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Abstract 27	

Cooperation via shared public goods is ubiquitous in nature, however, noncontributing social 28	

cheaters can exploit the public goods provided by cooperating individuals to gain a fitness 29	

advantage. Theory predicts that this dynamic can cause a Tragedy of the Commons, and in 30	

particular, a ‘Collapsing’ Tragedy defined as the extinction of the entire population if the public 31	

good is essential. However, there is little empirical evidence of the Collapsing Tragedy in 32	

evolutionary biology. Here, we experimentally demonstrate this outcome in a microbial model 33	

system, the public good-producing bacterium Pseudomonas aeruginosa grown in a continuous-34	

culture chemostat. In a growth medium that requires extracellular protein digestion, we find that 35	

P. aeruginosa populations maintain a high density when entirely composed of cooperating, 36	

protease-producing cells but completely collapse when non-producing cheater cells are 37	

introduced. We formulate a mechanistic mathematical model that recapitulates experimental 38	

observations and suggests key parameters, such as the dilution rate and the cost of public good 39	

production, that define the stability of cooperative behavior. We combine model prediction with 40	

experimental validation to explain striking differences in the long-term cheater trajectories of 41	

replicate cocultures through mutational events that increase cheater fitness. Taken together, our 42	

integrated empirical and theoretical approach validates and parametrizes the Collapsing Tragedy 43	

in a microbial population, and provides a quantitative, mechanistic framework for generating 44	

testable predictions of social behavior.  45	

Keywords: bacterial cooperation, chemostat, tragedy of the commons, mechanistic modeling  46	
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Author summary 47	

Cooperation exists across all levels of organismal complexity despite seemingly contradicting 48	

the theory of natural selection which states that individual organisms are incentivized to increase 49	

their fitness – and cooperation comes with a fitness cost. Many mathematical models have been 50	

used to study the impact that cooperation has on population dynamics and have shown that the 51	

absence of cooperation can lead to a population collapse; however, we have little experimental 52	

evidence of this phenomenon occurring. Social microbes provide a unique opportunity to directly 53	

test the outcomes of social cheating and compare those outcomes to mathematical theory. Here, 54	

we use a social pathogen to illustrate that the outcome of social cheating broadly aligns with the 55	

pre-existing theory: cooperators can survive together but the absence of cooperation causes a 56	

population collapse. We also show that although the deterministic nature of the model fails to 57	

capture mutations that occur during long-term cultivation, the model can in turn be used to make 58	

experimentally testable predictions for the types of mutations that occurred.  59	

Introduction 60	

Cooperation is a behavior that contributes to the benefit of another individual or group but has a 61	

fitness cost for the individual. Cooperation is necessary for the functioning of many, if not all, 62	

biological systems across a range of organismal complexity — from the simpler bacterial 63	

systems to the more complex human societies [1–4]. There are many different ways organisms 64	

can cooperate, such as the responsible use of shared resources, contributing to a common goal, 65	

and refraining from competition with one another [5]. Resources shared in cooperative societies 66	

are often referred to as “public goods,” and one challenge these societies face when managing 67	

public goods is the emergence of social cheaters [2,4,6]. Cheaters benefit from the cooperation of 68	
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others without contributing to the associated cost, resulting in a fitness advantage and 69	

proliferation throughout the population. This tension between maximizing the fitness of the 70	

individual and the fitness of the group may result in a phenomenon known as the Tragedy of the 71	

Commons, and is named such because once enough cheaters have invaded the population, the 72	

fitness of the group significantly reduces [7]. If the public good is essential to cooperation, then 73	

cheaters may invade to the point of catalyzing a complete population collapse, a scenario 74	

referred to as a Collapsing Tragedy [5]. 75	

Validating existing mathematical theory through experimentation on cooperation and the 76	

Tragedy of the Commons can be challenging, because although several different mathematical 77	

models have previously been used to describe cooperative behaviors, many are 78	

phenomenological in nature — meaning they can describe what happens but not why it happens 79	

and lack integration of biological processes [4,8–11]. This has resulted in calls to shift towards a 80	

mechanistic modeling approach with a greater integration of empirical data in the study of 81	

cooperation [4,9,12–14]. Mathematical modeling of chemostats, continuous microbial culturing 82	

systems, are mechanistic by design, allowing for such an integration of these biological 83	

processes and, thus, a better understanding of their role in the system dynamics. Chemostat 84	

theory of cooperation predicts: (i) there will be a stable population when there are no cheaters 85	

present, (ii) there will be a Tragedy of the Commons when cheaters are introduced, and (iii) the 86	

frequency of cheaters in the population will increase throughout cultivation [15]. Since the 87	

Tragedy of the Commons of cooperative microbial populations in a chemostat has been 88	

theoretically predicted, this makes the chemostat an ideal candidate for examining the extent to 89	

which the mathematical theory holds up in empirical conditions. 90	
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In addition to the theoretical predictions, experiments with social microbes have inferred the 91	

Tragedy of the Commons from relative fitness measurements [16–18], but very few experiments 92	

have directly demonstrated the population collapse as the ultimate outcome. The absence of 93	

direct demonstration of a Collapsing Tragedy is often simply a byproduct of methodological 94	

limitations. When using standard microbial growth conditions, such as on an agar plate or in 95	

classic batch culture (as in [16] and  [18] respectively), the cell density continuously increases to 96	

a point of saturation when all of the nutrients have been consumed. In these settings, cheaters can 97	

invade and potentially cause growth arrest of the population, but they will not eliminate the 98	

population altogether. As such, the use of relative fitness measurements to infer the Tragedy of 99	

the Commons has become widespread and applied even when the methods would allow it to be 100	

observed (as in [17]). Rare examples in which a Collapsing Tragedy was observed include 101	

fruiting body development in Myxococcus xanthus where signaling-deficient cheaters abrogate 102	

spore production [19], and biofilm formation in Pseudomonas fluorescens, where social cheaters 103	

not contributing to the structure of the biofilm caused the mat of aggregating cells to prematurely 104	

fall apart [20]. Verifying that a Collapsing Tragedy of the Commons occurs in microbial 105	

populations is both beneficial and necessary because: (i) it provides the opportunity to validate 106	

that the existing mathematical theory sufficiently encapsulates the dynamics of the system, (ii) it 107	

allows us to identify the predictive limitations of such models, and (iii) it is not uncommon for 108	

cooperative populations to evade collapse as a consequence of mechanisms that either increase 109	

the cooperator’s fitness or decrease the cheater’s [19,21,22]. Examples of such mechanisms in 110	

microbial populations include non-social adaptations [23,24], punishment of cheaters through the 111	

production of toxic substances [25–27], reciprocity [28], privatization of public goods [29–31], 112	

division of labor to reduce individual fitness costs of beneficial behaviors [32–34], horizontal 113	
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gene transfer [35,36], or population structure [17,18,37,38]. By identifying empirical conditions 114	

under which the Tragedy of the Commons occurs, we can better understand the conditions 115	

necessary to avoid it.  116	

Pseudomonas aeruginosa is an example of a bacterium that exhibits a range of cooperative 117	

behaviors, generally in the form of secreted public goods that are shared within the population 118	

[3,4,39]. Examples of extracellular public goods include proteases necessary for metabolizing 119	

food sources, biosurfactants for swarming, and siderophores for iron scavenging [3]. More 120	

specifically, an example of an extracellular protease produced by P. aeruginosa is LasB elastase, 121	

which is necessary to digest protein substrates [23,39–42]. LasB and many other genes that 122	

encode cooperative functions are controlled by a process called quorum sensing (QS) [42,43]. 123	

QS regulates gene expression in response to population density via diffusible chemical signals 124	

[44,45]. In P. aeruginosa, the central QS regulator LasR binds a specific acyl-homoserine 125	

lactone signal and activates transcription of target genes. A mutation in the lasR gene results in 126	

“signal-blind” cells that do not respond to the QS signal, eliminating the expression of proteases 127	

and other products. These lasR mutants are obligatory cheaters: they cannot grow on their own 128	

without the proteases, but they have a growth advantage when grown with the cooperating parent 129	

strain. This growth advantage results from the loss of the metabolic cost associated with 130	

producing the proteases while still benefiting from the presence of proteases produced by other 131	

cells [18,41,46].  132	

In this study, we combined empirical and theoretical approaches to test the prediction that a 133	

Collapsing Tragedy of P. aeruginosa populations occurs in the chemostat. We conducted a series 134	

of growth experiments in the chemostat under conditions that require QS-dependent proteolysis 135	

(the breakdown of proteins by enzymes produced via QS) involving two strains: (i) the 136	
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cooperating wild type (WT) strain which has its QS circuitry intact and (ii) the cheating lasR 137	

mutant which cannot respond to QS signals and thus does not produce any costly proteases. In 138	

addition to comparing our data to the general outcomes predicted by chemostat theory, we 139	

further aim to assess the predictive capabilities of such models. To accomplish this, we use our 140	

experimental conditions to inform the construction and analysis of a mechanistic mathematical 141	

model that specifically describes our system. We then fit the model to our data and applied it to 142	

make experimentally testable predictions. By employing both experimentation and mechanistic 143	

mathematical modeling, we demonstrate that the Tragedy of the Commons is indeed the outcome 144	

of social cheating in a well-mixed population; however, the theory only holds for population-145	

level predictions. The deterministic model was unable to capture subpopulation dynamics, but 146	

reconciled those differences by incorporating mutational events into the model that could be 147	

experimentally validated.  148	

Methods 149	

Bacterial strains 150	

In this study, we used the following strains: P. aeruginosa PAO1 WT strain and its isogenic lasR 151	

deletion mutant [41,46]. The lasR strain carries a stable trimethoprim antibiotic-resistance gene 152	

cassette at a neutral chromosomal site (mini-Tn7-Tp) that allows distinction from the WT in 153	

coculture and does not affect growth [46–48]. 154	

Cultures and growth conditions 155	

P. aeruginosa cultures were routinely grown at 37°C in lysogeny broth (LB) liquid or plate 156	

culture buffered with 50 mM 3-(N-morpholino)-propanesulfonic acid (MOPS), pH 7.0. Liquid 157	
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batch cultures were shaken at 250 rotations per minute (RPM). Growth was measured as either 158	

colony forming units (CFU) or as optical density at 600 nm (OD600).  159	

Pre-cultures were grown in LB-MOPS liquid culture for approximately 18 hours. Experimental 160	

cultures were grown in M9-gelatin medium, either in a batch or chemostat environment. The 161	

medium contained 1 x M9 salts, 1% (w/v) gelatin, 1 mM MgSO4 1M CaCl2, and 1000x non-162	

chelated trace elements. Type B (powder, Sigma Aldrich, G9391) gelatin was used for the initial 163	

batch cultures, in which the WT and lasR mutant strains were grown independently and then 164	

again as a coculture. For the remaining cultures, the gelatin used was of type A (10% solution, 165	

Alfa Aesar, J62699). The switch from type B gelatin used initially to the type A gelatin was due 166	

to the volume of medium required for those experiments. Making gelatin medium with type B 167	

powder required sterile filtration, and the filters were not practical for large scales of medium. 168	

Cultures were either mono or cocultures (WT or lasR mutant, or a mixture of both), inoculated 169	

with the respective pre-culture to a starting total OD600 of 0.05.  170	

Batch cultures 171	

The batch mono and cocultures were grown in flasks containing 20 mL of M9-gelatin medium 172	

for 36 to 48 hours, as indicated. The cocultures had an initial lasR mutant frequency of 1%. The 173	

batch culture used to determine the correlation between CFU/mL and OD600 values was grown in 174	

flasks containing 30 mL of M9-gelatin medium for 42 hours. For each batch culture, three 175	

biological replicates were performed. 176	

To determine the frequency of lasR mutants in cocultures, 10 µL of a diluted culture sample was 177	

spotted six times onto a standard LB plate and an LB plate with 200 µg/mL trimethoprim. The 178	

standard LB plate was placed in a 30°C incubator while the trimethoprim plate was placed in a 179	

37°C incubator. The different incubation temperatures were used to compensate for the 180	
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decreased bacterial growth rate on the antibiotic plates. Colonies were counted approximately 24 181	

hours later. The frequency of lasR mutant cells was calculated by determining the average CFU 182	

per ml on each type of medium.  183	

Chemostat cultures 184	

The chemostat cultures were grown in 100 mL of M9-gelatin medium, using a chemostat 185	

bioreactor system previously designed in our laboratory [49,50]. It contains a substrate inflow 186	

controlled by a peristaltic pump, a culture outflow, and an air supply from an aquarium pump. It 187	

is operated in a 37°C room and utilizes a stir bar to achieve a well-mixed and well-aerated 188	

bacterial culture. The chemostat was inoculated with the pre-culture to a starting OD600 of 0.05. 189	

Two biological replicates were performed for the WT-only chemostat experiment, and four 190	

biological replicates were performed for the coculture chemostat experiment. We will refer to the 191	

coculture replicates as Replicates 1 to 4 throughout. 192	

The chemostat cultures were first grown in the bioreactor close to saturation, with the medium 193	

supply pump turned off (31-32 hours for the WT monoculture and 49-56 hours for the WT: lasR 194	

coculture). Then the peristaltic pump was turned on to 2.75 RPM, corresponding to a flow rate of 195	

12 ml/h. The chemostat was run for 183-192 hours, or approximately 8 days. For both the 196	

monocultures and cocultures, OD600 was taken periodically. For the cocultures, plating on 197	

differential medium was used to determine the frequency of lasR mutant and protease-deficient 198	

phenotypes [41,51].  199	

Determining antibiotic-resistant and protease-deficient phenotypes 200	

To determine the frequency of lasR and proteolysis-deficient mutants, chemostat samples were 201	

diluted and 100 µL of the diluted chemostat sample was spread onto a standard LB plate. The 202	

plate was placed in a 37°C incubator for approximately 18 hours to obtain small colonies. During 203	
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chemostat cultivation, colony size heterogeneity occurred. From these initial sample plates we 204	

categorized the colonies into one of two groups based on size: small or regular. This 205	

categorization was purely methodological, allowing us to differentiate the incubation times 206	

between the two groups so the phenotypic expression could be properly analyzed, We counted 207	

the number of small and regular colonies on the plate determining their frequency within the 208	

population for cheater frequency analysis.  209	

We then patched up to 100 randomly selected colonies of each size variant onto both skim milk 210	

and antibiotic plates. These skim milk plates contain 4% (w/v) skim milk powder (Difco Skim 211	

Milk, BD, 232100), 1.5% (w/v) agar, and 0.5% (w/v) LB. The antibiotic plates are a standard LB 212	

plate with 200 µg/mL trimethoprim added. One WT and one lasR mutant colony selected from 213	

an LB plate was added as a control. All plates were placed in a 37°C incubator for the following 214	

incubation times: 8 hours for the skim milk plates with regular colonies, 18 hours for the 215	

antibiotic plates with regular colonies and the skim milk plates with small colonies, and 28 hours 216	

for the antibiotic plates with the small colonies. The different incubation times were used so that 217	

the CFUs grew to a similar size prior to counting. 218	

Antibiotic plates were evaluated upon removal from the incubator; skim milk plates were 219	

evaluated after an additional 20 hours of incubation in a fridge. The additional incubation in 220	

fridge allowed the enzyme to continue to degrade the milk while limiting additional bacterial 221	

growth. Protease-deficiency of individual isolates was determined based on the inability to form 222	

a large halo (a dark translucent circle indicating milk had been degraded) around the colony, as 223	

compared to defined WT and defined lasR mutant controls. Antibiotic resistance was determined 224	

by the presence of microbial growth on the antibiotic plate, indicative of the trimethoprim-225	

resistant lasR mutant. With these data, the frequency of antibiotic-resistant (lasR-deficient) and 226	
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protease-deficient isolates was calculated for each subpopulation (small vs. regular colony 227	

variants). We then combined the subpopulation phenotype frequencies with the frequency of 228	

each subpopulation in the total population to calculate the estimated phenotypic frequencies for 229	

the population as a whole. 230	

Evolved mutant analysis 231	

We investigated the relative fitness of P. aeruginosa mutants that evolved during chemostat 232	

cultivation. We focused on evolved cheater mutants we predicted to have occurred in coculture 233	

Replicates 1, 3, and 4, and compared their relative fitness to the original lasR mutant. Replicate 2 234	

was not included in this analysis because it behaved differently from the other replicates making 235	

investigation into protease deficient mutants not necessary. An in-depth rationale for omitting 236	

Replicate 2 can be found below. Evolved mutants were isolated (i.e. separated as individual 237	

clones from evolved chemostat populations) by evaluating their skim-milk proteolysis and 238	

antibiotic-resistance phenotypes using the methods described in the previous section. Isolates 239	

were chosen according to the phenotype that matched the type of mutation predicted; for 240	

coculture Replicates 1 and 3 we selected mutants that were antibiotic-resistant (grew on the 241	

trimethoprim plate) and did not produce protease (did not degrade the skim milk). Of those 242	

mutants, we selected three isolates which had formed the largest colonies on the skim milk plate, 243	

indicative of a faster growth rate, to decrease the chances of selecting a defined lasR mutant with 244	

no additional mutations. For coculture Replicate 4 we selected three isolates that were not 245	

antibiotic-resistant (did not grow on the trimethoprim plate) and did not produce protease. For 246	

each coculture replicate experiment, three isolates of the matching phenotype were pre-cultured 247	

in LB-MOPS liquid medium for approximately 18 hours, along with the WT and the defined 248	

lasR mutant. Cocultures of each mutant (3 chemostat isolates and the defined lasR mutant) with 249	
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the WT were grown as three replicates each in 4 mL of 1% M9 gelatin medium. The cocultures 250	

each had an initial mutant starting frequency of 1%. Replicates were grown for 36 hours in a 251	

37°C incubator. Samples from the cocultures were taken at the time of inoculation and after 36 252	

hours of growth. The frequency of protease-deficiency of these coculture samples was 253	

determined by skim milk proteolysis, as described in the previous paragraph.  254	

Calculating relative fitness and statistical analysis 255	

To calculate relative fitness of the lasR mutant in batch coculture (Fig 3B), we first calculated 256	

the absolute fitness values of the lasR mutant and the WT as the average growth rate of each 257	

strain. Absolute fitness was based on CFU data collected at 0 and 36 hours of cultivation to 258	

determine cell densities (CFU/ml). We determined the lasR mutant cell density from growth on 259	

an antibiotic plate, and, to determine the WT cell density, we subtracted the cell density of the 260	

lasR mutants from the cell density of the entire coculture. Absolute fitness was calculated as the 261	

natural log of the ratio of the final and initial cell densities: 𝑙𝑛 # !"#$%	'(%%	)(#*"+,
"#"+"$%	'(%%	)(#*"+,

$. To calculate the 262	

relative fitness from the absolute fitness calculations, we took the ratio of the lasR and WT 263	

absolute fitness values:  264	

Relative fitness =
Absolute fitness 𝑙𝑎𝑠𝑅
Absolute fitness WT . 265	

To determine the relative fitness for the evolved mutant cocultures, we followed the same 266	

approach as above but used milk plates to identify the ratio of cooperators and cheaters. This also 267	

eliminated the need to subtract the mutant population from the total population, since each 268	

subpopulation is counted independently. 269	

Statistical analysis was done using GraphPad Prism 9.4.1. 270	
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Mathematical model formulation 271	

We used a system of ODEs to describe the changes of concentrations occurring within the 272	

chemostat while also considering the biological and physical processes that are taking place 273	

[15,34,52,53]. Here S (mmol/l) is the proteinaceous substrate concentration, in this case gelatin, 274	

in the chemostat vessel and S0 (mmol/l) is the concentration of gelatin entering the system, E 275	

(mmol/l) is the protease enzyme, P (mmol/l)  is the product of the enzymatic degradation of 276	

gelatin, X1 (g dry weight/l) is the cooperative WT strain, and X2 (g dry weight/l) is the protease-277	

deficient mutant cheater strain. For simplicity, we considered a single extracellular protease that 278	

degrades gelatin into utilizable individual amino acids, recognizing that in reality there are 279	

several proteases that contribute to this process [54]. The model is as described in Fig 1, and a 280	

detailed parameter explanation follows. 281	

Fig 1. Annotated chemostat model. Chemostat model describing the change in concentrations 282	
of gelatin substrate (S), degradation product of the substrate (P), protease enzyme produced by 283	
the cooperator (E), the enzyme-producing bacterial cooperator (X1), and the bacterial cheater 284	
which does not produce any proteases (X2). A detailed description of the parameter definitions 285	
and units can be found in Table 1. 286	
 287	

D (1/h) is the dilution rate, meaning it is both the rate at which gelatin medium enters the 288	

chemostat and the rate at which the well-mixed culture is removed from the system. 289	

Experimentally, it is calculated by dividing the flow rate by the volume of the culture within the 290	

chemostat. Thus, the positive expression DS0 in the substrate equation adds gelatin substrate to 291	

the chemostat, and each expression containing a –D removes substrate, enzyme, product, and 292	

bacteria from the chemostat. In the enzymatic degradation of protein substrate, σ represents the 293	

number of cleavage or breakdown products generated per substrate molecule, η (mmol/g dry 294	

weight) is the amount of enzyme produced per bacterial biomass, and γ (g dry weight/mmol) is a 295	

yield constant that relates the product to bacterial biomass. 296	
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We also consider the Hill function Q(X1) as the fraction of metabolic energy spent on producing 297	

protease enzyme. It is dependent on the cell density of the WT strain being sufficiently high to 298	

induce QS gene expression. We chose a Hill function due to its switch-like properties and 299	

previous use to model cell to cell communication [55–57]. It reflects the cooperativity of QS 300	

with positive feedback on signal production and with receptor dimerization [55–57]. 301	

The growth of the cooperative strain is reduced by the fraction (1–Q(X1)) of the total possible 302	

growth experienced by the non-protease producing strain. The Hill function is given by 303	

𝑄(𝑋-) =
𝑞 ∙ (𝑋-).

(𝑋-). + (𝑄𝑆/0.).
 304	

where q is the estimated burden from enzyme production when the entire population is QS-305	

activated, QSmin is the cell density at which QS is turned on, and n, the Hill coefficient, 306	

determines the speed of transition from little metabolic burden to a metabolic burden of q. Thus, 307	

when cooperators are absent, Q(X1) will be equal to 0 (when X1 = 0, Q(X1)=0), but, as the WT 308	

density increases so too will Q(X1), eventually approaching q (when X1 is very large, then Q(X1) 309	

asymptotically approaches q) (Fig 2).  310	

We further considered two additional rate functions: G(S,E) is the cleavage rate of proteins by 311	

the secreted proteases and F(P) is the per capita growth rate of the organism. G(S,E) and F(P) 312	

are saturating Michaelis-Menten and Monod functions, respectively. It is worth noting that these 313	

are fundamentally the same type of function but are separately named due to the type of 314	

biological process being modeled. The Michaelis-Menten equation for enzyme kinetics has been 315	

studied for over a century and, in the past few decades, supported experimentally [58,59]. In 316	

particular, there is experimental evidence validating the Michaelis-Menten equation with P. 317	



15	
	

aeruginosa produced protease enzymes [42]. The Monod growth rate function was deduced 318	

empirically in conjunction with bacterial population growth [60] and has been shown to correctly 319	

model the growth of P. aeruginosa populations [42].  320	

The enzymatic activity is defined as 321	

𝐺(𝑆, 𝐸) =
𝑘123 ∙ 𝐸 ∙ 𝑆
𝐾4 + 𝑆

	. 322	

Here, kcat (1/h), typically referred to as the turnover number, is a rate defined as the maximum 323	

number of substrate molecules converted to product by an enzyme molecule per unit time, and 324	

KM (mmol/l), the Michaelis constant, is the gelatin concentration at half-maximal velocity. The 325	

rate of bacterial growth is given by 326	

𝐹(𝑃) =
µ5$6 ∙ 𝑃
𝐾7 + 𝑃

	. 327	

For this growth rate equation, µmax (1/h) is the maximum growth rate of P. aeruginosa and KS 328	

(mmol/l) is the product concentration at the half-maximal growth rate.  329	

Each parameter influences Michaelis-Menten and Monod functions such as G(S,E) and F(P) 330	

differently, with the parameters in the numerator (kcat and μmax) impacting the overall magnitude 331	

of the function limit and the parameters in the denominator (KM and KS) influencing the speed at 332	

which the function reaches its saturation limit.  333	

Fig 2. Overview of system and functional effects. Diagram of the metabolic system for an 334	
enzyme-producing cooperator. The cell produces enzyme (E) at a metabolic cost (Q(X1)), 335	
reducing its growth. The enzyme catalyzes the breakdown of substrate (S) into digestible product 336	
(P) at rate G(S,E). The cooperator grows at rate F(P), which is reduced by a fraction depending 337	
on the cost of enzyme production. The effect of increasing the parameters within each function 338	
are illustrated.  339	
 340	
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Model parameterization and data fitting 341	

Parameters and initial quantities were either experimentally determined by us or were based on 342	

values obtained from other sources (see Supporting Information (S1) for parameter derivations). 343	

To be suitable for our model, experimentally determined cell densities were converted from 344	

OD600 to grams of dry weight per liter (g dry weight/l) using a previously established conversion 345	

factor [50]. The model is well-posed in the sense that for all positive and real initial conditions, 346	

solutions remain positive, real, and bounded (see Supporting Information (S2) for proof). Not 347	

only is this biologically relevant, since the chemostat cannot hold an infinite amount of bacterial 348	

mass, it also indicates that the model will be less susceptible to instability and error 349	

magnification when solved numerically as compared to models which do not share those 350	

characteristics. The model was simulated in Python 3.9 using the ODEINT function of the Scipy 351	

package. To reflect our experimental design, the model was first simulated in batch mode (D=0), 352	

and then in chemostat mode (D > 0).  353	

When comparing the simulated populations to experimental data, we calculated the root mean 354	

square error (RMSE) of each replicate, then took the average of the RMSE values across all 355	

replicates of a given data type. To determine which values within our given estimated parameter 356	

value ranges is the best fit, we calculated the average RMSE of the simulated model against three 357	

experimental data sets: the total cell density of the WT-only culture, the total cell density of the 358	

coculture, and the cheater frequency determined by protease-deficiency of the coculture — 359	

omitting the data from Replicate 2 whose data diverged from the other three replicates. Because 360	

the cell density and cheater frequency data are on different scales, we calculated a normalized 361	

combined RMSE for each successful simulation by utilizing max-min normalization for each 362	

data type then taking a weighted sum. We weighted the normalized RMSE values because 363	
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parameter values which created higher cheater frequencies also created a higher final coculture 364	

batch phase cell density resulting in a best fit that greatly overshot the coculture batch phase 365	

growth. The normalized RMSE values were weighted for the WT-only, coculture, and cheater 366	

frequency data as 0.4, 0.6, and 0.2 respectively.  367	

All parameters were randomly determined for each simulation, with two exceptions: the dilution 368	

rate (D) and the Hill coefficient (n). These parameters remain as one value throughout because 369	

the dilution rate is determined by experimental design and is conclusively one fixed rate and the 370	

effect of increasing the hill coefficient beyond 2 is negligible to the dynamics of the system. 371	

Randomly determined initial condition and parameter values were selected from different 372	

distributions depending on whether the estimated value was a range of values or a single value. 373	

For the former we used a uniform distribution across their estimated range, and for the latter we 374	

used a normal distribution with the estimated single value as the mean and a standard deviation 375	

of 10% of the mean value. A simulation was deemed to successfully capture the general 376	

dynamics of our data if: (i) the solution had a positive WT cell density at the final time point 377	

(greater than 0.01 g dry weight/l or 0.0048 OD), eliminating parameter combinations that cause 378	

the cooperator-only population to wash out, (ii) a reasonable maximum coculture batch growth 379	

(less than 0.58 OD600) was achieved, removing parameter combinations that simulate excessive 380	

growth in coculture batch mode, and (iii) there was a cheater frequency of at least 30%, ignoring 381	

simulations where the cheater frequency fell to or near 0% (which occurs when the growth of the 382	

WT is sufficiently slow that they never achieve the minimum density required for QS, the 383	

dilution causes a washout of the system, and/or the total density of the population gets within 384	

machine error of 0, thus rounding to 0 and resulting in a cheater frequency calculation error). 385	
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To reduce the scope of the parameter and initial conditions to explore when determining the best 386	

fit, we first ran 100,000 simulations to establish if the entirety of each estimated parameter range 387	

can produce a simulation that successfully captures the general dynamics of the chemostat data 388	

(Fig S1.3). Most parameters were capable of successful simulations across the entirety of their 389	

ranges; however, we were able to establish a new lower bound for h and kcat. We then ran 390	

1,000,000 simulations with two changes: (i) we set the ranges of h and kcat to 4x10-4 and 150 391	

respectively, and (ii) we used the single estimated values instead of randomly selected values 392	

from a normal distribution since pulling from the normal distribution did not seem to impact 393	

success in the previous round of simulations. This produced 47631 simulations that captured the 394	

broad patters of our data. 395	

Because the RMSE weights were chosen arbitrarily, we needed to investigate the simulations for 396	

goodness of fit rather than just taking the lowest weighted value. Of the 47631 simulations, we 397	

kept the 10% with the lowest combined weighted and normalized RMSE values. We further 398	

narrowed down that list by omitting simulations in which values at the end of the batch phase 399	

(time = 0) were outside of the range for the maximum and minimum coculture cell density and 400	

under 30% cheater frequency. This left us with 15 results to compare visually. After selecting the 401	

one with the best visual fit, we slightly adjusted individual or pairs of parameters to decrease the 402	

RMSE values until changes no longer resulted in a reduced RMSE (Fig 6). See Fig S1.4 for a 403	

comparison between the simulation with the lowest weighted and normalized combined RMSE. 404	

Modified models for evolved mutants 405	

In addition to experimentally exploring the role of the mutations that arose during cultivation, we 406	

also investigated their impact on the system computationally. The following systems of 407	

equations describe these evolved faster-growing mutants as 408	
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(i) a cheater derived from the defined lasR ancestor 409	

𝑆̇ = 𝐷 ∙ (𝑆8 − 𝑆) − 𝐺(𝑆, 𝐸)

𝑃̇ = 𝜎 ∙ 𝐺(𝑆, 𝐸) −
1
𝛾
A(𝑋- + 𝑋9) ∙ 𝐹(𝑃) + 𝑋: ∙ 𝐹9(𝑃)B − 𝐷 ∙ 𝑃

𝐸̇ = 𝜂 ∙ 𝑄(𝑋-) ∙ 𝑋- ∙ 𝐹(𝑃) − 𝐷 ∙ 𝐸
𝑋̇- = 𝑋- ∙ #A1 − 𝑄(𝑋-)B ∙ 𝐹(𝑃) − 𝐷$

𝑋̇9 = 𝑋9 ∙ (𝐹(𝑃) − 𝐷 − α)
𝑋̇: = 𝑋: ∙ (𝐹9(𝑃) − 𝐷) + 𝛼 ∙ 𝑋9,

 410	

(ii) a cheater derived from the WT ancestor  411	

𝑆̇ = 𝐷 ∙ (𝑆8 − 𝑆) − 𝐺(𝑆, 𝐸)
𝑃̇ = 𝜎 ∙ 𝐺(𝑆, 𝐸) − -

;
∙ A(𝑋- + 𝑋9) ∙ 𝐹(𝑃) + 𝑋: ∙ 𝐹9(𝑃)B − 𝐷 ∙ 𝑃

𝐸̇ = 𝜂 ∙ 𝑄(𝑋-) ∙ 𝑋- ∙ 𝐹(𝑃) − 𝐷 ∙ 𝐸
𝑋̇- = 𝑋- ∙ #A1 − 𝑄(𝑋-)B ∙ 𝐹(𝑃) − 𝐷 − 𝛼$

𝑋̇9 = 𝑋9 ∙ (𝐹(𝑃) − 𝐷)
𝑋̇: = 𝑋: ∙ (𝐹9(𝑃) − 𝐷) + 𝛼 ∙ 𝑋-,

  412	

and (iii) a cooperator derived from the WT ancestor  413	

𝑆̇ = 𝐷 ∙ (𝑆8 − 𝑆) − 𝐺(𝑆, 𝐸)

𝑃̇ = 𝜎 ∙ 𝐺(𝑆, 𝐸) −
1
𝛾
A(𝑋- + 𝑋9) ∙ 𝐹(𝑃) + 𝑋: ∙ 𝐹9(𝑃)B − 𝐷 ∙ 𝑃

𝐸̇ = 𝜂 ∙ 𝑄(𝑋- + 𝑋:) ∙ A𝑋- ∙ 𝐹(𝑃) + 𝑋: ∙ 𝐹9(𝑃)B − 𝐷 ∙ 𝐸

𝑋̇- = 𝑋- ∙ #A1 − 𝑄(𝑋- + 𝑋:)B ∙ 𝐹(𝑃) − 𝐷 − 𝛼$

𝑋̇9 = 𝑋9 ∙ (𝐹(𝑃) − 𝐷)
𝑋̇: = 𝑋: ∙ #A1 − 𝑄(𝑋- + 𝑋:)B ∙ 𝐹9(𝑃) − 𝐷$ + 𝛼 ∙ 𝑋-.

 414	

These models contain an additional state variable, an evolved mutant, X3, which enters the 415	

system from its respective parent at a rate α. Its growth rate, F2(P), is higher than that of the 416	

ancestral strain, F(P), through an increase in µmax.  417	
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We fit these new models to our experimental data allowing for variation in the new parameters α 418	

and µmax with all other parameters set to the best-fit value identified in the Results. We explored 419	

values of α within the range of 1x10-10 to 1x10-4, consistent with previously estimated mutation 420	

rates in non-mutator and mutator strains [61,62]. We did not restrict µmax since faster growth can 421	

be caused by changes in many different traits such as the loss of a costly function, increased 422	

nutrient uptake and metabolism, or cell size required for reproduction.  423	

 424	

Results 425	

Cultivation in a new growth medium that requires quorum sensing 426	

As a first step, we formulated and tested a new growth medium suitable for our purposes. In 427	

several previous studies [21,23,30,41,46,51,54,63], we and others have used the skim milk 428	

protein casein as a growth substrate that requires QS dependent proteolysis. Casein, in the form 429	

of the soluble salt caseinate, is an inexpensive and efficient protein source for P. aeruginosa, but 430	

it produces insoluble aggregates during culture growth. This property makes it difficult to 431	

measure cell density in real time using light scattering (OD600). To solve this problem, we 432	

considered gelatin as an alternative protein source.  433	

We first evaluated the ability of P. aeruginosa to grow in minimal salts medium containing 1% 434	

gelatin as the sole carbon source (Fig 3). When grown independently, the WT exhibited growth 435	

saturating at an average OD600 of 0.8, whereas the lasR mutant maintained an average OD600 436	

close to the initial inoculum of 0.05 (Fig 3A). This outcome shows that gelatin is a growth 437	

substrate that requires QS. During WT monoculture growth, the medium remained without 438	

microscopically visible precipitate and OD600 values correlated well with CFU/mL (Fig 3C, R2 = 439	
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93%). When initiated at a frequency of 1.0%, the lasR mutant strain enriched to a final frequency 440	

of 4.3% (Fig 3B), resulting in an average relative fitness of 1.4. These findings confirmed that 441	

the lasR mutant strain qualifies as a social cheater under our new growth conditions.  442	

Fig 3. Batch culture growth in gelatin medium. (A) Cell densities (OD600) of P. aeruginosa 443	
WT (blue) and lasR mutant (red) monocultures grown independently in gelatin medium for 48 444	
hours.  445	
(B) Initial and final lasR mutant frequencies after 36 hours of coculture growth in gelatin 446	
medium, where the WT and lasR mutants are grown together.  447	
(C) Correlation of cell densities (OD600) and CFU/ml of P. aeruginosa WT monoculture grown 448	
independently in gelatin medium batch culture.  449	
Each point is the average of three replicates with error bars showing standard deviation. In some 450	
cases, the standard deviation is too small to be seen.  451	

 452	
Stability of the WT in the chemostat 453	

Next, we established growth conditions in the chemostat. Before initiating cocultures, we needed 454	

to demonstrate that the WT alone can achieve steady-state growth with gelatin as substrate. Upon 455	

inoculation of the chemostat, we allowed the culture to grow to late exponential phase before 456	

initiating flow. The dilution rate was then set to D=0.12 1/h, a value that was below the growth 457	

rate achieved during the exponential phase in batch culture (µ=0.17 1/h). At steady state, this 458	

dilution rate equates to a bacterial doubling time of 5.8 h. In two separate trials, the cell density 459	

transiently dropped after the flow was turned on but then stabilized at an OD600 of approximately 460	

0.30 (Fig 4A), thus illustrating that a cooperator-only population is stable in the chemostat.  461	

Samples of both trials were also screened for protease-deficiency using a skim milk assay to 462	

establish a baseline for our coculture studies below. Upon initiation of chemostat mode, both 463	

trials showed 0% protease-deficient colonies. By the end of the experiment, a small number of 464	

protease-deficient mutants had evolved with 3% in one replicate and 5% in the other (Fig 4B).  465	
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Fig 4. Stability of WT P. aeruginosa in the chemostat. A WT-only culture was grown in the 466	
chemostat over a period of almost 200 hours (9 days). The cultures were initially inoculated to a 467	
starting OD600 of approximately 0.05 and were grown in batch mode for approximately 32 hours. 468	
Then chemostat mode was initiated (indicated by the dotted line) and samples were taken 469	
approximately every 24 hours for 8 days. Each value is the measurement of a single replicate.  470	
(A) Total cell density (OD600). 471	
(B) Frequency of protease-deficient mutants at the first and last time points of chemostat mode 472	
as determined by the skim milk assay.  473	

Tragedy of the commons in the chemostat 474	

We finally set out to determine if social cheating causes a Tragedy of the Commons in the 475	

chemostat by initiating cocultures of the WT and lasR mutant. The cocultures were inoculated to 476	

an initial lasR mutant frequency of 10% (rather than 1% in batch culture) for two primary 477	

reasons: (i) to ensure the burden on population growth caused by the lasR mutants could be 478	

observed within the experimental timeframe and (ii) to reduce the likelihood of other mutation 479	

events dominating the dynamics during a longer cocultivation period. When this WT/lasR 480	

mutant coculture was grown in the chemostat, a population collapse, or a Collapsing Tragedy, 481	

was indeed observed. Total cell density, as measured by OD600, increased significantly during 482	

batch mode, but steadily declined during chemostat mode to an OD600 below detection limit for 483	

three out of four replicates, and to approximately 0.05 for the remaining replicate (Replicate 2) 484	

(Fig 5A).  485	

In addition to the total population dynamics, we determined the frequency of the defined, 486	

antibiotic-resistant lasR mutant using an antibiotic plate assay. We also assessed the frequency of 487	

protease-deficient mutants overall using our skim milk assay. This approach allowed us to 488	

discern if protease-deficient mutant cheaters other than the defined lasR mutant had evolved 489	

throughout the duration of the experiment. These protease-deficient mutants might include 490	

spontaneous lasR mutants evolved from the WT subpopulation, or lasR-independent mutants 491	

with loss-of-function mutations in genes encoding extracellular proteases, protease secretion 492	
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machinery, or other regulatory proteins. This would make the defined lasR mutant cells a 493	

subpopulation of the protease-deficient population. 494	

In batch mode, lasR and protease-deficient mutants increased concurrently in all cocultures. In 495	

chemostat mode, both frequencies remained congruent with one another in the first and third 496	

replicates, but differed in the second and fourth replicates, indicative of different mutational 497	

events. Conceivably, in the second replicate, a protease-deficient but antibiotic-sensitive mutant 498	

evolved that was eventually eliminated from the population, whereas in the final replicate, 499	

another protease-deficient but antibiotic-sensitive mutant evolved that ultimately eliminated the 500	

original defined lasR mutant (Fig 5B).  501	

The general trajectories of protease-deficient mutants between the four coculture replicates also 502	

varied. In three of the replicates the frequency of protease-deficiency increased to approximately 503	

80% before leveling out. This general behavior is congruent with model predictions (see below), 504	

albeit at a higher frequency. This higher than predicted frequency of protease-deficient mutants 505	

may suggest a mutation occurred in the lasR mutants that increased their relative fitness. 506	

Intriguingly, in the second Replicate the frequency of cheater mutants diminished. We 507	

investigated potential causes for these trajectories in a later section.  508	

Fig 5. Cheater frequencies in chemostat replicates. Four replicates of a WT and lasR mutant 509	
coculture were grown in a chemostat over an approximately 10-day period with the first approx. 510	
55 hours grown in batch mode and the latter approx. 192 hours (8 days) grown in chemostat 511	
mode (transition indicated by the vertical dotted line). The cultures were inoculated to a starting 512	
OD600 of approximately 0.05, at a 10% lasR mutant frequency. Samples were taken 513	
approximately every 24 hours for 8 days  514	
(A) Total cell density (OD600) of the chemostat cocultures, plotted here on a linear scale to 515	
include cell density values of 0.  516	
(B) Each coculture replicate is graphed independently. Frequency of protease-deficient mutants 517	
in the chemostat cocultures as determined by skim milk assay (dashed lines) and frequency of 518	
lasR mutants as determined by antibiotic medium (solid lines). Cell density (OD600) from (A) 519	
(grey) is included for comparison.  520	
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Model parameterization and fit to experimental data 521	

We had recently formulated a general mathematical model of the Tragedy in the Commons in a 522	

chemostat that predicted the stability of a WT-only population and a population collapse in a 523	

coculture setting under reasonable conditions [15]. Our data generally support this predicted 524	

outcome; however, we wanted to investigate whether the model would show those same 525	

outcomes when fitted with biologically relevant parameters specific to our study. This would 526	

determine whether the model captures all the essential mechanisms of the system and would 527	

allow us to test its predictive efficacy. We formulated and parameterized a deterministic ODE 528	

chemostat model as described in Methods, with the concentration of cooperator and cheater 529	

strains, as well as public good enzyme, growth substrate, and product as the relevant state 530	

variables. We performed numerical simulations of this model in comparison with the 531	

experimental results from the previous sections.  532	

To estimate the initial variable concentrations and parameter values that best represent our 533	

experiment, we utilized data from our own experiments as much as possible. For example, the 534	

initial concentration of bacteria, the dilution rate, and the substrate concentration are all 535	

determined by experimental design. We also estimated the cost of QS-dependent cooperation 536	

from experimental data. Other parameters, including those that are challenging to measure, are 537	

taken from the literature (Table 1; see Supporting Information (S1) for a full explanation of each 538	

parameter derivation). While some parameters are conclusively one fixed value (e.g. the dilution 539	

rate as determined by experimental design), others were identified to be within a possible 540	

biological range (e.g. the rate of enzyme-substrate turnover and the initial enzyme concentration 541	

as taken from literature sources). Although not every combination of parameters within these 542	
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estimated ranges results in dynamics which mirror our experimental data, we nonetheless find 543	

many which do (Fig S1.2).   544	

Table 1: Variable and parameter values used for model simulations.  545	

Variable or 
parameter Units Biological meaning Initial condition or 

parameter range§ Best fit value 

S mmol/l Substrate (gelatin) 
concentration 0.200 ≤ S(0), S0 ≤ 0.250  0.210 

X1 g dry 
weight/l 

Cell density of the P. 
aeruginosa WT strain 

WT-only: 
X1(0) = 0.0240 

0.024 

Coculture: 
X1(0) = 0.0216 

0.0216 

X2 g dry 
weight/l 

Cell density of the P. 
aeruginosa lasR strain 

Coculture: 
X2(0) = 0.00240 

0.00240 

E mmol/l Enzyme (protease) 
concentration 0.0 < E(0) ≤ 2.424x10-5 3.00x10-6 

P mmol/l Product (amino acid) 
concentration P(0)=0.0 0.00 

D 1/h Dilution rate 0.121 0.121 

µmax 1/h Maximal growth rate of P. 
aeruginosa 1.38 1.38¶ 

kcat 1/h Rate of enzyme-substrate 
turnover 40 ≤ kcat ≤500 480 

KS mmol/l Amount of product (P) at half 
maximal growth 0.840 0.840 

KM mmol/l Gelatin concentration at half 
maximal enzyme reaction rate 0.0580 ≤ KM ≤ 0.0725 0.068 

h mmol/g dry 
weight 

Enzyme produced per 
bacterial biomass 0.0 < h ≤ 126x10-5 620 x 10-6 

γ g dry 
weight/mmol 

Product-dependent growth 
yield conversion of nutrient 
to biomass 

0.0423 0.0423 

σ N/A 
Number of product molecules 
produced per substrate 
molecule 

36.0 ≤ σ ≤ 46.0 40.0 

q N/A 
Metabolic burden of enzyme 
production at high cell 
density 

0.0425 ≤ q ≤ 0.625 0.610 

QSmin g dry 
weight/l 

Density of cooperative WT 
cells needed for QS to begin 0.0447 ≤ QSmin ≤ 0.161  0.045 

n N/A 
Hill coefficient determines 
speed of transition from little 
to maximum q 

n ≥ 2.00 2.00 

§ In some cases, the literature provided a range of values for a variable or parameter. Rather than taking 
the average, we explore the full range. 
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¶ The µmax value chosen here is larger than what we calculated for batch phase growth in gelatin medium, 
because it is based on product rather than substrate utilization kinetics. The full explanation can be found 
in Supporting Information (S1).  

To identify the parameter combination that most closely matches our experimental results, we fit 546	

the model to three experimental data sets: WT-only total density (Fig 6A), coculture total density 547	

(Fig 6B), and cheater frequency as determined by protease-deficiency (Fig 6C). For the first two, 548	

we considered the entire data set, and for the latter, we only considered the three replicates with 549	

congruent protease-deficient trajectories (coculture replicates 1, 3 and 4) — disregarding the 550	

second replicate with a much lower and decreasing protease-deficient frequency. We considered 551	

the protease-deficient mutant frequency in the following because it represents total proportion of 552	

cheaters that impose a metabolic burden on cooperative growth. We used a least-squares analysis 553	

to fit our mathematical model to all three data sets simultaneously (Fig 6), choosing an overall 554	

best fit that minimized the combined root mean square error. Table 1 shows the variables and 555	

parameter values that generated the combined best fit to all three data sets and were then used for 556	

the numerical simulations and analysis below — unless indicated otherwise.  557	

 558	

Fig 6. Simulated best fit. The combined best fit of the ODE model (black) to all three 559	
experimental data sets (grey) is shown: WT-only OD600 (A), coculture OD600 (B), and coculture 560	
protease-deficiency (C). The corresponding parameter values are as described in Table 1. 561	

While the lasR and protease-deficient cheater frequencies differed between experimental 562	

coculture replicates, it is worth noting that each of these frequencies appeared to eventually 563	

stabilize. We can indeed show mathematically that the lasR cheater frequency will always 564	

approach a constant limit, meaning that the value will not change over time. In fact, the cheater 565	

frequency from the model 566	

𝑅 = <!
<"=<!

  567	
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would be expected to saturate to  568	

𝑅(𝑡) = >(8)

-A>(8)=B(8)C∫  %& '(%)*%
𝑒∫  %& F(3)G3,  569	

where A(𝑡) = 𝑄A𝑋-(𝑡)B𝐹A𝑃(𝑡)B. Thus, as t approaches infinity, R(t) approaches some constant 570	

value, c, such that 0 < c ≤ 1 (see Supporting Information (S3) for the full mathematical proof). 571	

Thus, while the population collapses, both cooperators and cheaters remain present. Cheaters do 572	

not reach fixation as the competitive exclusion principle would predict (Fig S3.1). The reason for 573	

this is that as cheaters invade, the cooperator density eventually falls below the QS threshold 574	

(QSmin) such that the effective cost of QS (Q(X1)) tends to zero. With a negligible cost to QS, 575	

there is no longer an observable selective advantage for cheaters, resulting in the coexistence of 576	

cooperators and cheaters at nearly identical growth rates. Because QS is density-dependent, the 577	

limit at which the cheater frequency saturates as the population collapses is density-dependent.    578	

Analysis of model sensitivity to individual parameters 579	

Beyond data fitting, our mathematical model shows how changes in biological parameters and 580	

initial conditions impact the dynamics of the cell densities and cheater frequencies. Given many 581	

of our parameters are estimated, we also explore these parameters outside of their estimated 582	

ranges to capture a greater view of the model dynamics. The number of product molecules 583	

produced per substrate molecule (σ) and the product to biomass conversion factor (γ) are highly 584	

influential to the system impacting the batch phase growth, long-term stability of WT-only 585	

culture, and the lasR cheater frequency limit. In contrast, the estimated parameter ranges of 586	

others, such as the amount of product at half-maximal growth (KS), is sufficiently narrow such 587	

that those parameters have little impact on the system dynamics. Parameter changes also varied 588	
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in their effect on individual time courses. For example, the metabolic burden (q) affected the 589	

coculture and cheater frequency trajectories much more than the WT-only trajectory (Fig 7).  590	

For many of the parameters, the effect on system dynamics emerges from their contribution to a 591	

given auxiliary function, i.e. the metabolic burden of enzyme production (Q(X1)), enzyme-592	

substrate catalysis (G(S,E)), and bacterial growth (F(P)) functions. As such, the parameters 593	

within these functions can have inverse effects on the population dynamics. For example, 594	

decreasing QSmin or increasing q will both increase the total cheater frequency in the population 595	

(Fig 7).  596	

Interestingly, regardless of the initial condition, the WT-only simulations resulted in either 597	

stability or washout, whereas the coculture simulations always resulted in washout as a 598	

consequence of cheater invasion, representing a Collapsing Tragedy of the Commons, unless 599	

there is no dilution (Fig 7). Hence, continuously diluted chemostat cocultures are predicted to 600	

always cause population collapse, in contrast to undiluted batch cultures. This illustrates that a 601	

positive dilution is a requirement for the Collapsing Tragedy to occur. However, too high of a 602	

dilution can cause cooperator-only populations to collapse as well, and the inability for the 603	

cooperative WT-only populations to establish stability when the dilution is sufficiently high 604	

aligns with previous theory that has been mathematically proven for similar chemostat models 605	

[15,34]. See Supporting Information (S4) for simulations illustrating the impact on the system 606	

dynamics for all parameters. 607	

Fig 7. Parameter sensitivity analysis. Simulations were run to illustrate the impact of changing 608	
a single parameter on the system dynamics. Rows indicate the parameters from top to bottom as 609	
follows: number of products produced per substrate molecule (σ), nutrient to biomass conversion 610	
(γ), metabolic burden of enzyme production (q), minimum cooperator cell density needed for 611	
quorum sensing to begin (QSmin), the concentration of product at half-maximal growth (KS), and 612	
the dilution rate (D). The columns indicate the WT-only (OD600), coculture (OD600), and cheater 613	
frequency (%) scenarios from left to right. The experimental data previously described (Fig 4 614	
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and Fig 5) are shown in grey while the simulations are shown in color with dark blue being the 615	
lowest simulated value and red the highest simulated value. All other parameters besides the one 616	
identified by the row heading remain as specified in Table 1. In places where all five lines are 617	
not clearly visible, they are overlapping. 618	

 619	

Given the way single parameter modifications can have opposing impacts on the system, we 620	

further explored the combined effects of select parameter pairs by analyzing the average RMSE 621	

obtained from model fits to each data set individually. We chose parameters within the QS 622	

function (q and QSmin), σ, and γ for this analysis because the model’s stability of the WT-only 623	

population density was relatively sensitive to changes in these values.  624	

Using the RMSE map to infer how the dynamics of the system change in response to variable 625	

pairs shows increasing σ or γ impacts the dynamics in similar ways (Fig 8). q and QSmin have a 626	

similar but opposite relationship as σ and γ. Increasing q has the same effect as decreasing QSmin 627	

(Fig 7 and Fig 8) which is an expected result given the relationship these variables have to the 628	

QS function (Fig 2). The congruent impact of σ and γ is not as obvious and may not have been as 629	

easily discovered without this analysis.  630	

 631	
Fig 8: RMSE heat map for variable pairs with extended ranges. Heatmaps indicating the 632	
average RMSE across an extended range of four parameters in four pairwise combinations. The 633	
RMSE is shown in red where the simulated values were greater than the experimental data 634	
("overshoot”) and is shown in blue where the simulated values were below the experimental data 635	
(“undershoot”). In both cases a darker color indicates a lower RMSE. The four variables and the 636	
ranges simulated were the number of enzymatic cleavage products (σ; [30,70]), metabolic burden 637	
(q; [0,1]), nutrient to biomass conversion (γ; [0.03,0.07]), and the minimum cooperator cell 638	
density needed for quorum sensing to begin (QSmin; [0,0.2]). The pairs from top to bottom are: σ 639	
and q, γ and q, QSmin and q, and σ and γ.  640	
A white circle indicates the lowest RMSE and a gold square indicates the best fit value. Each 641	
parameter range was divided into 41 equidistant values for simulation. The white lines run along 642	
the edges of the simulated values that were the closest to the maximum and minimum estimated 643	
value as described in Table 1. The simulations in Fig 7 illustrate the dynamics across one row or 644	
column of these heat maps. 645	
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 646	

Notably, these extended parameter best fit values are not much lower than the within-range fit 647	

values; the maximum difference between the combined best fit RMSE (Fig 6) and the extended 648	

range individual data best fits are 0.003 (OD600) for the WT-only culture, 0.0248 (OD600) for the 649	

coculture, and 6.0 (%) for the cheater frequency data (see Supporting Information (S5): Table 650	

S5.1 for extended range RMSE values). Although there are other parameter choices which may 651	

return a sufficiently or similarly good fit, this analysis underscores the accuracy of the model 652	

since the model makes predictions which align with the data from relevant biological parameter 653	

estimates. 654	

These RMSE maps can also be used to indirectly illustrate the behavior of the system. Our 655	

experimental data for the WT-only cultures showed stable growth, so a high RMSE (bad fit) 656	

indicates either undershooting (population collapse) or overshooting. Our experimental data for 657	

the co-cultures show a population collapse, so a high RMSE can only indicate that the model has 658	

overshot the data prior to collapsing. For example, increasing σ causes an overshoot effect and 659	

reducing it can cause a washout of the WT (compare the top and bottom left panels of Fig 8 in a 660	

vertical direction to the top left panel of Fig 7). We used divergent colors to illustrate when the 661	

simulation values were, on average, either over or under the data. For the WT only data, a 662	

sufficiently high RMSE which undershoots the data indicates a population collapse and can be 663	

interpreted from Fig 8 as a solid-colored light blue zone. This further underscores that a 664	

minimum threshold for the metabolic burden, q, is needed to achieve stability, and finds that 665	

threshold to be approximately 0.25 for these parameter pairs — although the true threshold could 666	

be higher. 667	
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Taken together, this analysis shows that cooperating populations can only sustain themselves at 668	

steady-state levels within a narrow range of parameters and initial conditions. We also show that 669	

lower values of the metabolic burden q decreases the relative fitness of cheaters, and that a 670	

minimal threshold of q is necessary to sustain steady-state growth of the WT (Fig 7 and Fig 8). 671	

Finally, we illustrate that continuous dilution is a requirement to observe a population collapse 672	

(Fig 6).  673	

 674	

Resolving discrepancies in cheater frequency  675	

Our model simulations primarily deviated from the experimental results with respect to the 676	

cheater mutant frequency (Fig 6). One possible explanation for these discrepancies is that distinct 677	

mutations occurred in each replicate population during extended chemostat cultivation. This 678	

hypothesis is supported by the emergence of a small number of cheaters in the WT-only 679	

chemostat culture (Fig 5A) and by strikingly divergent frequencies for protease-deficient and 680	

antibiotic-resistant lasR mutant subpopulations in one chemostat coculture replicate (Fig 4B; 681	

Replicate 4). Thus, guided by our mathematical model, we sought to better understand the 682	

underlying mutations that may have occurred and their impact on population dynamics. Inspired 683	

by previous work that illustrates the capacity for faster-growing mutants to evolve [23,52], we 684	

explored the possibility of similar mutations evolving in our chemostat cultures (herein referred 685	

to as “evolved mutants”; Table 2). 686	

Table 2: Phenotypes of defined and evolved P. aeruginosa strains  687	

Strain or mutant Enzyme 
production† 

Antibiotic 
resistance† 

Faster 
growth‡ 

D 
E 
F 

WT ü – – 
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I 
N 
E 
D 

lasR (mini-Tn7-Tp) – ü – 

E 
V 
O 
L 
V 
E 
D 

Cheater from lasR  – ü ü 

Cheater from WT – – ü 

Cooperator from WT ü – ü 

† Enzyme production and antibiotic resistance was determined by differential plating on skim milk or antibiotic 688	
plates, respectively.  689	
‡ Faster growth, relative to the defined strains, was determined by comparing the relative fitness of evolved cheaters 690	
against the defined lasR cheater and through numerical modeling predictions 691	

 692	

In Replicates 1 and 3, the frequencies of protease-deficient and antibiotic-resistant lasR mutants 693	

were very similar, however, these cheaters occurred at a frequency higher than what the model 694	

predicts. This discrepancy could point to a mutation emerging from the lasR mutant lineage that 695	

permits faster growth. In Replicate 4, the frequency of protease-deficiency was greater than that 696	

of antibiotic-resistance, which, if caused by a mutation, would suggest a faster-growing cheater 697	

evolved, potentially from an antibiotic-sensitive WT parent. It is also possible that a lasR mutant 698	

lost its antibiotic resistance, although we believe this to be a highly unlikely occurrence for 699	

several reasons, including (i) the antibiotic resistance is encoded in a neutral chromosomal site, 700	

rather than a plasmid, and is highly stable over at least 100 generations [47], (ii) there are no 701	

appreciable differences in the growth rates between strains with or without the antibiotic marker 702	

[46], and (iii) there is no selection for or against antibiotic resistance in the chemostat.  703	
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In Replicate 2, mutant frequencies initially mirrored those of Replicate 4, except that the evolved 704	

cheaters (also likely from an antibiotic-sensitive WT parent) were unable to maintain their fitness 705	

advantage and eventually realigned with the lasR mutants at a low frequency. The low frequency 706	

of protease-deficient and lasR mutant cheaters in Replicate 2 could in turn be due to the late 707	

evolution of a faster-growing cooperator.  708	

We first explored these hypotheses numerically, by incorporating the mutational events into our 709	

mathematical model to simulate the effects of evolved mutants on population dynamics. We 710	

considered a faster-growing protease-deficient mutant evolving either from a lasR mutant 711	

ancestor (Replicates 1 and 3) or from a WT parent that does not have antibiotic resistance 712	

(Replicate 4). A faster-growing protease-deficient mutant from a WT parent could result from 713	

two consecutive mutations, however, it could result from a single mutation as well. For example, 714	

a mutation in a global regulator can impact multiple behaviors and/or processes at once. For 715	

simplicity, we only consider the case where one mutation has occurred in our model. We also 716	

considered a faster-growing cooperator mutant (Replicate 2). Although the situation is likely 717	

more complex for Replicate 2 and the evolved cooperator is not the only mutant, we include this 718	

analysis as a proof of concept to illustrate that such a mutation could result in a reduced lasR 719	

mutant cheater frequency without increasing overall cell density. The introduction of these 720	

mutants yields cheater frequency trajectories that are representative of our experimental data (Fig 721	

9). The addition of a faster-growing cheater evolving from a lasR mutant ancestor results in a 722	

higher frequency of protease-deficient cheaters as seen in Replicates 1 and 3. The introduction of 723	

a faster-growing cheater evolving from a WT ancestor maintains a high frequency of protease-724	

deficient cheaters and, at the same time, greatly reduces the frequency of the antibiotic-resistant 725	

lasR mutant cheater. A faster-growing cooperator can reduce the cheater frequency without 726	



34	
	

increasing population density (Fig 9). Simply incorporating one mutant fails to fully capture the 727	

dynamics of that replicate, which is not surprising as there are likely additional mutations 728	

causing the rise and fall of protease-deficient and antibiotic-sensitive mutants throughout.  729	

Fig 9. Simulated effect of evolved cheaters on coculture dynamics. Model simulated with 730	
three different faster-growing evolved mutants from top to bottom as follows: (i) cheater 731	
evolving from a lasR mutant parent, (ii) cheater evolving from a WT parent, and (iii) a 732	
cooperator evolving from a WT parent. The model numbers (i – iii) correspond to the model 733	
numbers in the Methods section. The left column shows the total cell density, and the right 734	
column is the cheater frequency. The model simulation is shown in black, and the experimental 735	
data previously described (Fig 4 and Fig 5) are shown in grey with Replicates 1 and 3 on the top, 736	
Replicate 4 in the middle, and Replicate 2 on the bottom. In the cheater frequency graphs, dashed 737	
lines show the protease-deficient subpopulation, and solid lines indicate the antibiotic-resistant 738	
subpopulation. All simulated values are the same as in Table 1 except the added mutation rate (α) 739	
and the faster growth (μmax) of the evolved mutants. The respective α and μmax values for each 740	
replicate are as follows: 1x10-4 and 3.8 for the evolved cheater from lasR, 7x10-7, 4.0 for the 741	
evolved cheater from WT, and 3x10-5 and 4.0 for the evolved cooperator. 742	

Since the existence of these mutations is speculative at this point, we sought experimental 743	

validation and empirically investigated their presence in chemostat Replicates 1, 3, and 4. We 744	

reasoned that in each of these cases, divergent trajectories could be explained by a single 745	

mutational event that can be captured by our screening and cultivation methods.  746	

We screened for the existence of faster-growing cheaters by taking three protease-deficient 747	

isolates from the final time point of coculture Replicates 1, 3, and 4. We took antibiotic-resistant 748	

isolates from Replicates 1 and 3, because we predict those mutants evolved from a defined lasR 749	

mutant ancestor. In contrast, we selected antibiotic-sensitive isolates from Replicate 4, because 750	

we predicted evolution from a WT, and therefore antibiotic-sensitive, ancestor. We then 751	

compared the relative fitness of each isolate to that of the defined lasR mutant control, when 752	

grown together with the WT in a gelatin medium coculture.  753	

All three evolved isolates from Replicates 1 and 4, and two out of three replicates from Replicate 754	

3 showed a relative fitness significantly above that of the defined lasR mutant (Fig 10). These 755	
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results also suggest that evolved mutants rise to high frequency in each chemostat population by 756	

the end of the cultivation period.  It is likely that the one non-significant isolate from Replicate 3 757	

was simply an ancestral lasR mutant cheater because both the emergent and lasR mutants are 758	

protease-deficient and antibiotic-resistant. Taken together, this analysis provides experimental 759	

evidence that chemostat cultivation under conditions that favor cooperation selects for faster-760	

growing cheater adaptations.  761	

Fig 10. Relative fitness of the evolved and defined protease-deficient mutants. The average 762	
relative fitness after 36 hours of growth with the WT of the defined lasR mutant (grey) and three 763	
evolved mutants (protease-deficient isolates) taken from the final chemostat timepoint of 764	
Replicates one (blue), three (magenta), and four (orange). All evolved cheaters had a 765	
significantly higher relative fitness as determined by a one-way ANOVA between each replicate 766	
and the lasR control with an ad hoc Bonferroni correction, with one exception in the third 767	
Replicate (P values are indicated above each bar in the conventional manner as follows: P > 0.05 768	
ns, P ≤ 0.05 *, P ≤ 0.01 **, P ≤ 0.001 ***, and P ≤ 0.0001 ****. Specific P values can be found 769	
in Supporting Information (S5: Table S5.2). 770	
 771	

Discussion 772	

The purpose of the paper was two-fold: first, to determine if the Collapsing Tragedy occurs in 773	

the chemostat according to model predictions and second, to investigate the predictive 774	

capabilities of such models. Using a new growth medium suitable for chemostat cultivation, we 775	

first established that P. aeruginosa is capable of cooperative proteolytic growth in a chemostat 776	

system, that the lasR mutant strains not contributing to protease production are unable to grow on 777	

their own, and that the lasR mutants have a fitness advantage when mixed with the WT 778	

cooperator in a coculture. These three properties define social cheating in a population and they 779	

can ultimately lead to a population collapse [3,5].  780	

We then established if the population-level dynamics of the chemostat match the general 781	

mathematical theory of microbial social behavior [15]: we observed the stability of the WT 782	
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population alone and a large decline in population density when a lasR	mutant	is	introduced. 783	

Generally, all replicate populations experienced a Tragedy of the Commons, defined as a 784	

substantial reduction in group fitness as a consequence of selfish behavior – with or without a 785	

complete collapse (Rankin et al. 2007). Strictly speaking, only three of the four replicates 786	

experienced a Collapsing Tragedy defined as a complete population collapse. Replicate 2 787	

maintained a very low population density at the end of the cultivation period, presumably as a 788	

result of specific mutation events.  789	

Although we observed the theoretically predicted outcome, we had also considered that 790	

coexistence or cooperator dominance could be an outcome of the experiment. Cooperation could 791	

have been promoted by the beneficial cooperator mutations we speculated to have occurred in 792	

coculture Replicate 2 or by cheater control mechanisms such as punishment and metabolic 793	

constraint [25,26,30,64]. Punishment of cheaters via cyanide or pyocyanin production has been 794	

reported as a control mechanism against social cheaters in P. aeruginosa [25,26], although this 795	

effect is context-dependent [48]. The experiments that found these toxic extracellular substances 796	

to be an effective form of cheater control were conducted in batch culture with a serial transfer 797	

regime, and this methodological difference could have allowed more of the substance to build up 798	

whereas the chemostat would dilute it. Thus, dilution may play an important role in the efficacy 799	

of such mechanisms. The co-regulation of both public and private nutrient acquisition by LasR 800	

has also been shown to restrict lasR cheaters in populations of P. aeruginosa, however, it 801	

requires the presence of specific substrates that are metabolized intracellularly in a QS-dependent 802	

fashion [30]. Our experiment did not include any such substrates, although a mutation which 803	

privatized the public good or carbon source we used could also potentially explain the cheater 804	

frequency dynamics of Replicate 2. In principle, these processes could have been occurring 805	
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during our experiment; however, they would have been included in our calculations for their 806	

relative growth rates and would not have been modeled explicitly.  807	

It is also possible that the initial cheater frequency of our populations was simply too high, 808	

allowing cheater invasion to levels that promote population collapse [24] before beneficial 809	

cooperator mutations have a chance to rise to a sufficiently high frequency, and rendering 810	

mechanisms that would mitigate cheating at low frequencies ineffective. Another reason we may 811	

have observed a collapse instead of coexistence maintained by some biological mechanism is 812	

that our microbial population was well-mixed, eliminating population structure and spatial 813	

effects as factors that favor cooperation [2,3,5,53,65–67]. 814	

Despite the growth advantage the cheaters had, they did not fix in the population. This seemingly 815	

contradicts expectations; however, we showed mathematically that the final cheater frequency is 816	

density-dependent due to QS. This is because the cooperator population seizes to produce 817	

enzyme when its density decreases below the quorum threshold, thereby eliminating the growth 818	

advantage the cheaters had. This illustrates that both total population density and the cheater 819	

frequency throughout cultivation play a vital role in determining the final cheater frequency, 820	

similar to findings from another study [28]. 821	

For population density data, a good fit between the model and experiment was achieved within 822	

established parameter ranges, supporting our claim that the model captures the essential 823	

mechanisms of cooperation and cheating via enzyme production as a public good in P. 824	

aeruginosa. Such parametrization is important for quantifying the costs and benefits of 825	

cooperative behavior and defining the boundary conditions within which cooperation can occur 826	

and remain stable. The metabolic burden of cooperating (q) has a central role here. Investment 827	
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into cooperation must be sufficiently high to produce enough enzymes to enable proteolytic 828	

growth, but increased investment in turn means increased vulnerability to cheating.  829	

Further, we established that positive dilution rate is a requirement for the Collapsing Tragedy to 830	

occur, suggesting that there must be a sufficient turnover of nutrients and the population. This 831	

could have implications in the use of social microbes to treat bacterial infections without 832	

antibiotics [68]. Treatment might be particularly effective in environments with high fluid flow, 833	

such as the urinary tract. The treatment of other types of infections, such as topical wounds, 834	

would require regular washing to eliminate the infection.  835	

In contrast to the population-level data, the phenotypes of subpopulations differed between 836	

experimental replicates in cocultures and could not be accurately captured with a single 837	

parameter set. In this case, a modified model that incorporates mutational events which may have 838	

occurred (Fig 9) combined with experimental validation of the existence of such mutations (Fig 839	

10) was able to resolve these differences. The divergence between our antibiotic resistance and 840	

skim milk proteolysis data underscores the importance of directly measuring both the phenotype 841	

of interest and the initial strain during long term cultivation, when possible. Had we only 842	

measured skim milk proteolysis, the mutation in coculture Replicate 4 would not have been 843	

identified. We concluded that cheater mutants evolved from defined lasR mutant and WT strains 844	

in Replicates 1,3 and 4, respectively. Despite the occurrence of these evolved mutants, it is 845	

unlikely that they are the driver of the Collapsing Tragedy that ensues as soon as flow is 846	

initiated. Mutations occur at very low frequencies and take time to build in the population. Our 847	

simulations further illustrate that a Collapsing tragedy is inevitable even in the absence of 848	

evolved cheaters, in a coculture solely comprised of defined cheaters and the WT (Fig 6). 849	
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A faster-growing protease-proficient mutant, as we predict occurred in Replicate 2, averted a 850	

Collapsing Tragedy but still did not fully recover population growth. The near-collapse of that 851	

population suggests that while the protease-proficient mutant grew faster than the parent WT and 852	

lasR mutant, its growth was not fast enough to enrich in the chemostat. This is likely due to the 853	

continued dilution of the chemostat environment maintaining a low cell density and thus limiting 854	

QS-dependent enzyme induction. The population density of Replicate 2 fell below the best-fit 855	

value for the QS threshold (QSmin at an OD600 of 0.094; Table 1 and Supporting Information S1) 856	

on the second day of chemostat mode and remained below that threshold for the remainder of the 857	

experiment. Essentially, faster-growing cooperators are capable of producing protease, but they 858	

are being kept below the QS threshold by constant dilution and are therefore not actively 859	

producing the enzyme.       860	

Most populations experience multiple selection pressures, and the chemostat is no different. 861	

Additional adaptations beyond what we explored may have contributed to the observed 862	

variability of the lasR and protease-deficient cheater frequencies. It is also conceivable that some 863	

of the variation is caused randomly by genetic drift as populations reach low cell densities during 864	

the wash-out phase. However, we believe the mutant phenotypes we observed are the result of 865	

natural selection because (i) population numbers are relatively high for much of the growth phase 866	

(still approx. 100 million cells in the chemostat vessel when OD600 values are near the detection 867	

limit of about 0.001; Fig 3C and Fig 4B), (ii) mutants with very similar behavioral phenotypes 868	

were found in three of the replicates at relatively high frequency, and (iii) there is evidence for 869	

adaptation to a proteolytic growth environment from other studies [23,24,69]. Additional 870	

modeling and experimentation, such as sequencing the genomes of the evolved mutants or 871	
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adding stochasticity to the dilution rate to examine the role of genetic drift and bottlenecking, 872	

would be a compelling direction for future projects.  873	

Using the chemostat culturing system to assess the validity and predictive capabilities of theory 874	

against empirical results has additional benefits, as the chemostat has been considered an ideal 875	

laboratory system for studying populations due to its properties reflecting natural ecosystems in 876	

many respects [53,70,71]. It has continuous inputs and outputs of nutrients analogous to the 877	

natural turnover of resources in nature. Population densities often reach a steady state in the 878	

chemostat, balancing growth with dilution to maintain an unchanging concentration; the latter 879	

being akin to the death, predation, and emigration that would occur in natural ecosystems. Many 880	

natural ecosystems resemble the chemostat dynamics, and chemostat models have been applied 881	

to the understanding of the human gut [72] and the flow of organic matter in rivers [73,74]. 882	

Establishing the limitations of these models is then crucial as they begin to be used to make 883	

predictions about human health and the environment. Thus, the utilization of the chemostat 884	

environment to investigate cooperation offers ecologically relevant insights into the maintenance 885	

of cooperation in microbes and, potentially, beyond.  886	

Taken together, the results of this study underscore three main ideas. The first is the importance 887	

of validating theoretical models with experimental outcomes, when possible. Doing so allows us 888	

to identify the extent to which we can utilize theoretical results to predict biological outcomes 889	

and phenomena. In our case, the model we developed accurately predicted population density 890	

outcomes, but was unable to capture the variable subpopulation dynamics of cheater mutant 891	

frequencies. Had we relied solely on the results of the theoretical predictions to understand the 892	

outcome of social cheating in the chemostat environment, we would have missed the selection 893	

pressure the environment has on creating newly evolved phenotypic variants.  894	



41	
	

Secondly, we illustrate the multiple benefits of integrating empirical data into the theoretical 895	

framework. Such an integration of empirical data and mechanistic modeling revealed insights 896	

into the underlying mechanisms that are most influential on the system dynamics. Another 897	

benefit of creating a biologically accurate model tuned to a specific study system is that it can 898	

then be used to explore possible outcomes and generate testable predictions. The subpopulation 899	

dynamics we observed were variable and unable to be captured by a mechanistic model, but we 900	

were able to use our model as a tool to generate hypotheses about the root of those discrepancies 901	

by incorporating mutations and, in turn, experimentally validated their existence. By using the 902	

model to identify mutations that explain our data we were able to reduce the amount of empirical 903	

work needed to identify what, if any, mutations had occurred. The need for integration between 904	

theoretical and empirical work is further supported by the fact that such an integration is 905	

responsible for the creation of some of the more successful branches of social evolution theory, 906	

such as sex-ratio evolution theory [4]. 907	

Lastly, this study illuminates how even a seemingly simple experimental system and biological 908	

process is challenging to fully encapsulate deterministically — especially when given sufficient 909	

time for evolution to occur. Although additional integration of mechanistic modeling and 910	

empirical work is still needed, the results of this study suggest that incorporating stochastic 911	

effects may be necessary for understanding and predicting evolutionary outcomes. Notably, the 912	

chemostat environment coupled with competition from social cheaters created a selection force 913	

resulting in phenotypic evolution throughout the course of the experiment. Such adaptation has 914	

been observed in previous in vitro evolution experiments with social microbes [23,24,69]. The 915	

evolution of these new traits supports the notion that the Tragedy of the Commons may not be a 916	
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gravestone signaling the end of a species, but may instead be a stepping stone to a different 917	

community structure containing a new dominant species [75,76]. 918	
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