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Abstract

Cooperation via shared public goods is ubiquitous in nature, however, noncontributing social
cheaters can exploit the public goods provided by cooperating individuals to gain a fitness
advantage. Theory predicts that this dynamic can cause a Tragedy of the Commons, and in
particular, a ‘Collapsing’ Tragedy defined as the extinction of the entire population if the public
good is essential. However, there is little empirical evidence of the Collapsing Tragedy in
evolutionary biology. Here, we experimentally demonstrate this outcome in a microbial model
system, the public good-producing bacterium Pseudomonas aeruginosa grown in a continuous-
culture chemostat. In a growth medium that requires extracellular protein digestion, we find that
P. aeruginosa populations maintain a high density when entirely composed of cooperating,
protease-producing cells but completely collapse when non-producing cheater cells are
introduced. We formulate a mechanistic mathematical model that recapitulates experimental
observations and suggests key parameters, such as the dilution rate and the cost of public good
production, that define the stability of cooperative behavior. We combine model prediction with
experimental validation to explain striking differences in the long-term cheater trajectories of
replicate cocultures through mutational events that increase cheater fitness. Taken together, our
integrated empirical and theoretical approach validates and parametrizes the Collapsing Tragedy
in a microbial population, and provides a quantitative, mechanistic framework for generating

testable predictions of social behavior.

Keywords: bacterial cooperation, chemostat, tragedy of the commons, mechanistic modeling
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Author summary

Cooperation exists across all levels of organismal complexity despite seemingly contradicting
the theory of natural selection which states that individual organisms are incentivized to increase
their fitness — and cooperation comes with a fitness cost. Many mathematical models have been
used to study the impact that cooperation has on population dynamics and have shown that the
absence of cooperation can lead to a population collapse; however, we have little experimental
evidence of this phenomenon occurring. Social microbes provide a unique opportunity to directly
test the outcomes of social cheating and compare those outcomes to mathematical theory. Here,
we use a social pathogen to illustrate that the outcome of social cheating broadly aligns with the
pre-existing theory: cooperators can survive together but the absence of cooperation causes a
population collapse. We also show that although the deterministic nature of the model fails to
capture mutations that occur during long-term cultivation, the model can in turn be used to make

experimentally testable predictions for the types of mutations that occurred.

Introduction

Cooperation is a behavior that contributes to the benefit of another individual or group but has a
fitness cost for the individual. Cooperation is necessary for the functioning of many, if not all,
biological systems across a range of organismal complexity — from the simpler bacterial
systems to the more complex human societies [ 1-4]. There are many different ways organisms
can cooperate, such as the responsible use of shared resources, contributing to a common goal,
and refraining from competition with one another [5]. Resources shared in cooperative societies
are often referred to as “public goods,” and one challenge these societies face when managing

public goods is the emergence of social cheaters [2,4,6]. Cheaters benefit from the cooperation of
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others without contributing to the associated cost, resulting in a fitness advantage and
proliferation throughout the population. This tension between maximizing the fitness of the
individual and the fitness of the group may result in a phenomenon known as the Tragedy of the
Commons, and is named such because once enough cheaters have invaded the population, the
fitness of the group significantly reduces [7]. If the public good is essential to cooperation, then
cheaters may invade to the point of catalyzing a complete population collapse, a scenario

referred to as a Collapsing Tragedy [5].

Validating existing mathematical theory through experimentation on cooperation and the
Tragedy of the Commons can be challenging, because although several different mathematical
models have previously been used to describe cooperative behaviors, many are
phenomenological in nature — meaning they can describe what happens but not why it happens
and lack integration of biological processes [4,8—11]. This has resulted in calls to shift towards a
mechanistic modeling approach with a greater integration of empirical data in the study of
cooperation [4,9,12—14]. Mathematical modeling of chemostats, continuous microbial culturing
systems, are mechanistic by design, allowing for such an integration of these biological
processes and, thus, a better understanding of their role in the system dynamics. Chemostat
theory of cooperation predicts: (i) there will be a stable population when there are no cheaters
present, (ii) there will be a Tragedy of the Commons when cheaters are introduced, and (iii) the
frequency of cheaters in the population will increase throughout cultivation [15]. Since the
Tragedy of the Commons of cooperative microbial populations in a chemostat has been
theoretically predicted, this makes the chemostat an ideal candidate for examining the extent to

which the mathematical theory holds up in empirical conditions.
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In addition to the theoretical predictions, experiments with social microbes have inferred the
Tragedy of the Commons from relative fitness measurements [16—18], but very few experiments
have directly demonstrated the population collapse as the ultimate outcome. The absence of
direct demonstration of a Collapsing Tragedy is often simply a byproduct of methodological
limitations. When using standard microbial growth conditions, such as on an agar plate or in
classic batch culture (as in [16] and [18] respectively), the cell density continuously increases to
a point of saturation when all of the nutrients have been consumed. In these settings, cheaters can
invade and potentially cause growth arrest of the population, but they will not eliminate the
population altogether. As such, the use of relative fitness measurements to infer the Tragedy of
the Commons has become widespread and applied even when the methods would allow it to be
observed (as in [17]). Rare examples in which a Collapsing Tragedy was observed include
fruiting body development in Myxococcus xanthus where signaling-deficient cheaters abrogate
spore production [19], and biofilm formation in Pseudomonas fluorescens, where social cheaters
not contributing to the structure of the biofilm caused the mat of aggregating cells to prematurely
fall apart [20]. Verifying that a Collapsing Tragedy of the Commons occurs in microbial
populations is both beneficial and necessary because: (i) it provides the opportunity to validate
that the existing mathematical theory sufficiently encapsulates the dynamics of the system, (ii) it
allows us to identify the predictive limitations of such models, and (iii) it is not uncommon for
cooperative populations to evade collapse as a consequence of mechanisms that either increase
the cooperator’s fitness or decrease the cheater’s [19,21,22]. Examples of such mechanisms in
microbial populations include non-social adaptations [23,24], punishment of cheaters through the
production of toxic substances [25—27], reciprocity [28], privatization of public goods [29-31],

division of labor to reduce individual fitness costs of beneficial behaviors [32—34], horizontal
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gene transfer [35,36], or population structure [17,18,37,38]. By identifying empirical conditions
under which the Tragedy of the Commons occurs, we can better understand the conditions

necessary to avoid it.

Pseudomonas aeruginosa is an example of a bacterium that exhibits a range of cooperative
behaviors, generally in the form of secreted public goods that are shared within the population
[3,4,39]. Examples of extracellular public goods include proteases necessary for metabolizing
food sources, biosurfactants for swarming, and siderophores for iron scavenging [3]. More
specifically, an example of an extracellular protease produced by P. aeruginosa is LasB elastase,
which is necessary to digest protein substrates [23,39—42]. LasB and many other genes that
encode cooperative functions are controlled by a process called quorum sensing (QS) [42,43].
QS regulates gene expression in response to population density via diffusible chemical signals
[44,45]. In P. aeruginosa, the central QS regulator LasR binds a specific acyl-homoserine
lactone signal and activates transcription of target genes. A mutation in the /asR gene results in
“signal-blind” cells that do not respond to the QS signal, eliminating the expression of proteases
and other products. These /asR mutants are obligatory cheaters: they cannot grow on their own
without the proteases, but they have a growth advantage when grown with the cooperating parent
strain. This growth advantage results from the loss of the metabolic cost associated with
producing the proteases while still benefiting from the presence of proteases produced by other

cells [18,41,46].

In this study, we combined empirical and theoretical approaches to test the prediction that a
Collapsing Tragedy of P. aeruginosa populations occurs in the chemostat. We conducted a series
of growth experiments in the chemostat under conditions that require QS-dependent proteolysis

(the breakdown of proteins by enzymes produced via QS) involving two strains: (i) the
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cooperating wild type (WT) strain which has its QS circuitry intact and (ii) the cheating /asR
mutant which cannot respond to QS signals and thus does not produce any costly proteases. In
addition to comparing our data to the general outcomes predicted by chemostat theory, we
further aim to assess the predictive capabilities of such models. To accomplish this, we use our
experimental conditions to inform the construction and analysis of a mechanistic mathematical
model that specifically describes our system. We then fit the model to our data and applied it to
make experimentally testable predictions. By employing both experimentation and mechanistic
mathematical modeling, we demonstrate that the Tragedy of the Commons is indeed the outcome
of social cheating in a well-mixed population; however, the theory only holds for population-
level predictions. The deterministic model was unable to capture subpopulation dynamics, but
reconciled those differences by incorporating mutational events into the model that could be

experimentally validated.

Methods

Bacterial strains

In this study, we used the following strains: P. aeruginosa PAO1 WT strain and its isogenic /asR
deletion mutant [41,46]. The /asR strain carries a stable trimethoprim antibiotic-resistance gene
cassette at a neutral chromosomal site (mini-Tn7-Tp) that allows distinction from the WT in

coculture and does not affect growth [46—48].

Cultures and growth conditions

P. aeruginosa cultures were routinely grown at 37°C in lysogeny broth (LB) liquid or plate

culture buffered with 50 mM 3-(N-morpholino)-propanesulfonic acid (MOPS), pH 7.0. Liquid
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batch cultures were shaken at 250 rotations per minute (RPM). Growth was measured as either

colony forming units (CFU) or as optical density at 600 nm (ODsoo).

Pre-cultures were grown in LB-MOPS liquid culture for approximately 18 hours. Experimental
cultures were grown in M9-gelatin medium, either in a batch or chemostat environment. The
medium contained 1 x M9 salts, 1% (w/v) gelatin, 1 mM MgSO4 1M CaCl,, and 1000x non-
chelated trace elements. Type B (powder, Sigma Aldrich, G9391) gelatin was used for the initial
batch cultures, in which the WT and /asR mutant strains were grown independently and then
again as a coculture. For the remaining cultures, the gelatin used was of type A (10% solution,
Alfa Aesar, J62699). The switch from type B gelatin used initially to the type A gelatin was due
to the volume of medium required for those experiments. Making gelatin medium with type B
powder required sterile filtration, and the filters were not practical for large scales of medium.
Cultures were either mono or cocultures (WT or /asR mutant, or a mixture of both), inoculated

with the respective pre-culture to a starting total ODgoo of 0.05.

Batch cultures

The batch mono and cocultures were grown in flasks containing 20 mL of M9-gelatin medium
for 36 to 48 hours, as indicated. The cocultures had an initial /asR mutant frequency of 1%. The
batch culture used to determine the correlation between CFU/mL and ODsoo values was grown in
flasks containing 30 mL of M9-gelatin medium for 42 hours. For each batch culture, three

biological replicates were performed.

To determine the frequency of /asR mutants in cocultures, 10 uL of a diluted culture sample was
spotted six times onto a standard LB plate and an LB plate with 200 pg/mL trimethoprim. The
standard LB plate was placed in a 30°C incubator while the trimethoprim plate was placed in a

37°C incubator. The different incubation temperatures were used to compensate for the
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decreased bacterial growth rate on the antibiotic plates. Colonies were counted approximately 24
hours later. The frequency of /asR mutant cells was calculated by determining the average CFU

per ml on each type of medium.

Chemostat cultures

The chemostat cultures were grown in 100 mL of M9-gelatin medium, using a chemostat
bioreactor system previously designed in our laboratory [49,50]. It contains a substrate inflow
controlled by a peristaltic pump, a culture outflow, and an air supply from an aquarium pump. It
is operated in a 37°C room and utilizes a stir bar to achieve a well-mixed and well-aerated
bacterial culture. The chemostat was inoculated with the pre-culture to a starting ODsoo of 0.05.
Two biological replicates were performed for the WT-only chemostat experiment, and four
biological replicates were performed for the coculture chemostat experiment. We will refer to the

coculture replicates as Replicates 1 to 4 throughout.

The chemostat cultures were first grown in the bioreactor close to saturation, with the medium
supply pump turned off (31-32 hours for the WT monoculture and 49-56 hours for the WT: lasR
coculture). Then the peristaltic pump was turned on to 2.75 RPM, corresponding to a flow rate of
12 ml/h. The chemostat was run for 183-192 hours, or approximately 8 days. For both the
monocultures and cocultures, ODgoo was taken periodically. For the cocultures, plating on
differential medium was used to determine the frequency of /asR mutant and protease-deficient

phenotypes [41,51].

Determining antibiotic-resistant and protease-deficient phenotypes

To determine the frequency of /asR and proteolysis-deficient mutants, chemostat samples were
diluted and 100 pL of the diluted chemostat sample was spread onto a standard LB plate. The

plate was placed in a 37°C incubator for approximately 18 hours to obtain small colonies. During
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chemostat cultivation, colony size heterogeneity occurred. From these initial sample plates we
categorized the colonies into one of two groups based on size: small or regular. This
categorization was purely methodological, allowing us to differentiate the incubation times
between the two groups so the phenotypic expression could be properly analyzed, We counted
the number of small and regular colonies on the plate determining their frequency within the

population for cheater frequency analysis.

We then patched up to 100 randomly selected colonies of each size variant onto both skim milk
and antibiotic plates. These skim milk plates contain 4% (w/v) skim milk powder (Difco Skim
Milk, BD, 232100), 1.5% (w/v) agar, and 0.5% (w/v) LB. The antibiotic plates are a standard LB
plate with 200 pg/mL trimethoprim added. One WT and one /asR mutant colony selected from
an LB plate was added as a control. All plates were placed in a 37°C incubator for the following
incubation times: 8 hours for the skim milk plates with regular colonies, 18 hours for the
antibiotic plates with regular colonies and the skim milk plates with small colonies, and 28 hours
for the antibiotic plates with the small colonies. The different incubation times were used so that

the CFUs grew to a similar size prior to counting.

Antibiotic plates were evaluated upon removal from the incubator; skim milk plates were
evaluated after an additional 20 hours of incubation in a fridge. The additional incubation in
fridge allowed the enzyme to continue to degrade the milk while limiting additional bacterial
growth. Protease-deficiency of individual isolates was determined based on the inability to form
a large halo (a dark translucent circle indicating milk had been degraded) around the colony, as
compared to defined WT and defined /asR mutant controls. Antibiotic resistance was determined
by the presence of microbial growth on the antibiotic plate, indicative of the trimethoprim-

resistant /asR mutant. With these data, the frequency of antibiotic-resistant (/asR-deficient) and
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protease-deficient isolates was calculated for each subpopulation (small vs. regular colony
variants). We then combined the subpopulation phenotype frequencies with the frequency of
each subpopulation in the total population to calculate the estimated phenotypic frequencies for

the population as a whole.

Evolved mutant analysis

We investigated the relative fitness of P. aeruginosa mutants that evolved during chemostat
cultivation. We focused on evolved cheater mutants we predicted to have occurred in coculture
Replicates 1, 3, and 4, and compared their relative fitness to the original /asR mutant. Replicate 2
was not included in this analysis because it behaved differently from the other replicates making
investigation into protease deficient mutants not necessary. An in-depth rationale for omitting
Replicate 2 can be found below. Evolved mutants were isolated (i.e. separated as individual
clones from evolved chemostat populations) by evaluating their skim-milk proteolysis and
antibiotic-resistance phenotypes using the methods described in the previous section. Isolates
were chosen according to the phenotype that matched the type of mutation predicted; for
coculture Replicates 1 and 3 we selected mutants that were antibiotic-resistant (grew on the
trimethoprim plate) and did not produce protease (did not degrade the skim milk). Of those
mutants, we selected three isolates which had formed the largest colonies on the skim milk plate,
indicative of a faster growth rate, to decrease the chances of selecting a defined /asR mutant with
no additional mutations. For coculture Replicate 4 we selected three isolates that were not
antibiotic-resistant (did not grow on the trimethoprim plate) and did not produce protease. For
each coculture replicate experiment, three isolates of the matching phenotype were pre-cultured
in LB-MOPS liquid medium for approximately 18 hours, along with the WT and the defined

lasR mutant. Cocultures of each mutant (3 chemostat isolates and the defined /asR mutant) with

11
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the WT were grown as three replicates each in 4 mL of 1% M9 gelatin medium. The cocultures
each had an initial mutant starting frequency of 1%. Replicates were grown for 36 hours in a
37°C incubator. Samples from the cocultures were taken at the time of inoculation and after 36
hours of growth. The frequency of protease-deficiency of these coculture samples was

determined by skim milk proteolysis, as described in the previous paragraph.

Calculating relative fitness and statistical analysis

To calculate relative fitness of the /asR mutant in batch coculture (Fig 3B), we first calculated
the absolute fitness values of the /asR mutant and the WT as the average growth rate of each
strain. Absolute fitness was based on CFU data collected at 0 and 36 hours of cultivation to
determine cell densities (CFU/ml). We determined the /asR mutant cell density from growth on
an antibiotic plate, and, to determine the WT cell density, we subtracted the cell density of the

lasR mutants from the cell density of the entire coculture. Absolute fitness was calculated as the

final cell density

initial cell density

natural log of the ratio of the final and initial cell densities: in ( ) To calculate the

relative fitness from the absolute fitness calculations, we took the ratio of the lasR and WT

absolute fitness values:

Absolute fitness lasR
Absolute fitness WT

Relative fitness =

To determine the relative fitness for the evolved mutant cocultures, we followed the same
approach as above but used milk plates to identify the ratio of cooperators and cheaters. This also
eliminated the need to subtract the mutant population from the total population, since each

subpopulation is counted independently.

Statistical analysis was done using GraphPad Prism 9.4.1.
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Mathematical model formulation

We used a system of ODEs to describe the changes of concentrations occurring within the
chemostat while also considering the biological and physical processes that are taking place
[15,34,52,53]. Here S (mmol/l) is the proteinaceous substrate concentration, in this case gelatin,
in the chemostat vessel and S’ (mmol/l) is the concentration of gelatin entering the system, E
(mmol/l) is the protease enzyme, P (mmol/l) is the product of the enzymatic degradation of
gelatin, X; (g dry weight/l) is the cooperative WT strain, and X (g dry weight/l) is the protease-
deficient mutant cheater strain. For simplicity, we considered a single extracellular protease that
degrades gelatin into utilizable individual amino acids, recognizing that in reality there are
several proteases that contribute to this process [54]. The model is as described in Fig 1, and a

detailed parameter explanation follows.

Fig 1. Annotated chemostat model. Chemostat model describing the change in concentrations
of gelatin substrate (), degradation product of the substrate (P), protease enzyme produced by
the cooperator (E), the enzyme-producing bacterial cooperator (X;), and the bacterial cheater
which does not produce any proteases (X2). A detailed description of the parameter definitions
and units can be found in Table 1.

D (1/h) is the dilution rate, meaning it is both the rate at which gelatin medium enters the
chemostat and the rate at which the well-mixed culture is removed from the system.
Experimentally, it is calculated by dividing the flow rate by the volume of the culture within the
chemostat. Thus, the positive expression DS’ in the substrate equation adds gelatin substrate to
the chemostat, and each expression containing a —D removes substrate, enzyme, product, and
bacteria from the chemostat. In the enzymatic degradation of protein substrate, ¢ represents the
number of cleavage or breakdown products generated per substrate molecule, n (mmol/g dry
weight) is the amount of enzyme produced per bacterial biomass, and y (g dry weight/mmol) is a

yield constant that relates the product to bacterial biomass.
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We also consider the Hill function Q(X7) as the fraction of metabolic energy spent on producing
protease enzyme. It is dependent on the cell density of the WT strain being sufficiently high to
induce QS gene expression. We chose a Hill function due to its switch-like properties and
previous use to model cell to cell communication [55-57]. It reflects the cooperativity of QS

with positive feedback on signal production and with receptor dimerization [55-57].

The growth of the cooperative strain is reduced by the fraction (1-Q(X;)) of the total possible

growth experienced by the non-protease producing strain. The Hill function is given by

q-(X)"
(Xl)n + (QSmin)n

QXy) =

where ¢ is the estimated burden from enzyme production when the entire population is QS-
activated, OSmin is the cell density at which QS is turned on, and #, the Hill coefficient,
determines the speed of transition from little metabolic burden to a metabolic burden of g. Thus,
when cooperators are absent, Q(X1) will be equal to 0 (when X1 = 0, O(X1)=0), but, as the WT
density increases so too will Q(X1), eventually approaching g (when X; is very large, then O(X1)

asymptotically approaches q) (Fig 2).

We further considered two additional rate functions: G(S,E) is the cleavage rate of proteins by
the secreted proteases and F(P) is the per capita growth rate of the organism. G(S,E) and F(P)
are saturating Michaelis-Menten and Monod functions, respectively. It is worth noting that these
are fundamentally the same type of function but are separately named due to the type of
biological process being modeled. The Michaelis-Menten equation for enzyme kinetics has been
studied for over a century and, in the past few decades, supported experimentally [58,59]. In

particular, there is experimental evidence validating the Michaelis-Menten equation with P.

14



318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334
335
336
337
338
339
340

aeruginosa produced protease enzymes [42]. The Monod growth rate function was deduced
empirically in conjunction with bacterial population growth [60] and has been shown to correctly

model the growth of P. aeruginosa populations [42].

The enzymatic activity is defined as

keat "E-S

G.E) == 775
M

Here, kcar (1/h), typically referred to as the turnover number, is a rate defined as the maximum
number of substrate molecules converted to product by an enzyme molecule per unit time, and
Ky (mmol/l), the Michaelis constant, is the gelatin concentration at half-maximal velocity. The

rate of bacterial growth is given by

Hmax * P
K¢+ P~

F(P) =

For this growth rate equation, pmax (1/h) is the maximum growth rate of P. aeruginosa and Ky

(mmol/1) is the product concentration at the half-maximal growth rate.

Each parameter influences Michaelis-Menten and Monod functions such as G(S,E) and F(P)
differently, with the parameters in the numerator (kcarand pimax) impacting the overall magnitude
of the function limit and the parameters in the denominator (Kjsand Ks) influencing the speed at

which the function reaches its saturation limit.

Fig 2. Overview of system and functional effects. Diagram of the metabolic system for an
enzyme-producing cooperator. The cell produces enzyme (E) at a metabolic cost (Q(X1)),
reducing its growth. The enzyme catalyzes the breakdown of substrate (S) into digestible product
(P) at rate G(S,E). The cooperator grows at rate F(P), which is reduced by a fraction depending
on the cost of enzyme production. The effect of increasing the parameters within each function
are illustrated.
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Model parameterization and data fitting

Parameters and initial quantities were either experimentally determined by us or were based on
values obtained from other sources (see Supporting Information (S1) for parameter derivations).
To be suitable for our model, experimentally determined cell densities were converted from
ODeoo to grams of dry weight per liter (g dry weight/l) using a previously established conversion
factor [50]. The model is well-posed in the sense that for all positive and real initial conditions,
solutions remain positive, real, and bounded (see Supporting Information (S2) for proof). Not
only is this biologically relevant, since the chemostat cannot hold an infinite amount of bacterial
mass, it also indicates that the model will be less susceptible to instability and error
magnification when solved numerically as compared to models which do not share those
characteristics. The model was simulated in Python 3.9 using the ODEINT function of the Scipy
package. To reflect our experimental design, the model was first simulated in batch mode (D=0),

and then in chemostat mode (D > 0).

When comparing the simulated populations to experimental data, we calculated the root mean
square error (RMSE) of each replicate, then took the average of the RMSE values across all
replicates of a given data type. To determine which values within our given estimated parameter
value ranges is the best fit, we calculated the average RMSE of the simulated model against three
experimental data sets: the total cell density of the WT-only culture, the total cell density of the
coculture, and the cheater frequency determined by protease-deficiency of the coculture —
omitting the data from Replicate 2 whose data diverged from the other three replicates. Because
the cell density and cheater frequency data are on different scales, we calculated a normalized
combined RMSE for each successful simulation by utilizing max-min normalization for each

data type then taking a weighted sum. We weighted the normalized RMSE values because
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parameter values which created higher cheater frequencies also created a higher final coculture
batch phase cell density resulting in a best fit that greatly overshot the coculture batch phase
growth. The normalized RMSE values were weighted for the WT-only, coculture, and cheater

frequency data as 0.4, 0.6, and 0.2 respectively.

All parameters were randomly determined for each simulation, with two exceptions: the dilution
rate (D) and the Hill coefficient (n). These parameters remain as one value throughout because
the dilution rate is determined by experimental design and is conclusively one fixed rate and the
effect of increasing the hill coefficient beyond 2 is negligible to the dynamics of the system.
Randomly determined initial condition and parameter values were selected from different
distributions depending on whether the estimated value was a range of values or a single value.
For the former we used a uniform distribution across their estimated range, and for the latter we
used a normal distribution with the estimated single value as the mean and a standard deviation
of 10% of the mean value. A simulation was deemed to successfully capture the general
dynamics of our data if: (i) the solution had a positive WT cell density at the final time point
(greater than 0.01 g dry weight/l or 0.0048 OD), eliminating parameter combinations that cause
the cooperator-only population to wash out, (ii) a reasonable maximum coculture batch growth
(less than 0.58 ODsoo) was achieved, removing parameter combinations that simulate excessive
growth in coculture batch mode, and (iii) there was a cheater frequency of at least 30%, ignoring
simulations where the cheater frequency fell to or near 0% (which occurs when the growth of the
WT is sufficiently slow that they never achieve the minimum density required for QS, the
dilution causes a washout of the system, and/or the total density of the population gets within

machine error of 0, thus rounding to 0 and resulting in a cheater frequency calculation error).
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To reduce the scope of the parameter and initial conditions to explore when determining the best
fit, we first ran 100,000 simulations to establish if the entirety of each estimated parameter range
can produce a simulation that successfully captures the general dynamics of the chemostat data
(Fig S1.3). Most parameters were capable of successful simulations across the entirety of their
ranges; however, we were able to establish a new lower bound for n and kc... We then ran
1,000,000 simulations with two changes: (i) we set the ranges of 1 and kc.r to 4x10* and 150
respectively, and (i1) we used the single estimated values instead of randomly selected values
from a normal distribution since pulling from the normal distribution did not seem to impact
success in the previous round of simulations. This produced 47631 simulations that captured the
broad patters of our data.

Because the RMSE weights were chosen arbitrarily, we needed to investigate the simulations for
goodness of fit rather than just taking the lowest weighted value. Of the 47631 simulations, we
kept the 10% with the lowest combined weighted and normalized RMSE values. We further
narrowed down that list by omitting simulations in which values at the end of the batch phase
(time = 0) were outside of the range for the maximum and minimum coculture cell density and
under 30% cheater frequency. This left us with 15 results to compare visually. After selecting the
one with the best visual fit, we slightly adjusted individual or pairs of parameters to decrease the
RMSE values until changes no longer resulted in a reduced RMSE (Fig 6). See Fig S1.4 for a

comparison between the simulation with the lowest weighted and normalized combined RMSE.

Modified models for evolved mutants

In addition to experimentally exploring the role of the mutations that arose during cultivation, we
also investigated their impact on the system computationally. The following systems of

equations describe these evolved faster-growing mutants as
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(1) a cheater derived from the defined /asR ancestor

S=D-(5°-S)—G(S,E)

P=0-G(SE) —%((X1 +X,) F(P)+ X5 F,(P))—-D-P
E=n-QX,) X, F(P)—D-E

X, =X - ((1- QW) - F(P) - D)

X2:X2'(F(P)_D_O()
X3:X3'(F2(P)_D)+Q'X2'

(i1) a cheater derived from the WT ancestor

S=D-(5°-5)—G(S,E)
P=a-G(S,E)—)l/-((Xl+X2)-F(P)+X3-F2(P))—D-P
E=n-QX) X, -F(P)-D-E

X, =X1-((1—Q(X1))-F(P)—D—a)
X2:X2'(F(P)_D)

X3:X3'(F2(P)_D)+Q'X1»

and (iii) a cooperator derived from the WT ancestor

S=D-(5°-8)—-G(S,E)

p =J-G(S,E)—%((Xl+X2)'F(P)+X3'F2(P))_D'P
E=n-QX +X;) (X, F(P) + X5 F,(P)) =D -E

X =X ((1- QX +X3)) - F(P) - D —a)

X, =X, (F(P) - D)

Xy =X;- ((1=QUX, + X)) - Fy(P) = D) + - Xy.

These models contain an additional state variable, an evolved mutant, X3, which enters the
system from its respective parent at a rate a. Its growth rate, F2(P), is higher than that of the

ancestral strain, (P), through an increase in pmax.
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We fit these new models to our experimental data allowing for variation in the new parameters o
and pmax with all other parameters set to the best-fit value identified in the Results. We explored
values of o within the range of 1x10'°to 1x10#, consistent with previously estimated mutation
rates in non-mutator and mutator strains [61,62]. We did not restrict pwmax since faster growth can
be caused by changes in many different traits such as the loss of a costly function, increased

nutrient uptake and metabolism, or cell size required for reproduction.

Results

Cultivation in a new growth medium that requires quorum sensing

As a first step, we formulated and tested a new growth medium suitable for our purposes. In
several previous studies [21,23,30,41,46,51,54,63], we and others have used the skim milk
protein casein as a growth substrate that requires QS dependent proteolysis. Casein, in the form
of the soluble salt caseinate, is an inexpensive and efficient protein source for P. aeruginosa, but
it produces insoluble aggregates during culture growth. This property makes it difficult to
measure cell density in real time using light scattering (ODsoo). To solve this problem, we

considered gelatin as an alternative protein source.

We first evaluated the ability of P. aeruginosa to grow in minimal salts medium containing 1%
gelatin as the sole carbon source (Fig 3). When grown independently, the WT exhibited growth
saturating at an average ODgoo of 0.8, whereas the /asR mutant maintained an average ODsoo
close to the initial inoculum of 0.05 (Fig 3A). This outcome shows that gelatin is a growth
substrate that requires QS. During WT monoculture growth, the medium remained without

microscopically visible precipitate and ODsoo values correlated well with CFU/mL (Fig 3C, R?=
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93%). When initiated at a frequency of 1.0%, the /asR mutant strain enriched to a final frequency
of 4.3% (Fig 3B), resulting in an average relative fitness of 1.4. These findings confirmed that

the /asR mutant strain qualifies as a social cheater under our new growth conditions.

Fig 3. Batch culture growth in gelatin medium. (A) Cell densities (ODsoo) of P. aeruginosa
WT (blue) and /asR mutant (red) monocultures grown independently in gelatin medium for 48
hours.

(B) Initial and final /asR mutant frequencies after 36 hours of coculture growth in gelatin
medium, where the WT and /asR mutants are grown together.

(C) Correlation of cell densities (ODgoo) and CFU/ml of P. aeruginosa WT monoculture grown
independently in gelatin medium batch culture.

Each point is the average of three replicates with error bars showing standard deviation. In some
cases, the standard deviation is too small to be seen.

Stability of the WT in the chemostat

Next, we established growth conditions in the chemostat. Before initiating cocultures, we needed
to demonstrate that the WT alone can achieve steady-state growth with gelatin as substrate. Upon
inoculation of the chemostat, we allowed the culture to grow to late exponential phase before
initiating flow. The dilution rate was then set to D=0.12 1/h, a value that was below the growth
rate achieved during the exponential phase in batch culture (u=0.17 1/h). At steady state, this
dilution rate equates to a bacterial doubling time of 5.8 h. In two separate trials, the cell density
transiently dropped after the flow was turned on but then stabilized at an ODgoo of approximately

0.30 (Fig 4A), thus illustrating that a cooperator-only population is stable in the chemostat.

Samples of both trials were also screened for protease-deficiency using a skim milk assay to
establish a baseline for our coculture studies below. Upon initiation of chemostat mode, both
trials showed 0% protease-deficient colonies. By the end of the experiment, a small number of

protease-deficient mutants had evolved with 3% in one replicate and 5% in the other (Fig 4B).
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Fig 4. Stability of WT P. aeruginosa in the chemostat. A WT-only culture was grown in the
chemostat over a period of almost 200 hours (9 days). The cultures were initially inoculated to a
starting ODgoo of approximately 0.05 and were grown in batch mode for approximately 32 hours.
Then chemostat mode was initiated (indicated by the dotted line) and samples were taken
approximately every 24 hours for 8 days. Each value is the measurement of a single replicate.
(A) Total cell density (ODsoo).

(B) Frequency of protease-deficient mutants at the first and last time points of chemostat mode
as determined by the skim milk assay.

Tragedy of the commons in the chemostat

We finally set out to determine if social cheating causes a Tragedy of the Commons in the
chemostat by initiating cocultures of the WT and /asR mutant. The cocultures were inoculated to
an initial /asR mutant frequency of 10% (rather than 1% in batch culture) for two primary
reasons: (1) to ensure the burden on population growth caused by the /asR mutants could be
observed within the experimental timeframe and (ii) to reduce the likelihood of other mutation
events dominating the dynamics during a longer cocultivation period. When this WT//asR
mutant coculture was grown in the chemostat, a population collapse, or a Collapsing Tragedy,
was indeed observed. Total cell density, as measured by ODsoo, increased significantly during
batch mode, but steadily declined during chemostat mode to an ODgoo below detection limit for
three out of four replicates, and to approximately 0.05 for the remaining replicate (Replicate 2)

(Fig 5A).

In addition to the total population dynamics, we determined the frequency of the defined,
antibiotic-resistant /asR mutant using an antibiotic plate assay. We also assessed the frequency of
protease-deficient mutants overall using our skim milk assay. This approach allowed us to
discern if protease-deficient mutant cheaters other than the defined /asR mutant had evolved
throughout the duration of the experiment. These protease-deficient mutants might include
spontaneous /asR mutants evolved from the WT subpopulation, or /asR-independent mutants

with loss-of-function mutations in genes encoding extracellular proteases, protease secretion
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machinery, or other regulatory proteins. This would make the defined /asR mutant cells a

subpopulation of the protease-deficient population.

In batch mode, /asR and protease-deficient mutants increased concurrently in all cocultures. In
chemostat mode, both frequencies remained congruent with one another in the first and third
replicates, but differed in the second and fourth replicates, indicative of different mutational
events. Conceivably, in the second replicate, a protease-deficient but antibiotic-sensitive mutant
evolved that was eventually eliminated from the population, whereas in the final replicate,
another protease-deficient but antibiotic-sensitive mutant evolved that ultimately eliminated the

original defined /asR mutant (Fig 5B).

The general trajectories of protease-deficient mutants between the four coculture replicates also
varied. In three of the replicates the frequency of protease-deficiency increased to approximately
80% before leveling out. This general behavior is congruent with model predictions (see below),
albeit at a higher frequency. This higher than predicted frequency of protease-deficient mutants
may suggest a mutation occurred in the /asR mutants that increased their relative fitness.
Intriguingly, in the second Replicate the frequency of cheater mutants diminished. We

investigated potential causes for these trajectories in a later section.

Fig 5. Cheater frequencies in chemostat replicates. Four replicates of a WT and /asR mutant
coculture were grown in a chemostat over an approximately 10-day period with the first approx.
55 hours grown in batch mode and the latter approx. 192 hours (8 days) grown in chemostat
mode (transition indicated by the vertical dotted line). The cultures were inoculated to a starting
ODsoo of approximately 0.05, at a 10% lasR mutant frequency. Samples were taken
approximately every 24 hours for 8 days

(A) Total cell density (ODeoo) of the chemostat cocultures, plotted here on a linear scale to
include cell density values of 0.

(B) Each coculture replicate is graphed independently. Frequency of protease-deficient mutants
in the chemostat cocultures as determined by skim milk assay (dashed lines) and frequency of
lasR mutants as determined by antibiotic medium (solid lines). Cell density (ODsoo) from (A)
(grey) is included for comparison.
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521 Model parameterization and fit to experimental data

522  We had recently formulated a general mathematical model of the Tragedy in the Commons in a
523  chemostat that predicted the stability of a WT-only population and a population collapse in a
524  coculture setting under reasonable conditions [15]. Our data generally support this predicted
525  outcome; however, we wanted to investigate whether the model would show those same

526  outcomes when fitted with biologically relevant parameters specific to our study. This would
527  determine whether the model captures all the essential mechanisms of the system and would
528 allow us to test its predictive efficacy. We formulated and parameterized a deterministic ODE
529  chemostat model as described in Methods, with the concentration of cooperator and cheater
530 strains, as well as public good enzyme, growth substrate, and product as the relevant state
531  variables. We performed numerical simulations of this model in comparison with the

532  experimental results from the previous sections.

533  To estimate the initial variable concentrations and parameter values that best represent our

534  experiment, we utilized data from our own experiments as much as possible. For example, the
535 initial concentration of bacteria, the dilution rate, and the substrate concentration are all

536  determined by experimental design. We also estimated the cost of QS-dependent cooperation
537  from experimental data. Other parameters, including those that are challenging to measure, are
538 taken from the literature (Table 1; see Supporting Information (S1) for a full explanation of each
539  parameter derivation). While some parameters are conclusively one fixed value (e.g. the dilution
540 rate as determined by experimental design), others were identified to be within a possible

541 biological range (e.g. the rate of enzyme-substrate turnover and the initial enzyme concentration

542  astaken from literature sources). Although not every combination of parameters within these
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estimated ranges results in dynamics which mirror our experimental data, we nonetheless find

many which do (Fig S1.2).

Table 1: Variable and parameter values used for model simulations.

Variable or Units Biological meaning Initial COIldlthHSOI‘ Best fit value
parameter parameter range®
S mmol/l Substrate (gelatin) 0.200 < S(0), $"<0.250 | 0.210
concentration
WT-only: 0.024
b g dry Cell density of the P. X1(0) =0.0240 '
! weight/l aeruginosa WT strain Coculture: 0.0216
Xi(0)=0.0216 '
g dry Cell density of the P. Coculture:
X2 weight/l aeruginosa lasR strain X2(0) = 0.00240 0.00240
E mmol/l Enzyme (protease) 0.0 < E(0) <2.424x10° | 3.00x10°
concentration
P mmol/l Product (amino acid) P(0)=0.0 0.00
concentration
D 1/h Dilution rate 0.121 0.121
Maximal growth rate of P. q
Wmax 1/h aeruginosa 1.38 1.38
kew | 1M E?nmogifnzyme'submw 40 < kea <500 480
K mmol/l Amqunt of product (P) at half 0.840 0.840
maximal growth
Ky | mmol/l Gelatin concentration athalf 1. 4500 < g <0.0725 | 0.068
maximal enzyme reaction rate
mmol/g dry Enzyme produced per 5 ©
n weight bacterial biomass 0.0<m = 126x10 620x 10
g Product-dependent growth
Y gay yield conversion of nutrient 0.0423 0.0423
weight/mmol 1 biomass
Number of product molecules
o N/A produced per substrate 36.0<6<46.0 40.0
molecule
Metabolic burden of enzyme
q N/A production at high cell 0.0425<¢<0.625 0.610
density
_ g dry Density of cooperative WT _
OSmin weight/l cells needed for QS to begin 0.0447 < OSmin < 0.161 0.045
Hill coefficient determines
n N/A speed of transition from little | »>2.00 2.00
to maximum ¢

§ In some cases, the literature provided a range of values for a variable or parameter. Rather than taking
the average, we explore the full range.
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9 The pmax value chosen here is larger than what we calculated for batch phase growth in gelatin medium,
because it is based on product rather than substrate utilization kinetics. The full explanation can be found
in Supporting Information (S1).

To identify the parameter combination that most closely matches our experimental results, we fit
the model to three experimental data sets: WT-only total density (Fig 6A), coculture total density
(Fig 6B), and cheater frequency as determined by protease-deficiency (Fig 6C). For the first two,
we considered the entire data set, and for the latter, we only considered the three replicates with
congruent protease-deficient trajectories (coculture replicates 1, 3 and 4) — disregarding the
second replicate with a much lower and decreasing protease-deficient frequency. We considered
the protease-deficient mutant frequency in the following because it represents total proportion of
cheaters that impose a metabolic burden on cooperative growth. We used a least-squares analysis
to fit our mathematical model to all three data sets simultaneously (Fig 6), choosing an overall
best fit that minimized the combined root mean square error. Table 1 shows the variables and
parameter values that generated the combined best fit to all three data sets and were then used for

the numerical simulations and analysis below — unless indicated otherwise.

Fig 6. Simulated best fit. The combined best fit of the ODE model (black) to all three
experimental data sets (grey) is shown: WT-only ODeoo (A), coculture ODeoo (B), and coculture
protease-deficiency (C). The corresponding parameter values are as described in Table 1.

While the /asR and protease-deficient cheater frequencies differed between experimental
coculture replicates, it is worth noting that each of these frequencies appeared to eventually
stabilize. We can indeed show mathematically that the /asR cheater frequency will always
approach a constant limit, meaning that the value will not change over time. In fact, the cheater

frequency from the model

X3
X1+X,
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would be expected to saturate to

R(t) - e t eJ-OtA(t)dta
1-R(0)+R(0)elo At

where A(t) = Q(X1 (t))F (P (t)). Thus, as ¢ approaches infinity, R(#) approaches some constant
value, ¢, such that 0 < ¢ <1 (see Supporting Information (S3) for the full mathematical proof).
Thus, while the population collapses, both cooperators and cheaters remain present. Cheaters do
not reach fixation as the competitive exclusion principle would predict (Fig S3.1). The reason for
this is that as cheaters invade, the cooperator density eventually falls below the QS threshold
(OSmin) such that the effective cost of QS (Q(X7)) tends to zero. With a negligible cost to QS,
there is no longer an observable selective advantage for cheaters, resulting in the coexistence of
cooperators and cheaters at nearly identical growth rates. Because QS is density-dependent, the

limit at which the cheater frequency saturates as the population collapses is density-dependent.

Analysis of model sensitivity to individual parameters

Beyond data fitting, our mathematical model shows how changes in biological parameters and
initial conditions impact the dynamics of the cell densities and cheater frequencies. Given many
of our parameters are estimated, we also explore these parameters outside of their estimated
ranges to capture a greater view of the model dynamics. The number of product molecules
produced per substrate molecule (¢) and the product to biomass conversion factor (y) are highly
influential to the system impacting the batch phase growth, long-term stability of WT-only
culture, and the /asR cheater frequency limit. In contrast, the estimated parameter ranges of
others, such as the amount of product at half-maximal growth (K), is sufficiently narrow such

that those parameters have little impact on the system dynamics. Parameter changes also varied
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589 in their effect on individual time courses. For example, the metabolic burden (¢g) affected the

590 coculture and cheater frequency trajectories much more than the WT-only trajectory (Fig 7).

591  For many of the parameters, the effect on system dynamics emerges from their contribution to a
592  given auxiliary function, i.e. the metabolic burden of enzyme production (Q(X;)), enzyme-

593  substrate catalysis (G(S,E)), and bacterial growth (F#(P)) functions. As such, the parameters

594  within these functions can have inverse effects on the population dynamics. For example,

595  decreasing OSuin or increasing g will both increase the total cheater frequency in the population

596  (Fig 7).

597 Interestingly, regardless of the initial condition, the WT-only simulations resulted in either
598 stability or washout, whereas the coculture simulations always resulted in washout as a

599  consequence of cheater invasion, representing a Collapsing Tragedy of the Commons, unless
600 there is no dilution (Fig 7). Hence, continuously diluted chemostat cocultures are predicted to
601 always cause population collapse, in contrast to undiluted batch cultures. This illustrates that a
602  positive dilution is a requirement for the Collapsing Tragedy to occur. However, too high of a
603 dilution can cause cooperator-only populations to collapse as well, and the inability for the
604  cooperative WT-only populations to establish stability when the dilution is sufficiently high
605 aligns with previous theory that has been mathematically proven for similar chemostat models
606  [15,34]. See Supporting Information (S4) for simulations illustrating the impact on the system

607  dynamics for all parameters.

608 Fig 7. Parameter sensitivity analysis. Simulations were run to illustrate the impact of changing
609 asingle parameter on the system dynamics. Rows indicate the parameters from top to bottom as
610  follows: number of products produced per substrate molecule (o), nutrient to biomass conversion
611  (y), metabolic burden of enzyme production (g), minimum cooperator cell density needed for
612  quorum sensing to begin (QSwuin), the concentration of product at half-maximal growth (K5s), and
613  the dilution rate (D). The columns indicate the WT-only (ODsoo), coculture (ODsoo), and cheater
614  frequency (%) scenarios from left to right. The experimental data previously described (Fig 4
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and Fig 5) are shown in grey while the simulations are shown in color with dark blue being the
lowest simulated value and red the highest simulated value. All other parameters besides the one
identified by the row heading remain as specified in Table 1. In places where all five lines are
not clearly visible, they are overlapping.

Given the way single parameter modifications can have opposing impacts on the system, we
further explored the combined effects of select parameter pairs by analyzing the average RMSE
obtained from model fits to each data set individually. We chose parameters within the QS
function (¢ and OSnin), o, and y for this analysis because the model’s stability of the WT-only

population density was relatively sensitive to changes in these values.

Using the RMSE map to infer how the dynamics of the system change in response to variable
pairs shows increasing o or y impacts the dynamics in similar ways (Fig 8). ¢ and OS.i» have a
similar but opposite relationship as ¢ and y. Increasing ¢ has the same effect as decreasing OSuin
(Fig 7 and Fig 8) which is an expected result given the relationship these variables have to the
QS function (Fig 2). The congruent impact of ¢ and y is not as obvious and may not have been as

easily discovered without this analysis.

Fig 8: RMSE heat map for variable pairs with extended ranges. Heatmaps indicating the
average RMSE across an extended range of four parameters in four pairwise combinations. The
RMSE is shown in red where the simulated values were greater than the experimental data
("overshoot”) and is shown in blue where the simulated values were below the experimental data
(“undershoot”). In both cases a darker color indicates a lower RMSE. The four variables and the
ranges simulated were the number of enzymatic cleavage products (o; [30,70]), metabolic burden
(g, [0,1]), nutrient to biomass conversion (y; [0.03,0.07]), and the minimum cooperator cell
density needed for quorum sensing to begin (QSui; [0,0.2]). The pairs from top to bottom are: ¢
and g, y and q, OSni» and ¢, and ¢ and .

A white circle indicates the lowest RMSE and a gold square indicates the best fit value. Each
parameter range was divided into 41 equidistant values for simulation. The white lines run along
the edges of the simulated values that were the closest to the maximum and minimum estimated
value as described in Table 1. The simulations in Fig 7 illustrate the dynamics across one row or
column of these heat maps.
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Notably, these extended parameter best fit values are not much lower than the within-range fit
values; the maximum difference between the combined best fit RMSE (Fig 6) and the extended
range individual data best fits are 0.003 (ODsoo) for the WT-only culture, 0.0248 (ODeoo) for the
coculture, and 6.0 (%) for the cheater frequency data (see Supporting Information (S5): Table
S5.1 for extended range RMSE values). Although there are other parameter choices which may
return a sufficiently or similarly good fit, this analysis underscores the accuracy of the model
since the model makes predictions which align with the data from relevant biological parameter

estimates.

These RMSE maps can also be used to indirectly illustrate the behavior of the system. Our
experimental data for the WT-only cultures showed stable growth, so a high RMSE (bad fit)
indicates either undershooting (population collapse) or overshooting. Our experimental data for
the co-cultures show a population collapse, so a high RMSE can only indicate that the model has
overshot the data prior to collapsing. For example, increasing ¢ causes an overshoot effect and
reducing it can cause a washout of the WT (compare the top and bottom left panels of Fig 8 in a
vertical direction to the top left panel of Fig 7). We used divergent colors to illustrate when the
simulation values were, on average, either over or under the data. For the WT only data, a
sufficiently high RMSE which undershoots the data indicates a population collapse and can be
interpreted from Fig 8 as a solid-colored light blue zone. This further underscores that a
minimum threshold for the metabolic burden, ¢, is needed to achieve stability, and finds that
threshold to be approximately 0.25 for these parameter pairs — although the true threshold could

be higher.
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Taken together, this analysis shows that cooperating populations can only sustain themselves at
steady-state levels within a narrow range of parameters and initial conditions. We also show that
lower values of the metabolic burden g decreases the relative fitness of cheaters, and that a
minimal threshold of g is necessary to sustain steady-state growth of the WT (Fig 7 and Fig 8).

Finally, we illustrate that continuous dilution is a requirement to observe a population collapse

(Fig 6).

Resolving discrepancies in cheater frequency

Our model simulations primarily deviated from the experimental results with respect to the
cheater mutant frequency (Fig 6). One possible explanation for these discrepancies is that distinct
mutations occurred in each replicate population during extended chemostat cultivation. This
hypothesis is supported by the emergence of a small number of cheaters in the WT-only
chemostat culture (Fig 5A) and by strikingly divergent frequencies for protease-deficient and
antibiotic-resistant /asR mutant subpopulations in one chemostat coculture replicate (Fig 4B;
Replicate 4). Thus, guided by our mathematical model, we sought to better understand the
underlying mutations that may have occurred and their impact on population dynamics. Inspired
by previous work that illustrates the capacity for faster-growing mutants to evolve [23,52], we
explored the possibility of similar mutations evolving in our chemostat cultures (herein referred

to as “evolved mutants”; Table 2).

Table 2: Phenotypes of defined and evolved P. aeruginosa strains

. Enzyme Antibiotic Faster
Strain or mutant o s . + ;
production’ resistance growth
D
E WT v — _
F
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I
N . .
E lasR (mini-Tn7-Tp) - v -
D
B Cheater from lasR - v v
v
O
L Cheater from WT — — v
v
E
D
Cooperator from WT v - v

1 Enzyme production and antibiotic resistance was determined by differential plating on skim milk or antibiotic
plates, respectively.

} Faster growth, relative to the defined strains, was determined by comparing the relative fitness of evolved cheaters
against the defined /asR cheater and through numerical modeling predictions

In Replicates 1 and 3, the frequencies of protease-deficient and antibiotic-resistant /asR mutants
were very similar, however, these cheaters occurred at a frequency higher than what the model
predicts. This discrepancy could point to a mutation emerging from the /asR mutant lineage that
permits faster growth. In Replicate 4, the frequency of protease-deficiency was greater than that
of antibiotic-resistance, which, if caused by a mutation, would suggest a faster-growing cheater
evolved, potentially from an antibiotic-sensitive WT parent. It is also possible that a /asR mutant
lost its antibiotic resistance, although we believe this to be a highly unlikely occurrence for
several reasons, including (i) the antibiotic resistance is encoded in a neutral chromosomal site,
rather than a plasmid, and is highly stable over at least 100 generations [47], (ii) there are no
appreciable differences in the growth rates between strains with or without the antibiotic marker

[46], and (iii) there is no selection for or against antibiotic resistance in the chemostat.
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In Replicate 2, mutant frequencies initially mirrored those of Replicate 4, except that the evolved
cheaters (also likely from an antibiotic-sensitive WT parent) were unable to maintain their fitness
advantage and eventually realigned with the /asR mutants at a low frequency. The low frequency
of protease-deficient and /asR mutant cheaters in Replicate 2 could in turn be due to the late

evolution of a faster-growing cooperator.

We first explored these hypotheses numerically, by incorporating the mutational events into our
mathematical model to simulate the effects of evolved mutants on population dynamics. We
considered a faster-growing protease-deficient mutant evolving either from a /asR mutant
ancestor (Replicates 1 and 3) or from a WT parent that does not have antibiotic resistance
(Replicate 4). A faster-growing protease-deficient mutant from a WT parent could result from
two consecutive mutations, however, it could result from a single mutation as well. For example,
a mutation in a global regulator can impact multiple behaviors and/or processes at once. For
simplicity, we only consider the case where one mutation has occurred in our model. We also
considered a faster-growing cooperator mutant (Replicate 2). Although the situation is likely
more complex for Replicate 2 and the evolved cooperator is not the only mutant, we include this
analysis as a proof of concept to illustrate that such a mutation could result in a reduced /asR
mutant cheater frequency without increasing overall cell density. The introduction of these
mutants yields cheater frequency trajectories that are representative of our experimental data (Fig
9). The addition of a faster-growing cheater evolving from a /asR mutant ancestor results in a
higher frequency of protease-deficient cheaters as seen in Replicates 1 and 3. The introduction of
a faster-growing cheater evolving from a WT ancestor maintains a high frequency of protease-
deficient cheaters and, at the same time, greatly reduces the frequency of the antibiotic-resistant

lasR mutant cheater. A faster-growing cooperator can reduce the cheater frequency without
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increasing population density (Fig 9). Simply incorporating one mutant fails to fully capture the
dynamics of that replicate, which is not surprising as there are likely additional mutations

causing the rise and fall of protease-deficient and antibiotic-sensitive mutants throughout.

Fig 9. Simulated effect of evolved cheaters on coculture dynamics. Model simulated with
three different faster-growing evolved mutants from top to bottom as follows: (i) cheater
evolving from a /asR mutant parent, (ii) cheater evolving from a WT parent, and (iii) a
cooperator evolving from a WT parent. The model numbers (i — iii) correspond to the model
numbers in the Methods section. The left column shows the total cell density, and the right
column is the cheater frequency. The model simulation is shown in black, and the experimental
data previously described (Fig 4 and Fig 5) are shown in grey with Replicates 1 and 3 on the top,
Replicate 4 in the middle, and Replicate 2 on the bottom. In the cheater frequency graphs, dashed
lines show the protease-deficient subpopulation, and solid lines indicate the antibiotic-resistant
subpopulation. All simulated values are the same as in Table 1 except the added mutation rate (o)
and the faster growth (umax) of the evolved mutants. The respective a and pmax values for each
replicate are as follows: 1x10** and 3.8 for the evolved cheater from lasR, 7x1077, 4.0 for the
evolved cheater from WT, and 3x10- and 4.0 for the evolved cooperator.

Since the existence of these mutations is speculative at this point, we sought experimental
validation and empirically investigated their presence in chemostat Replicates 1, 3, and 4. We
reasoned that in each of these cases, divergent trajectories could be explained by a single

mutational event that can be captured by our screening and cultivation methods.

We screened for the existence of faster-growing cheaters by taking three protease-deficient
isolates from the final time point of coculture Replicates 1, 3, and 4. We took antibiotic-resistant
isolates from Replicates 1 and 3, because we predict those mutants evolved from a defined /asR
mutant ancestor. In contrast, we selected antibiotic-sensitive isolates from Replicate 4, because
we predicted evolution from a WT, and therefore antibiotic-sensitive, ancestor. We then
compared the relative fitness of each isolate to that of the defined /asR mutant control, when

grown together with the WT in a gelatin medium coculture.

All three evolved isolates from Replicates 1 and 4, and two out of three replicates from Replicate

3 showed a relative fitness significantly above that of the defined /asR mutant (Fig 10). These
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results also suggest that evolved mutants rise to high frequency in each chemostat population by
the end of the cultivation period. It is likely that the one non-significant isolate from Replicate 3
was simply an ancestral /asR mutant cheater because both the emergent and /asR mutants are
protease-deficient and antibiotic-resistant. Taken together, this analysis provides experimental
evidence that chemostat cultivation under conditions that favor cooperation selects for faster-

growing cheater adaptations.

Fig 10. Relative fitness of the evolved and defined protease-deficient mutants. The average
relative fitness after 36 hours of growth with the WT of the defined /asR mutant (grey) and three
evolved mutants (protease-deficient isolates) taken from the final chemostat timepoint of
Replicates one (blue), three (magenta), and four (orange). All evolved cheaters had a
significantly higher relative fitness as determined by a one-way ANOVA between each replicate
and the /asR control with an ad hoc Bonferroni correction, with one exception in the third
Replicate (P values are indicated above each bar in the conventional manner as follows: P> 0.05
ns, P<0.05* P<0.01 **, P<0.001 *** and P <0.0001 ****_ Specific P values can be found
in Supporting Information (S5: Table S5.2).

Discussion

The purpose of the paper was two-fold: first, to determine if the Collapsing Tragedy occurs in
the chemostat according to model predictions and second, to investigate the predictive
capabilities of such models. Using a new growth medium suitable for chemostat cultivation, we
first established that P. aeruginosa is capable of cooperative proteolytic growth in a chemostat
system, that the /asR mutant strains not contributing to protease production are unable to grow on
their own, and that the /asR mutants have a fitness advantage when mixed with the WT
cooperator in a coculture. These three properties define social cheating in a population and they

can ultimately lead to a population collapse [3,5].

We then established if the population-level dynamics of the chemostat match the general

mathematical theory of microbial social behavior [15]: we observed the stability of the WT

35



783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

population alone and a large decline in population density when a lasR mutant is introduced.
Generally, all replicate populations experienced a Tragedy of the Commons, defined as a
substantial reduction in group fitness as a consequence of selfish behavior — with or without a
complete collapse (Rankin et al. 2007). Strictly speaking, only three of the four replicates
experienced a Collapsing Tragedy defined as a complete population collapse. Replicate 2
maintained a very low population density at the end of the cultivation period, presumably as a

result of specific mutation events.

Although we observed the theoretically predicted outcome, we had also considered that
coexistence or cooperator dominance could be an outcome of the experiment. Cooperation could
have been promoted by the beneficial cooperator mutations we speculated to have occurred in
coculture Replicate 2 or by cheater control mechanisms such as punishment and metabolic
constraint [25,26,30,64]. Punishment of cheaters via cyanide or pyocyanin production has been
reported as a control mechanism against social cheaters in P. aeruginosa [25,26], although this
effect is context-dependent [48]. The experiments that found these toxic extracellular substances
to be an effective form of cheater control were conducted in batch culture with a serial transfer
regime, and this methodological difference could have allowed more of the substance to build up
whereas the chemostat would dilute it. Thus, dilution may play an important role in the efficacy
of such mechanisms. The co-regulation of both public and private nutrient acquisition by LasR
has also been shown to restrict /asR cheaters in populations of P. aeruginosa, however, it
requires the presence of specific substrates that are metabolized intracellularly in a QS-dependent
fashion [30]. Our experiment did not include any such substrates, although a mutation which
privatized the public good or carbon source we used could also potentially explain the cheater

frequency dynamics of Replicate 2. In principle, these processes could have been occurring
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during our experiment; however, they would have been included in our calculations for their

relative growth rates and would not have been modeled explicitly.

It is also possible that the initial cheater frequency of our populations was simply too high,
allowing cheater invasion to levels that promote population collapse [24] before beneficial
cooperator mutations have a chance to rise to a sufficiently high frequency, and rendering
mechanisms that would mitigate cheating at low frequencies ineffective. Another reason we may
have observed a collapse instead of coexistence maintained by some biological mechanism is
that our microbial population was well-mixed, eliminating population structure and spatial

effects as factors that favor cooperation [2,3,5,53,65-67].

Despite the growth advantage the cheaters had, they did not fix in the population. This seemingly
contradicts expectations; however, we showed mathematically that the final cheater frequency is
density-dependent due to QS. This is because the cooperator population seizes to produce
enzyme when its density decreases below the quorum threshold, thereby eliminating the growth
advantage the cheaters had. This illustrates that both total population density and the cheater
frequency throughout cultivation play a vital role in determining the final cheater frequency,

similar to findings from another study [28].

For population density data, a good fit between the model and experiment was achieved within
established parameter ranges, supporting our claim that the model captures the essential
mechanisms of cooperation and cheating via enzyme production as a public good in P.
aeruginosa. Such parametrization is important for quantifying the costs and benefits of
cooperative behavior and defining the boundary conditions within which cooperation can occur

and remain stable. The metabolic burden of cooperating (¢) has a central role here. Investment
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into cooperation must be sufficiently high to produce enough enzymes to enable proteolytic

growth, but increased investment in turn means increased vulnerability to cheating.

Further, we established that positive dilution rate is a requirement for the Collapsing Tragedy to
occur, suggesting that there must be a sufficient turnover of nutrients and the population. This
could have implications in the use of social microbes to treat bacterial infections without
antibiotics [68]. Treatment might be particularly effective in environments with high fluid flow,
such as the urinary tract. The treatment of other types of infections, such as topical wounds,

would require regular washing to eliminate the infection.

In contrast to the population-level data, the phenotypes of subpopulations differed between
experimental replicates in cocultures and could not be accurately captured with a single
parameter set. In this case, a modified model that incorporates mutational events which may have
occurred (Fig 9) combined with experimental validation of the existence of such mutations (Fig
10) was able to resolve these differences. The divergence between our antibiotic resistance and
skim milk proteolysis data underscores the importance of directly measuring both the phenotype
of interest and the initial strain during long term cultivation, when possible. Had we only
measured skim milk proteolysis, the mutation in coculture Replicate 4 would not have been
identified. We concluded that cheater mutants evolved from defined /asR mutant and WT strains
in Replicates 1,3 and 4, respectively. Despite the occurrence of these evolved mutants, it is
unlikely that they are the driver of the Collapsing Tragedy that ensues as soon as flow is
initiated. Mutations occur at very low frequencies and take time to build in the population. Our
simulations further illustrate that a Collapsing tragedy is inevitable even in the absence of

evolved cheaters, in a coculture solely comprised of defined cheaters and the WT (Fig 6).
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A faster-growing protease-proficient mutant, as we predict occurred in Replicate 2, averted a
Collapsing Tragedy but still did not fully recover population growth. The near-collapse of that
population suggests that while the protease-proficient mutant grew faster than the parent WT and
lasR mutant, its growth was not fast enough to enrich in the chemostat. This is likely due to the
continued dilution of the chemostat environment maintaining a low cell density and thus limiting
QS-dependent enzyme induction. The population density of Replicate 2 fell below the best-fit
value for the QS threshold (QSwi» at an ODeoo of 0.094; Table 1 and Supporting Information S1)
on the second day of chemostat mode and remained below that threshold for the remainder of the
experiment. Essentially, faster-growing cooperators are capable of producing protease, but they
are being kept below the QS threshold by constant dilution and are therefore not actively

producing the enzyme.

Most populations experience multiple selection pressures, and the chemostat is no different.
Additional adaptations beyond what we explored may have contributed to the observed
variability of the /asR and protease-deficient cheater frequencies. It is also conceivable that some
of the variation is caused randomly by genetic drift as populations reach low cell densities during
the wash-out phase. However, we believe the mutant phenotypes we observed are the result of
natural selection because (i) population numbers are relatively high for much of the growth phase
(still approx. 100 million cells in the chemostat vessel when ODgoo values are near the detection
limit of about 0.001; Fig 3C and Fig 4B), (ii) mutants with very similar behavioral phenotypes
were found in three of the replicates at relatively high frequency, and (iii) there is evidence for
adaptation to a proteolytic growth environment from other studies [23,24,69]. Additional

modeling and experimentation, such as sequencing the genomes of the evolved mutants or
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adding stochasticity to the dilution rate to examine the role of genetic drift and bottlenecking,

would be a compelling direction for future projects.

Using the chemostat culturing system to assess the validity and predictive capabilities of theory
against empirical results has additional benefits, as the chemostat has been considered an ideal
laboratory system for studying populations due to its properties reflecting natural ecosystems in
many respects [53,70,71]. It has continuous inputs and outputs of nutrients analogous to the
natural turnover of resources in nature. Population densities often reach a steady state in the
chemostat, balancing growth with dilution to maintain an unchanging concentration; the latter
being akin to the death, predation, and emigration that would occur in natural ecosystems. Many
natural ecosystems resemble the chemostat dynamics, and chemostat models have been applied
to the understanding of the human gut [72] and the flow of organic matter in rivers [73,74].
Establishing the limitations of these models is then crucial as they begin to be used to make
predictions about human health and the environment. Thus, the utilization of the chemostat
environment to investigate cooperation offers ecologically relevant insights into the maintenance

of cooperation in microbes and, potentially, beyond.

Taken together, the results of this study underscore three main ideas. The first is the importance
of validating theoretical models with experimental outcomes, when possible. Doing so allows us
to identify the extent to which we can utilize theoretical results to predict biological outcomes
and phenomena. In our case, the model we developed accurately predicted population density
outcomes, but was unable to capture the variable subpopulation dynamics of cheater mutant
frequencies. Had we relied solely on the results of the theoretical predictions to understand the
outcome of social cheating in the chemostat environment, we would have missed the selection

pressure the environment has on creating newly evolved phenotypic variants.
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Secondly, we illustrate the multiple benefits of integrating empirical data into the theoretical
framework. Such an integration of empirical data and mechanistic modeling revealed insights
into the underlying mechanisms that are most influential on the system dynamics. Another
benefit of creating a biologically accurate model tuned to a specific study system is that it can
then be used to explore possible outcomes and generate testable predictions. The subpopulation
dynamics we observed were variable and unable to be captured by a mechanistic model, but we
were able to use our model as a tool to generate hypotheses about the root of those discrepancies
by incorporating mutations and, in turn, experimentally validated their existence. By using the
model to identify mutations that explain our data we were able to reduce the amount of empirical
work needed to identify what, if any, mutations had occurred. The need for integration between
theoretical and empirical work is further supported by the fact that such an integration is
responsible for the creation of some of the more successful branches of social evolution theory,

such as sex-ratio evolution theory [4].

Lastly, this study illuminates how even a seemingly simple experimental system and biological
process is challenging to fully encapsulate deterministically — especially when given sufficient
time for evolution to occur. Although additional integration of mechanistic modeling and
empirical work is still needed, the results of this study suggest that incorporating stochastic
effects may be necessary for understanding and predicting evolutionary outcomes. Notably, the
chemostat environment coupled with competition from social cheaters created a selection force
resulting in phenotypic evolution throughout the course of the experiment. Such adaptation has
been observed in previous in vitro evolution experiments with social microbes [23,24,69]. The

evolution of these new traits supports the notion that the Tragedy of the Commons may not be a
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gravestone signaling the end of a species, but may instead be a stepping stone to a different

community structure containing a new dominant species [75,76].
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