improved performance when
accounting for the memory effect on the closure term even when
comparing with the GAN-based parameterization.29

Finally, we consider a memory metric in order to quantify the
inference accuracy of the closure term.59 In particular, Figs. 12(a)
and 12(b) show the temporal autocorrelation of the inferred closure
term as a function of model time steps lag for different parameteriza-
tion schemes and forcing values when integrating the parameterized
models using 100 random initial conditions with F = 15 and 18,
respectively. In coherence with the results observed so far regard-
ing the accuracy of the online inference of the resolved variables, the
memory-based parameterization shows the best results in terms of
the inference accuracy of the closure term among all schemes con-
sidered. Indeed, its corresponding temporal autocorrelation func-
tion of the inferred closure term is the closest to the one of the
“true” closure for any model time steps lag considered. This addi-
tional metric justifies again that the memory-based scheme is able
to better infer the temporal evolution of the parameterization term
by learning the effect of the resolved variables’ previous states on the
closure term evolution.

IV. CONCLUSION

In this study, we proposed a memory-based parameteriza-
tion scheme for dynamical systems, which is evaluated online (i.e.,
coupled to the resolved variables’ dynamical system). Using a dif-
ferentiable ODE solver for training allows inferring a parameterized
dynamical system that is numerically stable since the closure param-
eters are inferred while solving the corresponding dynamical sys-
tem. It also allows learning the parameterization implicitly without
requiring data of the closure terms. Since many physical processes
have substantial memory, excluding memory from the parameter-
ization can lead to further uncertainties for instantaneous models
relying only the current time state. The time-lags defining the mem-
ory terms of the proposed parameterization and the time step used
to solve the parameterized model are chosen in order to avoid
data interpolation during temporal integration of the differentiable
parameterized model.

We tested the proposed memory-based parameterization on
the chaotic Lorenz ’96 system with a coarse temporal resolution.
We considered different error metrics that take into account mem-
ory effect for error accumulation and exponential growth for chaotic
systems. The results proved that relying on a memory-based param-
eterization allows a better inference of the closure and resolved
variables’ future states across time scales compared to instanta-
neous schemes (whether with polynomial representation and a first-
order auto-regressive stochastic process or neural network). We also
showed that the proposed parameterization is capable of not only
learning the coupling terms but also of accounting and correcting
for the numerical error introduced by the temporal discretization,
which enhances stability and accuracy of the parameterized system’s
resolution. Finally, the generalization capability of the proposed

memory-based parameterization scheme was tested by considering
random and unseen initial conditions. This test’s results showed
its capability to produce more accurate temporal forecasts for the
resolved variables compared to instantaneous schemes, confirming
the improved generalization performance when accounting for the
memory effect on the closure term.

The proposed memory-based parameterization could be
improved by finding a more rigorous approach to find the optimal
number of previous resolved variables’ states considered as inputs
to the closure. In addition, other neural network architectures or
different machine learning surrogate models could be investigated
with the proposed memory-based parameterization, such as long
short-term memory neural networks. Such a modification may be
critical if the proposed parameterization scheme is tested on more
complex problems, while it will be more challenging to implement
in large-scale numerical codes often based on Fortran or C, such as
for ocean turbulence, atmospheric convection, and clouds forma-
tion. Finally, the proposed memory-based parameterization can be
extended into a stochastic formulation by relying on a Bayesian for-
malism, such as using Markov Chain sampling in order to accurately
quantify different uncertainty sources. We leave this for future work.
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APPENDIX A: ERRORS PROBABILITY DISTRIBUTION

FUNCTION

Figures 13 and 14 show the histograms of the error for each
variable 1Xk, k = 1, . . . , K for different parameterization schemes
and F = 15 and 18, respectively.
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FIG. 13. Histograms of the errors1Xk , k = 1, . . . , K for different parameterization schemes and F = 15: errors considered correspond to the predictions made in an online
task for the 100 random initial conditions.

FIG. 14. Histograms of the errors1Xk , k = 1, . . . , K for different parameterization schemes and F = 18: errors considered correspond to the predictions made in an online
task for the 100 random initial conditions.
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