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Linear subspaces of minimal codimension

in hypersurfaces

David Kazhdan and Alexander Polishchuk

Let k be a perfect field and let X ⊂ PN be a hypersurface of degree
d defined over k and containing a linear subspace L defined over
k with codimPNL = r. We show that X contains a linear subspace
L0 defined over k with codimPNL ≤ dr. We conjecture that the
intersection of all linear subspaces (over k) of minimal codimension
r contained in X, has codimension bounded above only in terms
of r and d. We prove this when either d ≤ 3 or r ≤ 2.

1. Introduction

Let f(x1, . . . , xn) be a homogeneous polynomial of degree d ≥ 2 over a field
k. Recall that the slice rank srkk(f) of f is the minimal number r such that
there exists a decomposition

f = l1f1 + . . .+ lrfr,

where li are linear forms defined over k.
The above notion is a symmetric version of the notion of slice rank

for tensors introduced by Tao and Sawin (see [10]) in connection with the
bounds on the maximal size of subsets in Fn

3 not containing any lines, ob-
tained in [4], [6]. It is also related to the notion of Schmidt rank (or strength)
which plays a role in the Ananyan-Hochster proof of Stillman’s conjecture
[2].

The slice rank srkk(f) has a simple geometric meaning: it is the minimal
codimension in Pn−1 of a linear k-subspace P ⊂ Pn−1 contained in the pro-
jective hypersurface f = 0. Note that if srk

k
(f) < n/2 then this hypersurface

is necessarily singular.
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It is clear that srkk(f) ≥ srk
k
(f) and it is easy to find examples when

srkk(f) > srk
k
(f).

One can ask for an upper estimate for srkk(f) in terms of srk
k
(f). The

first result of this paper is precisely such an estimate, which we obtain by
adapting to homogeneous polynomials the theory of G-rank of tensors from
the work of Derksen [5]. The main point is that one can associate to such a
polynomial f a (real-valued) invariant rG

k
(f), called the G-rank, which does

not change when we pass from k to k (for perfect k), and which can be
bounded in terms of the slice rank. Note that Jiang showed in [7] that rG

k
(f)

is equal to Derksen’s G-rank of the corresponding symmetric tensor.
A bit more generally, for a collection f1, . . . , fs of homogeneous polyno-

mials of the same degree d, we set

srkk(f1, . . . , fs) = inf
(c1,...,cs) ̸=(0,...,0)

srkk(c1f1 + . . .+ csfs),

and we define a real number rG
k
(f1, . . . , fs) (see Section 2).

Theorem A. Assume that the field k is perfect. Then for homogeneous
polynomials f1, . . . , fs over k of degree d ≥ 2, one has

srkk(f1, . . . , fs) ≤ rG
k
(f1, . . . , fs) = rG

k
(f1, . . . , fs) ≤ ds · srk

k
(f1, . . . , fs).

In particular, for a single polynomial we get inequality

srkk(f) ≤ d · srk
k
(f).

The inequality for a single f is sharp for every degree d: if E/k is a Galois
extension of degree d then the norm E → k is a polynomial of degree d that
has slice rank d over k and slice rank 1 over E.

Note that although rG
k

coincides with Derksen’s G-rank of the corre-
sponding symmetric tensor (as proved in [7]), the bounds connecting rG

k

with the slice rank are sharper in the symmetric case: the bounds ob-
tained by Derksen for arbitrary tensors would only give the inequality
srkk(f) ≤

d2

2 · srk
k
(f).

Our second goal in this paper is to understand the inequality of The-
orem A more constructively. Geometrically, the statement is that if a hy-
persurface X ⊂ PN of degree d, defined over k, contains a linear subspace
L of codimension r in PN , defined over k, then X contains a linear sub-
space L0 of codimension ≤ dr in PN , defined over k. One can ask for an
explicit construction of L0 from L and its Galois conjugates. The simplest
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answer would be that one can just take L0 to be the intersection of all the
Galois conjugates of L. We conjecture that the following stronger geometric
statement holds.

Conjecture B. Let X = (f = 0) ⊂ PN be a hypersurface of degree d (over
any ground field), and let r be the minimal natural number such that X
contains a linear subspace L with codimPNL = r. Set

Lf := ∩L⊂X,codimPnL=rL.

Then there exists a function c(r, d) such that codimLf ≤ c(r, d).

It is an easy exercise to check that the conjecture holds if d = 2 or r = 1
with c(r, 2) = 2r and c(1, d) = d. We prove the following cases of the conjec-
ture: when d = 3 (and r is arbitrary) and when r = 2 (and d is arbitrary).

Theorem C. (i) Conjecture B holds for cubic hypersurfaces with

c(r, 3) = c(r) :=
1

2

((r + 1)2

4
+ r + 3

)
·
((r + 1)2

4
+ r

)
.

(ii) Conjecture B holds for r = 2 with

c(2, d) = d2 + 1.

More precisely, for a polynomial f of slice rank 2 and degree d, either
codimLf ≤ d2 − 1 or f is a pullback from a space of dimension ≤ d2 + 1.

One can ask how far are the estimates of Theorem C from being optimal.
In the case d = 3 and r = 2 we show that Conjecture B holds with c(2, 3) =
6 by giving a partial classification of cubic hypersurfaces of rank 2 (see
Theorem 3.7). Consider the cubic f(xi, yjk), where i = 1, . . . , n, 1 ≤ j < k ≤
n (so the number of variables is n(n+ 1)/2), given by

f =
∑

i<j

xixjyij .

One can check that the rank of f is equal to n− 1. Furthermore, for every i <
j, f is in the ideal (yij , xk | k ̸= i, k ̸= j), so we get codimLf = n(n+ 1)/2,
which depends quadratically on the rank. So it seems that the optimal bound
c(r, 3) is at least quadratic in r.



146 D. Kazhdan and A. Polishchuk

On the other hand, let us consider a polynomial f in n groups of variables

(x1(1), . . . , xm(1)), . . . , (x1(n), . . . , xm(n))

given by

f =

m∑

i=1

x1(1) . . . x̂i(1) . . . xm(1) · xi(2) . . . xi(n).

Then deg(f) = m+ n− 2 and it is easy to see that f has rank 2 and
codimLf = mn. This shows that the optimal bound c(2, d) grows quadrati-
cally in d.

Theorem C(i) implies that if L is a linear subspace of minimal codi-
mension r in PN , defined over a Galois extension of k, contained in a cubic
hypersurface X (defined over k), then by taking intersection of all Galois
conjugates of L we get a linear subspace L0 of codimension ≤ c(r), contained
in X and defined over k.

Since we don’t know the validity of Conjecture B for general r and d, we
give a more complicated construction of a linear subspace L0 ⊂ X, defined
over k, starting from the Galois conjugates of L ⊂ X defined over a Galois
extension of k. For this we introduce the following recursive definition, where
for linear subspaces L1, . . . , Ls ⊂ PN we denote by ⟨L1, . . . , Ls⟩ ⊂ PN their
linear span.

Definition 1.1. For a collection L = {L1, . . . , Ls} of linear subspaces of
PN , we define a new collection of linear subspaces of PN as follows. Let
L = ⟨L1, . . . , Ls⟩. For each minimal subset J ⊂ [1, s] such that ⟨Lj | j ∈
J⟩ = L, we set LJ := ∩j∈JLj , and we denote by L(1) the collection of all such
subspaces LJ . We denote by L(i), i ≥ 1, the collections of linear subspaces
obtained by iterating this construction.

Theorem D. Let X ⊂ PN be a hypersurface of degree d ≥ 2 and let L =
(L1, . . . , Ls) be a collection of linear subspaces contained in X, such that
codimPNLi ≤ r, where r ≥ 2. Then for the linear subspace

L0 := ⟨L | L ∈ L(d−1)⟩,

we have L0 ⊂ X and

codimPNL0 ≤ r2
d−1

.

Applying the construction of Theorem D to the collection of all Galois
conjugates of a linear subspace of codimension r ≥ 2 in PN , defined over
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some Galois extension of k, contained in a hypersurface X (defined over k),
we get an algorithm for producing a linear subspace of codimension ≤ r2

d−1

in PN , contained in X and defined over k.
One can ask whether the second inequality in Theorem A can also be

explained constructively. In other words, starting with an s-dimensional sub-
space F of homogeneous polynomials of the same degree d, defined over a
perfect field k, such that there exists a nonzero f ∈ F

k
and a subspace of

linear forms of dimension r over k such that f ∈ (L), we want to produce an
element f0 ∈ F \ 0 and a subspace of linear forms L0, both defined over k,
such that f0 ∈ (L0) and dimension of L0 is ≤ c(sr). In Remark 4.1 we show
how to do this using the algorithm of Theorem D for a single polynomial.

Our study is partially motivated by the desire to understand the related
notion of the Schmidt rank (also known as strength) of a homogeneous poly-
nomial (see [1], [3] and references therein), defined as the minimal number
r such that f admits a decomposition f = g1h1 + . . .+ grhr, with deg(gi)
and deg(hi) smaller than deg(f). Similarly to Theorem A one can try to
estimate the Schmidt rank of a polynomial over a non-closed field in terms
of its Schmidt rank over an algebraic closure. In [8], we show how to do this
for quartic polynomials.

2. G-rank for homogeneous polynomials

Throughout this section we assume that the ground field k is perfect.

2.1. Definition of the G-rank and the relation to the slice rank

Below we introduce an analog of G-rank for symmetric tensors, or equiva-
lently, for homogeneous polynomials, rG

k
(f) (where G = GLn). We show that

it enjoys similar properties to Derksen’s G-rank of a non-symmetric tensor
studied in [5], in particular, it does not change under algebraic extensions
of perfect fields. We also introduce the notion rG

k
(f1, . . . , fs) of a G-rank for

a collection of polynomials of the same degree.
Let V be an n-dimensional space over k. We consider the group G =

GL(V ) ≃ GLn(k) acting naturally on the space SdV , and the induced action
on

∧s(SdV ).
We consider points of G and of

∧sSdV with values in the ring of formal
power series k[[t]]. For a k-vector space W and a vector w ∈ W [[t]], we denote
by valt(w) the minimal m ≥ 0 such that w ∈ tmW [[t]].
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For f ∈ SdV ⊂ SdV [[t]] and g(t) ∈ G(k[[t]]) such that valt(g(t) · f) > 0,
we set

µ(g(t), f) = d ·
valt(det(g(t)))

valt(g(t) · f)
.

The factor d in front is a matter of convention: it makes the factor d disap-
pear in some of the statements below.

Definition 2.1. (i) For nonzero f ∈ SdV we define its G-rank by

rG
k
(f) = inf

g(t)
µ(g(t), f),

where we take the infimum over all g(t) ∈ G(k[[t]]) such that valt(g(t) · f) >
0.
(ii) More generally, for linearly independent f1, . . . , fs ∈ SdV , we define the
G-rank by

rG
k
(f1, . . . , fs) = inf

g(t)
µ(g(t), f1, . . . , fs),

where

µ(g(t), f1, . . . , fs) = ds ·
valt(det(g(t)))

valt(g(t) · f1 ∧ . . . ∧ fs)
,

and the infinum is taken over g(t) ∈ G(k[[t]]) such that valt(g(t) · f1 ∧ . . . ∧
fs) > 0.

The formula

valt(g(t) · f
m) = m · valt(g(t) · f)

immediately implies the following property.

Lemma 2.2. For any f ∈ SdV and any m ≥ 1 one has

rG
k
(fm) = rG

k
(f).

Here is the main result connecting the G-rank with the slice rank and
also with the Waring rank.

Theorem 2.3. Assume the base field k is perfect.
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(i) For a homogeneous polynomial f of degree d over k one has

srkk(f) ≤ rG
k
(f) ≤ d · srkk(f).

For a collection f1, . . . fs of homogeneous polynomials of degree d over k one
has

srkk(f1, . . . , fs) ≤ rG
k
(f1, . . . , fs) ≤ ds · srkk(f1, . . . , fs).

(ii) Suppose m1, . . . ,mr are divisors of d, and f1, . . . , fr are homogeneous
polynomials of degrees deg(fi) = d/mi. Then

rG
k
(fm1

1 + . . .+ fmr

r ) ≤ rG
k
(f1) + . . .+ rG

k
(fr).

In particular,

rG
k
(f) ≤ wk(f),

where wk(f) is the Waring rank of f , i.e., the minimal number r such that

f = ld1 + . . .+ ldr ,

where li are linear forms defined over k.

The proof will be given in Sec. 2.3 after some preparations. The argument
is very close to the one in [5].

2.1.1. Relation to the GIT stability. Let W be a finite dimensional
algebraic representation of G = GL(V ) over k. Recall that a point w ∈ W is
called G-semistable if the orbit closure G · v does not contain 0. Recall that
Kempf’s k-rational version of the Hilbert-Mumford criterion (see [9]) states
(assuming k is perfect) that if w is not G-semistable then there exists a 1-
parameter subgroup λ : Gm → G defined over k such that limt→0 λ(t) · w =
0. Here λ has form g · diag(tλ1 , . . . , tλn) · g−1 for some g ∈ G(k) and λi ∈ Z.

In the following statement we relate the G-rank to G-semistability, using
an auxiliary element u ∈ V n which has (usual) rank n, viewed as an n× n
matrix (recall that dimV = n).

Proposition 2.4. For integers p ≥ 0 and q > 0, let us consider the G-
representation

W = (
∧s

SdV )⊗p ⊗ det−dsq ⊕ V n.

Let u ∈ V n be a fixed element of rank n. Then we have rG
k
(f1, . . . , fs) ≥

p
q
if

and only if w = ((f1 ∧ . . . ∧ fs)
⊗p ⊗ 1, u) is G-semistable.
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Proof. By Hilbert-Mumford-Kempf’s criterion, if w is not G-semistable
then there exists a 1-parameter subgroup λ : Gm → G over k, such that
limt→0 λ(t) · w = (0, 0). In particular, we have limt→0 λ(t) · u = 0, so λ(t) ∈
G(k[t]), and

valt(λ(t) · (f1 ∧ . . . ∧ fs)
⊗p ⊗ 1)

= p · valt(λ(t) · f1 ∧ . . . ∧ fs)− dsq · valt det(λ(t)) > 0,

which implies that valt(λ(t) · f1 ∧ . . . ∧ fs) > 0 and

µ(λ(t), f1, . . . , fs) <
p

q
.

Hence, rG(f1, . . . , fs) <
p
q
.

Conversely, assume there exists g(t) ∈ G(k[[t]]) such that valt(g(t) · f1 ∧
. . . ∧ fs) > 0 and µ(g(t), f1, . . . , fs) <

p
q
, i.e.,

valt(g(t) · (f1 ∧ . . . ∧ fs)
⊗p ⊗ 1) > 0.

Truncating g(t) at high enough order in t, we can assume that g(t) ∈ G(k[t]).
Then the fact that limt→0 g(t) · w = (0, g(0) · u) implies that (0, g(0) · u) lies
in the closure of the G-orbit of w. Since 0 lies in the closure of the G-orbit of
g(0) · u (we can just use the 1-parameter subgroup t · idV in G to see this),
we see that (0, 0) lies in the closure of G · w, so w is not G-semistable. □

As a consequence of Proposition 2.4, in the definition of rG
k
(f1, . . . , fs)

it is enough to take g(t) to be a 1-parameter subgroup of G defined over k.
Also, since G-semistability does not change under the base field extension,
we deduce the following

Corollary 2.5. Let k be an algebraic closure of k. Then one has

rG
k
(f1, . . . , fs) = rG

k
(f1, . . . , fs).

Let T ⊂ G denote the maximal torus, i.e., the group of diagonal matrices
with respect to a k-basis (ei) of V . Replacing G everywhere by T we get
a notion of T -rank, rT

k
(f1, . . . , fs). From Hilbert-Mumford-Kempf criterion

we get

rG
k
(f1, . . . , fs) = inf

g∈G(k)
rT
k
(g · (f1, . . . , fs)).

The reason we introduced the factor ds in the definition of rG
k
(f1, . . . , fs)

is so as to have the following normalization property.
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Lemma 2.6. One has rG
k
(f1, . . . , fs) ≥ 1.

Proof. It is enough to check that for any g(t) ∈ T (k[[t]]) and any distinct
monomials M1, . . . ,Ms of (ei) in SdV , one has

valt(g(t) ·M1 ∧ . . . ∧Ms) ≤ ds · valt(det(g(t))).

Let c1, . . . , cn ≥ 0 be the valuations of the diagonal entries of g(t), so that

valt(det(g(t))) = c1 + . . .+ cn.

Then for a monomial M = ea1

1 . . . ean
n , we have

valt(g(t) ·M) = a1c1 + . . .+ ancn ≤ (a1 + . . .+ an)(c1 + . . .+ cn)

= d(c1 + . . .+ cn).

Hence, valt(g(t) ·M1 ∧ . . . ∧Ms) ≤ ds, which gives the required inequality.
□

2.2. Triangle inequality

Proposition 2.7. For f1, f2 ∈ SdV one has rG
k
(f1 + f2) ≤ rG

k
(f1) +

rG
k
(f2).

Proof. This is proved exactly as [5, Prop. 3.6]. Starting with g1(t), g2(t) ∈
G(k[[t]]) such that valt(gi(t) · fi) > 0, one has to produce u(t) ∈ G(k[[t]]) with
valt(u(t) · (f1 + f2)) > 0 and

µ(u(t), f1 + f2) ≤ µ(g1(t), f1) + µ(g2(t), f2).

Making changes of variables t 7→ ti if necessary, we can assume that

valt(g1(t) · f1) = valt(g2(t) · f2) = s > 0.

By [5, Lem. 3.5], there exists u(t) ∈ G(k[[t]]) such that u(t) = u1(t)g1(t) =
u2(t)g2(t) with ui(t) ∈ G(k[[t]]) and

valt(detu(t)) ≤ valt(det g1(t)) + valt(det g2(t)).

Then

valt(u(t) · (f1 + f2)) ≥ min(valt(u1(t)g1(t) · f1), valt(u2(t)g2(t) · f2)) ≥ s,
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and

1

d
µ(u(t), f1 + f2) =

valt(detu(t))

valt(u(t) · (f1 + f2))

≤
valt(det g1(t)) + valt(det g2(t))

s
=

1

d
(µ(g1(t), f1) + µ(g2(t), f2)).

□

2.3. Relation to the slice rank and to the sums of powers

In this section we will prove Theorem 2.3. We always assume that f ∈ SdV
(resp., fi ∈ SdV ), where V is an n-dimensional space over a field k.

Proposition 2.8. (i) Let f = vd for some v ∈ V \ 0. Then rG
k
(f) = 1.

(ii) One has rG
k
(f) ≤ d · srkk(f).

(iii) If there exists a nontrivial linear combination c1f1 + . . .+ csfs that has
slice rank r then rG

k
(f1, . . . , fs) ≤ dsr.

Proof. (i) By Lemma 2.6, rG
k
(f) ≥ 1, so it is enough to find g(t) ∈ G(k[t])

such that µ(g(t), vd) = 1. We can assume that v = e1, and take

g(t) = diag(t, 1, . . . , 1).

Then valt(g(t) · e
d
1) = d and valt(det(g)) = 1. (Alternatively, we can use

Lemma 2.2 to reduce to the easy case d = 1.)
(ii) We can assume that f = e1 · f1 + . . .+ er · fr. Then for g(t) =
diag(t, . . . , t︸ ︷︷ ︸

r

, 1, . . . , 1), we have valt(g(t) · f) ≥ 1, while valt(det(g)) = r, so

µ(g(t), f) ≤ d ·
r

valt(g(t) · f)
≤ dr.

(iii) If this is the case then f1 ∧ . . . ∧ fs has form (e1h1 + . . .+ erhr) ∧ . . .,
hence, for the same g(t) as in (ii), we have valt(g(t) · f1 ∧ . . . ∧ fs) ≥ 1. □

Proposition 2.9. One has

srkk(f1, . . . , fs) ≤ rG
k
(f1, . . . , fs).
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Proof. Suppose rG
k
(f1, . . . , fs) < r. Then there exists a 1-parameter sub-

group g(t) such that

r · valt(g(t) · f1 ∧ . . . ∧ fs) > ds · valt(det(g(t))).

We can assume that g(t) is diagonal with respect to some basis (e1, . . . , en)
of V . Now consider the set

S := {i ∈ [1, n] | valt(g(t) · ei) ≥
valt(g(t) · f1 ∧ . . . ∧ fs)

ds
}.

Note that

valt(det(g(t))) ≥
∑

i∈S

valt(g(t) · ei) ≥ |S| ·
valt(g(t) · f1 ∧ . . . ∧ fs)

ds
,

hence,

|S| < r.

We claim that there exists a nontrivial linear combination f = c1f1 +
. . .+ csfs such that all the monomials appearing in f are divisible by some
ei with i ∈ S. Indeed, otherwise, the projection

⟨f1, . . . , fs⟩ → k[e1, . . . , en] → k[e1, . . . , en]/(ei | i ∈ S) ≃ k[ei |i ̸∈ S]

is injective, so there exist s distinct monomials M1, . . . ,Ms of degree d in
k[ei |i ̸∈ S] such that M1 ∧ . . . ∧Ms appears with a nonzero coefficient in
f1 ∧ . . . ∧ fs. But then by the choice of S,

valt(g(t) · f1 ∧ . . . ∧ fs) ≤ valt(g(t) ·M1 ∧ . . . ∧Ms)

< valt(g(t) · f1 ∧ . . . ∧ fs)

which is a contradiction, proving our claim. Now for the obtained linear
combination f we have

srkk(f) ≤ |S| < r.

□

Proof of Theorem 2.3. (i) This follows from Proposition 2.8(iii) and Propo-
sition 2.9.
(ii) This follows from Proposition 2.7 (the triangle inequality), Lemma 2.2
and Proposition 2.8(i) (for the part concerning the Waring rank). □

Proof of Theorem A. We combine Theorem 2.3(i) with Corollary 2.5. □
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2.4. Example of a calculation of G-rank

As we have seen before, for any linear form form l one has rG
k
(ld) = 1. Here

is the next simplest case.

Proposition 2.10. Let V be a 2-dimensional vector space with a basis
x1, x2. For any m > 0, one has

rG
k
(x2m1 xm2 ) =

3

2
.

Proof. By Lemma 2.2, it is enough to prove that

rG
k
(x21x2) =

3

2
.

Considering g(t) = diag(t, 1), we immediately see that rG
k
(x21x2) ≤ 3/2.

Now consider any

g =

(
a b
c d

)
∈ G(k[[t]]).

It is enough to prove that µ(g, x21x2) ≤ 3/2. We have

g · x21x2 = a2c · x31 + a(ad+ 2bc) · x21x2 + b(bc+ 2ad) · x1x
2
2 + b2d · x32.

Let us abbreviate v(·) = valt(·), etc. Set s := v(g · x21x2). Then we have

2v(a) + v(c) ≥ s, v(a) + v(ad+ 2bc) ≥ s,

v(b) + v(bc+ 2ad) ≥ s, 2v(b) + v(d) ≥ s.

We consider three cases.
Case v(ad) > v(bc).

Then we have v(det(g)) = v(bc) and v(bc+ 2ad) = v(bc). Hence, from
the above inequalities we get v(b) + v(bc) ≥ s, hence, 2v(bc) ≥ s, so
v(det(g)) = v(bc) ≥ s/2, and so µ(g, x21x2) ≥ 3/2.
Case v(ad) < v(bc).

Then we have v(det(g)) = v(ad) and v(ad+ 2bc) = v(ad). Hence,
2v(ad) ≥ v(a) + v(ad) ≥ s, and we again get v(det(g)) ≥ s/2.
Case v(ad) = v(bc).
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Set t = v(ad) = v(bc). Then we have v(det(g)) ≥ t. Now by the above
inequalities,

4t = 2v(ad) + 2v(bc) ≥ (2v(a) + v(c)) + (2v(b) + v(d)) ≥ 2s,

which again implies v(det(g)) ≥ s/2. □

3. Linear subspaces of minimal codimension in cubics

In this section we will prove Theorem C(i) and its improved version for
cubics of slice rank 2 (with c(2, 3) = 6).

3.1. Some general observations

Let f ∈ k[V ] be a nonzero homogeneous polynomial of slice rank r, and let
X ⊂ PV be the corresponding projective hypersurface. We are interested in
the intersection

Lf := ∩L⊂X,codimPV L=rL ⊂ PV.

Recall that we are looking for an estimate for the codimension of Lf . The
case r = 1 is straightforward:

Lemma 3.1. Let f be a homogeneous polynomial of degree d and slice rank
1. Then there are at most d hyperplanes contained in X, so codimPV Lf ≤ d.

Since the slice rank is determined in terms of ideals (P ) ⊂ k[V ] generated
by subspaces P of linear forms, we record some easy observations about such
ideals.

Lemma 3.2. Let A ⊂ B be an extension of commutative rings, such that
B is flat as A-algebra. Then for any pair of ideals J1, J2 ⊂ A, one has

(J1 ·B) ∩ (J2 ·B) = (J1 ∩ J2) ·B.

In particular, for a collection of linear subspaces Pi ⊂ W , i = 1, . . . , s, where
W ⊂ V ∗ is a subspace, we have

P1k[V ] ∩ . . . ∩ Psk[V ] = (P1S(W ) ∩ . . . ∩ PsS(W )) · k[V ].

Proof. Since for any ideal J ⊂ A the natural map J ⊗A B → J ·B is an
isomorphism in this case, the assertion follows by applying the exact functor
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?⊗A B to the exact sequence

0 → J1 ∩ J2 → J1 ⊕ J2 → A.

For the last statement we apply this to the flat extension of rings S(W ) ⊂
S(V ∗) = k[V ]. □

Lemma 3.3. Let P1, . . . , Ps ⊂ V ∗ be subspaces such that the ideal (P1)
a1 ∩

. . . ∩ (Ps)
as contains no nonzero homogeneous polynomials of degree m, for

some powers ai ≥ 1. Then we have an inclusion of ideals in k[V ],

(P1)
a1 ∩ . . . ∩ (Ps)

as ⊂ (W )m+1.

where W = P1 + . . .+ Ps. In particular, if P1 ∩ . . . ∩ Ps = 0 then

(P1)
m ∩ . . . ∩ (Ps)

m ⊂ (W )m+1.

Proof. Applying Lemma 3.2 to the extension of rings S(W ) ⊂ S(V ∗) = k[V ],
we reduce to the case when W = V ∗. But then the first statement reduces
to the fact that if the ideal I = (P1)

a1 ∩ . . . ∩ (Ps)
as does not contain poly-

nomials of degree m then I ⊂ (x1, . . . , xn)
m+1.

To prove the second statement we need to check that (P1)
m ∩ . . . ∩ (Ps)

m

does not contain any homogeneous polynomials of degree ≤ m. This is clear
in degrees < m and in degree m follows from the statement that

0 = Sm(P1 ∩ . . . ∩ Ps) = Sm(P1) ∩ . . . ∩ Sm(Ps) ⊂ SmW,

since P1 ∩ . . . ∩ Ps = 0. □

Definition 3.4. We say that a polynomial f ∈ k[V ] = S(V ∗) is a pullback
from a space of dimension m if there exists a linear subspace W ⊂ V ∗ of
dimension m such that f ∈ S(W ) ⊂ S(V ∗). In this case, if f ∈ (P ), where
P ⊂ V ∗ is a subspace of linear forms, then f ∈ (W ∩ P ). In particular, the
slice rank of f in S(V ∗) can be calculated within S(W ).

3.2. Proof of Theorem C(i)

Theorem C(i) is a consequence of the following more precise theorem.
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Theorem 3.5. Let f be a cubic of rank r, X ⊂ PV the corresponding hy-
persurface. Set

c(r) :=
1

2

((r + 1)2

4
+ r + 3

)
·
((r + 1)2

4
+ r

)
.

Then

• either all linear subspaces L ⊂ X with codimPV L = r are contained in
a fixed hyperplane,

• or f is a pullback from a space of dimension c(r).

In either case codimLf ≤ c(r).

Lemma 3.6. Let P1, . . . , Ps ⊂ V ∗ be an irredundant collection of subspaces
such that P1 ∩ . . . ∩ Ps = 0 (i.e., the intersection of any proper subcollection
is nonzero). Assume that dimPi ≤ r for every i. Then

dim(P1 + . . .+ Ps) ≤ r +
(r + 1)2

4
.

Proof. Let a be the minimal dimension of intersections Pi ∩ Pj . Then we
claim that s ≤ a+ 2. Indeed, without loss of generality we can assume that
dimP1 ∩ P2 = a. Then for each i ≥ 2 we should have

dimP1 ∩ P2 ∩ . . . ∩ Pi ≤ a+ 2− i,

due to irredundancy of the collection, which proves the claim for i = s.
On the other hand, since dimPi/(Pi ∩ P1) ≤ r − a for i > 1, we get that

N := dim(P1 + . . .+ Ps) ≤ r + (s− 1)(r − a)

≤ r + (a+ 1)(r − a) ≤ r +
(r + 1)2

4
.

□

Proof of Theorem 3.5. We use induction on r. For r = 1 the assertion is
clear. Assume r > 1 and the assertion holds for r − 1. Let Pf denote the
set of r-dimensional subspaces P ⊂ V ∗ such that f |P⊥ = 0, or equivalently,
f ⊂ (P ).
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If all P ∈ Pf contain the same line (v∗) then we can apply the induction
assumption to the restriction of f to the hyperplane v∗ = 0 in V , which has
slice rank r − 1. Then the induction assumption implies that

codimPV Lf ≤ c(r − 1) + 1 ≤ c(r).

Otherwise, there exist P1, . . . , Ps ∈ Pf such that P1 ∩ . . . ∩ Ps = 0.
Choosing a minimal such collection of subspaces and using Lemma 3.6, we
get

N := dim(P1 + . . .+ Ps) ≤ r +
(r + 1)2

4
.

Now by Lemma 3.3, f belongs to (W ) · (W ), where W = P1 + . . .+ Ps.
Hence, f can be written in the form

f =
∑

1≤i≤j≤N

wiwjlij ,

for some linear forms lij , where (wi) is a basis of W . Hence, f is a pullback

from a space of dimension ≤ N(N+1)
2 +N ≤ c(r). □

3.3. Cubics of slice rank 2

The bound of Theorem C(i) may be far from optimal. Here we study in more
detail the case of cubics of slice rank 2, proving in this case Conjecture B
with c(2, 3) = 6 and partially classifying such cubics.

Theorem 3.7. Let f be a cubic of rank 2. Then

• either all L ⊂ X with codimPV = 2 are contained in a fixed hyperplane,
or

• f is a pullback from a 6-dimensional space, or

• f can be written in the form

f = x1y1z1 + x1y2z2 + x2y1z3,

where x1, x2, y1, y2, z1, z2, z3 are linearly independent, or

• f is a pullback from an 8-dimensional space and codimPV Lf ≤ 4, or

• f is a pullback from a 9-dimensional space and codimPV Lf ≤ 3.

In either case codimPV Lf ≤ 6.
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From now on we fix a cubic f ∈ k[V ] of slice rank 2. As in the proof of
Theorem 3.5 we denote by Pf the set of 2-dimensional subspaces P ⊂ V ∗

such that f |P⊥ = 0, or equivalently, f ⊂ (P ), where (P ) ⊂ k[V ] denotes the
ideal generated by P .

The following result is well known but we include the (simple) proof for
reader’s convenience.

Lemma 3.8. Let S be a set of 2-dimensional subspaces in V ∗ such that for
any P1, P2 ∈ S we have P1 ∩ P2 ̸= 0. Then either there exists a line L ⊂ V ∗

such that L ⊂ P for all P ∈ S, or there exists a 3-dimensional subspace
W ⊂ V ∗ such that P ⊂ W for all P ∈ S.

Proof. We can think of S as a family of projective lines in the projective
space such that any two intersect. Our statement is that either they all pass
through one point, or they are contained in a plane. Indeed, assume they
do not all pass through one point. Pick a pair of lines ℓ1, ℓ2 intersecting at a
point p. There exists a line ℓ3, not passing through p. Then ℓ1, ℓ2, ℓ3 form a
triangle in a plane. Now given any other line ℓ from S, we can pick a vertex
of the triangle such that ℓ does not pass through it. Say, assume ℓ does not
pass through p. Then ℓ ∩ ℓ1 and ℓ ∩ ℓ2 are two distinct points of ℓ, so ℓ is
contained in the plane of the triangle. □

Lemma 3.9. Assume that for any pair P1, P2 ∈ Pf we have P1 ∩ P2 ̸= 0.
Then either there exists a nonzero linear form v∗ ∈ V ∗, such that v∗ ∈ P
for all P ∈ Pf , in which case codimPV Lf ≤ 4, or f is a pullback from a
9-dimensional space and codimPV Lf ≤ 3.

Proof. By Lemma 3.8, either all planes in Pf span at most 3-dimensional
subspace W ⊂ V ∗, or there exists a nonzero linear form v∗ ∈ V ∗ such that
v∗ ∈ P for all P ∈ Pf . In the latter case let us consider the restriction f̃ of

our cubic to the hyperplane Hv∗ ⊂ V . Then f̃ has rank 1 and Pf can be
identified with P

f̃
. So by Lemma 3.1, Lf has codimension 3 in Hv∗ , hence,

it has codimension 4 in V .
Now let us consider the case when all planes in Pf are contained in a

3-dimensional subspace W , and have zero intersection. Then by Lemma 3.3,
f ∈ (W )2. Hence, as in the proof of Theorem 3.5, we deduce that f depends
on ≤ 9 variables. □

Lemma 3.10. Assume there exist linearly independent linear forms
x1, x2, y1, y2 ∈ V ∗ such that span(x1, x2) ∈ Pf and span(y1, y2) ∈ Pf . Then
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f is a pullback from an 8-dimensional space, and one of the following possi-
bilities hold:

1) f is a pullback from a 6-dimensional space;

2) for all P ∈ Pf one has P ⊂ span(x1, x2, y1, y2);

3) f can be written in the form

f = x1y1z1 + x1y2z2 + x2y1z3,

where x1, x2, y1, y2, z1, z2, z3 are linearly independent.

Proof. Note that we can write

f = x1y1l11 + x1y2l12 + x2y1l21 + x2y2l22,

for some linear forms lij ∈ V ∗. This immediately implies that f depends on
≤ 8 variables.

Let P = span(l1, l2) be in Pf . First, we claim that if P ∩ span(x1, x2) = 0
and P ∩ span(y1, y2) = 0 then either P ⊂ span(x1, x2, y1, y2) or f is a pull-
back from a 6-dimensional space. Indeed, assume that P is not contained
in span(x1, x2, y1, y2). First, we observe that for generic x ∈ span(x1, x2)
and generic y ∈ span(y1, y2) we should have P ∩ span(x, y1, y2) = 0 and
P ∩ span(y, x1, x2) = 0. Indeed, otherwise we could pick generic x, x′ ∈
span(x1, x2) such that there exist nonzero vectors v ∈ P ∩ span(x, y1, y2)
and v′ ∈ P ∩ span(x′, y1, y2). But then, since P ∩ span(y1, y2) = 0, we would
have that v and v′ are linearly independent, and so P = span(v, v′) ⊂
(x1, x2, y1, y2). Hence, changing bases of span(x1, x2) and span(y1, y2) if nec-
essary, we can assume that

P ∩ span(x1, y1, y2) = P ∩ span(x2, y1, y2) = P ∩ span(y1, x1, x2)

= P ∩ span(y2, x1, x2) = 0.

Now the fact that f ∈ (P ) implies that

x1(y1l11 + y2l12) ∈ (x2, P ).

Note that any ideal generated by linear forms is prime (as the quotient
is a domain), so (x2, P ) is a prime ideal. Since x1 ̸∈ (x2, P ), we get that
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y1l11 + y2l12 ∈ (x2, P ). Hence,

y1l11 ∈ (x2, y2, P ).

We know that y1 ̸∈ (x2, y2, P ) since otherwise we would get a nonzero in-
tersection P ∩ (x2, y1, y2). Hence l11 ∈ (x2, y2, P ). Similarly, we get l12 ∈
(x2, y1, P ), l21 ∈ (x1, y2, P ), and l22 ∈ (x1, y1, P ). But this implies that f
is a pull-back from a 6-dimensional space.

It remains to consider the case when there exists P in Pf , such that

P ∩ span(y1, y2) = 0 and P ∩ span(x1, x2) = span(x1).

Then the condition f ∈ (P ) gives

x2(y1l21 + y2l22) ∈ (P ).

Hence, y1l21 + y2l22 ∈ (P ), which implies that

y1l21 ∈ (y2, P ).

Since y1 ̸∈ (y2, P ), we get l21 ∈ (y2, P ). Similarly, we get l22 ∈ (y1, P ). Let
P = span(x2, l), where l ∈ V ∗. Then we can write

l21 = a1x1 + b1y2 + c1l, l22 = a2x1 + b2y1 + c2l,

so we can rewrite f in the form

f = x1y1(l11 + a1x2) + x1y2(l12 + a2x2)

+ x2(c1y1 + c2y2)l + (b1 + b2)x2y1y2.

The condition f ∈ (x1, l) gives (b1 + b2)x2y1y2 ∈ (x1, l), which is possible
only if b1 + b2 = 0. This easily implies that either f is a pullback from a
6-dimensional space, or can be written in the form (3). □

Proof of Theorem 3.7. Taking into account Lemmas 3.9 and 3.10, it remains
to prove that in the situation of Lemma 3.10 one has codimLf ≤ 6. This is
clear in cases (1) and (2). In case (3), it is easy to check that Pf consists of
4 elements:

(x1, x2), (y1, y2), (x1, z3), (y1, z2).

The corresponding intersection has codimension 6. □
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4. Hypersurfaces of higher degree

4.1. Proof of Theorem C(ii)

We use induction on d ≥ 1. The case d = 1 is clear, so assume that d ≥ 2
and the assertion holds for degrees < d. Assume that dim

∑
P∈Pf

P > d2 − 1
(otherwise we are done), and let {P1, . . . , Pn} be a minimal subset of Pf such
that

dim

n∑

i=1

Pi > d2 − 1.

Note that by minimality, dim
∑n−1

i=1 Pi ≤ d2 − 1, so

dim

n∑

i=1

Pi ≤ d2 + 1.

Claim. There are no nonzero homogeneous polynomials of degree d− 1 in
the ideal (P1) ∩ . . . ∩ (Pn).

Indeed, suppose g ∈ (P1) ∩ . . . ∩ (Pn) is such a polynomial. We have one
of the two cases:
Case 1. g = l1 . . . lk · h, where deg li = 1, 0 ≤ k < d− 2, srk(h) ≥ 2.
Case 2. g = l1 . . . ld−1, where deg li = 1.

Let us consider Case 1 first. Since each (Pi) is a prime ideal, we should
have a decomposition

{1, . . . , n} = S1 ∪ . . . ∪ Sk ∪ S,

where lj ∈ Pi for all i ∈ Sj and h ∈ (Pi) for i ∈ S (and S = ∅ if srkh > 2).
Let us fix j such that Sj ̸= ∅. Then f mod (li) has slice rank 1, hence

dim
∑

i∈Sj

Pi/(li) ≤ d

(by Lemma 3.1). In other words,

dim
∑

i∈Sj

Pi ≤ d+ 1.
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On the other hand, assuming that S ̸= ∅ and applying the induction hy-
pothesis to h, we get

dim
∑

i∈S

Pi ≤ (d− 1− k)2 + 1.

Hence, we obtain

dim

n∑

i=1

Pi ≤ k(d+ 1) + (d− 1− k)2 + 1 ≤ d2 − 1,

which is a contradiction.
Similarly, in Case 2 we get

dim

n∑

i=1

Pi ≤ (d− 1)(d+ 1) = d2 − 1,

which is a contradiction. This proves the Claim.
Combining the Claim with Lemma 3.3, we get the inclusion

f ∈ (P1) ∩ . . . ∩ (Pn) ⊂ (P1 + . . .+ Pn)
d.

Hence, f is a pullback from a space of dimension ≤ d2 + 1. This finishes the
proof. □

4.2. Proof of Theorem D

Let us dualize the recursive procedure described in Definition 1.1. For a
collection P = (P1, . . . , Ps) of subspaces of V ∗ we set P (1) = ∩s

i=1Pi, and
for each minimal subset J ⊂ [1, s] such that ∩j∈JPj = P (1), we set PJ :=∑

j∈J Pj . We denote by P(1) the collection of all subspaces PJ of V ∗ obtained

in this way. Iterating this procedure we get collections of subspaces P(i) for
i ≥ 0, where P(0) = P. Let us also set P (0) = 0 and for i ≥ 0,

P (i+1) := ∩P∈P(i)P.

Note that P (i) ⊂ P (i+1).

Step 1. If dimPi ≤ r for all i then dimPJ ≤ r2. Indeed, let a = dimP (1).
Then dimPi/P

(1) ≤ r − a and applying Lemma 3.6 we see that for every
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minimal subset J with ∩j∈JPj = P (1), one has

dimPJ = a+ dimPJ/P
(1) ≤ a+ (r − a) +

(r − a+ 1)2

4
≤ r +

(r + 1)2

4
.

Since

⌊r +
(r + 1)2

4
⌋ ≤ r2

for r ≥ 2, the assertion follows.

Step 2. Suppose f is a homogeneous polynomial such that f ∈ (Pi) for
i = 1, . . . , s. Let us prove by induction on i ≥ 0 that

f ∈ (P (i)) + (P )i+1

for any P ∈ P(i). Indeed, for i = 0 this is true by assumption. Assume that
i > 0 and the assertion holds for i− 1. Let us apply Lemma 3.3 to a collec-
tion of subspaces {Q1, . . . , Qp} ⊂ P(i−1) such that Q1 ∩ . . . ∩Qp = P (i), or
rather to the corresponding subspaces Qi = Qi/P

(i) of V ∗/P (i). We get the
inclusion of ideals

(Q1)
i ∩ . . . ∩ (Qp)

i ⊂ (
∑

Qj)
i+1

in the symmetric algebra of V ∗/P (i). Let us consider the polynomial

f = f mod (P (i))

in this algebra. By assumption, f ∈ (Qj)
i for j = 1, . . . , p. Hence, we deduce

that f ∈ (
∑

Qj)
(i+1), i.e.,

f ∈ (P (i)) + (
∑

Qj)
(i+1).

Since every subspace in P(i) has form
∑

Qj , with (Q1, . . . , Qp) as above,
this proves the induction step.

Step 3. For i = d, since f is homogeneous of degree d, the result of the
previous step gives

f ∈ (P (d)).

Recall that P (d) is the intersection of all subspaces in P(d−1). Iterating the
result of Step 1, we see that the dimension of any subspace in P(d−1), and
hence of P (d), is ≤ r2

d−1

. This ends the proof of Theorem D. □
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Remark 4.1. Suppose we have an s-dimensional subspace F of homoge-
neous polynomials of the same degree d, defined over k, such that there
exists a nonzero f ∈ F

k
and a subspace of linear forms of dimension r over

k such that f ∈ (L). One can ask how to produce an element f0 ∈ F \ 0 and
a subspace of linear forms L0, both defined over k, such that f0 ∈ (L0) and
dimension of L0 is ≤ c(sr) (by Theorem A, we know that such an element
exists).

Let F0 ⊂ F denote the subspace spanned by all the Galois conjugates of
f . Then F0 is defined over k. As f0 we will take any nonzero element of F0.

Since dimF0 ≤ dimF ≤ s, we can choose a set of elements of the Galois
group σ1, . . . , σs, such that (σ1f, . . . , σsf) span F0. Hence, f0 is a linear
combination of (σ1f, . . . , σsf), and so,

f0 ∈ (σ1L+ . . .+ σsL).

Now applying our algorithm from Theorem D for f0, we find a subspace L0

of dimension ≤ c(sr) defined over k, with f0 ∈ (L0).
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