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Critical points of discrete periodic operators

Matthew Faust and Frank Sottile

Abstract. We study the spectra of operators on periodic graphs using methods from combinat-
orial algebraic geometry. Our main result is a bound on the number of complex critical points of
the Bloch variety, together with an effective criterion for when this bound is attained. We show
that this criterion holds for Z?- and Z3-periodic graphs with sufficiently many edges and use
our results to establish the spectral edges conjecture for some Z2-periodic graphs.

Introduction

The spectrum of a Z?-periodic self-adjoint discrete operator L consists of intervals
in R. Floquet theory reveals that the spectrum is the image of the coordinate projec-
tion to R of the Bloch variety (also known as the dispersion relation), an algebraic
hypersurface in (Sl)d x R. This coordinate projection defines a function A on the
Bloch variety, which is our main object of study.

When the operator is discrete, the complexification of the Bloch variety is an
algebraic variety in (C*)? x C. Thus, techniques from algebraic geometry and related
areas may be used to address some questions in spectral theory. In the 1990’s Gieseker,
Knorrer, and Trubowitz [18] used algebraic geometry to study the Schrédinger oper-
ator on the square lattice Z2 with a periodic potential and established a number
of results, including Floquet isospectrality, the irreducibility of its Fermi varieties,
and determined the density of states. Recently, there has been a surge of interest
in using algebraic methods in spectral theory. This includes investigating the irre-
ducibility of Bloch and Fermi varieties [13, 14, 23, 25], Fermi isospectrality [26],
density of states [21], and extrema and critical points of the projection A on Bloch
varieties [2, 11,25]. We use techniques from combinatorial algebraic geometry and
geometric combinatorics [31] to study critical points of the function A on the Bloch
variety of a discrete periodic operator. We now discuss motivation and sketch our res-
ults. Some background on spectral theory is sketched in Section 1, and Section 2.1
gives some background from algebraic geometry.
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An old and widely believed conjecture in mathematical physics concerns the struc-
ture of the Bloch variety near the edges of the spectral bands. Namely, that for a
sufficiently general operator L (as defined in Section 1.1), the extrema of the band
functions A; on the Bloch variety are nondegenerate in that their Hessians are nonde-
generate quadratic forms. This spectral edges nondegeneracy conjecture is stated
in [1, Conjecture 5.25], and it also appears in [6,22,27,28]. Important notions, such as
effective mass in solid state physics, the Liouville property, Green’s function asymp-
totics, Anderson localization, homogenization, and many other assumed properties in
physics, depend upon this conjecture.

The spectral edges conjecture states that for generic parameters, each extreme
value is attained by a single band, the extrema are isolated, and the extrema are nonde-
generate. We discuss progress for discrete operators on periodic graphs. In 2000,
Klopp and Ralston [19] proved that for Laplacians with generic potential each extreme
value is attained by a single band. In 2015, Filonov and Kachkovskiy [15] gave a class
of two-dimensional operators for which the extrema are isolated. They also show [15,
Section 6] that the spectral edges conjecture may fail for a Laplacian with general
potential, which does not have generic parameters in the sense of Section 1.1. Most
recently, Liu [25] proved that the extrema are isolated for the Schrodinger operator
acting on the square lattice.

We consider a property which implies the spectral edges nondegeneracy conjec-
ture: A family of operators has the critical points property if for almost all operators
in the family, all critical points of the function A (not just the extrema) are nondegen-
erate. Algebraic geometry was used in [11] to prove the following dichotomy: for a
given algebraic family of discrete periodic operators, either the critical points property
holds for that family, or almost all operators in the family have Bloch varieties with
degenerate critical points.

In [11], this dichotomy was used to establish the critical points property for the
family of Laplace—Beltrami difference operators on the Z?-periodic diatomic graph
of Figure 1. Bloch varieties for these operators were shown to have at most 32 crit-
ical points. A single example was computed to have 32 nondegenerate critical points.
Standard arguments from algebraic geometry (see Section 5) implied that, for this
family, the critical points property, and therefore also the spectral edges nondegener-
acy conjecture, holds.

We extend part of that argument to operators on many periodic graphs. Let L
be a discrete operator on a Z¢-periodic graph T' (see Section 1). Its (complexified)
Bloch variety is a hypersurface in the product (C*)¢ x C of a complex torus and
the complex line defined by a Laurent polynomial D(z, A). The last coordinate A,
corresponding to projection onto the spectral axis, is the function on the Bloch variety
whose critical points we study. Accordingly, we will call critical points of the function
A on the Bloch variety “critical points of the Bloch variety.” One contribution of this
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paper is to shift focus from spectral band functions A; defined on a compact torus
to a global function on the complex Bloch variety. Another is to use the perspective
of nonlinear optimization to address a question concerning the spectrum of a discrete
periodic operator.

We state our first result. Let I’ be a connected Z4 -periodic graph (as in Sec-
tion 1.1). Fix a fundamental domain W for the Z%-action on the vertices of I'. The
support A(I") of I" records the local connectivity between translates of the funda-
mental domain. It is the set of @ € Z¢ such that " has an edge with endpoints in both
W and a+W.

Theorem A. The function A on the Bloch variety of a discrete operator on I has at
most
dV W4+ vol(A(T))

isolated critical points. Here, vol(A(I")) is the Euclidean volume of the convex hull

of A4(T).

This bound uses an outer approximation for the Newton polytope of D(z, 1) (see
Lemma 4.1) and a study of the equations defining critical points of the function A on
the Bloch variety, called the critical point equations (6). Corollary 2.5 is a strength-
ening of Theorem A. When the bound is attained all critical points are isolated.

Example. We illustrate Theorem A on the example from [11, Section 4]. Figure 1
shows a periodic graph I' with d = 2 whose fundamental domain W has two vertices
and its support A(I") consists of the columns of the matrix (3 ¢ ! ). Figure 1
also displays the convex hull of A(I"). As |W| = 2 and vol(A(I")) = 2, Theorem A

implies that any Bloch variety for an operator on I" has at most
A W4 vol(A)) = 21-22F1 .2 = 32

critical points, which is the bound demonstrated in [11].

The bound of Corollary 2.5 arises as follows. There is a natural compactification
of (C*)4 x C by a projective toric variety X associated to the Newton polytope, P, of
D(z, L) [17, Chapter 5]. The critical point equations become linear equations on X
whose number of solutions is the degree of X. By Kushnirenko’s Theorem [20], this
degree is the normalized volume of P, (d+1)!vol(P). This bound is attained exactly
when there are no solutions at infinity, which is the set X := X ~ ((C*)¢ x C) of
points added in the compactification.

The compactified Bloch variety is a hypersurface in X. A vertical face of P is
one that contains a segment parallel to the A-axis. Corollary 3.9 shows that when P
has no vertical faces, any solution on dX to the critical point equations is a singular
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Figure 1. A dense periodic graph I" with the convex hull of A(T).

point of the intersection of this hypersurface with dX. We state a simplified version
of Corollary 3.9.

Theorem B. If P has no vertical faces, then the bound of Corollary 2.5 is attained
exactly when the compactified Bloch variety is smooth along 0X .

We give a class of graphs whose typical Bloch variety is smooth at infinity and
whose Newton polytopes have no vertical faces. A periodic graph I' is dense if it
has every possible edge, given its support A(I") and fundamental domain W (see
Section 4). The following is a consequence of Corollary 3.9 and Theorem 4.2.

Theorem C. When d = 2 or 3 the Bloch variety of a generic operator on a dense
periodic graph is smooth along 0X, its Newton polytope has no vertical faces, and
the bound of Theorem A is attained.

Theorem C is an example of a recent trend in applications of algebraic geometry
in which a highly structured optimization problem is shown to unexpectedly achieve a
combinatorial bound on the number of critical points. A first instance was [11], which
inspired [5] and [24].

Section | presents background on the spectrum of an operator on a periodic graph,
and formulates our goal to bound the number of critical points of the function A on the
Bloch variety. At the beginning of Section 3, we recast extrema of the spectral band
functions using the language of constrained optimization. Theorems A, B, and C are
proven in Sections 2, 3, and 4. In Section 5, we use these results to prove the spectral
edges conjecture for operators on three periodic graphs.
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Figure 2. Two Z>-periodic graphs.

1. Operators on periodic graphs

Let d be a positive integer. We write C* := C ~ {0} for the multiplicative group of
nonzero complex numbers and T := {z € C* | |z] = 1} for its maximal compact
subgroup. Note that if z € T, then Z = z~!. We write edges of a graph as pairs, (u, v)
with u, v vertices, and understand that (v, v) = (v, u).

1.1. Operators on periodic graphs

For more, see [3, Chapter 4]. A (Z4 -)periodic graph is a simple (no multiple edges
or loops) connected undirected graph I' with a free cocompact action of Z?. Thus,
7 acts freely on the vertices, V(I'), and edges, &(I"), of " preserving incidences,
and Z¢ has finitely many orbits on each of V(I") and &(T"). Figure 2 shows two
Z?-periodic graphs. One is the honeycomb lattice and the other is an abelian cover
of K4, the complete graph on four vertices.

It is useful but not necessary to consider I' immersed in R? so that Z¢ acts on
I via translations. The graphs in Figure 2 are each immersed in R?, and for each we
show two independent vectors that generate the Z2-action.

Choose a fundamental domain for this Z¢-action whose boundary does not con-
tain a vertex of I'. In Figure 2, we have shaded the fundamental domains. Let W be
the vertices of I" lying in the fundamental domain. Then W is a set of representatives
of Z%-orbits of V(I'). Every Z?-orbit of edges contains one or two edges incident
on vertices in W. An edge incident on W has the form (u, a+4v) for some u,v € W
and a € 79 (If @ = 0, then u # v as " has no loops, and there are no restrictions
when a # 0.) The support #4(I") of I is the set of @ € Z¢ such that (u, a+v) € &(T)
for some u, v € W. This finite set depends on the choice of fundamental domain and
it is centrally symmetric in that A(I") = —A(I"). As I is connected, the Z-span of

A(T) is Zd For both graphs in Figure 2, this set consists of the columns of the matrix

010-—1
001 0—1
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A labeling of T is a pair of functions e: &(I') — R (edge weights) and V: V(") —
R (potential) that is 74 -invariant (constant on orbits). The set of labelings is the finite-
dimensional vector space RE x RY, where E is the set of orbits on &(I"). Given a
labeling ¢ = (e, V'), we have the discrete operator L. acting on functions f on V(T).
Then L.(f) is defined by its value at u € V(I'),

Le(f)) = V@) f) + Y eww(f ) — f(v)).

(u,v)e&T)

We call L. a discrete periodic operator on I', and may often omit the subscript c.
It is a bounded self-adjoint operator on the Hilbert space £?(I") of square-summable
functions on V(I'), and has real spectrum.

1.2. Floquet theory

As the action of Z¢ on I' commutes with the operator L, we may apply the Flo-
quet transform, which reveals important structure of its spectrum. References for this
Floquet theory include [1, 3,22].

The Floquet (Fourier) transform is a linear isometry £2(I') — L2(T4,C"), from
¢2(T") to square-integrable functions on T4, the compact torus, with values in the
vector space C% . The torus T4 is the group of unitary characters of 72 .Forz € T4
anda € 79, the corresponding character value is the Laurent monomial

2% =125
The Floquet transform f of a function f on V(I') is a function on T4 x V(T) such
that for z € T4 and u € V(I),

f(z.a4u) = 2% f(z,u) fora € Z°.

Thus, f is determined by its values at the vertices W in the fundamental domain.
Let f € L2(T9,CY). Then for u € W, f(u) is a function on T<. The action of
the operator L on the Floquet transform f is given by the formula

L(H@) = V@) f) + Y ewarn (f1) — 2 f(v), (1)

(u,a+v)e&(T)

as f (a+v) =z° f (v). The exponents @ which appear lie in the support A(I") of I'.
The simplicity of this expression is because L commutes with the Z¢-action.

Thus, in the standard basis for C"', the operator L becomes multiplication by a
square matrix whose rows and columns are indexed by elements of W. Writing 8, 5
for the Kronecker delta function, the matrix entry in position (u, v) is the function

Su,v (V(”) + Ze(u,w)> - Ze(u,a-i-v)za' 2)

(u,w)e& () (u,a+v)e&)
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Figure 3. A labeling of the hexagonal lattice.

Example 1.1. Let I' be the hexagonal lattice from Figure 2. Figure 3 shows a labeling
in a neighborhood of its fundamental domain. Thus, W = {u, v} consists of two ver-
tices and there are three (orbits of) edges, with labels a, B, y. Let (x, y) € T2. The
operator L is

L)) = V) f@) +a(f) - f(v)

+B(f () —x7 f ) + y(f) =y f()),
L(f)() = V() f(v) + e(f(v) = f@))

+B(f () —x ) + y(f(v) — y f ).

Collecting coefficients of f (u), f (v), we represent L by the 2 x 2-matrix,

I (V(u)—i—ot—l—ﬂ—l—)/ —a—ﬂx_l—yy_l) 3)
T\ —a—Bx—ypy V) +a+B+y )

whose entries are Laurent polynomials in x, y. Notice that the support A(I") of I'
equals the set of exponents of monomials which appear in L. Observe that for (x, y) €
T2, LT = L, so that L is Hermitian, showing again that the operator L is self-adjoint.

What we saw in Example 1.1 holds in general. In the standard basis for C",
L = L. is multiplication by a |W| x |W|-matrix L(z) = L.(z) with each entry (2)
a finite sum of monomials with exponents from A(I") (a Laurent polynomial with
support A(T")). Note that (v, a+v) € &(I) if and only if (—a+u,v) € §('), these
edges have the same label, and for z € T4,2@ = z74 Thus, for z € T¢, the matrix
is Hermitian, as L(z)T = L(z™!) = L(z).

1.3. Critical points of the Bloch variety

As L(z) is Hermitian for z € T, its spectrum is real and consists of its |W| eigen-
values

A(z) £ A2(z) < -0 < Aw(2). 4)
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These eigenvalues vary continuously with z € T4, and A j(2) is called the jth spectral
band function, A;: T > R.Its image is an interval in R, called the j th spectral band.
The eigenvalues (4) are the roots of the characteristic polynomial

D(z,4) = Dc(z,4) = det(Lc(2) — A1), &)
which we call the dispersion function. Its vanishing defines a hypersurface
Var(De(z, 1)) = {(z,A) e T xR | D(z, 1) = 0},

called the Bloch variety of the operator L.' The Bloch variety is the union of |W|
branches with the jth branch equal to the graph of the jth spectral band function.
The image of the Bloch variety under the projection to R is the spectrum o (L) of
the operator L. This projection is a function A on the Bloch variety. Identifying the
jth branch/graph with T¢, the restriction of A to that branch gives the corresponding
spectral band function A;.

Figure 4 shows this for the operator L on the hexagonal lattice with edge weights

T 3m

6,3,2 and zero potential V — for this we unfurl T 2, representing it by -7 7]2 C R?,

which is a fundamental domain in its universal cover. (That is, by quasimomenta in
-7, 37” 2)) It has two branches with each the graph of the corresponding spectral
band function. An endpoint of a spectral band (spectral edge) is the image of an
extremum of some band function A, (z). For the hexagonal lattice at these parameters,
each band function has two nondegenerate extrema, and these give the four spectral
edges. These are also local extrema of the function A on the Bloch variety.

The spectral edges conjecture [1, Conjecture 5.25] for a periodic graph I' asserts
that for generic values of the parameters (e, V'), each spectral edge is attained by a
single band, the extrema on the Bloch variety are isolated, and all extrema are nonde-
generate (the spectral band function A; has a full rank Hessian matrix). Here, generic
means that there is a nonconstant polynomial p(e, V') in the parameters such that
when p(e, V') # 0, these desired properties hold.

The entries in the matrix L(z) and the function (5) defining the Bloch variety
are all (Laurent) polynomials. In this setting it is natural to allow complex paramet-
ers, e: &(I') — C, V: V(I') — C and variables z € (C*)4, A € C. With complex
parameters and variables, L. (z) is no longer Hermitian, but it does satisfy L.(z)T =
L¢(z71) and the Bloch variety is the complex algebraic hypersurface Var(D.(z, 1))
in (C*)? x C defined by the vanishing of the dispersion function D, (z, ) of L(z),

see (5).

!This is also called the dispersion relation in the literature. We use the term Bloch variety
as it is an algebraic variety and our perspective is to use methods from algebraic geometry in
spectral theory.
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Figure 4. A Bloch variety and spectral bands for the hexagonal lattice.

In passing to the complex Bloch variety, we may no longer distinguish branches
Aj(z) of A. At a smooth point (zg, Ag) whose projection z to (C*)? is regular (in
that %—g(zo, Ao) # 0), there is a locally defined function f of z with Ao = f(20)
and D(z, f(z)) = 0 on its domain, but this is not necessarily a global function of z.
Consequently, we will consider the projection to the last coordinate to be a function
A on the Bloch variety, and then study its differential geometry, including its critical
points.

Nondegeneracy of spectral edges is implied by the stronger condition that all
critical points of the function A on the complex Bloch variety are nondegenerate.
Understanding the critical points of A is a first step. Our aim is to bound the number
of (isolated) critical points of A on the Bloch variety of a given operator L, give cri-
teria for when the bound is attained, prove that it is attained for generic operators on a
class of graphs, and finally to use these results to prove the spectral edges conjecture
for 21° 4 2 graphs. We treat these in the following four sections.

2. Bounding the number of critical points

We first recast extrema of spectral band functions in terms of constrained optimiz-
ation. The complex Bloch variety is the hypersurface Var(D(z, 1)) in (C*)¢ x C
defined by the vanishing of the dispersion function D(z, A). Critical points of the
function A on the Bloch variety are points of the Bloch variety where the gradients in
(C*)? x C of A and D(z, A) are linearly dependent. That is, a critical point is a point
(z,A) € (C)¢ x C with D(z, 1) = 0 such that either the gradient V. D(z, 1) vanishes
or we have 3—2(2,)&) =0fori =1,...,d and %—3(2,)&) #0(as VA =(0,...,0,1)).
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In either case, we have

oD
D(z,A)=0 and — =0 fori=1,...,d.
3Zi

Since z; # 0, we obtain the equivalent system

aD aD
D(Z’A')Z ZI—Z"‘ZZd_ZO, (6)
821 azd

which we call the critical point equations.

Proposition 2.1. A point (z, 1) € (CX)? x C is a critical point of the function A on
the Bloch variety Var(D(z, A)) if and only if (6) holds.

Proof. We already showed that at a critical point of A, the equations (6) hold. Suppose
now that (z, 1) € (C*)¢ x C is a solution to (6). As D(z, A) = 0, the point lies
on the Bloch variety. As z € ((Cx)d, no coordinate z; vanishes, which implies that
S_ZD,»(Z’ A)=0fori =1,...,d. Thus, the gradients VA and V D are linearly dependent
at (z, 1), showing that it is a critical point. [

Remark 2.2. A point (zo, A¢) € T? x R such that 19 = A i(20) is an extreme value
of the spectral band function A; is also a critical point of the Bloch variety. Indeed,
either the gradient V D vanishes at (zg, Ag) or it does not vanish. If V.D(zg, Ag) = 0,
then (zg, Ag) is a critical point. If V.D(zg, Ag) # 0, then the Bloch variety is smooth at
(2o, Ao) and thus is a smooth point of the graph of ;. As Ag = A;(zo) is an extreme
value of A;, the tangent plane is horizontal at (zo, A¢). This implies that A; is differ-
entiable (by the implicit function theorem) and that %{(zo, Ao)=0fori =1,...,d.
Thus, the gradients of A and D at (zg, Ag) are linearly dependent, showing that it is a
critical point.

Bézout’s Theorem [29, Section 4.2.1] gives an upper bound on the number of isol-
ated critical points: We may multiply each Laurent polynomial in (6) by a monomial
to clear denominators and obtain ordinary polynomials. The product of their degrees
is an upper bound for the number of the common zeroes that are isolated in the com-
plex domain. Polyhedral bounds that exploit the structure of the Laurent polynomials
are typically much smaller. Sources for these are [8, Chapter 7], [17, Chapter 5],
and [30, Chapter 3]. These results bound the number of isolated common zeroes,
counted with multiplicities. An isolated common zero z¢ of polynomials fi,..., f7+1
on (C*)? x C has multiplicity 1 exactly when the gradient of f1,..., f441 spans the
cotangent space at zg; otherwise its multiplicity exceeds 1 (see [8, Chapter 4, Defini-
tion 2.1] and [7, Chapter 8.7, Definition 8]).

Let C[z%, A] be the ring of Laurent polynomials in zi, ..., zg, A where A occurs
with only nonnegative exponents. Note that D(z, 1) € C[z*, A]. The support A(Y) C
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Figure 5. Support and Newton polytope of the hexagonal lattice operator.

7% x N of a polynomial ¢ € C[z*, A] is the set of exponents of monomials in y. The
Newton polytope N () := conv(A()) of ¥ is the convex hull of its support. Write
vol(N (¢)) for the (d +1)-dimensional Euclidean volume of the Newton polytope

of .

Example 2.3. We continue the example of the hexagonal lattice. Writing £ for
a+p+y—A, the dispersion function D(x, y; A) of the matrix (3) is

(V@) + OV (@) +0) = (—a = Bx~" —yy H)(=a — x — yy).

In Figure 5 the monomials in D(x, y; A) label the columns of a 3 x 9 array which are
their exponent vectors. Figure 5 also shows its Newton polytope, which has volume 2.

Theorem 2.4. For a polynomial ¥ € C[z*, A], the critical point equations for yr

3 0
Ve =aigt = =z =0 )
Z1 0zg4

have at most (d 4+1)!vol(N (¥)) isolated solutions in (C*)? x C, counted with mul-
tiplicity. When the bound is attained, all solutions are isolated.

We prove this at the end of the section.
As the Bloch variety is defined by the dispersion function D(z, A) = det(L(z) —
A1), we deduce the following from Theorem 2.4.

Corollary 2.5. The number of isolated critical points of the function A on the Bloch
variety for an operator L on a discrete periodic graph is at most (d +1)! vol(N (D)).

Theorem A follows from this and Lemma 4.1, which asserts that

N (D) C [W|(conv(A(I) U {e}).
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where e = (0, ...,0, 1). This containment implies the inequality

(d+1D)!vol(N (D)) < (d+1)!|W|4* ! vol(conv(A(T) U {e}))
=d!|W | vol(A(I)).
We prove Theorem 2.4 and Corollary 2.5 after developing some preliminary res-

ults.

2.1. A little algebraic geometry

For more from algebraic geometry, see [7,29]. An (affine) variety is the set of common

zeroes of some polynomials f1,..., fr € C[x1,...,x,],
Var(fi,..., fr) i ={x e C"| fi(x) =--- = fr(x) =0}
We also call this the set of solutions to the system f; =--- = f, = 0. We may replace

any factor C in C” by C*, and then allow the corresponding variable to have negative
exponents. The complement of a variety X is a (Zariski) open set. This defines the
Zariski topology in which varieties are the closed sets. A variety is irreducible if it
is not the union of two proper subvarieties. For an irreducible variety, any nonempty
open set is dense (even in the classical topology) and any nonempty classically open
set is dense in the Zariski topology. Maps f: X — Y C C™ of varieties are given by
m polynomials on X and the image f(X) contains an open subset of its closure.

Suppose that X = Var(f1,..., fr). The smooth (nonsingular) locus of X is the
open subset of points of X where the Jacobian of fj ..., f, has maximal rank on X.
Let f be a single polynomial. A point x is a smooth point on the hypersurface
Var(f) defined by f if f(x) = 0, so that x € Var(f) and if the gradient V f(x) =
(%(x), ey %(x)) is nonzero, so that some partial derivative of f does not van-
ish at x. The point x € Var(f) is singular if all partial derivatives of f vanish at x.
The kernel of the Jacobian at x € X = Var(f1,..., fr) is the (Zariski) tangent space
at x. The dimension of an irreducible variety is the dimension of a tangent space at
any smooth point. An isolated point x of X has multiplicity one exactly when it is
nonsingular.

Remark 2.6. Our definition of smooth and singular points of a variety depends upon
its defining polynomials. For example, the variety defined by (z — 1)? is singular at
every point. This scheme-theoretic notion of singularity is essential to our arguments
in Sections 3 and 4, and is standard in algebraic geometry.

If X isirreducible, then any proper subvariety has smaller dimension. If f: X — Y
is a map of varieties with f(X) dense in Y, then there is an open subset U of ¥ such
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that if y € U, then dim f~!(y) + dimY = dim X. We also have Bertini’s Theorem:
if X is smooth, then U may be chosen so that for every y € U, f~1(y) is smooth.
Projective space P(C") is the set of one-dimensional linear subspaces (lines) of
C™ and is compact. It has dimension n—1 and subvarieties are given by homogen-
eous polynomials. The set Uy of lines spanned by vectors whose initial coordinate is

nonzero is isomorphic to C*~! under v > span(1, v) and P(C") is a compactification
of UO ~ Cn_l.

2.2. Polyhedral bounds

The expression (d +1)!vol(N (¥)) of Theorem 2.4 is the normalized volume of N ().
This is Kushnirenko’s bound [17, Chapter 6, Theorem 2.2] for the number of isolated
solutions in (C*)4*1! to a system of d+1 polynomial equations, all with Newton
polytope N (). To prove Theorem 2.4, we first explain why Kushnirenko’s bound
applies to the system (7), and then why it bounds the number of isolated solutions on
the larger space (C*)¢ x C.

For a monomial zA7 in C[z*,1],a € Z9 and j € N. Foreachi = 1,....,d,

this monomial is an eigenvector for the operator Zi£ with eigenvalue a;. Thus,
1

A(Zia%lﬂ) C A(Y), giving the inclusion N (Ziaiz,-‘p) C N(¥). A refined version
of Kushnirenko’s Theorem in which the polynomials may have different Newton
polytopes is Bernstein’s theorem [8, Section 7.5], which is in terms of a quantity
called mixed volume, whose properties are developed in [12, Chapter IV]. The mixed
volume of polytopes is monotone under inclusion of polytopes and it equals the nor-
malized volume when all polytopes coincide. It follows that the theorems of Bernstein
and Kushnirenko together give the bound of (d+1)! vol(N (¥)) for the number of
isolated solutions to the system (7) in (C*)?*!. To extend this to solutions in the
larger space (C*)? x C, we develop some theory of projective toric varieties.

2.3. Projective toric varieties

For Kushnirenko’s Theorem and our extension, we replace the nonlinear equations (7)
on (C*)¢ x C by linear equations on a projective variety. We follow the discussion
of [30, Chapter 3]. Let f € C[zT, A] be a polynomial with support A = A(f). To
simplify the presentation, we will at times assume that the origin 0 lies in 4. The
results hold without this assumption, as explained in [30, Chapter 3].

Writing C# for the vector space with basis indexed by elements of #, consider
the map

o (CH? x C —> C*,
(z,A) = (2947 | (a, j) € A).
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This map linearizes nonlinear polynomials. Indeed, write f as a sum of monomials,

f= ZC(a’j)Zalj.

(a,j)eA

If {X(q,j) | (a, j) € A} are variables (coordinate functions) on C*, then

Ap =" Ca.pyXa.) ®)
(a,/)eh

is a linear form on C**, and we have f(z,1) = Ar(pa(z,A) =: @4 (Ay).

Since 0 € A, the corresponding coordinate x¢ of ¢4 is 1 and so the image of ¢4
lies in the principal affine open subset Ug of the projective space P# := P(C*) =
Pl4I=1_ This is the subset of P** where x # 0 and it is isomorphic to the affine space
CI*=1 We define X 4 to be the closure of the image ¢4 ((C*)?*1) in the projective
space P, which is a projective toric variety. Because the map ¢4 is continuous on
(C)? x C, X 4 is also the closure of the image ¢4 ((C*)¢ x C).

The map ¢4 is not necessarily injective; we describe its fibers. Let ZA C Z¢+!
be sublattice generated by all differences a—p for «, B8 € A. When 0 € 4 this is
the sublattice generated by +, and it has full rank d + 1 if and only if conv(+) has
full dimension d + 1. Let G4 be Hom(Z4*!/Z A, C*) c (C*)?*+!, which acts on
(C*)4 x C. The fibers of ¢4 are exactly the orbits of G 4 on (C*)% x C. If conv(s)
does not have full dimension, then G 4 has positive dimension as do all fibers of ¢4,
otherwise G4 is a finite group and ¢4 has finite fibers. On the torus (CX)4+1, G 4
acts freely and @4 ((C*)¢*1) is identified with (C*)?*1/G 4. To describe the fibers
of g4 on (C*)4 x {0} = ((C*)? x C) ~ (C)?+! note that (C*)?+! acts on this
through the homomorphism 7 that sends its last (1) coordinate to {1}. Thus, the fibers
of g4 on (C*)? x {0} are exactly the orbits of (G 4) C (C*)?.

Proposition 2.7. The dimension of X 4 is the dimension of conv(A). The fibers of
@4 on (C)4*Y are the orbits of G 4 and its fibers on (C*)% x {0} are the orbits of
7(Ga).

We return to the situation of Theorem 2.4. Let ¥ € C[z*, 1] be a polynomial with
support 4. As each polynomial in (7) has support a subset of #, each corresponds
to a linear form on P** as in (8). The corresponding system of linear forms defines
a linear subspace My, of P**. We have the following proposition (a version of [30,
Lemma 3.5]).

Proposition 2.8. The solutions to (7) are the inverse images under ¢4 of points in
the linear section ¢ 4((C*)? x C) N My When @4 is an injection, it is a bijection
between solutions to (7) on (C*) x C and points in p4((C*)4 x C) N My,.
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Proof of Theorem 2.4. When vol(N ()) = 0, so that N (1) does not have full dimen-
sion d + 1, then each fiber of ¢4 is positive-dimensional and so by Proposition 2.8
there are no isolated solutions to (7).

Suppose that vol(N (7)) > 0. Then every fiber of ¢4 is an orbit of the finite
group G 4. Over points of @4 ((C*)?2+1), each fiber consists of |G 4| points and over
@A ((C*)? x {0} each fiber consists of |7(G4)| < |G| points. As X 4 is the clos-
ure of g4 ((C*)? x C), the number of isolated points in X 4 N My is at least the
number of isolated points in @4 ((C*)? x C) N My, both counted with multiplicity.
The degree of the projective variety X 4 is an upper bound for the number of isolated
points in X 4 N My, which is explained in [30, Chapter 3.3]. There, the product of
|G 4| and the degree of X 4 is shown to be (d +1)! vol(N (1)), the normalized volume
of the Newton polytope of 1. This gives the bound of Theorem 2.4. That all points
are isolated when the bound of the degree is attained is Proposition 3.2 in the next
section. |

3. Proof of Theorem B

We give conditions for when the upper bound of Corollary 2.5 is attained. By Pro-
position 2.1, the critical points of the function A on the Bloch variety Var(D) are the
solutions in (C*)? x C to the critical point equations (6). Let 4 = A(D) be the sup-
port of the polynomial D. The critical points are <p;1 (X4 N Mp), where X4 C P*
is the closure of @4 ((C*)? x C) and Mp is the subspace of P* defined by linear
forms corresponding (as in (8)) to the polynomials in (6). For the bound of The-
orem 2.4 and Corollary 2.5, note that the number of isolated points of X 4 N Mp is at
most the product of the degree of X 4 with the cardinality of a fiber of ¢4, which is
(d+1)!vol(N (D)). We establish Theorem B concerning the sharpness of this bound
by characterizing when the inequality of Theorem 2.4 is strict and then interpreting
that for the critical point equations.

Remark 3.1. Let X C P” be a variety of dimension d and M C P" alinear subspace
of codimension d. The number of points in X N M does not depend on M when the
intersection is transverse; it is the degree of X [29, p. 234]. When the intersection
is not transverse, intersection theory gives a refinement [16, Chapter 6]. For each
irreducible component Z of the intersection X N M, there is a positive integer — the
intersection multiplicity along Z-such that the sum of these multiplicities is the degree
of X. When Z is positive-dimensional this number is the degree of a zero-cycle con-
structed on Z (it is at least the degree of Z) and when Z is zero-dimensional (a point),
it is the local multiplicity [29, Chapter 4].
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A consequence of Remark 3.1 is the following.

Proposition 3.2. Let X, M be as in Remark 3.1. The number (counted with multipli-
city) of isolated points of X N M is strictly less than the degree of X if and only if the
intersection has a positive-dimensional component.

Write X5 = P4 ((C)? x C) for the image of ¢4 and 0X 4 := X4 ~ X5, the
points of X4 added to X when taking the closure. This is the boundary of X 4. In
the Introduction, points of dX 4 were referred to as “lying at infinity.”

Corollary 3.3. For a polynomial € C[z%, L], the inequality of Theorem 2.4 is strict
if and only if 90X 4 N My # 0.

Proof. The inequality of Theorem 2.4 is strict if either of the following hold.
(1) X4 N My has an isolated point not lying in X5 .
(2) X4 N My contains a positive-dimensional component Z.

In (1), X 4 N My has isolated points in dX 4 N My, so the intersection is nonempty. In
(2), Z is a projective variety of dimension at least one. The set X is an affine variety,
and we cannot have Z C X as the only projective varieties that are also subvarieties
of an affine variety are points. Thus, Z N 0X 4 # @, which completes the proof. m

3.1. Facial systems

We return to the general case of a toric variety. Let A C Z" be a finite set of points with
corresponding projective toric variety X 4 C P**. We have the following description
of the points of its boundary, X 4 ~ @4 ((C*)™).

Let P := conv(s), the convex hull of 4. The dot product with a nonzero vector
w € R", a — w - a, defines a linear function on R”. For w e R”, set A(w) :=min{w-a |
a€ P}.Theset F={pe P |w-p=h(w)}of minimizers is the face of P exposed
by w. We have that F = conv(F N #A), and may write ¥ for F N A. As A C Z",
we only need integer vectors w € Z" to expose all faces of P.If dim F = dim P — 1,
then F is a facet.

For each face F of P, there is a corresponding coordinate subspace P¥ of
P# — this is the set of points z = [z, | a € A] € P* such that @ ¢ F implies that
Zq = 0. The image of the map ¢%: (C*)* — P¥ C P# has closure the toric vari-
ety Xg. Its dimension is equal to the dimension of the face F. Write X for the
image of ¢¢. This description and the following proposition is essentially [17, Pro-
position 5.1.9].

Proposition 3.4. The boundary of the toric variety X 4 is the disjoint union of the
sets X g. for all the proper faces F of conv(s).
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Let f =) ,c4 Cax® be a polynomial with support 4. We observed that if A is
the corresponding linear form (8) on P**, then the variety Var(f) C (C*)" of f is
the pullback along g4 of X3 N M, where M := Var(A) is the hyperplane defined
by A. Let F be a proper face of P. Then Xg. N M pulls back along ¢# to the variety
of

07 (M) = > cax®
acF
in (C*)". This sum of the terms of f whose exponents lie in F is a facial form
of f and is written f|f. Given a system ®: f; = --- = f, = 0 involving Laurent
polynomials with support -4, the system fi|r =--- = f,|F = 0 of their facial forms
is the facial system ®|f of ®.

Corollary 3.5. Let M be the intersection of the hyperplanes given by the polynomials
in a system ® of Laurent polynomials with support A. For each face F of conv(A),
the points of X g N M pull back under g to the solutions of the facial system ®|F.

If no facial system ®|F has a solution, then the number of solutions to ® = 0 on
(C*)™ is n!vol(conv(A)).

Proof. The first statement follows from the observation about a single polynomial f
and its facial form f|r, and the second is a consequence of a version of Corollary 3.3
for X 4 ~ 4 ((C)"). .

The second statement is essentially [4, Theorem B] and is also explained in [30,
Section 3.4].

3.2. Facial systems of the critical point equations

We prove Theorem B from the introduction by interpreting the facial systems of the
critical point equations. It is useful to introduce the following notion. A polynomial
f(x) in x € (C*)" is quasi-homogeneous with quasi-homogeneity w € Z" if there is
a number 0 # wy such that

acA(f) = w-a=wy.

Equivalently, f is quasi-homogeneous if its support 4 ( f) lies on a hyperplane not
containing the origin. The quasi-homogeneities of f are those w € Z" whose dot
product is constant on A(f). Fort € C* and w € Z", let t* := (t™1,...,t¥") €
()"

Lemma 3.6. Suppose that f has a quasi-homogeneity w € 7. Then
(1) Fort € C* and x € (C*)", we have f(t™ -x) = t*/ f(x).
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(2) We have

Z a
wy f = Zw,-xia—f

i=1 i
Proof. Note that fora € Z", (t* - x)¢ = t"**?x?. The first statement follows. For the

a

second, note that a; x% = x; %x ]
1

Let € C[z*, 1] have support A C Z¢ x N and Newton polytope P := conv(s).
We will assume that P has dimension d 41, and also that A N Z¢ x {0} is a facet of
A, called its base. Let (7) be the critical point equations for A on ¥ and My, C P4
the corresponding linear subspace of codimension d +1.

Let 0 := 07 in Z¢ and e := (0, 1). The base of # is exposed by e and it is the
support of ¥(z,0). A main difference between the sparse equations of Section 3.1 and
the critical point equations (6) is that the critical point equations allow solutions with
A = 0, which is the component of the boundary of the toric variety corresponding to
the base of A. A face F of P is vertical if it contains a vertical line segment, one
parallel to e.

Lemma 3.7. Suppose that F is a proper face of P that is not the base of P and is
not vertical. Then the corresponding facial system of the critical point equations has
a solution if and only if the hypersurface Var(y|r) defined by V| p in (C*)4+1 js
singular.

Proof. Let 0 # w € Z4T! be an integer vector that exposes the face F. As F is not
vertical we may assume that wg 4, is nonzero. As F is not the base, it lies on an
affine hyperplane that does not contain the origin, so that ¥ | r is quasi-homogeneous
with some quasi-homogeneity w. Write wr for the constant w - a for a € F. By
Lemma 3.6 (2), we have

aK”|F
oA

wr Y|F = Zw, i L wap A )

i=1

Suppose now that (z, A) is a solution of the restriction of the critical point equations
to the face F'. That is, at (z, 1),

b= ) =t =

Observe that (z; 371#)“, =z; aWZ‘F (and the same for A). Since wg 11 # 0, these equa-

tions and (9) together imply that (/\ )|F = 0, which implies that (z, A) is a singular
point of the hypersurface Var(y¥ | r) deﬁned by ¥|F. [
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We deduce the following theorem.

Theorem 3.8. If the Newton polytope N (¥) of W has no vertical faces and the
restriction of ¥ to each face that is not the base of N (V) defines a smooth vari-

ety, then the critical point equations have exactly (d+1)! vol(N (A)) solutions in
(C9 x C.

We apply this when  is the dispersion function D(z, A). Recall that the boundary
of the variety X 4 (Xp) corresponds to all proper faces of its Newton polytope N (D),
except for its base. We deduce the following precise version of Theorem B.

Corollary 3.9. Let L be an operator on a periodic graph and set D = det(L(z) —
AD). If N(D) has no vertical faces and if for each face F that is not its base,
Var(D|F) is smooth, then the Bloch variety has exactly (d+1)! vol(conv(A(D)))
critical points.

Example 3.10. The restriction on vertical faces is necessary. General operators on
the second graph in Figure 2 (an abelian cover of K4) have the following Newton
polytope:

It has base [—1, 1], apex (0, 0, 4), and the remaining vertices are at (£1,0, 1) and
(0, £1, 1). It has volume 20/3, so we expect 40 = 3!-20/3 critical points. However,
there are at most 32 critical points, as direct computation shows that the critical point
equations have two solutions on each of its four vertical faces.

4. Newton polytopes and dense periodic graphs

The Newton polytope N (D) of the dispersion function of an operator on a periodic
graph is central to our results. In Section 4.1 we associate a polytope N (I") to any
periodic graph I" such that N (D) C N (I") for any operator on I', and that we have
equality for almost all parameter values. We call N (I") the Newton polytope of T.

A periodic graph T' is dense if it has every possible edge, given its support A(I")
and fundamental domain W. Every periodic graph is a subgraph of a minimal dense
periodic graph. We identify the Newton polytope of a dense periodic graph and show
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that when d = 2 or 3, a general operator on I" satisfies Corollary 3.9, which implies
Theorem C.

Let I be a connected Z-periodic graph with fundamental domain W . Its support
A(T) is the finite set of points @ € Z? such that there is an edge between W and
a+W. The integer span of #4(I") is Z¢, as T is connected. The graph I is dense if
for every a € A(I'), there is an edge in " between every pair of vertices in the union
of W and a+W . In particular, the restriction of I' to W is the complete graph on W'.
The graphs of Figures 1 and 6 are dense, while those of Figure 2 are not dense.

|

Jaedl
Al
Nl
A\ ]
(NN

Y

Figure 6. A dense graph I' and its support +(I") with convex hull.

The set of parameters (e, V) for operators on a periodic graph T'is Y = CE x C%,
where FE is the set of orbits of edges. We observed that for any ¢ € Y, each entry of
L.(z) has support a subset of 4 (I"). Consequently, each diagonal entry of L.(z) — Al
has support a subset of A(I') U {e} and its Newton polytope is a subpolytope of
0 := conv(A(I') U {e}). Let m := |W|, the number of orbits of vertices.

Lemma 4.1. The Newton polytope N (D.) is a subpolytope of the dilation mQ of Q.

Proof. The dispersion function D, is a sum of products of m entries of the m x m
matrix L.(z) — Al. Each such product has Newton polytope a subpolytope of mQ as
the Newton polytope of a product is the sum of Newton polytopes of the factors. m

Figure 7 shows mQ = 2Q for the dense graphs of Figures 1 and 6. Observe that
mQ is a pyramid with base m conv(-4(I")) and apex me, and it has no vertical faces.

Theorem 4.2. Let I' be a dense Z¢-periodic graph. There is a nonempty Zariski
open subset U of the parameter space Y such that for ¢ € U, the Newton polytope of
Dc(z,A) is the pyramid mQ. When d = 2 or 3, then we may choose U so that for
every ¢ € U and face F of mQ that is not its base, Var(D.|F) is smooth.

Together with Corollary 3.9, this implies Theorem C from the Introduction. We
prove Theorem 4.2 in the following two subsections.



Critical points of discrete periodic operators 21

Figure 7. Newton polytopes of dense graphs.

4.1. The Newton polytope of I'

For a periodic graph T, the space of parameters (e, V') for operators on I' is ¥ =
CE x CY . Treating parameters as indeterminates gives the generic dispersion func-
tion D(e,V,z,A), which is a polynomial in z, A whose coefficients are polynomials
in the parameters e, V. The Newton polytope N (I') of T is the convex hull of the
monomials in z, A that appear in D(e, V, z, 1).

Lemma 4.3. Forc € Y, N(D.(z, A)) is a subpolytope of N (I'). The set of c € Y
such that N (D¢(z,A)) = N (') is a dense open subset U. When T is a dense periodic
graph, N(I') = mQ.

Proof. Forany ¢ = (e, V) € Y, D.(z, A) is the evaluation of the generic dispersion
function D(e, V, z, A) at the point (e, V). Thus, N (D.) C N(T).

The coefficient C,, ;) of a monomial z%AJ in D(e, V, z, ) is a polynomial in
(e, V). For any c=(e, V)€Y, z%A/ appears in D, if any only if Cla,jy(e, V) #0.
Thus, we have the equality N (D.) = N (I') of Newton polytopes if and only if
C(a,j)(e, V) # 0 for every vertex (a, j) of N(I'), which defines a dense open subset
UcyY.

When T' is dense and no parameter ¢ vanishes, then every diagonal entry of
L.(z) — Al has support A(I") U {e}. This implies that & (I") = mQ. ]

4.2. Smoothness of the Bloch variety at infinity

Let I" be a dense periodic graph with d = 2 or 3. Let U C Y be the subset of
Lemma 4.3. We show that for each face F' of N (I") that is not its base, there is a
nonempty open subset Ur of U such that for ¢ € UF, the restriction D.|f to the
monomials in F' defines a smooth hypersurface. Then for parameters ¢ in the inter-
section of the UF, the operator satisfies the hypotheses of Corollary 3.9, which proves
Theorem 4.2 and Theorem C.
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Let F be a face of N (I) that is not its base and let ¢ € U. We may assume that F
is not a vertex, for then D, | is a single term and Var(D.|r) = 0. Since N (') =mQ,
there is a unique face G of Q such that F = mG. We have that

De(z, M)|F = det((Lc(2) = AD)lg),

where each entry of the matrix (L.(z) — AI)|g is the facial form f|g of the corres-
ponding entry f of L.(z) — Al.

Since G is not the base of Q (and thus does not contain the origin), we make the
following observation, which follows from the form of the operator L, see (1). If the
apex € = (0, 1) of Q liesin G and f is a diagonal entry of (L.(z) — Al)|g, then f
contains the term —A. Any other integer point a € G is nonzero and lies in the support
A(I") of T, and the coefficient of z¢ in f is —e(y, 44v), Where f is the entry in row u
and column v. Consequently, except possibly for terms —A, all coefficients of entries
in (L.(z) — Al)|g are distinct parameters.

Suppose that the fundamental domain is W = {vq,..., v} so that we may index
the rows and columns of L.(z) by 1,...,m. Let Y’ C Y be the set of parameters ¢
where

€jatv;) =0 ifa€eGandj #i,i+l.

(Here, m+1 is interpreted to be 1.) For ¢ € Y, all entries of L.(z)|g are zero, except
on the diagonal, the first super diagonal, and the lower left entry. The same argu-
ments as in the proof of Lemma 4.3 show that there exist parameters ¢ € Y such that
D¢(z, A) has Newton polytope N (T"). Thus, Y’ N U # @, where U C Y is the set of
Lemma 4.3.

Theorem 4.4. There exists an open subset U' of Y' with U’ C U such that if ¢ € U’,
then Var(D.(z, M| ) is a smooth hypersurface in (C*)4+1,

Since smoothness of Var(D.(z, A)|r) is an open condition on the space Y of
parameters, this will complete the proof of Theorem 4.2, and thus also of Theorem C.

Proof. Let us write . (z, A) for the facial polynomial D.(z, A)|r. We will show that
the set of ¢ € Y such that Var(.(z, 1)) is singular is a finite union of proper algebraic
subvarieties. As ¢ € Y’, the only nonzero entries in the matrix (L.(z) — Al )|g are its
diagonal entries fi(z,A),..., fm(z, ) and the entries g1(2), ..., gn(z) which are in
positions (1,2), ..., (m—1,m) and (m, 1), respectively. Thus,

Ve(z.2) = De(z. M)|F = det(Le(z) = ADl6) = [| /2. ) = (=)™ [] & @)
i=1 i=1

For a polynomial f in the variables (z, A), write VT for the toric gradient operator,

O 0

EEN =

V']rf2= <Z
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Note that

m m

Veve = Y (Ve fi-firoe fn— (=™ D (Vrgi)gr- &+ gm.  (10)

i=1 i=1

Here }”\, indicates that f; does not appear in the product, and the same for g;.
Let (z,A) € Var(¥.) be a singular point. Then ¥.(z,A) = 0 and VT ¥.(z,A) = 0.
There are five cases that depend upon the number of polynomials f;, g; vanishing at
(z,M).
(i)  Atleast two polynomials f, and f; and two polynomials g, and gs vanish
at (z, A). Thus, ¥ (z, ) = 0 and by (10) this implies that Vr.(z,1) = 0.

(ii) At least two polynomials f, and f; and exactly one polynomial g, vanish
at (z, A). Thus, one has that ¥/ (z,A) = 0 and by (10) if V¢ (z,4) = 0, then
Vrgs(z,A) =0.

(iii) Exactly one polynomial f, and at least two polynomials g, and g, vanish
at (z, A). Thus, one has that (z, A) = 0 and by (10) if VT .(z,1) = 0,
then Vr f5(z. 1) = 0.

(iv) Exactly one polynomial f, and one polynomial g, vanish at (z, A). Thus,
¥(z,A) = 0 and by (10) if Vr.(z, L) = 0, then, after reindexing so that
p =r =1, we have

Ve fiz. ) [[ i) = (=D)"Vegi(z. ) - [ [ &z 2) = 0. (1)
i=2 i=2

(v)  No polynomials f; or g; vanish at (z, A).
In each case, we will show that the set of parameters ¢ € Y’ such that there exist
(z, A) satisfying these conditions lies in a proper subvariety of Y’. Cases (i)—(iv) use
arguments based on the dimension of fibers and images of a map and are proven in the
rest of this section. Case (v) is proven in Section 4.3 and it uses Bertini’s theorem. m

Let us write X for the space (C*)4*! and x for a point (z, 1) € X. We first derive
consequences of some vanishing statements. For a finite set ¥ C Z4 1!, let C¥ be the
space of coefficients of polynomials in x € X with support ¥ . This is the parameter
space for polynomials with support % .

Lemma 4.5. We have the following.

(1) Forany x € X, f(x) = 0 is a nonzero homogeneous linear equation on c”.
(2) Forany x € X, {Vt f(x) | f € C¥} is the linear span CF of ¥.
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Suppose that the affine span of ¥ does not contain the origin. Then
(3) forany f € C¥ and x € X, Vr f = 0 implies that f(x) = 0;

(4) forany x € X, the equation V1 f(x) = 0 defines a linear subspace of C¥ of
codimension dim C ¥

Proof. Writing f = ) ,c4 cqax?, the first statement is obvious. We have Vr f =
> acgx®. As the coefficients ¢, are independent complex numbers and x* # 0, State-
ment (2) is immediate. The hypothesis that the affine span of ¥ does not contain the
origin implies that any f € C¥ is quasi-homogeneous. Statement (3) follows from
equation (9). The last statement follows from the observation that the set of f such
that V f = 0 is the kernel of a surjective linear map C¥ — C¥. ]

Let F := G N (A(I') U {e}), where e = (0, 1), be the (common) support of the
diagonal polynomials f; and let § := G N A(I") be the (common) support of the
polynomials g;. We either have that ¥ = § or ¥ = § U {e}. Also, |¥| > 1 as G is
not a vertex, and as G is a proper face of Q = conv(A(I") U {e}), but not its base, the
polynomials f;, g; are quasi-homogeneous with a common quasi-homogeneity.

The parameter space for the entries of (L.(z) — Al)|g is

7 = ((Cf)éBm @ ((Cg)@m.

We write ¢ = (fe,ge) = (f1,..., fm>&1,-..,&m) for points of Z. This is a coordinate
subspace of the parameter space Y’. As Z contains exactly those parameters that can
appear in the facial polynomial . (x), it suffices to show that the set of parameters
¢ = (fe, go) € Z such that Var(.(x)) is singular lies in a proper subvariety of Z.
The same case distinctions (i)—(v) in the proof of Theorem 4.4 apply.

After reindexing, Case (i) in the proof of Theorem 4.4 follows from the next
lemma.

Lemma 4.6. The set
©:={ceZ[3x e X with f1(x) = fo(x) = g1(x) = g2(x) = 0}
lies in a proper subvariety of Z.

Proof. Consider the incidence correspondence,

T :={(x, fo,8e) € X X Z | f1(x) = fa(x) = g1(x) = ga(x) = 0}.

This has projections to X and to Z and its image in Z is the set ©.

Consider the projection 7x: Y — X. By Lemma 4.5 (1), for x € X, each condition
fi(x) =0, gi(x) =0 for i = 1,2 is a linear equation on C¥ or C¥. These are
independent on Z as they involve different variables. Thus, the fiber I(x)is a
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vector subspace of Z of codimension 4, and dim(Y) = dim(Z) — 4 + dim(X) =
dim(Z) +d - 3.

Consider the projection 7z to Z and let ( fe, go) € mz(Y). Then thereisan x € X
such that f1(x) = fo(x) = g1(x) = g2(x) = 0. Let w € Z4*+! be a common quasi-
homogeneity of the polynomials f;, g;. By Lemma 3.6 (1), for any t € C*, each of
f1. f2. g1. g2 vanishes at t* - x. Thus, the fiber 7' ( fs, go) has dimension at least
one. By the Theorem [29, Theorem 1.25] on the dimension of the image and fibers of
a map, the image wz(Y') has dimension at most dim(Z) + d — 4 < dim(Z), which
establishes the lemma. ]

After reindexing and possibly interchanging f with g, Cases (ii) and (iii) in the
proof of Theorem 4.4 follow from the next lemma.

Lemma 4.7. The set
O:={ceZ|3Ix € X with fi(x) = fa(x) = g1(x) =0and Vrgi(x) = 0}
lies in a proper subvariety of Z.

Proof. Consider the incidence correspondence,
T :={(x, fe.8¢) € X X Z | f1(x) = f2(x) = g1(x) = 0and Vrgi(x) = 0}.

Let x € X and consider the fiber 7y 1(x). As in the proof of Lemma 4.6, the conditions
f1(x) = f2(x) = 0 are two independent linear equations on Z. By Lemma 4.5 (3),
Vrgi(x) = 0 implies that g;(x) = 0, and by Lemma 4.5(4), the condition
Vrgi1(x) = 0is dim C§ further independent linear equations on Z.

If |§] = 1, sothat gy = c,x? is a single term, then g(x) = 0 implies that ¢, = 0.
Consequently, the image ® of T in Z lies in a proper subvariety. Otherwise, [§] > 1
which implies that dim C§ > 2, and thus the fiber has codimension at least 4. As in
the proof of Lemma 4.6, this implies that ® lies in a proper subvariety of Z. ]

Case (iv) in the proof of Theorem 4.4 is more involved.

Lemma 4.8. The set
O:={ceZ|3x € X with fi(x) = g1(x) =0and Vrv.(x) = 0}
lies in a proper subvariety of Z.

Proof. The set © includes the sets of Lemmas 4.6 and 4.7. Let ®° C © be the set
of ¢ = (f,, ge) that have a witness x € X (f1(x) = g1(x) = 0 and V1 i.(x) = 0)
such that none of Vr f1(x), VT g1(x), or f;j(x)g;(x) for i > 1 vanish. It will suffice
to show that ®° lies in a proper subvariety of Z.
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For this, we use the incidence correspondence,
Y= {(y,x,f.,g-) €eC'xXxZ ’fl(x) =g1(x) =0,

Y[/ -0 [T =0,

i=2 =2

V1 i(0) = (<1)"yVrgi(x) = 0}.

We show that ®° C 7z (). Let ¢ = (fe, go) € ©° with witness x € X in that f;(x) =
g1(x) =0and VT ¥.(x) =0, but none of Vr f1(x), VT g1(x), or f;(x)gi(x)fori > 1
vanish. There is a unique y € C* satisfying

Y[/ -E=nm[Tax =o.
i=2 i=2

Dividing (11) by [T/L, fi(x) gives
Vr fi(x) = (=1)"yVrgi(x) =0,

and thus (y, x, fe,ge) € Y.
We now determine the dimension of Y. Let (y, x) € C* x X and consider the
fiber 7~!(y, x) C Z above it in Y. The two linear and one nonlinear equations

[ =ga@) =y[[ A -D"]]&ix) =0 (12)
i=2 =2

are independent on Z as they involve disjoint sets of variables, and thus define a
subvariety T C Z of codimension 3. Consider the remaining equation, V f1(x) —
=D"yVrgi(x) = 0.

Note that if € = (0, 1) lies in the support ¥ of fi, so that ¥ = § U {e}, then
Vr f1(x) contains the term —e and thus cannot lie in the span C¥§ of ¢, which con-
tains Vg1 (x) by Lemma 4.5 (2). In this case the fiber is empty and ®° = @.

Suppose that # = § and (f., go) € T. Let w € Z*! be any homogeneity for f;
(or g1). Then there exists wg # 0 such that w - a = wg for all @ € ¥ . Equation (9)
implies that

w -Vt fi(x) = wg fi1(x) =0,

and the same for g;. Thus, VT f1(x) and VT g1 (x) are annihilated by all homogeneit-
ies and so lie in the affine span of ¥ — the linear span of differences a—b fora,b € ¥ .
This has dimension dim C¥ — 1. Consequently, Vr f1(x) — (—1)"yVrg1(x) =0
consists of dim C ¥ — 1 independent linear equations on the subset of C¥ & C¥ con-
sisting of pairs f1, g1 such that f1(x) = g1(x) = 0. These are independent of the third
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equation in (12). Thus, the fiber 7~!(y, x) C Z has codimension 3 +dimC¥ — 1 =
2 +dimC¥ and so

dimY = dim(C* x X) +dimZ —dimC¥ —2 = dimZ +d —dimC¥ .

Let (fe, go) € mz(Y) have witness (y, x). That is, the equations (12) hold, as well
as V f1(x) — (=1)"yVrg(x) = 0. As in the proof of Lemma 4.6, if w € Z9+ ' isa
quasi-homogeneity for polynomials of support ¥, then (y, ¥ - x) also satisfies these
equations.

We have ¥ =§ = G N A(), so that G is a face of the base of Q. Thus, there are
at least two (in fact the codimension of G in Q) independent homogeneities, which
implies that the fiber 7121( fe. go) has dimension at least two. This implies that the
image ®° has dimension at most dim Z + d —dim C¥ — 2. Since G is not a vertex,
dim C¥ > 2, which shows that dim ®° < dim Z and completes the proof. [

4.3. Case (V)
For o € C*, define ¥(, fo, go) C X to be the set

{x eX ‘ none of f;(x)g;(x) fori > 1 vanish and
m m
[T/ - D] e = o}
i=1 i=1

Case (v) in the proof of Theorem 4.4 follows from the next lemma.

Lemma 4.9. There is a dense open subset Uy C Z such that if (fe, ge) € Uy, then
W(1, fe, ge) is smooth.

We will deduce this from a weaker lemma.

Lemma 4.10. There is a dense open subset U C C* x Z such that if (¢, fe, ge) € U,
then V(o feo, ge) is smooth.

Proof of Lemma 4.9. If we knew that the set U of Lemma 4.10 contained a point
(1, fe, gs), then Uy := U N ({1} x Z) would be a dense open subset of Z, which
would complete the proof. As we do not know this, we must instead argue indirectly.
Suppose that there is no such open set U; as in Lemma 4.9. Then the set & C Z
consisting of ( fe, ge) such that W (1, f,, ge) is singular is dense in Z.
For o € C* and (fe, go) € Z, define o.( fo, go) to be ( fo, a.gs) Where

a.(g1,82,---.8m) = (0g1,82, ..., 8m)-

This is a C*-action on Z. Consequently, «.E is dense in Z for all @ € C*.
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Let U C C* x Z be the set of Lemma 4.10. As it is nonempty, let (&, f,g.) € U.
Then U, := U N ({a} x Z) is nonempty and open in {o} X Z. As «.E is dense, we
have

Uy N (o} X a.B) # 0.

This is a contradiction, for if (¢, fe, ge) € Uy, then ¥(w, fo, go) is smooth, but if
(fo.ge) €.E, then (fo,a 'gs) € E and W(1, fo,a " !g,) is singular. The contradic-
tion follows from the equality of sets W(a, fo, go) = W(1, fo, a0 1 gs). ]

Proof of Lemma 4.10. Let T C X x Z be the set of (x, fe, ge) such that none of
fi(x)gi(x) fori > 1 vanish. Define ¢: T — C* x Z by

o(x. forge) = (O] A0/ [Toi) . o g0).
i=1 i=1

Notice that o~ (a, fe, o) = W(a, feo, go) for (o, fo, ge) € C* x Z.

We claim that ¢(T) is dense in C* x Z. For this, recall that the polynomials f;
have support ¥, which is G N (A(") U {e}) for some face G of @ = conv(A(I") U
{e}) that is neither its base nor a vertex, and the polynomials g; have support § =
G N A(T). Since G is not a vertex, there are a, b € ¥ witha # b and b € A(D).

Let fj :=x%and g; := x? fori = 1,...,m. Then X x {(fs, ge)} C T and for
x € X @(x, fo.ge) = (x™ — (=1)"x™b_ £, g,). The map X = (C*)4+! — C*
given by x > x4 — (—1)"x™b is surjective as ma — mb # 0. This implies that
the differential d¢ is surjective at any point of X X {( fe, ge)}, and therefore ¢(T) is
dense in C* x Z.

Since T is an open subset of the smooth variety X x Z, it is smooth. Then
Bertini’s Theorem [29, Theorem 2.27, p. 139] implies that there is a dense open sub-
set U C C* x Z such that for (, fe, ge) € U, 0 e, fo. ge) = W(a, fo, go) is
smooth. ]

S. Ciritical points property

We illustrate our results, using them to establish the critical points property (and thus
the spectral edges nondegeneracy conjecture) for three periodic graphs. We first state
this property.

Let T" be a connected Zd-periodic graph with parameter space Y = CZ x C%
for discrete operators on I'. We say that I" has the critical points property if there is a
dense open subset U C Y such thatif ¢ € U, then every critical point of the function A
on the Bloch variety Var(D.(z, A)) is nondegenerate in that the Hessian determinant

921 \d
det((az,-azj)i,,-=1) (13)
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is nonzero at that critical point. Here, the derivatives are implicit, using that we>have
D(z,A) =0.

5.1. Reformulation of Hessian condition

Let D = det(L.(z) — AI) be the dispersion function for an operator L. on a periodic
graph I'. In Section 2 we derived the equations for the critical points of the function
A on the Bloch variety Var(D(z, A)),

oD
D(z,A) =0 and 8_:() fori =1,...,d. (14)

Zj

Implicit differentiation of D = 0 gives 32 + a 7 383 =0.If 55 3D T # 0, then 5 M =0.

If 5= aD = 0, then (z, A) is a singular point hence is also a crltlcal point of the function

A and so we again have a‘n = 0. Differentiating again, we obtain

d (oD 9D 0A 32D 2D 9L 9D 97
O:—(_+_._):—+—._+_.—_
82,‘ sz oA aZJ' az,- 8Zj Bzia)t 8Zj daA 82,‘ sz

At a critical point (so that % = 0), we have
J

92D oD 9%A

aziazj B _ﬁ ' BZiaZj '

0?2 d oD\ d 2L \d
det(<32i32j)i,j=1) B (_8_1/3) 'det((az,-azj)i,jﬂ)‘

Consider now the Jacobian matrix of the critical point equations (14),

Thus,

D D
0z e 0zg oA
32D 32D 32D

J = 32% e 024021 0A0z
32D ?’D 3’D

0z10zq " 325 0A0zg

At a critical point, the first row is (0 --- 0 %—2), and thus

9 2D \d oD\ 4 024 \d
=2 (2 ) () ()

A solution ¢ of a system of polynomial equations on C”" is regular if the Jacobian
of the system at ¢ has full rank n. Regular solutions are isolated and have multipli-
city 1. We deduce the following lemma.
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Lemma 5.1. A nonsingular critical point (z, A) on Var(D.(z, 1)) is nondegenerate
if and only if it is a regular solution of the critical point equations (14).

The following theorem is adapted from arguments in [11, Section 5.4].

Theorem 5.2. Let T" be a Zd—periodic graph. If there is a parameter value ¢ € Y
such that the critical point equations have (d +1)! vol(N (")) regular solutions, then
the critical points property holds for T'.

Proof. LetY be the parameter space for operators L on I'. Consider the variety
CP :={(c.z,A) € Y x (C*)¥ x C | the critical point equations (6) hold},

which is the incidence variety of critical points on all Bloch varieties for operators
on I'. Let 7 be its projection to Y. For any ¢ € Y, the fiber w1 (c) is the set of critical
points of the function A on the corresponding Bloch variety for D.. By Corollary 2.5,
there are at most (d +1)! vol(N (D.)) isolated points in the fiber.

Let ¢ € Y be a point such that the critical point equations have (d +1)! vol(N (I"))
regular solutions. Then (d+1)! vol(N (I')) < (d+1)! vol(N (D.)). By Lemma 4.3,
N (D.) is a subpolytope of N (I"), so that vol(N (D)) < vol(N (I')). We conclude
that both polytopes have the same volume and are therefore equal. In particular, the
corresponding Bloch variety has the maximum number of critical points, and each is
a regular solution of the critical point equations (6). Because they are regular solu-
tions, the implicit function theorem implies that there is a neighborhood U, of ¢
in the classical topology on Y such that the map 7~ !(U.) — U, is proper (it is a
(d+1)!vol(N (T"))-sheeted cover).

The set DC of degenerate critical points is the closed subset of CP given by
the vanishing of the Hessian determinant (13). Since 7 is proper over U,, if DP =
w(DC) is the image of DC in Y, then DP N U, is closed in U,. As the points of
7w~ 1(c) are regular solutions, Lemma 5.1 implies they are all nondegenerate and thus
¢ € DP, so that U, ~ DP is a nonempty classically open subset of Y consisting
of parameter values ¢’ with the property that all critical points on the corresponding
Bloch variety are nondegenerate.

This implies that there is a nonempty Zariski open subset of Y consisting of
parameters such that all critical points on the corresponding Bloch variety are nonde-
generate, which completes the proof. ]

By Theorem 5.2, it suffices to find a single Bloch variety with the maximum num-
ber of isolated critical points to establish the critical points property for a periodic
graph. The following examples use such a computation to establish the critical points
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VAR
N
7%

(4,0,0)

Figure 8. Dense periodic graph and its polytope from Figure 6.

property for 2!° + 2 graphs I". Computer code and output are available at the github
repository.”

Example 5.3. Let us consider the dense Z2-periodic graph I" of Figure 6. It has m = 2
points in its fundamental domain and the convex hull of its support +(I") has area 4.
By Theorem C, a general operator on I" has 2! - 22%! . 4 = 64 critical points. There
are 13 edges and two vertices in W, and independent computations in the computer
algebra systems Macaulay2 [10] and Singular [9] find a point ¢ € Y = C!3 such that
the critical point equations have 64 regular solutions on (C*)? x C. By Theorem 5.2,
the critical points property holds for I'. These computations are independent in that
the code, authors, and parameter values for each are distinct.

Example 5.4. The graph I" in Figure 9 is not dense. Its restriction to the fundamental
domain is not the complete graph on 3 vertices and there are three and not nine edges
between any two adjacent translates of the fundamental domain. Altogether, it has
3.6+ 1 = 19 fewer edges than the corresponding dense graph. Its support +A(I")
forms the columns of the matrix (3 § 19 ! =1 %) whose convex hull is a hexagon
of area 3.

Despite I" not being dense, its Newton polytope N (I') is equal to the Newton
polytope of the dense graph with the same parameters, 4 (I") and W. Figure 9 dis-
plays the Newton polytope, along with elements of the support of the dispersion
function that are visible. Observe that on each triangular face, there are four and not
ten monomials.

By Theorem A (Corollary 2.5), there are at most 2! - 32%1 . 3 = 162 critical points.
There are eleven edges and three vertices in W, and independent computations in
Macaulay? and Singular find a point ¢ € Y = C !4 such that the critical point equations

Zhttps://mattfaust.github.io/CPODPO visited on 31 March 2024.
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Figure 9. Sparse graph with the same Newton polytope as the corresponding dense graph.
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Figure 10. A periodic graph and its Newton polytope.

have 162 regular solutions on (C*)? x C. By Theorem 5.2, the critical points property
holds for I'.

Let TV be a graph that has the same vertex set and support as I", and contains all
the edges of I'; then [11, Theorem 22] implies that the critical points property also
holds for I". This establishes the critical points property for an additional 219 — 1
periodic graphs.

Example 5.5. The graph I' of Figure 10 has only ten edges but the same fundamental
domain W and support +(I") as the graph of Figure 9, which had eleven edges. Its
Newton polytope is smaller, as it is missing the vertices (3, 3,0) and (-3, —3, 0).
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It has volume 70/3 and normalized volume 3! - 70/3 = 140. Independent com-
putations in Macaulay2 and Singular find a point ¢ € ¥ = C!3 such that the critical
point equations have 140 regular solutions on (C*)? x C. Thus, there are no critical
points at infinity, and Theorem B implies that the Bloch variety is smooth at infinity.

As before, achieving the bound of Corollary 2.5 with regular solutions implies
that all critical points are nondegenerate and the critical points property holds for I'.

6. Conclusion

We considered the critical points of the complex Bloch variety for an operator on
a periodic graph. We gave a bound on the number of critical points — the normal-
ized volume of a Newton polytope — together with a criterion for when that bound is
attained. We presented a class of graphs (dense periodic graphs) and showed that this
criterion holds for general discrete operators on a dense graph. Lastly, we used these
results to find 2! + 2 graphs on which the spectral edges conjecture holds for general
discrete operators when d = 2.

Funding. Research supported in part by Simons Collaboration Grant for Mathem-
aticians 636314 and NSF grants DMS-2246031, DMS-2201005, DMS-2052572, and
DMS-2000345.
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