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Linear subspaces of minimal codimension
in hypersurfaces

DaviD KAZHDAN AND ALEXANDER POLISHCHUK

Let k be a perfect field and let X C PV be a hypersurface of degree
d defined over k and containing a linear subspace L defined over
k with codimpny L = r. We show that X contains a linear subspace
Ly defined over k with codimpny L < dr. We conjecture that the
intersection of all linear subspaces (over k) of minimal codimension
r contained in X, has codimension bounded above only in terms
of r and d. We prove this when either d < 3 or r < 2.

1. Introduction

Let f(x1,...,zy,) be a homogeneous polynomial of degree d > 2 over a field
k. Recall that the slice rank stky(f) of f is the minimal number r such that
there exists a decomposition

f=bfi+...+0Lf,

where [; are linear forms defined over k.

The above notion is a symmetric version of the notion of slice rank
for tensors introduced by Tao and Sawin (see [10]) in connection with the
bounds on the maximal size of subsets in F3 not containing any lines, ob-
tained in [4], [6]. It is also related to the notion of Schmidt rank (or strength)
which plays a role in the Ananyan-Hochster proof of Stillman’s conjecture
[2].

The slice rank srky (f) has a simple geometric meaning: it is the minimal
codimension in P*~! of a linear k-subspace P C P"~! contained in the pro-
jective hypersurface f = 0. Note that if stky_(f) < n/2 then this hypersurface
is necessarily singular.
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It is clear that srki(f) > srky(f) and it is easy to find examples when
stky (f) > srk(f).

One can ask for an upper estimate for srky(f) in terms of srky(f). The
first result of this paper is precisely such an estimate, which we obtain by
adapting to homogeneous polynomials the theory of G-rank of tensors from
the work of Derksen [5]. The main point is that one can associate to such a
polynomial f a (real-valued) invariant r{ (f), called the G-rank, which does
not change when we pass from k to k (for perfect k), and which can be
bounded in terms of the slice rank. Note that Jiang showed in [7] that rC(f)
is equal to Derksen’s G-rank of the corresponding symmetric tensor.

A bit more generally, for a collection fi,..., fs of homogeneous polyno-
mials of the same degree d, we set

kic(f1, ..o fs) = inf k
stkic(fi, o fo) (C1,...,c1§l¢(o,...,o)sr klefit...+efs)

and we define a real number r{ (f1,. .., fs) (see Section 2).

Theorem A. Assume that the field k is perfect. Then for homogeneous
polynomials f1,..., fs over k of degree d > 2, one has

srkic(fio oo fs) STE(f1 oo fs) =12 (fio o fs) < ds - stk(f1, -, fo)-

In particular, for a single polynomial we get inequality

stk (f) < d - stk (f).

The inequality for a single f is sharp for every degree d: if E/k is a Galois
extension of degree d then the norm F — k is a polynomial of degree d that
has slice rank d over k and slice rank 1 over E.

Note that although rf coincides with Derksen’s G-rank of the corre-
sponding symmetric tensor (as proved in [7]), the bounds connecting 7“1?
with the slice rank are sharper in the symmetric case: the bounds ob-
tained by Derksen for arbitrary tensors would only give the inequality
stk (f) < 4 - stk(f).

Our second goal in this paper is to understand the inequality of The-
orem A more constructively. Geometrically, the statement is that if a hy-
persurface X C PV of degree d, defined over k, contains a linear subspace
L of codimension r in PV, defined over k, then X contains a linear sub-
space Lo of codimension < dr in PV, defined over k. One can ask for an
explicit construction of Ly from L and its Galois conjugates. The simplest
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answer would be that one can just take Ly to be the intersection of all the
Galois conjugates of L. We conjecture that the following stronger geometric
statement holds.

Conjecture B. Let X = (f = 0) C PN be a hypersurface of degree d (over
any ground field), and let r be the minimal natural number such that X
contains a linear subspace L with codimpny L = r. Set

Lf = ﬁLCX,codim]pn L:rL-

Then there exists a function c(r,d) such that codimLy < c(r,d).

It is an easy exercise to check that the conjecture holds if d =2 orr =1
with ¢(r,2) = 2r and ¢(1,d) = d. We prove the following cases of the conjec-
ture: when d = 3 (and r is arbitrary) and when r = 2 (and d is arbitrary).

Theorem C. (i) Conjecture B holds for cubic hypersurfaces with

1,(r+1)?2
5( 4

(r+1)2

c(r,3) =c(r) :== 1

+r+3)-( +r).

(i) Conjecture B holds for r = 2 with
c(2,d) = d* + 1.

More precisely, for a polynomial f of slice rank 2 and degree d, either
codimLy < d?> — 1 or f is a pullback from a space of dimension < d*> + 1.

One can ask how far are the estimates of Theorem C from being optimal.
In the case d = 3 and r = 2 we show that Conjecture B holds with ¢(2,3) =
6 by giving a partial classification of cubic hypersurfaces of rank 2 (see
Theorem 3.7). Consider the cubic f(z;,y;i), wherei =1,...,n,1<j <k <
n (so the number of variables is n(n + 1)/2), given by

f=Y mizjy;.

1<j

One can check that the rank of f is equal to n — 1. Furthermore, for every ¢ <
g, [ is in the ideal (y;;, 2k | k # i,k # j), so we get codimLy = n(n +1)/2,
which depends quadratically on the rank. So it seems that the optimal bound
c(r,3) is at least quadratic in r.
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On the other hand, let us consider a polynomial f in n groups of variables

(x1(1),...,zm(1)), ..., (z1(n), ..., 2m(n))
given by -
=Y a1(1) . zi(D) . am(1) - 2i(2) i),
i=1

Then deg(f) =m+n—2 and it is easy to see that f has rank 2 and
codimL; = mn. This shows that the optimal bound ¢(2, d) grows quadrati-
cally in d.

Theorem C(i) implies that if L is a linear subspace of minimal codi-
mension 7 in PV, defined over a Galois extension of k, contained in a cubic
hypersurface X (defined over k), then by taking intersection of all Galois
conjugates of L we get a linear subspace Ly of codimension < ¢(r), contained
in X and defined over k.

Since we don’t know the validity of Conjecture B for general r and d, we
give a more complicated construction of a linear subspace Ly C X, defined
over k, starting from the Galois conjugates of L. C X defined over a Galois
extension of k. For this we introduce the following recursive definition, where
for linear subspaces Ly, ..., Ls C PY we denote by (L1,...,Ls) C PV their
linear span.

Definition 1.1. For a collection £ = {Ly,...,Ls} of linear subspaces of
PN, we define a new collection of linear subspaces of PV as follows. Let
L= (Ly,...,Ls). For each minimal subset J C [1,s] such that (L; | j €
J) = L, weset Lj:=NjcsLj, and we denote by L) the collection of all such
subspaces Lj. We denote by £, i > 1, the collections of linear subspaces
obtained by iterating this construction.

Theorem D. Let X C PV be a hypersurface of degree d > 2 and let L =
(L1,...,Ls) be a collection of linear subspaces contained in X, such that
codimpn L; < 7, where r > 2. Then for the linear subspace

Lo:= (L | L e LYy,

we have Ly C X and
d—1

codimpn Ly < 72

Applying the construction of Theorem D to the collection of all Galois
conjugates of a linear subspace of codimension r > 2 in PV, defined over
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some Galois extension of k, contained in a hypersurface X (defined over k),
we get an algorithm for producing a linear subspace of codimension < P2
in PV, contained in X and defined over k.

One can ask whether the second inequality in Theorem A can also be
explained constructively. In other words, starting with an s-dimensional sub-
space F' of homogeneous polynomials of the same degree d, defined over a
perfect field k, such that there exists a nonzero f € Fi- and a subspace of
linear forms of dimension r over k such that f € (L), we want to produce an
element fp € F'\ 0 and a subspace of linear forms Ly, both defined over k,
such that fo € (Lo) and dimension of Lg is < ¢(sr). In Remark 4.1 we show
how to do this using the algorithm of Theorem D for a single polynomial.

Our study is partially motivated by the desire to understand the related
notion of the Schmidt rank (also known as strength) of a homogeneous poly-
nomial (see [1], [3] and references therein), defined as the minimal number
r such that f admits a decomposition f = gihy + ...+ g h,, with deg(g;)
and deg(h;) smaller than deg(f). Similarly to Theorem A one can try to
estimate the Schmidt rank of a polynomial over a non-closed field in terms
of its Schmidt rank over an algebraic closure. In [8], we show how to do this
for quartic polynomials.

2. G-rank for homogeneous polynomials

Throughout this section we assume that the ground field k is perfect.

2.1. Definition of the G-rank and the relation to the slice rank

Below we introduce an analog of G-rank for symmetric tensors, or equiva-
lently, for homogeneous polynomials, 7l (f) (where G = GL,,). We show that
it enjoys similar properties to Derksen’s G-rank of a non-symmetric tensor
studied in [5], in particular, it does not change under algebraic extensions
of perfect fields. We also introduce the notion rf (f1,--.,fs) of a G-rank for
a collection of polynomials of the same degree.

Let V be an n-dimensional space over k. We consider the group G =
GL(V) ~ GL, (k) acting naturally on the space SV, and the induced action
on A\*(S9V).

We consider points of G and of A\®*S?V with values in the ring of formal
power series k[t]. For a k-vector space W and a vector w € Wt], we denote
by vali(w) the minimal m > 0 such that w € t"W[t].
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For f € SV c SV [t] and g(t) € G(k[t]) such that val,(g(t) - f) > 0,
we set
val(det(g(1))
valy(g(t) - f) -

The factor d in front is a matter of convention: it makes the factor d disap-
pear in some of the statements below.

u(g(t), f) =

Definition 2.1. (i) For nonzero f € SV we define its G-rank by

where we take the infimum over all g(t) € G(k[t]) such that val,(¢(t) - f) >
0.

(ii) More generally, for linearly independent fi,..., fs € SV, we define the
G-rank by

rid(frye o fs) = inf p(g(t), f1,. ., fs),

n
g(t)
where

ol det(glt)
vali(g(t) - fi N A fs)]

and the infinum is taken over g(t) € G(k[t]) such that val,(g(t) - fi A... A
fs) > 0.

p(g(t), fr,..., fs) =ds

The formula
valy(g(t) - f™) = m-val,(g(t) - f)

immediately implies the following property.
Lemma 2.2. For any f € SV and any m > 1 one has
(M) =l ().

Here is the main result connecting the G-rank with the slice rank and
also with the Waring rank.

Theorem 2.3. Assume the base field k is perfect.
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(i) For a homogeneous polynomial f of degree d over k one has

stk (f) < rS(f) < d - srky(f).

For a collection f1,... fs of homogeneous polynomials of degree d over k one
has

stk (f1,---5 fs) grf(fl,...,fs) < ds-stkp(f1,.--, fs)-

(ii) Suppose my,...,m, are divisors of d, and fi,..., fr are homogeneous
polynomials of degrees deg(f;) = d/m;. Then

MU o £ <)+ ()

In particular,
i (f) < wil(f),

where wy(f) is the Waring rank of f, i.e., the minimal number r such that
f=0+. 41
where l; are linear forms defined over k.

The proof will be given in Sec. 2.3 after some preparations. The argument
is very close to the one in [5].

2.1.1. Relation to the GIT stability. Let W be a finite dimensional
algebraic representation of G = GL(V') over k. Recall that a point w € W is
called G-semistable if the orbit closure G - v does not contain 0. Recall that
Kempf’s k-rational version of the Hilbert-Mumford criterion (see [9]) states
(assuming k is perfect) that if w is not G-semistable then there exists a 1-
parameter subgroup A : G,, — G defined over k such that lim;_,o A(¢) - w =
0. Here A has form ¢ - diag(t™,...,t*) - ¢g~! for some g € G(k) and \; € Z.

In the following statement we relate the G-rank to G-semistability, using
an auxiliary element v € V™ which has (usual) rank n, viewed as an n x n
matrix (recall that dim V' = n).

Proposition 2.4. For integers p > 0 and q > 0, let us consider the G-
representation

W= (/\" V)P @ det™ 0 @ V™.

Letuw € V" be a fized element of rank n. Then we have rf(fl, oy fs) = g if
and only if w= ((fi N... A f5)®P @ 1,u) is G-semistable.
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Proof. By Hilbert-Mumford-Kempf’s criterion, if w is not G-semistable
then there exists a 1-parameter subgroup A: G,, — G over k, such that
lim 0 A(t) - w = (0,0). In particular, we have lim; .o A(t) - u =0, so A(t) €
G(k[t]), and

val;(A(t) - (fi A A f5)PP @ 1)
=p-valy(A(t) - fi A ... A fs) — dsq - valydet(A(t)) > 0,

which implies that val;(A(f) - fi A... A fs) > 0 and

W), fro- o o) < §

Hence, 79 (f1,..., fs) < g.
Conversely, assume there exists g(t) € G(k[t]) such that val;(g(t) - f1 A

oA fs)>0and pu(gt), fi,.... fs) <2 e,
val(g(t) - (fi Ao A f)®P®1) > 0.

Truncating g(t) at high enough order in ¢, we can assume that g(t) € G(k[t]).
Then the fact that lim¢—,0 g(¢) - w = (0, g(0) - u) implies that (0, g(0) - u) lies
in the closure of the G-orbit of w. Since 0 lies in the closure of the G-orbit of
9(0) - u (we can just use the 1-parameter subgroup ¢ -idy in G to see this),
we see that (0,0) lies in the closure of G - w, so w is not G-semistable. [J

As a consequence of Proposition 2.4, in the definition of rf (f1y- s fs)
it is enough to take g(t) to be a 1-parameter subgroup of G defined over k.
Also, since G-semistability does not change under the base field extension,
we deduce the following

Corollary 2.5. Let k be an algebraic closure of k. Then one has

Tl?(flv"'vfs) :T§<f17"'7f8)'

Let T' C G denote the maximal torus, i.e., the group of diagonal matrices
with respect to a k-basis (e;) of V. Replacing G everywhere by T" we get
a notion of T-rank, rL (f1,..., fs). From Hilbert-Mumford-Kempf criterion
we get

rE(fr, . fs) = inf (g (fio..os fs)).

g€G(k)

The reason we introduced the factor ds in the definition of r&(f1,..., fs)
is so as to have the following normalization property.
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Lemma 2.6. One has < (f1,..., fs) > 1.

Proof. 1t is enough to check that for any g¢(t) € T'(k[t]) and any distinct
monomials My, ..., M, of (e;) in SV, one has

vale(g(t) - My A ... A M) < ds - val(det(g(t))).
Let c1,...,c, > 0 be the valuations of the diagonal entries of g(t), so that
valy(det(g(t))) =c1+ ...+ cn.
Then for a monomial M = ej* ...ef", we have

valy(g(t) - M) =ajc1 + ... +anen < (a1 + ...+ ap)(c1 + ...+ ¢n)
:d(cl+...+cn).

Hence, val;(g(t) - M1 A ... A M) < ds, which gives the required inequality.
]

2.2. Triangle inequality

Proposition 2.7. For fi,fo € SV one has rg(fl + fa) < rlf(fl) +
G
ri (f2)-

Proof. This is proved exactly as [5, Prop. 3.6]. Starting with ¢1(t), g2(t) €
G (k[t]) such that val¢(g;(t) - fi) > 0, one has to produce u(t) € G(k[t]) with
valy(u(t) - (f1 + f2)) > 0 and

p(u(t), fr + f2) < wu(gi(t), fr) + u(g2(t), f2).
Making changes of variables t — t* if necessary, we can assume that
vali(g1(t) - f1) = valy(ga(t) - f2) = s > 0.

By [5, Lem. 3.5], there exists u(t) € G(k[t]) such that u(t) = u(t)g:1(t) =
ug(t)g2(t) with u;(t) € G(k[t]) and

valy(det u(t)) < valy(det g1(t)) + val,(det ga(t)).

Then

vale(u(t) - (fi + f2)) = min(valy(ui(t)g1(t) - f1), vale(uz(t)g2(t) - f2)) > s,
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and

1 _ valy(det u(t))
M ot o) = S e T )
< vali(det g1 (%)) + vali(det go(t)) _ é(u(m(t), f1) + n(g2(t), f2))-

S

0

2.3. Relation to the slice rank and to the sums of powers

In this section we will prove Theorem 2.3. We always assume that f € SV
(resp., f; € S4V), where V is an n-dimensional space over a field k.

Proposition 2.8. (i) Let f = v? for some v € V\ 0. Then rS(f) = 1.
(ii) One has rC(f) < d - srky(f).

(111) If there exists a nontrivial linear combination c1 fi1 + ... + csfs that has
slice rank r then v{ (f1,..., fs) < dsr.

Proof. (i) By Lemma 2.6, rJ'(f) > 1, so it is enough to find g(¢) € G(k[t])
such that p(g(t),v?) = 1. We can assume that v = e;, and take

g(t) = diag(t,1,...,1).

Then valy(g(t) - ef) = d and val;(det(g)) = 1.

Lemma 2.2 to reduce to the easy case d = 1.)

(i) We can assume that f=e-fi+...+e - fr. Then for ¢(t) =

diag(t,...,t,1,...,1), we have val;(g(t) - f) > 1, while val;(det(g)) =, so
——

r

(Alternatively, we can use

r
< dr.

u(g(t), f) §d‘m <

(iii) If this is the case then fi A... A fs has form (ejhy +...+ehy) AL,
hence, for the same g(t) as in (ii), we have val;(g(t) - fiA... A fo) > 1. O

Proposition 2.9. One has

stk (f1s oo fs) < E(fra- oo fo).
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Proof. Suppose rf(fl,...,fs) < r. Then there exists a 1-parameter sub-
group ¢(t) such that

revaly(g(t) - fi Ao A fs) > ds - valy(det(g(t))).

We can assume that g(t) is diagonal with respect to some basis (eq, ..., e,)
of V. Now consider the set

val(g(t) - fi N A fs)

S:={ie[l,n] | val(g(t)-e;) > 7 1.
Note that
L(g(t) - fL A A
valy(det(g(t))) > Zvalt &) > S| - valy (g(t) 21 ANANY ¢ )7
€S s
hence,

S| < r.

We claim that there exists a nontrivial linear combination f = cf; +
..+ ¢sfs such that all the monomials appearing in f are divisible by some
e; with ¢ € S. Indeed, otherwise, the projection

(fi,-., [s) = Kle1,...,en] = Kle1, ... en]/(e; | i € S) ~K[e; |i & 5]

is injective, so there exist s distinct monomials Mj, ..., M, of degree d in
kle; |i ¢ S] such that M; A ... A M appears with a nonzero coefficient in
fiN... A fs. But then by the choice of S,

valy(g(t) - fi Ao oA fs) < wvali(g(t) - My A ... A M)
<valg(g(t)- fin... A fs)

which is a contradiction, proving our claim. Now for the obtained linear
combination f we have

stk (f) < S| < r.
U

Proof of Theorem 2.3. (i) This follows from Proposition 2.8(iii) and Propo-
sition 2.9.

(ii) This follows from Proposition 2.7 (the triangle inequality), Lemma 2.2
and Proposition 2.8(i) (for the part concerning the Waring rank). O

Proof of Theorem A. We combine Theorem 2.3(i) with Corollary 2.5. O
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2.4. Example of a calculation of G-rank

As we have seen before, for any linear form form [ one has r{(1) = 1. Here
is the next simplest case.

Proposition 2.10. Let V be a 2-dimensional vector space with a basis
x1,x2. For any m > 0, one has

5"

i (amaft) =

Proof. By Lemma 2.2, it is enough to prove that
3
rg(m%xg) =3

Considering g(t) = diag(t, 1), we immediately see that r{ (v?z2) < 3/2.
Now consider any

o= (2 4) <,
It is enough to prove that u(g, ¥3z2) < 3/2. We have
g-2iry = d’c- 23 + alad + 2bc) - 2329 + b(be + 2ad) - x123 + b2d - 5.
Let us abbreviate v(-) = valy(+), etc. Set s := v(g - ¥2z2). Then we have

2v(a) +v(c) > s, wv(a)+v(ad+ 2bc) > s,

v(b) +v(bc + 2ad) > s, 2v(b) +v(d) > s.
We consider three cases.

Case v(ad) > v(bc).

Then we have v(det(g)) = v(be) and v(be 4+ 2ad) = v(bc). Hence, from
the above inequalities we get wv(b)+v(bc) > s, hence, 2v(bc) > s, so
v(det(g)) = v(bc) > /2, and so u(g, z3xa) > 3/2.

Case v(ad) < v(bc).

Then we have v(det(g)) =wv(ad) and wv(ad+ 2bc) = v(ad). Hence,
2v(ad) > v(a) +v(ad) > s, and we again get v(det(g)) > s/2.

Case v(ad) = v(bc).
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Set t = v(ad) = v(be). Then we have v(det(g)) > t. Now by the above
inequalities,

4t = 2v(ad) 4 2v(be) > (2v(a) +v(c)) + (2v(b) + v(d)) > 2s,
which again implies v(det(g)) > s/2. O
3. Linear subspaces of minimal codimension in cubics

In this section we will prove Theorem C(i) and its improved version for
cubics of slice rank 2 (with ¢(2,3) = 6).

3.1. Some general observations

Let f € k[V] be a nonzero homogeneous polynomial of slice rank r, and let
X C PV be the corresponding projective hypersurface. We are interested in
the intersection

Ly := Npcx codimpy L=rL C PV.
Recall that we are looking for an estimate for the codimension of Ly. The

case r = 1 is straightforward:

Lemma 3.1. Let f be a homogeneous polynomial of degree d and slice rank
1. Then there are at most d hyperplanes contained in X, so codimpy Ly < d.

Since the slice rank is determined in terms of ideals (P) C k[V] generated
by subspaces P of linear forms, we record some easy observations about such
ideals.

Lemma 3.2. Let A C B be an extension of commutative rings, such that
B is flat as A-algebra. Then for any pair of ideals Ji, Jo C A, one has

(i-B)N(J2-B)=(J1iNJs) - B.

In particular, for a collection of linear subspaces P, C W,i=1,...,s, where
W C V* is a subspace, we have

PklVINn...NnPk[V]=(PISW)N...0nP.S(W)) - k[V].

Proof. Since for any ideal J C A the natural map J®4 B — J - B is an
isomorphism in this case, the assertion follows by applying the exact functor
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7 ®4 B to the exact sequence
0—JiNdy— J1®Jy— A

For the last statement we apply this to the flat extension of rings S(W') C
S(V*) =k[V]. O

Lemma 3.3. Let Py,...,Ps C V* be subspaces such that the ideal (Py)* N
..N(P5)?® contains no nonzero homogeneous polynomials of degree m, for
some powers a; > 1. Then we have an inclusion of ideals in k[V],

(P)® N...N(Ps)% C (W)™,
where W = P + ...+ Ps. In particular, if PN ...N Ps =0 then
(P)™N...Nn(P)™ c (W)™,

Proof. Applying Lemma 3.2 to the extension of rings S(W) c S(V*) = k[V],
we reduce to the case when W = V*. But then the first statement reduces
to the fact that if the ideal I = (P1)* N...N (Ps)% does not contain poly-
nomials of degree m then I C (x1,...,3,)™ L.

To prove the second statement we need to check that (P)™ N...N (Ps)™
does not contain any homogeneous polynomials of degree < m. This is clear
in degrees < m and in degree m follows from the statement that

0=S"(PN...NP)=8"P)N...nS"™"(Ps) C S"W,
since P,N...NP; =0. O
Definition 3.4. We say that a polynomial f € k[V] = S(V*) is a pullback
from a space of dimension m if there exists a linear subspace W C V* of
dimension m such that f e S(W) C S(V*). In this case, if f € (P), where

P C V* is a subspace of linear forms, then f € (W N P). In particular, the
slice rank of f in S(V*) can be calculated within S(W).

3.2. Proof of Theorem C(i)

Theorem C(i) is a consequence of the following more precise theorem.
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Theorem 3.5. Let f be a cubic of rank r, X C PV the corresponding hy-
persurface. Set

(r+1)>2

4 1)2
c(r) ::%(T+T+3) : (ﬂ

1 —i—r).

Then

o cither all linear subspaces L C X with codimpy L = 1 are contained in
a fized hyperplane,

e or f is a pullback from a space of dimension c(r).

In either case codimLy < c(r).

Lemma 3.6. Let Py,...,Ps CV* be an irredundant collection of subspaces
such that Py N...N Py =0 (i.e., the intersection of any proper subcollection
is nonzero). Assume that dim P; < r for every i. Then

(r—|—1)2.

dim(Py+...+ Ps) <r+ 1

Proof. Let a be the minimal dimension of intersections P; N P;. Then we
claim that s < a + 2. Indeed, without loss of generality we can assume that
dim P; N P, = a. Then for each 7 > 2 we should have

dmPiNnPN..NF<a+2-—1,

due to irredundancy of the collection, which proves the claim for ¢ = s.
On the other hand, since dim P;/(P; N P;) <r —a for ¢ > 1, we get that

N:=dm(Pi+...+ P) <r+(s—=1)(r—a)
(7“+1)2'

<r+(a+1)(r—a)<r+ 1

Proof of Theorem 3.5. We use induction on r. For r =1 the assertion is
clear. Assume r > 1 and the assertion holds for » — 1. Let P; denote the
set of r-dimensional subspaces P C V* such that f|p. = 0, or equivalently,

fc(P).
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If all P € Py contain the same line (v*) then we can apply the induction
assumption to the restriction of f to the hyperplane v* = 0 in V', which has
slice rank r — 1. Then the induction assumption implies that

codimpy Ly < c(r —1) +1 < ¢(r).

Otherwise, there exist Pp,...,Ps € Py such that Ppn...NPs=0.
Choosing a minimal such collection of subspaces and using Lemma 3.6, we
get
(r+1)2
—

Now by Lemma 3.3, f belongs to (W) (W), where W = P, + ...+ Ps.
Hence, f can be written in the form

f= 2 wuwily,

1<i<j<N

N:=dim(Py+...+ Ps) <r+

for some linear forms l;;, where (w;) is a basis of W. Hence, f is a pullback

from a space of dimension < W + N <¢(r). O

3.3. Cubics of slice rank 2

The bound of Theorem C(i) may be far from optimal. Here we study in more
detail the case of cubics of slice rank 2, proving in this case Conjecture B
with ¢(2,3) = 6 and partially classifying such cubics.

Theorem 3.7. Let f be a cubic of rank 2. Then

e cither all L C X with codimpy = 2 are contained in a fized hyperplane,
or

e f is a pullback from a 6-dimensional space, or

e f can be written in the form
[ =zy121 + m1y222 + 12123,

where x1, X2, Y1, Y2, 21, 22, 23 are linearly independent, or
o f is a pullback from an 8-dimensional space and codimpy Ly < 4, or

o fis a pullback from a 9-dimensional space and codimpy Ly < 3.

In either case codimpy Ly < 6.
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From now on we fix a cubic f € k[V] of slice rank 2. As in the proof of
Theorem 3.5 we denote by Py the set of 2-dimensional subspaces P C V*
such that f|p. = 0, or equivalently, f C (P), where (P) C k[V] denotes the
ideal generated by P.

The following result is well known but we include the (simple) proof for
reader’s convenience.

Lemma 3.8. Let S be a set of 2-dimensional subspaces in V* such that for
any Py, Py € S we have Py N Py # 0. Then either there exists a line L C V*
such that L C P for all P € S, or there exists a 3-dimensional subspace
W C V* such that P CW for all P € S.

Proof. We can think of § as a family of projective lines in the projective
space such that any two intersect. Our statement is that either they all pass
through one point, or they are contained in a plane. Indeed, assume they
do not all pass through one point. Pick a pair of lines ¢1, £» intersecting at a
point p. There exists a line ¢3, not passing through p. Then ¢y, ¢o, ¢35 form a
triangle in a plane. Now given any other line £ from S, we can pick a vertex
of the triangle such that ¢ does not pass through it. Say, assume ¢ does not
pass through p. Then /N ¥¢; and ¢ N ¢y are two distinct points of £, so £ is
contained in the plane of the triangle. O

Lemma 3.9. Assume that for any pair P, P, € Py we have PN Py # 0.
Then either there exists a nonzero linear form v* € V*, such that v* € P
for all P € Py, in which case codimpy Ly < 4, or f is a pullback from a
9-dimensional space and codimpy Ly < 3.

Proof. By Lemma 3.8, either all planes in P; span at most 3-dimensional
subspace W C V*, or there exists a nonzero linear form v* € V* such that
v* € P for all P € Py. In the latter case let us consider the restriction f of
our cubic to the hyperplane H,- C V. Then f has rank 1 and P; can be
identified with 73}7. So by Lemma 3.1, Ly has codimension 3 in H,-, hence,
it has codimension 4 in V.

Now let us consider the case when all planes in Py are contained in a
3-dimensional subspace W, and have zero intersection. Then by Lemma 3.3,
f € (W)2. Hence, as in the proof of Theorem 3.5, we deduce that f depends
on < 9 variables. O

Lemma 3.10. Assume there exist linearly independent linear forms
T1,22,y1,Y2 € V* such that span(xy,z2) € Py and span(yi,y2) € Py. Then
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f is a pullback from an 8-dimensional space, and one of the following possi-
bilities hold:

1) f is a pullback from a 6-dimensional space;
2) for all P € Py one has P C span(zx1,x2,y1,Y2);

3) f can be written in the form
[ =my1z1 + r1y222 + T2Y1 23,

where x1, T2, Y1, Y2, 21, 22, 23 are linearly independent.
Proof. Note that we can write

[ =x1y1li + z1y2lio + zoyrlor + z2yales,

for some linear forms /;; € V*. This immediately implies that f depends on
< 8 variables.

Let P = span(ly, l2) be in Py. First, we claim that if P N span(z1,z2) =0
and P Nspan(y;,y2) = 0 then either P C span(x1,x2,y1,y2) or f is a pull-
back from a 6-dimensional space. Indeed, assume that P is not contained
in span(x1,x2,y1,y2). First, we observe that for generic x € span(xi,x2)
and generic y € span(y;,y2) we should have P Nspan(z,y;,y2) =0 and
P Nspan(y, 1, 22) = 0. Indeed, otherwise we could pick generic z,2’ €
span(z1,z2) such that there exist nonzero vectors v € P Nspan(z,yi,y2)
and v' € P Nspan(z’,y1,y2). But then, since P Nspan(y,y2) = 0, we would
have that v and ¢’ are linearly independent, and so P = span(v,v’) C
(z1,x2,y1,y2). Hence, changing bases of span(x1,x2) and span(y;,y2) if nec-
essary, we can assume that

P Nspan(x1,y1,y2) = P Nspan(wz2, y1,y2) = P Nspan(yi, 21, 72)
= P Nspan(ys, z1,72) = 0.

Now the fact that f € (P) implies that
z1(y1hn + y2li2) € (2, P).

Note that any ideal generated by linear forms is prime (as the quotient
is a domain), so (x2, P) is a prime ideal. Since z1 & (z2, P), we get that
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yllll + y2112 € (1‘2, P) Hence,
yili1 € (22,92, P).

We know that y; & (z2,y2, P) since otherwise we would get a nonzero in-
tersection P N (x2,y1,y2). Hence l1; € (x2,y2, P). Similarly, we get li2 €
(x2,y1, P), lo1 € (z1,y2, P), and lso € (21,y1, P). But this implies that f
is a pull-back from a 6-dimensional space.

It remains to consider the case when there exists P in Py, such that

P nspan(yy,y2) =0 and P Nspan(zy,z2) = span(xq).
Then the condition f € (P) gives
z2(y1l21 + yala2) € (P).
Hence, y1lo1 + yaoloa € (P), which implies that
yilo1 € (y2, P).

Since y1 € (ya2, P), we get lo1 € (y2, P). Similarly, we get lo2 € (y1, P). Let
P = span(z2,1), where [ € V*. Then we can write

lo1 = a121 + brys + c1l, lag = agw1 + bayr + cal,
so we can rewrite f in the form

[ =z1y1(lin + a122) + 1y2(l12 + a2x2)
+ wa(c1y1 + cay2)l + (b1 + b2)z2y1y2.

The condition f € (x1,1) gives (b1 + b2)xay1y2 € (x1,1), which is possible
only if by + by = 0. This easily implies that either f is a pullback from a
6-dimensional space, or can be written in the form (3). O

Proof of Theorem 8.7. Taking into account Lemmas 3.9 and 3.10, it remains
to prove that in the situation of Lemma 3.10 one has codimL; < 6. This is
clear in cases (1) and (2). In case (3), it is easy to check that Py consists of
4 elements:

(.Tl, x2)7 (y1, yQ)a (331, 23)7 (yh 22)'

The corresponding intersection has codimension 6. O
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4. Hypersurfaces of higher degree
4.1. Proof of Theorem C(ii)

We use induction on d > 1. The case d =1 is clear, so assume that d > 2
and the assertion holds for degrees < d. Assume that dim ) | pep, P> d? -1
(otherwise we are done), and let {P, ..., P,} be a minimal subset of P; such
that

dimZH- >d?—1.
=1

Note that by minimality, dim Z?’;ll P, <d*>—1,s0

dimzPi <d*+1.

=1

Claim. There are no nonzero homogeneous polynomials of degree d — 1 in
the ideal (P1)N...N(FPy).

Indeed, suppose g € (P;) N...N(P,) is such a polynomial. We have one
of the two cases:
Case 1. g =1y...l; - h, where degl; = 1,0 < k < d — 2, stk(h) > 2.
Case 2. g=1;...l3_1, where degl; = 1.

Let us consider Case 1 first. Since each (F;) is a prime ideal, we should
have a decomposition

{1,...,n} =81 U...USUS,

where [; € P; for all t € S; and h € (F;) for i € S (and S = 0 if stkh > 2).
Let us fix j such that S; # 0. Then f mod (I;) has slice rank 1, hence

dim Y © P/(l;) < d

i€S;

(by Lemma 3.1). In other words,

dimZB <d+1.
=
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On the other hand, assuming that S # () and applying the induction hy-
pothesis to h, we get

dim» P < (d—-1-k)*+1.
€S
Hence, we obtain
dim» P <k(d+1)+(d—-1-k>+1<d>—1,
=1

which is a contradiction.
Similarly, in Case 2 we get

n
dim» P < (d-1)(d+1)=d” -1,
=1

which is a contradiction. This proves the Claim.
Combining the Claim with Lemma 3.3, we get the inclusion

feP)n...n(P,) C (P +...+ P,

Hence, f is a pullback from a space of dimension < d? + 1. This finishes the
proof. O

4.2. Proof of Theorem D

Let us dualize the recursive procedure described in Definition 1.1. For a
collection P = (Py,..., P,) of subspaces of V* we set P() = N?_, P, and
for each minimal subset J C [1,s] such that Njc;P; = P we set Py :=
> jes Pj- We denote by PW the collection of all subspaces P; of V* obtained

in this way. Iterating this procedure we get collections of subspaces P for
1 > 0, where PO = P. Let us also set P© =0 and for i > 0,

P(H_l) = mpe’p(i) P.

Note that P ¢ pl+1),

Step 1. If dim P, < r for all i then dim P; < r2. Indeed, let a = dim PW.
Then dim P; /P(l) <r —a and applying Lemma 3.6 we see that for every
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minimal subset J with N;c;P; = PM one has

_ 12 12
dim P; = a + dim P; /P §a+(ra)+(ra4+)§r+ (T_Z ) .

Since

for » > 2, the assertion follows.

Step 2. Suppose f is a homogeneous polynomial such that f € (P;) for
i1=1,...,s. Let us prove by induction on ¢ > 0 that

fe @)+ (P!

for any P € P Indeed, for i = 0 this is true by assumption. Assume that
1 > 0 and the assertion holds for ¢ — 1. Let us apply Lemma 3.3 to a collec-
tion of subspaces {Q1,...,Qp} C PU=1 such that Q; N...N Qp = PO or
rather to the corresponding subspaces Q; = Q;/P" of V*/P®). We get the
inclusion of ideals

(@) NN (@) c Q@™
in the symmetric algebra of V*/ P®_ Let us consider the polynomial
F=f mod (PY)

in this algebra. By assumption, f € (Qj)Z for j =1,...,p. Hence, we deduce
that f € (3 @j)(”l), ie.,

Fe @)+ ().

Since every subspace in P@ has form > Qj, with (Q1,...,Qp) as above,
this proves the induction step.

Step 3. For i = d, since f is homogeneous of degree d, the result of the
previous step gives

fe P,

Recall that P(@ is the intersection of all subspaces in P41 Iterating the

result of Step 1, we see that the dimension of any subspace in Pl=1) and
hence of P@, is < r2""". This ends the proof of Theorem D. ([
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Remark 4.1. Suppose we have an s-dimensional subspace F' of homoge-
neous polynomials of the same degree d, defined over k, such that there
exists a nonzero f € Fi and a subspace of linear forms of dimension r over
k such that f € (L). One can ask how to produce an element fy € F \ 0 and
a subspace of linear forms Ly, both defined over k, such that fy € (Lg) and
dimension of Ly is < ¢(sr) (by Theorem A, we know that such an element
exists).

Let Fy C F denote the subspace spanned by all the Galois conjugates of
f. Then Fj is defined over k. As fy we will take any nonzero element of Fj.

Since dim Fjy < dim F' < s, we can choose a set of elements of the Galois
group o1,...,0s, such that (o1f,...,0sf) span Fy. Hence, fp is a linear
combination of (o1 f,...,05f), and so,

foe (oL +...+0sL).

Now applying our algorithm from Theorem D for fy, we find a subspace Lg
of dimension < ¢(sr) defined over k, with fy € (Lo).
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