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ABSTRACT

Let Γ = q1Z⊕ q2Z⊕ ⋅ ⋅ ⋅ ⊕ qdZ, with q j ∈ Z+ for each j ∈ {1, . . . ,d}, and denote by Δ the discrete Laplacian on ℓ2(Zd). Using Macaulay2, we
first numerically find complex-valued Γ-periodic potentials V : Zd → C such that the operators Δ +V and Δ are Floquet isospectral. We then
use combinatorial methods to validate these numerical solutions.
Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0201744

I. INTRODUCTION AND MAIN RESULTS
Let Δ denote the discrete Laplacian on Zd:

(Δu)(n) = ∑
∣n′−n∣1=1

u(n′),

where for n = (n1,n2, . . . ,nd), n′ = (n′1,n′2, . . . ,n′d) ∈ Zd we write

∣n′ − n∣1 ∶=
d

∑
i=1
∣ni − n′i ∣.

In this paper, we study finite difference equations of the type

(Δu)(n) +V(n)u(n) = λu(n), for all n ∈ Zd, (1)

subject to the Floquet boundary condition

u(n + qjej) = e2πikju(n), for all n ∈ Zd, kj ∈ [0, 1] and j ∈ [d] ∶= {1, . . . ,d} (2)
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where {e j}dj=1 is the standard basis in Rd and {q j}dj=1 are positive integers. The potential V : Zd → C is assumed to be Γ-periodic. Namely,
letting Γ = q1Z⊕ ⋅ ⋅ ⋅ ⊕ qdZ, we impose that

V(n +m) = V(n), for all n ∈ Zd and m ∈ Γ.

WritingQ =∏d
i=1 qi, Eq. (1) with the boundary condition (2) can be realized as the eigen-equation of a finiteQ ×QmatrixDV(k), where

k = (k1, . . . , kd). Denote by σV(k) = σ(DV(k)) the set of eigenvalues of DV(k), including algebraic multiplicity.

Definition 1. Assume that V and V′ are Γ-periodic potentials. Two operators Δ +V and Δ +V′ are called Floquet isospectral if σV(k)
= σV′(k) for all k ∈ Rd. In this case it is also common to say that the Γ-periodic potentials V and V′ are Floquet isospectral.

Understanding when two potentials V and V′ are Floquet isospectral is an interesting problem with a rich history of study.12–14,20 In this
paper, we focus on the discrete case; however, there is also a deep body of work for the continuous case.4–6,8,10,23,27

Floquet isospectrality belongs to the class of inverse spectral problems, where one aims at recovering information about the original
operator from certain spectral data. Among such problems, we also highlight Fermi isospectrality,1,22 Borg’s Theorem2,3,21,25 and the recovery
of the potential from its integrated density of states.7 For more background and history of inverse spectral problems for periodic potentials,
we refer the reader to the following recent surveys.15,16,19

In this paper, we focus on the Ambarzumyan-type inverse problem of finding potentials isospectral to the zero potential, denoted hence-
forth by 0. It is a well-known and classical result that there are no real non-zero potentials Floquet isospectral to 0 in both the continuous and
discrete cases. For more general work on the well-studied class of Ambarzumyan-type problems, we refer the reader to Ref. 18 (Chap. 14). For
the continuous case, it has been shown that there are many complex-valued potentials that are Floquet isospectral to 0 [e.g., Refs. 11 and 17
(Theorem 11)]. It is a folklore result that there exist complex-valued Γ-periodic potentials V which are Floquet isospectral to 0 in the discrete
case. Our goal of this paper is multi-fold. Firstly, we present explicit potentials isospectral to 0. Secondly, our method of proof is, to the best
of our knowledge, new. More concretely, we introduce combinatorial language and techniques which might be of interest to other problems
in the realm of the spectral theory of discrete Schrödinger operators.

Theorem I.1. Let Γ = q1Z⊕ q2Z⊕ ⋅ ⋅ ⋅ ⊕ qdZ. Assume that at least one of qj, j = 1, 2, . . .,d is even. Then there exists a nonzero Γ-periodic
function V Floquet isospectral to 0.

Remark 1. We prove Theorem I.1 by constructing explicit potentials isospectral to 0 (see Theorem III.2).

In order to construct these explicit examples, we began by experimentally finding solutions using Macaulay2.9 Although we do not use
all the numerical solutions found, our experimental data enabled us to notice a particular pattern for when potentials are Floquet isospectral
to 0. In this paper, we begin with this pattern and focus on proving it. The reader interested in how this pattern was discovered by us is invited
to consult our annotated Macaulay2 code at the github repository.24 By Floquet theory, the discrete Schödinger operator can be represented
as the direct sum of a family of finite square matrices. By modeling this matrix as a finite directed graph, we are able to use graph theory and
algebra to verify the solutions suggested by the observed numerical pattern.

The remainder of this note is organized as follows. In Sec. II we give a brief background on the combinatorial constructions we will
employ. In Sec. III we reduce Theorem I.1 to Theorem III.2. In Sec. IV we prove Theorem III.2.

II. COMBINATORIAL BACKGROUND AND NOTATION
In this section we introduce basic terminology and also make a few remarks which will be relevant to the proof of the main results of this

note. Let us start by introducing some notation.

(i) Fix a m ×m matrix M = (Mi j)m×m with entries in a ring R. The digraph of M is a weighted directed graph G ∶= (V, E,w) with vertex
set V = [m] and edges given by (i, j) ∈ E ifMi,j ≠ 0. The weight function w : E→ R is naturally inherited fromM via w(i, j) =Mi,j for
all (i, j) ∈ E.

(ii) A vertex cycle cover is a union of cycles which are subgraphs of G and contains all vertices of G.
(iii) A disjoint cycle cover of a digraph is a vertex cycle cover for which two different cycles have no vertices in common.
(iv) We denote by Sm the symmetric group ofm elements. The permutations in Sm will be denoted by σ.
(v) We also letMσ =∏m

i=1Mi,σ(i).
(vi) Since any permutation σ ∈ Sm is a product of disjoint cycles, it is easy to see that ifMσ ≠ 0 then σ induces a disjoint cycle cover η of G

such that
w(η) ∶=∏

e∈η
w(e) =Mσ

We then denote sgn(η) ∶= sgn(σ).
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FIG. 1. The weighted digraph Jm of an m × m Jacobi matrix M.

(vii) We let
P = {σ ∈ Sm : Mσ ≠ 0}.

Note that P is in bijection with the collection of disjoint cycle covers of G, denoted henceforth by UG.
We now make the following remarks:

(R1) Notice that the digraph ofM is a directed version of the adjacency matrix.
(R2) With the given definitions, one has that

det (M) =∑
σ∈P

sgn (σ)Mσ =∑
η∈U

sgn (η)w(η). (3)

(viii) Let [t] f denote the coefficient of the monomial term t of a polynomial f . For example if f (z) = 4z2 + 9z − 2 then [z2] f (z) = 4, [z] f (z)
= 9, and [z0] f (z) = −2.

(ix) We say thatM = (Mi j)m×m is a Jacobi matrix if it has the following property:Mij ≠ 0 for some i, j ∈ [m] if and only if ∣i − j∣ ≤ 1. In this
case, we denote by Jm the digraph of M, as shown in Fig. 1. It is easy to see that if η is a disjoint cycle cover of Jm, then η must be
composed of only cycles of length 1 and 2.

(x) Let S(m, p) denote the number of disjoint cycle covers of Jm with exactly p 2-cycles. This quantity will be used in the Proof of Theorem
III.1. Although we do not need the explicit value of S(m, p), by basic combinatorial identities one finds that S(m, p) = (m−pp ).

III. REDUCTION OF MAIN THEOREM
To prove Theorem I.1, we provide an explicit potential which is Floquet isospectral to 0.
Suppose thatm ∈ Z+. Let us define a vector v = (v1, . . . , v2m) ∈ C2m via

v ∈ C2m, v1 = 1 + i, v2 = 1 − i, vm+1 = −1 + i, vm+2 = −1 − i and vl = 0 otherwise. (4)

As a 2mZ-periodic potential r is determined by the values r1 ∶= r(1), . . ., r2m ∶= r(2m), we often abuse notation and identify r with the
vector r = (r1, . . . , r2m).

Theorem III.1. Let m ∈ Z+ and Γ = 2mZ⊕ q2Z⊕ ⋅ ⋅ ⋅ ⊕ qdZ, and define V : Zd → C to be the separable Γ-periodic potential given by
V(n1, . . . ,nd) = v(n1 mod 2m) with v given by (4). Then V is Floquet isospectral to 0.

Theorem III.1 clearly implies Theorem I.1.
To prove Theorem III.1, we need only show that the following theorem is true.

Theorem III.2. Let v be given by (4), then the following two matrices have the same eigenvalues, including multiplicity

Dv =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

v1 1 0 . . . 0 1
1 v2 1 0 . . . 0

0 1
. . .

. . .
. . . ⋮

⋮
. . .

. . .
. . .

. . . 0
0 0 . . . 1 v2m−1 1
1 0 . . . 0 1 v2m

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, D0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 0 . . . 0 1
1 0 1 0 . . . 0

0 1
. . .

. . .
. . . ⋮

⋮
. . .

. . .
. . .

. . . 0
0 0 . . . 1 0 1
1 0 . . . 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (5)

Definition 2. A function V : Zd → C is called completely separable if there exists V j : Z→ C such that V(n) = V(n1, . . . ,nd) = V1(n1) +
⋅ ⋅ ⋅ + Vd(nd) for all n ∈ Zd. If V is completely separable we write V = V1 ⊕ ⋅ ⋅ ⋅ ⊕ Vd.
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Lemma III.3. Let Γ = q1Z⊕ ⋅ ⋅ ⋅ ⊕ qdZ. Assume V = V1 ⊕ ⋅ ⋅ ⋅ ⊕ Vd and W =W1 ⊕ ⋅ ⋅ ⋅ ⊕Wd are completely separable Γ-periodic poten-
tials. If W j and V j are Floquet isospectral for each j ∈ [d], then V and W are Floquet isospectral.

Proof. This follows from a well-known result e.g. Ref. 26 (Theorem 4.17). ◻

Proof of Reduction of Theorem 3.1 to Theorem 3.2. Notice thatV and 0 are both completely separable potentials. By Lemma III.3, to prove
Theorem III.1 it suffices to show that the 2mZ-periodic potential v is isospectral to the 2mZ-periodic 0. Furthermore, for the one dimensional
Schrödinger operator, it is well-known that the Floquet isospectrality of two potentials is determined by their values at a single quasi-momenta
[e.g., Ref. 13 (page 1)]. Let us fix the quasi-momtenta k = 0. Then V and 0 are isospectral if Dv and D0 have the same eigenvalues, each with
the same multiplicity for each respective matrix. ◻

IV. COMBINATORIAL FORMULATION AND PROOF OF THEOREM III.2
Let Pv(λ) and P0(λ) denote the characteristic polynomials of Dv and D0, respectively. In order to prove Theorem III.2, it suffices to

check that
Pv(λ) = P0(λ) for all λ ∈ C. (6)

Before taking v to have the specific form (4), we investigate the difference Pv(λ) − P0(λ) when

v = (v1, v2, 0, . . . , 0, v3, v4, 0, . . . , 0). (7)

for arbitrary values of v1, . . . , v4. Note that in this case the polynomial Pv(λ) − P0(λ) has degree at most λ2m−1, and each of its coefficients
must depend on at least one of the variables v1, . . . , v4. More can be said and, in fact, we have the following complete description of the above
difference. Define

Fi(v) ∶= [λi](Pv(λ) − P0(λ)) = 0 for i ∈ {0, . . . , 2m − 1}.

Theorem IV.1. The following formulas for F2m−k(v) hold:

F2m−k(v) = v1v2v3v4(−1)ℓ(
ℓ−2

∑
i=0

S(m − 2, i)S(m − 2, ℓ − 2 − i)) + (v1v2 + v3v4)(−1)ℓ−1S(2m − 2, ℓ − 1)

+(v1v3 + v2v4)(−1)ℓ−1(
ℓ−1

∑
i=0

S(m − 1, i)S(m − 1, ℓ − 1 − i))

+(v1v4 + v2v3)(−1)ℓ−1(
ℓ−1

∑
i=0

S(m, i)S(m − 2, ℓ − 1 − i)),

if k = 2ℓ for ℓ ∈ [m − 1].

F2m−k(v) = (v1v2v3 + v1v2v4 + v1v3v4 + v2v3v4)(−1)ℓ(
ℓ−1

∑
i=0

S(m − 2, i)S(m − 1, ℓ − 1 − i))

+(v1 + v2 + v3 + v4)(−1)ℓ+1S(2m − 1, ℓ),

if k = 2ℓ + 1 for ℓ ∈ {0, . . . ,m − 1}.

Remark 2. It readily follows that, for the above range of values for ℓ, the parity of k must agree with the parity of the degree of any of the
monomials appearing in F2m−k(v).

Remark 3. While there are previous works regarding explicit constructions in the case of real-valued potentials,12,14 it is an interesting
question to see whether a construction similar to ours can produce examples of complex potentials Floquet isospectral to an arbitrary real and
nonconstant potential V0. This is necessarily rare, as it is well known, by Ref. 12 (Proposition 2.2), that for a real potential v with pairwise distinct
coordinates, for all t sufficiently large the potential tv has only real Floquet isospectral potentials.

We chose to focus on the case of a constant real potential (in this case V0 = 0), since there are no non-trivial real potentials Floquet isospectral
to it. In fact, if V0 is a non-constant real-valued potential, there must exist a real potential V ≠ V0 Floquet isospectral to V0. Thus, not only is it
is interesting to ask whether complex Floquet isospectral potentials exist, but, in the case of a constant real potential, these are the only possible
non-trivial Floquet isospectral potentials.
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FIG. 2. The refined digraph G′. Notice we do not include the weight 0 self loops after specializing.

Remark 4. While it is natural to start by choosing v taking many zero values, its specific form (7) turned out to be the most convenient for
us. The recursive patterns in Theorem IV.1 were indicated through computations carried out with Maculay2.9

Proof .
Here, we spell out the details when k is even. The proof for odd values of k is completely analogous. Let k = 2ℓ for some ℓ ∈ [m − 1]. Let

G be the digraph of Dv(z) − λI and let UG be the collection of disjoint cycle covers of G. By (3), we have that

Pv(λ) = ∑
η∈UG

sgn (η)w(η).

DefineG′ = (V, E′,w′) to be a refined version ofG, where edges of the form (i, i) are replaced by two new edges (i, i)1 and (i, i)2 with weights
w′((i, i)1) = vi, w′((i, i)2) = −λ. All other edges and weight assignments are kept fixed (see Fig. 2). Let UG′ be the collection of disjoint cycle
covers of G′. Notice that if η ∈ UG does not contain (i, i), then η ∈ UG′ and w(η) = w′(η). Furthermore, given an η ∈ UG with a single self
loop edge (i, i) there exist disjoint cycle covers α and β in UG′ such thatw(η) = w′(α) +w′(β). In general, η ∈ UG splits into 2l disjoint cycle
covers α1, . . . ,α2l of G

′ where l is the number of self loops in η, such that w(η) = ∑2l
i=1w(αi). Thus, we have that

Pv(λ) = ∑
η∈UG′

sgn (η)w′(η).

To solve for [v1v2v3v4λ2m−k]Pv(λ), consider the collection C of η ∈ UG′ with the following properties

● w′(η) ≠ 0.
● η contains the edges (1, 1)1, (2, 2)1, (m + 1,m + 1)1, (m + 2,m + 2)1.
● η has 2m − k other edges of the form (i, i)2.

Given an η ∈ C, after fixing the edges (1, 1)1, (2, 2)1, (m + 1,m + 1)1, and (m + 2,m + 2)1, the remaining digraphG′ /{1, 2,m + 1,m + 2}
is a disjoint union of two J(m−2) digraphs, denoted G′1 and G′2. It follows that the remaining cycles of η are the 2m − k 1-cycles given by (i, i)2
and ℓ − 2 2-cycles. Therefore,

[v1v2v3v4λ2m−k] sgn (η)ηw′ = (−1)
ℓ. (8)

In particular,
[v1v2v3v4λ2m−k]Pv(λ) = (−1)ℓ∣C∣, (9)

and thus we are left to count the elements of T. Notice that after fixing the edges (1, 1)1, (2, 2)1, (m + 1,m + 1)1, and (m + 2,m + 2)1, the
remaining 1-cycles of η in C are determined by the 2-cycles of η. To count T, we only need to count the number of ways we can choose
ℓ − 2 2-cycles from the disjoint subdigraphs G′1 and G′2. As we must choose ℓ − 2 2-cycles, if we choose i 2-cycles from G′1, then we must
choose ℓ − 2 − i 2-cycles from G′2. It follows that

∣C∣ =
ℓ−2

∑
i=1

S(m − 2, i)S(m − 2, ℓ − 2 − i). (10)

Combining Eqs. (8)–(10), we conclude that

[v1v2v3v4]F2m−k = (−1)ℓ
ℓ−2

∑
i=1

S(m − 2, i)S(m − 2,m − 2 − i).

The other cases follow through similar arguments. See Fig. 3 for an illustration of why the coefficients of v1v2 and v3v4 agree. ◻.

Remark 5. The reason why Remark 2 holds is because if t is a monomial of F2m−k, then deg(t) + 2m − k is the number of 1-cycles in an
η ∈ UG′ such that [tλ2m−k]w′(η) ≠ 0. Thus, the remaining cycles must be 2-cycles, and so k − deg(t)must be even; that is, the parities of k and
deg(t)must agree.
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FIG. 3. (Above) G′ after fixing the cycles v1 and v2 and removing cycles v3 and v4. (Below) G′ after fixing the cycles v3 and v4 and removing cycles v1 and v2. Notice how
these are the same digraphs, just relabeled; thus, the coefficients of v1v2 and v3v4 are indeed the same.

Now we can prove Theorem III.2.

A. Proof of Theorem III.2

Lemma IV.2. Let
v = (v1, v2, 0, . . . , 0, v3, v4, 0, . . . , 0)

with v1 = 1 + i, v2 = 1 − i, v3 = −1 + i, and v4 = −1 − i. Then F2m−k(v) = 0 for all k ∈ [2m].

We split the proof into two cases.

(i) k is odd.
Notice that v1 = −v4 and v2 = −v3, thus we have that

⎧⎪⎪⎨⎪⎪⎩

v1 + v2 + v3 + v4 = 0.
v1v2v3 + v2v3v4 + v1v3v4 + v1v2v4 = 0.

Combined with Theorem IV.1, this completes the proof in the case that k is odd.
(ii) k is even (k = 2ℓ).

With the given choice of v, we have
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

v1v2v3v4 = 4
v1v2 + v3v4 = 4
v1v3 + v2v4 = −4
v1v4 + v2v3 = 0.

Thus, according to Theorem IV.1, we are left to show that

S(2m − 2, ℓ − 1) =
ℓ−2

∑
i=0

S(m − 2, i)S(m − 2, ℓ − 2 − i) +
ℓ−1

∑
i=0

S(m − 1, i)S(m − 1, ℓ − 1 − i). (11)

To show that (11) holds, we will prove that both sides count the same collection of objects. Indeed, according to the definition of
S(2m − 2, ℓ − 1), the left-hand side counts the number of disjoint cycle covers of the digraph J(2m−2) that have ℓ − 12-cycles. We now claim
that the right-hand side enumerates the same collection. Indeed, suppose we have a J(2m−2) digraph and we wish to count the number of
disjoint cycle covers with ℓ − 12-cycles. We may partition our collection of disjoint cycle covers into two sets: those that contain the cycle
((m − 1,m), (m,m − 1)), denoted by C1, and those that do not, which we call C2.

To count C1, we can start by removing the vertices m − 1 and m from J(2m−2). We are left with the disjoint union of two J(m−2) digraphs,
which we denote G′1 and G′2, respectively. In particular, the number of elements in C1 is the number of disjoint cycle covers of the disjoint
union of G′1 and G′2 with ℓ − 2 2-cycles. It readily follows that

∣C1∣ =
ℓ−2

∑
i=0

S(m − 2, i)S(m − 2, ℓ − 2 − i).
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We now proceed to count the elements of C2. Note that the edges (m − 1,m) and (m,m − 1) cannot appear in any element of C2. Removing
these edges from J(2m−2), it follows that η ∈ C2 if and only if η is a disjoint cycle cover of G′1⊔̇G′2 with ℓ − 12-cycles, where G′1 and G′2 are two
J(m−1) digraphs and ⊔̇ denotes a disjoint union. It readily follows that

∣C2∣ =
ℓ−1

∑
i=0

S(m − 1, i)S(m − 1, ℓ − 1 − i).

As S(2m − 2, ℓ − 1) = ∣C1∣ + ∣C2∣, we have established (11), finishing the proof.
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