SCHMIDT RANK OF QUARTICS OVER PERFECT FIELDS
DAVID KAZHDAN AND ALEXANDER POLISHCHUK

ABSTRACT. Let k be a perfect field of characteristic # 2. We prove that the Schmidt rank
(also known as strength) of a quartic polynomial f over k is bounded above in terms of
only the Schmidt rank of f over k, an algebraic closure of k.

1. INTRODUCTION

Recall that the Schmidt rank (also known as strength) of a homogeneous polynomial
f ek[xy,...,x,] (see [1], [2] and references therein) is defined as the minimal number r
such that f admits a decomposition f = g1hy +...+ g.h,, with deg(g;) and deg(h;) smaller
than deg(f). We denote the Schmidt rank of f as rky (f).

It is conjectured in [1] that for a homogeneous polynomial f of degree d over a non-closed
field k one has

rkit(f) < ma-rkg(f),
where k is an algebraic closure of k. This is known to be true for d < 3 with sy = d since
in this case the Schmidt rank is equal to the slice rank defined as the minimal r such that
fe(ly,... 1), where deg(l;) =1 (see [5, Thm. A] for the case of cubics).
One can also ask a weaker question whether there exists a function ¢(r,d) such that

S S
kg (f) <ce(rkg(f), d).
Our main result is that this weaker question has a positive answer in the case of quartic
polynomials.

Theorem A. Assume that the ground field k is perfect of characteristic + 2. Then there
exists a function r — c(r) such that for any homogeneous quartic polynomial f(x1,...,z,),

such that rk%(f) =1, one has rky (f) < c(r).

We find it convenient to use the following refined version of Schmidt rank.

Definition 1.1. For a collection of nonnegative integers (ry,...,r1) and a homogeneous
polynomial f of degree d, we say that the refined Schmidt rank of f is at most (rg,...,r1),
and write rky (f) < (75, ...,r1), if there exists a decomposition over k,
k Tj
I = Z Z J i 945>
j=1i=1

where deg(f;;) =d—deg(g;;)=jfor j=1,... k.
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Thus, for a quartic polynomial f, we have rkj(f) < (rq,r1) if there exist quadrics
Q,---,qr, and linear forms Iy, ..., [, such that f e (q1,...,Gm,l,...,l). In our proof of
Theorem A we show the existence of functions (co(72,71), ¢1(72,71)), such that if rkg(f) <

(r9,m1) then k) (f) < (c2(r2,71),¢1(r2,71)). Then one can set
c(r) = T{gg}gr(@(rg,rl) +c1(rg,r1)).

One can work through our proof of Theorem A and get explicit formulas for (¢a(72,71), c1(r2,71)).
As an illustration of this, we give formulas for (co(1,71),c1(1,71)).

Theorem B. Let f be a homogeneous quartic polynomial defined over a perfect field k with
char(k) # 2. Assume that rkg(f) < (1,7). Then 1k (f) < (2,C(r)), where

C(r)=8r(41+20- (107 + 1)'0r+1),

The main idea of the proof of Theorem A is to study decompositions of a quartic poly-
nomial f of the form

= qd; mod (P).
=1

where g;, ¢/ are of degree 2 and P is a subspace of linear forms. The main result about such
decompositions is that if the rank of any linear combination of (q., ¢,) is sufficiently large
then the above decomposition is essentially unique (possibly after enlarging P): the only
way to get a new decomposition is by making an orthogonal change of basis in the linear
space with the basis (g, ¢.). We then apply this result to the decompositions obtained from
a given one over k by applying the Galois group action. If the rank of (g.,¢.) is sufficiently
large, then we obtain a 1-cocycle of the Galois group with values in the orthogonal group
measuring how the decomposition transforms under the Galois action. We can assume
that this 1-cocycle is trivial (after passing to an extension of k of small degree). We then
use a certain linear algebra result from [4] to prove the existence of a decomposition with
(ge,q.) defined over k. Furthermore, we have a bound on the slice rank of f -7, ¢;q} over
k, and hence over k by [5, Thm. A]. This gives the required bound on the Schmidt rank
of f over k.

2. PRELIMINARIES

2.1. Criterion for an ideal generated by quadrics and linear forms to be prime.
In this subsection we fix a ground field k (and omit it from the notation). By a quadric
we mean an element of k[V']s, i.e., a quadratic form.

Definition 2.1. For a subspace of quadrics (), and a collection of quadrics ¢,...,q.,
we define srk(qy, ..., ¢, Q) as the minimum of srk(Y; c;¢; + ¢), where ¢ € @ and ¢; are
constants, such that either ¢ # 0 or (c.) # 0. In particular, stk(Q) is the minimal slice rank
of a nonzero element of Q.
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We denote by rk(q) the usual rank of a quadric ¢. It is easy to see that the rank and
the slice rank of a quadric ¢ are related by

2srk(q) — 1 <tk(q) < 2srk(q).

In other words, we have

rk(q
srk(g) = [0
Lemma 2.2. Let ¢,...,q, be quadratic forms such that
R= min rtk(ciqr+...¢.q.)22r +1.
(€1yeeeser)#0
Then the subscheme q, = ... =q, =0 is normal connected of codimension r.

Proof. Consider the Jacobian matrix J(qi,...,q,). Thelocus S(qi,...,q,) where J(q1,...,q,)
has rank < r coincides with the union of kernels of Y’ ¢;q; over (c1,...,¢,) # 0. Hence,

dimS(q1,...,¢)<(n—=R)+ (r-1),

where n — R is the maximal dimension of the kernels and r — 1 is the dimension of the base
Pr=1 of the family of quadrics. Thus,

codimyS(q,...,q¢)>R—-(r-1)>r+2.

Since the codimension of X := (¢; =...=¢. =0) c A" is <7, on a nonempty Zariski open
subset of X, the rank of the Jacobian equals r. This implies that X has codimension
r, and so S(qi,...,q-) N X has codimension > 2 in X. Thus, X is Cohen-Macaulay (as a
complete intersection), nonsingular in codimension 1. Therefore, by Serre’s R;+ 955 criterion
(see [3, Thm. 8.22A], X is normal. Finally, X is connected as a complete intersection. [

Proposition 2.3. (i) Let QQ be a subspace of quadratic forms such that stk(Q) > dim Q+1.
Then the ideal (Q) is prime.
(i) Let L be a subspace of linear forms, Q) a subspace of quadratic forms. Assume that

stk(Q) >dimQ +dim L + 1. Then the ideal (Q, L) is prime.

Proof. (i) For any ¢ € Q we have rk(q) > 2srk(¢) -1 > 2dim@ + 1. Hence, by Lemma 2.2,
the subscheme defined by (@) is normal connected, so integral. Therefore, the ideal (Q)
is prime.

(ii) Consider the quotient S = S/(L) of the algebra of polynomials S by the ideal (L). For
any ¢ € Q we have stk(q) > srk(q) —dim L, where g is the image of ¢ in S. Hence, the image
Q of Q in S satisfies the assumptions of (i), so the ideal (Q) in S is prime. Therefore, its
preimage in S, namely (Q, L), is also prime. O

2.2. Almost invariant quadratic forms. We will use the following result from [4].

Theorem 2.4. Let E/k be a finite Galois extension with the Galois group G, and let
Vo, Vg be finite dimensional k-vector spaces. Let us set V =Vy®x E, V' =V ® E. Suppose
T:V - V' is an E-linear operator such that for any o € G, one has

rkp(o(T) - T) <,
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for some r > 0. Then there exists a k-linear operator Ty : Vo — V|, such that
tkp(T -Ty) <r(2+ (r+1)™1),
where we view Ty as an operator V- — V' by extension of scalars.
We need the following consequence of this theorem for quadratic forms.

Corollary 2.5. Let E/k be a finite Galois extension with the Galois group G, where
char(k) # 2, and let Vi be a finite dimensional k-vector space, V = Vo @k E. Assume that q
is a quadratic form on 'V such that for any o € G, one has rkg(o(q)—q) <r for some r >0,
where kg is the usual rank of the quadratic form. Then there exists a quadratic form qq
on Vo such that tkg(q—qo) <2r(2+ (r+1)"1).

Proof. Let T : V — V* be the symmetric linear map associated with ¢. Our assumption
implies that tkg(c(7T) —T) < r for any 0 € G. By Theorem 2.4, there exists an operator
To : Vo = Vj such that tkp(T - Tp) < r(2+ (r+1)™1). Let Ty : Vo — Vg be the dual
operator. Then

(T - S (T + T§)) <202+ (r+ 1)),

so we can let gy be the quadratic form corresponding to 3(7p + Ty). O

3. SCHMIDT RANK FOR QUARTICS

From now on we assume that the ground field k is perfect and has characteristic # 2.

3.1. Case ry = 1. We start with a proof of Theorem B dealing with the case 5 = 1, since
it is simpler but still shows the main idea.

Lemma 3.1. Let k'/k be a quadratic extension, and let f be a homogeneous polynomial
over k such that vky,(f) < (r2,71). Then tky (f) < (2rq,2r).

Proof. By assumption f € (@, P), where () is a subspace of quadrics and P is a subspace
of linear forms, both defined over k’. Hence, f € (Q + 0(Q), P + oc(P)), where o is the
generator of the Galois group of k’/k. Since the subspaces @ + o(Q) and P + o(P) are
defined over k, this implies the assertion. [l

Proof of Theorem B. We have to check that if E/k is a finite Galois extension, and
f=qq¢" mod (P),

where ¢, ¢’ are quadratic forms over E and P is an r-dimensional subspace of linear forms
defined over E, then rky (f) < (2,C(r)).

If stkg(q) <9r or stkg(q’) < 9r then srkg(f) < 10r, and so srky(f) <40r < C(r). Thus,
we can assume that srkg(q) > 9r and srkg(q’) > 9r. Let G be the Galois group of E/k.
For any o € G we have

f=0(g)o(q) mod (o(P)).
By assumption, the slice rank of § = ¢ mod (P + o(P)) is > 2, hence the quadric § is
irreducible. In other words, the ideal (¢, P + o(P)) is prime. Since qq’' € (0(q), P+ o(P)),
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we have either g € (0(q), P+0(P)) or ¢' € (6(q), P +o(P)). Since the slice ranks of ¢ and
q' are > 2r, this means that either
o(q)=c(o)-q mod (P+c(P)), o(¢)=c(o)™ ¢ mod (P+ac(P)), or
o(q)=c(c)-¢ mod (P+a(P)), o(¢)=c(o)™ ¢ mod (P+c(P)),
for some c(0) € E*.

Let H c GG be the set of ¢ € GG for which the first possibility holds. Let us consider
separately two cases.

Case srkg(q,q") > 3r. Assume first that 01,09 € H. Then we have

0102(q) = 01(c(02)) - 01(q) = c(o1)o1(c(02)) - mod (P +01(P) + 0102(P)).
If 0109 ¢ H, we would get that a nontrivial linear combination of g and ¢’ is in (P+0y(P)+
o102(P)), contradicting the assumption srkg(q, ¢") > 3r. Hence, o105 € H, so we have
0102(q) = c(0103) -q mod (P + o109(P)).
Comparing this with the previous congruence, we get
[c(o1)o1(c(02)) —c(0109)] =0 mod (P +01(P) + o102(P)).
Since srkg(q) > 9r > 3r, a nonzero multiple of ¢ cannot be contained in (P + o1(P) +
0102(P)), we obtain
c(o1)o1(c(o2)) - c(o102) =0,
i.e., c(o) is a 1-cocycle of H. A similar argument shows that if exactly one of o1, 05 belongs

to H then o105 ¢ H, and if 01,09 ¢ H then 0,05 € H, proving that H is a subgroup of index
<2in G.

Case srkg(q,q") < 3r. In this case we have ¢’ = ¢¢ mod (FP,) for some subspace of linear
forms P, of dimension < 3r (defined over F) and some c € E*. This implies that for o ¢ H
we have
o(q)=c(o)-q' =c(o)c-q mod (P+0c(P)+FR).
Redefining ¢(o) for o ¢ H we obtain that
o(q)=c(c)-q mod (P+a(P)+P), o(¢d)=c(oc)™" ¢ mod (P+ao(P)+PF) (3.1)
for all 0 € G. Now for 01,09 € G we have
0102(q) = 01(c(02)) - 01(q) = c(o1)01(c(02)) - ¢ mod (P +01(P) +0102(P) + Py + 01(F)).
On the other hand,
0'102(q) = 0(0'102) -q mod (P + 010’2(P) + PD)
Thus, we get
[c(o1)o1(c(02)) —c(0102)]-q=0 mod (P +01(P) + 0109(P) + Py + 01(Fy)).

Note that dim(P + o1 (P) +0102(P) + Py+01(Fp)) < 9r. Since srkg(q) > 9r, this is possible
only if ¢(o1)o1(c(02)) = c(o109) =0, i.e., ¢(0) is a 1-cocycle of H.

In either case we obtain that for a subgroup H c G of index < 2 and a subspace of linear
forms P, of dimension < 3r, the congruences (3.1) hold for some 1-cocycle ¢: H - E*.
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Let k’/k be the subextension of E corresponding to the subgroup H c G, so that the
extension E/k’ is Galois with the Galois group H. By Hilbert’s Theorem 90, the cocycle
c(o) of H is trivial, so rescaling ¢ and ¢/, we can assume that

o(q)=q mod (P+o(P)+FR), 0(¢)=¢ mod (P+0(P)+R)

for all o € H. But this implies that srtkg(o(q) — ¢) < 5r and srkg(o(q') — ¢') < 5r. Hence,
we obtain

rkp(o(q) —q) <10r, rkg(o(q¢’)-4') <10r
for all o € H. By Corollary 2.5, there exist quadrics gy and ¢ defined over k” such that

max(rkp(q - qo),tkp(q' - ¢j)) < 20r(2 + (10r + 1)1+,

Hence,
max(stkg(q - qo),stke(q - ¢})) < 10r(2 + (107 + 1)10r+1)'
It follows that

SI‘kE(f_qOQ(I)) < SI‘kE(f_qq,)—i-SI'kE(qq’_qu(l)) < T+20T(2+(10r+1)107’+1) — T(41+20'(10T+1)10T+1).
By [5, Thm. A], this implies that
stkie (f = qogh) < 4r(41 +20- (107 + 1)107+1),

hence, rky, (f) < (1,47(41 +20- (10r + 1)107+1)). Since the extension k’/k is either trivial or
quadratic, applying Lemma 3.1 we get the result. U

3.2. Quadratic decompositions of quartics.
Lemma 3.2. Assume we have a collection of quadrics

! ! / /
qis--5qryq15 - 54y P1y- -3 Psy D1y -+ 5 Pss

where r > s, and a subspace of quadrics (), such that
Y @iqi= > pipi mod (Q).
i=1 i=1

Then for some constants ai,...,a,,ay,...,a. such that }; a;a; =0, we have

srk(Z(aiqi +alq)),Q) <c(r,s,dimQ) = 2°(r + dim Q) + 257 (s - 2).

Proof. We use the induction on s. In the case s =0 we have to prove that
srk(Z(aiq,- +a,q),Q) <c(r,0,dimQ) =r +dimQ - 1

for some isotropic (a.,a,). Indeed, assume this is not true. Then srk(qy,...,q—1,Q) >
r+dim @, so by Proposition 2.3, the ideal (¢1,...,¢_1,Q) is prime. But we have

QTQ;‘ € ((Ih .. '7q7"—17Q)'

Hence, swapping ¢, with ¢/ if necessary, we deduce that ¢, € (q1,...,¢,-1,Q). But this
implies that srk(q, + c1q1 + ... + ¢,_1¢,-1 + ¢) = 0 for some constants ¢; and ¢ € ), which
contradicts the assumption srk(q., Q) > 7 +dim@ > r > 0.
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Assume the assertion holds for s — 1. We have

S

Y aidi = pipi mod (p1,Q).
=1

1=2

Hence, by the induction assumption,

stk() (aig; + aiq)),p1, Q) < e(r,s —1,dimQ + 1)

for some isotropic (a.,a,). Changing the basis in (¢, ), we can assume that either srk(q;, Q) <
c(r,s = 1,dim@ + 1), or there exists a subspace L of linear forms of dimension < ¢(r,s —
1,dim @ + 1) such that p; € (¢1,Q, L). In the former case we are done since ¢(r, s,dim Q) >
c(r,s—1,dim@ +1). In the latter case, we have

Y @iqi=> pipi mod (q1,Q, L).
=2 =2

Applying the induction assumption we obtain that there exists an isotropic vector (a1, a’;)
such that

SrkL(Z(a'iqi + (Z;qzl), qi, Q) < C(’l“ - L S - 17 dlmQ + 1)7

=2
hence

stk(D (aig; + alq)), 1, Q) < c(r-1,s-1,dimQ + 1) + dim L <
i

c(r-1,s-1,dmQ@Q+1)+¢(r,s - 1,dimQ + 1) = ¢(r, s,dim Q).

Since any linear combination of Y7 ,(a;q; + alq!) with ¢; will correspond to an isotropic
vector, the assertion follows. [l

Proposition 3.3. Let Q) be a subspace of quadrics,
q17"'7Q7"aQia"'7Q7’"7p17"'7p7"7p,17"'ap1,”

quadratic forms, such that

> aiqi = Y, pp; mod (Q). (3.2)
i=1 i=1
Assume that for any constants ay,...,a,,al,...,a,. such that Y ; a;a; =0, we have

srk(Z(aiqi +alg),Q) > C(r,dimQ) =2"(r +dim Q) + 2" (r - 2) + 1.

Then there exists a subspace of linear forms L of dimension at most
D(r,dimQ) := (2" - 1)(r +dimQ - 1) +r- 2"

and a linear transformation A : kK> — k2" preserving the quadratic form Y.._, x;y;, such
that for the linear operator ¢ from K2 to the space of quadrics sending the standard basis

(e, fo) to (qe,ql), we have
pi = ¢(Ae;), pi=¢(Af;) mod (Q,L).
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Proof. We use induction on r. In the case r =0 we can take L =0, D(0,dim Q) = 0.
Assume the assertion holds for » — 1. We have

Y aidi = pipi mod (p1,Q).
=1 =2

Hence, by Lemma 3.2, changing (¢, ¢.) by an orthogonal transformation, we can achieve
that

stk(qp, p1,Q) < ce(r,r—1,dim@ + 1).

Since srk(q1, Q) > C(r,dim @) > ¢(r,r = 1,dim @ + 1) + 1, this implies that there exists a
subspace of linear forms L of dimension < ¢(r,7 - 1,dim @ + 1), such that

P11 € (Q17Q7L)'
Note that if p; € (Q, L) then we get

> aiq; =y pip; mod (Q,L).
i=1 i=2
Hence, by Lemma 3.2, we would get
Srk(Z(aiQi +ajq;),Q) < SrkL(Z(aiQi +ajq;),Q) +dim L <
c(ryr=1,dimQ) + c(r,r—1,dimQ + 1) < C(r,dimQ) - 1,

which is a contradiction. Hence, rescaling ¢; and ¢}, we can assume that

p1=q mod (Q,L).
Also, from p; € (q1,@Q, L) we deduce that

=2 1=2

Since for any isotropic vector (as1,al;) one has

SrkL(Z(aiQi +a;q;),q1, Q) 2 Srk(Z(aiQi +a;q;),q1,Q) —dim L > C(r,dim Q) - dim L >
i=2 i=2
C(r,dimQ@Q)-c(r,r-1,dmQ+1) >C(r-1,dimQ + 1),

we can apply the induction hypothesis and deduce that for some subspace of linear forms
L’ 5 L of dimension

D(r-1,dmQ@Q+1)+dimL < D(r-1,dm@Q +1) +c(r,r-1,dimQ + 1) = D(r,dim Q),
after changing the basis (g2, ...,¢r, ¢, ..., q.) by an orthogonal transformation, we have
Pi = 4, pi = q; mod (qb Q?L’)a

for 7 > 2. This means that we have

Pi=qi+ciqr, pi=di+ g mod (Q, L),
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for ¢ > 2. Substituting this into (3.2) and recalling that p; = ¢; mod (Q, L), we get
Qg =q-[pr+ Z(ciQ£ +Ciq;) + (Z cici)qi] mod (Q,L").
i=2 =2
Since
stk(Q) > C(r,dimQ) >dimQ + D(r,dim Q) + 1 > dim@Q + dim L' + 1,
by Proposition 2.3, the ideal (Q, L") is prime, so we get

pPL=Eq) - Z(Ciqz{ +Ciqi) - (Z cici)qn mod (Q,L").
i=2 i=2

It remains to observe that the linear transformation
T

Aey=er, Afi=fi=) (cifi+dcje) = (D cich)en,
=2

i=2
Ae; =e; +cier, Af; = fi+cley, fori> 2,
preserves the quadratic form Y z;y;. O

We are mainly interested in the case () = 0 in the above proposition (the case of general
@ was introduced in order for the inductive argument to work).

Corollary 3.4. (i) Assume that

Z%‘C]g = Zpipé,
i=1 i=1
where q;, q., pi, p; are quadrics and

Srk(Z(az% +a; qz ) 2 C(T,O) = (7" - 1) B L |

for any isotropic (ae,al). Then there exists a subspace of linear forms L of dimension at
most

D(r,0)=(r-1)-(2"-1)+7r-2""1 < C(r,0)
and a linear transformation A : k> — k2 preserving the quadratic form Y.._, z;y;, such
that for the linear operator ¢ from K?" to the space of quadrics sending the standard basis
(€, fo) to (qe,ql), we have

pi = ¢(Ae;), pi=¢(Af;) mod (L).
(i) Assume that

T T
@+ @ =g+ Y, Pk,
=1 =1

where ¢;, ¢!, pi, pi are quadrics and for any constants ag,...,a,,a},...,a. such that a? +
4% a;al =0, one has stk(aoqo+> i (a;gi+alql) > c(r+1,7,0)+C(r,0)+1. Then there exists a
subspace of linear forms L of dimension at most D(r,0)+c(r+1,r,0), such that after making
a linear change in (qo,- .., qr q},---,q.) preserving the quadratic form a2+ 4y, a;al, one
has

q=po, ¢Gi=pi, ¢ =p; mod (L).
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Proof. (i) This is the case @ =0 of Proposition 3.3.
(ii) We have

(0 — o) (qo + po) + Z%’qz{ = Zpip;-
i=1 i=1

Hence, by Lemma 3.2, there exists a nonzero vector (ao,...,a,,ay,... b) such that

(ag—b)(ag +b) + Zaiag =(
=1

Y 7‘7

and
stk((ao — b)(qo + po) + (a0 + b) (g0 — po) Z(az(ﬁ +ajq;)) <c(r+1,7,0).
We can rewrite these conditions as

,
ag + Y a;al = b
i=1

and stk(aoqo + 5 Yi-1 (@:q; + alq)) — bpo, Q) < ¢(r + 1,7,0). Note that if b =0 we would get a
contradiction with the assumption that srk(aggo+ 3 Y-y (a:qi +alq)) —bpo, Q) > c(r+1,r,0)+
C(r,0) > ¢(r+1,r,0). Hence, we necessarily have b # 0. Thus, after making an orthogonal
transformation of (qo,...,qr,q],...,q.), we can assume that srk(go — po) < c(r + 1,7,0).
Thus, we have gy = pg mod (L),

Y @iqi=> pip, mod (L),

i=1 i=1

for some subspace of linear forms Ly of dimension < ¢(r + 1,7,0).
Now applying part (i), we find a subspace of linear forms L > Ly of dimension < D(r,0) +
c(r+1,r,0), such that after an orthogonal change of (q1,...,¢:,4q],.-.,¢.), we have

pi=¢q mod (L), p;=gq mod (L)
O

3.3. Proof of Theorem A. We will prove the existence of functions ¢ (r2,71) and co(r9,71)
such that if a quartic f satisfies rk%(f) < (rq,m1) then tky (f) < (ca(ra,m1), 1 (72,71)).

We use the induction on 75. In the case 5 = 0 we just have the slice rank, so by [5, Thm.
Al, we can set

c1(0,71) =4ry, c2(0,7r1) =0.

Now assume that the functions c;(r1,72) and cy(r1,72) are already constructed for o < 7.
Let f be a quartic over k, and E/k is a finite Galois extension such that rk3(f) < (r,p),
i.e., over E we have a decomposition

f= leqiq; mod (P), (3.3)

where (g;,¢q!) are quadrics, and P is a subspace of linear forms of dimension p.
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Below we will use constants C(r,0), D(r,0) and ¢(r, s,0) introduced in Sec. 3.2, and we
set
N :=2p+C(r,0).

Case 1. Assume first that srk(q., q.) > 6p + 3C(r,0).
Note that for any element o of the Galois group Gal(E/k) we have

> il =X 0(a)o(dl) mod (P+o(P))
i=1 i1

Since stkp.o(py(Xi(aiqi + alql)) > 4p + 3C(r,0) > C(r,0) for any nonzero (a.,a,), by
Corollary 3.4(i), there exists a subspace of linear forms L, > P + o(P) of dimension
< N =2p+C(r,0) and an E-linear orthogonal transformation A, of the 2r dimensional

space with the basis (q.,q.) such that

o(q) = As(q:), o(q)) = As(g)) mod (L,)

(note that here A,(¢;) and A,(q}) are linear combinations of (q.,q.)).

We claim that o — A, defines a cocycle with values in the orthogonal group. Indeed,
applying an element o, of the Galois group to the congruence o05(q;) = A,,(¢;) mod (L,,),
we get

0102(¢i) = 01(As,)(01(¢:))  mod (01(Ls, ),

where 01 (A,,) is the orthogonal matrix obtained by applying o; to the matrix A,,. Hence,
we have

01(A0,) Ao, (¢:) = 01(As,)(01(6)) = 0102(gs)  mod (01(Lo,) + Lo,),

hence,
q; = A_l Ul(Aoz)Am(Qi) mod (Ul(LUz) + LUl + L01‘72)'

0109
Similarly,
CI; = A;}agal (Acrz)Am(q;) mod (Ul(Loz) + Lo, + LUIUQ)'

Since srk(qe, q.) > 3N > dim(o1(Ly,) + Loy + Loyo,), this implies that A, o, = 01(As, ) Ag, -

Recall that the nonabelian H! of the Galois group of E/k with values in the group of
E-linear transformations preserving the standard quadratic form Qg = Y.;_; x;y; classifies
equivalence classes of nondegenerate quadratic forms on k?", which become equivalent to
Qo over F (see [6, II1.1.2]), so that the trivial class in H! corresponds to forms equivalent
to Qg over k.

Let @ be the quadratic form over k corresponding to our cocycle o — A,. We can find
a basis such that

Q=Y (N} + payi),
=1

for some \;, u; € k*. Let k’ o k denote the field extension obtained by adjoining r square
roots (v/—i/Ai) to k. Then over k’ we can write

Q= ZT: Ai(@i + /=i Nyi) (@ = N =i Niyi),
i=1



12 DAVID KAZHDAN AND ALEXANDER POLISHCHUK

so @ is equivalent to Qo over k’. Note that [k’:k] < 2".

Without loss of generality we can assume that k’ ¢ E. The fact that @) becomes equiv-
alent to )y over k/ means that the cocycle o = A, becomes a coboundary when restricted
to Gal(E/k’). Thus, we can make an orthogonal change of basis in (g, ¢,) such that

o(q:) =g, o(q)=q; mod (L)

for any o in the Galois group Gal(E/k’). By Corollary 2.5, there exist quadratic forms q,,
7. defined over k’, such that

stk(qi = ;) < N', stk(qj-g;) < N,
with N’ = N(2+ (2N + 1)2N+1),
Thus, we have

/- ﬁ;mz e (P)

for some subspace of linear forms P’ over E of dimension < N” =p+2rN'. In other words,
the slice rank of f = f - ¥!_,q,q, over E is < N”. By [5, Thm. A], this implies that the
slice rank of f over k’ is <4N". This means that

rky, (f) < (r,4N").
By Lemma 3.1, it follows that
rky, (f) < (27-7,2"-4N").
Case 2. Next, assume that srk(q., q.) < 3N, so there exists a nontrivial linear combination
> aiq; + 2; alql which has slice rank < 3/N. The restriction of the quadratic form Y.;_; z;y;
to the linear subspace Y ; a;z; + Y; aly; = 0 has rank 2r — 1 or 2r — 2. So enlarging F if

necessary we can find linear combinations g, (¢;,¢;)'= of (qe,q.) (where possibly g = 0)
such that

r r—1
Y G =T+ Y, Gg; mod (D aiqi+ ) ajg)).
=1 =1 7 7

Hence, renaming g;, g; by ¢;, ¢}, we obtain

r—1
f=q+ Z ¢;qi mod (P'),
i=1
where P’ is a space of linear forms of dimension < p’ = dim P’ <p+ 3N.
Furthermore, we claim that we can assume that srk(qo, ¢e, q.) > 3N, where
N'=D(r-1,0)+¢(r,r—1,0) + 2p'.
Indeed, otherwise arguing as above we obtain a decomposition (3.3) with r replaced by

r -1 and p replaced by p” = p’ + 3N’. In other words, we would have rk3,(f) < (r - 1,p"),
so by the induction assumption we would deduce that

ki (f) < (ca(r=1,p"), c1(r = 1,p")).
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Since for every o € Gal(E/k), one has

r—1 r—1
g5+, 4i4i = 0(q0)? + Y, o(ai)o(g;) mod (P'+aP"),
i=1 i=1
by Corollary 3.4(ii) with r replaced by r — 1, we get that

U(QO) = Aaq07 U(Ql) = AaQia U(C]:) = Aaqg mod (Lo')>

for some orthogonal transformation A, and a subspace of linear forms L, > P’ + o P’ of
dimension < N’ (here to verify the assumptions of Corollary 3.4(ii) we use the inequality

3N'">3D(r-1,0)+3c(r,r—1,0) >C(r-1,0) +c(r-1,7-2,0)

which is easy to check). Since srk(qo, qe,q.) > 3N’, as in Case 1, this implies that o — A,
is a 1-cocycle.

Arguing as in Case 1, we find a subextension k’ c E obtained by adjoining at most r -1
square roots to k, such that after making a change of basis in (q.,q.), we get

o(qi) =i, 0(q;) =¢; mod (L)

for any o € Gal(E/k’). Hence, by Corollary 2.5, there exist quadratic forms gq,, g, defined
over k/, such that

stk(q; —q,) < N" fori=0,...,r=1, stk(¢;—-q,)<N" fori=1,...,r—1,
with N7 = N’(2+ (2N’ +1)2V'+1) and we get

r—1
stkp(f -5 - Y, 4:q,) <M =p'+(2r-1)N".

i1
By [5, Thm. A], this implies that the slice rank of f over kK’ is <4M, so we get
rky (f) < (r,4M),

and so by Lemma 3.1,
vk, (f) < (277,27 - 4M).
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