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Abstract. We study embeddability of superschemes into Π-projective spaces and into super-

grassmannians G(1∣1, n∣n). We give some criteria based on the relation with A0∣1-torsors and

A0∣1-fibrations. We also prove the existence of nice quotients for free actions of A0∣1 on super-

schemes.

1. Introduction

A striking difference between supergeometry and the usual geometry is the absence of (su-
per)projective embeddings for many natural proper superschemes, e.g., for most supergrassman-
nians. This is explained by the fact that by considering bosonic quotients of superschemes (i.e.,
considering only even functions) one often gets nontrivial nilpotent extensions of the corresponding
reduced schemes, which tend to be nonprojective.

In some respects an adequate analog of projective schemes in supergeometry is provided by
schemes embeddable into supergrassmannians. Recall that the supergrassmannian G(a∣b,m∣n)
parametrizes subspaces of dimension a∣b in a supervector space of dimension m∣n. Thus, by fixing
possible values of a and b we get a hierarchy of spaces in supergeometry: for each a∣b we can
consider a∣b-embeddable schemes, i.e., those embeddable into G(a∣b,m∣n) for some m∣n. Note that
the usual projectivity corresponds to 1∣0-embeddability. One can also consider embeddability
into other homogeneous superspaces. For example, Manin considered in [7, V.6] Π-projective
spaces PnΠ (aka Π-symmetric superprojective space) which are homogeneous spaces for the simple
supergroups of type Q. More generally, one has the Π-grassmannian GΠ(a∣a,n∣n) which is a
closed subscheme in G(a∣a,n∣n), parametrizing Π-symmetric subspaces in a superspace with a
Π-symmetry (see [7, V.6]). Note that PnΠ = GΠ(1∣1, n + 1∣n + 1).

Even the first few stages of this hierarchy, namely Π-projectivity and 1∣1-embeddability are still
poorly understood. In the present paper we will contribute to their study by providing some general
criteria and some new examples. Previous works in this direction mostly construct examples of
non-projective, and sometimes non-Π-projective, superschemes (see e.g., [3], [12], [13]).

It is well known that projectivity is equivalent to the existence of an (even) line bundle whose
restriction to the bosonization is ample (see [6], [4, Prop. A.2]). The natural approach to under-
standing embeddability into Π-projective spaces and into G(1∣1, n∣n) is by studying 1∣1-bundles
(equipped with a Π-symmetry if we are interested in morphisms to Π-projective spaces). Our
main idea is to study 1∣1-bundles by looking at their projectivizations which are locally trivial

A0∣1-fibrations (since P1∣1 = A0∣1). Similarly, to a Π-symmetric 1∣1 bundle one can associate an

A0∣1-torsor. Thus, we are led to the study of A0∣1-fibrations (resp., A0∣1-torsors). More generally,

to a vector bundle of rank a∣b one can associate an A0∣ab-fibration, however, A0∣n-fibrations are
much harder to study for n > 1.

Some of the results of this paper are inspired by the result proved in [2, Sec. 4.9], stating that

a superscheme is embeddable into some supergrassmannian if and only if there exists an A0∣n-
fibration whose total space is projective. Furthermore, any 1∣1-embeddable superscheme admits

an A0∣1-fibration with projective total space. Using this we will get criteria for a superscheme
not to be 1∣1-embeddable. For example, we prove that P2

Π × P2
Π and G(1∣1,m∣m) ×G(1∣1, n∣n) for

m ≥ 3, n ≥ 3, are not 1∣1-embeddable.
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On the other hand, we show that there is a close relation between Π-projectivity and the
existence of an A0∣1-torsor with projective total space. This is due to the existence of a natural
map

Pn∣n+1 → PnΠ
which has a structure of an A0∣1-torsor. Namely, let (V, p) be an (n+ 1)∣(n+ 1)-dimensional space
with a Π-symmetry, then this map sends a 1∣0-dimensional subspace L ⊂ V to the 1∣1-dimensional
Π-symmetric subspace L+p(L) ⊂ V . Thus, given an embedding of X into a Π-projective space, we

get an A0∣1-torsor over X which has projective total space. We show that conversely, under some
extra assumptions, the existence of such an A0∣1-torsor implies Π-projectivity (see Theorem 4.2).

This gives criteria for Π-projectivity. For example, we show that the quotient of Pm−1∣m × Pn−1∣n

by the diagonal A0∣1-action is Π-projective (but not projective for m ≥ 3, n ≥ 3), while G(1∣1,2∣2)
is not Π-projective.

We also consider the natural class of CY supervarieties of dimension 2∣2 associated with pro-
jective surfaces S together with rank 2 vector bundles V such that detV ≃ ωC . In the case S = P2,
it was shown in [3] that all such supervarieties are embeddable into some supergrassmannian. We
give new examples of embeddability and non-embeddability for this class of supervarieties (see
Example 5.5 and Prop. 5.7).

One question that naturally arises in this context is the existence of nice quotients by actions
of A0∣n on superschemes. Even for A0∣n-actions on affine superspaces there may not exist a nice
quotient (e.g., the corresponding ring of invariants is not necessarily finitely generated). We prove

that for a free A0∣n-action on a superscheme X the quotient always exists as a superscheme (of

finite type if X is of finite type), and the corresponding quotient map X →X/A0∣n is an A0∣n-torsor
(see Theorem 3.1). This result is an easy consequence of the affine case considered in [15] (in the
case X is smooth this is [9, Thm. 1.8]). It can be viewed as an algebraic counterpart of Shander’s
theorem on rectifying non-vanishing homological vector fields on supermanifolds (see [14]).

Acknowledgments. I am grateful to Arkady Vaintrob for helpful discussions and to Emile Bouaziz
for suggesting interesting examples of embeddable CY 2∣2 supervarieties (see Proposition 5.7).
I also thank the anonymous referee for useful comments and for suggesting a simpler proof of
Lemma 3.5.

Conventions. For a Z /2-graded abelian group X we denote by X± the corresponding even and odd
parts. We denote by Π the parity changing functor. For a supervector space V over k we denote
by G(a∣b, V ) the supergrassmannian of a∣b-dimensional subspaces in V . We set G(a∣b,m∣n) ∶=
G(a∣b, km ⊕Πkn).

2. A0∣1-torsors and A0∣1-fibrations

2.1. Free actions of A0∣1 and A0∣1-torsors. We denote by A0∣1 the odd affine line with the
standard group structure. This super group scheme is also often denoted as G−a.

Let S be a base superscheme. We work in the category of superschemes over S. We use the
obvious superanalogs of the basic notions about group actions. Recall that an action of a group
scheme G on a superscheme X (over S) is called free if the morphism αG,X ∶ G ×S X → X ×S X ∶
(g, x) ↦ (gx, x) is a closed embedding.

By definition, an action of A0∣1
S on X is given by a morphism of superschemes

σ ∶ A0∣1
S ×S X →X

satisfying the usual axioms. Since such a morphism is identity on the underlying topological
spaces, we see that the notion of an A0∣1-action is local. It is well known that an A0∣1-action is
determined by the corresponding homological vector field, which is an odd derivation v on OX ,
trivial on functions pulled back from S, such that v2 = 0. Namely, for X = Spec(A), the action

map σ is given by σ∗(a) = a + θ ⋅ v(a), where θ is the coordinate on A0∣1. Equivalently, we can

think of the vector field v as an automorphism of A0∣1 ×X. Then the corresponding action is the
composition of this automorphism with the projection to X.
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Proposition 2.1. Let X be a superscheme over S equipped with an action of A0∣1
S , and let v be

the corresponding homological vector field on X. Then the following conditions are equivalent:

(1) the action of A0∣1
S on X is free;

(2) locally there exist functions a1, . . . , an and b1, . . . , bn, where ai and bi have opposite parity,
such that ∑ni=1 aiv(bi) = 1;

(3) locally there exists an odd function θ such that v(θ) is invertible;
(4) locally there exists an odd function θ such that v(θ) = 1;
(5) we have the equality of subsheaves of OX , ker(v ∶ OX →OX) = v(OX).

Proof. (1)⇐⇒ (2). The morphism

A0∣1 ×S X →X ×S X ∶ (g, x) ↦ (gx, x)

is given on the level of topological spaces by the diagonal embedding, and locally corresponds to
the ring homomoprhism

κ ∶ OX ⊗OS
OX →OX[ε] ∶ f1 ⊗ f2 ↦ (f1 + εv(f1)) ⋅ f2.

Thus, the action of A0∣1 is free if and only if κ is surjective. Now we notice that κ fits into a
morphism of exact sequences

0 - ΩX/S - OX ⊗OS
OX - OX - 0

0 - ΠOX

v

? ε⋅ - OX[ε]

κ

?
- OX

id

?
- 0

Hence, κ is surjective if and only if v ∶ ΩX/S → ΠOX is surjective. This is equivalent to the
existence of an odd differential

ω = ∑aidbi,

such that ⟨ω, v⟩ = 1.
(2)⇐⇒ (3). Assume that we have

∑aiv(bi) +∑a′jv(b′j) = 1,

where (ai) and (b′j) are even, (a′j) and (bi) are odd. This implies that

v(∑aibi) ≡ 1 mod N 2,

so it is invertible.
Conversely, if v(b1) is invertible then a1v(b1) = 1 for some a1.

(3)⇐⇒ (4). Assume that v(θ) = f is invertible. Then v(f) = 0, so v(f−1) = 0. This implies that

v(f−1θ) = 1.

The converse is clear.
(4)⇐⇒ (5). Assume that we have odd θ such that v(θ) = 1. Then for any f with v(f) = 0 we have

f = v(θf).

The converse is clear. �

Remark 2.2. In the case when X is smooth over S, condition (2) from Proposition 2.1 is equivalent
to the condition that v is everywhere non-vanishing, i.e., gives an embedding of a subbundle
ΠOX ↪ TX/S .

The following example involving the Π-symmetric superprojective space is important for us.
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Example 2.3. Let V be the superspace of dimension n + 1∣n + 1 equipped with a Π-symmetry
p ∶ V → ΠV , i.e., an odd endomorphism p ∶ V → V such that p2 = − id (we can assume that V has

coordinates (x0, . . . , xn; θ0, . . . , θn) and p(xi) = θi, p(θi) = −xi). We have a free action of A0∣1 on

G(1∣0, V ) = Pn∣n+1 given in homogeneous coordinates by

ψ(. . . ∶ xi ∶ . . . ; . . . ∶ θi ∶ . . .) = (. . . ∶ xi +ψθi ∶ . . . ; . . . ∶ θi −ψxi ∶ . . .)
such that the quotient is the Π-projective space PnΠ. The corresponding A0∣1-torsor map

Pn∣n+1 → PnΠ
sends a 1∣0-dimensional subspace L ⊂ V to the Π-symmetric 1∣1-dimensional subspace L + p(L).
Note that the above A0∣1-action on Pn∣n+1 comes from the natural P GL(V )-action and an embed-
ding of supergroups

A0∣1 → PGL(V ),
which on the level of Lie superalgebras corresponds the sub-superalgebra ⟨p⟩ ⊂ pgl(V ).

2.2. v-connections. Let v be a homological vector field on a superscheme X, and let F be a
quasicoherent sheaf on X. A v-connection on F is a map of sheaves of abelian groups ∇ ∶ F → ΠF
satisfying

∇(fs) = v(f)s + (−1)∣f ∣f∇(s),
for a function f .

The curvature c(∇) of a v-connection is the OX -linear operator ∇2 ∶ F → F . A v-connection is
called flat if c(∇) = 0.

Note that c(∇) commutes with ∇. In particular, if ∇L is a v-connection on a line bundle L
then c(∇L) can be viewed as an even function which satisfies

v(c(∇L)) = 0.

If ∇ is a v-connection on F then any other v-connection is given by

∇′(s) = ∇(s) + φ(s),
where φ is an O-linear map F → ΠF . In particular, the set of v-connections on a line bundle L
(if non-empty) is a torsor for H0(X,OX)−.

It is easy to check that for a v-connection ∇ on a line bundle L and an odd global function φ
one has

c(∇ + φ) = c(∇) + v(φ).
The tensor product of v-connections is defined in the usual way (taking into account that ∇ is

odd in the sign convention).

Lemma 2.4. Let v be a homological vector field on X.
(i) If the map H1(X,ker(v))− → H1(X,OX)− is zero (e.g., if H1(X,OX)− = 0) then every line
bundle on X admits a v-connection.
(ii) Assume that H0(X,OX)− = 0. Let L be a line bundle on X admitting a v-connection ∇. Then
L has a unique v-connection. In particular, if c(∇) ≠ 0 then L does not admit a flat v-connection.

Proof. (i) A standard calculation shows that the obstruction to the existence of a v-connection on
a line bundle L is the image of [L] ∈H1(X,O∗,+X ) under the map

H1(X,O∗,+X ) →H1(X,OX)−,
induced by the morphism of sheaves

O∗,+X →O−X ∶ f ↦ v(f)f−1.

It remains to observe that this morphism factors through ker(v)− ⊂ O−X since v(v(f)f−1) = 0.
Thus, if the latter embedding induces the zero map on H1, the obstruction vanishes.
(ii) Any other v-connection has form ∇+φ where φ is a global odd function on X, so φ = 0 by the
assumption. �
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Lemma 2.5. Let v be a homological vector field on X. To give a flat v-connection ∇ on a
quasicoherent sheaf F over X is equivalent to equipping F with an equivariant structure with
respect to the corresponding A0∣1-action on X.

The proof is straightforward.
From Lemma 2.5 one derives in a standard way (cf. [10, Sec. 12, Thm. 1]) the following result.

Proposition 2.6. Let X → Y be A0∣1-torsor and let v be the corresponding homological vector
field on X. The the category of coherent sheaves on Y is equivalent to the category of coherent
sheaves on X with a flat v-connection.

By the Picard group of a superscheme we mean the group of isomorphism classes of line bundles
of rank 1∣0.

Corollary 2.7. Let π ∶ X → Y be A0∣1-torsor and let v be the corresponding homological vector
field on X. Consider the induced map on the Picard groups π∗ ∶ Pic(Y ) → Pic(X). Then the image
of π∗ consists of the classes of line bundles on X that can be equipped with a flat v-connection,
while the kernel of π∗ can be identified with the quotient

H0(X,ker(v)−)/{f−1v(f) ∣ f ∈H0(X,O∗)+}.
Proof. The statement about the image of π∗ is clear. The kernel of π∗ corresponds to isomorphism
classes of flat connections on OX . Such connections are given by ∇ = v + φ, where φ is an odd
function and v(φ). Furthermore, for an invertible even function f , we have

f−1(v + φ)f = v + φ + f−1v(f).
�

2.3. Line bundles over A0∣1-torsors, Π-symmetric 1∣1-bundles and the odd Heisenberg
group. Recall the supergroup scheme Q(1) ⊂ GL(1∣1) (denoted as GQ(1) in [1, Sec. 1.8.4]): its
A-valued point is the set of a0 + a1 ∈ A∗. The embedding Q(1) ↪ GL(1∣1) is given by

a0 + a1 ↦ (
a0 a1

−a1 a0
)

(here we follow the convention that the matrix (aij) of a linear supertransformation T is defined
by T (ej) = ∑ eiaij ; this explains why our sign is different say from that in [8]).

There is a natural homomorphism

Q(1) → A0∣1 ∶ a0 + a1 ↦ a−1
0 a1

Its kernel is a central subgroup of Q(1) isomorphic to Gm = GL(1∣0). Thus, we have a central
extension sequence

1→ Gm → Q(1) → A0∣1 → 0. (2.1)

Note that there is a splitting a1 ↦ 1 + a1 of the projection Q(1) → A0∣1 (not compatible with the

group laws). The corresponding 2-cocycle of A0∣1 with values in Gm is determined from

(1 + a)(1 + b) = 1 + a + b + ab = (1 + ab)(1 + (a + b)),
so it is given by c(a, b) = 1 + ab.

We would like to view Q(1) as an odd Heisenberg group, a central extension of A0∣1 by Gm. 1

Proposition 2.8. Let X be a superscheme with an action of A0∣1 and let v be the corresponding
homological vector field. We let Q(1) act on X through the projection Q(1) → A0∣1. For a
quasicoherent sheaf F over X there is a natural bijection between the set of v-connections ∇ on
F with c(∇) = n ⋅ id, where n ∈ Z, and weight-n actions of Q(1) on F (i.e., such that Gm ⊂ Q(1)
acts through the character λ↦ λn).

Proof. This is clear if we think of the action of Q(1) as a projective action of A0∣1: a v-connection
∇ lifts the action of v to F and the condition [∇,∇] = n id precisely means that we get an action
of the central extension with the central character λ↦ λn. �

1In [8] the group Q(1) is denoted by Gm (and what we denote by Gm is denoted by G1∣0
m ).
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Proposition 2.9. Let X be a superscheme. There is a natural equivalence between the following
groupoids:

● Π-symmetric 1∣1-bundles on X;

● data (X̃ → X,L,σ), consisting of an A0∣1-torsor X̃ → X, an even line bundle L over X̃

and a weight-1 action σ of Q(1) on L compatible with the action of A0∣1 on X̃.

Proof. From (π ∶ X̃ →X,L,σ) we construct the 1∣1-bundle by setting W ∶= π∗L. The Π-symmetry
is induced by the v-connection on L coming from the Q(1)-action. Conversely, starting from a Π-

symmetric 1∣1-bundle W we define π ∶ X̃ →X as the projectivization of W , i.e., X̃ = G(1∣0;W ). �

Example 2.10. As in Example 2.3 let us consider a superspace V of dimension n∣n equipped
with a Π-symmetry p ∶ V → ΠV . There is a natural embedding of supergroups,

Q(1) ↪ GL(V ),
sending an R-point a0 + a1 of Q(1) to a0 ⋅ id+a1 ⋅ p. It induces an embedding

A0∣1 = Q(1)/Gm ↪ PGL(V ).
Hence, for any (a, b), we get an action of A0∣1 on the supergrassmannian G(a∣b, V ). Explicitly,
an R-point of the supergrassmannian G(a∣b, V ) corresponds to W ⊂ VR and the action of ψ ∈ R−
sends W to (id+ψp)(W ).

In the case (a, b) = (1,0), we recover the action of A0∣1 on Pn−1∣n considered in Example 2.3,
such that the quotient is the Π-projective space Pn−1

Π . Note that in this case there is a natural

weight-1-action of Q(1) on the tautological line bundle O(−1) over Pn−1∣n: the corresponding

Gm-torsor over Pn−1∣n is the complement to the origin in V and the action of Q(1) is induced by

the embedding Q(1) ⊂ GL(V ). The Π-symmetric 1∣1-bundle on Pn−1
Π = Pn−1∣n/A0∣1 corresponding

to this Q(1)-action on O(−1) by Proposition 2.9 is nothing else but the universal Π-symmetric
1∣1-bundle on Pn−1

Π .
For arbitrary (a, b), the embedding of Q(1) into GL(V ) gives a weight-1-action of Q(1) on S,

the universal subbundle over G(a∣b, n∣n). The corresponding action of Q(1) on Ber(S) has weight
a − b. In particular, for b = a − 1, we get from Proposition 2.9 a Π-symmetric 1∣1-bundle over

the quotient G(a∣a − 1, n∣n)/A0∣1. However, neither this 1∣1-bundle, nor its dual have any global

sections. In fact, we will prove later that for n > a > 1 and n ≥ 4, the quotient G(a∣a − 1, n∣n)/A0∣1

is not 1∣1-embeddable (see Cor. 5.11).

Remark 2.11. The exact sequence (2.1) leads to a long exact sequence

. . .→H1(X,Q(1)) →H1(X,A0∣1) δ- H2(X,Gm) → . . .

The connecting map δ is easy to calculate (see [8, Sec.5]): it is given by the composition

H1(X,A0∣1) c↦c∪c- H2(X,Ga)
exp- H2(Gm)

(actually one can make sense of the composition in any characteristic). For example, for X = PnΠ
over an algebraically closed field k, we have identifications H1(X,A0∣1) ≃ k, H2(X,Gm) ≃ k/Z,
such that the map δ is given by x↦ x2 mod Z.

2.4. A0∣1-fibrations. It is easy to see that all automorphisms of A0∣1 are affine transformations
θ ↦ aθ +ψ, where a is an even invertible parameter and ψ is an odd parameter.

Proposition 2.12. There is an equivalence between the groupoid of A0∣1-fibrations over X and
that of the following data: an even line bundle L on X together with a ΠL-torsor over X. The
latter groupoid can be also thought of as that of 1∣1-vector bundles V on X equipped with an
embedding OX → V such that V /OX is a line bundle of rank 0∣1.

Proof. The bijection of the corresponding isomorphism classes follows from the general yoga of
noncommutative cohomology: we have an exact sequence of group schemes

0→ A0∣1 → Aut(A0∣1) → Gm → 1,
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admitting a (non-normal) splitting Gm → Aut(A0∣1). This implies that the corresponding map

H1(X,Aut(A0∣1)) →H1(X,Gm) is surjective and the fiber over [c] ∈H1(X,Gm) is identified with

H1(X,A0∣1
c ), where A0∣1

c is the twist of A0∣1
X by the 1-cocycle c. Thus, if [c] corresponds to a line

bundle L then A0∣1
c = ΠL.

The functor between the corresponding groupoids is defined as follows. Given an A0∣1-fibration
π ∶ X̃ →X we define the line bundle L on X by

ΠL−1 ∶= π∗OX̃/OX .
Furthermore, the set of OX -linear splittings of the exact sequence

0→OX → π∗OX̃ → ΠL−1 → 0

is a ΠL-torsor over X.
Conversely, given an extension of supervector bundles

0→OX → V →M → 0

where M has rank 0∣1, there is a unique structure of OX -algebra on V defined uniquely by the
conditions that the OX -module structure on M is induced by the mutliplication in V and that for
any local odd section s of V one has s2 = 0. Indeed, locally we can choose an odd section θ of V
projecting to a generator of M . Then the natural map OX[θ] → V is an isomorphism of algebras.
These structures glue into a global structure of OX -algebra on V . Hence, we have V = π∗OX̃ for

a canonically defined A0∣1-fibration X̃ →X. �

3. Quotients by free A0∣n-actions

3.1. Existence of quotients by a free action. Everywhere in this subsection we fix a base
superscheme S and work with superschemes over S.

Theorem 3.1. Let A0∣n
S act freely on a superscheme X over S. Then there exists a categorical

quotient π ∶ X → Y = X/A0∣n for this action. Furthermore, π is an A0∣n-torsor with respect to
Zariski topology. If X is of finite type (resp., smooth) over S then so is Y .

The proof is based on the following result.

Lemma 3.2. Let v be an odd derivation of a superring A such that v2 = 0 and there exists an odd
element θ such that v(θ) = 1. Set Av = ker(v ∶ A→ A). Then the natural ring homomorphism

Av[θ] → A

is an isomorphism (where on the left we view θ as an independent variable). If A is finitely
generated as an algebra over a sub-superring C ⊂ Av then so is Av.

Proof. We have to prove that every element of A can be written uniquely in the form a + bθ with
a, b ∈ Av. The fact that a and b can be recovered from a+bθ follows immediately from the identity

v(a + bθ) = ±b.
On the other hand, we have

a = v(aθ) ± v(a)θ,
where v(aθ) and v(a) are in Av.

For the last assertion, suppose xi is a finite set of generators of A over C. Write each xi in the
form ai + biθ with ai, bi ∈ Av. Then it is easy to see that (ai) and (bi) generate Av over C. �

We also need the following general statement.

Lemma 3.3. Let G be a supergroup scheme acting freely on a superscheme X, and let H ⊂ G be
a normal subgroup, flat over S, such that the quotient G/H exists as a supergroup scheme and the
sequence

1→H(T ) → G(T ) → (G/H)(T ) → 1

is exact for any S-superscheme T . Assume that the categorical quotient X ′ = X/H exists as a
superscheme and the map X →X ′ is an H-torsor (in fppf topology). Then
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(i) G′ = G/H acts freely on X ′.
(ii) If the categorical quotient X ′/G′ exists then the map X → X ′ → X ′/G′ gives a categorical
quotient X/G.
(iii) Under the assumption of (ii), if in addition the map X → X ′ is a Zariski H-torsor and the
map X ′ →X ′/G′ is a Zariski G′-torsor, then the map X →X ′/G′ =X/G is a Zariski G-torsor.

Proof. (i) It is enough to prove that the diagram

G ×S X
αG,X- X ×S X

G′ ×S X ′
? αG′,X′- X ′ ×S X ′

?

is cartesian, where the vertical maps are the natural projections. It is clear that the diagram

G′ ×S X
(α′, pX)- X ′ ×S X

G′ ×S X ′
? αG′,X′- X ′ ×S X ′

?

is cartesian, where α′ ∶ G′ ×S X → X ′ is induced by (g, x) ↦ gx. Hence, it is enough to show that
the diagram

G ×S X
(g, x) ↦ gx- X

G′ ×S X
? α′ - X ′

?

(3.1)

is cartesian. It is enough to show this after the faithfully flat base change G ×S X → G′ ×S X.
Since the natural diagram

H ×S G
(h, g) ↦ hg- G

G

pG

?
- G′

?

is cartesian, it remains to check that the diagram

H ×S G ×S X
(h, g, x) ↦ hgx- X

G ×S X

pG×X

?
- X ′

?
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is cartesian, where the bottom arrow is the composition of (g, x) ↦ gx with the projection X →X ′.
But we can present it as the composition of two cartesian squares

H ×S G ×S X
(h, g, x) ↦ (h, gx)- H ×X (h,x) ↦ hx- X

G ×S X

pG×X

?
- X

pX

?
- X ′

?

where the right square is cartesian due to the fact that X →X ′ is an H-torsor.
(ii) This is a straightforward consequence of the definitions.
(iii) Combining Zariski local sections of the projections X → X ′ and X ′ → X ′/G′, we obtain that
X →X ′/G′ admits Zariski local sections. Hence, it remains to show that the diagram

G ×S X
(g, x) ↦ gx- X

X

pX

?
- X ′/G′

?

is cartesian. We have

X ×X′/G′ X ≃ (X ×X′/G′ X ′) ×X′ X.

Since X ′ → X ′/G′ is a G′-torsor, we have a natural isomorphism G′ ×S X ′
∼- X ′ ×X′/G′ X ′,

which induces an isomorphism

G′ ×S X
∼- X ×X′ (X ′ ×X′/G′ X ′) ≃X ×X′/G′ X ′.

Now the assertion follows from the cartesian square (3.1). �

Proof of Theorem 3.1. We use induction on n.
Case n = 1. Let v be the homological vector field on X corresponding to this action. Let
OvX ⊂ OX denote the subsheaf of v-horizontal functions. By Proposition 2.1, locally there exists
an odd function θ on X such that v(θ) = 1. Suppose Spec(A) is an affine open in X with such a
function θ. We claim that for any even f ∈ A, the ring (A[f−1])v is naturally a localization of Av.
Indeed, this is clear if v(f) = 0. Now we observe that the localization by f does not change if we
replace f by

f̃ ∶= v(fθ) = v(f)θ + f,

where v(f̃) = 0. This easily implies that Y ∶= (∣X ∣,OvX) is a superscheme. The fact that X → Y is
a categorical quotient immediately reduces to the affine case, and in the affine case it is clear that
the categorical quotient boils down to passing from a ring A to the subring Av.

By Lemma 3.2, we also see that the map X → Y is an A0∣1-torsor.
Case n > 1. Consider a subgroup A0∣n−1 ⊂ A0∣n. By the induction assumption, there exists a
quotient X ′ = X/A0∣n−1. Furthermore, by Lemma 3.3, A0∣1 = A0∣n/A0∣n−1 acts freely on X ′, and

the quotient X ′/A0∣1, which we know exists, is also the quotient X/A0∣n. The fact that X →X/A0∣n

is an A0∣n-torsor also follows from Lemma 3.3. �

Remark 3.4. It is easy to see that the condition that A0∣n-action is free is necessary in Theorem

3.1. For example, for the homological vector field v = θ∂z on A1∣1
k with coordinatees (z, θ), the

subring of v-invariants is k + θ ⋅ k[z] ⊂ k[z, θ], which is not finitely generated over k.
9



3.2. The action on supergrassmannians. Recall that in Example 2.10 we defined an action
of A0∣1 on supergrassmannians G(a∣b, n∣n) associated with a Π-symmetry p ∶ V → ΠV on a super-
vector space V of superdimension n∣n.

Lemma 3.5. The above action of A0∣1 on G(a∣b, n∣n) is free if and only if a ≠ b.

Proof. In the case a = b we have a nonempty subscheme consisting of W such that p(W ) = W .

The action of A0∣1 on this subscheme is trivial.
To prove freeness in the case a ≠ b we observe that the homological vector field v corresponding

to our action of A0∣1 on G(a∣b, V ) is precisely the vector field coming from the element p ∈ pgl(V )
(see Example 2.10). We have to prove that v is everywhere non-vanishing (see Remark 2.2).
Assume it vanishes at a point W ∈ G(a∣b, V ). Then p is contained in the parabolic subalgebra
pW ⊂ pgl(V ) corresponding to W . But this implies that p(W ) ⊂W which is impossible for a ≠ b.

�

4. Π-projectivity

4.1. Criterion for Π-projectivity.

Lemma 4.1. For every n, there exists a closed embedding Pn−1∣n ↪ P2n−1
Π . Hence, every projective

superscheme is Π-projective.

Proof. Given a supervector space V , we can equip the space V ⊕ΠV with a natural Π-symmetry.
Then to every family of 1∣0-dimensional subspaces L ⊂ V we associate naturally a family of Π-
symmetric 1∣1-subspaces L⊕ΠL ⊂ V ⊕ΠV . �

Theorem 4.2. (i) If X is Π-projective then there exists an A0∣1-torsor over X whose total space
is projective.
(ii) Assume that the base is Spec(k) where k is an algebraically closed field. Assume that H0(X,O)+ =
k and there exists an A0∣1-torsor over X whose total space X̃ is projective and such that the mor-
phism H1(X,OX)− →H1(X̃,OX̃)− is zero. Then X is Π-projective.

Proof. (i) If X is embedded into Pn−1
Π then we can consider the pullback to X of the standard

A0∣1-torsor Pn−1∣n → Pn−1
Π . Its total space embeds into Pn−1∣n.

(ii) Let L be a very ample line bundle on X̃ and let v be the homological vector field on X̃

corresponding to the A0∣1-action. Since ker(v) = OX ⊂ OX̃ , Lemma 2.4(i) implies that L admits a
v-connection ∇. Next, we look at the curvature c(∇).
Case 1: c(∇) ≠ 0. Then we can rescale v, so that c(∇) = 1. Let s1, . . . , sn be the basis of global

sections of L. Then using s1, . . . , sn,∇(s1), . . . ,∇(sn) we get a A0∣1-equivariant embedding of X̃

into Pn−1∣n. Passing to quotients we get an embedding of X into Pn−1
Π .

Case 2: c(∇) = 0. Then L descends to X. Since its restriction to Xred is very ample, it follows
that X is projective (see e.g., [4, Prop. A.2]), hence it is Π-projective. �

Example 4.3. Consider Pm−1∣m ×Pn−1∣n with diagonal A0∣1-action. Then by Theorem 4.2(ii), the
quotient is Π-projective. On the other hand, this quotient is not projective for m ≥ 3, n ≥ 3, as we
can find an embedding P2∣3 → Pm−1∣m × Pn−1∣n compatible with A0∣1-actions, which implies that
the quotient contains P2

Π as a sub-superscheme.

Example 4.4. Consider G(a∣0, n∣n) with the A0∣1-action defined in Example 2.10. Note that
G(a∣0, n∣n) is projective since the restriction of Ber(U) to the reduced space G(a,n) is ample
(see [4, Prop. A.2]). It is easy to check H1(G(a∣0, n∣n),O) = 0 for n ≥ a + 2. Namely, one checks
this by induction on a using the fibration F (a − 1∣0, a∣0, n∣n) → G(a∣0, n∣n). Hence, by Theorem

4.2(ii), the quotient G(a∣0, n∣n)/A0∣1 is Π-projective.

4.2. Criterion for non-Π-projectivity. The following criterion for non-Π-projectivity is similar
to the one used in [3, Sec. 7].

Proposition 4.5. If X is non-projective and H1(X,O)− = 0 then X is not Π-projective.
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Proof. Suppose X is Π-projective. Then there exists an A0∣1-torsor X̃ → X such that X̃ is
projective. But if H1(X,O)− = 0 then there exists a section X → X̃, so X is also projective, which
is a contradiction. �

Example 4.6. Using this criterion we can easily check that G(1∣1,2∣2) is not Π-projective. Hence,
G(1∣1, n∣n) is not Π-projective for n > 1.

5. 1∣1-embeddability
5.1. General criteria for non-1∣1-embeddability.

Proposition 5.1. If X is 1∣1-embeddable then there exists an A0∣1-fibration over X whose total
space is projective.

Proof. If X is embedded into G(1∣1, n∣n), then the total space of the pullback of the A0∣1-fibration
F (1∣0,1∣1, n∣n) → G(1∣1, n∣n) embeds into F (1∣0,1∣1, n∣n) which is projective. �

Corollary 5.2. Assume that Pic(X) = 0. If X is 1∣1-embeddable then there exists an A0∣1-torsor
over X with projective total space.

Proof. Indeed, by Proposition 2.12, if Pic(X) = 0 then every A0∣1-fibration over X is an A0∣1-
torsor. �

Proposition 5.3. Let X be a proper superscheme over k of positive dimension.
(i) Assume that Pic(X) = 0 and H1(X,O)− = 0. Then X is not 1∣1-embeddable.
(ii) Assume that H1(X,L)− = 0 for every even line bundle L on X and X is not projective. Then
X is not 1∣1-embeddable.

Proof. (i) If X were 1∣1-embeddable we would deduce from Corollary 5.2 that there exists an

A0∣1-torsor X̃ →X with projective X̃. But any such torsor is trivial since H1(X,O)− = 0. Hence,
we would get that X is projective which is impossible if X has trivial Pic.
(ii) By Proposition 2.12, any A0∣1-fibration X̃ → X has a structure of a ΠL-torsor, for some
even line bundle L on X. If H1(X,L)− = 0 then this torsor is necessarily trivial, hence, there

exists a section X → X̃. By Proposition 5.1, if X were 1∣1-embeddable then there would exist an

A0∣1-fibration with projective X̃. Since X is embedded into X̃, it would be projective which is a
contradiction. �

Remark 5.4. It is instructive to take X = G(1∣1,2∣2) and to see which assumptions of Proposition
5.3 are not satisfied in this case. We know that X is not projective and we have

H1(X,O)− =H1(P1 × P1, (O(−1) ⊠O(−1))⊕2) = 0.

However, Pic(X) ≠ 0: we have a nontrivial line bundle L = Ber(S), where S is the tautological
bundle of rank 1∣1. We have L∣P1×P1 = O(−1) ⊠O(1). Hence,

H1(X,L)− =H1(P1 × P1, (O(−2) ⊠O)2) ≠ 0.

Example 5.5. For any smooth variety X0 over a field k, a vector bundle V , and a class e ∈
H1(X0, TX0 ⊗⋀2 V ), we can define a superscheme X =X(X0, V, e) as follows. Let O+X → OX0 be
the square zero extension of OX0 by ⋀2 V with the class e, and set O−X = V . The multiplication of
O+X on O−X is given by the OX0 -module structure on V via the projection O+X → OX0 , while the
multiplication

O−X ×O−X →⋀
2
V ⊂ O+X

is given by the wedge product.
Now let us specialize to the case when X0 = S is a smooth projective surface, V has rank 2 and

⋀2 V ≃ ωS . Then X = X(S,V, e) is a smooth CY supervariety of dimension 2∣2 (this construction
is used in [3] in the case S = P2).

Assume now that in addition Pic(S) = Z, H1(S,V ) = 0, k has characteristic zero, and

e = c1(L) ∈H1(S,Ω1
S) ≃H1(S,TS ⊗ ωS)
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where L is an ample line bundle on S. Then Proposition 5.3 implies that X = X(S,V, c1(L)) is
not 1∣1-embeddable. Indeed, by assumption we have H1(X,O−X) = 0. The triviality of Pic(X) is
established similarly to [3, Thm. 5.2]: we use the exact sequence

1→ 1 + ωS → (O+X)∗ →O∗S → 1

and observe that the connecting homomorphism H1(S,O∗S) →H2(S,ωS) sends the class of a line
bundle M to c1(M)∪c1(L). Since Pic(S) = Z, this map is injective, so no line bundle on S extends
to O+X .

One can try to relax the condition of vanishing of H1(X,O)− in Proposition 5.3. We give an

example of this in the situation when we have an A0∣1-torsor X̃ →X. Note that for such a torsor
the exact sequence of sheaves

0→OX →OX̃
v- ΠOX → 0

gives rise to a long exact sequence

. . .→H0(X,OX̃)
− v- H0(X,OX)+ →H1(OX)− →H1(OX̃)

− → . . . (5.1)

Proposition 5.6. Let X̃ →X be a nontrivial A0∣1-torsor. Assume that Pic(X) = 0, H0(X,OX) =
k (of characteristic zero), the space H1(X,OX)− has dimension ≤ 1 (e.g., H1(X̃,OX̃)− = 0), and

X̃ is non-projective. Then X is not 1∣1-embeddable.

Proof. First, we see that any A0∣1-fibration over X is an A0∣1-torsor. They are classified by
H1(OX)−, so they all come from H0(O+X) = k. So we would get that X̃ is projective. Note

that the exact sequence (5.1) implies that if H1(X̃,OX̃)− = 0 then H1(X,OX)− is at most 1-
dimensional. �

5.2. More examples. Recall that in Example 5.5 we considered CY supervarieties of dimension
2∣2 of the form X =X(S,V, e), where V is a rank 2 vector bundle on a smooth projective surface
S, such that ⋀2 V ≃ ωS and e ∈ H1(S,Ω1

S) is a nonzero class. In the case S = P2 it was proved
in [3] that every X(P2, V, e) is embeddable into some supergrassmannian. For other surfaces S
the question of embeddability of X(S,V, e) is open. The following result was suggested by Emile
Bouaziz.

Proposition 5.7. (i) Assume V = Ω1
S. Then for any ample line bundle L on S, the supervariety

X(S,V, c1(L)) is Π-projective.

(ii) For any nontrivial A0∣1-torsor X̃ → X(S,V, e), the total space X̃ is projective. In particular,
if H1(S,V ) ≠ 0 then X(S,V, e) is embeddable into some supergrassmannian.

Proof. (i) Let us specialize the construction of the superscheme X(X0, V, e) (see Example 5.5) to
the case V = Ω1

X0
and e ∈H1(X0, TX0 ⊗Ω2

X0
) comes from a class c ∈H1(X0,Ω

1
X0
) via the natural

map

Ω1
X0
→ Hom(Ω1

X0
,Ω2

X0
) ≃ TX0 ⊗Ω2

X0

induced by the wedge product. Let us call the resulting superscheme X(X0, c). It is easy to see
that if f ∶ Y0 →X0 is a morphism, and the class c′ ∈H1(Y0,Ω

1
Y0
) is obtained from c ∈H1(X0,Ω

1
X0
)

via the natural restriction map f∗ ∶ H1(X0,Ω
1
X0
) → H1(Y0,Ω

1
Y0
) then f extends to a morphism

f̃ ∶X(Y0, c
′) →X(X0, c). Furthermore, if f is a closed embedding then so is f̃ .

It is well known that for X0 = Pn and c = c1(O(1)), the superscheme X(Pn, c1(O(1)))
is the truncation of the Π-projective space PnΠ, i.e., obtained by replacing the structure sheaf
with OPn

Π
/N 3, where N is the ideal generated by odd functions (see e.g., [11]). In particular,

X(Pn, c1(O(1))) is Π-projective.
We are interested in the superscheme X(S, c1(L)) for an ample line bundle L on S. Replacing

L by a high power leads to rescaling c1(L), hence, does not change this superscheme up to an
isomorphism. Hence, we can assume that L = i∗O(1) for an embedding i ∶ S ↪ Pn. Then
X(S, c1(L)) embeds into X(Pn, c1(O(1))), hence it is Π-projective.
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(ii) Let us fix a nonzero class α ∈ H1(S,V ), and let X̃ → X = X(S,V, e) be the corresponding

A0∣1-torsor. Then O+
X̃

is an extension of OS by a square zero ideal I ⊂ O+
X̃

. Furthermore, since

O+X ⊂ O+X̃ , we have an exact sequence of OS-modules

0→ ωS → I → V → 0 (5.2)

and the class ẽ ∈H1(S,TS⊗I) defining the extension O+
X̃
→OS is the image of e under the natural

map H1(S,TS⊗ωS) →H1(S,TS⊗I). Furthermore, it is easy to see that the class α′ ∈ Ext1(V,ωS)
of the extension (5.2) is the image of α under the isomorphism Ext1(V,ωS) ≃ H1(S,V ∨ ⊗ ωS) ≃
H1(S,V ).

By [4, Prop. A.2], to prove that X̃ is projective, it is enough to show that some (even) ample

line bundle on S extends to a line bundle on X̃. The standard argument using the exact sequence

0→ 1 + I → (O+
X̃
)∗ →O∗S → 1

shows that the obstacle to extending a line bundle M on S to X̃ is given by the product c1(M)∪ẽ ∈
H2(S,I). This means that this obstacle is the image of the product c1(M) ∪ e ∈H2(S,ωS) under
the natural map H2(S,ωS) → H2(S,I). We claim that the latter map is zero. Indeed, the exact
sequence of cohomology associated with (5.2) shows that it is enough to prove surjectivity of the
connecting homomorphism

H1(S,V ) →H2(S,ωS)
which is given by the cup product with α′ ∈ Ext1(V,ωS). But this immediately follows from
nonvanishing of α′ and the fact that the Serre duality pairing

H1(S,V ) ⊗Ext1(V,ωS) →H2(S,ωS)
is nondegenerate.

Hence, if H1(X,V ) ≠ 0 then there exists an A0∣1 torsor X̃ → X such that X̃ is projective, and
by [2, Prop. 4.28], X is embeddable into some supergrassmannian. �

Proposition 5.8. Assume the characteristic is zero. Let us consider the free A0∣1-action on
X = G(2∣1,4∣4) defined in Example 2.10. Then the quotient Y = G(2∣1,4∣4)/A0∣1 is not 1∣1-
embeddable.

Lemma 5.9. (i) For n ≥ 2 and X = G(1∣1, n∣n) one has H1(X,O) =H1(X,N) = 0.
(ii) For n ≥ 4 and X = G(2∣1, n∣n) one has H1(X,O) =H1(X,N) = 0.
(iii) For n ≥ 4, the Picard group of X = G(2∣1, n∣n) is isomorphic to Z, with Ber(S) as a generator,
where S is the universal subbundle.

Proof. (i) The bosonic truncaton of X is X0 = Pn−1 × Pn−1 and

⊕N i/N i+1 ≃ ⋀●(O(−1) ⊠Ω1(1) ⊕Ω1(1) ⊠O(−1)) ≃⊕
i,j

Ωj(j − i) ⊠Ωi(i − j)

(see [7, 4.3.15]). Now the calculation of cohomology of Ωi(m) on projective spaces implies that
H1(X0,N i/N i+1) = 0, and the result follows.

(ii) Let us consider the P1∣1-fibration

p ∶ F = F (1∣1,2∣1, n∣n) → G(2∣1, n∣n) =X.

Since H∗(P1∣1,O) = k, using base change we get Rp∗OF ≃ OX . Thus, it is enough to prove that

H1(F,OF ) = 0. Now we use the Pn−2∣n−1-fibration

q ∶ F → G(1∣1, n∣n) = G.
Since R0q∗OF = OG and R1q∗OF = 0, we get H1(F,OF ) =H1(G,OG). It remains to use part (i).
(iii) The Picard group of the corresponding reduced space X0 = G(2, n) × Pn−1 is isomorphic to
Z×Z. Furthermore, due to (ii), the restriction map Pic(X) → Pic(X0) is injective. It remains to
show that O(m) ⊠ O(n) does not extend to a line bundle on X unless m = −n (where O(−1) on
G(2, n) is the determinant of the universal subbundle).
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Consider supervector spaces V1 and V2 of dimensions 2∣2 and (n − 2)∣(n − 2), and let L ⊂ V2 be
a fixed subspace of dimension 1∣0. Then we have an embedding

G(1∣1,2∣2) = G(1∣1, V1) → G(2∣1, V1 ⊕ V2) = G(2∣1, n∣n) ∶W ↦W ⊕L,
inducing an embedding P1 × P1 → G(2, n) × Pn−1 such that the pull-back of O(m) ⊠ O(n) is the
same line bundle on P1 ×P1. Thus, restricting to G(1∣1,2∣2) ⊂ G(2∣1, n∣n) we reduce to the similar
question for G(1∣1,2∣2) which is well known and can be analyzed easily (see [7, Ch. 4.§3]). �

Remark 5.10. It is known that the Picard group of any supergrassmannian is generated by the
Berezinian of the universal subbundle (see [13]).

Proof of Proposition 5.8. First, we claim that PicY = 0. By Lemma 5.9(iii), every line bundle on
X = G(2∣1,4∣4) is isomorphic to Ber(S)n for some n ∈ Z, where S is the universal subbundle. It is
enough to check that Ber(S)n does not admit a flat v-connection for n ≠ 0. Recall that we have
a natural Q(1)-equivariant structure on Ber(S) of weight 2− 1 = 1 (see Example 2.10). Hence, by
Proposition 2.8, there is a v-connection ∇ on Ber(S) with curvature 1. The induced connection on
Ber(S)n will have curvature n. Since H0(X,O)− = 0, by Lemma 2.4(ii), this implies that Ber(S)n
does not admit a flat v-connection for n ≠ 0.

Since H1(X,O) = 0 by Lemma 5.9 and X is not projective, using Proposition 5.6, we get that
Y is not 1∣1-embeddable. �

Corollary 5.11. For n > a > 1 and n ≥ 4, the quotient G(a∣a − 1, n∣n)/A0∣1 is not 1∣1-embeddable.

Proof. We can the present the superspace V with the Π-symmetry p as the direct sum V1 ⊕ V2,
where both summands are preserved by p and the dimension of V1 is 4∣4. Then fixing a subspace
W2 ⊂ V2 of dimension a − 2∣a − 2, preserved by p, we get a closed embedding

G(2∣1, V1) ↪ G(a∣a − 1, V ) ∶W1 ↦W1 ⊕W2,

compatible with A0∣1-actions. This embedding induces a closed embedding of the quotients, so the
assertion follows from Proposition 5.8. �

Proposition 5.12. P2
Π × P2

Π is not 1∣1-embeddable.

Lemma 5.13. The total space of any A0∣1-torsor over P2
Π × P2

Π is isomorphic to either P2∣3 × P2
Π

or to the quotient P2∣3 × P2∣3 by the free A0∣1-action corresponding to the homological vector field
v1 + v2, where v1 and v2 are the standard homological vector fields on each factor.

Proof. First, it is easy to check that P2
Π × P2

Π that H1(P2
Π × P2

Π,O−) is 2-dimensional. More pre-
cisely, it is the direct sum of two copies of H1(Π2

Π,O−), which is 1-dimensional. The generator of

H1(Π2
Π,O−) corresponds to the standard A0∣1-torsor P2∣3 → P2

Π, where the A0∣1-action on P2∣3 is

given by the homological vector field v. Any multiple of the generator gives an A0∣1-torsor corre-
sponding to the same projection P2∣3 → P2 but with the A0∣1-action differing by an automorphism
of A0∣1.

It remains to observe that the Baer sum of two A0∣1-torsors over P2
Π × P2

Π pulled back from

the two factors is obtained as the quotient of A0∣1 × A0∣1-torsor, given by their direct product
P2∣3 × P2∣3 → P2

Π × P2
Π, by the antidiagonal subgroup A0∣1 ⊂ A0∣1 × A0∣1. This easily leads to the

claimed description. �

Lemma 5.14. Let X be a proper superscheme over an algebraically closed field k, such that
H0(X,OX) = k and H1(X,OX) = 0. Then for any connected superscheme Y of finite type over k
the natural map Pic(X) ×Pic(Y ) → Pic(X × Y ) is an isomorphism.

Proof. Let L be a line bundle on X × Y . By tensoring L with the pull-back of a line bundle on
X, we can assume that L has trivial restriction to X × p0. First, we claim that for every point
p in Y , the restriction of L to X × p is trivial. Indeed, we can replace Y by the corresponding
reduced scheme Y0. Then we observe that any line bundle on X × Y0 is canonically the pull-back
from the corresponding bosonic quotient, which is (X/Γ) ×Y0, where X/Γ is the bosonic quotient
of X. Thus, our claim follows from the similar result for usual schemes (see e.g. [5, Ex. III.12.6]).
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It follows that p2∗L is a line bundle on Y . Now we claim that the morphism of line bundles
p∗2p2∗L→ L is an isomorphism. Indeed, it is sujrective since this can be checked fiberwise. �

Proof of Proposition 5.12. First, we claim that Y = P2
Π × P2

Π has trivial Picard group. For this,

let us view Y as the quotient of X = P2∣3 × P2
Π by the A0∣1-action (on the first factor). We claim

that Pic(X) = Z. Indeed, we have H1(P2∣3,O) = 0 and Pic(P2
Π) = 0 (see [3, Thm. 5.2]). Hence, by

Lemma 5.14, one has

Pic(X) = Pic(P2∣3) = Z .
Next, we recall that the line bundle O(n) with n ≠ 0 on P2∣3 has a v-connection with nonzero
curvature. Hence, the same is true for the line bundle p∗1O(n) on X. By Lemma 2.4, this implies
that this line bundle does not descend to Y .

By Proposition 5.3(i), it remains to check that A0∣1-torsors over Y are not projective. Since Π2
Π

is not projective, by Lemma 5.13, we have to check that the quotient P2∣3 × P2∣3/A0∣1, where the

A0∣1-action is given by v1 + v2, is not projective. By Lemma 5.14, any line bundle on P2∣3 × P2∣3

is of the form O(n1) ⊠ O(n2). We claim that such a line bundle descends to the quotient only
if n1 + n2 = 0. Since none of these bundles restricts to an ample line bundle on the reduced
space, this would show the required non-projectivity. Recall that we have natural vi-connections
∇i on O(ni), for i = 1,2, with the curvature −ni. Hence, we get the induced vi-connections ∇i
on O(n1) ⊠ O(n2), still with the curvature −ni. Now ∇1 + ∇2 is a v1 + v2-connection, with the
curvature −(n1 + n2). Thus, by Lemma 2.4(ii), the line bundle O(n1) ⊠ O(n2) does not admit a
flat v1 + v2-connection unless n1 + n2 = 0. �

Corollary 5.15. G(1∣1,m∣m) ×G(1∣1, n∣n) is not 1∣1-embeddable for m ≥ 3, n ≥ 3.

Proof. Indeed, this follows from the closed embedding of P2
Π into G(1∣1,3∣3), and hence into

G(1∣1, n∣n) for n ≥ 3. �
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