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ABSTRACT
Localization results for a class of random Schrödinger operators within the Hartree–Fock approximation are proved in two regimes:
Large disorder and weak disorder/extreme energies. A large disorder threshold λHF analogous to the threshold λAnd obtained in Schenker
[Lett. Math. Phys. 105(1), 1–9 (2015)] is provided. We also show certain stability results for this large disorder threshold by giving examples
of distributions for which λHF converges to λAnd, or to a number arbitrarily close to it, as the interaction strength tends to zero.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0156478

I. INTRODUCTION
In recent decades there has been intense activity regarding mathematical aspects of disordered systems. In the Anderson model in

dimension two or higher, there is an extensive literature regarding localization in the regimes of large disorder or at spectral edges. In this
context, proofs either follow the strategy of the multiscale analysis, see Refs. 14, 17, 21, 29, 30, 33, 34, 40, and 53 and also the surveys,39,41 or
the method of fractional moments, dating back to Refs. 3 and 6 and further developed in both discrete and continuous settings4,7 and also
in the context of non-monotone potentials,27,28 see also the survey52 and the monograph.9 Localization in the context of weak disorder and
existence of the so-called Lisfshitz tails were also extensively studied, see Refs. 3, 23, 31, 32, 43, 44, and 54 and references therein. For results
on complete localization in one dimension using large-deviation techniques we refer to Refs. 15 and 38.

In the past years, there has been a number of developments in the context of many-body disordered systems such as systems with a
finite number of particles;8,19,20 the quantum XY1,37,42 and XXZ24–26 spin chains; systems of hardcore particles;12 harmonic oscillators in the
presence of disorder;49 particle-oscillator interactions.48 Unlike in the single-particle Anderson-type models, where the notions of localization
aimed at are usually spectral or dynamical localization, the challenges in the context of true many-body quantum systems start at defining the
correct objects and notions of localization for each model.

One alternative to explore interactive quantum systems while remaining closer to the single-particle Schrödinger operator setting is
to approximate the true many-body Hamiltonian by an effective one, as in the case of mean field theories and the Hartree/Hartree–Fock
approximations which are widely studied beyond the setting of disordered systems.11,13,16,18,36,45,46

In the disordered setting, Anderson localization in the Hartree–Fock approximation was first studied in Ref. 22. There, through the
multiscale analysis technique, spectral localization was obtained in the presence of a spectral gap at both large disorder and at spec-
tral edges. Recently in Ref. 47 localization properties of the disordered Hubbard model at positive temperature within the Hartree–Fock
approximation have been established via the Aizenman–Molchanov fractional moment technique. There, exponential dynamical localiza-
tion (in fact, decay of eigenfunction correlators) is shown to hold at large disorder in dimension d ≥ 2 and at any disorder in dimension
d = 1 provided the interaction strength is sufficiently small. No assumption on the existence of a spectral gap is made but, in contrast,
the interactions are modelled at positive temperature. The present manuscript is devoted to localization properties of random operators in
the form

Hω = −Δ + λVω + gVeff,ω (1.1)
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where {Vω(n)}n ∈Zd are independent, identically distributed random variables and Veff,ω is a multiplication operator implicitly defined by

Veff,ω(n) = ∑
m∈Zd

a(n,m)⟨δm,F(Hω)δm⟩ for all n ∈ Zd. (1.2)

Here ∣a(m,n)∣ ≤ Cae−γd(m,n) will be assumed to decay sufficiently fast (see 1–7 for the precise assumptions) with respect to a metric
d : Zd

× Zd
→ R, Ca > 0, γ > 0 and F is an analytic function on a strip {∣Im z∣ < η} which is bounded. It is worth noting that the above

setting allows for the decay of ∣a(m,n)∣ to be of polynomial type. The above model is somewhat analogous (in the Hartree–Fock setting)
to models in the single-particle setting with fast decaying potentials which still exhibit monotonicity properties (for instance, the ones stud-
ied in Ref. 40). In the particular case where F(z) = 1

1+eβ(z−μ̄ )
is the Fermi–Dirac function at temperature β−1 > 0 and a chemical potential

μ̄ ∈ R and a(m,n) = δmn (with δmn the Kronecker delta) (1.2) simplifies to operators already studied in Ref. 47. There for a fixed β > 0,
dynamical localization is shown in any dimension provided ∣g∣ < g0 and λ > λ0 for certain constants g0 and λ0 which depend on β and d but
a more concrete estimate for λ0 was not pursued there. In this note, we generalized the large disorder result of Ref. 47 to the operator (1.2),
obtain a novel result of localization at weak disorder/extreme energies and, moreover, study the question of stability of the large disorder
threshold under “weak” interactions, inspired by the analysis of Ref. 50. In particular, it is proven here that there is a large disorder threshold
λHF such that the operators given by (1.2) exhibit dynamical localization provided λ > λHF as long as ∣g∣∥F∥∞ is sufficiently small. Moreover,
we show that λHF → λAnd as ∣g∣∥F∥∞ → 0 where λAnd is the solution of the transcendental equation

λAnd = 2∥ρ∥∞μde ln(
λAnd
2∥ρ∥∞

) (1.3)

with μd the connectivity constant of Zd. For the uniform distribution in [−1, 1], in which case 2∥ρ∥∞ = 1, this value of λAnd was obtained
for the Anderson model in Ref. 50 and coincides with Anderson’s original prediction in Ref. 10. To the best of our knowledge, in arbitrary
dimension λAnd in (1.3) is the best rigorous large disorder threshold proved with current methods. It is worth noting that letting ∣g∣∥F∥∞ → 0
formally in (1.2) we obtain the Anderson model HAnd = −Δ + Vω.

We now comment on other technical merits of the present work, for further technical aspects we refer to Sec. II A below. Our first
observation is that even for the non-interacting Anderson model HAnd, the fractional moment method requires the random variables Vω to
have a density ρwhich is “sufficiently regular.” Thus, it is to be expected that a direct application of this technique to interacting models, which
is the approach adopted here and also in Ref. 47, will require further regularity of ρ. The previous paper47 covers a large class of probability
distributions with supp ρ = R by making use of the symmetry F(z) = 1 − F(−z) and decay properties of the Fermi–Dirac function when
Re z →∞ in order to obtain certain improved Combes–Thomas bounds. Such bounds reflect decay of the effective potential at a given site
Veff,ω(n) when the local potential ω(m) is changed at a sitem ≠ n. However, such bounds appear not to be available in the generality studied
here. In fact, they seem not to be available even when one restricts (1.2) to the case of nearest neighbor lattice fermions, i.e., when a(m,n) = 1 if
and only if ∣m − n∣ = 1 where ∣m∣ = ∣m1∣ + ⋅ ⋅ ⋅ + ∣md∣ and thus Veff,ω(n) = ∑n′∼n⟨δn′ ,F(Hω)δn′⟩ with n

′
∼ n indicating that n′ and n are nearest

neighbors on Zd. The key observation surrounding the present paper is that there is a trade off between the regularity/decay properties of F on
the real line, the decay properties of the interaction kernel a(m,n) and the density ρ. Namely, by reducing the class of probability distributions
covered by our main result, we are able to include interactions of a much longer range, including the case where a(m,n) only decays in an
algebraic fashion and where F(z) is bounded of a strip but does not necessarily decay as Re z →∞. In conclusion, even though the methods
employed here to obtain the a priori bound on fractional moments of the Green’s function follow the general scheme of Ref. 47, in order to
prove our stability result, we need to keep an explicit dependence on all parameters involved η, λ, g, ∥F∥∞ and now have the inclusion the
decay rate γ of a(m,n) as well. Once an a priori bound on fractional moments of the Green’s function is obtained, we follow the approach
of Schenker in Ref. 50 in order to get the best large disorder threshold which seem to be available with current methods which turns out to
converge to λAnd when ∣g∣∥F∥∞ → 0.

This paper is dedicated to Abel Klein in occasion of his 78th birthday. Klein’s contributions to the field go well beyond the aforementioned
works and can hardly be overstated. Certain aspects of the present work were also inspired by Klein’s efforts. For instance, the idea of studying
distributions near a suitable chosen density (for which explicit calculations are available) used below in assumption 6 is analogous to Ref. 2,
where analyticity of the density of states on a strip is shown for distributions sufficiently close to the Cauchy distribution. Moreover, through-
out the note, Combes–Thomas type bounds for kernels of analytic functions of Hω are used extensively. In Ref. 35 such bounds are obtained
in great generality which provides hope for future extensions of the results below.

II. MODEL, STATEMENT OF THE MAIN RESULTS AND PROOF STRATEGIES
This note concerns random operators of the form

Hω = A + λVω + gVeff,ω (2.1)

acting on ℓ2(Zd
) as follows:

1. (Aψ)(n) = ∑∣n′−n∣=1ψ(n
′
) for each ψ ∈ ℓ2(Zd

), i.e., A : ℓ2(Zd
)→ ℓ2(Zd

) is the adjacency operator of Zd.
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2. (Vωψ)(n) = ω(n)ψ(n) for each ψ ∈ ℓ2(Zd
) where {ω(n)}n ∈Zd are independent, identically distributed random variables with a

bounded density ρ.
3. The effective potential Veff,ω : ℓ2(Zd

)→ ℓ2(Zd
) is a multiplication operator implicitly defined by

Veff,ω(n) = ∑
m∈Zd

a(n,m)⟨δm,F(Hω)δm⟩ for all n ∈ Zd. (2.2)

We impose the following conditions on a(n,m) and F.
4. There exists η > η0 > 0 such that F is an analytic function on the strip

Sη = {∣Im z∣ < η}

and bounded on its closure Sη. Moreover, we assume that F(R) ⊂ R.
5. The values a(m,n) are real numbers for allm,n ∈ Zd and

∣a(m,n)∣ ≤ Cae−γad(m,n) (2.3)

for constants Ca > 0 and γa > 0 and some metric d : Zd
× Zd

→ R for which there exists δ ∈ (0, γa/2) such that

∥Sδ−γa∥∞,∞ ∶= sup
n∈Zd
∑

m∈Zd

e(δ−γa)d(m,n)
<∞. (2.4)

6. We also assume that supp ρ = R and that for some c1 > 0 and ε1 > 0

ρ(v1)
ρ(v2)

≥ e−c1 ∣v1−v2 ∣, for all v1, v2 ∈ R (2.5)

and
sup
v∈R

ρ(v)

∫
∞

−∞
ρ(α)e−ε1 ∣v−α∣ dα

<∞ (2.6)

Remark 1. Assumptions 1–6 suffice for the first result of this note, namely, localization at large disorder given by Theorem 1 below, and also
for the stability bounds on the large disorder threshold of Corollary 2. It is worth observing that assumption 6 holds, for instance, for the Cauchy
distribution and also for the (negative) exponential distribution.

For the results of localization at weak disorder/extreme energies we will make the following additional requirement.

7. We further assume that ρ(v) = h(v)e−cρ ∣v∣ for some cρ > 0 where

h(v1)
h(v2)

≥ e−ε2 ∣v1−v2 ∣ for all v1, v2 ∈ R (2.7)

for some ε2 ∈ (0, 12 cρ).

Remark 2. Intuitively speaking, assumption 7 means that ρ(v) is near the (negative and two sided) exponential distribution with density
ρ1(v) =

cρ
2 e
−cρ ∣v∣ and supp ρ1 = R. With the help of the mean value theorem and Young’s inequality, one may check that this assumption applies

to densities of the form ρ(v) = h(v)e−c∣v∣ with h(v) = Ck,ε(1 + ε∣v∣k)e−α∣v∣, α > 0, k > 1 and ε sufficiently small depending on α and k.

Working with finite volume restrictions of both Hω and also Veff,ω will turn out convenient thus we let ΛL = [−L,L]d ∩ Zd and

Veff,ω,L(n) = ∑
m∈ΛL

a(n,m)⟨δm,F(Hω,L)δm⟩ for all n ∈ ΛL. (2.8)

where Hω,L = 𝟙L(A + Vω + Veff,ω,L)𝟙L and 𝟙L : ℓ2(Zd
)→ ℓ2(ΛL) is the projection onto span{δl : l ∈ ΛL}. We will often write

U(n) = ω(n) +
g
λ
Veff,ω,L, n ∈ Λ′ ⊂ ΛL (2.9)
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to denote the “full potential” at site n. It will be shown below in Lemma 8 that under assumptions 1–6 the conditional distribution ofU(n0) = v
at specified values of {U(n)}n ∈Λ′/{n0} has a density which is bounded with an upper bound independent of the parameters ω,Λ′ and L. This
upper bound is denoted herein byM∞ and the conditional density by ρeffn0 = ρ

eff,Λ′
n0 ,L . We also recall the definition of the eigenfunction correlators

for an operator H:
QI(m,n) ∶= sup

∣φ∣≤1
∣⟨δm,φ(H)δn⟩∣ (2.10)

where the supremum is taken over Borel measurable functions φ bounded by one and supported on the interval I. In case I = R we simply
write Q(m,n). In what follows we denote by QΛ′

I,L(m,n) the eigenfunction correlators of HΛ′
ω,L = 𝟙Λ′Hω,L𝟙Λ′ for Λ

′
⊂ ΛL and by E( f ) the

expected value of f with respect to the probability space in question.
Our first result is the following.

Theorem 1. Under assumptions 1–6 there exist λHF = λHF(g,η0, ∥F∥∞,d, ρ, γa) and g0 = g0(Ca,d, ρ, λ, γa,η0) such that for all λ > λHF
and ∣g∣∥F∥∞ < g0 we have that

E(QΛ′
L (m,n)) ≤ Ce−ν

′
∣m−n∣ (2.11)

for some ν′ > 0 and C > 0 independent of L and Λ′. Moreover, λHF satisfies

λHF = 2M∞μde ln(
λHF
2M∞

) (2.12)

where μd is the connective constant of Z
d and M∞ =M∞(η0,d) is given by

M∞ = sup
ω∈Ω

sup
L∈N

sup
Λ′⊂ΛL

sup
n0∈Λ

sup
v∈R

ρeff,Λ
′

n0 ,L (v). (2.13)

Remark 3. It readily follows that the analogue of (2.11) also holds in the infinite volume, see Lemma 15 below and Ref. 9 (Proposition 7.6).

Theorem 1 above extends to the present context a result of Schenker,50 who obtained the large disorder threshold λAnd which solves

λAnd = 2∥ρ∥∞μde ln(
λAnd
2∥ρ∥∞

). (2.14)

for the Anderson model with a uniformly distributed potential on [−1, 1].
We also show that λHF is close to λAnd in a quantified fashion.

Corollary 2. Let λHF be as in (2.12) and λAnd be given by (2.14). Under assumptions 1–6 we have that ∣λHF − λAnd∣→ 0 as ∣g∣∥F∥∞ → 0.

Before stating our second theorem we let, for each n0 ∈ Λ′

ψn0
s (z) = ∫

∞

−∞

∣v∣sρeff,Λ
′

n0 ,L (v)
∣v − z∣s

dv, (2.15)

ϕn0s (z) = ∫
∞

−∞

ρeff,Λ
′

n0 ,L (v)
∣v − z∣s

dv (2.16)

and

Ds,1 = sup
L∈N

sup
Λ′⊂ΛL

sup
z∈C,n0∈Λ′

ψn0
s (z)
ϕn0s (z)

. (2.17)

As we shall see below, under assumptions 1–7 the measure ρeff,Λ
′

n0 ,L (v) dv is 1-moment regular in the sense of Ref. 9 (Definition 8.5) meaning
that Ds,1 <∞ for all s ∈ (0, 1). We also define the Green’s function of Hω at z ∈ C/σ(Hω) by

G(m,n; z) = ⟨δm, (Hω − z)−1δn⟩ (2.18)

and let, for Λ′ ⊂ ΛL, GL(m,n; z) and GΛ′
L (m,n; z) be the Green’s function of Hω,L and HΛ′

ω,L = 𝟙Λ′Hω,L𝟙Λ′ , respectively:

GL(m,n; z) = ⟨δm, (Hω,L − z)−1δn⟩ and GΛ′
L (m,n; z) = ⟨δm, (HΛ′

ω,L − z)
−1δn⟩. (2.19)
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We emphasize that the effective potential is Veff,ω,L for both of the above operators. Finally, we denote by G0(m,n; z) the Green’s function of
the “free” operator A, namely

G0(m,n; z) = ⟨δm, (A − z)−1δn⟩. (2.20)

We are now ready to state our second Theorem which yields localization at weak disorder/extreme energies provided the interaction strength
is not too large relative to the remaining parameters.

Theorem 3. Given I ⊂ R there exist λ0 = λ0(I) and g1 = g1(Ca,d, ρ, λ, γa,η0) such that whenever ∣g∣∥F∥∞ < g1 and ∣λ∣ < λ0 we have that

E(QΛ′
I,L(m,n)) ≤ Ce−ν

′
∣m−n∣ (2.21)

for some ν′ > 0 and C > 0 independent of Λ′ ⊂ ΛL and L. Moreover, we have that

λ0 = sup
s∈(0,1)

sup
μ>0

inf
E∈I

λ̂s,μ(E) (2.22)

where

λ̂s,μ(E) =
⎛

⎝
Ds,1 sup

δ≠0
sup
u∈Zd
∑

v∈Zd

∣G0(u, v;E + iδ)∣seμ∣u−v∣
⎞

⎠

−1
s

. (2.23)

Remark 4. By the Combes–Thomas bound9 (Theorem 10.5), Theorem 3 is applicable when I ∩ σ(A) = ∅. In particular, since it was assumed
that supp ρ = R, this yields a non-trivial result for all λ ≠ 0. We choose the above formulation for general I ⊂ R for future reference, as in
more general settings localization at weak disorder may be established away from the ℓ1 spectrum of the deterministic part of Hω, see Ref. 9
(Theorem 10.4) and comments therein.

A. Proof strategy: Discrete subharmonicty bounds
The proofs of Theorems 1 and 3 follow the general scheme of the Aizenman–Molchanov fractional moment method3,6 and further

refinements of their technique, in particular the one in Ref. 50, combined with tools from Ref. 47 (and a few technical improvements on it).
Their approach requires the random potential to be sufficiently regular (even though it allows for certain singularities) which is the case in
the Anderson model HAnd,ω = A + λVω given by assumptions 1 and 2. The first difficulty in the present work is that the full random potential
is of the form Uω(n) = ω(n) + g

λVeff,ω(n) thus U(n) and U(m) are correlated for all values of m and n and, a priori, their regularity is
unknown. While correlations are not necessarily a problem for the fractional moment technique, as it is well-known and already stated in
the Aizenman–Molchanov original work,6 in order to prove localization one needs at least some regularity on the conditional distributions
of U(n0), for each n0, when the remaining variables {U(n)}n≠n0 are specified. Moreover, the involved bounds should be uniform in n0. At
an intuitive level, such requirement on the conditional distributions amounts to the variables U(m) and U(n) being less and less correlated
as ∣m − n∣→ +∞ so that some of the regularity of ω(n0) is persists in the conditional distribution of U(n0). The technical implementation of
the above reasoning essentially consists of two main parts, each of them having of a few steps. The first part is completely deterministic and
aims at showing that, in terms of the metric d in which ∣a(m,n)∣ ≤ Cae−γad(m,n), the effective potential Veff,ω is a quasilocal function of the
random variables {ω(n)}n ∈Zd . The second part involves applying the fractional moment method in the spirit of Ref. 50 once the regularity of
the {U(n)}n∈Λ′ is determined.

Before stating the main steps of the proof, let us remark that for simplicity we do not always mention finite-volume restrictions in this
sketch. Nonetheless, their introduction is technically important for the arguments, as it will be clear later in the note. Moreover, each point of
the outline below is carried out in the appropriate smallness regime (cf. Theorems 1 and 3).

(i) Step 1: Show that

∣
∂Veff,ω(n)
∂ω(l)

∣ ≤ C1e−δd(n,l)

holds for every ω ∈ Ω, n, l ∈ Λ′ with C1, δ > 0 independent of ω and Λ′. This will allow us to make the change of variables
ω(n)↦ U(n) ∶= ω(n) + g

λVeff,ω(n) and guarantee that the map ω↦ U is a diffeomorphism in R∣Λ
′
∣ for each finite set Λ′ ⊂ Zd.

(ii) Step 2: Fix n0 ∈ Λ′ and α ∈ R. Let Uα(n) = U(n) + (α −U(n0))δn0 be a rank-one perturbation of U at n0 and define {ωα}n ∈Λ′ to be
such that Uα(n) = ωα(n) + g

λVeff,ωα(n) for all n ∈ Λ
′. Then for some δ > 0 and C > 0 we have that

∣ω(n) − ωα(n)∣ ≤ C1∣α −U(n0)∣e−δd(n,n0). (2.24)
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This step, along with assumption 6 will allow us to control fluctuations of the density ρ which naturally appear when computing the
conditional density ρeffn0 .

(iii) Step 3: Prove that

∣
∂Veff,ω(n)
∂ω(l)

−
∂Veff,ωα(n)

∂ω(l)
∣ ≲ e−δ(d(n,l)+d(n,n0)). (2.25)

This step will help us control fluctuations in the Jacobian of the above change of variables which also appear in the expression for ρeffn0 .
Once the above steps are completed, the second part of the proof makes use of probabilistic techniques.

(iv) Step 4: Use the bounds from steps 1–3 to conclude that under assumptions 1–6 the conditional density ρeffn0 exists and is (uniformly)
bounded. Moreover, under assumptions 1–7 conclude that ρeffn0 exhibits some additional regularity.

(v) Step 5: Complete the proof using the fractional moment technique.

While the overall strategy outlined above is similar to the one in Ref. 47 there are some key technical differences. Firstly, by obtain-
ing the cancellation directly on (iii) we are able to avoid having to bound the second derivatives ∂2Veff,ω(n)

∂ω(m)∂ω(l) which shortens the proof quite

a bit, especially for the model studied here where a : Zd
× Zd

→ R may be non-local. Secondly, in step 4 the observation that further reg-
ularity of ρeffn0 can be obtained under assumption 7, which ultimately yields the localization at weak disorder/extreme energies result, is
also new. A third difference is present in step 5. Namely, while localization at large disorder was obtained in Ref. 47 (Theorem 2), in the
case where a(m,n) = δmn, the explicit dependence of the large disorder threshold on the remaining parameters is not given (although it
can certainly be inferred from the proof). Here we provide a self-consistent equation for the large disorder threshold in (2.12). Moreover
we show that under assumption 7 this threshold is somewhat sharp from the point of view of what is currently known for the Anderson
model from Ref. 50. Indeed, within the class of exponential distributions, we show that the difference between the large disorder threshold
λAnd of the non-interactive setting [cf. (2.14)] and λHF given by (2.12) can be made arbitrarily small when the interaction strength tends
to zero.

Turning to the question of how to show the quasilocality bounds in steps (i)–(iii), the following Lemma will be useful since Veff,ω and,
by extension, its partial derivatives {∂Veff,ω(n)

∂ω(l) }n,l ∈Λ′ are only implicitly defined and hence the desired control of them can only be achieved via
inequalities of self-consistent nature.

Lemma 4 (Ref. 9, Theorem 9.2). Let G be a countable set and K : ℓ∞(G)→ ℓ∞(G) be given by (Kφ)(n) = ∑u ∈G K(n,u)φ(u) with
K(n,u) ≥ 0 and

∥K∥∞,∞ ∶= sup
n∈G
∑
u∈G

K(n,u) < 1. (2.26)

Let W : ℓ∞(G)→ (0,∞) and ψ ∈ ℓ∞(G) be positive functions such that

b1 ∶=∑
u∈G

W(u)ψ(u) <∞ and b2 ∶= sup
m∈G
∑
u∈G

W(u)
W(m)

K(u,m) < 1. (2.27)

Then, any φ ∈ ℓ∞(G) which satisfies
0 ≤ φ(n) ≤ ψ(n) + (Kφ)(n) for all n ∈ G

also obeys the bound

∑

n∈Zd

W(n)φ(n) ≤
b1

1 − b2
for all n ∈ G. (2.28)

The first instance where Lemma 4 is applied is in step 1 with the choice

φ1(n) = ∣
∂Veff(n)
∂ω(l)

∣, W(n) = eδ∣n−l∣, δ = min{ν, γa/2}, (2.29)

where ν is given below in (3.11) and γa is as in 5. To accomplish step 2, Lemma 4 is applied to

φ2(n) = ∣ω(n) − ωα(n)∣δn≠n0 , W(n) = eδ∣n−l∣. (2.30)

with δ as above. In step 3, Lemma 4 is applied to

φ3(n) = ∣
∂Veff(n)
∂ω(l)

−
∂Veff,ωα(n)

∂ω(l)
∣, W(n) = eδ∣n−l∣. (2.31)
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Finally, in step 5 Lemma 4 is applied to different functions depending on whether we wish to show decay of the Green’s function in the
large disorder or in the weak disorder/extreme energies regime. In the large disorder regime of Theorem 1, thanks to an a priori bound which
follows from Lemma 8 below, Lemma 4 is applied to a fixed n ∈ Zd letting

φ(m) = sup
Λ⊂Zd

E(∣GΛ
(m,n; z)∣

s
), W(m) = eν

′
∣m−n∣, (2.32)

for a suitable ν′ > 0 and choosing

K(m,u) =
2sMs

∞

λs
δ∣m−u∣=1, ψ(m) =

2sMs
∞

λs
δm,n. (2.33)

In the regime of weak disorder/extreme energies of Theorem 11, Lemma 4 can be applied to

K(m,u) = Ds,1∣λ∣s∣G0(m,u; z)∣s, ψ(m) = ∣G0(m,n; z)∣s (2.34)

thanks to Lemma 9 below which implies a decoupling estimate for the Green’s function fractional moments cf. Ref. 9 (Theorems 8.7 and 10.4).
The remainder of this note is organized as follows: in Sec. III we show the quasilocality bounds of steps 1 and 2 above, in Sec. IV we show

the cancellation bound of step 3, in Sec. V we state and prove the technical Lemmas on the conditional densities ρeffn0 .The proofs of Theorems 1
and 3 as well as Corollary 2 are given in Secs. VI and VII. In the Appendix we provide some basic facts about existence of the effective potential
and norm resolvent convergence of finite volume restrictions to the infinite volume operator.

III. FIRST ORDER DECAY BOUNDS ON THE EFFECTIVE POTENTIAL
Let us collect some basic facts which will be repeatedly used in this note. Firstly, if Hω,L is as above we can write F(Hω,L)

= 1
2πi∫

∞

−∞
( 1
Hω,L+t−iη

− 1
Hω,L+t+iη

) f (t) dt for f = F+ + F−+ D ∗ F, where F±(u) = F(u ± iη ∓ i0) and D(u) = η
π(η2+u2) the Poisson kernel,

see Ref. 5 (Appendix D). In particular, the inequality ∥ f ∥∞ ≤ 3∥F∥∞ holds. The formula

Veff,ω,L(n) =
1
2πi∫

∞

−∞
KL(n,ω; t) f (t) dt (3.1)

with
KL(n,ω; t) = ∑

m∈Zd

a(n,m)(GL(m,m; t − iη) −GL(m,m; t + iη)) (3.2)

readily follows and is a useful representation for the effective potential. It is shown below that it yields, for each n, l ∈ ΛL, self-consistent
equations for the derivatives ∂Veff,ω,L(n)

∂ω(l) which in turn imply the desired exponential decay in step 1 of the proof strategies given earlier. We
introduce ν > 0 such that

sup
n∈Zd

∑
∣n′−n∣=1

eνd(n,n
′
)
< η/2. (3.3)

The decay rate in the Lemma below will be dictated by ν and γa.

Lemma 5. Let ν > 0 be as in (3.3) and γa as in Assumption 5. For each L ∈ N, l ∈ ΛL = [−L,L]d ∩ Zd and any δ < min{γa, 2ν} the inequality

∑
n∈Λ

eδd(n,l)∣
∂Veff,ω,L(n)

∂ω(l)
∣ ≤ C1 (3.4)

holds whenever Ca72
√

2∥F∥∞
η ∣g∣Sδ−γSδ−2ν < 1

2 , with d : Zd
× Zd

→ R as in assumption 5,

C1 = λ
Ca144

√
2∥F∥∞
η

Sδ−γSδ−2ν, (3.5)

and
Sβ ∶= sup

u∈Zd
∑

v∈Zd

eβd(u,v). (3.6)
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Proof. Denote by Pl : ℓ2(Zd
)→ Span{δl} the projection onto Span{δl}. Using difference quotients, it is immediate to check that

∂

∂ω(l)
1

HL − z
= −λ

1
HL − z

Pl
1

HL − z
− g

1
HL − z

∂Veff,ω,L

∂ω(l)
1

HL − z
. (3.7)

Taking matrix elements we obtain from (3.2) that

∂KL(n,ω; t)
∂ω(l)

= ∑
m∈ΛL

a(n,m)
⎛

⎝
−λrL(m, l; t) − g∑

k∈ΛL

rL(m, k; t)
∂Veff,ω,L(k)

∂ω(l)
⎞

⎠
(3.8)

with
rL(u, v; t) ∶= GL(u, v; t − iη)GL(v,u; t − iη) −GL(u, v; t + iη)GL(v,u; t + iη). (3.9)

The above derivatives of the kernel KL(n,ω; t) are shown to decay exponentially in d(n, l) as follows. We first rewrite rL(u, v; t) as

rL(u, v; t) = (GL(u, v; t − iη) −GL(u, v; t + iη))GL(v,u; t − iη) (3.10)
+GL(u, v; t + iη)(GL(v,u; t − iη) −GL(v,u; t + iη)).

For the operators studied here the Combes–Thomas bound9 (Theorem 10.5) yields

∣GL(u, v; z)∣ ≤
2
η
e−νd(u,v), z ∈ C/R (3.11)

for all ν > 0 satisfying (3.3). Moreover, by Ref. 5 (Appendix D, Lemma 3) we have the following inequality:

∣GL(u, v; t + iη) −GL(u, v; t − iη)∣ ≤ 12ηe−νd(u,v)⟨δu,
1

(HL − t)2 + η2/2
δu⟩1/2⟨δv,

1
(HL − t)2 + η2/2

δv⟩1/2. (3.12)

We remark that the above result, as the usual Combes–Thomas bound, may also be applied to the metric d instead of the usual metric of Zd.
One then obtains

∣rL(u, v; t)∣ ≤ 48e−2νd(u,v)⟨δu,
1

(HL − t)2 + η2/2
δu⟩1/2⟨δv,

1
(HL − t)2 + η2/2

δv⟩1/2. (3.13)

By the spectral measure representation and the Cauchy–Schwarz inequality, the right-hand side of (3.13) can be controlled via

∫

∞

−∞
⟨δu,

1
(HL − t)2 + η2/2

δu⟩1/2⟨δv,
1

(HL − t)2 + η2/2
δv⟩1/2 dt ≤

√
2π
η

. (3.14)

Therefore,
1
2π∫

∞

−∞
∣rL(u, v; t) f (t)∣ dt ≤

72
√
2∥F∥∞
η

e−2νd(u,v). (3.15)

Keeping in mind assumption 5 and combining (3.1), (3.8), and (3.15) we reach the inequality

∣
∂Veff,ω,L(n)

∂ω(l)
∣ ≤

Ca72
√
2∥F∥∞
η ∑

m∈ΛL

λe−γad(n,m)−2νd(m,l) (3.16)

+
Ca72
√
2∥F∥∞
η

∣g∣∑
k∈ΛL

e−γad(n,m)−2νd(m,k)
∣
∂Veff,ω,L(k)

∂ω(l)
∣.

We now apply Lemma 4 with fixed l ∈ ΛL and the choices φ(n) = ∣∂Veff,ω,L(n)
∂ω(l) ∣,

ψ(n) =
Ca72
√
2∥F∥∞
η

λ∑
m∈ΛL

e−γad(n,m)−2νd(m,l) (3.17)

K(n,u) =
Ca72
√
2∥F∥∞
η

∣g∣∑
m∈ΛL

e−γad(n,m)−2νd(m,u) (3.18)
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in the regime where ∥K∥∞,∞ < 1, i.e., when
Ca72
√
2∥F∥∞
η

∣g∣S−γS−2ν < 1. (3.19)

In this context, introducing the weight functionW(n) = eδd(n,l) with δ < min{γa, 2ν} we reach

b1 ∶= ∑
n∈Zd

W(n)ψ(n) ≤
Ca72
√
2∥F∥∞
η

λSδ−γSδ−2ν (3.20)

and

b2 = sup
n′∈Zd
∑

n∈Zd

W(n)
W(n′)

K(n,n′) ≤
Ca72
√
2∥F∥∞
η

∣g∣Sδ−γSδ−2ν. (3.21)

In particular, under the more restrictive assumption

Ca72
√
2∥F∥∞
η

∣g∣Sδ−γSδ−2ν <
1
2

(3.22)

we find that 1
1−b2
≤ 2 and thus φ ≤ 2b1, finishing the proof.

Given an enumeration n1, . . . ,ω(n∣Λ′∣) of the points in Λ′, it readily follows that within the smallness regime described in Lemma 5, the

map T : R∣Λ
′
∣
→ R∣Λ

′
∣ given by

T (ω(n1), . . . ,ω(n∣Λ′∣)) = (U
Λ′
L (n1), . . . ,U

Λ′
L (n∣Λ′∣)), U(n) ∶= ω(n) +

g
λ
Veff,ω,L(n). (3.23)

is a diffeomorphism.
We are now ready to quantify the change in ω after resampling. Fix n0 ∈ Λ′ and define UΛ′

α,L(n) = U(n) + (α −U(n0))δn0 for n ∈ Λ
′.

Then, UΛ′
α,L is interpreted as the “full” potential in Λ′ with value changed to α at n0. Denote by {ωΛ′

α,L(n)}n ∈Λ′ the random variables for which
Uα(n) = ωα(n) + Veff,ωΛ′

α,L ,L
(n). In this setting we have the quasilocality result below.

Lemma 6. Let C1 be as in (3.5). Whenever b2 = ∣g∣λ C1 < 1/2 and δ < min{γa, 2ν} we have

∑
n∈Λ′/{n0}

eδd(n,n0)∣ωΛ′
α,L(n) − ω(n)∣ ≤

2∣g∣C1

λ
(∣α −U(n0)∣ + 2

∣g∣∥Veff∥∞

λ
). (3.24)

Proof. For simplicity we denote ωΛ′
α,L by ωα in this proof. Observe that there exists ω̂α = {ω̂α}n ∈Λ′ with ω̂α(n) ∈ (ω(n),ωα(n)) such that

for each n ∈ Λ′/{n0}.

∣ωα(n) − ω(n)∣ =
∣g∣
λ
∣Veff,ωα ,L(n) −Veff,ω,L(n)∣

≤
∣g∣
λ
∣
∂Veff(n, ω̂α)
∂ω(n0)

∣(∣α −U(n0)∣ +
∣g∣
λ
∣Veff,ωα ,L(n0) −Veff,ω,L(n0)∣)

+ ∑
l∈Λ′/{n0}

∣g∣
λ
∣
∂Veff(n, ω̂α)

∂ω(l)
∣∣ωα(l) − ω(l)∣.

Thanks to Lemma 5, whenever ∣g∣C1
λ <

1
2 we can apply Lemma 4 with the choices φ(n) = ∣ωα(n) − ω(n)∣δn≠n0 ,W(n) = e

δd(n,n0),

ψ(n) =
∣g∣
λ
∣
∂Veff(n, ω̂α)
∂ω(n0)

∣(∣α −U(n0)∣ +
∣g∣
λ
∣Veff,ωα ,L(n0) −Veff,ω,L(n0)∣) (3.25)

and

K(n,u) =
∣g∣
λ
∣
∂Veff(n, ω̂α)

∂ω(u)
∣, (3.26)

finishing the proof.
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IV. SECOND ORDER DECAY BOUNDS ON THE EFFECTIVE POTENTIAL
This section is devoted to the cancellation bounds of step 3 of the proof outline. From now on throughout the paper we denote by ν any

positive number satisfying (3.3).

Lemma 7. Let L ∈ N. Whenever ∣g∣Ca
72
√

2∥F∥∞
η S δ−δ0

2
S
−

δ0
2
< 1

2 we have, for each δ < δ0 ∶= min{ν, γa} and l ∈ ΛL,

∣g∣
λ ∑n∈ΛL

e
δ
2 d(n,l)∣

∂Veff,ω,L(n)
∂ω(l)

−
∂Veff,ωα ,L(n)

∂ω(l)
∣ ≤ C2∣α −U(n0)∣e−

δ
2 d(n0 ,l) (4.1)

with

C2 =
48∥F∥∞Ca

η2
S δ−δ0

2
S−ν(λ∣g∣ + ∣g∣2C1) (4.2)

and C1 as in (3.5).

Proof. By (3.8) we find that if n, l ∈ ΛL

∂Veff,ω,L(n)
∂ω(l)

−
∂Veff,ωα ,L(n)

∂ω(l)
= −λ∑

m∈ΛL

a(n,m)(rL(m, l) − rαL(m, l))

− g∑
m∈ΛL

a(n,m)∑
k∈ΛL

(rL(m, k) − rαL(m, k))
∂Veff,ω,L(k)

∂ω(l)

− g∑
m∈ΛL

a(n,m)∑
k∈ΛL

rαL(m, k)(
∂Veff,ω,L(k)

∂ω(l)
−
∂Veff,ωα ,L(k)

∂ω(l)
)

where

rL(u, v) =
1
2πi∫

∞

−∞
rL(u, v; t) f (t) dt, (4.3)

rL(u, v; t) as in (3.10) and rαL(u, v) similarly defined with ω replaced by ωα,L.

With these definitions, letting z = t − iη we reach

∣rL(m, k; t) − rαL(m, k; t)∣ ≤ ∣GL(m, k; z) −Gα
L(m, k; z)∣∣GL(k,m; z)∣

+ ∣GL(k,m; z) −Gα
L(k,m; z)∣∣Gα

L(m, k; z)∣

+ ∣GL(m, k; z̄) −Gα
L(m, k; z̄)∣∣GL(k,m; z̄)∣

+ ∣GL(k,m; z̄) −Gα
L(k,m; z̄)∣∣Gα

L(m, k; z̄)∣.

Note that by definition of ωα we have that

∣GL(m, k; z) −Gα
L(m, k; z)∣ = λ∣α −U(n0)∣∣GL(m,n0; z)∣∣Gα

L(n0, k; z)∣ (4.4)

for allm, k ∈ ΛL. In particular

∣rL(m, l) − rαL(m, l)∣ ≤ λ∣α −U(n0)∣
24
√
2∥F∥∞
η2

e−ν(d(m,l)+d(m,n0)+d(n0 ,l)). (4.5)

Indeed, (4.5) follows from (4.4) and a similar argument to the one in (3.14) with the help of the following Combes–Thomas type bound cf.
Ref. 47 (Lemma 18)

∣GL(u, v; t ± iη)∣ ≤
√
2⟨δv,

1
(HL − t)2 + η2/2

δv⟩1/2e−νd(u,v) (4.6)

applied separately to ∣GL(m,n0; z)∣ and ∣Gα
L(n0, k; z)∣.
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Thus, assumption 1, (3.15) and (4.5) imply

∣
∂Veff,ω,L(n)

∂ω(l)
−
∂Veff,ωα ,L(n)

∂ω(l)
∣ ≤ λ2∣α −U(n0)∣

24
√
2∥F∥∞Ca

η2
e−νd(n0 ,l)∑

m∈Zd

e−γd(m,n)−ν(d(m,l)+d(m,n0))

+ ∣g∣λ∣α −U(n0)∣
24
√
2∥F∥∞Ca

η2
∑

m∈Zd
∑

k∈Zd

e−γd(m,n)−ν(d(m,k)+d(m,n0)+d(n0 ,k))∣
∂Veff,ω,L(k)

∂ω(l)
∣

+ ∣g∣Ca
72
√
2∥F∥∞
η ∑

m∈Zd
∑

k∈Zd

e−γd(m,n)−2νd(m,k)
∣
∂Veff,ω,L(k)

∂ω(l)
−
∂Veff,ωα ,L(k)

∂ω(l)
∣.

Thus, if δ0 = min{ν, γa}, δ < δ0 and C1 is as in (3.5)

∣
∂Veff,ω,L(n)

∂ω(l)
−
∂Veff,ωα ,L(n)

∂ω(l)
∣ ≤ λ2∣α −U(n0)∣

24
√
2∥F∥∞Ca

η2
e−νd(n0 ,l)e−δ0d(n,l)S−ν

+ ∣g∣λ∣α −U(n0)∣
24
√
2∥F∥∞Ca

η2
C1S− δ0

2
e−

δ
2 (d(n0 ,l)+d(n,l))

+ ∣g∣Ca
72
√
2∥F∥∞
η

S
−

δ0
2
∑

k∈Zd

e−
δ0
2 d(n,k)

∣
∂Veff,ω,L(k)

∂ω(l)
−
∂Veff,ωα ,L(k)

∂ω(l)
∣.

In particular, if b2 = ∣g∣Ca
72
√

2∥F∥∞
η S δ−δ0

2
S
−

δ0
2
< 1

2 another application of Lemma 4 yields

∑

n∈Zd

e
δ
2 d(n,l)∣

∂Veff,ω,L(n)
∂ω(l)

−
∂Veff,ωα ,L(n)

∂ω(l)
∣

≤ λ2∣α −U(n0)∣
48∥F∥∞Ca

η2
e−νd(n0 ,l)S δ−δ0

2
S−ν

+ ∣g∣
48∥F∥∞Ca

η2
λ∣α −U(n0)∣e−

δ
2 d(n0 ,l)S

−
δ0
2
S δ0−δ

2
C1

≤ λ∣α −U(n0)∣
48∥F∥∞Ca

η2
S δ−δ0

2
S−ν(λ + ∣g∣C1)e−

δ
2 d(n0 ,l)

with C1 as in (3.5).

V. A PAIR OF TECHNICAL LEMMAS
Fix L ∈ N and Λ′ ⊂ ΛL. Recall that in (3.23) we have denoted U(n) = ω(n) + g

λVeff,ω,L(n) for each n ∈ Λ′ with Veff,ω,L given by (2.8). We
also write T : R∣Λ

′
∣
→ R∣Λ

′
∣ the above change of variables, i.e.,

T (ω(n1), . . . ,ω(n∣Λ′ ∣)) = (U(n1), . . . ,U(n∣Λ′ ∣)). (5.1)

In the sequel we will abbreviate this by writing
T ω = U or ω = T −1U.

The first result on uniform control of the conditional density of U(n0) is given below.

Lemma 8. Under assumptions 1–6 whenever ∣g∣Ca
72
√

2∥F∥∞
η Sδ−γSδ−ν < 1

2 for some δ < δ0 ∶= min{γa, ν} the conditional distribution of

U(n0) = v at specified values of {U(n)}n ∈Λ′/{n0} has a density ρ
eff,Λ′
n0 ,L (v). Moreover, ρeff,Λ

′

n0 ,L (v) is bounded:

M∞ ∶= sup
ω∈Ω

sup
L∈N

sup
Λ′⊂ΛL

sup
n0∈Λ

sup
v∈R

ρeff,Λ
′

n0 ,L (v) <∞. (5.2)

Proof. We note that in the above setting ρeff,Λ
′

n0 ,L is given by

ρeff,Λ
′

n0 ,L (v) =
ρ(v − g

λVeff, T −1U,L(n0))∏n∈Λ′/{n0} ρ(U(n) −
g
λVeff, T −1U,L(n))JU

∫
∞

−∞
ρ(α − g

λVeff, T −1Uα ,L(n0))∏n∈Λ′/{n0} ρ(U
α
(n) − g

λVeff, T −1Uα ,L(n))JUα dα
(5.3)
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where

JU = det(I −
g
λ
∂Veff, T −1U,L(ni)

∂U(nj)
)

∣Λ′ ∣×∣Λ′ ∣
JUα = det(I −

g
λ
∂Veff, T −1Uα ,L(ni)

∂U(nj)
)

∣Λ′ ∣×∣Λ′ ∣
(5.4)

and we recall that
Uα
(n) ∶= U(n) + (α −U(n0))δn=n0.

Letting A = − g
λ(

∂Veff,ω,L(ni)
∂ω(n j)

)
∣Λ′ ∣×∣Λ′ ∣

and B = − g
λ(

∂Veff,ωα ,L(ni)
∂ω(n j)

)
∣Λ′ ∣×∣Λ′ ∣

one has that

e−∑m,n∈Λ′ ∣((A−B)(I+B)
−1
)(m,n)∣

≤ ∣
det (I + B)
det (I + A)

∣ ≤ e∑m,n∈Λ′ ∣((B−A)(I+A)
−1
)(m,n)∣ . (5.5)

Indeed, (5.5) follows from the inequality det (I +M) ≤ e∥M∥1 [cf. Ref. 51 (Lemma 3.3)], see Ref. 47 (Lemma 22). We remark that it suffices to
control ratios of the above determinants instead of the ones in (5.4) since the later arise from the inverse change of variables T −1U = ω.

We are now ready to estimate the right-hand side of (5.5). Using Lemma 5 we see that whenever ∣g∣λ C1 <
1
4 we have that

∥B∥∞,∞ ∶= sup
n∈Λ′
∑
l∈Λ′

eδd(n,l)∣B(n, l)∣ <
1
4

(5.6)

thus
∣(I + B)−1(n, l)∣ < 4e−δd(n,l) (5.7)

by the Combes–Thomas bound. Using Lemma 7 and the inequalities (5.5) and (5.7) we find that

e
−4C2S2

−
δ
2
∣α−U(n0)∣

≤
det JUα

det JU
≤ e

4C2S2
−
δ
2
∣α−U(n0)∣

. (5.8)

For each n ≠ n0, writing ωα(n) = Uα
(n) − g

λV
α
eff,ω,L(n), one concludes from assumption 6 that

e−c1 ∣ωα(n)−ω(n)∣ ≤
ρ(ωα(n))
ρ(ω(n))

≤ ec1 ∣ωα(n)−ω(n)∣. (5.9)

By Lemma 6 it then follows that for δ < min{γa, ν}

e−2
∣g∣
λ c1C1(( ∣α−U(n0)∣+2

∣g∣
λ ∥Veff∥∞) ≤∏

n≠n0

ρ(ωα(n))
ρ(ω(n))

≤ e2
∣g∣
λ c1C1(( ∣α−U(n0)∣+2

∣g∣
λ ∥Veff∥∞). (5.10)

In particular, under assumptions 1–6 for each fixed λ we obtain for ∣g∣∥F∥∞ sufficiently small that if

ϑ = (2c1
∣g∣
λ
+ 4c1C1

∣g∣2

λ2
)S−γa18

√
2∥F∥∞ (5.11)

then

sup
v∈R

ρeff,Λ
′

n0 ,L (v) ≤ e
ϑsup
v∈R

ρ(v)

∫
∞

−∞
ρ(α)e−ε1 ∣v−α∣ dα

<∞, (5.12)

finishing the Proof of Lemma 8.

Now we shall see that under assumption 7 one may achieve a better control on the conditional densities.

Lemma 9. Under assumptions 1–7 there exits ε > 0, ϑ = ϑ(∥F∥, g, λ,η0, γa, ν, ρ) and g1 = g1(λ, c1, γ, ν,η0) independent of Λ
′ and L such

that if ∣g∣∥F∥∞ < g1 then

(i)

e−ϑ(
cρ − ε
2
)e−cρ−ε )∣v∣ ≤ ρeff,Λ

′

n0 ,L (v) ≤ e
ϑ
(
cρ − ε
2
)e(−cρ+ε)∣v∣. (5.13)
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(ii)

e−c1(1−ϑ)∣v−v
′
∣
≤
ρeff,Λ

′

n0 ,L (v)

ρeff,Λ
′

n0 ,L (v
′
)
≤ ec1(1+ϑ)∣v−v

′
∣ (5.14)

Moreover, ϑ→ 0 as ∣g∣∥F∥∞ → 0.

Proof. To reach the upper bound we follow most of the Proof of Lemma 8, obtaining improvements at the very end with help of
assumption 7. Observe that, with the choice δ < min{γa, ν}, Eqs. (5.3)–(5.8) imply the pointwise bound

ρeff,Λ
′

n0 ,L (v) ≤
ρ(v − g

λVeff, T −1U,L(n0))

∫
∞

−∞
ρ(α − g

λVeff, T −1Uα ,L)e
−2 ∣g∣λ c1C1(( ∣α−v∣+2

∣g∣
λ ∥Veff, T −1U,L∥∞)e

−4C2S2
−
δ
2
∣α−v∣

dα
(5.15)

where we recall that C1 is given in (3.5) and is independent of ∣g∣. The constant C2 is given in (4.2) and is proportional to ∣g∣ when this number
is sufficiently small. Note that by assumption 6 we have for any t ∈ R and n0 ∈ Λ′:

e−c1
∣g∣
λ ∥Veff, T −1U,L∥∞ ≤

ρ(t − g
λVeff, T −1U,L(n0))

ρ(t)
≤ ec1

∣g∣
λ ∥Veff, T −1U,L∥∞. (5.16)

Hence from (5.15)

ρeff,Λ
′

n0 ,L (v) ≤ e
2c1(1+C1

2∣g∣
λ )

∣g∣
λ ∥Veff, T −1U,L∥∞

ρ(v)

∫
∞

−∞
ρ(α)e−θ∣α−U(n0)∣ dα

(5.17)

with θ = 2 ∣g∣λ c1C1 + 4C2S2− δ
2
. Now we make use of assumption 7 to write ρ(v)

ρ(α) =
h(v)
h(α) e

−cρ(∣v∣−∣α∣) with

e−ε2 ∣v−α∣ ≤
h(v)
h(α)

≤ eε2 ∣v−α∣ (5.18)

and observe that
∥Veff,ω,L∥∞ ≤ S−γa18

√
2∥F∥∞ (5.19)

cf. Theorem 3 in Ref. 5 and assumption 5. This yields, with ϑ = (2c1 ∣g∣λ + 4c1C1
∣g∣2

λ2 )S−γa18
√
2∥F∥∞,

ρeff,Λ
′

n0 ,L (v) ≤ e
ϑ e−cρ ∣v∣

∫
∞

−∞
e−cρ ∣α∣e−(ε2+θ)∣v−α∣ dα

. (5.20)

Pick g1 sufficiently small such that if ∣g∣∥F∥∞ < g1 then θ < ε2
2

ρeff,Λ
′

n0 ,L (v) ≤ e
ϑ e−cρ ∣v∣

∫
∞

−∞
e−cρ ∣α∣e−

3ε2
2 ∣v−α∣ dα

. (5.21)

from which we readily obtain, for ε ∶= 3ε2
2 and

ρeff,Λ
′

n0 ,L (v) ≤ e
ϑ
(
cρ − ε
2
)e(−cρ+ε)∣v∣. (5.22)

The lower bound in (i) is analogous. One follows the above process using instead the upper bounds given in (5.8) and (5.10) along with
assumptions 6, 7 and (5.3) to reach

ρeff,Λ
′

n0 ,L (v) ≥ e
−ϑ
(
cρ − ε
2
)e(−cρ−ε)∣v∣. (5.23)

finishing the proof of (i). To prove (ii) we use (5.3) to write

ρeff,Λ
′

n0 ,L (v)

ρeff,Λ
′

n0 ,L (v
′
)
=

ρ(v − g
λVeff, T −1U,L(n0))∏n∈Λ′/{n0} ρ(U(n) −

g
λVeff, T −1U,L(n))JU

ρ(v′ − g
λVeff, T −1Uv′ ,L

(n0))∏n∈Λ′/{n0} ρ(Uv′(n) −
g
λVeff, T −1Uv′ ,L

(n))JUv′

(5.24)

whereUv′(n) = U(n) + (v
′
−U(n0))δn0 for n ∈ Λ

′. The bounds in (ii) then follow as above from (5.8) and (5.10), both applied to α = v′, along
with assumption 6 and (5.19).
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VI. SELF-AVOIDING WALKS AND LOCALIZATION: PROOF OF THEOREM 1
It is well known that the conclusion of Theorem 1 follows from the result below, see Ref. 7 (Appendix B).

Theorem 10. There exist λHF and g0 = g0(Ca,d, ρ, λ, γa,η0) (independent of L and Λ′) such that whenever λ > λHF and ∣g∣∥F∥∞ < g0 we
have that for each s ∈ (0, 1)

E(∣GΛ′
L (m,n; z)∣

s
) ≤ Cse−ξs ∣m−n∣ (6.1)

for all z ∈ C/R and certain constants Cs > 0 and ξs > 0 independent of L and Λ′. Moreover, λHF solves (2.12).

Proof. We closely follow the arguments of Ref. 50 but provide details for the sake of completeness since a few modifications are required
to account for the Hartree–Fock setting. Let z ∈ C/R. We start from the depleted resolvent identity which is valid form ≠ n ∈ Λ′:

GΛ′
L (m,n; z) = −GΛ′

L (m,m; z) ∑
m′∈Λ′
∣m′−m∣=1

GΛ′/{m}
L (m′,n; z). (6.2)

Note that by Lemma 8 we have the local fractional moment bound

EU(mj)(∣G
Λ′′
L (mj ,mj ; z)∣

s
) ≤
(2M∞)s

(1 − s)λs
(6.3)

which is valid for any Λ′′ ⊂ ΛL and s ∈ (0, 1), see Ref. 9 (Theorem 8.1). Iterating (6.2) along a sequence m0 = m,m1, . . . ,mj of distinct points
in Λ′ and applying (6.3) we find that after N iterations

E(∣GΛ′
L (m,n; z)∣

s
) ≤

N

∑
j=0
(
(2M∞)s

(1 − s)λs
)

j

∑

{mk}
j
k=1∈S

Λ′
j (n,m)

E(∣GΛ′/{m0 ,...,m j}

L (n,n; z)∣
s
)

+ (
(2M∞)s

(1 − s)λs
)

N

∑

{mk}
N
k=1∈S

Λ′
N (m)

mk≠n k=1,...,N

E(∣GΛ′/{m0 ,...,mk}

L (mk,n; z)∣
s
)

where we denote by SΛ
′

j (n,m) the set of self-avoiding walks inΛ′ of length j starting atm and ending at n and by SΛ
′

N (m) = ∪n ∈Λ′S
Λ′
N (n,m) the

set of all self-avoiding walks in Λ′ of length N starting atm. Therefore, applying (6.3) once more and denoting Γ(s) ∶= (2M∞)
s

(1−s)λs we have that

E(∣GΛ′
L (m,n; z)∣

s
) ≤

N

∑
j=0

Γ(s)j+1#SΛ
′

j (n,m) + Γ(s)
N#SΛ

′

N (m)
1

∣Im z∣s
. (6.4)

We now make use of some facts about self-avoiding walks, see Ref. 50 and references therein for a more detailed discussion. Recall that the
self-avoiding walk correlation function is defined by

Cγ(n −m) ∶=
∞

∑
N=0

γN#SN(n,m) (6.5)

whenever∑∞N=0 ∣γ∣
N#SN(n,m) <∞. The self-avoiding walk susceptibility is defined by

χ(γ) ∶= ∑
m∈Zd

Cγ(m) =
∞

∑
N=0

CNγN (6.6)

where CN denotes the number of self-avoiding walks of length N starting at 0. We also recall that the conective constant of Zd is

μd = lim
N→∞
(CN)

1
N . (6.7)

In particular, 1
μd

is the radius of convergence of (6.6). It is also well-known that 0 < μd < 2d − 1. It is crucial for our argument that whenever
0 < γ < 1

μd
the self-avoiding walk correlation function Cγ(m) decays exponentially as ∣m∣→∞. This follows from the inequality

Cγ(m) ≤ Bε((μd + ε)γ)
∣m∣ (6.8)

valid for ε > 0 and some constant Bε.
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Therefore, whenever Γ(s) < 1
μd

we have that χ(Γ(s)) ≤ ∑∞N=0 CNΓ(s)N <∞. In particular, the remainder in (6.4) satisfies

Γ(s)N#SΛ
′

N (m) ≤ Γ(s)
NCN → 0 as N →∞. (6.9)

Thus, letting N →∞ in (6.4) we find

E(∣GΛ′
L (m,n; z)∣

s
) ≤

∞

∑
j=0

Γ(s)j+1#SΛ
′

j (n,m). (6.10)

from which we conclude that
E(∣GΛ′

L (m,n; z)∣
s
) ≤ Γ(s)CΓ(s)(m − n). (6.11)

Finally, to end the proof we determine for which values of s ∈ (0, 1) one has that Γ(s) < 1
μd
. Observe that whenever λ

2M∞
> e the only critical

point of Γ(s) is s0(λ) = 1 − 1
ln ( λ

2M∞
)
which yields

Γ(s0) = e ln(
λ

2M∞
)
2M∞
λ

. (6.12)

Thus Γ(s0) < 1
μd

if and only if

λ > 2M∞μde ln(
λ

2M∞
) (6.13)

so the critical threshold is λHF = 2M∞ ln ( λHF
(2M∞)

)μde. For values of λ greater than λHF we conclude that there exists ε > 0 for which

E(∣GΛ′
L (m,n; z)∣

1− 1

ln( λ
2M∞

)

) ≤ e ln(
λ

2M∞
)
2M∞
λ

Bε((μd + ε)e ln(
λ

2M∞
)
2M∞
λ
)

∣m−n∣
. (6.14)

and (μd + ε)e ln ( λ
2M∞
) 2M∞λ < 1. Applying Hölder’s inequality we conclude that (6.1) holds for any s ∈ (0, 1) and some Cs > 0 and ξs > 0.

This is immediate if 0 < s < 1 − 1
ln ( λ

2M∞
)
and follows from (off-diagonal) a priori bounds for the Green’s function if 1 − 1

ln ( λ
2M∞

)
< s < 1,

see Ref. 7 (Lemma B2) and Ref. 9 (Theorem 8.3).

VII. PROOF OF THEOREM 3 AND COROLLARY 2
Similarly to how Theorem 10 implies Theorems 1 and 3 follows from the result below.

Theorem 11. In the setting of Lemma 9, for each I ⊂ R the exists g1(Ca,d, ρ, λ, γa,η0), ν
′′
> 0, C > 0 and λ0 (independent of Λ′ and L)

such that whenever ∣g∣∣F∣
∞
< g1 and λ < λ0 we have that

E(∣GΛ(m,n,E)∣s) ≤ Ce−ν
′′
∣m−n∣ (7.1)

for some s ∈ (0, 1). Moreover, we have that
λ0 = sup

s∈(0,1)
sup
μ>0

inf
E∈I

λ̂s,μ(E) (7.2)

where

λ̂s,μ(E) =
⎛

⎝
Ds,1 sup

δ≠0
sup
u∈Zd
∑

v∈Zd

∣G0(u, v;E + iδ)∣seμ∣u−v∣
⎞

⎠

−1
s

. (7.3)

Theorem 11 in turn follows from Lemma 9 along with known results and thus we only provide an outline for how it is proven. Before
doing so, we recall some notions of regularity for probability distributions, cf. Refs. 6 and 9 which will be relevant in the sequel.

Definition 12.

(i) A probability measure ρ(dv) on the real line is τ-regular, with τ ∈ (0, 1], if for some v0 ∈ R and C > 0

ρ([v − δ, v + δ]) ≤ C∣δ∣τρ([v − v0, v + v0]) (7.4)

holds for all δ ∈ (0, 1) and v ∈ R.
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(ii) A joint probability measure ρ(dV) of a collection of random variables {Vn} is conditionally τ-regular if the conditional distributions of
Vn at specified values of {Vm}m≠n satisfy (7.4) with uniform values of the constants appearing there.

(iii) If, additionally, for some ε > 0 the conditional expectations of ∣Vn∣
ε are uniformly bounded:

E(∣Vn∣
ε
∣ V{n}c) ≤ B, for some B > 0, (7.5)

then the joint probability measure ρ(dV) is said to be conditionally (τ, ε)-regular.
(iv) ρ has regular q-decay for q > 0 if

ρ([u − 1,u + 1]) ≤
C

1 + ∣u∣q
, for some C > 0. (7.6)

Proof of Theorem 11. Lemma 9 (i) readily implies that ρeff,Λ
′

n0 ,L (v) dv has regular q decay for all q > 0 and that for all p > 0

∫

∞

−∞
∣v∣pρeff,Λ

′

n0 ,L (v) dv <∞,

i.e., ρeff,Λ
′

n0 ,L (v) dv is conditionally (1, p)-regular for all p > 0. Moreover, by Lemma 9 (ii), we have that for any δ ∈ (0, 1] and u ∈ R

∫

u+δ

u−δ
ρeff,Λ

′

n0 ,L (v) dv ≤ (2δ)e
c1(1+ϑ)ρeff,Λ

′

n0 ,L (u)

≤ δe2c1(1+ϑ)∫
u+1

u−1
ρeff,Λ

′

n0 ,L (v) dv,

in particular we see that ρeff,Λ
′

n0 ,L (v) dv is (uniformly) 1-regular.
We then conclude from Ref. 9 (Theorem 8.7) that ρeff,Λ

′

n0 ,L is 1-moment regular, namely Ds,1 <∞ with Ds,1 as in (2.17) for all s ∈ (0, 1). In
particular, Theorem 11 falls into the framework of Ref. 9 (Theorem 10.4).

Proof of Corollary 2. Note that when ∣g∣∥F∥∞ → 0 then θ → 0 in Eq. (5.17) (which only requires assumptions 1–6). Thus, by dominated
convergence, we may chooseM∞ such thatM∞ → ∥ρ∥∞ as ∣g∣∥F∥∞ → 0. Corollary 2 now follows from (1.3) and (2.14) since these equations
imply

(λHF − λAnd) − 2M∞(ln (λHF) − ln (λAnd)) = 2μd ln (λAnd)(M∞ − ∥ρ∥∞)
2μd(∥ρ∥∞ ln (2∥ρ∥∞) −M∞ ln (2M∞))

and by construction λHF
2M∞
> e > 1.
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APPENDIX: BASIC PROPERTIES OF THE EFFECTIVE POTENTIAL

We now provide some results on existence and uniqueness of the effective potentials as well as their regularity with respect to the random
variables. Since the statements are mostly immediate generalizations from the ones given in Ref. 47 we skip most proofs. We formulate the
first of these results for ℓ∞(Zd

) but remark that its finite volume analogue holds similarly.

1. Contraction mapping arguments
Let Φ : ℓ∞(Zd

)→ ℓ∞(Zd
) be given by

Φ(V) = ∑
m∈Zd

a(n,m)⟨δm,F(A + λVω + gV)δm⟩ (A1)

We wish to show that there is a unique solution Veff to the equationΦ(V) = V . For that purpose, we introduce a technical Lemma which may
be found in Ref. 47 (Proposition 12).

Lemma 13.

(a) Let T = A + λVω be as in assumptions 1–5. Given potentials V ,W ∈ ℓ∞(Zd
), we have, for any ν satisfying (3.3) and δ ∈ (0, ν), that

∣⟨δm, (F(T + V) − F(T +W))δn⟩∣ ≤
72
√
2

η
Sδ−ν∥F∥∞∥V −W∥∞e−ν

′d(m,n). (A2)

(b) For any m,n, j ∈ Zd, the matrix elements ⟨δm,F(T + gV)δn⟩ are differentiable with respect to V(j) and

∣
∂⟨δm,F(T + gV)δn⟩

∂V( j)
∣ ≤ ∣g∣

72
√
2e−ν(∣d(m,j)+d(n,j))

η
∥F∥∞∥V∥∞. (A3)

From Lemma 13 and assumption 5 we obtain

∥Φ(V) −Φ(W)∥∞ ≤ ∣g∣
72
√
2

η
Sδ−νS−γaCa∥F∥∞∥V −W∥∞

thus we conclude the following.

Proposition 14. Whenever ∣g∣ 72
√

2
η Sδ−νS−γaCa∥F∥∞ < 1 for some δ ∈ (0, ν) the mapΦ : ℓ∞(Zd

)→ ℓ∞(Zd
) is a contraction. In particular,

there is a unique Veff ∈ ℓ
∞
(Zd
) such that Φ(Veff) = Veff. Moreover, the analogue effective potential in finite volume ΛL, Veff,ω,L, is a smooth

function of (ω(n1), . . . ,ω(n∣ΛL ∣)).

We also note that if a(n,m) ∈ R for each n,m ∈ Zd then Veff(n) ∈ R for each n ∈ Zd.

2. Norm resolvent convergence
Finally, we briefly comment on the convergence of resolvents which allows to extend the results of Theorems 1 and 3 to infinite volume

operators. It will be useful to introduce the augumented boundary

∂ΛL = {u ∈ Zd : dist(u,ΛL) = 1 or dist(u,Λc
L) = 1} (A4)

with dist(u,X) calculated in the metric of Zd.

Lemma 15.

(a) Given n ∈ ΛL whenever 3
√

2∣g∣∥F∥∞S−ν
η < 1

2 we have that

∣Veff,ω(n) −Veff,ω,L(n)∣ ≤ Ce
−δd(n,∂ΛL) (A5)

for any δ < min{ν, γa} and C =
432Ca∥F∥∞∣g∣S−ν

η , with d(n,∂ΛL) calculated in the metric d(⋅, ⋅) of assumption 5.
(b) For any κ > 0, with ∣g∣ and δ as above

∣GΛL(m,n; t + iκ) −GΛL
L (m,n; t + iκ)∣ ≤

4C
κ2

e−νd(m,n)−δd(n,∂ΛL) )S−ν (A6)
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In particular, for each fixed z ∈ C+ and ψ ∈ ℓ2(Zd
) we have that

∥(HΛL − z)−1ψ − (HΛL
L − z)

−1ψ∥→ 0 as L→∞. (A7)

Proof. Using (3.1) and the analogous representation for Veff,ω(n) we find

∣Veff,ω(n) −Veff,ω,L(n)∣ ≤
3∥F∥∞
2π ∫

∞

−∞
∣K(n,ω; t) − KL(n,ω; t)∣ dt

where for z = t − iη

∣K(n,ω; t) − KL(n,ω; t)∣ ≤ ∑
m∈Zd

∣a(n,m)∣∣G(m,m; z) −GL(m,m; z)∣

∑

m∈Zd

∣a(n,m)∣∣G(m,m; z̄) −GL(m,m; z̄)∣

Observe that letting Λo
L ∶= ΛL/∂ΛL and (Λo

L)
c
= Zd
/Λo

L, for anym ∈ Zd we have that

∣G(m,m; z) −GL(m,m; z)∣ ≤ ∣g∣∑
k∈Λo

L

∣G(m, k; z)∣∣Veff,ω(k) −Veff,ω,L(k)∣∣GL(k,m; z)∣

36
√
2∥F∥∞S−γa ∣g∣ ∑

k′∈(Λo
L)

c
∣G(m, k′; z)∣∣GL(k′,m; z)∣

where we have used that max{∥Veff,ω,L∥∞, ∥Veff,ω∥∞ ≤ S−γa18
√
2∥F∥∞ cf. Theorem 3 in Ref. 5 and assumption 5.

The result in (a) now follows from

∫

∞

−∞
∣G(u, v; z)∣∣GL(v,u; z)∣ dt ≤

2
√
2π
η

e−2νd(u,v) (A8)

combined with assumption 5 and another application of Lemma 4 with

φ(n) = ∣Veff,ω(n) −Veff,ω,L(n)∣, W(n) = eδd(n,∂ΛL) (A9)

and

K(n,u) =
⎛

⎝
∑

m∈Zd

e−γad(n,m)−2νd(m,u)⎞

⎠
𝟙ΛL

o(u) (A10)

for which we have b1 = 216∥F∥∞∣g∣S−ν
η and b2 = 3

√
2∣g∣∥F∥∞S−ν

η .
(b) Now follows from (a) combined with the resolvent identity and another application Combes–Thomas bound.
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