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ABSTRACT

Localization results for a class of random Schrodinger operators within the Hartree-Fock approximation are proved in two regimes:
Large disorder and weak disorder/extreme energies. A large disorder threshold Ayr analogous to the threshold Aang obtained in Schenker
[Lett. Math. Phys. 105(1), 1-9 (2015)] is provided. We also show certain stability results for this large disorder threshold by giving examples
of distributions for which Aur converges to Aang, or to a number arbitrarily close to it, as the interaction strength tends to zero.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0156478

. INTRODUCTION

In recent decades there has been intense activity regarding mathematical aspects of disordered systems. In the Anderson model in
dimension two or higher, there is an extensive literature regarding localization in the regimes of large disorder or at spectral edges. In this
context, proofs either follow the strategy of the multiscale analysis, see Refs. 14, 17, 21, 29, 30, 33, 34, 40, and 53 and also the surveys,w‘ or
the method of fractional moments, dating back to Refs. 3 and 6 and further developed in both discrete and continuous settings”’ and also
in the context of non-monotone potentials,” " see also the survey” and the monograph.” Localization in the context of weak disorder and
existence of the so-called Lisfshitz tails were also extensively studied, see Refs. 3, 23, 31, 32, 43, 44, and 54 and references therein. For results
on complete localization in one dimension using large-deviation techniques we refer to Refs. 15 and 38.

In the past years, there has been a number of developments in the context of many-body disordered systems such as systems with a
finite number of particles;”'””’ the quantum XY"”"** and XXZ** *° spin chains; systems of hardcore particles;'> harmonic oscillators in the
presence of disorder;*’ particle-oscillator interactions.*® Unlike in the single-particle Anderson-type models, where the notions of localization
aimed at are usually spectral or dynamical localization, the challenges in the context of true many-body quantum systems start at defining the
correct objects and notions of localization for each model.

One alternative to explore interactive quantum systems while remaining closer to the single-particle Schrodinger operator setting is
to approximate the true many-body Hamiltonian by an effective one, as in the case of mean field theories and the Hartree/Hartree-Fock
approximations which are widely studied beyond the setting of disordered systems,' "' *'!%704340

In the disordered setting, Anderson localization in the Hartree-Fock approximation was first studied in Ref. 22. There, through the
multiscale analysis technique, spectral localization was obtained in the presence of a spectral gap at both large disorder and at spec-
tral edges. Recently in Ref. 47 localization properties of the disordered Hubbard model at positive temperature within the Hartree-Fock
approximation have been established via the Aizenman-Molchanov fractional moment technique. There, exponential dynamical localiza-
tion (in fact, decay of eigenfunction correlators) is shown to hold at large disorder in dimension d > 2 and at any disorder in dimension
d =1 provided the interaction strength is sufficiently small. No assumption on the existence of a spectral gap is made but, in contrast,
the interactions are modelled at positive temperature. The present manuscript is devoted to localization properties of random operators in
the form

Hy,=-A+1V, +gVefﬂw (1.1)
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where {V,(n)}, ;¢ are independent, identically distributed random variables and V., is a multiplication operator implicitly defined by

Vetiw(n) = > a(n,m)(6m, F(Ho)8m) forall neZ’, (1.2)

mez?

Here |a(m,n)| < Coe ™" will be assumed to decay sufficiently fast (see 1-7 for the precise assumptions) with respect to a metric
d:Z%x7Z* >R, C, >0, y>0 and F is an analytic function on a strip {[Imz| < 5} which is bounded. It is worth noting that the above
setting allows for the decay of |a(m,n)| to be of polynomial type. The above model is somewhat analogous (in the Hartree-Fock setting)
to models in the single-particle setting with fast decaying potentials which still exhibit monotonicity properties (for instance, the ones stud-
ied in Ref. 40). In the particular case where F(z) = mﬁ%ﬂ) is the Fermi-Dirac function at temperature $~* > 0 and a chemical potential
i € R and a(m,n) = 8un (with 8pn the Kronecker delta) (1.2) simplifies to operators already studied in Ref. 47. There for a fixed 8 > 0,
dynamical localization is shown in any dimension provided |g| < g, and A > A for certain constants g, and Ao which depend on 8 and d but
a more concrete estimate for Ay was not pursued there. In this note, we generalized the large disorder result of Ref. 47 to the operator (1.2),
obtain a novel result of localization at weak disorder/extreme energies and, moreover, study the question of stability of the large disorder
threshold under “weak” interactions, inspired by the analysis of Ref. 50. In particular, it is proven here that there is a large disorder threshold
Anr such that the operators given by (1.2) exhibit dynamical localization provided A > Anr as long as ||| F| « is sufficiently small. Moreover,
we show that Ay — Aang as |g||Fllec — 0 where Aanq is the solution of the transcendental equation

/lAnd
Aand = 2 p] oo eln( ) (1.3)
And = SIPleofae I S lp] e

with p, the connectivity constant of 7. For the uniform distribution in [~1,1], in which case 2| p| = 1, this value of Aynq was obtained
for the Anderson model in Ref. 50 and coincides with Anderson’s original prediction in Ref. 10. To the best of our knowledge, in arbitrary
dimension Aang in (1.3) is the best rigorous large disorder threshold proved with current methods. It is worth noting that letting ||| F| o — 0
formally in (1.2) we obtain the Anderson model Hang = —A + V.

We now comment on other technical merits of the present work, for further technical aspects we refer to Sec. II A below. Our first
observation is that even for the non-interacting Anderson model Hpq, the fractional moment method requires the random variables V, to
have a density p which is “sufficiently regular.” Thus, it is to be expected that a direct application of this technique to interacting models, which
is the approach adopted here and also in Ref. 47, will require further regularity of p. The previous paper®’ covers a large class of probability
distributions with supp p = R by making use of the symmetry F(z) = 1 — F(-z) and decay properties of the Fermi-Dirac function when
Rez — oo in order to obtain certain improved Combes-Thomas bounds. Such bounds reflect decay of the effective potential at a given site
Veitw () when the local potential w(m) is changed at a site m # n. However, such bounds appear not to be available in the generality studied
here. In fact, they seem not to be available even when one restricts (1.2) to the case of nearest neighbor lattice fermions, i.e., when a(m, n) = 1if
and only if [m — n| = 1 where |m| = |my| + - - - + |my| and thus Veg,(n) = 3,7, (0,» F(Hy )8, ) with n” ~ n indicating that n and n are nearest
neighbors on Z¢. The key observation surrounding the present paper is that there is a trade off between the regularity/decay properties of F on
the real line, the decay properties of the interaction kernel a(m, n) and the density p. Namely, by reducing the class of probability distributions
covered by our main result, we are able to include interactions of a much longer range, including the case where a(m,n) only decays in an
algebraic fashion and where F(z) is bounded of a strip but does not necessarily decay as Re z — oo. In conclusion, even though the methods
employed here to obtain the a priori bound on fractional moments of the Green’s function follow the general scheme of Ref. 47, in order to
prove our stability result, we need to keep an explicit dependence on all parameters involved #,1, g, | F| e and now have the inclusion the
decay rate y of a(m,n) as well. Once an a priori bound on fractional moments of the Green’s function is obtained, we follow the approach
of Schenker in Ref. 50 in order to get the best large disorder threshold which seem to be available with current methods which turns out to
converge to Aang when |g||F[ oo — 0.

This paper is dedicated to Abel Klein in occasion of his 78th birthday. Klein’s contributions to the field go well beyond the aforementioned
works and can hardly be overstated. Certain aspects of the present work were also inspired by Klein’s efforts. For instance, the idea of studying
distributions near a suitable chosen density (for which explicit calculations are available) used below in assumption 6 is analogous to Ref. 2,
where analyticity of the density of states on a strip is shown for distributions sufficiently close to the Cauchy distribution. Moreover, through-
out the note, Combes-Thomas type bounds for kernels of analytic functions of H,, are used extensively. In Ref. 35 such bounds are obtained
in great generality which provides hope for future extensions of the results below.

Il. MODEL, STATEMENT OF THE MAIN RESULTS AND PROOF STRATEGIES
This note concerns random operators of the form
Ho=A+AVy + gVetto (2.1)

acting on £ (Zd) as follows:

L (Ay)(n) = Xp_pm¥(n') foreach y € £2(Zd), ie,A: KZ(Zd) - fz(Zd) is the adjacency operator of Z¢.
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2. (Vow)(n) =w(n)y(n) for each y « KZ(Zd) where {w(n)}
bounded density p.
3. The effective potential Ve, : £* (Zd) -2 (Zd) is a multiplication operator implicitly defined by

4ezd are independent, identically distributed random variables with a

Vetrw(n) = > a(n,m)(8m, F(Ho)0m)  forall neZ-. (2.2)

mez®

We impose the following conditions on a(n,m) and F.
4. There exists # > 7, > 0 such that F is an analytic function on the strip

Sy = {[lmz| <n}

and bounded on its closure S;. Moreover, we assume that F(R) c R.
5. The values a(m, n) are real numbers for all m,n € 74 and

la(m, n)| < Cye 740 (2.3)
for constants C, > 0 and y, > 0 and some metric d : 7 x 7 - R for which there exists & ¢ (0, y,/2) such that

[S5-y, l[oo,00 =sup > Ordmm) o (2.4)
neZ mezd
6. Wealso assume that supp p = R and that for some ¢; > 0 and &; > 0

P(Vl) > e—C1|V1—V2|,

> forall vi,v, e R (2.5)
p(v2)

and

sup p(v)

< o0 (2.6)
ver [ p(a)e "¢ da

Remark 1. Assumptions 1-6 suffice for the first result of this note, namely, localization at large disorder given by Theorem 1 below, and also
for the stability bounds on the large disorder threshold of Corollary 2. It is worth observing that assumption 6 holds, for instance, for the Cauchy
distribution and also for the (negative) exponential distribution.

For the results of localization at weak disorder/extreme energies we will make the following additional requirement.

7. We further assume that p(v) = h(v)e %" for some ¢p > 0 where

h(vl) > e—€z|V1—Vz|
h(va) ~

forall vi,v, e R 2.7)

for some & € (0, %cp).

Remark 2. Intuitively speaking, assumption 7 means that p(v) is near the (negative and two sided) exponential distribution with density
p1(v) = %’e_c*’lvl and supp p1 = R. With the help of the mean value theorem and Young’s inequality, one may check that this assumption applies
to densities of the form p(v) = h(v)e™ " with h(v) = Ce (1 + ¢|v[)e ™, & > 0, k > 1 and & sufficiently small depending on a and k.

Working with finite volume restrictions of both H, and also V., will turn out convenient thus we let Ay = [-L, L]d nZ% and

Vetwi(n) = Y almm){8m F(Har)dn)  forall ne AL 28)

meAp

where Hyr = 10(A+ Vi + Vegro )1 and 1y ¢ EZ(Zd) — (*(AyL) is the projection onto span{d; : [ € Ar}. We will often write

U(n) = w(n) + %Veff,w,L: neA c Ay (2.9)
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to denote the “full potential” at site 7. It will be shown below in Lemma 8 that under assumptions 1-6 the conditional distribution of U(ng) = v
at specified values of {U(n)}, car\(n,} has a density which is bounded with an upper bound independent of the parameters w, A’ and L. This

upper bound is denoted herein by Mo and the conditional density by p&f = pf:f/\ We also recall the definition of the eigenfunction correlators

for an operator H:
Qi1(m,n) := sup|(8m, p(H)b,)| (2.10)
[pl<1
where the supremum is taken over Borel measurable functions ¢ bounded by one and supported on the interval I. In case I = R we simply

write Q(m, n). In what follows we denote by Qﬁ(m, n) the eigenfunction correlators of HSIL =1, Hy11, for A’ c Ay and by E(f) the
expected value of f with respect to the probability space in question.
Our first result is the following.

Theorem 1. Under assumptions 1-6 there exist Aur = Aur(g, 1ys | Flloo> dsp> y,) and g, = §,(Casd, p, Ay, 1) such that for all A > Ay
and |g||F|leo < g0 we have that

E(Q1 (m,n)) < ce™ " @.11)

for some v > 0 and C > 0 independent of L and A'. Moreover, Aur satisfies

A
A = 2Moopige ln(m‘;: ) (2.12)

where , is the connective constant of 74 and Moo = Moo (1, d) is given by

Moo = sup sup sup sup sup pfgi\,(v) (2.13)
weQ LENA'c A npeA veER

Remark 3. It readily follows that the analogue of (2.11) also holds in the infinite volume, see Lemma 15 below and Ref. 9 (Proposition 7.6).

Theorem 1 above extends to the present context a result of Schenker,”’ who obtained the large disorder threshold Axnq which solves

/\And
Aand = 2 p] coprae ln( ) (2.14)
And = P leoba® I Do) e

for the Anderson model with a uniformly distributed potential on [-1,1].
We also show that Ayr is close to Axnq in a quantified fashion.

Corollary 2. Let Aur be as in (2.12) and Apng be given by (2.14). Under assumptions 1-6 we have that |Aur — Apal — 0 as |g||F|ee — 0.

Before stating our second theorem we let, for each ng € A’

eff, A"
o [THEEO) o

v—zf
eff, A’
oo v
JOR S\ 216
o |v—zf
and .
D) =sup sup sup (2) (2.17)

LeN A’cApzeCyngeA’ ¢ ( )

As we shall see below, under assumptions 1-7 the measure pff’ (v) dv is 1-moment regular in the sense of Ref. 9 (Definition 8.5) meaning
that Dg; < oo for all s € (0, 1). We also define the Green’s function of H,, at z € C\o(H,) by

G(m,n;z) = (Om, (Ho — z)fl&,) (2.18)
and let, for A" ¢ Ay, Gr(m,n; z) and Gfl(m, n;z) be the Green’s function of H, ;. and HL{,"L =1, Hor1,, respectively:

GL(m,152) = (S (Hut —2)"'8,) and G (m,152) = (S (HAL — 2)718,). (2.19)
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We emphasize that the effective potential is Vg1, for both of the above operators. Finally, we denote by Go(m, n; z) the Green’s function of
the “free” operator A, namely

Go(m,n;2) = (8> (A —2) ' 80). (2.20)

We are now ready to state our second Theorem which yields localization at weak disorder/extreme energies provided the interaction strength
is not too large relative to the remaining parameters.

Theorem 3. Given I c R there exist Ao = Ao(I) and g, = g,(Ca»d,p, Ay, 1) such that whenever |g||F|loo < g1 and |A| < Ao we have that
E(Qﬁ(m, ﬂ)) < eI (2.21)

for some V' >0and C>0 independent of A’ c AL and L. Moreover, we have that

Ao = sup sup inf /A\W (E) (2.22)
se(0,1) p>0 Eel
where .
Aou(E) = | Dy sup sup > |Go(u, ;E+ i5)|se“|“_v‘ . (2.23)
0+0 “EZdveZd

Remark 4. By the Combes-Thomas bound’ (Theorem 10.5), Theorem 3 is applicable when I n 6(A) = @. In particular, since it was assumed
that supp p = R, this yields a non-trivial result for all A +# 0. We choose the above formulation for general I c R for future reference, as in
more general settings localization at weak disorder may be established away from the £' spectrum of the deterministic part of H., see Ref. 9
(Theorem 10.4) and comments therein.

A. Proof strategy: Discrete subharmonicty bounds

The proofs of Theorems 1 and 3 follow the general scheme of the Aizenman-Molchanov fractional moment method™* and further
refinements of their technique, in particular the one in Ref. 50, combined with tools from Ref. 47 (and a few technical improvements on it).
Their approach requires the random potential to be sufficiently regular (even though it allows for certain singularities) which is the case in
the Anderson model Hapng = A + AV, given by assumptions 1 and 2. The first difficulty in the present work is that the full random potential
is of the form U,(n) = w(n) + § Vegro(n) thus U(n) and U(m) are correlated for all values of m and n and, a priori, their regularity is
unknown. While correlations are not necessarily a problem for the fractional moment technique, as it is well-known and already stated in
the Aizenman-Molchanov original work," in order to prove localization one needs at least some regularity on the conditional distributions
of U(ny), for each ng, when the remaining variables {U(n) }s+s, are specified. Moreover, the involved bounds should be uniform in no. At
an intuitive level, such requirement on the conditional distributions amounts to the variables U(m) and U(n) being less and less correlated
as [m — n| - +oo so that some of the regularity of w(yo) is persists in the conditional distribution of U(#y). The technical implementation of
the above reasoning essentially consists of two main parts, each of them having of a few steps. The first part is completely deterministic and
aims at showing that, in terms of the metric d in which |a(m, n)| < Coe ¥ ™" the effective potential Vg, is a quasilocal function of the
random variables {w(n)}, .. The second part involves applying the fractional moment method in the spirit of Ref. 50 once the regularity of
the {U(n) },ea is determined.

Before stating the main steps of the proof, let us remark that for simplicity we do not always mention finite-volume restrictions in this
sketch. Nonetheless, their introduction is technically important for the arguments, as it will be clear later in the note. Moreover, each point of
the outline below is carried out in the appropriate smallness regime (cf. Theorems 1 and 3).

(i) Step 1: Show that
< CednD

aveff,w ( n)
dw(l)

holds for every we Q, n,le A" with C;, § >0 independent of w and A’. This will allow us to make the change of variables
w(n) = U(n) := w(n) + § Vefro(n) and guarantee that the map @ — U is a diffeomorphism in R for each finite set A"  Z.

(ii) Step 2: Fixnp € A" and a € R. Let Uy (n) = U(n) + (a — U(110) )84, be a rank-one perturbation of U at 1o and define {wa}, 4 to be
such that Uy(n) = wa(n) + § Vegrw, (n) for all n € A’. Then for some § > 0 and C > 0 we have that

lw(n) - wa(n)| < Cila - U(ng)|e 2™, (2.24)
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This step, along with assumption 6 will allow us to control fluctuations of the density p which naturally appear when computing the

conditional density .

(iii) ~ Step 3: Prove that

<

—8(d(n,l)+d(nny)) 2.2
do(l) da() |”° ' .

‘ OVettw(n)  OVefio, (1)

This step will help us control fluctuations in the Jacobian of the above change of variables which also appear in the expression for pff.

Once the above steps are completed, the second part of the proof makes use of probabilistic techniques.
(iv) Step 4: Use the bounds from steps 1-3 to conclude that under assumptions 1-6 the conditional density pfg exists and is (uniformly)

bounded. Moreover, under assumptions 1-7 conclude that pif,f exhibits some additional regularity.
(v) Step 5: Complete the proof using the fractional moment technique.

While the overall strategy outlined above is similar to the one in Ref. 47 there are some key technical differences. Firstly, by obtain-

2V
ing the cancellation directly on (iii) we are able to avoid having to bound the second derivatives % which shortens the proof quite

a bit, especially for the model studied here where a : Z% x Z? - R may be non-local. Secondly, in step 4 the observation that further reg-
ularity of pﬁf can be obtained under assumption 7, which ultimately yields the localization at weak disorder/extreme energies result, is
also new. A third difference is present in step 5. Namely, while localization at large disorder was obtained in Ref. 47 (Theorem 2), in the
case where a(m,n) = 8, the explicit dependence of the large disorder threshold on the remaining parameters is not given (although it
can certainly be inferred from the proof). Here we provide a self-consistent equation for the large disorder threshold in (2.12). Moreover
we show that under assumption 7 this threshold is somewhat sharp from the point of view of what is currently known for the Anderson
model from Ref. 50. Indeed, within the class of exponential distributions, we show that the difference between the large disorder threshold
Aand of the non-interactive setting [cf. (2.14)] and Apr given by (2.12) can be made arbitrarily small when the interaction strength tends
to zero.

Turning to the question of how to show the quasilocality bounds in steps (i)-(iii), the following Lemma will be useful since Vg, and,

by extension, its partial derivatives { B‘Z;f;fl()") }niear are only implicitly defined and hence the desired control of them can only be achieved via

inequalities of self-consistent nature.
Lemma 4 (Ref. 9, Theorem 9.2). Let G be a countable set and K : {7 (G) — £7(G) be given by (Ko)(n) = ¥, cc K(n,u)p(u) with
K(n,u) >0and
IK [[oo,00 := sup>_ K(n,u) < 1. (2.26)
neG yeG

Let W: £ (G) — (0,00) and y € £7(G) be positive functions such that

bi = 3 W(w)y(w) < o0 and by =sup 3 31

ueG meG yeG W(m)

K(u,m) < L (2.27)

Then, any ¢ € L= (G) which satisfies
0<g(n) <y(n)+ (Ke)(n) forallneG

also obeys the bound

> W(n)e(n) < b forall neG. (2.28)
nez? 1- b2
The first instance where Lemma 4 is applied is in step 1 with the choice
¢1(n) = ’8;/:2(;)1) , W(n)= " 5 = min {v,ya/2}, (2:29)

where v is given below in (3.11) and y,, is as in 5. To accomplish step 2, Lemma 4 is applied to
¢2(n) = |w(n) — wa(n)|8nzn,, W(n) = ) (2:30)
with & as above. In step 3, Lemma 4 is applied to

_ 8Vveff(n) aVeff,wu(n) _ Hn-l
@3(n) = do() ~ owd) | W(n)=¢"". (2.31)
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Finally, in step 5 Lemma 4 is applied to different functions depending on whether we wish to show decay of the Green’s function in the
large disorder or in the weak disorder/extreme energies regime. In the large disorder regime of Theorem 1, thanks to an a priori bound which
follows from Lemma 8 below, Lemma 4 is applied to a fixed n € Z¢ letting

@(m) = sup IE(‘GA(m, n;z)r), W(m) = e!Im=nl. (2.32)
Acz?
for a suitable v' > 0 and choosing
2°Mg, 2°My,
K(m, u) = T6|m_“|:1’ W(m) = T(Sm,n. (233)

In the regime of weak disorder/extreme energies of Theorem 11, Lemma 4 can be applied to
K(m,u) = D1 |M'|Go(m, ws 2)[,  w(m) =|Go(m,m;z)[ (2.34)

thanks to Lemma 9 below which implies a decoupling estimate for the Green’s function fractional moments cf. Ref. 9 (Theorems 8.7 and 10.4).

The remainder of this note is organized as follows: in Sec. I1] we show the quasilocality bounds of steps 1 and 2 above, in Sec. ['V we show
the cancellation bound of step 3, in Sec. V we state and prove the technical Lemmas on the conditional densities pf,?.The proofs of Theorems 1
and 3 as well as Corollary 2 are given in Secs. VI and VIL In the Appendix we provide some basic facts about existence of the effective potential
and norm resolvent convergence of finite volume restrictions to the infinite volume operator.

Il. FIRST ORDER DECAY BOUNDS ON THE EFFECTIVE POTENTIAL

Let us collect some basic facts which will be repeatedly used in this note. Firstly, if Hy is as above we can write F(Ho,.r)
_ 1 foo (ﬁ ;)f(t) dt for f=F,+F_+ D % F, where F.(u) =F(u+in¥i0) and D(u) = 71('1271) the Poisson kernel,

~ 2nid -0 LHi—in  Hy+t+in 2

see Ref. 5 (Appendix D). In particular, the inequality | f| oo < 3|F| oo holds. The formula

Vetar (1) = ﬁ [Trmwnsar 3.1)
with
Ki(n,wit) = Z a(n,m)(GrL(m,m;t —in) — GL(m,m;t + in)) (3.2)
mez?

readily follows and is a useful representation for the effective potential. It is shown below that it yields, for each n,l € Ay, self-consistent

equations for the derivatives %‘“&(") which in turn imply the desired exponential decay in step 1 of the proof strategies given earlier. We

introduce v > 0 such that
sup Y. edm) o n/2. (3.3)

neZ?|n’ —n|=1
The decay rate in the Lemma below will be dictated by v and y,.

Lemmas. Letv >0beasin(3.3)andy, asin Assumption 5. ForeachL € N, 1 € Ay = [-L, L1*n 7% and any § < min{y,, 2v} the inequality

OVegto,L (1)
dw(l)

5 ()

neA

<G (3.4)

Ca72\2||Fl oo
G2/l i,

holds whenever Ss_oy < % withd: 7% x 7% > Ras in assumption 5,

8%:95:80 ¥20Z AInf 90

Ca144V2|F| oo
C = Aﬂ&?—y&?—h) (35)
and
Sgi=supy. S, (3.6)
uez? yezd
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Proof. Denote by P; : EZ(Zd) — Span{d;} the projection onto Span{d;}. Using difference quotients, it is immediate to check that

0 1 1 1 1 avefwa 1
=-1 P - o . 3.7
Ow(l) H, -z H -z H -z gHL—z Ow(l) Hy-z (37)

Taking matrix elements we obtain from (3.2) that

aKL(i’l, w; t) aVefwa(k)
—— = , -1 ) - ki) ——2 3.8
dul) g, e\ Anlm b0 8 2y nlm 050y 6o
with
ri(u,vit) == Go(u,vit —in)Gr(v, st — in) — Gr(u, vst + in) GL(v, us t + in). (3.9)
The above derivatives of the kernel K; (1, w; t) are shown to decay exponentially in d(#, 1) as follows. We first rewrite rz (u,v; t) as
ri(u,vst) = (Gr(u, vst —in) — Go(u, vi t +in) ) GL(v, us t — in) (3.10)
+ Gr(w,vst +in) (GL(v,ust — in) — GL(v, ust +in)).
For the operators studied here the Combes-Thomas bound’ (Theorem 10.5) yields
|GL(u,v52)| < ge_Wl(”’V), ze C\R (3.11)
n
for all v > 0 satisfying (3.3). Moreover, by Ref. 5 (Appendix D, Lemma 3) we have the following inequality:
IGu(uvst +in) — Gu(u,vit — i) < 1278”2 (5 ! 828 — L s (3.12)

C(He- 0 2 T (H- ) e 2
We remark that the above result, as the usual Combes-Thomas bound, may also be applied to the metric d instead of the usual metric of Z“.
One then obtains

! S8, — L s\ (3.13)

ro(u,v;t)| < 48¢2vd () Ouy———5——0u Vs
‘ L( )| < (HL—t)2+7’]2/2 (HL—t)Z+7’]2/2

By the spectral measure representation and the Cauchy-Schwarz inequality, the right-hand side of (3.13) can be controlled via

< 1 1/2 1 1/2 V2n
Ou, ———5—5-0 Oy 5= 0y) T dt < ——. 3.14
[oo<u(HL—t)2+;12/2 2 (V(HL—t)2+712/2 ) n G
Therefore,
1 [ 72V 2| F|loo —avd(u
7f lr(u,v3t) £ ()] dt < ﬁe 2d(wy) (3.15)
21 J-co n
Keeping in mind assumption 5 and combining (3.1), (3.8), and (3.15) we reach the inequality
OVetto Ca72V2|F| oo o drm)—2vd(m
‘ L (1) | V2|F| T e rednm) -2 lmd) (3.16)
8")(1) n meAy
+ Cﬂ72\/§HF”°° |g‘ Z e—y,,d(n,m)—Zvd(m,k) aVeff,w,L(k) ’
n ken, dw(l)
We now apply Lemma 4 with fixed I € Ay and the choices ¢(n) = ‘3"527%(”) ,
Ca723/2|F oo o dm)—2vd(m
v(n) = V2|F| AT ) -2vimd (3.17)
n meAp
Ca72V/2|F| oo ~Yad(n,m)=2vd(m,u
K(n,u) = Ga72V2| Flleo lg| S e redlmm)2vd(mi) (3.18)
meAp
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Published under an exclusive license by AIP Publishing

8%:95:80 ¥20Z AInf 90


https://pubs.aip.org/aip/jmp

Journal of ARTICLE _ o
Mathematical Physics pubs.aip.org/aip/jmp
in the regime where | K| co,00 < 1, i.€., when
Mgm_ysm <L (3.19)
n
In this context, introducing the weight function W (n) = ¢*™" with & < min{y,,2v} we reach
Ca72V/2|F| oo
by = Z W(n)y(n) < ﬂ/\&;_ys&h (3.20)
nez!
and 3
W (n) i Ca72V/2|F|loo
= < —————g|Ss-ySs-2s- 3.21
7S 2y K < St G20

In particular, under the more restrictive assumption

Ca72V/2||F| oo 1
; ” ” |g|867y86—2v < 3 (3.22)

we find that ﬁ < 2 and thus ¢ < 2by, finishing the proof.
Given an enumeration 1y, . . . ,w(n| A") of the points in A, it readily follows that within the smallness regime described in Lemma 5, the
map T : RVl S RV given by
T(@(m),.s@(rp)) = (UL (m),.. UL (my))), Uln) = w(n) + % Vefwa(n) (3.23)

is a diffeomorphism.
We are now ready to quantify the change in w after resampling. Fix no € A’ and define UQ’L(n) =U(n) + (- U(np))Sn, for neA'.

Then, U2 is interpreted as the “full” potential in A’ with value changed to « at n9. Denote by {wa (1)}, o the random variables for which
Ua(n) = wa(n) + Vg o L(n) In this setting we have the quasilocality result below.

Lemma 6. Let Cy be as in (3.5). Whenever by = |%Cl < 1/2 and § < min{y_,2v} we have

Z e6d(n,no)

neA\{ny}

wfx\,L(n) - w(n)‘ < %(M - U(no)| + ZM) (3.24)

Proof. For simplicity we denote wﬁrL by we in this proof. Observe that there exists o = {@a },en With @x(n) € (w(n), ws(n)) such that
for each n e A"\{no}.

an(n) = ()] = B Vs (n) = Verioa ()

< Igl‘ OVeii(n, q)

(|¢x— U(no)| + ‘g|‘VeffwaL(”0) Veff,w,L(”0)|)

8%:95:80 ¥20Z AInf 90

dw(ny)
OVegt(n, 0y
kgl ‘;{E(D M wa®) - w(D).
len’ \{”0}
Thanks to Lemma 5, whenever \g|C1 < 1 we can apply Lemma 4 with the choices ¢(1) = |wa (1) — @(1)|8nsn,, W(n) = Cmm)
lg| | OVesr(n, ) ( gl )
= - -U Ve W, Ve W 3.25
() = 51 L8 (= U )+ 811 Ve (0) = Ve (m) (.29
and "
g 8Veff(7’l; (ba)
K(n,u) = |—/—7—°- 3.26
(1) A ‘ Ow(u) (3.26)
finishing the proof.
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IV. SECOND ORDER DECAY BOUNDS ON THE EFFECTIVE POTENTIAL

This section is devoted to the cancellation bounds of step 3 of the proof outline. From now on throughout the paper we denote by v any
positive number satisfying (3.3).

Lemma 7. Let L € N. Whenever |g|CuM%Sm S_& < 3 we have, for each § < & := min{v,y,} and [ € Ay,
2 2

lgl 34(nl) | OVettor(n)  OVefrw,1(n) ~3d(nd)
o . ) < Cla—U 8d(no, 4.1
AneZALe dw(l) dw(l) sl Ulmle "
with
48|/ F | 00 Ca
= BlFl=Cog s gl +IgPCr) “2

and C; asin (3.5).

Proof. By (3.8) we find thatifn,l e AL

OVettwr (1) _ Vetta,a () _ =AY a(n,m)(ru(m,1) —ri(m,1))

dw(l) dw(l) meh,
o aVefﬁa),L ( k)
- a(n,m ro(m, k) —rp(m,k)) —————-—=
833 alnm) 3 (ru(mk) < (m k) S

e atnm)y rf<m’k>( S U BVB“’«TEB(k))

meAL keAp

where

ro(u,v) = 2%11'[:“(”’ v;t) f(t) dt, (4.3)

re(u,v; t) asin (3.10) and r{ (4, v) similarly defined with w replaced by we,r.
With these definitions, letting z = ¢ — i we reach
|rL(m, ks t) — i (m, ks t)| < |GL(m, ks 2) = GL.(m, k; 2)||GL (K, m; 2) |
+|Gr(k,m; 2) - G (k,m; 2)||GL (m, k; 2)|
+ |GL(m,k;2) - G]‘f(m,k;é)HGL(k, m;z)|
+ |GL(k, m;z) - G (k, m;2)||Gf(m,k;2)|.

Note that by definition of wa we have that

|GL(m,k;z) - Gr(m, ks z)| =Ma - U(no)||Gr(m, ng;z)||GZ(n0,k; z)| (4.4)
for all m, k € Ar. In particular
[re(m, 1) = 72 (m, )] < Ao - U(no)|24€'f”°°e‘”“('"’”“’('"’""’*”"”°””. (4.5)

Indeed, (4.5) follows from (4.4) and a similar argument to the one in (3.14) with the help of the following Combes-Thomas type bound cf.
Ref. 47 (Lemma 18)

. 1 1/2 _—vd(u,v)
Gr(u,v;t <V2(6y, ———5-0 4.6
|GL(u, vst £ in)| \/_< (HL—t)2+172/2 )Ce (4.6)

applied separately to |Gy (m, no; z)| and |G} (no, k; 2)|.

8%:95:80 ¥20Z AInf 90
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Thus, assumption 1, (3.15) and (4.5) imply

aVeff,w,L(”) _ 8Veff,wa‘,L(n)
Aw(l) Aw(l)

24V/2||F| 0o Ca —vd(n —yd(m,n)—v(d(m mn
< Xla- Um)| fl}l72 oo Ca vt 5~ goyitman=stamiy )
mez!

OVefrw,L (k)

24V2||F| o Ca —yd(man)—v(d(mk)+d(mne) +d(no.k))
+ /1 -U Z2V T Nee e y > > >0 0>
lghla—U(m)| === 5 3 e dw(l)

mez kez!

8Veff,w,L (k) _ 8Veff,a)‘,,,L(k)
ow(l) Ow(l)

72\/§”FH00 —yd(m,n)—2vd(m,k
+lC = HE 3 e

mez’ kez?

Thus, if 8o = min{v, ya}, 0 <dpand C; isasin (3.5)

8Veff,m,L (Vl) aV(-:ff,w,(,L (H)

24\/2||F ooca -2 ng,l)+d(n.
\/_Hzll 7C1S_<?Zoe g(d( o) +d(n))

<AVl - U(no)|724\/§Hf”°°C“ ¢ vdlmD g=oud(n g |

+[gMla = U(no)|

Vet (k)  OVefro,1 (k)

72\/§HF||00 ~% 4(nk)
Co———S & E 2 T
*lel i ~h € dw(l) Aw(l)

? kez!

In particular, if b, = |g|Ca M%S s-5,S_s <  another application of Lemma 4 yields
2 2

aveff,w,L(”) _ aVeff,w,,,L(”)
Aw(l) Aw(l)

481F|Co v,
2

Z egd(n,z)

nez’

<AVla—U(np)| DS 55 Sy

48 F|| o0 Ca
Bl lotay

+1gl &= U(no)le 24 DS 5 S50 Gy
2 2

48|/ F|| oo Cq
< Mo — U(no)|%

Sty S—y(A + [g|C1 e 240D

with C; asin (3.5).

V. A PAIR OF TECHNICAL LEMMAS
Fix L e Nand A’ ¢ A. Recall that in (3.23) we have denoted U(n) = w(n) + $ Vegr,.(n) for each n € A" with Vg1 given by (2.8). We

also write 7 : RI*'T & RV the above change of variables, i.e.,
T(w(m),...,w(np)) = (U(m),....,U(np)). (5.1)

In the sequel we will abbreviate this by writing
Tw=Uorw=T 'U.

The first result on uniform control of the conditional density of U(no) is given below.

Lemma 8. Under assumptions 1-6 whenever \g|CaM+H°°Sa_yS(s_V <1 for some & < & := min{y,, v} the conditional distribution of

U(no) = v at specified values of {U(n)}, e\ (n,} has a density p:fffl (v). Moreover, pfffl v) is bounded:

ff,A7
Moo := sup sup sup sup sup p,’p (v) < oo. (5.2)
weQ LENA'c A npeA veR

Proof. We note that in the above setting pfgi\ is given by

P(V - %Veff,T’lU,L(”O))HneA’\{no} P(U(") - %Veff,T’lu,L(”))]U

P (V) = e K " (53)
op(a=§ Ve 0, (10) ) ueary (o} P(US(1) = § Vg 710,.(n) ) u, dax
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where
Ju = det (I - ‘%
and we recall that
: _ _ &{( 9Veftwr (m:) __ g
Letting A = —% (7(%("” )IA'IXIA'I and B =

e

OV gy 1 U,L(”i)

=T ent [((A=B)(I+B) ™) (mm)|

ARTICLE pubs.aip.org/aip/jmp

) e £ M)
|A’|><|A’| “ A 8U(1’lj) |A’|><|A’|

U%(n) = U(n) + (a = U(10))8nzn,.

oU(ny)

( OVettog1 (1)

BuCn ) one has that

)\A'\X\A'\

det(I+B)| 5, l(B-4)+a)")onn)]
det(I+A)|~ '

(5.4)

(5.5)

Indeed, (5.5) follows from the inequality det (I + M) < el [cf. Ref. 51 (Lemma 3.3)], see Ref. 47 (Lemma 22). We remark that it suffices to
control ratios of the above determinants instead of the ones in (5.4) since the later arise from the inverse change of variables T7U = w.

We are now ready to estimate the right-hand side of (5.5). Using Lemma 5 we see that whenever ‘i—l Ci < § we have that

thus

|B]lcorco = sup 3" e™D|B(n,1)] <

1
neN lepn’ 4

|(1+B)™ (n,1)] < 4e” 0D

by the Combes-Thomas bound. Using Lemma 7 and the inequalities (5.5) and (5.7) we find that

-4G,8 5la-U(ny)|  det ]Ua
e -2 <

4G, 4 la=U(no)|
2 .
T odetJy T

For each n # ng, writing wy(n) = U%(n) - £V, 1 (n), one concludes from assumption 6 that

alem-oml . P(@a() - cfou(m-a(m]

~ple(n)) —

By Lemma 6 it then follows that for § < min{y_, v}

2 5eCu(Cla-U(m)l 2§ Vel ) 11 plwa(n)) _ 28cci((la-UGm)l+28 | Verlc)

weny PL0(1))

In particular, under assumptions 1-6 for each fixed A we obtain for |g|| F| e sufficiently small that if

then

finishing the Proof of Lemma 8.

2
9= (2C1L/%| + 4C]C1 %)Sﬂ,ﬂlS\/E”FHN

TP ——
veR vek [ p(a)e " da

Now we shall see that under assumption 7 one may achieve a better control on the conditional densities.

(5.6)

(5.7)

(5.8)

(5.9)

(5.10)

(5.11)

(5.12)

Lemma 9. Under assumptions 1-7 there exits € >0, 9 = 9(|F|, &, A, 0, y,» v»p) and g, = g, (A, c1,y, v, 1,) independent of A and L such

that if |g|| F|e < g1 then

®

()M < ) < ()M

(5.13)
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(i)
e (1- 9)|v v| P L (V) & 1+9)|v—
l < Pl 270 ¢ g (k] (5.14)
nOL( )
Moreover, 9 — 0 as |g|||F| oo — 0.

Proof. To reach the upper bound we follow most of the Proof of Lemma 8, obtaining improvements at the very end with help of
assumption 7. Observe that, with the choice § < min{y_, v}, Egs. (5.3)-(5.8) imply the pointwise bound

eff, A ) < P(V— ‘%Veff r-‘UL("O))

pnOL
Ig\ lel
=28 Ci( (la—v|+25 |V,
oop( LeffT*IU L)e (

(5.15)
— 2 —
g ULH°°)e 4C287%|D£ v|

da

where we recall that C; is given in (3.5) and is independent of |g|. The constant C; is given in (4.2) and is proportional to |g| when this number
is sufficiently small. Note that by assumption 6 we have for any ¢ € R and ny € A"

g
e_cl%uvcff,T_lU,LHN < p(t_ AVeff’T_IU’L(nO)) < Cl ) ”foT UL” (5.16)
p(1)
Hence from (5.15)
Pffll.\ (v) < ezc‘(p’cl%)‘%HVeff,T“mL”"“ p(v) (5.17)

f_":op(oc)e‘e“”‘“"")' da

with 0 = Z%CIQ +4C,8* ;. Now we make use of assumption 7 to write p(r) _ h("g e~ (M=la) wyith
2

pla)
—sz\v af < h(V) £2|v—a| (5 18)
< (oc) .
and observe that
| Vepw oo < S—y,18V2[F| o (5.19)
cf. Theorem 3 in Ref. 5 and assumption 5. This yields, with § = (2¢; % I8l 4+ 46, |g‘ )S-y,18v/2||F o,
—cplvl
effA e
phut () <€ = el @l gy (5.20)
Pick g, sufficiently small such that if ||| F||cc < g1 then 6 < 2
—cv|
Pt < 521
/= el Tl gy
from which we readily obtain, for ¢ := 3% and
piﬁff (v) < es(%)e(fc””)‘vl. (5.22)

The lower bound in (i) is analogous. One follows the above process using instead the upper bounds given in (5.8) and (5.10) along with
assumptions 6, 7 and (5.3) to reach

s 3(2E)m 629

finishing the proof of (i). To prove (ii) we use (5.3) to write

Zﬁfﬁ () P(V_‘%Veff,T*‘U,L(”O)) neA\{no}P(U(") 1 effT"UL(n))]U

ff -
szu?(v) P(V,_§Veff,T’lUvz,L(n0)) nEA\{nn}p(U (m)-% effT"U/L(n))]U'

(5.24)

where U, (n) = U(n) + (v' = U(no) )8y, for n € A’. The bounds in (ii) then follow as above from (5.8) and (5.10), both applied to & = v/, along
with assumption 6 and (5.19).

8%:95:80 ¥20Z AInf 90
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VI. SELF-AVOIDING WALKS AND LOCALIZATION: PROOF OF THEOREM 1

It is well known that the conclusion of Theorem 1 follows from the result below, see Ref. 7 (Appendix B).

Theorem 10. There exist Aur and g, = §,(Ca,dsp, A, y,.1,) (independent of L and A') such that whenever A > Adur and ||| F| e < go we
have that for each s € (0,1)

E(‘Gf’(m, n;z)r) < Cyeblm= 6.1)
for all z € C\R and certain constants Cs; > 0 and &, > 0 independent of L and A'. Moreover, Agr solves (2.12).

Proof. We closely follow the arguments of Ref. 50 but provide details for the sake of completeness since a few modifications are required
to account for the Hartree-Fock setting. Let z € C\R. We start from the depleted resolvent identity which is valid for m # n e A":

Gfl(m, n;z) = —GIL\I(m, m;z) Z Gz\l\{m}(m', n;2). (6.2)
m'eA’
|m’ —m|=1

Note that by Lemma 8 we have the local fractional moment bound

(M)
EU(m])<|GL (m])mpz)‘ ) = (1 S)AS (63)
which is valid for any A’ cArpandse (0,1), see Ref. 9 (Theorem 8.1). Iterating (6.2) along a sequence mg = m, my, . . . ,mj of distinct points

in A" and applying (6.3) we find that after N iterations

(|62 (m z)‘ )< i ((2Ms)is) 5 ]E(‘Gf’“’"“'---"”f}(n, ”;Z)r)

j=0 {mk}‘f:lesl}'(n,m)

(@) 5 s e

; ’
{mi i <8y (m)
me#En k=1,....N

where we denote by S (n m) the set of self-avoiding walks in A’ of length j starting at m and ending at n and by sy (m) un Y sy (n,m) the

set of all self-avoiding walks in A’ of length N starting at m. Therefore, applying (6.3) once more and denoting I'(s) := /\)5 we have that

(1 D)

’ N N . r ’
E(|GE (m,ms2)[) < X2 T(s)*'#8} (mm) +T(5) #5% (m) (6.4)
j=0

1
Imz|*

We now make use of some facts about self-avoiding walks, see Ref. 50 and references therein for a more detailed discussion. Recall that the
self-avoiding walk correlation function is defined by

Cy(n-m):= i YN #Sn (n, m) (6.5)
N=0

whenever Y%, |y #Sn (1, m) < oo. The self-avoiding walk susceptibility is defined by

x(y) = Cy(m)= Z vy (6.6)

mez®

where Cy denotes the number of self-avoiding walks of length N starting at 0. We also recall that the conective constant of Z is
pa = lim (Cx)¥. 6.7)

In particular, 4714 is the radius of convergence of (6.6). It is also well-known that 0 < u, < 2d — 1. It is crucial for our argument that whenever

0<y< /71,1 the self-avoiding walk correlation function C,(m) decays exponentially as |m| — co. This follows from the inequality

Cy(m) < Be((pa + €)y)™ (6.8)

valid for ¢ > 0 and some constant B..
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Therefore, whenever I'(s) < ;%,1 we have that y(I'(s)) < Yo CnI(s)N < oo. In particular, the remainder in (6.4) satisfies

T(s)V#Sy (m) <T(s)NCy =0 as N — oo. (6.9)
Thus, letting N — oo in (6.4) we find
E(|Gi\’(m, n;z)r) <> l"(s)j“#S’j\’(n,m). (6.10)
j=0
from which we conclude that , .
IE(‘G’L\ (m, n;z)| ) < T(s)Cr(s) (m = n). (6.11)

Finally, to end the proof we determine for which values of s € (0, 1) one has that I'(s) < ;%1 Observe that whenever ﬁ > e the only critical
1

point of I'(s) is so(A) =1 - Y g which yields

I'(so) =eln (2Moo )ZMToo (6.12)
Thus T'(sp) < ;714 if and only if
A
A > 2Meopige In ( Mo ) (6.13)
so the critical threshold is Ay = 2Moo In ((2)11\]47]:.0 ) uae. For values of A greater than Axr we conclude that there exists € > 0 for which
1-—1 < |m—n|
N sz () A\ 2Me A \2Mw
E(‘GL (m, n,z)| ) <eln ( T ) 1 Be| (4g +€)e In o) x . (6.14)

and (g4 +€)eIn (ﬁ)ZMT“’ < 1. Applying Hélder’s inequality we conclude that (6.1) holds for any s € (0,1) and some Cs >0 and &, > 0.

and follows from (off-diagonal) a priori bounds for the Green’s function if 1 — ﬁ <s<1,

1
A “(M

This is immediate if 0 <s <1 — ;
2Moo
see Ref. 7 (Lemma B2) and Ref. 9 (Theorem 8.3).

VIil. PROOF OF THEOREM 3 AND COROLLARY 2

Similarly to how Theorem 10 implies Theorems 1 and 3 follows from the result below.

Theorem 11. In the setting of Lemma 9, for each I c R the exists £ (Card,p, A, Yoo 110), v''>0,C>0and Ly (independent of A and L)
such that whenever |g||F|_ < g1 and A < Ao we have that

E(|Ga(m,n,E)[) < ce™" 1" 7.1)
for some s € (0,1). Moreover, we have that
Ao = sup sup inf A, (E) (7.2)
se(0,1) p>0 Eel
where .
Aou(E) = | Dy sup sup Y. |Go(u, ;E + i6)|se“|”_v‘ . (7.3)
0+0 yezd ezl

Theorem 11 in turn follows from Lemma 9 along with known results and thus we only provide an outline for how it is proven. Before
doing so, we recall some notions of regularity for probability distributions, cf. Refs. 6 and 9 which will be relevant in the sequel.

Definition 12.
(i) A probability measure p(dv) on the real line is T-regular, with T € (0, 1], if for some vo € R and C >0
p([v—=28,v+8]) <Clo|"p([v—vo,v +w0]) (7.4)
holds for all § € (0,1) and v € R.

8%:95:80 ¥20Z AInf 90

J. Math. Phys. 64, 112101 (2023); doi: 10.1063/5.0156478 64, 112101-15
Published under an exclusive license by AIP Publishing


https://pubs.aip.org/aip/jmp

Journal of

i : ARTICLE i o
Mathematical Physics pubs.aip.org/aip/jmp

(ii) A joint probability measure p(dV') of a collection of random variables {V,} is conditionally t-regular if the conditional distributions of
Vo at specified values of { Vi }m=n satisfy (7.4) with uniform values of the constants appearing there.
(iii) If, additionally, for some € > 0 the conditional expectations of |V,|* are uniformly bounded:

E(|V,4|£| V{,,}c) < B, forsome B >0, (7.5)

then the joint probability measure p(dV') is said to be conditionally (7, ¢)-regular.
(iv)  p has regular g-decay for q > 0 if

p(lu-Lu+1])< ¢

< —0, orsome C>0. 7.6
EAP A (7.6)

Proof of Theorem 11. Lemma 9 (i) readily implies that pfgz\’ (v) dv has regular g decay for all ¢ > 0 and that for all p > 0

e fr,A
[ e v <,

ie., pf:fz\’ (v) dv is conditionally (1, p)-regular for all p > 0. Moreover, by Lemma 9 (ii), we have that for any § € (0,1] and u € R

u+d ’ ’
eff, A (21 9) eff,A
[ (v < o) VR ()
u+1 ’
< 8219 fuil pfg? (v) dv,

in particular we see that piﬁffl (v) dv is (uniformly) 1-regular.

We then conclude from Ref. 9 (Theorem 8.7) that pfff’ is 1-moment regular, namely D;; < oo with Dy asin (2.17) for all s € (0,1). In

particular, Theorem 11 falls into the framework of Ref. 9 (Theorem 10.4).

Proof of Corollary 2. Note that when |g|||F||co — 0 then 6 — 0 in Eq. (5.17) (which only requires assumptions 1-6). Thus, by dominated
convergence, we may choose Moo such that Meo = [|p|leo as |g|[|F|lec — 0. Corollary 2 now follows from (1.3) and (2.14) since these equations

imply

(Anr = Aand) = 2Moo (In (Anrr) — In (Aana)) = 2444 In (Aand) (Moo — ||p] o)
2u4([lpllee In (2] pflos) = Moo In (2Mo))

1 A'HF
and by construction ;3= > e > 1.

DEDICATION
Dedicated to Abel Klein in occasion of his 78th birthday.

ACKNOWLEDGMENTS

This work was partially supported by Grant Nos. NSF DMS-2000345 and DMS-2052572. R. Matos is thankful to the anonymous reviewer
for several remarks which greatly improved the exposition in this note.

AUTHOR DECLARATIONS
Conflict of Interest

The author has no conflicts to disclose.

Author Contributions

Rodrigo Matos: Formal analysis (equal).

DATA AVAILABILITY

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

8%:95:80 ¥20Z AInf 90

J. Math. Phys. 64, 112101 (2023); doi: 10.1063/5.0156478 64, 112101-16
Published under an exclusive license by AIP Publishing


https://pubs.aip.org/aip/jmp

Journal of

i : ARTICLE i o
Mathematical Physics pubs.aip.org/aip/jmp

APPENDIX: BASIC PROPERTIES OF THE EFFECTIVE POTENTIAL

We now provide some results on existence and uniqueness of the effective potentials as well as their regularity with respect to the random
variables. Since the statements are mostly immediate generalizations from the ones given in Ref. 47 we skip most proofs. We formulate the
first of these results for £ (Zd) but remark that its finite volume analogue holds similarly.

1. Contraction mapping arguments
Let ®: £~ (Zd) - £°°(Zd) be given by
O(V) = > a(n,m){8m F(A+AVy+gV)dm) (A1)
mez?

We wish to show that there is a unique solution Vg to the equation ® (V') = V. For that purpose, we introduce a technical Lemma which may
be found in Ref. 47 (Proposition 12).

Lemma 13.

(a) Let T =A+AV, beas in assumptions 1-5. Given potentials V, W € £~ (Zd), we have, for any v satisfying (3.3) and 8 € (0,v), that

72\/5 —v'd(m,n
[(@m (F(T+ V) = F(T+ W))8y)| € =S50y | Floo [V = Wooe™ ™. (A2)
(b) Foranym,n, j € 29, the matrix elements (8,,, F(T + gV)3,) are differentiable with respect to V(j) and
O{Om, F(T + V)30 72+/2¢™*(H0mi) ()
O T 8VIO)) |Fleo |V (a3)
149)) n

From Lemma 13 and assumption 5 we obtain

7242
n

[&(V) - ®(W)]e < gl Ss-vS-y, CalFlloo |V = W/eo

thus we conclude the following.

Proposition 14. Whenever |g|%585_v8_ya Ca|F| oo < 1 for some & € (0,v) the map ® : £ (Zd) - f (Zd) is a contraction. In particular,

there is a unique Ve € £%° (Zd) such that ®(Veg) = Ve Moreover, the analogue effective potential in finite volume Ar, Vegta,1, is a smooth
Sfunction of (w(n1),...,w(n,)).

We also note that if a(n, m) € R for each n,m € Z* then V(n) € R for each n € Z%.

2. Norm resolvent convergence

Finally, we briefly comment on the convergence of resolvents which allows to extend the results of Theorems 1 and 3 to infinite volume
operators. It will be useful to introduce the augumented boundary

OAL={uce 7% dist(u, Ar) = 1 or dist(u, AY) = 1} (A4)

with dist(u, X) calculated in the metric of Z°.
Lemma 15.

(a) Given n € AL whenever

WVALIFlS-s o 1 e have that
n 2

Vet (1) = Vegro (n)] < Ce™ 2400 (A5)

432G, ||Floo 8IS

forany § <min{v,y } and C = , with d(n, OAL) calculated in the metric d(-, ) of assumption 5.

(b) Foranyx > 0, with |g| and § as above

4C —vd(m,n)— n,
‘GAL(m,n;t+ i) = G (m,nt + i;c)| < € dlmm=0d(ndh))g | (A6)
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In particular, for each fixed z € C* and vy € Kz(Zd) we have that
I(HY =2) 'y - (H* -2) 'y -0 as L — o (A7)

Proof. Using (3.1) and the analogous representation for Vg, (1) we find

3||Flleo [
[Vettw () — Vgt (n)] < %[ |K(n, w;t) — Kp(n, w; t)| dt
where for z = t — iy

|K(n,w;t) = Kp(n,ws )| < > |a(n,m)||G(m, m;z) — GL(m, m; z)|
> |r;(n,m)||G(m,m;2) - Gr(m,m; z)|

mez®
Observe that letting AY := Ar\dAr and (A?) = Z9\AS, for any m € Z“ we have that

|G(m,m; z) = G(m,m; 2)| < [g] 3 |G(m, ks 2)|| Vet (K) = Vet (K)[|GL(k m52)]

kel

36V2|F|oSoy,lel S |Gm K'52)||GL(K,m;2))|
Ke(ay)*

loo < S-,,18V/2|F|co cf. Theorem 3 in Ref. 5 and assumption 5.

where we have used that max { [ Vet | 00> | Vet
The result in (a) now follows from

had 2 _
G(u,v;2)||GL(v, u;2)| dt < ﬁe () (A8)
n
combined with assumption 5 and another application of Lemma 4 with
9(n) = [Vera(n) = Verar ()}, W(n) =0 (A9)
and
K(nu)={> ¢ Yad(nm)=2vd(mu) Ta,e(u) (A10)

mez!

for which we have by = 261Fl=lglSer 54 p, = 3V2elIFleoSoy

1
(b) Now follows from (a) combined with the resolvent identity and another application Combes-Thomas bound.
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