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Abstract:This report investigates a stabilizationmethod for first order hyperbolic differential equations applied
to DNA transcription modeling. It is known that the usual unstabilized finite element method contains spurious
oscillations for nonsmooth solutions. To stabilize the finite element method the authors consider adding to the
first order hyperbolic differential system a stabilization term in space and time filtering. Numerical analysis
of the stabilized finite element algorithms and computations describing a few biological settings are studied
herein.
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1 Introduction

Hyperbolic systems arise in a variety of applications including weather-forecasting, gas dynamics, modeling
of shallow water, transport of contaminant in porous media, turbulent flows, granular flows and traffic flow
[2, 5, 11, 21, 30, 35] . Modeling efforts for these applications have lead to the development of simulation methods
capable of capturing complicated solution behavior. The first order hyperbolic system discussed in this paper is
known to raise several challenges for the continuous Galerkinmethod. Optimal convergence on special cases of
structured grids is known, but in general one can expect a loss of accuracy by one power of the mesh width [19,
45]. On general unstructured grids, besides the expected loss of one power in accuracy, for nonsmooth solutions
the usual unstabilized FEMmay also produce spurious oscillations [8]. Several stabilization methods have been
introduced to correct this problem, such as the SUPG and SOLD method [7, 28], subgrid stabilization methods
[23, 24], or filter based stabilizationmethods [10, 18, 21]. This work studies a stabilized finite elementmethod that
explores the use of both stabilization and filtering techniques in order to dampen spurious oscillations while
preserving accuracy of solutions for such hyperbolic models.

Themodel problems considered here focus on the parallels between the study of traffic flow and themodel-
ing of the bio-polymerization process. Protein synthesis is one example of bio-polymerization, a process charac-
terized by forming polymers through the linking of monomers into a chain or network, typically accomplished
through chemical reactions. Proteins, polypeptides and other fundamental building blocks of life are formed
in this manner. Many types of mathematical models have been employed to describe this behavior, with some

*Corresponding author: Jorge Reyes, Department of Mathematics, Virginia Tech, Blacksburg, VA 24061, USA, e-mail: reyesj@vt.edu.
https://orcid.org/0000-0002-5096-2297
Lisa Davis, Department of Mathematical Sciences, Montana State University, Bozeman, MT 59717, USA, e-mail: lisa.davis@montana.edu
Monika Neda, Department of Mathematical Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA,
e-mail: monika.neda@unlv.edu
Faranak Pahlevani, Division of Science & Engineering, Penn State University Abington, Abington, PA 19001, USA, e-mail: fxp10@psu.edu
Jiajia Waters, Los Alamos National Laboratory, Los Alamos, USA, e-mail: jwaters@lanl.gov



2  L. Davis et al., Numerical Study of a Stabilized Hyperbolic Equation

models dating back as far as the 1960s and ranging through present day, see [6, 9, 11, 27, 31, 36, 37, 39, 41, 43, 47].
There is a natural correspondence between some bio-polymerizationmodels and those applied to traffic flow as
the two phenomena are quite similar. Bio-polymerization is characterized by the motion of a molecular motor
(RNA polymerase or RNAp) copying a segment of a gene. To continue the analogy, consider the case when there
are many RNAPs transcribing the gene simultaneously. This can be compared to the situation where many cars
are present on a stretch of roadway. In both cases, the total flux depends on the density and velocity. The Green-
shield’smodelmakes the additional assumption that velocity depends on density with higher densities resulting
in slower speeds and vice versa. For further biological context, see Section 1.2.

Recently a first order traffic flow model has been used to explore the transcription and translation phe-
nomena [11–13]. The simplest of these first order models is the Lighthill–Whitham–Richards Model, commonly
known as the LWR model, which was proposed by researchers in the 1950s in order to analyze and quantify
traffic flow behavior. Here we use the LWRmodel as a prototype for the application of bio-polymerization since
it provides a robust set of motivating test problems for evaluating the effectiveness of the stabilization and time
filter techniques.

1.1 ContinuumModels

The LWR model was introduced in the mid-1950s as a one-dimensional macroscopic model to study traffic flow
phenomena. Within this fluid-dynamic model, the traffic was considered to be an inviscid but compressible
fluid, and the traffic flow variables: density ρ, velocity v and flow f , were defined as continuous quantities in
time and space. According to this model, the traffic flow f is defined to be a function of density and velocity
defined according to the relation f = ρv. The density evolves according to the conservation law

∂
∂t ρ(t, x) +

∂
∂x f(t, x) = 0, (1.1)

where ρ represents the average traffic density of the vehicles in time and space.
When one assumes that the traffic velocity is a constant, v = v̄, then the linear form of the LWRmodel to be

used in this work is given with boundary and initial conditions specified as

{{{{
{{{{
{

∂
∂t ρ + v̄

∂
∂x ρ = 0, 0 < x ≤ 1, t > 0,

ρ(x, 0) = ρ0 ,
ρ(0, t) = ρI .

(1.2)

This equation is well known as the linear advection equation with advection speed v̄. Analytical solutions are
known, and it is amenable to a full analysis for approximation schemes.

A more realistic relationship between the flow velocity and traffic density was developed by Greenshield
in [20]. In that case, the Greenshield’s velocity model connects the traffic density ρ to the traffic velocity v with
the following linear relationship:

v(ρ) = vf (1 −
ρ
ρm
), (1.3)

where vf is the free flow speed and ρm is the maximum jam density. The free flow speed vf represents the
speed of the traffic when the density ρ is zero. The maximum density ρm is the traffic density at which the
speed of traffic v is equal to zero. Due to the relation shown in equation (1.3), the graph between the flux f and
the density ρ assumes a concave shape, since ∂2 f

∂ρ2 < 0. This relationship between density, flow, and velocity is
shown in Figure 1.

The LWR with the Greenshield’s model is
∂ρ
∂t + (vf −

2vf
ρm

ρ)∂ρ∂x = 0. (1.4)

It is known that when we solve the hyperbolic traffic flow PDE given by equation (1.4), oscillations exist
around the shock solutions. Hereinwe apply a stabilization of FEM introduced in [18] for the advection equation
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(a) Greenshield’s model for velocity.
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(b) Flux based on Greenshield’s model.

Figure 1: Experimental relationship between density, flow and velocity based on LWR and Greenshield’s model.

based on Vreman filtering [46]. Additionally, we use a simple time filter (2.6) first introduced in [25] for the
backward Euler method. This time filter does not add computational complexity and is shown to be second
order accurate in time when added to backward Euler schemes for the Navier–Stokes equations [15, 25]. This
concept of utilizing linear time filters was generalized for other common time stepping schemes in [14].

In [4] the time filter is shown to be effective at improving accuracy when combined with an explicit first
order upwind finite difference method with minimal expense in numerical implementation for the linear case
in (1.2). There the filtered scheme introduces a small amount of dissipation into the behavior of a nonsmooth
solution, thereby increasing accuracy while preventing spurious oscillations. This paper follows a similar
approach to [4] where analysis techniques originally used for the Vreman stabilization algorithm are applied
in order to analyze the time filtered, Vreman stabilized Galerkin scheme for both linear and nonlinear cases.

1.2 Motivating Biological Application

Transcription and translation are two key stages of protein synthesis and are crucial components in the transfer
of genetic information from DNA to protein during cell growth. Transcription involves the transfer of genetic
information from DNA to several types of RNA including messenger mRNA (mRNA), transfer RNA (tRNA), ribo-
somal RNA (rRNA) and others. This process involves separation of the two DNA strands and synthesis of an
RNA molecule by the enzyme RNA polymerase(RNAP), using one of the DNA strands as a template. Transcrip-
tion begins when the RNAP binds to a promoter sequence of a gene (initiation) and then proceeds through the
elongation process. During elongation, the RNAP motors along the coding region of the gene, reading the DNA
strand, and generating a single-stranded RNA copy. Transcription ends at the gene’s termination region, where
the RNAP releases the nascent copy of the RNA and unbinds from the DNA strand. If the resulting RNA strand is
mRNA, it is then translated by a ribosome to a chain of amino acids that fold to produce a protein. If the resulting
RNA is rRNA or tRNA, it is not translated, but it provides a scaffold to facilitate binding of other proteins to form
RNA-protein complexes such as ribosomes, another important genetic building block for cellular growth.

In the context of the continuummodel given in (1.2), the assumption that the RNAP velocity v = v̄ is constant
characterizes the situationwhere the elongation velocity of all RNAPs transcribing the gene is constant along the
entire spatial extent of the strand and for all time. For a full description of the biological parameters associated
with the use of this model to describe transcription for a prototypical example of a gene in the bacteria E. coli,
the reader is referred to [13]. That work includes a description of the non-dimensionalization process leading
to the dimensionless equation in (1.2), and the relationship of the parameters ρ0 and ρI to the initiation rate,
maximal elongation velocity, and maximum density for RNAPs on the gene can be found in [13, Appendix].
A numerical analysis of the time filtered upwind scheme for approximating the solution of (1.2) can be found
in [4]. The numerical results for the linear case presented in this work are also limited to the case where v̄ = 1,
although the analysis is performed for the more general case of an arbitrary advection speed.
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The translationprocess is similar to that of transcription. Ribosomes translatemRNA strands in order to gen-
erate ribosomal proteins which form the scaffolding for building new ribosomes, hence promoting cell growth.
During translation ribosomes act as the molecular motor as they read the genetic information on an mRNA
strand, and the initiation, elongation, and termination phases occur in the same fashion as described above.
Although these processes require availability of various amino acids, aswell as assembly of several initiator and
termination complexes, we focus on a simple model describing the more mechanical processes of transcription
(and translation) for the sake of simplicity in this paper.

While the density of RNAPs on most genes is believed to be low, there are examples of genes, such as the
rrn operon, in the bacteria E. coli where the density of RNAPs is observed to be very high. That is, there are
many RNAPs transcribing the gene simultaneously. This can be compared to the situation where many cars are
present on a stretch of roadway. For such genes, transcriptional elongation of RNAPs is not uniform, and this
can result in spatial regions of the gene where the density of RNAPs is quite high and other regions of the gene
where the density is low [16].

Simulation methods that can accurately resolve the model behavior for a nonuniform density profile are
essential to building a high fidelity model for bio-polymerization processes. In this work, we consider examples
of model problems where the density along the strand has a significant variation initially and explore the
simulation results for the numerical filtering techniques introduced.

This article is organized as follows. In Section 2 we cover preliminaries about the finite element method
and introduce the algorithms. Section 3 gives the stability results of the algorithms of interest. Then we present
four model problems and their numerical simulation results that support the theoretical results in Section 4.
Two simulation tests for the linear Algorithm 1were performed. The convergence rate calculations are explored
in Section 4.2, and results for a traveling discontinuous wavefront are given in Section 4.3. For the nonlinear
Algorithm 2, we performed simulation studies using the stationary shock problem outlined in Section 4.4 and
the discontinuous initial density problem in Section 4.5. We conclude our work in the last Section 5.

2 Notation, Preliminaries and Algorithms

2.1 Notation and Preliminaries

Let Ω ⊂ ℝ denote the domain, while the L2(Ω) norm and the inner product are denoted by ‖ ⋅ ‖ and ( ⋅ , ⋅ ), respec-
tively. Similar to what is used in [10, 18] the function spaces used is the closure of C∞, periodic functions on Ω
in the H1 norm denoted as X := H1

#(Ω). Let Xh ⊂ X be the finite element subspace.
The continuous mean u ∈ X of u ∈ X is the solution of the PDE (see [22])

−δ2Δu + u = u,

and the discrete mean uh ∈ Xh of u ∈ X (see [38]) is defined as the unique solution of

δ2(∇uh , ∇vh) + (uh , vh) = (u, vh) for all vh ∈ Xh ,

where the mean quantities are associated with the filtering length scale δ.
The mathematical stability and accuracy properties of continuous and discrete averaging and deconvolu-

tion have been studied in [3, 17, 32–34, 38]. The operators denoted as ⋅ and ⋅h represent filtering and they lend
the physical meaning to the parameter δ as the filter width. In the finite element setting, we have δ = O(h),
where h is the mesh size of our finite element discretization. We give a few properties and a lemma used in our
analysis below. Lemma 1 is a convenient algebraic identity from [15] which will be used in a similar manner for
the stability analysis.

Lemma 1 ([15]). The following identity holds:

(
3
2a − 2b +

1
2 c)(

3
2a − b +

1
2 c) =

1
4 (a

2 + (2a − b)2 + (a − b)2) − 14 (b
2 + (2b − c)2 + (b − c)2) + 34 (a − 2b + c)

2 .
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Nextwe introduce two variational formulations for LWRmodelwith constant velocity andGreenshield’s (linear)
model of velocity. A stabilization term is added to both formulations.

Thus, a stabilized finite element variational formulation of (1.2) can be stated as: Find discrete finite element
density ρh ∈ Xh satisfying

{{
{{
{

(
∂
∂t
ρh , vh) + v(

∂
∂x

ρh , vh) + χδ2(
∂
∂x

ρ∗h ,
∂
∂x

v∗h) = 0 for all vh ∈ Xh ,

ρ(x, 0) = ρ0(x) for all x ∈ Ω,
(2.1)

where the new stabilization term χδ2( ∂∂x ρ
∗ , ∂

∂x v
∗
h), initially introduced by Vreman [46] is added. Here

ρ∗ = ρ − ρh

the goal of this term is to improve accuracy and damp unwanted spurious oscillations while being cheap com-
putationally to implement. This also introduces the dimensionless χ as a stabilization parameter which can be
manually tuned to increase or decrease the affects of the added stabilization term.

From [29] we also define trilinear term b( ⋅ , ⋅ , ⋅ ) : X × X × X 󳨃→ ℝ as

b(u, v, w) = 13 ∫
Ω

((uv)󸀠 + uv󸀠)w dx. (2.2)

In [29, 42] it is proven that b is skew-symmetric, i.e.,

b(u, v, w) + b(u, w, v) = 0. (2.3)

Furthermore, a stabilized finite element variational formulation of (1.4) can be stated as: Find ρh ∈ Xh satisfying

(
∂
∂t ρh , vh) + vf (

∂
∂x ρh , vh) −

2vf
ρm

b(ρh , ρh , vh) + χδ2(
∂
∂x ρ
∗
h ,

∂
∂x v
∗
h) = 0 for all v ∈ Xh . (2.4)

2.2 Time Filtered Vreman Stabilization Algorithm

For all numerical simulations presented in Section 4 we employ the Backward Euler temporal discretization.
Additionally, we implement the time filter studied in [13, 15, 25] as a post processing step to the Backward Euler
scheme for approximating the density ρn from the intermediate density approximation from Step 1, i.e., ρ̂n .
This increases our algorithms to second order convergence in time. The discretized finite element algorithms
for time interval (0, T] are stated below:

Algorithm 1 (Fully Discrete Method for linear case). For n = 2, 3, . . . , NT , find ρnh ∈ Xh such that
∙ Step 1: Backward Euler

1
Δt (ρ̂

n
h − ρ

n−1
h , vh) + v̄(

∂
∂x ρ̂

n
h , vh) + χδ

2(
∂
∂x ρ̂

n∗
h , ∂∂x v

∗
h) = 0 for all vh ∈ Xh , (2.5)

∙ Step 2: Time Filter

ρnh = ρ̂
n
h −

γ
2 (ρ̂

n
h − 2ρ

n−1
h + ρ

n−2
h ). (2.6)

Algorithm 2 (Fully Discrete Method for Greenshield’s model). For n = 2, 3, . . . , NT find ρnh ∈ Xh such that
∙ Step 1: Backward Euler

1
Δt (ρ̂

n
h − ρ

n−1
h , vh) + vf (

∂
∂x ρ̂

n
h , vh) −

2vf
ρm

b(ρ̂nh , ρ̂
n
h , vh) + χδ

2(
∂
∂x ρ̂

n∗
h , ∂∂x v

∗
h) = 0 for all vh ∈ Xh , (2.7)

∙ Step 2: Time Filter

ρnh = ρ̂
n
h −

γ
2 (ρ̂

n
h − 2ρ

n−1
h + ρ

n−2
h ).
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By choosing γ = 2
3 in the time filter equation in the above algorithm and then solving it for the intermediate

density ρ̂nh obtained from the Backward Euler in Step 1, we get

ρ̂nh =
3
2ρ

n
h − ρ

n−1
h +

1
2ρ

n−2
h . (2.8)

Replacing ρ̂nh in Step 1 by (2.8), one can reduce the two step process in Algorithm 2 to a single equation process.
For simplicity in notation and later in the stability analysis, we first introduce the interpolation and difference
operators given below:

I[ρn] = 32ρ
n − ρn−1 + 12ρ

n−2 , (2.9)

D[ρn] = 32ρ
n − 2ρn−1 + 12ρ

n−2 . (2.10)

Incorporating (2.9) and (2.10) into Algorithm 2 and using (2.8), we obtain the following equivalent scheme:

1
Δt (D[ρ

n
h], vh) + vf (

∂
∂x

I[ρnh], vh) −
2vf
ρm

b(I[ρnh], I[ρ
n
h], vh) + χδ

2(
∂
∂x

I[ρnh]
∗ , ∂
∂x

v∗h) = 0. (2.11)

The initial condition ρ0h is the L2 projection of ρ0 and ρ
1
h is obtained using Backward Euler.

3 Stability Analysis

Lemma 2. Solutions to the semi-discrete scheme (2.4) are stable and satisfy

‖ρh‖2 + χδ2
t

∫
0

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∂
∂x ρ
∗
h
󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2
dτ ≤ ‖ρ0‖2 . (3.1)

Proof. Choosing vh = ρh in (2.4) yields

1
2
∂
∂t ‖ρh‖

2 −
2vf
ρm

b(ρh , ρh , ρh) + χδ2
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∂
∂x ρ
∗
h
󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2
= −vf (

∂
∂x ρh , ρh). (3.2)

Since b is skew-symmetric, the nonlinear term vanishes. The right-hand side term also vanishes due to the
following argument using the periodic boundary conditions and fundamental theorem of Calculus

−vf (
∂
∂x

ρh , ρh) = −vf ∫
Ω

∂ρh
∂x

ρh dx = −vf ∫
Ω

1
2
∂
∂x
|ρh|2 dx = 0. (3.3)

Then multiplying by 2 and integrating over time, we obtain

‖ρh‖2 + 2χδ2
t

∫
0

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∂
∂x ρ
∗
h
󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2
dτ ≤ ‖ρ0h‖

2 , (3.4)

where ρ0h is taken to be the L
2 projection of ρ0 which yield the result.

Lemma 3. The solutions to the fully discrete scheme (2.11) are unconditionally stable and satisfy

‖ρNh ‖
2 + 4

N
∑
n=2

Zn + 2χδ2Δt
N
∑
n=2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∂
∂x I[ρ

n
h]
∗
󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2
≤ C(ρ0 , ρ1), (3.5)

where

En =
1
4 (‖ρ

n
h‖

2 + ‖2ρnh − ρ
n−1
h ‖

2 + ‖ρnh − ρ
n−1
h ‖

2), (3.6)

Zn =
3
4 ‖ρ

n
h − ρ

n−1
h − ρ

n−2
h ‖

2 . (3.7)
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Proof. Choosing vh = I[ρnh] in (2.11) yields
1
Δt (D[ρ

n
h], I[ρ

n
h]) −

2vf
ρm

b(I[ρnh], I[ρ
n
h], I[ρ

n
h]) + χδ

2󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∂
∂x

I[ρnh]
∗
󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2
= −vf (

∂
∂x

I[ρnh], I[ρ
n
h]). (3.8)

By Lemma 1, the first term results in

(D[ρnh], I[ρ
n
h]) = E

n − En−1 + Zn . (3.9)

The nonlinear term vanishes. Similarly to what is done in Lemma 2 the term on the right-hand side vanishes as
well

vf (
∂
∂x

I[ρnh], I[ρ
n
h]) = vf ∫

Ω

I[ρnh]
∂
∂x

I[ρnh] dx =
1
2 ∫
Ω

∂
∂x
|I[ρnh]|

2 dx = 0. (3.10)

After multiplying by Δt and simplifying

En − En−1 + Zn + Δt χδ
2

2
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∂
∂x

I[ρnh]
∗
󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2
≤ 0.

Summing from n = 2, . . . , N gives

EN +
N
∑
n=2

Zn +
χδ2

2 Δt
N
∑
n=2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∂
∂x

I[ρnh]
∗
󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2
≤ E1 .

Based on definition of EN from (3.6) and bounds of the initial conditions we achieve the desired result.

Remark 1. Both the semi-discrete scheme (2.1) and fully discrete Algorithm (1) are also stable and satisfy (3.1)
and (3.5) respectively. The proof follows the same steps as in Lemma 2 and Lemma 3.

Remark 2. For the case of linear advection considered in (1.2), it is well-known that explicit finite difference and
finite volume schemes must choose a discretization that satisfies a CFL condition to ensure stability [35, 40, 44].
The presented time stepping algorithm with the corresponding time filtered technique however, as an implicit
linear multistep time stepping method, is unconditionally stable as shown in Lemma 3.

4 Computational Experiments

4.1 Algorithm Implementation

For the Fully Discrete Method for linear case, (2.5) can be written as follows: For n = 2, 3, . . . , NT find ρnh ∈ Xh
such that

1
Δt (ρ̂

n
h − ρ

n−1
h , vh) + v̄(

∂
∂x ρ̂

n
h , vh) + χδ

2(
∂
∂x ρ̂

n∗∗
h , ∂∂x vh) = 0 for all vh ∈ Xh , (4.1)

where the ∗ operator is the same as in equation (2.1). Herein ρ̂n∗∗h cannot be treated explicitly. We used a fixed
point iteration on the implicit terms. Pseudo-code for this case, ρ̂n∗∗h = ρ̂

n
h − 2 ̄ρ̂

n
h +
̄̄ρ̂nh , when ρ̂nh is computed is

given as:
1: ρ̂nh ← ρ̂n−1h
2: for k=0, MaxIteration , +1 do
3: ρ̂nh,old = ρ̂

n
h

4: w = ̄ρ̂nh
5: % Solve for
6: 1

Δt (ρ̂
n
h − ρ̂

n−1
h , vh) + v̄( ∂∂x ρ̂

n
h , vh) + χδ

2( ∂∂x (ρ̂
n
h − 2w + w̄),

∂
∂x vh) = 0 for all vh ∈ Xh

7: if ‖ρ̂nh,old − ρ̂
n
h,old‖ < tolerance break then

8: end if
9: end for

The tolerance used in subsequent simulations was set to 10−8. The true solution was used to compute the initial
condition for all simulations. All of the experiments are implemented in FreeFem++ version 4.4.3 [26] and data
visualizations are done using Paraview version 5.7.0 [1] along with Python’s matplotlib library.
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4.2 Convergence Rate Calculations

In this subsection, we utilize the following test problem with the choice of v̄ = 1 to calculate the model’s rate of
convergence in terms of Δt and mesh size h = Δx:

{{{
{{{
{

ρt + ρx = 0, 0 < x ≤ 1, 0 < t ≤ 1,
ρ(x, 0) = sin 2πx, 0 ≤ x ≤ 1,
ρ(0, t) = − sin 2πt, t > 0.

(4.2)

The true solution of (4.2) is known to be ρ(x, t) = sin(2π(x − t)). The approximations are using P2finite elements
and all simulations are performed up to the final time T = 1. The choice of parameters χ = 2500 and δ = 0.02h0.5
is based on the test of error estimate in [18]. Table 1 demonstrates the convergence rate for Δt with a set mesh
width as h = 0.001 and a refined time step by a factor of half. Based on the numbers listed in Table 1, backward
Euler, γ = 0, delivers the expected rate of convergence equal to 1 while with added time filter using the time
filter parameter, γ = 2

3 , the rate of convergence increases in value to 2.
The expected rate of convergence in terms of spatial refinement for the approximated density can be drawn

from the theoretical convergence results in [18] using Corollary 3.2 therein.
For quadratic finite element polynomial approximation k = 2 and the choice of δ = 0.02h0.5, the spatial

rate of convergence for the approximated density in (4.2) is expected to be 1.5. Tables 2 and 3 demonstrate
the spatial rate for Δt = 2−16 ≈ 0.00002 and Δt = 2−12 ≈ 0.0002 set values respectively. We start with h = 1

8 and

‖ρ − ρh‖ℓ∞(0,T;L2) Error
Δt γ = 0 Rate γ = 2

3 Rate
1
16 0.0106812 − 0.00921303 −
1
32 0.0063397 0.75 0.00270058 1.77
1
64 0.00349665 0.86 0.000699355 1.95
1
128 0.00184422 0.92 0.000176171 1.99
1
256 0.000948405 0.96 4.41688 × 10−5 2.00
1
512 0.000481157 0.99 1.11346 × 10−5 1.99

Table 1: Numerical errors and rates in time for Algorithm 1 for h = 0.001, χ = 2500 and δ = 0.02h0.5.

‖ρ − ρh‖ℓ∞(0,T;L2) Error
h γ = 0 Rate γ = 2

3 Rate
1
8 0.00354754 − 0.00352879 −
1
16 0.000818518 2.12 0.000812389 2.12
1
32 0.000302091 1.44 0.000298696 1.44
1
64 0.000107899 1.49 0.000106262 1.49
1
128 3.7559 × 10−5 1.52 3.59366 × 10−5 1.56

Table 2: Numerical errors and rates in space for Algorithm 1 for Δt ≈ 0.00002, χ = 2500 and δ = 0.02h0.5.

‖ρ − ρh‖ℓ∞(0,T;L2) Error
h γ = 0 Rate γ = 2

3 Rate
1
8 0.00387709 − 0.00352889 −
1
16 0.00101808 1.93 0.000812653 2.12
1
32 0.000480005 1.08 0.000298809 1.44
1
64 0.000274581 0.81 0.000106268 1.49
1
128 0.000178078 0.62 3.59569 × 10−5 1.56

Table 3: Numerical errors and rates in space for Algorithm 1 for Δt ≈ 0.0002, χ = 2500 and δ = 0.02h0.5.
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refine, halving each time. Table 2 shows that for a sufficiently small time step, i.e., Δt = 2−16, both methods
achieve the same theoretically predicted rate of 1.5. For a larger time step, e.g., Δt = 2−12, Table 3 shows that
the traditional Backward Euler, γ = 0, has suboptimal performance while the time filtered scheme maintains
the expected theoretical convergence rate of 1.5. A possible explanation is that the time filter method is second
order in time and thus gives smaller errors in time without polluting the spatial error.

4.3 Traveling Discontinuous Waveform Problem

Here we study the linear advection test problem in (1.2) with v̄ = 1, ρ0 = 0 and ρI = 0.47. In the context of the
motivating biological application, equation (4.3) models the casewhere the RNAP elongation velocity is constant
under all conditions, the DNA strand is initially empty of any RNAPs and the initiation of RNAPs occurs at a rate
which corresponds to a density of RNAPs described by ρI = 0.47. The solution to this model problem is discon-
tinuous for t > 0, and the discontinuity propagates across the domain with speed 1. The discontinuity advects,
or travels, along the characteristics x − t = c in the domain, where c > 0 is any constant.

{{{
{{{
{

ρt + ρx = 0, 0 < x ≤ 1, 0 < t ≤ 1,
ρ(x, 0) = 0, 0 ≤ x ≤ 1,
ρ(0, t) = 0.47, t > 0.

(4.3)

This test problem is considered in [13] where the time filter is applied to the classical explicit (finite difference)
upwind scheme. In that case, the time filter is shown to improve the accuracy of the approximation scheme;
however, the convergence rate of the filtered scheme remains the same as that of the unfiltered upwind scheme.
Here it is shown that the time filter improves the convergence rate of the unfiltered backward Euler approach.

We use P2 elements, and the time filter is implemented for all simulation results shown in this work. In
Figure 2 we use h = 0.02, χ = δ = 0, while we vary the size of time steps (Δt = 2−6 ≈ 0.016, Δt = 2−8 ≈ 0.004, and
Δt = 2−10 ≈ 0.001).We observe that as the time step size decreases, themore accuratelywe capture the solution’s
discontinuous profile. For that reason, we use Δt = 2−10 for all subsequent simulations in this subsection. In
addition, we note that all simulations have spurious oscillations that were removed with the addition of the
Vreman stabilization term; see Figures 3–6.

Figures 3 and 4 illustrate the effects that δ and χ have on numerical solutions. Mathematically since they
both appear as scalars on the same term in Algorithm 1, not the semi-discrete or the fully-discrete algorithm,
it is expected that they share the same affect. This can be seen in both figures where the amount of “damping”
increases with increases in both δ and χ. This damping introduces dissipation into the approximation scheme,
which causes the “smoothing” out of the shock profile. Hence, it can be inferred that selecting small values for
both δ and χ is desirable. However, Figure 4 shows that choosing too small a value (χ = 0.01) results in a failure
to remove the spurious oscillations present in the unstabilized model. For that reason, we choose δ = h and
χ = 1 for the last Figures 5 and 6.
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Figure 2: Comparisons of numerical solutions at t=0.5 with varying time-steps, h = 0.02 and χ = δ = 0.
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Figure 3: Comparisons of numerical solutions at t=0.5 with time step Δt ≈ 0.001, χ = 1, h = 0.02, and various values for δ.
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Figure 4: Comparisons of numerical solutions at t=0.5 with time step Δt ≈ 0.001, δ = h, h = 0.02, and various values for χ.

Figure 5: Numerical results of Algorithm 1 (χ = 0, left and χ = 1, right) with Δt ≈ 0.001, h = 0.02, δ = h.

These figures illustrates the effect of adding the Vreman stabilization term over time. Here we use h = 0.02,
Δt = 2−10 ≈ 0.001, and the total number of time steps is 1024. Figure 6 shows a cross section of Figure 5 at three
specific time steps. As can be seen the addition of the Vreman filter based stabilization significantly removes
spurious oscillations present in the unstabilized model overtime.

4.4 Stationary Shock

We now investigate problem (4.4) where the parameters of the problem are chosen carefully to ensure that the
solution is discontinuous at x = 0.5 for all time t. We note that such choices are somewhat of an idealized bio-
logical situation where the environmental factors would have to be specified precisely; however, this example
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Figure 6: Numerical results of Algorithm 1 (χ = 0, left and χ = 1, right) at times t = 0.25, 0.5, 0.75 (top to bottom) with Δt ≈ 0.001,
h = 0.02, δ = h.

provides an interesting example of the need for precise tuning of the stabilization parameters in order to ensure
stability for the case of a stationary shock:

{{{{{{{{
{{{{{{{{
{

ρt + vf ρx −
2vf
ρm

ρρx = 0, 0 ≤ x ≤ 1, 0 < t ≤ 4,

ρ(0, t) = 0, t > 0,

ρ(x, 0) =
{
{
{

ρl , 0 ≤ x < 0.5,
ρr , 0.5 < x ≤ 1.

(4.4)

Weassign the followingparameters the values of ρm = 0.47, vf = 1, ρl = 0 and ρr = 0.47. A shock stays stationary
if ρl = ρ(0.5− , 0) and ρr = ρ(0.5+ , 0) are chosen such that the shock velocity remains zero.

Based on the parameters ρl and ρr , the initial density profile we get for this problem is shown in Figure 7.
For the chosen ρl and ρr , the shock speed can be computed as

λ = f(ρr) − f(ρl)ρr − ρl
=
ρlvf (1 − ρl

ρm ) − ρrvf (1 −
ρr
ρm )

ρl − ρr
,

λ =
(0.47)(1)(1 − 0.47

0.47 ) − (0)(1)(1 −
0

0.47 )
0.47 − 0 = 0,

where f(ρ) = ρv = vf ρ(1 − ρ
ρm ) for this example. Thus, we have a shock speed of λ = 0 resulting in the shock

remaining stationary for all time t > 0.
For the computational results, we use P2 elements time filtering for all simulations and a final time T = 3.

In Figure 8 we used h = 1
300 ≈ 0.003 with Δt = 0.0001.

As can be observed in Figure 8, the unstabilized FEM is unable to numerically simulate the stationary shock
and produces a tremendous amount of oscillations.We see the addition of the Vreman stabilization term results
in a reduction of the oscillations. We observe a similar phenomena as in the linear case where increasing χ
results in a reduction of the oscillations and by χ = 0.25 virtually all oscillations have vanished. Figure 9 plots
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Figure 7: Initial density profile of stationary shock problem.
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Figure 8: Numerical results of Algorithm 2 with various χ at final time T = 3 with Δt = 0.001, h ≈ 0.003, δ = √h.
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Figure 9: Semi-log plot of L2 errors overtime of Algorithm 2 with various χ and Δt = 0.001, h ≈ 0.003, δ = √h.

the L2 error of all simulation in Figure 8 over time. This showcases that the addition of χ not only give better
qualitative solutions but increases accuracy.

4.5 Discontinuous Initial Density

Here we study the LWR model with the Greenshield’s flow velocity relationship as in (1.4). In the context of
the motivating biological application, equation (4.5) models the case where the initial density of RNAPs varies
along the DNA strand. Initially the density of RNAPs along half of the strand is at its maximum value, and the
DNA strand is empty from the midpoint to the right end of the strand. As an example, this could happen when
a transcriptional pause has arrested the elongation of those RNAPs traveling on the left half of the strand, while



L. Davis et al., Numerical Study of a Stabilized Hyperbolic Equation  13

-0.1

0

0.1

0.2

0.3

0.4

0.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 10: Initial density profile of Discontinuous Initial Density problem.
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Figure 11: Numerical results of Algorithm 2 at time t = 0.25 (left) and t = 0.5 (right) with Δt = 0.0001, h = 0.002, δ = h, and χ = 1.

the remainder of the strand has cleared of any other RNAps so that the density on the right half of the strand is
set to zero. For t > 0, elongation resumes for those RNAPs left on the strand, and a rarefaction wave is formed
since ρl > ρr = 0. For this example, we consider the following parameters ρl = 0.35 and ρr = 0. We also assign
the following parameters the values of ρm = 0.35, and vf = 1. Based upon the above parameters ρl and ρr , the
initial density profile we get for this problem is shown in Figure 10:

{{{{{{{{
{{{{{{{{
{

ρt + vf ρx −
2vf
ρm

ρρx = 0, 0 ≤ x ≤ 1, 0 < t ≤ 0.5,

ρ(0, t) = 0.35, t > 0,

ρ(x, 0) =
{
{
{

0.35, 0 ≤ x < 0.5,
0, 0.5 < x ≤ 1.

(4.5)

We use P2 elements without time filtering for all simulations, and the final time is T = 0.5. In Figure 11 we
use h = 1

500 = 0.002 with Δt = 0.0001.
The results in Figure 11 show that the solution behavior of a rarefaction wave is accurately approximated

with the numerical scheme in Algorithm 2. This is expected since the solution profile is continuous; however,
it should be noted that in such a case, the use of the time filter does not introduce any errors into the approx-
imation scheme in Algorithm 2. This indicates that the time filter can be applied to problems with continuous
solutions without concern that the extra step could introduce errors into an accurate approximation to a con-
tinuous solution.

5 Conclusion

We consider numerical simulation methods for two models. The first is the linear version of the LWR model
in (1.1), and the second model is the nonlinear Greenshield’s model primarily known in the study of traffic flow
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but repurposed here for the biological application of modelling bio-polymerization processes. We investigate
the affects of implementing a time filter and stabilization termand present two fully discrete finite element algo-
rithms. Stability is proven in the semi-discrete and fully discrete case. We showcase four numerical simulations
for the linear and nonlinear cases and agrees with the literature. The example in Section 4.5 shows that the time
filter may be used in a situation where the solution profile is continuous without concern for introducing any
extra errors to an otherwise well-behaved solution profile. This is a promising result that warrants future study
for cases where a continuous initial conditionmay lead to a shock developing in time for the case of a nonlinear
PDE system.

Funding: The contribution of the authors Dr. Davis and Dr. Pahlevani was supported by the National Science
Foundation under Awards DMS-1951510 and DMS-1951563.
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