SCHMIDT RANK OF QUARTICS OVER PERFECT FIELDS

DAVID KAZHDAN AND ALEXANDER POLISHCHUK

ABSTRACT. Let \mathbf{k} be a perfect field of characteristic $\neq 2$. We prove that the Schmidt rank (also known as strength) of a quartic polynomial f over \mathbf{k} is bounded above in terms of only the Schmidt rank of f over $\overline{\mathbf{k}}$, an algebraic closure of \mathbf{k} .

1. Introduction

Recall that the *Schmidt rank* (also known as *strength*) of a homogeneous polynomial $f \in \mathbf{k}[x_1, \ldots, x_n]$ (see [1], [2] and references therein) is defined as the minimal number r such that f admits a decomposition $f = g_1h_1 + \ldots + g_rh_r$, with $\deg(g_i)$ and $\deg(h_i)$ smaller than $\deg(f)$. We denote the Schmidt rank of f as $\mathrm{rk}^S_{\mathbf{k}}(f)$.

It is conjectured in [1] that for a homogeneous polynomial f of degree d over a non-closed field \mathbf{k} one has

$$\operatorname{rk}_{\mathbf{k}}^{S}(f) \leq \kappa_{d} \cdot \operatorname{rk}_{\overline{\mathbf{k}}}^{S}(f),$$

where $\overline{\mathbf{k}}$ is an algebraic closure of \mathbf{k} . This is known to be true for $d \leq 3$ with $\kappa_d = d$ since in this case the Schmidt rank is equal to the *slice rank* defined as the minimal r such that $f \in (l_1, \ldots, l_r)$, where $\deg(l_i) = 1$ (see [5, Thm. A] for the case of cubics).

One can also ask a weaker question whether there exists a function c(r,d) such that

$$\operatorname{rk}_{\mathbf{k}}^{S}(f) \le c(\operatorname{rk}_{\overline{\mathbf{k}}}^{S}(f), d).$$

Our main result is that this weaker question has a positive answer in the case of quartic polynomials.

Theorem A. Assume that the ground field **k** is perfect of characteristic $\neq 2$. Then there exists a function $r \mapsto c(r)$ such that for any homogeneous quartic polynomial $f(x_1, \ldots, x_n)$, such that $\operatorname{rk}_{\mathbf{k}}^S(f) = r$, one has $\operatorname{rk}_{\mathbf{k}}^S(f) \leq c(r)$.

We find it convenient to use the following refined version of Schmidt rank.

Definition 1.1. For a collection of nonnegative integers (r_k, \ldots, r_1) and a homogeneous polynomial f of degree d, we say that the *refined Schmidt rank of* f *is at most* (r_k, \ldots, r_1) , and write $\operatorname{rk}_{\mathbf{k}}^S(f) \leq (r_k, \ldots, r_1)$, if there exists a decomposition over \mathbf{k} ,

$$f = \sum_{j=1}^{k} \sum_{i=1}^{r_j} f_{ij} g_{ij},$$

where $\deg(f_{ij}) = d - \deg(g_{ij}) = j$ for $j = 1, \dots, k$.

A.P. is partially supported by the NSF grant DMS-2001224, and within the framework of the HSE University Basic Research Program and by the Russian Academic Excellence Project '5-100'.

Thus, for a quartic polynomial f, we have $\operatorname{rk}_{\mathbf{k}}^S(f) \leq (r_2, r_1)$ if there exist quadrics q_1, \ldots, q_{r_2} and linear forms l_1, \ldots, l_{r_1} , such that $f \in (q_1, \ldots, q_{r_2}, l_1, \ldots, l_{r_1})$. In our proof of Theorem A we show the existence of functions $(c_2(r_2, r_1), c_1(r_2, r_1))$, such that if $\operatorname{rk}_{\mathbf{k}}^S(f) \leq (c_2(r_2, r_1), c_1(r_2, r_1))$. Then one can set

$$c(r) = \max_{r_1 + r_2 = r} (c_2(r_2, r_1) + c_1(r_2, r_1)).$$

One can work through our proof of Theorem A and get explicit formulas for $(c_2(r_2, r_1), c_1(r_2, r_1))$. As an illustration of this, we give formulas for $(c_2(1, r_1), c_1(1, r_1))$.

Theorem B. Let f be a homogeneous quartic polynomial defined over a perfect field \mathbf{k} with $\operatorname{char}(\mathbf{k}) \neq 2$. Assume that $\operatorname{rk}_{\overline{\mathbf{k}}}^S(f) \leq (1,r)$. Then $\operatorname{rk}_{\mathbf{k}}^S(f) \leq (2,C(r))$, where

$$C(r) = 8r(41 + 20 \cdot (10r + 1)^{10r+1}).$$

The main idea of the proof of Theorem A is to study decompositions of a quartic polynomial f of the form

$$f = \sum_{i=1}^{r} q_i q_i' \mod (P),$$

where q_i , q'_i are of degree 2 and P is a subspace of linear forms. The main result about such decompositions is that if the rank of any linear combination of $(q_{\bullet}, q'_{\bullet})$ is sufficiently large then the above decomposition is essentially unique (possibly after enlarging P): the only way to get a new decomposition is by making an orthogonal change of basis in the linear space with the basis $(q_{\bullet}, q'_{\bullet})$. We then apply this result to the decompositions obtained from a given one over $\bar{\mathbf{k}}$ by applying the Galois group action. If the rank of $(q_{\bullet}, q'_{\bullet})$ is sufficiently large, then we obtain a 1-cocycle of the Galois group with values in the orthogonal group measuring how the decomposition transforms under the Galois action. We can assume that this 1-cocycle is trivial (after passing to an extension of \mathbf{k} of small degree). We then use a certain linear algebra result from [4] to prove the existence of a decomposition with $(q_{\bullet}, q'_{\bullet})$ defined over \mathbf{k} . Furthermore, we have a bound on the slice rank of $f - \sum_{i=1}^{r} q_i q'_i$ over $\bar{\mathbf{k}}$, and hence over \mathbf{k} by [5, Thm. A]. This gives the required bound on the Schmidt rank of f over \mathbf{k} .

2. Preliminaries

2.1. Criterion for an ideal generated by quadrics and linear forms to be prime. In this subsection we fix a ground field \mathbf{k} (and omit it from the notation). By a quadric we mean an element of $\mathbf{k}[V]_2$, i.e., a quadratic form.

Definition 2.1. For a subspace of quadrics Q, and a collection of quadrics q_1, \ldots, q_r , we define $\operatorname{srk}(q_1, \ldots, q_r, Q)$ as the minimum of $\operatorname{srk}(\sum_i c_i q_i + q)$, where $q \in Q$ and c_i are constants, such that either $q \neq 0$ or $(c_{\bullet}) \neq 0$. In particular, $\operatorname{srk}(Q)$ is the minimal slice rank of a nonzero element of Q.

We denote by rk(q) the usual rank of a quadric q. It is easy to see that the rank and the slice rank of a quadric q are related by

$$2\operatorname{srk}(q) - 1 \le \operatorname{rk}(q) \le 2\operatorname{srk}(q)$$
.

In other words, we have

$$\operatorname{srk}(q) = \left\lceil \frac{\operatorname{rk}(q)}{2} \right\rceil.$$

Lemma 2.2. Let q_1, \ldots, q_r be quadratic forms such that

$$R = \min_{(c_1, \dots, c_r) \neq 0} \text{rk}(c_1 q_1 + \dots c_r q_r) \ge 2r + 1.$$

Then the subscheme $q_1 = \ldots = q_r = 0$ is normal connected of codimension r.

Proof. Consider the Jacobian matrix $J(q_1, \ldots, q_r)$. The locus $S(q_1, \ldots, q_r)$ where $J(q_1, \ldots, q_r)$ has rank < r coincides with the union of kernels of $\sum c_j q_j$ over $(c_1, \ldots, c_r) \neq 0$. Hence,

$$\dim S(q_1, \ldots, q_r) \le (n - R) + (r - 1),$$

where n-R is the maximal dimension of the kernels and r-1 is the dimension of the base \mathbb{P}^{r-1} of the family of quadrics. Thus,

$$\operatorname{codim}_{V} S(q_{1}, \dots, q_{r}) \geq R - (r - 1) \geq r + 2.$$

Since the codimension of $X := (q_1 = \ldots = q_r = 0) \subset \mathbb{A}^n$ is $\leq r$, on a nonempty Zariski open subset of X, the rank of the Jacobian equals r. This implies that X has codimension r, and so $S(q_1, \ldots, q_r) \cap X$ has codimension ≥ 2 in X. Thus, X is Cohen-Macaulay (as a complete intersection), nonsingular in codimension 1. Therefore, by Serre's $R_1 + S_2$ criterion (see [3, Thm. 8.22A], X is normal. Finally, X is connected as a complete intersection. \square

Proposition 2.3. (i) Let Q be a subspace of quadratic forms such that $\operatorname{srk}(Q) \ge \dim Q + 1$. Then the ideal (Q) is prime.

(ii) Let L be a subspace of linear forms, Q a subspace of quadratic forms. Assume that $\operatorname{srk}(Q) \geq \dim Q + \dim L + 1$. Then the ideal (Q, L) is prime.

Proof. (i) For any $q \in Q$ we have $\operatorname{rk}(q) \geq 2\operatorname{srk}(q) - 1 \geq 2\dim Q + 1$. Hence, by Lemma 2.2, the subscheme defined by (Q) is normal connected, so integral. Therefore, the ideal (Q) is prime.

(ii) Consider the quotient $\overline{S} = S/(L)$ of the algebra of polynomials S by the ideal (L). For any $q \in Q$ we have $\operatorname{srk}(\overline{q}) \geq \operatorname{srk}(q) - \dim L$, where \overline{q} is the image of q in \overline{S} . Hence, the image \overline{Q} of Q in \overline{S} satisfies the assumptions of (i), so the ideal (\overline{Q}) in \overline{S} is prime. Therefore, its preimage in S, namely (Q, L), is also prime.

2.2. Almost invariant quadratic forms. We will use the following result from [4].

Theorem 2.4. Let E/\mathbf{k} be a finite Galois extension with the Galois group G, and let V_0, V_0' be finite dimensional \mathbf{k} -vector spaces. Let us set $V = V_0 \otimes_{\mathbf{k}} E$, $V' = V_0' \otimes_{\mathbf{k}} E$. Suppose $T: V \to V'$ is an E-linear operator such that for any $\sigma \in G$, one has

$$\operatorname{rk}_E(\sigma(T) - T) \le r,$$

for some $r \ge 0$. Then there exists a **k**-linear operator $T_0: V_0 \to V_0'$, such that

$$\operatorname{rk}_{E}(T-T_{0}) \leq r(2+(r+1)^{r+1}),$$

where we view T_0 as an operator $V \to V'$ by extension of scalars.

We need the following consequence of this theorem for quadratic forms.

Corollary 2.5. Let E/\mathbf{k} be a finite Galois extension with the Galois group G, where $\operatorname{char}(\mathbf{k}) \neq 2$, and let V_0 be a finite dimensional \mathbf{k} -vector space, $V = V_0 \otimes_{\mathbf{k}} E$. Assume that q is a quadratic form on V such that for any $\sigma \in G$, one has $\operatorname{rk}_E(\sigma(q) - q) \leq r$ for some $r \geq 0$, where rk_E is the usual rank of the quadratic form. Then there exists a quadratic form q_0 on V_0 such that $\operatorname{rk}_E(q - q_0) \leq 2r(2 + (r + 1)^{r+1})$.

Proof. Let $T: V \to V^*$ be the symmetric linear map associated with q. Our assumption implies that $\operatorname{rk}_E(\sigma(T) - T) \leq r$ for any $\sigma \in G$. By Theorem 2.4, there exists an operator $T_0: V_0 \to V_0^*$ such that $\operatorname{rk}_E(T - T_0) \leq r(2 + (r+1)^{r+1})$. Let $T_0^*: V_0 \to V_0^*$ be the dual operator. Then

$$\operatorname{rk}_{E}(T - \frac{1}{2}(T_{0} + T_{0}^{*})) \leq 2r(2 + (r+1)^{r+1}),$$

so we can let q_0 be the quadratic form corresponding to $\frac{1}{2}(T_0 + T_0^*)$.

3. Schmidt rank for quartics

From now on we assume that the ground field \mathbf{k} is perfect and has characteristic $\neq 2$.

3.1. Case $r_2 = 1$. We start with a proof of Theorem B dealing with the case $r_2 = 1$, since it is simpler but still shows the main idea.

Lemma 3.1. Let \mathbf{k}'/\mathbf{k} be a quadratic extension, and let f be a homogeneous polynomial over \mathbf{k} such that $\operatorname{rk}_{\mathbf{k}'}^S(f) \leq (r_2, r_1)$. Then $\operatorname{rk}_{\mathbf{k}}^S(f) \leq (2r_2, 2r_1)$.

Proof. By assumption $f \in (Q, P)$, where Q is a subspace of quadrics and P is a subspace of linear forms, both defined over \mathbf{k}' . Hence, $f \in (Q + \sigma(Q), P + \sigma(P))$, where σ is the generator of the Galois group of \mathbf{k}'/\mathbf{k} . Since the subspaces $Q + \sigma(Q)$ and $P + \sigma(P)$ are defined over \mathbf{k} , this implies the assertion.

Proof of Theorem B. We have to check that if E/\mathbf{k} is a finite Galois extension, and

$$f \equiv qq' \mod (P),$$

where q, q' are quadratic forms over E and P is an r-dimensional subspace of linear forms defined over E, then $\operatorname{rk}_{\mathbf{k}}^{S}(f) \leq (2, C(r))$.

If $\operatorname{srk}_E(q) \leq 9r$ or $\operatorname{srk}_E(q') \leq 9r$ then $\operatorname{srk}_E(f) \leq 10r$, and so $\operatorname{srk}_{\mathbf{k}}(f) \leq 40r \leq C(r)$. Thus, we can assume that $\operatorname{srk}_E(q) > 9r$ and $\operatorname{srk}_E(q') > 9r$. Let G be the Galois group of E/\mathbf{k} . For any $\sigma \in G$ we have

$$f \equiv \sigma(q)\sigma(q') \mod (\sigma(P)).$$

By assumption, the slice rank of $\overline{q} = q \mod (P + \sigma(P))$ is ≥ 2 , hence the quadric \overline{q} is irreducible. In other words, the ideal $(q, P + \sigma(P))$ is prime. Since $qq' \in (\sigma(q), P + \sigma(P))$,

we have either $q \in (\sigma(q), P + \sigma(P))$ or $q' \in (\sigma(q), P + \sigma(P))$. Since the slice ranks of q and q' are > 2r, this means that either

$$\sigma(q) \equiv c(\sigma) \cdot q \mod (P + \sigma(P)), \ \sigma(q') \equiv c(\sigma)^{-1} \cdot q' \mod (P + \sigma(P)), \text{ or } \sigma(q) \equiv c(\sigma) \cdot q' \mod (P + \sigma(P)), \ \sigma(q') \equiv c(\sigma)^{-1} \cdot q \mod (P + \sigma(P)),$$
 for some $c(\sigma) \in E^*$.

Let $H \subset G$ be the set of $\sigma \in G$ for which the first possibility holds. Let us consider separately two cases.

Case $\operatorname{srk}_E(q,q') > 3r$. Assume first that $\sigma_1, \sigma_2 \in H$. Then we have

$$\sigma_1 \sigma_2(q) \equiv \sigma_1(c(\sigma_2)) \cdot \sigma_1(q) \equiv c(\sigma_1) \sigma_1(c(\sigma_2)) \cdot q \mod (P + \sigma_1(P) + \sigma_1 \sigma_2(P)).$$

If $\sigma_1\sigma_2 \notin H$, we would get that a nontrivial linear combination of q and q' is in $(P + \sigma_1(P) + \sigma_1\sigma_2(P))$, contradicting the assumption $\operatorname{srk}_E(q,q') > 3r$. Hence, $\sigma_1\sigma_2 \in H$, so we have

$$\sigma_1 \sigma_2(q) \equiv c(\sigma_1 \sigma_2) \cdot q \mod (P + \sigma_1 \sigma_2(P)).$$

Comparing this with the previous congruence, we get

$$[c(\sigma_1)\sigma_1(c(\sigma_2)) - c(\sigma_1\sigma_2)] \cdot q \equiv 0 \mod (P + \sigma_1(P) + \sigma_1\sigma_2(P)).$$

Since $\operatorname{srk}_E(q) > 9r \ge 3r$, a nonzero multiple of q cannot be contained in $(P + \sigma_1(P) + \sigma_1\sigma_2(P))$, we obtain

$$c(\sigma_1)\sigma_1(c(\sigma_2)) - c(\sigma_1\sigma_2) = 0,$$

i.e., $c(\sigma)$ is a 1-cocycle of H. A similar argument shows that if exactly one of σ_1, σ_2 belongs to H then $\sigma_1\sigma_2 \notin H$, and if $\sigma_1, \sigma_2 \notin H$ then $\sigma_1\sigma_2 \in H$, proving that H is a subgroup of index ≤ 2 in G.

Case $\operatorname{srk}_E(q,q') \leq 3r$. In this case we have $q' \equiv cq \mod(P_0)$ for some subspace of linear forms P_0 of dimension $\leq 3r$ (defined over E) and some $c \in E^*$. This implies that for $\sigma \notin H$ we have

$$\sigma(q) \equiv c(\sigma) \cdot q' \equiv c(\sigma)c \cdot q \mod (P + \sigma(P) + P_0).$$

Redefining $c(\sigma)$ for $\sigma \notin H$ we obtain that

$$\sigma(q) \equiv c(\sigma) \cdot q \mod (P + \sigma(P) + P_0), \quad \sigma(q') \equiv c(\sigma)^{-1} \cdot q' \mod (P + \sigma(P) + P_0)$$
 (3.1) for all $\sigma \in G$. Now for $\sigma_1, \sigma_2 \in G$ we have

$$\sigma_1 \sigma_2(q) \equiv \sigma_1(c(\sigma_2)) \cdot \sigma_1(q) \equiv c(\sigma_1) \sigma_1(c(\sigma_2)) \cdot q \mod (P + \sigma_1(P) + \sigma_1\sigma_2(P) + P_0 + \sigma_1(P_0)).$$

On the other hand,

$$\sigma_1\sigma_2(q)\equiv c(\sigma_1\sigma_2)\cdot q\mod (P+\sigma_1\sigma_2(P)+P_0).$$

Thus, we get

$$[c(\sigma_1)\sigma_1(c(\sigma_2)) - c(\sigma_1\sigma_2)] \cdot q \equiv 0 \mod (P + \sigma_1(P) + \sigma_1\sigma_2(P) + P_0 + \sigma_1(P_0)).$$

Note that $\dim(P + \sigma_1(P) + \sigma_1\sigma_2(P) + P_0 + \sigma_1(P_0)) \leq 9r$. Since $\operatorname{srk}_E(q) > 9r$, this is possible only if $c(\sigma_1)\sigma_1(c(\sigma_2)) - c(\sigma_1\sigma_2) = 0$, i.e., $c(\sigma)$ is a 1-cocycle of H.

In either case we obtain that for a subgroup $H \subset G$ of index ≤ 2 and a subspace of linear forms P_0 of dimension $\leq 3r$, the congruences (3.1) hold for some 1-cocycle $c: H \to E^*$.

Let \mathbf{k}'/\mathbf{k} be the subextension of E corresponding to the subgroup $H \subset G$, so that the extension E/\mathbf{k}' is Galois with the Galois group H. By Hilbert's Theorem 90, the cocycle $c(\sigma)$ of H is trivial, so rescaling q and q', we can assume that

$$\sigma(q) \equiv q \mod (P + \sigma(P) + P_0), \quad \sigma(q') \equiv q' \mod (P + \sigma(P) + P_0)$$

for all $\sigma \in H$. But this implies that $\operatorname{srk}_E(\sigma(q) - q) \leq 5r$ and $\operatorname{srk}_E(\sigma(q') - q') \leq 5r$. Hence, we obtain

$$\operatorname{rk}_{E}(\sigma(q) - q) \le 10r, \quad \operatorname{rk}_{E}(\sigma(q') - q') \le 10r$$

for all $\sigma \in H$. By Corollary 2.5, there exist quadrics q_0 and q'_0 defined over \mathbf{k}' such that

$$\max(\operatorname{rk}_E(q-q_0),\operatorname{rk}_E(q'-q_0')) \le 20r(2+(10r+1)^{10r+1}).$$

Hence,

$$\max(\operatorname{srk}_E(q-q_0), \operatorname{srk}_E(q'-q'_0)) \le 10r(2+(10r+1)^{10r+1}).$$

It follows that

 $\operatorname{srk}_E(f-q_0q_0') \le \operatorname{srk}_E(f-qq') + \operatorname{srk}_E(qq'-q_0q_0') \le r + 20r(2 + (10r+1)^{10r+1}) = r(41 + 20 \cdot (10r+1)^{10r+1}).$ By [5, Thm. A], this implies that

$$\operatorname{srk}_{\mathbf{k}'}(f - q_0 q_0') \le 4r(41 + 20 \cdot (10r + 1)^{10r + 1}),$$

hence, $\operatorname{rk}_{\mathbf{k'}}^S(f) \leq (1, 4r(41+20\cdot(10r+1)^{10r+1}))$. Since the extension $\mathbf{k'/k}$ is either trivial or quadratic, applying Lemma 3.1 we get the result.

3.2. Quadratic decompositions of quartics.

Lemma 3.2. Assume we have a collection of quadrics

$$q_1, \ldots, q_r, q'_1, \ldots, q'_r, p_1, \ldots, p_s, p'_1, \ldots, p'_s,$$

where r > s, and a subspace of quadrics Q, such that

$$\sum_{i=1}^{r} q_i q_i' \equiv \sum_{i=1}^{s} p_i p_i' \mod (Q).$$

Then for some constants $a_1, \ldots, a_r, a_1', \ldots, a_r'$ such that $\sum_i a_i a_i' = 0$, we have

$$\operatorname{srk}(\sum_{i} (a_i q_i + a_i' q_i'), Q) \le c(r, s, \dim Q) := 2^s (r + \dim Q) + 2^{s-1} (s - 2).$$

Proof. We use the induction on s. In the case s = 0 we have to prove that

$$\operatorname{srk}(\sum_{i}(a_{i}q_{i}+a'_{i}q'_{i}),Q) \leq c(r,0,\dim Q) = r + \dim Q - 1$$

for some isotropic $(a_{\bullet}, a'_{\bullet})$. Indeed, assume this is not true. Then $\operatorname{srk}(q_1, \ldots, q_{r-1}, Q) \ge r + \dim Q$, so by Proposition 2.3, the ideal $(q_1, \ldots, q_{r-1}, Q)$ is prime. But we have

$$q_r q_r' \in (q_1, \ldots, q_{r-1}, Q).$$

Hence, swapping q_r with q'_r if necessary, we deduce that $q_r \in (q_1, \ldots, q_{r-1}, Q)$. But this implies that $\operatorname{srk}(q_r + c_1q_1 + \ldots + c_{r-1}q_{r-1} + q) = 0$ for some constants c_i and $q \in Q$, which contradicts the assumption $\operatorname{srk}(q_{\bullet}, Q) \ge r + \dim Q \ge r > 0$.

Assume the assertion holds for s-1. We have

$$\sum_{i=1}^r q_i q_i' \equiv \sum_{i=2}^s p_i p_i' \mod (p_1, Q).$$

Hence, by the induction assumption,

$$\operatorname{srk}\left(\sum_{i} (a_i q_i + a_i' q_i'), p_1, Q\right) \le c(r, s - 1, \dim Q + 1)$$

for some isotropic $(a_{\bullet}, a'_{\bullet})$. Changing the basis in (q_{\bullet}) , we can assume that either $\operatorname{srk}(q_1, Q) \leq c(r, s - 1, \dim Q + 1)$, or there exists a subspace L of linear forms of dimension $\leq c(r, s - 1, \dim Q + 1)$ such that $p_1 \in (q_1, Q, L)$. In the former case we are done since $c(r, s, \dim Q) \geq c(r, s - 1, \dim Q + 1)$. In the latter case, we have

$$\sum_{i=2}^{r} q_i q_i' \equiv \sum_{i=2}^{s} p_i p_i' \mod (q_1, Q, L).$$

Applying the induction assumption we obtain that there exists an isotropic vector $(a_{>1}, a'_{>1})$ such that

$$\operatorname{srk}_{L}(\sum_{i=2}^{r}(a_{i}q_{i}+a'_{i}q'_{i}),q_{1},Q) \leq c(r-1,s-1,\dim Q+1),$$

hence

$$\operatorname{srk}(\sum_{i=2}^{r} (a_i q_i + a_i' q_i'), q_1, Q) \le c(r - 1, s - 1, \dim Q + 1) + \dim L \le c(r - 1, s - 1, \dim Q + 1) + c(r, s - 1, \dim Q + 1) = c(r, s, \dim Q).$$

Since any linear combination of $\sum_{i=2}^{r} (a_i q_i + a'_i q'_i)$ with q_1 will correspond to an isotropic vector, the assertion follows.

Proposition 3.3. Let Q be a subspace of quadrics,

$$q_1, \ldots, q_r, q'_1, \ldots, q'_r, p_1, \ldots, p_r, p'_1, \ldots, p'_r$$

quadratic forms, such that

$$\sum_{i=1}^{r} q_i q_i' \equiv \sum_{i=1}^{r} p_i p_i' \mod (Q). \tag{3.2}$$

Assume that for any constants $a_1, \ldots, a_r, a'_1, \ldots, a'_r$ such that $\sum_i a_i a'_i = 0$, we have

$$\operatorname{srk}(\sum_{i} (a_i q_i + a_i' q_i'), Q) \ge C(r, \dim Q) := 2^r (r + \dim Q) + 2^{r-1} (r - 2) + 1.$$

Then there exists a subspace of linear forms L of dimension at most

$$D(r, \dim Q) := (2^r - 1)(r + \dim Q - 1) + r \cdot 2^{r-1}$$

and a linear transformation $A: \mathbf{k}^{2r} \to \mathbf{k}^{2r}$ preserving the quadratic form $\sum_{i=1}^{r} x_i y_i$, such that for the linear operator ϕ from \mathbf{k}^{2r} to the space of quadrics sending the standard basis $(e_{\bullet}, f_{\bullet})$ to $(q_{\bullet}, q'_{\bullet})$, we have

$$p_i \equiv \phi(Ae_i), \quad p_i' \equiv \phi(Af_i) \mod (Q, L).$$

Proof. We use induction on r. In the case r = 0 we can take L = 0, $D(0, \dim Q) = 0$. Assume the assertion holds for r - 1. We have

$$\sum_{i=1}^r q_i q_i' \equiv \sum_{i=2}^r p_i p_i' \mod (p_1, Q).$$

Hence, by Lemma 3.2, changing $(q_{\bullet}, q'_{\bullet})$ by an orthogonal transformation, we can achieve that

$$srk(q_1, p_1, Q) \le c(r, r - 1, \dim Q + 1).$$

Since $\operatorname{srk}(q_1, Q) \geq C(r, \dim Q) \geq c(r, r-1, \dim Q+1) + 1$, this implies that there exists a subspace of linear forms L of dimension $\leq c(r, r-1, \dim Q+1)$, such that

$$p_1 \in (q_1, Q, L).$$

Note that if $p_1 \in (Q, L)$ then we get

$$\sum_{i=1}^{r} q_i q_i' \equiv \sum_{i=2}^{r} p_i p_i' \mod (Q, L).$$

Hence, by Lemma 3.2, we would get

$$srk(\sum_{i} (a_{i}q_{i} + a'_{i}q'_{i}), Q) \le srk_{L}(\sum_{i} (a_{i}q_{i} + a'_{i}q'_{i}), Q) + \dim L \le c(r, r - 1, \dim Q) + c(r, r - 1, \dim Q + 1) \le C(r, \dim Q) - 1,$$

which is a contradiction. Hence, rescaling q_1 and q'_1 , we can assume that

$$p_1 \equiv q_1 \mod (Q, L).$$

Also, from $p_1 \in (q_1, Q, L)$ we deduce that

$$\sum_{i=2}^{r} q_i q_i' \equiv \sum_{i=2}^{r} p_i p_i' \mod (q_1, Q, L).$$

Since for any isotropic vector $(a_{>1}, a'_{>1})$ one has

$$\operatorname{srk}_{L}(\sum_{i=2}^{r}(a_{i}q_{i}+a'_{i}q'_{i}),q_{1},Q) \geq \operatorname{srk}(\sum_{i=2}^{r}(a_{i}q_{i}+a'_{i}q'_{i}),q_{1},Q) - \dim L \geq C(r,\dim Q) - \dim L \geq C(r,\dim Q) - C(r,r-1,\dim Q+1) \geq C(r-1,\dim Q+1),$$

we can apply the induction hypothesis and deduce that for some subspace of linear forms $L' \supset L$ of dimension

$$D(r-1, \dim Q+1) + \dim L \le D(r-1, \dim Q+1) + c(r, r-1, \dim Q+1) = D(r, \dim Q),$$

after changing the basis $(q_2, \ldots, q_r, q_2', \ldots, q_r')$ by an orthogonal transformation, we have

$$p_i \equiv q_i, \quad p_i' \equiv q_i' \mod (q_1, Q, L'),$$

for $i \geq 2$. This means that we have

$$p_i \equiv q_i + c_i q_1, \quad p'_i \equiv q'_i + c'_i q_1 \mod (Q, L'),$$

for $i \ge 2$. Substituting this into (3.2) and recalling that $p_1 \equiv q_1 \mod (Q, L)$, we get

$$q_1q_1' \equiv q_1 \cdot [p_1' + \sum_{i=2}^r (c_i q_i' + c_i' q_i) + (\sum_{i=2}^r c_i c_i') q_1] \mod (Q, L').$$

Since

$$\operatorname{srk}(Q) \ge C(r, \dim Q) \ge \dim Q + D(r, \dim Q) + 1 \ge \dim Q + \dim L' + 1$$

by Proposition 2.3, the ideal (Q, L') is prime, so we get

$$p'_1 \equiv q'_1 - \sum_{i=2}^r (c_i q'_i + c'_i q_i) - (\sum_{i=2}^r c_i c'_i) q_1 \mod (Q, L').$$

It remains to observe that the linear transformation

$$Ae_1 = e_1, \quad Af_1 = f_1 - \sum_{i=2}^r (c_i f_i + c_i' e_i) - (\sum_{i=2}^r c_i c_i') e_1,$$

$$Ae_i = e_i + c_i e_1, \quad Af_i = f_i + c_i' e_1, \text{ for } i \ge 2,$$

preserves the quadratic form $\sum x_i y_i$.

We are mainly interested in the case Q = 0 in the above proposition (the case of general Q was introduced in order for the inductive argument to work).

Corollary 3.4. (i) Assume that

$$\sum_{i=1}^{r} q_i q_i' = \sum_{i=1}^{r} p_i p_i',$$

where q_i , q'_i , p_i , p'_i are quadrics and

$$\operatorname{srk}(\sum_{i} (a_i q_i + a'_i q'_i)) \ge C(r, 0) = (r - 1) \cdot 2^r + r \cdot 2^{r - 1} + 1$$

for any isotropic $(a_{\bullet}, a'_{\bullet})$. Then there exists a subspace of linear forms L of dimension at most

$$D(r,0) = (r-1) \cdot (2^r - 1) + r \cdot 2^{r-1} \le C(r,0)$$

and a linear transformation $A: \mathbf{k}^{2r} \to \mathbf{k}^{2r}$ preserving the quadratic form $\sum_{i=1}^{r} x_i y_i$, such that for the linear operator ϕ from \mathbf{k}^{2r} to the space of quadrics sending the standard basis $(e_{\bullet}, f_{\bullet})$ to $(q_{\bullet}, q'_{\bullet})$, we have

$$p_i \equiv \phi(Ae_i), \quad p_i' \equiv \phi(Af_i) \mod (L).$$

(ii) Assume that

$$q_0^2 + \sum_{i=1}^r q_i q_i' = p_0^2 + \sum_{i=1}^r p_i p_i',$$

where q_i , q_i' , p_i are quadrics and for any constants $a_0, \ldots, a_r, a_1', \ldots, a_r'$ such that $a_0^2 + 4\sum_i a_i a_i' = 0$, one has $\operatorname{srk}(a_0 q_0 + \sum_{i=1}^r (a_i q_i + a_i' q_i') \ge c(r+1, r, 0) + C(r, 0) + 1$. Then there exists a subspace of linear forms L of dimension at most D(r, 0) + c(r+1, r, 0), such that after making a linear change in $(q_0, \ldots, q_r, q_1', \ldots, q_r')$ preserving the quadratic form $a_0^2 + 4\sum_{i=1}^r a_i a_i'$, one has

$$q_0 \equiv p_0, \quad q_i \equiv p_i, \quad q_i' \equiv p_i' \mod (L).$$

Proof. (i) This is the case Q=0 of Proposition 3.3. (ii) We have

$$(q_0 - p_0)(q_0 + p_0) + \sum_{i=1}^r q_i q_i' = \sum_{i=1}^r p_i p_i'.$$

Hence, by Lemma 3.2, there exists a nonzero vector $(a_0, \ldots, a_r, a'_1, \ldots, a'_r, b)$ such that

$$(a_0 - b)(a_0 + b) + \sum_{i=1}^r a_i a_i' = 0$$

and

$$\operatorname{srk}((a_0 - b)(q_0 + p_0) + (a_0 + b)(q_0 - p_0) + \sum_{i=1}^r (a_i q_i + a_i' q_i')) \le c(r + 1, r, 0).$$

We can rewrite these conditions as

$$a_0^2 + \sum_{i=1}^r a_i a_i' = b^2$$

and $\operatorname{srk}(a_0q_0 + \frac{1}{2}\sum_{i=1}^r(a_iq_i + a_i'q_i') - bp_0, Q) \leq c(r+1, r, 0)$. Note that if b=0 we would get a contradiction with the assumption that $\operatorname{srk}(a_0q_0 + \frac{1}{2}\sum_{i=1}^r(a_iq_i + a_i'q_i') - bp_0, Q) > c(r+1, r, 0) + C(r, 0) \geq c(r+1, r, 0)$. Hence, we necessarily have $b \neq 0$. Thus, after making an orthogonal transformation of $(q_0, \ldots, q_r, q_1', \ldots, q_r')$, we can assume that $\operatorname{srk}(q_0 - p_0) \leq c(r+1, r, 0)$. Thus, we have $q_0 \equiv p_0 \mod (L_0)$,

$$\sum_{i=1}^{r} q_i q_i' \equiv \sum_{i=1}^{r} p_i p_i' \mod (L_0),$$

for some subspace of linear forms L_0 of dimension $\leq c(r+1,r,0)$.

Now applying part (i), we find a subspace of linear forms $L \supset L_0$ of dimension $\leq D(r,0) + c(r+1,r,0)$, such that after an orthogonal change of $(q_1,\ldots,q_r,q'_1,\ldots,q'_r)$, we have

$$p_i \equiv q_i \mod (L), \quad p_i' \equiv q_i' \mod (L).$$

3.3. **Proof of Theorem A.** We will prove the existence of functions $c_1(r_2, r_1)$ and $c_2(r_2, r_1)$ such that if a quartic f satisfies $\operatorname{rk}_{\overline{\mathbf{k}}}^S(f) \leq (r_2, r_1)$ then $\operatorname{rk}_{\mathbf{k}}^S(f) \leq (c_2(r_2, r_1), c_1(r_2, r_1))$.

We use the induction on r_2 . In the case $r_2 = 0$ we just have the slice rank, so by [5, Thm. A], we can set

$$c_1(0,r_1) = 4r_1, \quad c_2(0,r_1) = 0.$$

Now assume that the functions $c_1(r_1, r_2)$ and $c_2(r_1, r_2)$ are already constructed for $r_2 < r$. Let f be a quartic over \mathbf{k} , and E/\mathbf{k} is a finite Galois extension such that $\mathrm{rk}_E^S(f) \leq (r, p)$, i.e., over E we have a decomposition

$$f \equiv \sum_{i=1}^{r} q_i q_i' \mod (P), \tag{3.3}$$

where (q_i, q'_i) are quadrics, and P is a subspace of linear forms of dimension p.

Below we will use constants C(r,0), D(r,0) and c(r,s,0) introduced in Sec. 3.2, and we set

$$N := 2p + C(r, 0).$$

Case 1. Assume first that $\operatorname{srk}(q_{\bullet}, q'_{\bullet}) > 6p + 3C(r, 0)$.

Note that for any element σ of the Galois group $Gal(E/\mathbf{k})$ we have

$$\sum_{i=1}^{r} q_i q_i' \equiv \sum_{i=1}^{r} \sigma(q_i) \sigma(q_i') \mod (P + \sigma(P)).$$

Since $\operatorname{srk}_{P+\sigma(P)}(\sum_i (a_i q_i + a_i' q_i')) > 4p + 3C(r,0) \geq C(r,0)$ for any nonzero $(a_{\bullet}, a_{\bullet}')$, by Corollary 3.4(i), there exists a subspace of linear forms $L_{\sigma} \supset P + \sigma(P)$ of dimension $\leq N = 2p + C(r,0)$ and an E-linear orthogonal transformation A_{σ} of the 2r dimensional space with the basis $(q_{\bullet}, q_{\bullet}')$ such that

$$\sigma(q_i) \equiv A_{\sigma}(q_i), \quad \sigma(q_i') \equiv A_{\sigma}(q_i') \mod (L_{\sigma})$$

(note that here $A_{\sigma}(q_i)$ and $A_{\sigma}(q'_i)$ are linear combinations of $(q_{\bullet}, q'_{\bullet})$).

We claim that $\sigma \mapsto A_{\sigma}$ defines a cocycle with values in the orthogonal group. Indeed, applying an element σ_1 of the Galois group to the congruence $\sigma_2(q_i) \equiv A_{\sigma_2}(q_i) \mod (L_{\sigma_2})$, we get

$$\sigma_1 \sigma_2(q_i) \equiv \sigma_1(A_{\sigma_2})(\sigma_1(q_i)) \mod (\sigma_1(L_{\sigma_2})),$$

where $\sigma_1(A_{\sigma_2})$ is the orthogonal matrix obtained by applying σ_1 to the matrix A_{σ_2} . Hence, we have

$$\sigma_1(A_{\sigma_2})A_{\sigma_1}(q_i) \equiv \sigma_1(A_{\sigma_2})(\sigma_1(q_i)) \equiv \sigma_1\sigma_2(q_i) \mod (\sigma_1(L_{\sigma_2}) + L_{\sigma_1}),$$

hence,

$$q_i \equiv A_{\sigma_1 \sigma_2}^{-1} \sigma_1(A_{\sigma_2}) A_{\sigma_1}(q_i) \mod (\sigma_1(L_{\sigma_2}) + L_{\sigma_1} + L_{\sigma_1 \sigma_2}).$$

Similarly,

$$q'_i \equiv A_{\sigma_1 \sigma_2}^{-1} \sigma_1(A_{\sigma_2}) A_{\sigma_1}(q'_i) \mod (\sigma_1(L_{\sigma_2}) + L_{\sigma_1} + L_{\sigma_1 \sigma_2}).$$

Since $\operatorname{srk}(q_{\bullet}, q'_{\bullet}) > 3N \ge \dim(\sigma_1(L_{\sigma_2}) + L_{\sigma_1} + L_{\sigma_1\sigma_2})$, this implies that $A_{\sigma_1\sigma_2} = \sigma_1(A_{\sigma_2})A_{\sigma_1}$. Recall that the nonabelian H^1 of the Galois group of E/\mathbf{k} with values in the group of

E-linear transformations preserving the standard quadratic form $Q_0 = \sum_{i=1}^r x_i y_i$ classifies equivalence classes of nondegenerate quadratic forms on \mathbf{k}^{2r} , which become equivalent to Q_0 over E (see [6, III.1.2]), so that the trivial class in H^1 corresponds to forms equivalent to Q_0 over \mathbf{k} .

Let Q be the quadratic form over \mathbf{k} corresponding to our cocycle $\sigma \mapsto A_{\sigma}$. We can find a basis such that

$$Q = \sum_{i=1}^{r} (\lambda_i x_i^2 + \mu_i y_i^2),$$

for some $\lambda_i, \mu_i \in \mathbf{k}^*$. Let $\mathbf{k}' \supset \mathbf{k}$ denote the field extension obtained by adjoining r square roots $(\sqrt{-\mu_i/\lambda_i})$ to \mathbf{k} . Then over \mathbf{k}' we can write

$$Q = \sum_{i=1}^{r} \lambda_i (x_i + \sqrt{-\mu_i/\lambda_i} y_i) (x_i - \sqrt{-\mu_i/\lambda_i} y_i),$$

so Q is equivalent to Q_0 over \mathbf{k}' . Note that $[\mathbf{k}' : \mathbf{k}] \le 2^r$.

Without loss of generality we can assume that $\mathbf{k}' \subset E$. The fact that Q becomes equivalent to Q_0 over \mathbf{k}' means that the cocycle $\sigma \mapsto A_{\sigma}$ becomes a coboundary when restricted to $\operatorname{Gal}(E/\mathbf{k}')$. Thus, we can make an orthogonal change of basis in $(q_{\bullet}, q'_{\bullet})$ such that

$$\sigma(q_i) \equiv q_i, \quad \sigma(q_i') \equiv q_i' \mod (L_{\sigma})$$

for any σ in the Galois group $Gal(E/\mathbf{k}')$. By Corollary 2.5, there exist quadratic forms \overline{q}_{\bullet} , \overline{q}'_{\bullet} defined over \mathbf{k}' , such that

$$\operatorname{srk}(q_i - \overline{q}_i) \le N', \quad \operatorname{srk}(q_i' - \overline{q}_i') \le N',$$

with $N' = N(2 + (2N + 1)^{2N+1})$.

Thus, we have

$$f - \sum_{i=1}^{r} \overline{q}_i \overline{q}_i' \in (P')$$

for some subspace of linear forms P' over E of dimension $\leq N'' = p + 2rN'$. In other words, the slice rank of $\widetilde{f} = f - \sum_{i=1}^r \overline{q}_i \overline{q}_i'$ over E is $\leq N''$. By [5, Thm. A], this implies that the slice rank of \widetilde{f} over \mathbf{k}' is $\leq 4N''$. This means that

$$\operatorname{rk}_{\mathbf{k}'}^{S}(f) \le (r, 4N'').$$

By Lemma 3.1, it follows that

$$\operatorname{rk}_{\mathbf{k}'}^{S}(f) \leq (2^{r} \cdot r, 2^{r} \cdot 4N'').$$

Case 2. Next, assume that $\operatorname{srk}(q_{\bullet}, q'_{\bullet}) \leq 3N$, so there exists a nontrivial linear combination $\sum_i a_i q_i + \sum_i a'_i q'_i$ which has slice rank $\leq 3N$. The restriction of the quadratic form $\sum_{i=1}^r x_i y_i$ to the linear subspace $\sum_i a_i x_i + \sum_i a'_i y_i = 0$ has rank 2r - 1 or 2r - 2. So enlarging E if necessary we can find linear combinations \overline{q}_0 , $(\overline{q}_i, \overline{q}'_i)_{i=1}^{r-1}$ of $(q_{\bullet}, q'_{\bullet})$ (where possibly $\overline{q} = 0$) such that

$$\sum_{i=1}^{r} q_i q_i' \equiv \overline{q}_0^2 + \sum_{i=1}^{r-1} \overline{q}_i \overline{q}_i' \mod \left(\sum_i a_i q_i + \sum_i a_i' q_i'\right).$$

Hence, renaming \overline{q}_i , \overline{q}'_i by q_i , q'_i , we obtain

$$f \equiv q_0^2 + \sum_{i=1}^{r-1} q_i q_i' \mod (P'),$$

where P' is a space of linear forms of dimension $\leq p' = \dim P' \leq p + 3N$.

Furthermore, we claim that we can assume that $\operatorname{srk}(q_0, q_{\bullet}, q'_{\bullet}) > 3N'$, where

$$N' = D(r-1,0) + c(r,r-1,0) + 2p'.$$

Indeed, otherwise arguing as above we obtain a decomposition (3.3) with r replaced by r-1 and p replaced by p'' = p' + 3N'. In other words, we would have $\operatorname{rk}_E^S(f) \leq (r-1, p'')$, so by the induction assumption we would deduce that

$$\operatorname{rk}_{\mathbf{k}}^{S}(f) \leq (c_{2}(r-1, p''), c_{1}(r-1, p'')).$$

Since for every $\sigma \in \operatorname{Gal}(E/\mathbf{k})$, one has

$$q_0^2 + \sum_{i=1}^{r-1} q_i q_i' \equiv \sigma(q_0)^2 + \sum_{i=1}^{r-1} \sigma(q_i) \sigma(q_i') \mod (P' + \sigma P'),$$

by Corollary 3.4(ii) with r replaced by r-1, we get that

$$\sigma(q_0) \equiv A_{\sigma}q_0, \quad \sigma(q_i) \equiv A_{\sigma}q_i, \quad \sigma(q_i') \equiv A_{\sigma}q_i' \mod (L_{\sigma}),$$

for some orthogonal transformation A_{σ} and a subspace of linear forms $L_{\sigma} \supset P' + \sigma P'$ of dimension $\leq N'$ (here to verify the assumptions of Corollary 3.4(ii) we use the inequality

$$3N' \ge 3D(r-1,0) + 3c(r,r-1,0) \ge C(r-1,0) + c(r-1,r-2,0)$$

which is easy to check). Since $\operatorname{srk}(q_0, q_{\bullet}, q'_{\bullet}) > 3N'$, as in Case 1, this implies that $\sigma \mapsto A_{\sigma}$ is a 1-cocycle.

Arguing as in Case 1, we find a subextension $\mathbf{k}' \subset E$ obtained by adjoining at most r-1 square roots to \mathbf{k} , such that after making a change of basis in $(q_{\bullet}, q'_{\bullet})$, we get

$$\sigma(q_i) \equiv q_i, \ \sigma(q_i') \equiv q_i' \mod (L_{\sigma})$$

for any $\sigma \in \operatorname{Gal}(E/\mathbf{k}')$. Hence, by Corollary 2.5, there exist quadratic forms \overline{q}_{\bullet} , \overline{q}'_{\bullet} defined over \mathbf{k}' , such that

$$\operatorname{srk}(q_i - \overline{q}_i) \le N''$$
 for $i = 0, \dots, r - 1$, $\operatorname{srk}(q_i' - \overline{q}_i') \le N''$ for $i = 1, \dots, r - 1$,

with $N'' = N'(2 + (2N' + 1)^{2N'+1})$, and we get

$$\operatorname{srk}_{E}(f - \overline{q}_{0}^{2} - \sum_{i=1}^{r-1} \overline{q}_{i}\overline{q}'_{i}) \leq M = p' + (2r - 1)N''.$$

By [5, Thm. A], this implies that the slice rank of \widetilde{f} over \mathbf{k}' is $\leq 4M$, so we get

$$\operatorname{rk}_{\mathbf{k}'}^{S}(f) \leq (r, 4M),$$

and so by Lemma 3.1,

$$\operatorname{rk}_{\mathbf{k}'}^{S}(f) \le (2^{r} \cdot r, 2^{r} \cdot 4M).$$

References

- [1] K. Adiprasito, D. Kazhdan, T. Ziegler, On the Schmidt and analytic ranks for trilinear forms, arXiv:2102.03659.
- [2] E. Ballico, A. Bik, A. Oneto, E. Ventura, Strength and slice rank of forms are generically equal, arXiv:2102.11549.
- [3] R. Hartshorne, Algebraic geometry, Springer-Verlag, New York, 1977.
- [4] D. Kazhdan, A. Polishchuk, Almost invariant subspaces and operators, arXiv:2107.08085.
- [5] D. Kazhdan, A. Polishchuk, *Linear subspaces of minimal codimension in hypersurfaces*, arXiv:2107.08080.
- [6] J.-P. Serre, Cohomologie Galoisienne, Springer-Verlag, Berlin, 1994.

Einstein Institute of Mathematics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel

Email address: kazhdan@math.huji.ac.il

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF OREGON, EUGENE, OR 97403, USA; NATIONAL RESEARCH UNIVERSITY HIGHER SCHOOL OF ECONOMICS; AND KOREA INSTITUTE FOR ADVANCED STUDY

 $Email\ address \hbox{: apolish@uoregon.edu}$