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Abstract. Let k be a perfect field of characteristic ≠ 2. We prove that the Schmidt rank
(also known as strength) of a quartic polynomial f over k is bounded above in terms of

only the Schmidt rank of f over k, an algebraic closure of k.

1. Introduction

Recall that the Schmidt rank (also known as strength) of a homogeneous polynomial
f ∈ k[x1, . . . , xn] (see [1], [2] and references therein) is defined as the minimal number r
such that f admits a decomposition f = g1h1 + . . .+ grhr, with deg(gi) and deg(hi) smaller
than deg(f). We denote the Schmidt rank of f as rkSk(f).

It is conjectured in [1] that for a homogeneous polynomial f of degree d over a non-closed
field k one has

rkSk(f) ≤ κd ⋅ rkSk(f),
where k is an algebraic closure of k. This is known to be true for d ≤ 3 with κd = d since
in this case the Schmidt rank is equal to the slice rank defined as the minimal r such that
f ∈ (l1, . . . , lr), where deg(li) = 1 (see [5, Thm. A] for the case of cubics).

One can also ask a weaker question whether there exists a function c(r, d) such that

rkSk(f) ≤ c(rkSk(f), d).
Our main result is that this weaker question has a positive answer in the case of quartic
polynomials.

Theorem A. Assume that the ground field k is perfect of characteristic ≠ 2. Then there
exists a function r ↦ c(r) such that for any homogeneous quartic polynomial f(x1, . . . , xn),
such that rkS

k
(f) = r, one has rkSk(f) ≤ c(r).

We find it convenient to use the following refined version of Schmidt rank.

Definition 1.1. For a collection of nonnegative integers (rk, . . . , r1) and a homogeneous
polynomial f of degree d, we say that the refined Schmidt rank of f is at most (rk, . . . , r1),
and write rkSk(f) ≤ (rk, . . . , r1), if there exists a decomposition over k,

f =
k

∑
j=1

rj

∑
i=1
fijgij,

where deg(fij) = d − deg(gij) = j for j = 1, . . . , k.
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Thus, for a quartic polynomial f , we have rkSk(f) ≤ (r2, r1) if there exist quadrics
q1, . . . , qr2 and linear forms l1, . . . , lr1 , such that f ∈ (q1, . . . , qr2 , l1, . . . , lr1). In our proof of
Theorem A we show the existence of functions (c2(r2, r1), c1(r2, r1)), such that if rkS

k
(f) ≤

(r2, r1) then rkSk(f) ≤ (c2(r2, r1), c1(r2, r1)). Then one can set

c(r) = max
r1+r2=r

(c2(r2, r1) + c1(r2, r1)).

One can work through our proof of Theorem A and get explicit formulas for (c2(r2, r1), c1(r2, r1)).
As an illustration of this, we give formulas for (c2(1, r1), c1(1, r1)).
Theorem B. Let f be a homogeneous quartic polynomial defined over a perfect field k with
char(k) ≠ 2. Assume that rkS

k
(f) ≤ (1, r). Then rkSk(f) ≤ (2,C(r)), where

C(r) = 8r(41 + 20 ⋅ (10r + 1)10r+1).

The main idea of the proof of Theorem A is to study decompositions of a quartic poly-
nomial f of the form

f =
r

∑
i=1
qiq
′
i mod (P ),

where qi, q′i are of degree 2 and P is a subspace of linear forms. The main result about such
decompositions is that if the rank of any linear combination of (q●, q′●) is sufficiently large
then the above decomposition is essentially unique (possibly after enlarging P ): the only
way to get a new decomposition is by making an orthogonal change of basis in the linear
space with the basis (q●, q′●). We then apply this result to the decompositions obtained from
a given one over k by applying the Galois group action. If the rank of (q●, q′●) is sufficiently
large, then we obtain a 1-cocycle of the Galois group with values in the orthogonal group
measuring how the decomposition transforms under the Galois action. We can assume
that this 1-cocycle is trivial (after passing to an extension of k of small degree). We then
use a certain linear algebra result from [4] to prove the existence of a decomposition with
(q●, q′●) defined over k. Furthermore, we have a bound on the slice rank of f −∑ri=1 qiq′i over

k, and hence over k by [5, Thm. A]. This gives the required bound on the Schmidt rank
of f over k.

2. Preliminaries

2.1. Criterion for an ideal generated by quadrics and linear forms to be prime.
In this subsection we fix a ground field k (and omit it from the notation). By a quadric
we mean an element of k[V ]2, i.e., a quadratic form.

Definition 2.1. For a subspace of quadrics Q, and a collection of quadrics q1, . . . , qr,
we define srk(q1, . . . , qr,Q) as the minimum of srk(∑i ciqi + q), where q ∈ Q and ci are
constants, such that either q ≠ 0 or (c●) ≠ 0. In particular, srk(Q) is the minimal slice rank
of a nonzero element of Q.
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We denote by rk(q) the usual rank of a quadric q. It is easy to see that the rank and
the slice rank of a quadric q are related by

2srk(q) − 1 ≤ rk(q) ≤ 2srk(q).
In other words, we have

srk(q) = ⌈rk(q)
2
⌉.

Lemma 2.2. Let q1, . . . , qr be quadratic forms such that

R = min
(c1,...,cr)≠0

rk(c1q1 + . . . crqr) ≥ 2r + 1.

Then the subscheme q1 = . . . = qr = 0 is normal connected of codimension r.

Proof. Consider the Jacobian matrix J(q1, . . . , qr). The locus S(q1, . . . , qr) where J(q1, . . . , qr)
has rank < r coincides with the union of kernels of ∑ cjqj over (c1, . . . , cr) ≠ 0. Hence,

dimS(q1, . . . , qr) ≤ (n −R) + (r − 1),
where n−R is the maximal dimension of the kernels and r − 1 is the dimension of the base
Pr−1 of the family of quadrics. Thus,

codimV S(q1, . . . , qr) ≥ R − (r − 1) ≥ r + 2.

Since the codimension of X ∶= (q1 = . . . = qr = 0) ⊂ An is ≤ r, on a nonempty Zariski open
subset of X, the rank of the Jacobian equals r. This implies that X has codimension
r, and so S(q1, . . . , qr) ∩X has codimension ≥ 2 in X. Thus, X is Cohen-Macaulay (as a
complete intersection), nonsingular in codimension 1. Therefore, by Serre’s R1+S2 criterion
(see [3, Thm. 8.22A], X is normal. Finally, X is connected as a complete intersection. �

Proposition 2.3. (i) Let Q be a subspace of quadratic forms such that srk(Q) ≥ dimQ+1.
Then the ideal (Q) is prime.
(ii) Let L be a subspace of linear forms, Q a subspace of quadratic forms. Assume that
srk(Q) ≥ dimQ + dimL + 1. Then the ideal (Q,L) is prime.

Proof. (i) For any q ∈ Q we have rk(q) ≥ 2srk(q) − 1 ≥ 2 dimQ + 1. Hence, by Lemma 2.2,
the subscheme defined by (Q) is normal connected, so integral. Therefore, the ideal (Q)
is prime.
(ii) Consider the quotient S = S/(L) of the algebra of polynomials S by the ideal (L). For
any q ∈ Q we have srk(q) ≥ srk(q)−dimL, where q is the image of q in S. Hence, the image
Q of Q in S satisfies the assumptions of (i), so the ideal (Q) in S is prime. Therefore, its
preimage in S, namely (Q,L), is also prime. �

2.2. Almost invariant quadratic forms. We will use the following result from [4].

Theorem 2.4. Let E/k be a finite Galois extension with the Galois group G, and let
V0, V ′0 be finite dimensional k-vector spaces. Let us set V = V0⊗kE, V ′ = V ′0 ⊗kE. Suppose
T ∶ V → V ′ is an E-linear operator such that for any σ ∈ G, one has

rkE(σ(T ) − T ) ≤ r,
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for some r ≥ 0. Then there exists a k-linear operator T0 ∶ V0 → V ′0 , such that

rkE(T − T0) ≤ r(2 + (r + 1)r+1),
where we view T0 as an operator V → V ′ by extension of scalars.

We need the following consequence of this theorem for quadratic forms.

Corollary 2.5. Let E/k be a finite Galois extension with the Galois group G, where
char(k) ≠ 2, and let V0 be a finite dimensional k-vector space, V = V0⊗kE. Assume that q
is a quadratic form on V such that for any σ ∈ G, one has rkE(σ(q)−q) ≤ r for some r ≥ 0,
where rkE is the usual rank of the quadratic form. Then there exists a quadratic form q0
on V0 such that rkE(q − q0) ≤ 2r(2 + (r + 1)r+1).
Proof. Let T ∶ V → V ∗ be the symmetric linear map associated with q. Our assumption
implies that rkE(σ(T ) − T ) ≤ r for any σ ∈ G. By Theorem 2.4, there exists an operator
T0 ∶ V0 → V ∗0 such that rkE(T − T0) ≤ r(2 + (r + 1)r+1). Let T ∗0 ∶ V0 → V ∗0 be the dual
operator. Then

rkE(T −
1

2
(T0 + T ∗0 )) ≤ 2r(2 + (r + 1)r+1),

so we can let q0 be the quadratic form corresponding to 1
2(T0 + T ∗0 ). �

3. Schmidt rank for quartics

From now on we assume that the ground field k is perfect and has characteristic ≠ 2.

3.1. Case r2 = 1. We start with a proof of Theorem B dealing with the case r2 = 1, since
it is simpler but still shows the main idea.

Lemma 3.1. Let k′/k be a quadratic extension, and let f be a homogeneous polynomial
over k such that rkSk′(f) ≤ (r2, r1). Then rkSk(f) ≤ (2r2,2r1).
Proof. By assumption f ∈ (Q,P ), where Q is a subspace of quadrics and P is a subspace
of linear forms, both defined over k′. Hence, f ∈ (Q + σ(Q), P + σ(P )), where σ is the
generator of the Galois group of k′/k. Since the subspaces Q + σ(Q) and P + σ(P ) are
defined over k, this implies the assertion. �

Proof of Theorem B. We have to check that if E/k is a finite Galois extension, and

f ≡ qq′ mod (P ),
where q, q′ are quadratic forms over E and P is an r-dimensional subspace of linear forms
defined over E, then rkSk(f) ≤ (2,C(r)).

If srkE(q) ≤ 9r or srkE(q′) ≤ 9r then srkE(f) ≤ 10r, and so srkk(f) ≤ 40r ≤ C(r). Thus,
we can assume that srkE(q) > 9r and srkE(q′) > 9r. Let G be the Galois group of E/k.
For any σ ∈ G we have

f ≡ σ(q)σ(q′) mod (σ(P )).
By assumption, the slice rank of q = q mod (P + σ(P )) is ≥ 2, hence the quadric q is
irreducible. In other words, the ideal (q,P + σ(P )) is prime. Since qq′ ∈ (σ(q), P + σ(P )),
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we have either q ∈ (σ(q), P + σ(P )) or q′ ∈ (σ(q), P + σ(P )). Since the slice ranks of q and
q′ are > 2r, this means that either

σ(q) ≡ c(σ) ⋅ q mod (P + σ(P )), σ(q′) ≡ c(σ)−1 ⋅ q′ mod (P + σ(P )), or

σ(q) ≡ c(σ) ⋅ q′ mod (P + σ(P )), σ(q′) ≡ c(σ)−1 ⋅ q mod (P + σ(P )),
for some c(σ) ∈ E∗.

Let H ⊂ G be the set of σ ∈ G for which the first possibility holds. Let us consider
separately two cases.

Case srkE(q, q′) > 3r. Assume first that σ1, σ2 ∈H. Then we have

σ1σ2(q) ≡ σ1(c(σ2)) ⋅ σ1(q) ≡ c(σ1)σ1(c(σ2)) ⋅ q mod (P + σ1(P ) + σ1σ2(P )).
If σ1σ2 /∈H, we would get that a nontrivial linear combination of q and q′ is in (P +σ1(P )+
σ1σ2(P )), contradicting the assumption srkE(q, q′) > 3r. Hence, σ1σ2 ∈H, so we have

σ1σ2(q) ≡ c(σ1σ2) ⋅ q mod (P + σ1σ2(P )).
Comparing this with the previous congruence, we get

[c(σ1)σ1(c(σ2)) − c(σ1σ2)] ⋅ q ≡ 0 mod (P + σ1(P ) + σ1σ2(P )).
Since srkE(q) > 9r ≥ 3r, a nonzero multiple of q cannot be contained in (P + σ1(P ) +
σ1σ2(P )), we obtain

c(σ1)σ1(c(σ2)) − c(σ1σ2) = 0,

i.e., c(σ) is a 1-cocycle of H. A similar argument shows that if exactly one of σ1, σ2 belongs
to H then σ1σ2 /∈H, and if σ1, σ2 /∈H then σ1σ2 ∈H, proving that H is a subgroup of index
≤ 2 in G.

Case srkE(q, q′) ≤ 3r. In this case we have q′ ≡ cq mod (P0) for some subspace of linear
forms P0 of dimension ≤ 3r (defined over E) and some c ∈ E∗. This implies that for σ /∈H
we have

σ(q) ≡ c(σ) ⋅ q′ ≡ c(σ)c ⋅ q mod (P + σ(P ) + P0).
Redefining c(σ) for σ /∈H we obtain that

σ(q) ≡ c(σ) ⋅ q mod (P + σ(P ) + P0), σ(q′) ≡ c(σ)−1 ⋅ q′ mod (P + σ(P ) + P0) (3.1)

for all σ ∈ G. Now for σ1, σ2 ∈ G we have

σ1σ2(q) ≡ σ1(c(σ2)) ⋅ σ1(q) ≡ c(σ1)σ1(c(σ2)) ⋅ q mod (P + σ1(P ) + σ1σ2(P ) +P0 + σ1(P0)).
On the other hand,

σ1σ2(q) ≡ c(σ1σ2) ⋅ q mod (P + σ1σ2(P ) + P0).
Thus, we get

[c(σ1)σ1(c(σ2)) − c(σ1σ2)] ⋅ q ≡ 0 mod (P + σ1(P ) + σ1σ2(P ) + P0 + σ1(P0)).
Note that dim(P +σ1(P )+σ1σ2(P )+P0 +σ1(P0)) ≤ 9r. Since srkE(q) > 9r, this is possible
only if c(σ1)σ1(c(σ2)) − c(σ1σ2) = 0, i.e., c(σ) is a 1-cocycle of H.

In either case we obtain that for a subgroup H ⊂ G of index ≤ 2 and a subspace of linear
forms P0 of dimension ≤ 3r, the congruences (3.1) hold for some 1-cocycle c ∶H → E∗.
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Let k′/k be the subextension of E corresponding to the subgroup H ⊂ G, so that the
extension E/k′ is Galois with the Galois group H. By Hilbert’s Theorem 90, the cocycle
c(σ) of H is trivial, so rescaling q and q′, we can assume that

σ(q) ≡ q mod (P + σ(P ) + P0), σ(q′) ≡ q′ mod (P + σ(P ) + P0)
for all σ ∈ H. But this implies that srkE(σ(q) − q) ≤ 5r and srkE(σ(q′) − q′) ≤ 5r. Hence,
we obtain

rkE(σ(q) − q) ≤ 10r, rkE(σ(q′) − q′) ≤ 10r

for all σ ∈H. By Corollary 2.5, there exist quadrics q0 and q′0 defined over k′ such that

max(rkE(q − q0), rkE(q′ − q′0)) ≤ 20r(2 + (10r + 1)10r+1).
Hence,

max(srkE(q − q0), srkE(q′ − q′0)) ≤ 10r(2 + (10r + 1)10r+1).
It follows that

srkE(f−q0q′0) ≤ srkE(f−qq′)+srkE(qq′−q0q′0) ≤ r+20r(2+(10r+1)10r+1) = r(41+20⋅(10r+1)10r+1).
By [5, Thm. A], this implies that

srkk′(f − q0q′0) ≤ 4r(41 + 20 ⋅ (10r + 1)10r+1),
hence, rkSk′(f) ≤ (1,4r(41+ 20 ⋅ (10r + 1)10r+1)). Since the extension k′/k is either trivial or
quadratic, applying Lemma 3.1 we get the result. �

3.2. Quadratic decompositions of quartics.

Lemma 3.2. Assume we have a collection of quadrics

q1, . . . , qr, q
′
1, . . . , q

′
r, p1, . . . , ps, p

′
1, . . . , p

′
s,

where r > s, and a subspace of quadrics Q, such that
r

∑
i=1
qiq
′
i ≡

s

∑
i=1
pip
′
i mod (Q).

Then for some constants a1, . . . , ar, a′1, . . . , a′r such that ∑i aia′i = 0, we have

srk(∑
i

(aiqi + a′iq′i),Q) ≤ c(r, s,dimQ) ∶= 2s(r + dimQ) + 2s−1(s − 2).

Proof. We use the induction on s. In the case s = 0 we have to prove that

srk(∑
i

(aiqi + a′iq′i),Q) ≤ c(r,0,dimQ) = r + dimQ − 1

for some isotropic (a●, a′●). Indeed, assume this is not true. Then srk(q1, . . . , qr−1,Q) ≥
r + dimQ, so by Proposition 2.3, the ideal (q1, . . . , qr−1,Q) is prime. But we have

qrq
′
r ∈ (q1, . . . , qr−1,Q).

Hence, swapping qr with q′r if necessary, we deduce that qr ∈ (q1, . . . , qr−1,Q). But this
implies that srk(qr + c1q1 + . . . + cr−1qr−1 + q) = 0 for some constants ci and q ∈ Q, which
contradicts the assumption srk(q●,Q) ≥ r + dimQ ≥ r > 0.
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Assume the assertion holds for s − 1. We have
r

∑
i=1
qiq
′
i ≡

s

∑
i=2
pip
′
i mod (p1,Q).

Hence, by the induction assumption,

srk(∑
i

(aiqi + a′iq′i), p1,Q) ≤ c(r, s − 1,dimQ + 1)

for some isotropic (a●, a′●). Changing the basis in (q●), we can assume that either srk(q1,Q) ≤
c(r, s − 1,dimQ + 1), or there exists a subspace L of linear forms of dimension ≤ c(r, s −
1,dimQ+ 1) such that p1 ∈ (q1,Q,L). In the former case we are done since c(r, s,dimQ) ≥
c(r, s − 1,dimQ + 1). In the latter case, we have

r

∑
i=2
qiq
′
i ≡

s

∑
i=2
pip
′
i mod (q1,Q,L).

Applying the induction assumption we obtain that there exists an isotropic vector (a>1, a′>1)
such that

srkL(
r

∑
i=2
(aiqi + a′iq′i), q1,Q) ≤ c(r − 1, s − 1,dimQ + 1),

hence

srk(
r

∑
i=2
(aiqi + a′iq′i), q1,Q) ≤ c(r − 1, s − 1,dimQ + 1) + dimL ≤

c(r − 1, s − 1,dimQ + 1) + c(r, s − 1,dimQ + 1) = c(r, s,dimQ).
Since any linear combination of ∑ri=2(aiqi + a′iq′i) with q1 will correspond to an isotropic
vector, the assertion follows. �

Proposition 3.3. Let Q be a subspace of quadrics,

q1, . . . , qr, q
′
1, . . . , q

′
r, p1, . . . , pr, p

′
1, . . . , p

′
r

quadratic forms, such that
r

∑
i=1
qiq
′
i ≡

r

∑
i=1
pip
′
i mod (Q). (3.2)

Assume that for any constants a1, . . . , ar, a′1, . . . , a′r such that ∑i aia′i = 0, we have

srk(∑
i

(aiqi + a′iq′i),Q) ≥ C(r,dimQ) ∶= 2r(r + dimQ) + 2r−1(r − 2) + 1.

Then there exists a subspace of linear forms L of dimension at most

D(r,dimQ) ∶= (2r − 1)(r + dimQ − 1) + r ⋅ 2r−1

and a linear transformation A ∶ k2r → k2r preserving the quadratic form ∑ri=1 xiyi, such
that for the linear operator φ from k2r to the space of quadrics sending the standard basis
(e●, f●) to (q●, q′●), we have

pi ≡ φ(Aei), p′i ≡ φ(Afi) mod (Q,L).
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Proof. We use induction on r. In the case r = 0 we can take L = 0, D(0,dimQ) = 0.
Assume the assertion holds for r − 1. We have

r

∑
i=1
qiq
′
i ≡

r

∑
i=2
pip
′
i mod (p1,Q).

Hence, by Lemma 3.2, changing (q●, q′●) by an orthogonal transformation, we can achieve
that

srk(q1, p1,Q) ≤ c(r, r − 1,dimQ + 1).
Since srk(q1,Q) ≥ C(r,dimQ) ≥ c(r, r − 1,dimQ + 1) + 1, this implies that there exists a
subspace of linear forms L of dimension ≤ c(r, r − 1,dimQ + 1), such that

p1 ∈ (q1,Q,L).
Note that if p1 ∈ (Q,L) then we get

r

∑
i=1
qiq
′
i ≡

r

∑
i=2
pip
′
i mod (Q,L).

Hence, by Lemma 3.2, we would get

srk(∑
i

(aiqi + a′iq′i),Q) ≤ srkL(∑
i

(aiqi + a′iq′i),Q) + dimL ≤

c(r, r − 1,dimQ) + c(r, r − 1,dimQ + 1) ≤ C(r,dimQ) − 1,

which is a contradiction. Hence, rescaling q1 and q′1, we can assume that

p1 ≡ q1 mod (Q,L).
Also, from p1 ∈ (q1,Q,L) we deduce that

r

∑
i=2
qiq
′
i ≡

r

∑
i=2
pip
′
i mod (q1,Q,L).

Since for any isotropic vector (a>1, a′>1) one has

srkL(
r

∑
i=2
(aiqi + a′iq′i), q1,Q) ≥ srk(

r

∑
i=2
(aiqi + a′iq′i), q1,Q) − dimL ≥ C(r,dimQ) − dimL ≥

C(r,dimQ) − c(r, r − 1,dimQ + 1) ≥ C(r − 1,dimQ + 1),
we can apply the induction hypothesis and deduce that for some subspace of linear forms
L′ ⊃ L of dimension

D(r − 1,dimQ + 1) + dimL ≤D(r − 1,dimQ + 1) + c(r, r − 1,dimQ + 1) =D(r,dimQ),
after changing the basis (q2, . . . , qr, q′2, . . . , q′r) by an orthogonal transformation, we have

pi ≡ qi, p′i ≡ q′i mod (q1,Q,L′),
for i ≥ 2. This means that we have

pi ≡ qi + ciq1, p′i ≡ q′i + c′iq1 mod (Q,L′),
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for i ≥ 2. Substituting this into (3.2) and recalling that p1 ≡ q1 mod (Q,L), we get

q1q
′
1 ≡ q1 ⋅ [p′1 +

r

∑
i=2
(ciq′i + c′iqi) + (

r

∑
i=2
cic
′
i)q1] mod (Q,L′).

Since
srk(Q) ≥ C(r,dimQ) ≥ dimQ +D(r,dimQ) + 1 ≥ dimQ + dimL′ + 1,

by Proposition 2.3, the ideal (Q,L′) is prime, so we get

p′1 ≡ q′1 −
r

∑
i=2
(ciq′i + c′iqi) − (

r

∑
i=2
cic
′
i)q1 mod (Q,L′).

It remains to observe that the linear transformation

Ae1 = e1, Af1 = f1 −
r

∑
i=2
(cifi + c′iei) − (

r

∑
i=2
cic
′
i)e1,

Aei = ei + cie1, Afi = fi + c′ie1, for i ≥ 2,

preserves the quadratic form ∑xiyi. �

We are mainly interested in the case Q = 0 in the above proposition (the case of general
Q was introduced in order for the inductive argument to work).

Corollary 3.4. (i) Assume that
r

∑
i=1
qiq
′
i =

r

∑
i=1
pip
′
i,

where qi, q′i, pi, p
′
i are quadrics and

srk(∑
i

(aiqi + a′iq′i)) ≥ C(r,0) = (r − 1) ⋅ 2r + r ⋅ 2r−1 + 1

for any isotropic (a●, a′●). Then there exists a subspace of linear forms L of dimension at
most

D(r,0) = (r − 1) ⋅ (2r − 1) + r ⋅ 2r−1 ≤ C(r,0)
and a linear transformation A ∶ k2r → k2r preserving the quadratic form ∑ri=1 xiyi, such
that for the linear operator φ from k2r to the space of quadrics sending the standard basis
(e●, f●) to (q●, q′●), we have

pi ≡ φ(Aei), p′i ≡ φ(Afi) mod (L).
(ii) Assume that

q20 +
r

∑
i=1
qiq
′
i = p20 +

r

∑
i=1
pip
′
i,

where qi, q′i, pi, p
′
i are quadrics and for any constants a0, . . . , ar, a′1, . . . , a′r such that a20 +

4∑i aia′i = 0, one has srk(a0q0+∑ri=1(aiqi+a′iq′i) ≥ c(r+1, r,0)+C(r,0)+1. Then there exists a
subspace of linear forms L of dimension at most D(r,0)+c(r+1, r,0), such that after making
a linear change in (q0, . . . , qr, q′1, . . . , q′r) preserving the quadratic form a20 + 4∑ri=1 aia′i, one
has

q0 ≡ p0, qi ≡ pi, q′i ≡ p′i mod (L).
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Proof. (i) This is the case Q = 0 of Proposition 3.3.
(ii) We have

(q0 − p0)(q0 + p0) +
r

∑
i=1
qiq
′
i =

r

∑
i=1
pip
′
i.

Hence, by Lemma 3.2, there exists a nonzero vector (a0, . . . , ar, a′1, . . . , a′r, b) such that

(a0 − b)(a0 + b) +
r

∑
i=1
aia
′
i = 0

and

srk((a0 − b)(q0 + p0) + (a0 + b)(q0 − p0) +
r

∑
i=1
(aiqi + a′iq′i)) ≤ c(r + 1, r,0).

We can rewrite these conditions as

a20 +
r

∑
i=1
aia
′
i = b2

and srk(a0q0 + 1
2 ∑

r
i=1(aiqi + a′iq′i) − bp0,Q) ≤ c(r + 1, r,0). Note that if b = 0 we would get a

contradiction with the assumption that srk(a0q0+ 1
2 ∑

r
i=1(aiqi+a′iq′i)−bp0,Q) > c(r+1, r,0)+

C(r,0) ≥ c(r + 1, r,0). Hence, we necessarily have b ≠ 0. Thus, after making an orthogonal
transformation of (q0, . . . , qr, q′1, . . . , q′r), we can assume that srk(q0 − p0) ≤ c(r + 1, r,0).
Thus, we have q0 ≡ p0 mod (L0),

r

∑
i=1
qiq
′
i ≡

r

∑
i=1
pip
′
i mod (L0),

for some subspace of linear forms L0 of dimension ≤ c(r + 1, r,0).
Now applying part (i), we find a subspace of linear forms L ⊃ L0 of dimension ≤D(r,0)+

c(r + 1, r,0), such that after an orthogonal change of (q1, . . . , qr, q′1, . . . , q′r), we have

pi ≡ qi mod (L), p′i ≡ q′i mod (L).
�

3.3. Proof of Theorem A. We will prove the existence of functions c1(r2, r1) and c2(r2, r1)
such that if a quartic f satisfies rkS

k
(f) ≤ (r2, r1) then rkSk(f) ≤ (c2(r2, r1), c1(r2, r1)).

We use the induction on r2. In the case r2 = 0 we just have the slice rank, so by [5, Thm.
A], we can set

c1(0, r1) = 4r1, c2(0, r1) = 0.

Now assume that the functions c1(r1, r2) and c2(r1, r2) are already constructed for r2 < r.
Let f be a quartic over k, and E/k is a finite Galois extension such that rkSE(f) ≤ (r, p),
i.e., over E we have a decomposition

f ≡
r

∑
i=1
qiq
′
i mod (P ), (3.3)

where (qi, q′i) are quadrics, and P is a subspace of linear forms of dimension p.
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Below we will use constants C(r,0), D(r,0) and c(r, s,0) introduced in Sec. 3.2, and we
set

N ∶= 2p +C(r,0).

Case 1. Assume first that srk(q●, q′●) > 6p + 3C(r,0).
Note that for any element σ of the Galois group Gal(E/k) we have

r

∑
i=1
qiq
′
i ≡

r

∑
i=1
σ(qi)σ(q′i) mod (P + σ(P )).

Since srkP+σ(P )(∑i(aiqi + a′iq′i)) > 4p + 3C(r,0) ≥ C(r,0) for any nonzero (a●, a′●), by
Corollary 3.4(i), there exists a subspace of linear forms Lσ ⊃ P + σ(P ) of dimension
≤ N = 2p + C(r,0) and an E-linear orthogonal transformation Aσ of the 2r dimensional
space with the basis (q●, q′●) such that

σ(qi) ≡ Aσ(qi), σ(q′i) ≡ Aσ(q′i) mod (Lσ)
(note that here Aσ(qi) and Aσ(q′i) are linear combinations of (q●, q′●)).

We claim that σ ↦ Aσ defines a cocycle with values in the orthogonal group. Indeed,
applying an element σ1 of the Galois group to the congruence σ2(qi) ≡ Aσ2(qi) mod (Lσ2),
we get

σ1σ2(qi) ≡ σ1(Aσ2)(σ1(qi)) mod (σ1(Lσ2)),
where σ1(Aσ2) is the orthogonal matrix obtained by applying σ1 to the matrix Aσ2 . Hence,
we have

σ1(Aσ2)Aσ1(qi) ≡ σ1(Aσ2)(σ1(qi)) ≡ σ1σ2(qi) mod (σ1(Lσ2) +Lσ1),
hence,

qi ≡ A−1σ1σ2σ1(Aσ2)Aσ1(qi) mod (σ1(Lσ2) +Lσ1 +Lσ1σ2).
Similarly,

q′i ≡ A−1σ1σ2σ1(Aσ2)Aσ1(q′i) mod (σ1(Lσ2) +Lσ1 +Lσ1σ2).
Since srk(q●, q′●) > 3N ≥ dim(σ1(Lσ2) +Lσ1 +Lσ1σ2), this implies that Aσ1σ2 = σ1(Aσ2)Aσ1 .

Recall that the nonabelian H1 of the Galois group of E/k with values in the group of
E-linear transformations preserving the standard quadratic form Q0 = ∑ri=1 xiyi classifies
equivalence classes of nondegenerate quadratic forms on k2r, which become equivalent to
Q0 over E (see [6, III.1.2]), so that the trivial class in H1 corresponds to forms equivalent
to Q0 over k.

Let Q be the quadratic form over k corresponding to our cocycle σ ↦ Aσ. We can find
a basis such that

Q =
r

∑
i=1
(λix2i + µiy2i ),

for some λi, µi ∈ k∗. Let k′ ⊃ k denote the field extension obtained by adjoining r square

roots (
√
−µi/λi) to k. Then over k′ we can write

Q =
r

∑
i=1
λi(xi +

√
−µi/λiyi)(xi −

√
−µi/λiyi),
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so Q is equivalent to Q0 over k′. Note that [k′ ∶ k] ≤ 2r.
Without loss of generality we can assume that k′ ⊂ E. The fact that Q becomes equiv-

alent to Q0 over k′ means that the cocycle σ ↦ Aσ becomes a coboundary when restricted
to Gal(E/k′). Thus, we can make an orthogonal change of basis in (q●, q′●) such that

σ(qi) ≡ qi, σ(q′i) ≡ q′i mod (Lσ)
for any σ in the Galois group Gal(E/k′). By Corollary 2.5, there exist quadratic forms q●,
q′● defined over k′, such that

srk(qi − qi) ≤ N ′, srk(q′i − q′i) ≤ N ′,
with N ′ = N(2 + (2N + 1)2N+1).

Thus, we have

f −
r

∑
i=1
qiq
′
i ∈ (P ′)

for some subspace of linear forms P ′ over E of dimension ≤ N ′′ = p+2rN ′. In other words,
the slice rank of f̃ = f − ∑ri=1 qiq′i over E is ≤ N ′′. By [5, Thm. A], this implies that the

slice rank of f̃ over k′ is ≤ 4N ′′. This means that

rkSk′(f) ≤ (r,4N ′′).
By Lemma 3.1, it follows that

rkSk′(f) ≤ (2r ⋅ r,2r ⋅ 4N ′′).

Case 2. Next, assume that srk(q●, q′●) ≤ 3N , so there exists a nontrivial linear combination
∑i aiqi +∑i a′iq′i which has slice rank ≤ 3N . The restriction of the quadratic form ∑ri=1 xiyi
to the linear subspace ∑i aixi + ∑i a′iyi = 0 has rank 2r − 1 or 2r − 2. So enlarging E if
necessary we can find linear combinations q0, (qi, q′i)r−1i=1 of (q●, q′●) (where possibly q = 0)
such that

r

∑
i=1
qiq
′
i ≡ q20 +

r−1
∑
i=1
qiq
′
i mod (∑

i

aiqi +∑
i

a′iq
′
i).

Hence, renaming qi, q
′
i by qi, q′i, we obtain

f ≡ q20 +
r−1
∑
i=1
qiq
′
i mod (P ′),

where P ′ is a space of linear forms of dimension ≤ p′ = dimP ′ ≤ p + 3N .
Furthermore, we claim that we can assume that srk(q0, q●, q′●) > 3N ′, where

N ′ =D(r − 1,0) + c(r, r − 1,0) + 2p′.

Indeed, otherwise arguing as above we obtain a decomposition (3.3) with r replaced by
r − 1 and p replaced by p′′ = p′ + 3N ′. In other words, we would have rkSE(f) ≤ (r − 1, p′′),
so by the induction assumption we would deduce that

rkSk(f) ≤ (c2(r − 1, p′′), c1(r − 1, p′′)).
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Since for every σ ∈ Gal(E/k), one has

q20 +
r−1
∑
i=1
qiq
′
i ≡ σ(q0)2 +

r−1
∑
i=1
σ(qi)σ(q′i) mod (P ′ + σP ′),

by Corollary 3.4(ii) with r replaced by r − 1, we get that

σ(q0) ≡ Aσq0, σ(qi) ≡ Aσqi, σ(q′i) ≡ Aσq′i mod (Lσ),

for some orthogonal transformation Aσ and a subspace of linear forms Lσ ⊃ P ′ + σP ′ of
dimension ≤ N ′ (here to verify the assumptions of Corollary 3.4(ii) we use the inequality

3N ′ ≥ 3D(r − 1,0) + 3c(r, r − 1,0) ≥ C(r − 1,0) + c(r − 1, r − 2,0)

which is easy to check). Since srk(q0, q●, q′●) > 3N ′, as in Case 1, this implies that σ ↦ Aσ
is a 1-cocycle.

Arguing as in Case 1, we find a subextension k′ ⊂ E obtained by adjoining at most r − 1
square roots to k, such that after making a change of basis in (q●, q′●), we get

σ(qi) ≡ qi, σ(q′i) ≡ q′i mod (Lσ)

for any σ ∈ Gal(E/k′). Hence, by Corollary 2.5, there exist quadratic forms q●, q
′
● defined

over k′, such that

srk(qi − qi) ≤ N ′′ for i = 0, . . . , r − 1, srk(q′i − q′i) ≤ N ′′ for i = 1, . . . , r − 1,

with N ′′ = N ′(2 + (2N ′ + 1)2N ′+1), and we get

srkE(f − q20 −
r−1
∑
i=1
qiq
′
i) ≤M = p′ + (2r − 1)N ′′.

By [5, Thm. A], this implies that the slice rank of f̃ over k′ is ≤ 4M , so we get

rkSk′(f) ≤ (r,4M),

and so by Lemma 3.1,

rkSk′(f) ≤ (2r ⋅ r,2r ⋅ 4M).
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