A°L_TORSORS, QUOTIENTS BY FREE A"'-ACTIONS, AND EMBEDDINGS
INTO II-PROJECTIVE SPACES AND SUPER-GRASSMANNIANS G(1|1,n|n)

ALEXANDER POLISHCHUK

ABSTRACT. We study embeddability of superschemes into II-projective spaces and into super-
grassmannians G(1|1,n|n). We give some criteria based on the relation with A% _torsors and
A% fibrations. We also prove the existence of nice quotients for free actions of A% on super-
schemes.

1. INTRODUCTION

A striking difference between supergeometry and the usual geometry is the absence of (su-
per)projective embeddings for many natural proper superschemes, e.g., for most supergrassman-
nians. This is explained by the fact that by considering bosonic quotients of superschemes (i.e.,
considering only even functions) one often gets nontrivial nilpotent extensions of the corresponding
reduced schemes, which tend to be nonprojective.

In some respects an adequate analog of projective schemes in supergeometry is provided by
schemes embeddable into supergrassmannians. Recall that the supergrassmannian G(alb,m|n)
parametrizes subspaces of dimension alb in a supervector space of dimension m|n. Thus, by fixing
possible values of a and b we get a hierarchy of spaces in supergeometry: for each alb we can
consider alb-embeddable schemes, i.e., those embeddable into G(alb, m|n) for some m|n. Note that
the usual projectivity corresponds to 1|0-embeddability. One can also consider embeddability
into other homogeneous superspaces. For example, Manin considered in [7, V.6] II-projective
spaces P}y (aka II-symmetric superprojective space) which are homogeneous spaces for the simple
supergroups of type Q. More generally, one has the II-grassmannian GII(a|a,n|n) which is a
closed subscheme in G(ala,n|n), parametrizing II-symmetric subspaces in a superspace with a
II-symmetry (see [7, V.6]). Note that P}, = GII(1|]1,n + 1|n + 1).

Even the first few stages of this hierarchy, namely II-projectivity and 1|1-embeddability are still
poorly understood. In the present paper we will contribute to their study by providing some general
criteria and some new examples. Previous works in this direction mostly construct examples of
non-projective, and sometimes non-II-projective, superschemes (see e.g., [3], [12], [13]).

It is well known that projectivity is equivalent to the existence of an (even) line bundle whose
restriction to the bosonization is ample (see [6], [4, Prop. A.2]). The natural approach to under-
standing embeddability into II-projective spaces and into G(1|1,n|n) is by studying 1|1-bundles
(equipped with a II-symmetry if we are interested in morphisms to II-projective spaces). Our
main idea is to study 1|1-bundles by looking at their projectivizations which are locally trivial
A% _fibrations (since P'" = A%'). Similarly, to a Il-symmetric 1|1 bundle one can associate an
A% _torsor. Thus, we are led to the study of A°'-fibrations (resp., AO|1-torsors). More generally,
to a vector bundle of rank alb one can associate an A°!?®-fibration, however, A%"-fibrations are
much harder to study for n > 1.

Some of the results of this paper are inspired by the result proved in [2, Sec. 4.9], stating that
a superscheme is embeddable into some supergrassmannian if and only if there exists an A°"-
fibration whose total space is projective. Furthermore, any 1|1-embeddable superscheme admits
an A%M_fibration with projective total space. Using this we will get criteria for a superscheme
not to be 1|1-embeddable. For example, we prove that P4 x P4 and G(1|1,m|m) x G(1|1,n|n) for
m >3, n>3, are not 1|1-embeddable.

Partially supported by the NSF grant DMS-2001224, and within the framework of the HSE University Basic
Research Program and by the Russian Academic Excellence Project ‘5-100’.
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On the other hand, we show that there is a close relation between II-projectivity and the
existence of an A%'-torsor with projective total space. This is due to the existence of a natural
map

1
Pn\n+ N ]P;rl_LI

which has a structure of an A°'-torsor. Namely, let (V,p) be an (n +1)|(n + 1)-dimensional space
with a II-symmetry, then this map sends a 1|0-dimensional subspace L c V to the 1|1-dimensional
IT-symmetric subspace L+p(L) c V. Thus, given an embedding of X into a IT-projective space, we
get an A% -torsor over X which has projective total space. We show that conversely, under some
extra assumptions, the existence of such an A%'-torsor implies II-projectivity (see Theorem 4.2).
This gives criteria for II-projectivity. For example, we show that the quotient of P™~1m x pr-1n
by the diagonal A%'-action is II-projective (but not projective for m >3, n > 3), while G(1|1,2/2)
is not II-projective.

We also consider the natural class of CY supervarieties of dimension 2|2 associated with pro-
jective surfaces S together with rank 2 vector bundles V' such that det V ~ we. In the case S = P2,
it was shown in [3] that all such supervarieties are embeddable into some supergrassmannian. We
give new examples of embeddability and non-embeddability for this class of supervarieties (see
Example 5.5 and Prop. 5.7).

One question that naturally arises in this context is the existence of nice quotients by actions
of A% on superschemes. Even for A°"-actions on affine superspaces there may not exist a nice
quotient (e.g., the corresponding ring of invariants is not necessarily finitely generated). We prove
that for a free A%"-action on a superscheme X the quotient always exists as a superscheme (of
finite type if X is of finite type), and the corresponding quotient map X — X /A0|” is an A%"-torsor
(see Theorem 3.1). This result is an easy consequence of the affine case considered in [15] (in the
case X is smooth this is [9, Thm. 1.8]). It can be viewed as an algebraic counterpart of Shander’s
theorem on rectifying non-vanishing homological vector fields on supermanifolds (see [14]).

Acknowledgments. 1 am grateful to Arkady Vaintrob for helpful discussions and to Emile Bouaziz
for suggesting interesting examples of embeddable CY 2|2 supervarieties (see Proposition 5.7).
I also thank the anonymous referee for useful comments and for suggesting a simpler proof of
Lemma 3.5.

Conventions. For a Z [2-graded abelian group X we denote by X* the corresponding even and odd
parts. We denote by II the parity changing functor. For a supervector space V over k we denote
by G(alb,V) the supergrassmannian of a|b-dimensional subspaces in V. We set G(al|b,m|n) :=
G(alb, k™ @ IIK™).

2. A%-ToRsORS AND AY'-FIBRATIONS

2.1. Free actions of A’" and A%'-torsors. We denote by A" the odd affine line with the
standard group structure. This super group scheme is also often denoted as G;.

Let S be a base superscheme. We work in the category of superschemes over S. We use the
obvious superanalogs of the basic notions about group actions. Recall that an action of a group
scheme G on a superscheme X (over S) is called free if the morphism a¢ x : Gxg X - X xg X :
(g,2) — (gz,x) is a closed embedding.

o1
s

By definition, an action of A" on X is given by a morphism of superschemes

oAl g X > X

satisfying the usual axioms. Since such a morphism is identity on the underlying topological
spaces, we see that the notion of an A%M-action is local. It is well known that an A% _action is
determined by the corresponding homological vector field, which is an odd derivation v on Oy,
trivial on functions pulled back from S, such that v? = 0. Namely, for X = Spec(A), the action
map o is given by 6*(a) = a + 0 - v(a), where 6 is the coordinate on A%, Equivalently, we can
think of the vector field v as an automorphism of A" x X. Then the corresponding action is the
composition of this automorphism with the projection to X.
2



Proposition 2.1. Let X be a superscheme over S equipped with an action of Ag‘l, and let v be

the corresponding homological vector field on X. Then the following conditions are equivalent:

(1) the action of Ag‘l on X is free;

(2) locally there exist functions ay,...,a, and by,...,b,, where a; and b; have opposite parity,
such that Y11 a;v(b;) =1;

(3) locally there exists an odd function 0 such that v(0) is invertible;

(4) locally there exists an odd function 0 such that v(0) = 1;

(5) we have the equality of subsheaves of Ox, ker(v:Ox - Ox) =v(Ox).

Proof. (1) <= (2). The morphism
A g X > X x5 X : (g,7) = (g7, )

is given on the level of topological spaces by the diagonal embedding, and locally corresponds to
the ring homomoprhism

k:O0x ®ps Ox » Ox[e]: f1® fa> (fr+ev(f1)) - fa

Thus, the action of A is free if and only if s is surjective. Now we notice that x fits into a
morphism of exact sequences

0 QX/S — Ox ®og Ox - Ox > 0
v K id
0 HOX Ox[(:‘] > OX -0

Hence, x is surjective if and only if v : Qx/g¢ — IIOx is surjective. This is equivalent to the
existence of an odd differential

w = Eaidbi,

such that (w,v) = 1.
(2) <= (3). Assume that we have

daiv(b;) + Za;v(b;) =1,
where (a;) and (b}) are even, (a}) and (b;) are odd. This implies that
v(} a;b;)=1 mod N2,

so it is invertible.
Conversely, if v(by) is invertible then a;v(b;) = 1 for some a;.
(3) <= (4). Assume that v(0) = f is invertible. Then v(f) =0, so v(f~') = 0. This implies that

v(f10) =1.

The converse is clear.
(4) < (5). Assume that we have odd 6 such that v(0) = 1. Then for any f with v(f) =0 we have

f=v(0F).

The converse is clear. O

Remark 2.2. In the case when X is smooth over S, condition (2) from Proposition 2.1 is equivalent
to the condition that v is everywhere non-vanishing, i.e., gives an embedding of a subbundle

The following example involving the II-symmetric superprojective space is important for us.
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Example 2.3. Let V be the superspace of dimension n + 1|n + 1 equipped with a II-symmetry
p:V -1V, i.e., an odd endomorphism p:V — V such that p? = —id (we can assume that V has

coordinates (2, ..., 2n; 0, ...,0,) and p(z;) = 0;, p(6;) = —x;). We have a free action of A% on
G(1|0,V) = P*"*! given in homogeneous coordinates by
V(im0 )= (ot w00 =)

such that the quotient is the II-projective space Pf;. The corresponding A% torsor map
I[Dn\nJrl = ]P;ﬁ

sends a 1]|0-dimensional subspace L c V to the II-symmetric 1|1-dimensional subspace L + p(L).
Note that the above A%!-action on P™"*! comes from the natural P GL(V)-action and an embed-
ding of supergroups

A S PGL(V),

which on the level of Lie superalgebras corresponds the sub-superalgebra (p) c pgl(V).

2.2. v-connections. Let v be a homological vector field on a superscheme X, and let F be a
quasicoherent sheaf on X. A v-connection on F is a map of sheaves of abelian groups V : F — IILF
satisfying
v(fs) = v(f)s+ (~1)fv(s),

for a function f.

The curvature ¢(V) of a v-connection is the O x-linear operator V2 : F - F. A v-connection is
called flat if ¢(V) = 0.

Note that ¢(V) commutes with V. In particular, if V is a v-connection on a line bundle L
then ¢(Vy) can be viewed as an even function which satisfies

v(e(Vy))=0.

If V is a v-connection on F then any other v-connection is given by

V'(s) = V(s) + o(s),

where ¢ is an O-linear map F — ILF. In particular, the set of v-connections on a line bundle L
(if non-empty) is a torsor for H°(X,Ox)~.

It is easy to check that for a v-connection V on a line bundle L and an odd global function ¢
one has

c(V+9)=c(V)+v(e).
The tensor product of v-connections is defined in the usual way (taking into account that V is
odd in the sign convention).

Lemma 2.4. Let v be a homological vector field on X.

(i) If the map H' (X, ker(v))™ —» H'(X,0x)™ is zero (e.g., if H'(X,0x)™ =0) then every line
bundle on X admits a v-connection.

(i3) Assume that H*(X,0x)™ =0. Let L be a line bundle on X admitting a v-connection V. Then
L has a unique v-connection. In particular, if ¢(V) #0 then L does not admit a flat v-connection.

Proof. (i) A standard calculation shows that the obstruction to the existence of a v-connection on
a line bundle L is the image of [L] e H'(X,0%") under the map

HY(X,0%") > H'(X,0x)",
induced by the morphism of sheaves
Oy = Ox: f=o(f)f .

It remains to observe that this morphism factors through ker(v)™ ¢ Oy since v(v(f)f™') = 0.

Thus, if the latter embedding induces the zero map on H', the obstruction vanishes.

(ii) Any other v-connection has form V + ¢ where ¢ is a global odd function on X, so ¢ =0 by the

assumption. O
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Lemma 2.5. Let v be a homological vector field on X. To give a flat v-connection V on a
quasicoherent sheaf F over X is equivalent to equipping F with an equivariant structure with
respect to the corresponding A -action on X .

The proof is straightforward.
From Lemma 2.5 one derives in a standard way (cf. [10, Sec. 12, Thm. 1]) the following result.

Proposition 2.6. Let X — Y be A% -torsor and let v be the corresponding homological vector
field on X. The the category of coherent sheaves on Y is equivalent to the category of coherent
sheaves on X with a flat v-connection.

By the Picard group of a superscheme we mean the group of isomorphism classes of line bundles
of rank 1/0.

Corollary 2.7. Let 7: X - Y be A% -torsor and let v be the corresponding homological vector
field on X. Consider the induced map on the Picard groups 7 : Pic(Y') — Pic(X). Then the image
of m* consists of the classes of line bundles on X that can be equipped with a flat v-connection,
while the kernel of m* can be identified with the quotient

H(X ker(v))/{fo(f) | feH(X,0%)"}.

Proof. The statement about the image of 7* is clear. The kernel of 7* corresponds to isomorphism
classes of flat connections on Ox. Such connections are given by V = v + ¢, where ¢ is an odd
function and v(¢). Furthermore, for an invertible even function f, we have

fro+)f=v+o+fo(f).
O

2.3. Line bundles over A%'-torsors, [I-symmetric 1]1-bundles and the odd Heisenberg
group. Recall the supergroup scheme Q(1) ¢ GL(1|1) (denoted as GQ(1) in [1, Sec. 1.8.4]): its
A-valued point is the set of ag + a; € A*. The embedding Q(1) = GL(1]1) is given by

ap al
+
dorarr (—al ao)
(here we follow the convention that the matrix (a;;) of a linear supertransformation 7" is defined

by T'(ej) = ¥ e;ai;; this explains why our sign is different say from that in [8]).
There is a natural homomorphism

Q1) » A" :ag +ay > aglay
Its kernel is a central subgroup of Q(1) isomorphic to G,, = GL(1]|0). Thus, we have a central
extension sequence

1-G,, —Q(1) -~ A% 0. (2.1)
Note that there is a splitting a; = 1 +a; of the projection Q(1) - A% (not compatible with the
group laws). The corresponding 2-cocycle of A% with values in G,, is determined from

(1+a)(1+b)=1+a+b+ab=(1+ab)(1+ (a+D)),

so it is given by ¢(a,b) =1 + ab.
We would like to view Q(1) as an odd Heisenberg group, a central extension of A0l by G,,. *

Proposition 2.8. Let X be a superscheme with an action of A% and let v be the corresponding
homological vector field. We let Q(1) act on X through the projection Q(1) — A%, For a
quasicoherent sheaf F over X there is a natural bijection between the set of v-connections V on
F with ¢(V) = n-id, where n € Z, and weight-n actions of Q(1) on F (i.e., such that G,, c Q(1)
acts through the character A — A" ).

Proof. This is clear if we think of the action of Q(1) as a projective action of A% a y-connection
Vv lifts the action of v to F and the condition [V, V] = nid precisely means that we get an action
of the central extension with the central character \ — A". O

n [8] the group Q(1) is denoted by G, (and what we denote by G, is denoted by G,lq‘@o)‘
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Proposition 2.9. Let X be a superscheme. There is a natural equivalence between the following
groupoids:
o II-symmetric 1|1-bundles on X;
e data ()? - X, L,0), consisting of an A% torsor X - X, an even line bundle L over X
and a weight-1 action o of Q(1) on L compatible with the action of A% op X

Proof. From (7 : X - X, L,0) we construct the 1|1-bundle by setting W := 7, L. The II-symmetry
is induced by the v-connection on L coming from the Q(1)-action. Conversely, starting from a II-
symmetric 1/1-bundle W we define 7 : X — X as the projectivization of W, i.e., X = G(1|0;W). O

Example 2.10. As in Example 2.3 let us consider a superspace V of dimension n|n equipped
with a IT-symmetry p: V — IIV. There is a natural embedding of supergroups,

Q(1) = GL(V),
sending an R-point ag + a; of Q(1) to ag-id+ay - p. It induces an embedding
A% = Q(1)/G,, = PGL(V).

Hence, for any (a,b), we get an action of A°" on the supergrassmannian G(alb,V). Explicitly,
an R-point of the supergrassmannian G(alb, V') corresponds to W c Vg and the action of ¢ € R~
sends W to (id +¢p)(W).

In the case (a,b) = (1,0), we recover the action of A% on P 1" considered in Example 2.3,
such that the quotient is the II-projective space Pﬁ_l. Note that in this case there is a natural
weight-1-action of Q(1) on the tautological line bundle @(-1) over P"'I": the corresponding
Gyp-torsor over P*~1" is the complement to the origin in V and the action of Q(1) is induced by
the embedding Q(1) ¢ GL(V). The Il-symmetric 1|1-bundle on P§~' = P17 /A% corresponding
to this @(1)-action on O(-1) by Proposition 2.9 is nothing else but the universal II-symmetric
1/1-bundle on P{~t.

For arbitrary (a,b), the embedding of Q(1) into GL(V') gives a weight-1-action of Q(1) on S,
the universal subbundle over G(al|b, n|n). The corresponding action of Q(1) on Ber(S) has weight
a —b. In particular, for b = a — 1, we get from Proposition 2.9 a II-symmetric 1|1-bundle over
the quotient G(ala — 1,n|n)/A%". However, neither this 1|1-bundle, nor its dual have any global
sections. In fact, we will prove later that for n >a > 1 and n > 4, the quotient G(ala - 1,n|n)/A"
is not 1|1-embeddable (see Cor. 5.11).

Remark 2.11. The exact sequence (2.1) leads to a long exact sequence
o HY(X,Q(1)) » H'(X,A%) 2+ H2(X,G,) > ...

The connecting map ¢ is easy to calculate (see [8, Sec.5]): it is given by the composition

H' (X, AM) Z58 BHY(X,Go) =5 H*(G)
(actually one can make sense of the composition in any characteristic). For example, for X =P,
over an algebraically closed field k, we have identifications H'(X,A'") ~ k, H*(X,G,,) ~ k/ Z,
such that the map ¢ is given by  —» 22 mod Z.

2.4. A%-fibrations. It is easy to see that all automorphisms of A’ are affine transformations
0 — af + 1, where a is an even invertible parameter and v is an odd parameter.

Proposition 2.12. There is an equivalence between the groupoid of A -fibrations over X and
that of the following data: an even line bundle L on X together with a IIL-torsor over X. The
latter groupoid can be also thought of as that of 1|1-vector bundles V' on X equipped with an
embedding Ox — V such that V|Ox is a line bundle of rank 0|1.

Proof. The bijection of the corresponding isomorphism classes follows from the general yoga of
noncommutative cohomology: we have an exact sequence of group schemes

0— A" 5 Aut(AM) - G, - 1,
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admitting a (non-normal) splitting G,,, - Aut(A°"). This implies that the corresponding map
H'(X,Aut(A%")) - H'(X,G,,) is surjective and the fiber over [¢] € H'(X,G,,) is identified with
H'(X, Agll), where Ag‘l is the twist of A%l by the 1-cocycle c. Thus, if [¢] corresponds to a line
bundle L then Agll =1IIL.

The functor between the corresponding groupoids is defined as follows. Given an A%!-fibration
7: X — X we define the line bundle L on X by

L™ :=7,0%/Ox.
Furthermore, the set of Ox-linear splittings of the exact sequence
0-Ox —>7T*O)?—>HL_1 -0

is a IIL-torsor over X.
Conversely, given an extension of supervector bundles
0-0x->V->M-0

where M has rank 0|1, there is a unique structure of Ox-algebra on V defined uniquely by the
conditions that the Ox-module structure on M is induced by the mutliplication in V' and that for
any local odd section s of V one has s? = 0. Indeed, locally we can choose an odd section 6 of V'
projecting to a generator of M. Then the natural map Ox[#] - V is an isomorphism of algebras.
These structures glue into a global structure of Ox-algebra on V. Hence, we have V' =7,0% for
a canonically defined A%'-fibration X — X. O

3. QUOTIENTS BY FREE A%™-ACTIONS

3.1. Existence of quotients by a free action. Everywhere in this subsection we fix a base
superscheme S and work with superschemes over S.

Theorem 3.1. Let Agjn act freely on a superscheme X over S. Then there exists a categorical
quotient w: X - Y = X/AO‘" for this action. Furthermore, w is an A% _torsor with respect to
Zariski topology. If X is of finite type (resp., smooth) over S then so is Y.

The proof is based on the following result.

Lemma 3.2. Let v be an odd derivation of a superring A such that v? = 0 and there exists an odd
element 0 such that v(0) =1. Set A” =ker(v: A — A). Then the natural ring homomorphism

A"[0] > A

is an isomorphism (where on the left we view 0 as an independent variable). If A is finitely
generated as an algebra over a sub-superring C c AY then so is A.

Proof. We have to prove that every element of A can be written uniquely in the form a + b0 with
a,be AY. The fact that ¢ and b can be recovered from a+ bf follows immediately from the identity

v(a +b0) = +b.
On the other hand, we have
a=v(ab) tv(a)b,
where v(af) and v(a) are in A”.
For the last assertion, suppose x; is a finite set of generators of A over C. Write each z; in the
form a; + b;0 with a;,b; € A¥. Then it is easy to see that (a;) and (b;) generate A over C. O

We also need the following general statement.

Lemma 3.3. Let G be a supergroup scheme acting freely on a superscheme X, and let H c G be
a normal subgroup, flat over S, such that the quotient G/H exists as a supergroup scheme and the
sequence
1> H(T) > G(T) > (G/H)(T) - 1
is exact for any S-superscheme T. Assume that the categorical quotient X' = X|/H exists as a
superscheme and the map X — X' is an H-torsor (in fppf topology). Then
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(i) G' = G/H acts freely on X'.

(it) If the categorical quotient X'|G' exists then the map X - X' — X'|G’ gives a categorical
quotient X /G.

(iii) Under the assumption of (ii), if in addition the map X — X' is a Zariski H-torsor and the
map X' — X'|G' is a Zariski G'-torsor, then the map X - X'|G"' = X |G is a Zariski G-torsor.

Proof. (i) Tt is enough to prove that the diagram

ag,x
G Xg X

XXSX

agr x’
G, ><le —_— X, XsX,

is cartesian, where the vertical maps are the natural projections. It is clear that the diagram

 @px)

G,XS X’XSX

aG’,X’
_—

G,XSX, X,XSX,

is cartesian, where o : G' xg X — X' is induced by (g,z) — gx. Hence, it is enough to show that

the diagram

X (9,2) = gz X

G xg
(3.1)

G'xg X X’

is cartesian. It is enough to show this after the faithfully flat base change G xg X — G’ xg X.
Since the natural diagram

h —h
HXSGMG

bc

G G’

is cartesian, it remains to check that the diagram

(h,g,x) = hgx

HXSGXSX X

PGexx

GXSX —X’




is cartesian, where the bottom arrow is the composition of (g, ) ~ gz with the projection X - X'.
But we can present it as the composition of two cartesian squares

(h,g,7) = (h, gz) (h,x) > hz x

HXSGXSX —HXX
PGxx Px
Gxg X X X’

where the right square is cartesian due to the fact that X — X’ is an H-torsor.

(ii) This is a straightforward consequence of the definitions.

(iii) Combining Zariski local sections of the projections X - X’ and X' - X’/G’, we obtain that
X - X'/G" admits Zariski local sections. Hence, it remains to show that the diagram

Grs X (9,2) = gz

X
Px

X

X'|G’
is cartesian. We have

XXX//G/XE (X XX’/G’ X’) Xxr X.

Since X’ - X'/G" is a G'-torsor, we have a natural isomorphism G’ xg X' —— X' xx//qr X',
which induces an isomorphism

G, XSX ;F XXX/ (X, XX!/G/ X’) ZXXXr/Gr X’.

Now the assertion follows from the cartesian square (3.1). O

Proof of Theorem 3.1. We use induction on n.

Case n = 1. Let v be the homological vector field on X corresponding to this action. Let
O% c Ox denote the subsheaf of v-horizontal functions. By Proposition 2.1, locally there exists
an odd function 6 on X such that v(8) = 1. Suppose Spec(A) is an affine open in X with such a
function §. We claim that for any even f € A, the ring (A[f~!])" is naturally a localization of A”.
Indeed, this is clear if v(f) = 0. Now we observe that the localization by f does not change if we
replace f by

F=o(f0)=0v(f)0+f.

where v(f) = 0. This easily implies that Y := (|X|,0%) is a superscheme. The fact that X — Y is
a categorical quotient immediately reduces to the affine case, and in the affine case it is clear that
the categorical quotient boils down to passing from a ring A to the subring A".
By Lemma 3.2, we also see that the map X — Y is an A%'-torsor.

Case n > 1. Consider a subgroup A’™1 ¢ A% By the induction assumption, there exists a
quotient X’ = X/A%""'. Furthermore, by Lemma 3.3, A%t = A% /A%"=1 acts freely on X', and
the quotient X’/A’", which we know exists, is also the quotient X /A%". The fact that X — X /A%"
is an A°"-torsor also follows from Lemma 3.3. O

Remark 3.4. Tt is easy to see that the condition that A°"-action is free is necessary in Theorem
3.1. For example, for the homological vector field v = 69, on A,lcll with coordinatees (z,6), the
subring of v-invariants is k + 0 - k[z] c k[z, 6], which is not finitely generated over k.
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3.2. The action on supergrassmannians. Recall that in Example 2.10 we defined an action
of A% on supergrassmannians G(a|b,n|n) associated with a II-symmetry p: V — IIV on a super-
vector space V of superdimension n|n.

Lemma 3.5. The above action of A" on G(alb,n|n) is free if and only if a #+b.

Proof. In the case a = b we have a nonempty subscheme consisting of W such that p(W) = W.
The action of A°! on this subscheme is trivial.

To prove freeness in the case a # b we observe that the homological vector field v corresponding
to our action of A% on G(alb, V') is precisely the vector field coming from the element p € pgl(V)
(see Example 2.10). We have to prove that v is everywhere non-vanishing (see Remark 2.2).
Assume it vanishes at a point W € G(alb, V). Then p is contained in the parabolic subalgebra
pw < pgl(V) corresponding to W. But this implies that p(W) ¢ W which is impossible for a # b.

O

4. 1I-PROJECTIVITY
4.1. Criterion for Il-projectivity.

Lemma 4.1. For every n, there exists a closed embedding P" 1" — ]P’QH"_l. Hence, every projective
superscheme s 1l-projective.

Proof. Given a supervector space V', we can equip the space V & IIV with a natural II-symmetry.
Then to every family of 1|0-dimensional subspaces L ¢ V we associate naturally a family of II-
symmetric 1|1-subspaces Lo TIL c V @ IIV. (]

Theorem 4.2. (i) If X is Il-projective then there exists an A°-torsor over X whose total space
18 projective.

(ii) Assume that the base is Spec(k) where k is an algebraically closed field. Assume that H°(X,0)*
k and there exists an A% -torsor over X whose total space X is projective and such that the mor-
phism HY(X,0x)” > HY(X,0%)" is zero. Then X is Il-projective.

Proof. (i) If X is embedded into P then we can consider the pullback to X of the standard
A% _torsor PP1" PRl Tts total space embeds into P771",

(ii) Let L be a very ample line bundle on X and let v be the homological vector field on X
corresponding to the A%-action. Since ker(v) = Ox c Og, Lemma 2.4(i) implies that L admits a
v-connection V. Next, we look at the curvature ¢(V).

Case 1: ¢(V) # 0. Then we can rescale v, so that ¢(V) = 1. Let s1,...,s, be the basis of global
sections of L. Then using s1,...,5n, V(51),...,V(sn) we get a A’'-equivariant embedding of X
into P"~!I" Passing to quotients we get an embedding of X into pr-t,

Case 2: ¢(V) =0. Then L descends to X. Since its restriction to X,.q4 is very ample, it follows
that X is projective (see e.g., [4, Prop. A.2]), hence it is II-projective. O

Example 4.3. Consider P"~1™ x P?~11" with diagonal A°'-action. Then by Theorem 4.2(ii), the
quotient is II-projective. On the other hand, this quotient is not projective for m > 3, n > 3, as we
can find an embedding P23 pr-limo pr-lin compatible with A%'-actions, which implies that
the quotient contains P as a sub-superscheme.

Example 4.4. Consider G(al0,n|n) with the A°M-action defined in Example 2.10. Note that
G(al0,n|n) is projective since the restriction of Ber(U) to the reduced space G(a,n) is ample
(see [4, Prop. A.2]). It is easy to check H'(G(al0,n|n),0) =0 for n > a +2. Namely, one checks
this by induction on a using the fibration F(a - 1|0,a|0,n|n) - G(al0,n|n). Hence, by Theorem
4.2(ii), the quotient G(al0,n|n)/A" is IT-projective.

4.2. Criterion for non-II-projectivity. The following criterion for non-II-projectivity is similar
to the one used in [3, Sec. 7).

Proposition 4.5. If X is non-projective and H'(X,0)™ =0 then X is not I-projective.
10



Proof. Suppose X is II-projective. Then there exists an A%'-torsor X — X such that X is
projective. But if H'(X,0)~ = 0 then there exists a section X — X, so X is also projective, which
is a contradiction. O

Example 4.6. Using this criterion we can easily check that G(1|1,2|2) is not II-projective. Hence,
G(1]1,n|n) is not II-projective for n > 1.

5. 1|/1-EMBEDDABILITY
5.1. General criteria for non-1|1-embeddability.

Proposition 5.1. If X is 1|1-embeddable then there exists an A% _fibration over X whose total
space s projective.

Proof. If X is embedded into G(1|1,n|n), then the total space of the pullback of the A°'-fibration
F(1|0,1|1,n|n) = G(1]1,n|n) embeds into F'(1|0,1|1,n|n) which is projective. O

Corollary 5.2. Assume that Pic(X) = 0. If X is 1|1-embeddable then there exists an A% -torsor
over X with projective total space.

Proof. Indeed, by Proposition 2.12, if Pic(X) = 0 then every A%'-fibration over X is an A°I-
torsor. O

Proposition 5.3. Let X be a proper superscheme over k of positive dimension.

(i) Assume that Pic(X) =0 and H'(X,0)™ =0. Then X is not 1|1-embeddable.

(ii) Assume that H'(X,L)™ =0 for every even line bundle L on X and X is not projective. Then
X is not 1|1-embeddable.

Proof. (i) If X were 1|1-embeddable we would deduce from Corollary 5.2 that there exists an
A% torsor X - X with projective X. But any such torsor is trivial since H*(X, )~ = 0. Hence,
we would get that X is projective which is impossible if X has trivial Pic.

(ii) By Proposition 2.12, any A%'-fibration X — X has a structure of a IIL-torsor, for some
even line bundle L on X. If H'(X,L)™ = 0 then this torsor is necessarily trivial, hence, there
exists a section X — X. By Proposition 5.1, if X were 1|1-embeddable then there would exist an
A% _fibration with projective X. Since X is embedded into X, it would be projective which is a
contradiction. O

Remark 5.4. Tt is instructive to take X = G(1]1,2|2) and to see which assumptions of Proposition
5.3 are not satisfied in this case. We know that X is not projective and we have

HY(X,0) =H'(P' xP', (O(-1) m O(-1))%?) = 0.

However, Pic(X) # 0: we have a nontrivial line bundle L = Ber(S), where § is the tautological
bundle of rank 1|1. We have L|pi,pr = O(-1) ® O(1). Hence,

HY(X,L) = H'(P' x P, (O(-2)m ©0)?) # 0.

Example 5.5. For any smooth variety Xy over a field k, a vector bundle V, and a class e €
HY(Xo,Tx, ® A*V), we can define a superscheme X = X (Xo,V,e) as follows. Let O% — Ox, be
the square zero extension of Ox, by A2V with the class e, and set O = V. The multiplication of
O% on Oy is given by the Ox,-module structure on V via the projection O% — Ox,, while the
multiplication

Ox xOx > \'V € 0%
is given by the wedge product.

Now let us specialize to the case when Xy = S is a smooth projective surface, V has rank 2 and
A’V ~wg. Then X = X(S,V,e) is a smooth CY supervariety of dimension 2|2 (this construction
is used in [3] in the case S = P?).

Assume now that in addition Pic(S) =Z, H'(S,V) =0, k has characteristic zero, and

e=ci(L) e H'(S,Q5) ~ H'(S,Ts ® ws)
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where L is an ample line bundle on S. Then Proposition 5.3 implies that X = X (S,V,c1(L)) is
not 1|/1-embeddable. Indeed, by assumption we have H*(X,0%) = 0. The triviality of Pic(X) is
established similarly to [3, Thm. 5.2]: we use the exact sequence

1-1l+ws > (0%)" =051

and observe that the connecting homomorphism H'(S,0%) - H?(S,ws) sends the class of a line
bundle M to ¢;(M)uecy (L). Since Pic(S) = Z, this map is injective, so no line bundle on S extends
to O%.

One can try to relax the condition of vanishing of H'(X,O)~ in Proposition 5.3. We give an
example of this in the situation when we have an A%'-torsor X - X. Note that for such a torsor
the exact sequence of sheaves

0—>(’)X—>(9X$HOX—>O

gives rise to a long exact sequence
.. > HY(X,0%)” — H'(X,0x)" - H'(Ox)” - H'(Og) - ... (5.1)

Proposition 5.6. Let X — X be a nontrivial A% -torsor. Assume that Pic(X) =0, H(X,0x) =
k (of characteristic zero), the space H'(X,0Ox)~ has dimension <1 (e.g., H'(X,0%)" =0), and
X is non-projective. Then X is not 1|1-embeddable.

Proof. First, we see that any A%'-fibration over X is an A°M-torsor. They are classified by
H'(Ox)", so they all come from H°(O%) = k. So we would get that X is projective. Note
that the exact sequence (5.1) implies that if H'(X,0%)” = 0 then H'(X,0x)" is at most 1-
dimensional. U

5.2. More examples. Recall that in Example 5.5 we considered CY supervarieties of dimension
2|2 of the form X = X(S,V,e), where V is a rank 2 vector bundle on a smooth projective surface
S, such that A*V ~ wg and e € H'(S,Q%) is a nonzero class. In the case S = P? it was proved
in [3] that every X (P?,V,e) is embeddable into some supergrassmannian. For other surfaces S
the question of embeddability of X (S,V,e) is open. The following result was suggested by Emile
Bouaziz.

Proposition 5.7. (i) Assume V =Qg. Then for any ample line bundle L on S, the supervariety
X(S,V,c1(L)) is H-projective.

(i) For any nontrivial A% torsor X — X(S,V,e), the total space X s projective. In particular,
if HY(S,V) #0 then X(S,V,e) is embeddable into some supergrassmannian.

Proof. (i) Let us specialize the construction of the superscheme X (Xj,V,e) (see Example 5.5) to
the case V = Q&O and e € H'(Xo, Tx, ® Qg(o) comes from a class ¢ € H*(Xo, Q%O) via the natural
map
Q, » Hom(Q,, 0%, ) ~ Tx, ® Q%,

induced by the wedge product. Let us call the resulting superscheme X (Xg,c). It is easy to see
that if f : Yy — X, is a morphism, and the class ¢’ € H'(Yp, Q;O) is obtained from c € H' (X, Qﬁ(o)
via the natural restriction map f*: H'(Xo,Q%,) - H'(Y0,Qy,) then f extends to a morphism
XYy, ) - X(Xo,c). Furthermore, if f is a closed embedding then so is f.

It is well known that for Xy = P and ¢ = ¢;(O(1)), the superscheme X (P", ¢;(O(1)))
is the truncation of the Il-projective space IPfj, i.e., obtained by replacing the structure sheaf
with (’)pﬁ/./\/?’, where A is the ideal generated by odd functions (see e.g., [11]). In particular,
X(P",¢1(0(1))) is -projective.

We are interested in the superscheme X (5, ¢i(L)) for an ample line bundle L on S. Replacing
L by a high power leads to rescaling ¢; (L), hence, does not change this superscheme up to an
isomorphism. Hence, we can assume that L = i*O(1) for an embedding i : S < P". Then
X (S,c1(L)) embeds into X (P™,¢1(O(1))), hence it is II-projective.
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(ii) Let us fix a nonzero class a € H'(S,V), and let X - X = X(S,V,e) be the corresponding
A% _torsor. Then O} is an extension of Og by a square zero ideal Z c (’);f(v. Furthermore, since
0% c (9;1(7 we have an exact sequence of Og-modules

0sws—>T>V -0 (5.2)

and the class €€ H'(S,Ts®Z) defining the extension (’);% — Og is the image of e under the natural

map H'(S,Ts®ws) - H'(S,Ts®T). Furthermore, it is easy to see that the class o’ € Ext'(V, wg)
of the extension (5.2) is the image of a under the isomorphism Ext'(V,ws) ~ H'(S, VY ® wg) =~
HY(S,V).

By [4, Prop. A.2], to prove that X is projective, it is enough to show that some (even) ample
line bundle on S extends to a line bundle on X. The standard argument using the exact sequence

0-1+Z - (0%) »05~1

shows that the obstacle to extending a line bundle M on S to X is given by the product ¢; (M)Ue e
H?(S,T). This means that this obstacle is the image of the product ¢; (M) ue e H*(S,ws) under
the natural map H?(S,wg) -~ H?(S,Z). We claim that the latter map is zero. Indeed, the exact
sequence of cohomology associated with (5.2) shows that it is enough to prove surjectivity of the
connecting homomorphism

H1(57v) _)H2(57w5)

which is given by the cup product with o' Extl(V, wg). But this immediately follows from
nonvanishing of o’ and the fact that the Serre duality pairing

Hl(S,V) ® Extl(V,wS) - HZ(S, wg)

is nondegenerate. _ N
Hence, if H*(X,V) # 0 then there exists an A% torsor X — X such that X is projective, and
by [2, Prop. 4.28], X is embeddable into some supergrassmannian. O

Proposition 5.8. Assume the characteristic is zero. Let us consider the free A% -action on
X = G(21,4]4) defined in Example 2.10. Then the quotient Y = G(2|1,4/4)/A" is not 1|1-
embeddable.

Lemma 5.9. (i) For n>2 and X = G(1|1,n|n) one has H*(X,0) = HY(X,N) = 0.

(ii) For n >4 and X = G(2|1,n|n) one has H'(X,0) = H'(X,N) = 0.

(#ii) Forn > 4, the Picard group of X = G(2|1,n|n) is isomorphic to Z, with Ber(S) as a generator,
where S is the universal subbundle.

Proof. (i) The bosonic truncaton of X is Xo = P""* x P"! and
DNN = \(O(-1) 21 (1) 8 21 (1) m O(-1)) = B (- 1) @ (i - j)

2,9

(see [7, 4.3.15]). Now the calculation of cohomology of Q(m) on projective spaces implies that
H(Xo, N*/N*1) = 0, and the result follows.
(ii) Let us consider the P'-fibration

p: F=F(11,2]1,nn) - G(2|1,n|n) = X.

Since H*(P'',©) = k, using base change we get Rp,Op ~ Ox. Thus, it is enough to prove that
H'(F,0p) =0. Now we use the P"2"~_fibration

q:F - G(1]1,n|n) = G.

Since R°q,OF = Og and R'q.OF =0, we get H'(F,Or) = H'(G,Og). It remains to use part (i).
(iii) The Picard group of the corresponding reduced space Xy = G(2,n) x P! is isomorphic to
Z xZ. Furthermore, due to (ii), the restriction map Pic(X) — Pic(Xy) is injective. It remains to
show that O(m) & O(n) does not extend to a line bundle on X unless m = —n (where O(-1) on
G(2,n) is the determinant of the universal subbundle).
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Consider supervector spaces V; and V5 of dimensions 2|2 and (n - 2)|(n-2), and let L c V3 be
a fixed subspace of dimension 1|0. Then we have an embedding

G(1,22) = GAL, V) - G(2L, Vi @ Va) = G(2[L,njn) : W > W @ L,

inducing an embedding P! x P! - G(2,n) x P"! such that the pull-back of O(m)® O(n) is the
same line bundle on P! x P!. Thus, restricting to G(1|1,2[2) ¢ G(2|1,n|n) we reduce to the similar
question for G(1/1,2|2) which is well known and can be analyzed easily (see [7, Ch. 4.§3]). O

Remark 5.10. It is known that the Picard group of any supergrassmannian is generated by the
Berezinian of the universal subbundle (see [13]).

Proof of Proposition 5.8. First, we claim that PicY = 0. By Lemma 5.9(iii), every line bundle on
X = G(2|1,4]4) is isomorphic to Ber(S)™ for some n € Z, where S is the universal subbundle. It is
enough to check that Ber(S)™ does not admit a flat v-connection for n # 0. Recall that we have
a natural Q(1)-equivariant structure on Ber(S) of weight 2—-1 =1 (see Example 2.10). Hence, by
Proposition 2.8, there is a v-connection V on Ber(S) with curvature 1. The induced connection on
Ber(S)™ will have curvature n. Since H°(X,0)~ =0, by Lemma 2.4(ii), this implies that Ber(S)™
does not admit a flat v-connection for n # 0.

Since H*(X,0) =0 by Lemma 5.9 and X is not projective, using Proposition 5.6, we get that
Y is not 1|1-embeddable. O

Corollary 5.11. Forn>a>1 and n >4, the quotient G(ala —1,n/n) /A" is not 1|1-embeddable.

Proof. We can the present the superspace V with the II-symmetry p as the direct sum V; @ V5,
where both summands are preserved by p and the dimension of V; is 4]|4. Then fixing a subspace
W ¢ V3 of dimension a — 2|a - 2, preserved by p, we get a closed embedding

G(2|1,V1) > G(a|a - 1,V) Wi Wi e W,

compatible with A%!-actions. This embedding induces a closed embedding of the quotients, so the
assertion follows from Proposition 5.8. O

Proposition 5.12. PZ x P% is not 1/1-embeddable.

Lemma 5.13. The total space of any A" -torsor over ]P’QH x ]P’QH is isomorphic to either P2 x IP’IzI
or to the quotient PP x P23 by the free A% -action corresponding to the homological vector field
v1 + U9, where vy and vo are the standard homological vector fields on each factor.

Proof. First, it is easy to check that P% x P% that H'(P% x P%,0") is 2-dimensional. More pre-
cisely, it is the direct sum of two copies of H'(I1%,O~), which is 1-dimensional. The generator of
H! (HQH, O7) corresponds to the standard A torsor PP - IP%, where the A%-action on P21 is
given by the homological vector field v. Any multiple of the generator gives an A°'-torsor corre-
sponding to the same projection P2P - P2 but with the A%!-action differing by an automorphism
of AOL,

It remains to observe that the Baer sum of two A’M-torsors over P% x PZ pulled back from
the two factors is obtained as the quotient of A% x A%-torsor, given by their direct product
P28 x P23 P2 x PZ, by the antidiagonal subgroup A’ ¢ A% x A%, This easily leads to the
claimed description. O

Lemma 5.14. Let X be a proper superscheme over an algebraically closed field k, such that
H°(X,0x) =k and H(X,0x) =0. Then for any connected superscheme Y of finite type over k
the natural map Pic(X) x Pic(Y') - Pic(X xY) is an isomorphism.

Proof. Let L be a line bundle on X x Y. By tensoring L with the pull-back of a line bundle on

X, we can assume that L has trivial restriction to X x py. First, we claim that for every point

p in Y, the restriction of L to X x p is trivial. Indeed, we can replace Y by the corresponding

reduced scheme Y. Then we observe that any line bundle on X x Y} is canonically the pull-back

from the corresponding bosonic quotient, which is (X /T') x Yy, where X /T is the bosonic quotient

of X. Thus, our claim follows from the similar result for usual schemes (see e.g. [5, Ex. II1.12.6]).
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It follows that ps,. L is a line bundle on Y. Now we claim that the morphism of line bundles
pspa. L — L is an isomorphism. Indeed, it is sujrective since this can be checked fiberwise. O

Proof of Proposition 5.12. First, we claim that Y = P x P has trivial Picard group. For this,
let us view Y as the quotient of X = P23 x PZ by the A%-action (on the first factor). We claim
that Pic(X) = Z. Indeed, we have H'(P?3,0) = 0 and Pic(PZ) = 0 (see [3, Thm. 5.2]). Hence, by
Lemma 5.14, one has
Pic(X) = Pic(P?P) = Z.

Next, we recall that the line bundle O(n) with n # 0 on P?? has a v-connection with nonzero
curvature. Hence, the same is true for the line bundle p;O(n) on X. By Lemma 2.4, this implies
that this line bundle does not descend to Y.

By Proposition 5.3(i), it remains to check that A% _torsors over Y are not projective. Since H%{
is not projective, by Lemma 5.13, we have to check that the quotient P?? x ]P’Q‘?’/AO”, where the
A% _action is given by vy + va, is not projective. By Lemma 5.14, any line bundle on P2 x P23
is of the form O(n;) ® O(nz). We claim that such a line bundle descends to the quotient only
if n; + ng = 0. Since none of these bundles restricts to an ample line bundle on the reduced
space, this would show the required non-projectivity. Recall that we have natural v;-connections
Vi on O(n;), for i = 1,2, with the curvature —-n;. Hence, we get the induced v;-connections V;
on O(n1) ® O(ng), still with the curvature —n;. Now Vi + V2 is a v1 + ve-connection, with the
curvature —(ny +ny). Thus, by Lemma 2.4(ii), the line bundle O(n;) ® O(n2) does not admit a
flat v + vo-connection unless ni +ng = 0. O

Corollary 5.15. G(1|1,m|m) x G(1|1,n|n) is not 1|1-embeddable for m >3, n > 3.

Proof. Indeed, this follows from the closed embedding of PZ into G(1[1,3]3), and hence into
G(1]1,n|n) for n > 3. O
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