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Abstract
In this paper, generalizing our previous construction,
we equip the relative moduli stack of complexes over
a Calabi–Yau fibration (possibly with singular fibers)
with a shifted Poisson structure. Applying this construc-
tion to the anticanonical linear systems on surfaces, we
get examples of compatible Poisson brackets on pro-
jective spaces extending Feigin–Odesskii Poisson brack-
ets. Computing explicitly the corresponding compatible
brackets coming from Hirzebruch surfaces, we recover
the brackets defined by Odesskii–Wolf.
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1 INTRODUCTION

Recall that a bihamiltonian structure is a pair of (linearly independent) Poisson bivectors Π1,Π2
which are compatible, that is, such that any linear combination of Π1 and Π2 is again Poisson. A
fundamental result of Magri relates bihamiltonian structures to complete integrability [12].
The main goal of this paper is to try to understand the geometry underlying bihamiltonian

structures extending the elliptic Feigin–Odesskii Poisson brackets. Recall that the latter are cer-
tain Poisson brackets 𝑞𝑛,𝑘(𝐶) on the projective space ℙ𝑛−1 associated with an elliptic curve 𝐶 and
a pair of relatively prime integers 𝑛 > 𝑘 > 0 (see Section 2). These brackets were introduced by
Feigin and Odesskii in [6] and are supposed to arise as semiclassical limits from Feigin–Odesskii
elliptic algebras introduced in [5] (for 𝑘 = 1 this is proved in [8, Section 5.2]). Recently interesting
examples of such bihamiltonian structures were constructed by Odesskii–Wolf in [15] (improv-
ing earlier construction of Odesskii in [14]): for every 𝑛 > 2 they constructed a nine-dimensional
subspace of compatible Poisson brackets on ℙ𝑛−1 containing 𝑞𝑛,1(𝐶). Our results give a more
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1390 HUA and POLISHCHUK

conceptual construction of these compatible brackets, as well as some generalizations involving
𝑞𝑛,𝑘(𝐶) with 𝑘 > 1.
The main idea is to use the general setup of shifted Poisson structures on (derived) moduli

stacks of complexes of vector bundles overCalabi–Yau varieties considered in [8]. In [8]we showed
that Feigin–Odesskii brackets appear in this setup as classical shadows of natural 0-shifted Poisson
structures on the moduli stacks of two-term complexes over elliptic curves (in fact, this connec-
tion goes back to [17]). In this paper we extend this setup by allowing the varieties to be singular
Gorenstein and by considering a relative version. More precisely, for a flat family of (possibly sin-
gular) 𝑑-Calabi–Yau varieties with an affine base, there is a (1 − 𝑑)-shifted Poisson structure on
the relative stack of complexes (see Theorem 3.9). We show that in the case of elliptic fibrations
𝜋 ∶ 𝐶 → ℙ𝑛 such that 𝜔𝐶∕𝑆 ≃ 𝜋∗ℙ𝑛(1) this leads to families of compatible Poisson brackets (see
Theorem 4.2).
We then proceed to study families of anticanonical divisors on surfaces. We find a general con-

struction starting from an exceptional bundle on a surface𝑋, such that (𝑋,) is an exceptional
pair, and leading to compatible brackets containing Feigin–Odesskii brackets (see Theorem 4.4).
Considering appropriate line bundles on Hirzebruch surfaces we recover the nine compatible
Poisson brackets of Odesskii–Wolf containing 𝑞𝑛,1(𝐶). Proving that these are actually the same
compatible brackets is a nontrivial computation that takes up Section 5. These computations are
based on the connection between the Poisson brackets 𝑞𝑛,𝑘(𝐶) and certain Massey products. We
calculate the relevant Massey products using Szegö kernels.
We also discover some new examples of compatible Poisson brackets. Namely, we construct two

infinite families of pairs (𝑛, 𝑘) for which each Feigin–Odesskii bracket 𝑞𝑛,𝑘(𝐶) is contained in a
10-dimensional family of compatible Poisson brackets, namely, the pairs

(3𝑓2𝑚−1, 𝑓2𝑚−3) for𝑚 ⩾ 2, and (3𝑓2𝑚−1, 3𝑓2𝑚−1 − 𝑓2𝑚−3) for𝑚 ⩾ 3,

where (𝑓𝑛) are Fibonacci numbers (see Proposition 4.7). For example, this gives a 10-dimensional
subspace of compatible Poisson brackets on ℙ5 containing 𝑞6,1(𝐶), which is a bit surprising given
that the nine-dimensional space of compatible brackets of Odesskii–Wolf on ℙ5 is maximal, that
is, is not contained in a bigger such space. This leads to a natural question how these two spaces
are related.
Another new example we discover is that for every 𝑛 > 𝑘 > 1 such that 𝑛 ≡ ±1 mod (𝑘), with

odd 𝑘, there exists a bihamiltonian structure on ℙ𝑛−1 containing 𝑞𝑛,𝑘(𝐶) (see Proposition 4.9).
In fact, in this example we get 5 compatible brackets but we do not know how to prove their
linear independence.
The natural question iswhether for every relatively prime pair (𝑛, 𝑘)with𝑛 > 𝑘 + 1, the Feigin–

Odesskii bracket 𝑞𝑛,𝑘(𝐶) extends to a bihamiltonian structure. We believe that our construction
using exceptional bundles on surfaces in Theorem 4.4 should at least provide more examples of
such pairs (if not all of them).
It is an interesting question whether bihamiltonian structures containing Feigin–Odesskii

brackets lead to any interesting integrable systems. We plan to address this question in a
future work.
The paper is organized as follows. In Section 2 we study Feigin–Odesskii Poisson brackets

𝑞𝑛,𝑘(𝐶). The first result here is the formula for the bracket in terms of a triple Massey product
(see Lemma 2.1). The second result of Section 2, which may be of independent interest, is that
the isomorphism class of an elliptic curve 𝐶 can be recovered from 𝑞𝑛,𝑘(𝐶) provided 𝑛 > 𝑘 + 1
(see Theorem 2.4). We prove this by studying the locus where the rank of the Poisson bivector
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ELLIPTIC BIHAMILTONIAN STRUCTURES FROM RELATIVE SHIFTED POISSON STRUCTURES 1391

drops compare to the generic rank. In Section 3 we generalize the construction of a shifted Pois-
son structure on themoduli of complexes over a smooth Calabi–Yau variety from [8] to the case of
families of not necessarily smooth Calabi–Yau varieties (see Theorem 3.9). In Section 4we special-
ize to families of CY-curves. Considering a relative version of Feigin–Odesskii Poisson brackets,
under appropriate assumptions we get collections of compatible Poisson brackets on projective
spaces (see Theorem 4.2). We then show that compatible Poisson brackets arise from the linear
system of anticanonical divisors in a smooth projective surface 𝑋 and an exceptional pair (𝑋,)
(see Theorem 4.4). We consider examples corresponding to such exceptional pairs on some del
Pezzo surfaces and Hirzebruch surfaces. Finally, in Section 5 we show how to compute our Pois-
son brackets in terms of Szegö kernels and deduce that our construction, applied to exceptional
pairs on Hirzebruch surfaces, recovers the compatible Poisson brackets of Odesskii–Wolf in [15].

2 FEIGIN–ODESSKII BRACKETS

In this sectionwe discuss some aspects of the Poisson brackets 𝑞𝑛,𝑘(𝐶) on projective spaces defined
by Feigin–Odesskii. We use the modular definition of these brackets obtained by studying vector
bundle extensions of a fixed stable vector bundle 𝜉 on 𝐶 by 𝐶 .

2.1 Formula for the Poisson bracket as a Massey product

We start by giving the definition of the Feigin–Odesskii bracket 𝑞𝑛,𝑘(𝐶) on the projective space
ℙExt1(𝜉,) = ℙ𝐻1(𝐶, 𝜉∨) following [8, Section 5.2]. Let 𝜉 be a stable vector bundle on an elliptic
curve 𝐶 of degree 𝑛 > 0 and rank 𝑘. Let us fix a trivialization 𝜔𝐶 ≃ 𝐶 . The construction will
depend on 𝜉 and a trivialization of 𝜔𝐶 , however, up to an isomorphism and rescaling, the bracket
depends only on 𝑛, 𝑘 and 𝐶.
Given a nonzero 𝜙 ∈ 𝐻1(𝐶, 𝜉∨) ≃ 𝐻0(𝐶, 𝜉)∗, the tangent space to the projective space is given

by𝐻1(𝐶, 𝜉∨)∕⟨𝜙⟩, while the cotangent space is
⟨𝜙⟩⟂ ∶= ker(𝐻0(𝐶, 𝜉) 𝜙

����→ 𝐻1(𝐶,𝐶)

)
.

Let

0 → 𝐶 → 𝐸 → 𝜉 → 0

be the extension corresponding to 𝜙. Let End(𝐸,𝐶) be the bundle of endomorphisms of 𝐸
preserving 𝐶 . It sits in a natural exact sequence

0 → End(𝐸,𝐶) → End(𝐸) → 𝜉 → 0,

so by applying the functor 𝑅Hom(?,𝐶), we get a boundary homomorphism

𝛿 ∶ Hom(End(𝐸,𝐶),𝐶) → Ext
1(𝜉,𝐶) = 𝐻

1(𝐶, 𝜉∨).

On the other hand, the exact sequence

0 → 𝜉∨ → End(𝐸,𝐶) → End(𝜉) ⊕ 𝐶 → 0
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1392 HUA and POLISHCHUK

induces a surjection Hom(End(𝐸,𝐶),𝐶) → ⟨𝜙⟩⟂ ⊂ 𝐻0(𝐶, 𝜉). The Poisson bivector Π of the
Feigin–Odesskii bracket is uniquely determined by the condition that its value Π𝜙 at 𝜙 fits into a
commutative diagram

(2.1)

We are going to show that this Poisson bracket can be computed as a triple Massey product.
We refer to [7, Section 2] for a general background on Massey products. What is important for us
is that they can be calculated in two ways, either using the triangulated structure (this definition
has its origin in Toda brackets, see [3]), or using the dg-resolutions.

Lemma 2.1. The Poisson bracket Π𝜙 ∶ ⟨𝜙⟩⟂ → 𝐻1(𝜉∨)∕⟨𝜙⟩ is given by 𝑥 ↦ ±𝑀𝑃(𝜙, 𝑥, 𝜙), where
we use the triple Massey product

𝜉[−1]
𝜙
����→ 

𝑥
����→ 𝜉

𝜙
����→ [1].

Equivalently, for 𝑠1, 𝑠2 ∈ ⟨𝜙⟩⟂ ⊂ 𝐻0(𝐶, 𝜉) one has
Π𝜙(𝑠1 ∧ 𝑠2) = ±⟨𝜙,𝑀𝑃(𝑠1, 𝜙, 𝑠2)⟩.

Proof. One way to get the first formula is to use the formula for Π𝜙 in terms of Cech resolutions
given in [8, Section 5.2]. We will instead use the standard recipe for calculating triple Massey
products based on including the first arrow 𝜉[−1] →  into an exact triangle with 𝐸 as the cone
(see [3, Section 2]. Namely, this recipe tells that the map 𝑥 ↦ 𝑀𝑃(𝜙, 𝑥, 𝜙) fits into a commutative
diagram

(2.2)

where 𝛿′ is the boundary homomorphism obtained by applying 𝑅Hom(𝐸, ?) to the extension
sequence. Now the assertion follows easily from the commutative diagram

together with the fact that the vertical arrows in (2.1) and (2.2) are related by 𝛼1 = 𝛽1𝛾1, 𝛾2 = 𝛽2𝛼2.
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ELLIPTIC BIHAMILTONIAN STRUCTURES FROM RELATIVE SHIFTED POISSON STRUCTURES 1393

Next, we note that in terms of 𝐴∞-structure obtained by homological perturbation we have

𝑀𝑃(𝜙, 𝑠1, 𝜙) ≡ ±𝑚3(𝜙, 𝑠1, 𝜙) mod ⟨𝜙⟩.
Next, we use the cyclic symmetry (here we use the existence of a cyclic minimal𝐴∞-structure that
follows from [18, Section 6.5]):

⟨𝑚3(𝜙, 𝑠1, 𝜙), 𝑠2⟩ = ±⟨𝜙,𝑚3(𝑠1, 𝜙, 𝑠2)⟩.
It remains to observe that in the right-hand side of the last formula we can replace𝑚3(𝑠1, 𝜙, 𝑠2)

by the corresponding Massey product

𝑀𝑃(𝑠1, 𝜙, 𝑠2) ∈ 𝐻
0(𝐶, 𝜉)∕⟨𝑠1, 𝑠2⟩.

Indeed, the pairing with 𝜙 is zero on the subspace ⟨𝑠1, 𝑠2⟩ ⊂ ⟨𝜙⟩⟂. □

Remark 2.2. The sign ambiguity in Lemma 2.1 (and in other statements below involving Massey
products) can be resolved: the signs appear from the cyclicity constraint for 𝐴∞-structures and
from relating Massey products with 𝑚3 (see, for example, [7, Section 2]). For our purposes the
exact value of the sign is not important.

We have the following nice formula for the rank of the Poisson bracket Π on ℙExt1(𝜉,).

Proposition 2.3. For a nontrivial extension

0 → 𝐶 → 𝐸 → 𝜉 → 0

with the class 𝜙 ∈ Ext1(𝜉,𝐶), one has

rkΠ𝜙 = deg(𝜉) − dimHom(𝐸, 𝐸).

Proof. By definition, themapΠ𝜙 ∶ ⟨𝜙⟩⟂ → 𝐻1(𝜉∨)∕⟨𝜙⟩ fits into the following sequence of arrows,
whose composition is the cup product with 𝜙:

Hom(𝐸, 𝜉) → ⟨𝜙⟩⟂ Π𝜙
�����→ 𝐻1(𝜉∨)∕⟨𝜙⟩→ 𝐻1(𝐸∨) = Ext1(𝐸,),

where the first map is a surjection induced by the natural mapHom(𝐸, 𝜉) → Hom(𝐶, 𝜉) and the
last map is an injection induced by the natural map 𝐻1(𝜉∨) → 𝐻1(𝐸∨). Hence, the rank of Π𝜙 is
equal to the rank of the cup product with 𝜙map,

Hom(𝐸, 𝜉)
𝜙
����→ Ext1(𝐸,).

Note thatHom(𝜉,𝐶) = 0 since 𝜉 is stable of positive slope, and hence,Hom(𝐸,𝐶) = 0 since the
extension does not split. Hence, the kernel of the above map is exactly Hom(𝐸, 𝐸). Furthermore,
we have Ext1(𝐸, 𝜉) = Hom(𝜉, 𝐸)∨ = 0 since the extension does not split. Hence, by the Riemann-
Roch formula dimHom(𝐸, 𝜉) = deg(𝜉) and the assertion follows. □
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1394 HUA and POLISHCHUK

2.2 Recovering the elliptic curve from the Poisson bracket

Theorem 2.4. Fix an integer 𝑑 > 2. Suppose 𝜉 is a stable vector bundle of rank 𝑟 < 𝑑 − 1 and degree
𝑑 on an elliptic curve 𝐶, and 𝜉′ a stable vector bundle of rank 𝑟′ < 𝑑 − 1 and the same degree 𝑑 on
another elliptic curve 𝐶′. If there exists a Poisson isomorphism ℙExt1(𝜉,𝐶) ≃ ℙExt1(𝜉′,𝐶′) then
𝐶 ≃ 𝐶′.

A trivial example is when 𝑟 = 1 and 𝑑 = 3: then 𝐶 is recovered as the vanishing locus of the
Poisson structure. If 𝑟 = 1 and 𝑑 = 4, then 𝐶 is a connected component of the vanishing locus of
the Poisson structure (the entire vanishing locus is the union of 𝐶 with four points).
The proof is based on the following observation. We fix an elliptic curve 𝐶 and a stable vector

bundle 𝜉 as in the above Theorem. Let 𝑐 = g𝑐𝑑(𝑑, 𝑟 + 1).

Proposition 2.5. The generic rank of the Poisson structure Π on ℙExt1(𝜉,𝐶) is 𝑑 − 𝑐. Let 𝑍 ⊂
ℙExt1(𝜉,𝐶) be the Zariski closure of the set of all points where the rank ofΠ is 𝑑 − 𝑐 − 2. Then each
nonrational irreducible component of 𝑍 is birational to 𝔸𝑚 × 𝐶 for some𝑚, and there exists at least
one such component.

Let us set

𝑣0 ∶=

(
𝑑

𝑐
,
𝑟 + 1

𝑐

)
∈ ℤ2,

and let 𝜇0 = 𝑑∕(𝑟 + 1) be the corresponding slope. Let also set

𝑣 ∶= (𝑑, 𝑟).

We denote by 𝜒 ∶ ℤ2 × ℤ2 → ℤ the bilinear form

𝜒((𝑑1, 𝑟1), (𝑑2, 𝑟2)) = 𝑑2𝑟1 − 𝑑1𝑟2.

For a vector bundle 𝐸 we denote by 𝑣(𝐸) the corresponding vector (deg(𝐸), rk(𝐸)).

Lemma 2.6. Let 𝐸𝜙 denote the extension corresponding to a nonzero class 𝜙 ∈ Ext1(𝜉,𝐶).

(i) We have rkΠ𝜙 ⩽ 𝑑 − 𝑐 with equality if and only if 𝐸𝜙 =
⨁
𝐸𝑖 where 𝐸𝑖 are indecomposable

bundles of slope 𝜇0 withHom(𝐸𝑖, 𝐸𝑗) = 0 for 𝑖 ≠ 𝑗.
(ii) One has rkΠ𝜙 = 𝑑 − 𝑐 − 2 in one of the two cases:

∙ 𝐸𝜙 ≃ 𝐸1 ⊕ 𝐸2, where both 𝐸1 and 𝐸2 are stable, 𝜒(𝑣(𝐸1), 𝑣0) = 1 (and hence, 𝜒(𝑣(𝐸2), 𝑣0) =
−1);

∙ 𝐸𝜙 ≃ 𝐸1 ⊕ 𝐸2 ⊕⋯⊕𝐸𝑚, where all 𝐸𝑖 are indecomposable of slope 𝜇0, 𝐸1 is stable and
Hom(𝐸𝑖, 𝐸𝑗) = 0 for 𝑖 ≠ 𝑗, (𝑖, 𝑗) ≠ (1, 2), (2, 1).

The second case occurs only for 𝑐 > 1.

Proof. (i),(ii) By Proposition 2.3, we have to prove that dimEnd(𝐸𝜙) ⩾ 𝑐 and to study the cases
where we have an equality and the cases where dimEnd(𝐸𝜙) = 𝑐 + 2.
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ELLIPTIC BIHAMILTONIAN STRUCTURES FROM RELATIVE SHIFTED POISSON STRUCTURES 1395

Assume first that 𝐸𝜙 is indecomposable (and hence, semistable). The abelian category of
semistable bundles 𝑆𝐵(𝜇0) of slope 𝜇0 is equivalent to the category of torsion sheaves in such
a way that stable bundles of slope 𝜇0 are simple objects in 𝑆𝐵(𝜇0). Hence, a semistable bundle 𝐹
of slope 𝜇0 has length 𝓁 in this category if and only if 𝑣(𝐹) = 𝓁 ⋅ 𝑣0. Since 𝑣(𝐸𝜙) = 𝑐𝑣0, if 𝐸𝜙 is
indecomposable it has dimEnd(𝐸𝜙) = 𝑐.
Now let

𝐸𝜙 = 𝐸1 ⊕⋯⊕ 𝐸𝑚,

where 𝑚 ⩾ 2, each 𝐸𝑖 is indecomposable, and 𝜇(𝐸1) ⩽ 𝜇(𝐸2) ⩽⋯ ⩽ 𝜇(𝐸𝑚). Assume first that 𝐸𝜙
is semistable, and let 𝓁𝑖 be the length of 𝐸𝑖 in 𝑆𝐵(𝜇0). We have∑

𝑖

dimEnd(𝐸𝑖) =
∑
𝑖

𝓁𝑖 = 𝓁(𝐸𝜙) = 𝑐.

Thus, dimEnd(𝐸𝜙) ⩾ 𝑐 with equality precisely when Hom(𝐸𝑖, 𝐸𝑗) = 0 for 𝑖 ≠ 𝑗.
Furthermore, if Hom(𝐸𝑖, 𝐸𝑗) ≠ 0 for some 𝑖 ≠ 𝑗 then

dimHom(𝐸𝑖, 𝐸𝑗) = dimHom(𝐸𝑖, 𝐸𝑗) = min(𝓁𝑖 ,𝓁𝑗).

Hence, if dimEnd(𝐸𝜙) = 𝑐 + 2 then we can have at most one such pair and we should have
min(𝓁𝑖 ,𝓁𝑗) = 1.
Next, let us consider the case when 𝐸𝜙 is unstable. Then there exists 𝑖 > 1 such that

𝜒(𝑣(𝐸1), 𝑣(𝐸𝑖)) > 0. Hence, 𝜒(𝑣(𝐸1), 𝑣(𝐸)) > 0. It follows that

dimHom(𝐸1, 𝐸2 ⊕⋯𝐸𝑚) ⩾ 𝜒(𝑣(𝐸1), 𝑣(𝐸2) +⋯ + 𝑣(𝐸𝑚)) = 𝜒(𝑣(𝐸1), 𝑐𝑣0) = 𝑐𝜒(𝑣(𝐸1), 𝑣0) ⩾ 𝑐.

Therefore,

dimEnd(𝐸𝜙) ⩾

𝑚∑
𝑖=1

dimEnd(𝐸𝑖) + dimHom(𝐸1, 𝐸2 ⊕⋯𝐸𝑚) ⩾ 2 + 𝑐.

Furthermore, the equality is possible only if𝑚 = 2, both 𝐸1 and 𝐸2 are stable and 𝜒(𝑣(𝐸1), 𝑣0) =
1. □

Remark 2.7. The proof of Lemma 2.6(i) also shows that in the case 𝑟 = 𝑑 − 1 the Feigin–Odesskii
bracket is identically zero.

Proof of Proposition 2.5. It suffices to find a finite nonempty collection of irreducible closed subva-
rieties, 𝑍1, … , 𝑍𝑛, each birational to the product of 𝐶 with an affine space, such that ∪𝑍𝑖 contains
every pointwith rkΠ𝜙 = 𝑑 − 𝑐 − 2 and also at a generic point of each𝑍𝑖 wehave rkΠ𝜙 = 𝑑 − 𝑐 − 2.
Step 1. First, let us fix a decomposition 𝑐𝑣0 = 𝑣1 + 𝑣2 in ℤ2, with 𝑣𝑖 = (𝑑𝑖, 𝑟𝑖) and 𝑟𝑖 > 0, such

that

𝜒(𝑣1, 𝑣0) = 1 and 𝜒(𝑣2, 𝑣) = 𝑑2 − 𝑐 > 0.
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1396 HUA and POLISHCHUK

For each such decomposition we will construct an irreducible subvariety 𝑍(𝑣2) in ℙExt1(𝜉,𝐶),
which contains all 𝜙 with 𝐸𝜙 ≃ 𝜉1 ⊕ 𝜉2, where 𝜉1 and 𝜉2 are stable with 𝑣(𝜉1) = 𝑣1, 𝑣(𝜉2) = 𝑣2
(that is, all points𝜙 of the first type fromLemma 2.6(ii)). Furthermore,wewill check that a generic
point of 𝑍(𝑣2) is a point of this type.
Let(𝑣2) denote the moduli space of stable bundles 𝐹 with 𝑣(𝐹) = 𝑣2 (note that(𝑣2) ≃ 𝐶).

Let us consider the projective bundle 𝑋 →(𝑣2) with fiber over 𝜉2 given by ℙHom(𝜉2, 𝜉), and
let 𝑋0 ⊂ 𝑋 be the open subset corresponding to injective morphisms 𝜉2 → 𝜉. Over 𝑋0 we have a
projective bundle 𝑌 → 𝑋0 associated with the vector bundle with fibers

ker(Ext1(𝜉,𝐶) → Ext
1(𝜉2,𝐶))

(here we use the fact that this map of Ext1’s is surjective). Note that 𝑋0 and 𝑌 are irreducible and
𝑌 is birational to the product of(𝑣2) with an affine space of dimension

𝜒(𝑣2, 𝑣) − 1 + 𝑑 − 𝑑2 − 1 = 𝑑 − 𝑐 − 2.

Wehave an obviousmorphism𝑌 → ℙExt1(𝜉,𝐶) andwe denote by𝑍(𝑣2) the closure of its image.
It is clear that the image of 𝑌 consists of all 𝜙 which split over some embedding 𝜉2 → 𝜉, with
𝑣(𝜉2) = 𝑣2.
Assume that 𝐸𝜙 ≃ 𝜉1 ⊕ 𝜉2 where 𝜉𝑖 are stable and 𝑣(𝜉𝑖) = 𝑣𝑖 . Then both components of the

embedding 𝐶 → 𝜉1 ⊕ 𝜉2 are nonzero (otherwise the quotient would be decomposable). Hence,
the intersection of the image of 𝐶 with 0 ⊕ 𝜉2 is zero, which implies that the composed map
𝜉2 → 𝐸𝜙 → 𝜉 is an embedding. Since 𝜙 splits over 𝜉2 → 𝜉, we see that 𝜙 is contained in 𝑍(𝑣2).
For a generic point of 𝑋0 the quotient 𝜉∕𝜉2 will be semistable, for a generic point of 𝑌 the

corresponding extension of 𝜉∕𝜉2 by𝐶 will be semistable with the vector 𝑣1, hence, stable. So the
corresponding 𝐸𝜙 sits in an exact sequence

0 → 𝜉2 → 𝐸𝜙 → 𝜉1 → 0

which necessarily splits since 𝜇(𝜉2) > 𝜇(𝜉1).
Now let us check that themap𝑌 → 𝑍(𝑣) is birational. It is enough to check that if 𝐸𝜙 ≃ 𝜉1 ⊕ 𝜉2

for some 𝜙, with 𝜉𝑖 as above, then there is a unique 𝜉′
2
∈(𝑣2) and a unique nonzero mor-

phism 𝜉′
2
→ 𝜉, up to rescaling, such that 𝜙 splits over this morphism. But Hom(𝜉′

2
, 𝜉1) = 0 and

Hom(𝜉′
2
, 𝜉2) ≠ 0 only when 𝜉′2 = 𝜉2. Furthermore, if 𝜙 splits over a morphism 𝜉2 → 𝜉 then this

morphism factors through 𝐸𝜙 and the statement follows from the fact that dimHom(𝜉2, 𝐸𝜙) = 1.
Step 2.We claim that there exists at least one decomposition 𝑐𝑣0 = 𝑣1 + 𝑣2 as in Step 1. Indeed,

assume first that (𝑟 + 1)∕𝑐 > 1. Since 𝑑∕𝑐 and (𝑟 + 1)∕𝑐 are relatively prime, there exists a unique
pair of integers (𝑟1, 𝑑1) with 0 ⩽ 𝑟1 < (𝑟 + 1)∕𝑐 such that

𝑑

𝑐
⋅ 𝑟1 = 𝑑1 ⋅

𝑟 + 1

𝑐
+ 1.

Furthermore, we necessarily have 𝑟1 > 0. We define 𝑣2 as 𝑐𝑣0 − 𝑣1.
Note that since 𝑑 > 𝑟 + 1, 𝑑 cannot divide 𝑟 + 1, so 𝑑

𝑐
> 1. In particular, we cannot have 𝑣2 = 𝑣,

so it enough to check the nonstrict inequality 𝜒(𝑣2, 𝑣) ⩾ 0, which is equivalent to

𝑑1 ⩽ 𝑑 − 𝑐.
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ELLIPTIC BIHAMILTONIAN STRUCTURES FROM RELATIVE SHIFTED POISSON STRUCTURES 1397

The inequality 𝑟1 < (𝑟 + 1)∕𝑐 implies that 𝑑1 <
𝑑

𝑐
, which gives the required inequality for 𝑐 = 1.

For 𝑐 ⩾ 2 we use in addition

𝑑

𝑐
⩽ 2

(
𝑑

𝑐
− 1

)
⩽ 𝑐

(
𝑑

𝑐
− 1

)
= 𝑑 − 𝑐.

In the remaining case 𝑐 = 𝑟 + 1 we can just take 𝑟1 = 1 and 𝑑1 =
𝑑

𝑐
− 1.

Step 3.Assume that 𝑐 > 2.Wewill construct an irreducible subvariety𝑍0 inℙExt1(𝜉,𝐶)which
contains all the points𝜙 of the second type described in Lemma2.6(ii). Furthermore,wewill check
that a generic point of 𝑍0 is a point of this type.
First, we observe that for every point 𝜙 of the second type from Lemma 2.6(ii), there exists

an embedding 𝐸⊕2
1
→ 𝐸𝜙 such that the quotient is semistable (of slope 𝜇0). Indeed, since

Hom(𝐸1, 𝐸2) ≠ 0, there exists an embedding 𝐸1 → 𝐸2 with the semistable quotient, and the
assertion follows.
Now let 𝑋 be the relative Grassmannians of 2-planes in the bundle over(𝑣0) with the fiber

Hom(𝜉0, 𝜉) over 𝜉0 ∈(𝑣0). Let us denote by 𝑋0 ⊂ 𝑋 the open subset consisting of 2-planes
𝑃 ⊂ Hom(𝜉0, 𝜉) such that the corresponding map 𝑃⊗𝜉0 → 𝜉 is injective. Let 𝑌 → 𝑋0 denote the
projectivization of the vector bundle with fibers

ker(Ext1(𝜉,𝐶) → Ext
1(𝑃⊗𝜉0,𝐶)).

We have an obvious morphism 𝑌 → ℙExt1(𝜉,𝐶) and we denote by 𝑍0 the closure of its image.
Assume that 𝐸𝜙 is of the second type from Lemma 2.6(ii). Then we have an embedding 𝜉⊕2

0
→

𝐸𝜙 such that the quotient is a nonzero semistable bundle 𝐸′ of slope 𝜇0 (here we use the assump-
tion 𝑐 > 2). We claim that the composed map 𝐶 → 𝐸

′ is nonzero. Indeed, otherwise we would
have a nonzero map from 𝐸𝜙∕𝐶 ≃ 𝜉 to 𝐸′ which is impossible since 𝜇(𝐸′) = 𝜇0 < 𝜇(𝜉). Thus,
the composed map

𝜉⊕2
0
→ 𝐸𝜙 → 𝜉

is injective, and we see that 𝜙 lies in the image of 𝑌.
We claim that for a generic point of 𝑌 the quotient 𝜉∕(𝑃⊗𝜉0) is semistable and the cor-

responding extension 𝐸′ of 𝜉∕(𝑃⊗𝜉0) by 𝐶 is also semistable. Hence, we get an exact
sequence

0 → 𝜉⊕2
0
→ 𝐸𝜙 → 𝐸

′ → 0

with 𝐸′ semistable of slope 𝜇0. Furthermore, for a generic point we will have Hom(𝜉0, 𝐸′) = 0
and dimEnd(𝐸′) = 𝑐 − 2, so the sequence will split and 𝐸𝜙 will be of the second type from
Lemma 2.6(ii).
To see that themap𝑌 → 𝑍0 is birational, we first observe that if 𝜙 is such that 𝐸𝜙 = 𝜉

⊕2
0
⊕ 𝐸′ is

of type from Lemma 2.6(ii), then for any stable 𝜉′
0
of slope 𝜇0 one has dimHom(𝜉′0, 𝐸𝜙) ⩽ 1 unless

𝜉′
0
≃ 𝜉0. Furthermore, the two-dimensional subspace of Hom(𝜉0, 𝜉) is recovered from 𝐸𝜙 as the

image of the embedding

Hom(𝜉0, 𝐸𝜙) → Hom(𝜉0, 𝜉). (2.3)

It is also easy to see that 𝑌 is birational to 𝔸𝑑−5 × 𝐶.
Step 4. Finally let us consider the case 𝑐 = 2. In this case for each of the four nonisomorphic

stable bundle 𝜉0 with 𝑣(𝜉0) = 𝜇0 such that det(𝜉0)⊗2 ≃ det(𝜉), we define a rational subvariety
𝑍(𝜉0) ⊂ ℙExt

1(𝜉,𝐶) as follows.

 17538424, 2023, 4, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/topo.12315 by U
niversity O

f O
regon L

ibraries, W
iley O

nline L
ibrary on [06/07/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



1398 HUA and POLISHCHUK

Let 𝑋(𝜉0) denote the Grassmannian of 2-planes in Hom(𝜉0, 𝜉) and let 𝑋0(𝜉0) ⊂ 𝑋(𝜉0) be the
open subset consisting of 𝑃 such that the corresponding map 𝑃⊗𝜉0 → 𝜉 is surjective. In this case
the kernel is necessarily isomorphic to , so we get a well-defined map 𝑋0(𝜉0) → ℙExt1(𝜉,𝐶).
We let 𝑍(𝜉0) be the closure of its image.
It is clear that the image of 𝑋0(𝜉0) consists precisely of points 𝜙 such that 𝐸𝜙 ≃ 𝜉

⊕2
0
. As in Step

3, the point of the Grassmannian is recovered from 𝐸𝜙 as the image of the map (2.3). □

Proof of Theorem 2.4. By Proposition 2.5, the isomorphism class of a variety 𝑍, and hence a bira-
tional class of 𝔸𝑚 × 𝐶 is determined by the Poisson structure. Namely, 𝑍 is the closure of the set
of points where the rank of the Poisson structure drops by 2 compare to the generic rank. But it is
well known that 𝔸𝑚 × 𝐶 and 𝔸𝑛 × 𝐶′ can be birational only if 𝐶 ≃ 𝐶′. □

3 SHIFTED POISSONMODULI STACKSWITH SINGULAR SOURCE

Throughout this section we fix a base commutative Noetherian ring 𝑘 of residue characteristics 0.
All stacks and schemes are over 𝑘 unless we specify otherwise. We call a 𝑘-scheme 𝑋 flat, proper
or projective if the structure morphism 𝑋 → Spec 𝑘 is such.
For the basics on derived symplectic and Poisson geometry, we refer to [16, Section 1] [8,

Sections 2 and 3].

3.1 -orientations

Let us recall one of the main results in [16].

Theorem 3.1 ([Theorem 2.5 [16]]). Let 𝐹 be a locally geometric derived stack locally of finite pre-
sentation over 𝑘 equipped with an 𝑛-shifted symplectic form 𝜔. Let𝑋 be an-compact derived stack
over 𝑘 equippedwith an-orientation [𝑋] ∶ 𝐶(𝑋,𝑋) → 𝑘[−𝑑] of degree𝑑. Assume that the derived
mapping stack𝐌𝐚𝐩(𝑋, 𝐹) is itself locally geometric and locally of finite presentation over 𝑘. Then
𝐌𝐚𝐩(𝑋, 𝐹) carries a canonical (𝑛 − 𝑑)-shifted symplectic structure.

The definition of being -compact can be found in [16, Definition 2.1]. Any quasi-projective
scheme is -compact. By definition 𝐶(𝑋,𝑋) is defined to be 𝐑Hom(𝑋,𝑋), which can be
represented by the Cech complex computing cohomology of 𝑋 .

Definition 3.2. Let 𝑋 be an-compact derived stack and 𝑑 ∈ ℤ. An-orientation of degree 𝑑 on
𝑋 consists of a morphism of complexes

[𝑋] ∶ 𝐶(𝑋,𝑋) → 𝑘[−𝑑],

such that for any𝐴 ∈ 𝐜𝐝𝐠𝐚⩽0
𝑘
and any perfect complexes 𝐸 on𝑋𝐴 ∶= 𝑋 × Spec 𝐴, the morphism

𝐶(𝑋𝐴, 𝐸) → 𝐶(𝑋𝐴, 𝐸
∨)∨[−𝑑]

induced by

[𝑋𝐴] ∶= [𝑋]⊗𝑖𝑑 ∶ 𝐶(𝑋𝐴,𝑋𝐴) ≃ 𝐶(𝑋,𝑋)⊗𝑘𝐴 → 𝐴[−𝑑]

is a quasi-isomorphism of 𝐴-dg-modules.
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ELLIPTIC BIHAMILTONIAN STRUCTURES FROM RELATIVE SHIFTED POISSON STRUCTURES 1399

Definition 3.3. Let 𝑋 be a projective scheme over Spec 𝑘. We call 𝑋 is Gorenstein Calabi–Yau
𝑑-fold if

(1) the dualizing complex 𝜔𝑋 is invertible;
(2) there is an isomorphism 𝑋 ≅ 𝜔𝑋 ;
(3) 𝑋 is connected.

Lemma 3.4. Let 𝑋 be a Gorenstein Calabi–Yau 𝑑-fold. Then 𝑋 admits an -orientation.

Proof. Because 𝑋 is Gorenstein, the dualizing complex 𝜔𝑋 is quasi-isomorphic to an invertible
sheaf. A Calabi–Yau structure corresponds to a trivialization 𝜂 ∶ 𝑋 ≅ 𝜔𝑋 . Let  be a perfect com-
plex on 𝑋. Denote by (∙, 𝑑) the total complex of the sheaf endomorphism complex Hom( , ).
Then0 =

⨁
𝑖 Hom(

𝑖 ,  𝑖). Denote by

𝜏′ ∶ 0 → 𝑋

the (super)trace morphism. We extend 𝜏′ to a morphism from∙ to𝑋 by pre-composing it with
the natural projection. Define 𝜏 to be the composition 𝜂◦𝜏′. Clearly, 𝜏′◦𝑑 = 0. The canonical trace
morphism𝐻𝑑(𝜔𝑋) → 𝑘 (from the definition of dualizing complex), togetherwith theCY structure
𝜂, defines the desired morphism

[𝑋] ∶ 𝐶(𝑋,𝑋) → 𝑘[−𝑑].

Nowwe consider the casewhen the base is an affine derived scheme.Given𝐴 ∈ 𝐜𝐝𝐠𝐚⩾0
𝑘
, denote

by 𝑋𝐴 the product 𝑋 ×𝑘 Spec 𝐴. Let  be a perfect complex on 𝑋𝐴. We have a cartesian diagram
of derived schemes

where𝑋𝐻0𝐴 ∶= 𝑋 ×𝑘 Spec 𝐻0(𝐴). By the base change formula of derived schemes [19, Proposition
1.4], there is an equivalence

𝑖∗𝑢∗ ≃ 𝑣∗𝑗
∗

for any quasi-coherent complex  on 𝑋𝐴. All functors are derived. Take  = ⊗∨. We need to
check that the morphism

𝜂 ∶ 𝑢∗ → 𝐑Hom𝐴(𝑢∗(
∨), 𝐴[−𝑑])

is an isomorphism in D(𝐴). We claim that it is equivalent to showing that

𝑖∗(𝜂 ) ∶ 𝑖
∗𝑢∗ → 𝑖

∗𝐑Hom(𝑢∗(
∨), 𝐴[−𝑑])
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1400 HUA and POLISHCHUK

is an isomorphism in D(𝐻0𝐴). Because 𝑢 is proper and flat, both 𝑢∗ and𝐑Hom(𝑢∗(∨), 𝐴[−𝑑])
are perfect 𝐴-modules. It suffices to show a perfect 𝐴-module 𝑀 is acyclic if and only if 𝑖∗𝑀 is
acyclic. Because 𝑀 is perfect and 𝐴 is nonpositively graded, there exists 𝑛 such that 𝐻𝑖(𝑀) = 0
for 𝑖 > 𝑛. By spectral sequence,

𝐻𝑛(𝑀) = 𝐻𝑛(𝑀⊗𝐴𝐻
0𝐴) = 𝐻𝑛(𝑖∗𝑀) = 0.

By induction,𝑀 is acyclic. The claim is proved.
By the base change, 𝑖∗(𝜂 ) is isomorphic to the morphism

𝜂𝑗∗ ∶ 𝑣∗𝑗
∗ → 𝐑Hom𝐻0𝐴(𝑣∗(𝑗

∗∨),𝐻0𝐴[−𝑑]),

induced by the bilinear map

𝑗∗⊗𝑗∗(∨) → 𝜔𝑣 ≅ 𝑋𝐻0𝐴
.

Then 𝜂𝑗∗ is an isomorphism inD(𝐻0𝐴) byGrothendieck duality for the schememorphism 𝑣. □

3.2 Shifted Poisson structure on the moduli of complexes

We briefly recall the construction of moduli stack of complexes following [10, Section 2]. The
basics on gradedmixed objects can be found in [2, Section 1]. Those readers who are familiar with
[2] can skip the first two pages and read Theorem 3.6 directly.
Let 𝑘 be a Noetherian commutative ring. Let 𝐶(𝑘) be the category of unbounded dg-𝑘-modules

with the standard model structure, where weak equivalences are quasi-isomorphisms and fibra-
tions are epimorphisms of cochain complexes. Let 𝑀 be a symmetric monoidal model category
with a 𝐶(𝑘)-enrichment.
A graded mixed object in category 𝑀 is a ℤ-family of {𝐸(𝑝)}𝑝∈ℤ of objects in 𝑀 together with

morphisms in𝑀

𝜖 = {𝜖𝑝 ∶ 𝐸(𝑝) → 𝐸(𝑝 + 1)[1]}𝑝∈ℤ,

where [1] is the shift functor defined by the 𝐶(𝑘)-enrichment, and 𝜖2 = 0. We write (𝐸, 𝜖) for the
family together with the differential. A morphism

𝑓 ∶ (𝐸, 𝜖) → (𝐹, 𝜖)

is a family of maps {𝑓(𝑝) ∶ 𝐸(𝑝) → 𝐹(𝑝)}𝑝∈ℤ in𝑀 that commutes with 𝜖. We call a graded mixed
object in𝑀 bounded if 𝐸(𝑝) = 0 except for finitely many 𝑝. Denote the category of graded mixed
objects in𝑀 by 𝜖 − 𝑀gr.
The category𝑀gr ∶=

∏
𝑝∈ℤ 𝑀 is naturally a symmetric monoidal model category enriched in

𝐶(𝑘), inherited from𝑀. There is a forgetful functor

𝜖 − 𝑀gr → 𝑀gr
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ELLIPTIC BIHAMILTONIAN STRUCTURES FROM RELATIVE SHIFTED POISSON STRUCTURES 1401

forgetting the 𝑘[𝜖]-structure. Equip 𝜖 − 𝑀gr with the symmetric monoidal model structure
through the forgetful functor. Given a triangulated dg category 𝑇, following [20] we denote the
category of perfect (or compact) objects by 𝑇𝑝𝑒. Suppose 𝑀 is triangulated and admits arbitrary
coproducts. An object of 𝜖 − 𝑀gr is called perfect if it is a compact object in 𝑀gr. Denote by
𝜖𝑝𝑒 − 𝑀

gr the subcategory of 𝜖 − 𝑀gr consisting of perfect objects.
Let 𝐸, 𝐹 be two mixed graded objects. We define the external hom by

Homℕ𝜖 (𝐸, 𝐹) ∶=
∏
𝑝∈ℤ

(
Homℕ𝜖 (𝐸, 𝐹)(𝑝)

)
,

where

Homℕ𝜖 (𝐸, 𝐹)(𝑝) =
∏
𝑞∈ℕ

Hom𝑀(𝐸(𝑞), 𝐹(𝑞 + 𝑝)).

The differential

𝜖(𝑝) ∶ Homℕ𝜖 (𝐸, 𝐹)(𝑝) → Hom
ℕ
𝜖 (𝐸, 𝐹)(𝑝 + 1)[1]

is defined by the adjoint action of 𝜖 on 𝐸 and 𝐹. This defines a 𝐶(𝑘)-enrichment of 𝜖 − 𝑀gr and
the forgetful functor 𝜖 − 𝑀gr → 𝑀gr is 𝐶(𝑘)-enriched.

Example 3.5. When 𝑀 = 𝐶(𝑘), denote the stack of perfect objects in 𝐶(𝑘) by ℝ𝑃𝑒𝑟𝑓, the stack
of objects in 𝜖𝑝𝑒 − 𝐶(𝑘)gr by ℝ𝜖𝑃𝑒𝑟𝑓 the stack of perfect objects in 𝐶(𝑘)gr by ℝ𝑃𝑒𝑟𝑓

ℤ

𝑏
. The lower

index 𝑏 stands for bounded. We have stack morphism

(3.1)

where 𝑝 is induced by the forgetful functor and 𝑞 is induced by the functor taking the total com-
plex. Denote by 𝐂𝐩𝐥𝐱 the subcategory of 𝜖𝑝𝑒 − 𝐶(𝑘)gr where 𝐸(𝑝) has perfect amplitude [0,0] for
all 𝑝 ∈ ℤ, and by ℝ𝐶𝑝𝑙𝑥 the associate stack of objects. Then the above diagram restricts to

(3.2)

where 𝑉𝑒𝑐𝑡 is the stack of vector bundles. In a seminal paper [20], Toen and Vaquie have proved
that ℝ𝑃𝑒𝑟𝑓 is a locally geometric stack locally of finite presentation over 𝑘. The same holds for
ℝ𝑃𝑒𝑟𝑓ℤ

𝑏
and ℝ𝑉𝑒𝑐𝑡ℤ

𝑏
.
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1402 HUA and POLISHCHUK

Let 𝑋 be a flat projective 𝑘-scheme, and let 𝑀 = Qcoh(𝑋) be the category of quasi-coherent
complexes on𝑋. An object of 𝜖𝑝𝑒 − 𝑀gr is a gradedmixed complexes of quasi-coherent complexes
{𝐸(𝑝)}𝑝∈ℤ where 𝐸(𝑝) is a perfect complex on 𝑋 for all 𝑝 ∈ ℤ and 𝐸(𝑝) = 0 except for finitely
many 𝑝. Denote by 𝐂𝐩𝐥𝐱(𝑋) the subcategory of 𝜖𝑝𝑒 − 𝑀gr where 𝐸(𝑝) has perfect amplitude [0,0]
for all 𝑝 ∈ ℤ. Objects of 𝐂𝐩𝐥𝐱(𝑋) are simply bounded complexes of vector bundles (since we have
assumed that 𝑋 is projective).

Theorem 3.6 ([10, Lemma 2.4, Proposition 7.3, Theorem 2.3]). Let𝑋 be a flat projective 𝑘-scheme.
Denote by ℝ𝜖𝑃𝑒𝑟𝑓(𝑋) the stack of objects in 𝜖𝑝𝑒 − Qcoh(𝑋)gr and ℝ𝐶𝑝𝑙𝑥(𝑋) the stack of objects of
𝐂𝐩𝐥𝐱(𝑋). Then there is an equivalence of stacks

ℝ𝜖𝑃𝑒𝑟𝑓(𝑋) ≃ 𝐌𝐚𝐩
(
𝑋,ℝ𝜖𝑃𝑒𝑟𝑓

)
≃ 𝐌𝐚𝐩

(
𝑋,𝐌𝐚𝐩([𝔸1

/
𝔾𝑚], ℝ𝑃𝑒𝑟𝑓)

)
,

where𝐌𝐚𝐩 is the internal homof the category of (derived) stacks. As a consequence,ℝ𝜖𝑃𝑒𝑟𝑓,ℝ𝐶𝑝𝑙𝑥,
ℝ𝜖𝑃𝑒𝑟𝑓(𝑋) and ℝ𝐶𝑝𝑙𝑥(𝑋) are locally geometric stacks locally of finite presentation over 𝑘.

Lemma 3.7. Let 𝑘 be a commutative Noetherian ring of residue characteristics 0 and𝑋 be a Goren-
stein Calabi–Yau 𝑑-fold (over Spec 𝑘). Then for a given isomorphism𝑋 ≅ 𝜔𝑋 , ℝ𝑃𝑒𝑟𝑓(𝑋) admits a
canonical (2 − 𝑑)-shifted symplectic structure.

Proof. By [20, Proposition 3.7], ℝ𝑃𝑒𝑟𝑓 is locally geometric and locally of finite presentation
over 𝑘. It admits a canonical 2-shifted symplectic structure by [16, Theorem 2.12]. Since 𝑋 is
projective over 𝑘, it is -compact. Applying Lemma 3.4, the isomorphism 𝑋 ≅ 𝜔𝑋 defines an
-orientation. By Lemma 3.6, ℝ𝑃𝑒𝑟𝑓(𝑋) is locally geometric and locally of finite presentation
over 𝑘. Finally by Theorem 3.1, ℝ𝑃𝑒𝑟𝑓(𝑋) = 𝐌𝐚𝐩(𝑋,ℝ𝑃𝑒𝑟𝑓) admits a canonical (2 − 𝑑)-shifted
symplectic structure. □

Remark 3.8. Sinceℝ𝑉𝑒𝑐𝑡(𝑋), the stack of vector bundles on𝑋, is an open substack ofℝ𝑃𝑒𝑟𝑓(𝑋), it
inherits the symplectic structure on ℝ𝑃𝑒𝑟𝑓(𝑋). Since ℝ𝑃𝑒𝑟𝑓ℤ

𝑏
(𝑋) is locally a finite direct product

of ℝ𝑃𝑒𝑟𝑓(𝑋), therefore is also canonically symplectic. The same holds for ℝ𝑉𝑒𝑐𝑡ℤ
𝑏
(𝑋).

The following result is a version of [8, Theorem 3.17] for not necessarily smooth Calabi–Yau
families.

Theorem 3.9 ([10, Theorem 3.4]). Let 𝑘 be a Noetherian commutative ring of residue characteris-
tics zero and 𝑋 be a Gorenstein Calabi–Yau 𝑑-fold over Spec 𝑘. Given a trivialization 𝑋 ≅ 𝜔𝑋 , the
moduli stack ℝ𝐶𝑝𝑙𝑥(𝑋) admits a canonical (1 − 𝑑)-shifted Poisson structure.

We refer to [2, 16] for the definitions of a shifted symplectic and a shifted Poisson structure
on a derived stack. The Poisson structure in Theorem 3.9 is indeed constructed via Lagrangian
structure (see [2, 8, 16]) using the following result of Melani and Safronov.

Theorem 3.10. [13, Theorem 4.22] Suppose𝒳,𝒴 are locally geometric stacks locally of finite pre-
sentation. Let 𝑓 ∶ 𝒳 → 𝒴 be a stack morphism. Suppose that 𝒴 is equipped with an 𝑛-shifted
symplectic form 𝜔 and 𝑓 is Lagrangian. Then 𝒳 is equipped with a canonical (𝑛 − 1)-shifted
Poisson structure.
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ELLIPTIC BIHAMILTONIAN STRUCTURES FROM RELATIVE SHIFTED POISSON STRUCTURES 1403

Proof of Theorem 3.9. By Theorem 3.6, the commutative diagrams (3.1) and (3.2) are diagrams
of morphisms of locally geometric stacks locally of finite presentation, for which the notion of
Lagrangian morphism is well defined. It is proved in [8, Theorem 3.13] that

(𝑝, 𝑞) ∶ ℝ𝐶𝑝𝑙𝑥 ∶ ℝ𝑉𝑒𝑐𝑡ℤ × ℝ𝑃𝑒𝑟𝑓

is a Lagrangian correspondence (see [10, Appendix A] for a different proof for ℝ𝜖𝑃𝑒𝑟𝑓 via bound-
ary structure, [1, Definition 2.8]). By Theorem 3.6, Lemma 3.4 and transgression of Lagrangian
structure (cf. [1, Theorem 2.10]), we produce a canonical (1 − 𝑑)-shifted Poisson structure on
ℝ𝐶𝑝𝑙𝑥(𝑋). □

Remark 3.11. A key feature of the Poisson structure in Theorem3.9 is that itsweight 2 component is
induced by an explicit morphism between certain complexes of coherent sheaves, whose hyper-
cohomology cochain complexes are quasi-isomorphic to the tangent and cotangent complex of
ℝ𝐶𝑝𝑙𝑥(𝑋). The formula for this morphism can be found in [8, Theorem 4.7] and [10, Section 3.2].

Since in the applications we need to consider relative moduli stack over a base 𝐵 that is
not necessary affine, we make the following definition. Let 𝑓 ∶ 𝑋 → 𝐵 be a scheme morphism
where 𝐵 is a Noetherian scheme of finite type. Denote by ℝ𝑃𝑒𝑟𝑓(𝑋∕𝐵) the stack of perfect
complexes on 𝑋 that are also 𝐵-perfect. Similarly, we define ℝ𝑉𝑒𝑐𝑡(𝑋∕𝐵), ℝ𝜖𝑃𝑒𝑟𝑓(𝑋∕𝐵) and
ℝ𝐶𝑝𝑙𝑥(𝑋∕𝐵). In this paper we consider only those 𝑓 that are flat and projective. In this case,
we indeed haveℝ𝑃𝑒𝑟𝑓(𝑋∕𝐵) ≃ ℝ𝑃𝑒𝑟𝑓(𝑋) and an analogue holds forℝ𝑉𝑒𝑐𝑡(𝑋∕𝐵),ℝ𝜖𝑃𝑒𝑟𝑓(𝑋∕𝐵)
and ℝ𝐶𝑝𝑙𝑥(𝑋∕𝐵). However, we keep the relative notations to emphasize that we are in the
relative situation.

4 RELATIVE POISSON STRUCTURES FROM FAMILIES OF
CY-CURVES

4.1 Relative Poisson structure on the relative moduli spaces of
complexes

We say that 𝜋 ∶ 𝐶 → 𝑆 is a family of Gorenstein CY-curves if 𝜋 is flat projective morphism with
connected geometric fibers that are Gorenstein of dimension 1, such that for the relative dualizing
sheaf we have 𝜔𝐶∕𝑆 ≃ 𝜋∗𝐿𝑆 for some line bundle 𝐿𝑆 on 𝑆.
We can consider the associated relative moduli stack of complexes ℝ𝐶𝑝𝑙𝑥(𝐶∕𝑆). For a subset

𝐼 ⊂ ℤ, an object 𝐹 ∈ Perf (𝐶), and a collection of vector bundles (𝑉𝑖)𝑖∈𝐼 on 𝐶, we consider the
substack ℝ𝐶𝑝𝑙𝑥(𝐶∕𝑆; 𝐹, (𝑉𝑖)𝑖∈𝐼) corresponding to complexes 𝑉∙ with fixed 𝑖th term given by 𝑉𝑖
for 𝑖 ∈ 𝐼, and a fixed isomorphism 𝑉∙ ≃ 𝐹 in the derived category (this substack is defined as a
derived fibered product, see [8, Corollary 3.20]).

Proposition 4.1. Let→ 𝑆 be an open substack inℝ𝐶𝑝𝑙𝑥(𝐶∕𝑆, 𝐹, (𝑉𝑖)𝑖∈𝐼) such that admits a
relative coarsemoduli→ 𝑀 → 𝑆, such that𝑝 ∶ 𝑀 → 𝑆 is smooth, and→ 𝑀 is a𝔾𝑚-gerbe (in
particular has trivial derived structure). Then there exists a global section Π ∈

⋀2 𝑇𝑀∕𝑆⊗𝑝∗𝐿𝑆
such that for every point 𝑠 ∈ 𝑆, the bivector Π𝑠 on the fiber 𝑀𝑠 is the Poisson structure induced by
0-shifted Poisson structure on𝑠.
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1404 HUA and POLISHCHUK

Proof. First, let us consider the case when 𝑆 is affine. Let 𝑆 be the total space of the 𝔾𝑚-torsor
associated with the line bundle 𝐿−1

𝑆
, so that 𝑆 = 𝑆∕𝔾𝑚. Then there is a base change diagram

Since 𝜔𝐶∕𝑆 = 𝑝∗𝜔𝐶∕𝑆 and 𝑝∗𝐿𝑆 is trivial, 𝐶 admits an -orientation relative to 𝑆.
Therefore, by Theorem 3.9, we get a 0-shifted Poisson structure on ×𝑆 𝑆, which is a𝔾𝑚-gerbe

over𝑀 ×𝑆 𝑆. The argument of [9, Proposition 2.6] can be easily generalized to the relative setting.
Therefore, the 0-shifted Poisson structure on ×𝑆 𝑆 descends to a Poisson structure on𝑀 ×𝑆 𝑆
relative to 𝑆. We then obtain a global sectionΠ of the pull-back of ∧2𝑇𝑀 on𝑀 ×𝑆 𝑆. It remains to
prove that Π has weight 1 with respect to the natural action of 𝔾𝑚 on 𝑆.
By construction, on 𝑆 we have an isomorphism

𝜃 ∶ 𝑆 → 𝑝
∗𝐿𝑆,

transforming under the action of 𝔾𝑚 by

𝜆∗𝜃 = 𝜆−1 ⋅ 𝜃. (4.1)

Thus, we get an induced isomorphism

𝜃 ∶ 𝐶 → 𝜔𝐶∕𝑆

still satisfying (4.1).
Recall that the tangent space to a point of𝑠 is identifiedwith the hypercohomologyℍ1(𝐶𝑠,),

where  is some natural complex, equipped with a chain map

𝜕◦𝐭 ∶ ∨[−1] → 

(see [8, Theorem 4.7]), so that the bivector induced by the 0-shifted Poisson structure is given by

Π ∶ ℍ1(𝐶𝑠,)
∨ ≃ ℍ0(𝐶𝑠,

∨⊗𝜔𝐶𝑠 ) → ℍ1(𝐶𝑠,
∨[−1]) → ℍ1(𝐶𝑠,),

where the middle arrow is induced by 𝜃−1 and the last map is induced by 𝜕◦𝐭. It follows that

𝜆∗Π = 𝜆 ⋅Π

as claimed.
For not necessarily affine base 𝑆 we can pick an open affine covering (𝑆𝑖), and apply the above

argument to get sectionsΠ𝑖 of
⋀2 𝑇𝑀∕𝑆⊗𝑝∗𝐿𝑆 over open subsets𝑝−1(𝑆𝑖). Furthermore, still by the

affine case, Π𝑖 and Π𝑗 have the same restrictions to every open subset of the form 𝑝−1(𝑈), where
𝑈 ⊂ 𝑆𝑖 ∩ 𝑆𝑗 is an affine open. Hence, (Π𝑖) glue into a global section of

⋀2 𝑇𝑀∕𝑆⊗𝑝∗𝐿𝑆 . □
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ELLIPTIC BIHAMILTONIAN STRUCTURES FROM RELATIVE SHIFTED POISSON STRUCTURES 1405

4.2 Compatible Poisson structures from families of CY-curves

Let 𝜋 ∶ 𝐶 → 𝑆 be a family of CY-curves, and let 𝐿𝑆 be a line bundle on 𝑆 such that 𝜔𝐶∕𝑆 ≃
𝜋∗𝐿𝑆 . Assume that  a vector bundle on 𝐶, such that the corresponding bundles 𝑠 on 𝐶𝑠 are
endosimple, 𝑅1𝜋∗ = 0 and

𝜋∗ ≃ 𝑉⊗𝑆

for some vector space 𝑉.
Then for each 𝑠 ∈ 𝑆, we have the moduli space𝑠 of nontrivial extensions of 𝑠 by 𝐶𝑠 on 𝐶𝑠,

which is a 𝔾𝑚-gerbe over

𝑀𝑠 = ℙExt
1(𝑠,𝐶𝑠 ) ≃ ℙ𝐻

1(𝐶𝑠,
∨
𝑠 ).

By Serre duality, we have an identification,

𝑀𝑠 ≃ ℙ𝐻
0(𝐶𝑠,𝑠)

∨ ≃ ℙ𝑉∨.

Viewing extensions in 𝑠 as two-term complexes 𝑠 → 𝐸 with 𝐸∕𝑠 ≃ 𝑠, and using
Proposition 4.1 we get a global section Π of the bundle

⋀2 𝑇ℙ𝑉 ⊠ 𝐿𝑆 over𝑀 = ℙ𝑉∨ × 𝑆.
Note that this gives us a linear family of bivectorsΠ𝑥 on ℙ𝑉∨ parameterized by 𝑥 ∈ 𝐻0(𝑆, 𝐿𝑆)∨.

However, we know only that Π𝑥 is integrable for 𝑥 coming from a point of 𝑆.
Now we specialize to the case when 𝑆 is a projective space, 𝑆 = ℙ𝑁 and 𝐿𝑆 = ℙ𝑁 (1). Since in

this case 𝑆 is identified with ℙ𝐻0(𝑆, 𝐿𝑆)∨, the previous discussion gives the following result.

Theorem 4.2. Let 𝜋 ∶ 𝐶 → 𝑆 = ℙ𝑁 be a family of Gorenstein curves of arithmetic genus 1 with
𝜔𝐶∕𝑆 ≃ 𝜋

∗(1), and let  be a vector bundle on 𝐶, such that 𝑠 is endosimple for every 𝑠 ∈ 𝑆,

𝑅1𝜋∗ = 0 and 𝜋∗ ≃ 𝑉⊗𝑆

for some vector space 𝑉. Then we get a global section Π of
⋀2 𝑇ℙ𝑉∨ ⊠ ℙ𝑁 (1) over ℙ𝑉∨ × ℙ𝑁 , such

that for every 𝑠 ∈ ℙ𝑁 , the bivector Π𝑠 defines a Poisson structure on ℙ𝑉∨. Equivalently, we get a
collectionΠ0,… ,Π𝑁 of Poisson structures on ℙ𝑉∨, such that [Π𝑖, Π𝑗] = 0.

4.3 Families of anticanonical divisors

We will use Theorem 4.2 to get compatible Poisson brackets on projective spaces from linear
systems of anticanonical divisors on surfaces.

Proposition 4.3.

(i) Let𝑋 be a smooth projective surface,𝑊 ∶= 𝐻0(𝑋, 𝜔−1
𝑋
). Let𝐶 ⊂ 𝑋 × ℙ𝑊 be the universal anti-

canonical divisor, viewed as a family over ℙ𝑊 via the natural projection 𝜋 ∶ 𝐶 → ℙ𝑊. Then
𝜔𝐶∕ℙ𝑊 ≃ 𝜋

∗(1).
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1406 HUA and POLISHCHUK

(ii) In addition, let  be a vector bundle on 𝑋 such that 𝐻∗(𝑋,⊗𝜔𝑋) = 𝐻1(𝑋,) = 0. Then the
restriction

𝐶 ∶=  ⊠ |𝐶
satisfies 𝑅1𝜋∗𝐶 = 0, 𝑅0𝜋∗𝐶 ≃ 𝑉⊗ℙ𝑊 , where 𝑉 ∶= 𝐻0(𝑋,).

(iii) In the situation of (i) assume inaddition that there exists a smoothanticanonical divisor𝐶0 ⊂ 𝑋.
Then for any vector bundle  on 𝑋 such that 𝐻∗(𝑋,⊗𝜔𝑋) = 0 and the restriction |𝐶0 is a
semistable bundle on 𝐶0 of positive degree one has𝐻1(𝑋,) = 0, that is, the assumptions of (ii)
are satisfied.

Proof.

(i) Note that (𝐶) ≃ 𝜔−1
𝑋
⊠ (1). Hence, by the adjunction formula we get

𝜔𝐶∕ℙ𝑊 ≃ (𝜔𝑋 ⊠ )(𝐶)|𝐶 ≃ ⊠ (1)|𝐶 ≃ 𝜋∗(1).
(ii) For every anticanonical divisor 𝐶0 ⊂ 𝑋, we have a long exact sequence

𝐻0(𝑋,(−𝐶0)) → 𝐻
0(𝑋,) → 𝐻0(𝐶0,|𝐶0) → 𝐻1(𝑋,(−𝐶0)) → 𝐻1(𝑋,) →

𝐻1(𝐶0,|𝐶0) → 𝐻2(𝑋,(−𝐶0)). (4.2)

Now our assumptions on  imply that𝐻0(𝑋,) → 𝐻0(𝐶0,|𝐶0) is an isomorphism and that
𝐻1(𝐶0,|𝐶0) = 0.
Finally, 𝑅0𝜋∗𝐶 = 𝑅0𝜋∗ is trivial by base change formula.

(iii) Let us consider the sequence (4.2) for a smooth anticanonical divisor 𝐶0. Since
𝐻∗(𝑋,⊗𝜔𝑋) = 0, we deduce an isomorphism

𝐻1(𝑋,) ≃ 𝐻1(𝐶0,|𝐶0).
But |𝐶0 is semistable of positive degree. It follows that

𝐻1(𝐶0,|𝐶0) = Hom( ,𝐶0)∗ = 0,
so𝐻1(𝑋,) = 0. □

Now we are ready to prove our main result about families of compatible Poisson brackets
coming from exceptional bundles on surfaces.

Theorem 4.4.

(i) Let 𝑋 be a smooth projective surface with 𝐻>0(𝑋,𝑋) = 0 and ℎ0(𝑋, 𝜔−1𝑋 ) > 1, and let  be
an exceptional vector bundle on 𝑋 such that (,) is an exceptional pair and such that 𝑐1() ⋅
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ELLIPTIC BIHAMILTONIAN STRUCTURES FROM RELATIVE SHIFTED POISSON STRUCTURES 1407

𝑐1(𝜔
−1
𝑋
) > 0. Then there is a natural linear map

𝜅 ∶ 𝐻0
(
𝑋,𝜔−1𝑋 ) → 𝐻

0(ℙ𝐻0(𝑋,)∗,
⋀2
𝑇
)

whose image consists of compatible Poisson brackets and such that for every smooth anticanon-
ical divisor 𝐶 ⊂ 𝑋, 𝜅([𝐶]) is the Feigin–Odesskii bracket associated with |𝐶 .

(ii) Assume in addition that 𝑐1() ⋅ 𝑐1(𝜔−1𝑋 ) > rk() + 1 and that there exists a pair of nonisomor-
phic smooth anticanonical divisors in 𝑋. Then ker(𝜅) is entirely contained in the discriminant
locus (corresponding to singular anticanonical divisors). In particular, for any smooth anti-
canonical divisor𝐶, the Feigin–Odesskii bracket associated with|𝐶 extends to a bihamiltonian
structure. If moreover every singular anticanonical divisor 𝐶0 extends to a nonisotrivial pencil
𝜆𝐶0 + 𝜇𝐶, with smooth 𝐶, then 𝜅 is injective.

Proof.

(i) It is well known that for every smooth anticanonical divisor 𝐶 ⊂ 𝑋, the restriction |𝐶 is an
endosimple (and hence stable) vector bundle on an elliptic curve 𝐶0. This implies that the
assumptions of Proposition 4.3(iii) are satisfied, and the assertion follows.

(ii) Let [𝐶] be in ker(𝜅). Assume 𝐶 is smooth. Pick another smooth anticanonical divisor 𝐶′ such
that 𝐶′ ≄ 𝐶. Then 𝜅(⟨[𝐶], [𝐶′]⟩) is at most one-dimensional, so the Feigin–Odesskii brack-
ets associated with |𝐶 and |𝐶′ are proportional. By Theorem 2.4, this implies that 𝐶 ≃ 𝐶′
which is a contradiction. This shows that ker(𝜅) is contained in the discriminant locus.
Thus, for a pair 𝐶, 𝐶′ of nonisomorphic smooth anticanonical divisor on 𝑋, the subspace

𝜅(⟨[𝐶], [𝐶′]⟩) is two-dimensional. Hence, we get a bihamiltonian structure.
For the last assertion, we apply the same argument as above to a nonisotrivial pencil 𝜆𝐶0 +

𝜇𝐶 with [𝐶0] in ker(𝜅) to get a contradiction. □

Corollary 4.5. Let 𝐶 be a smooth cubic in ℙ2 and let us fix 𝑛 ⩽ 7. Assume that for any 𝑛 generic
points 𝑝1, … , 𝑝𝑛 ∈ 𝐶, there exists an exceptional pair ( ,) on the blowup 𝑋 of ℙ2 at these points,
with 𝑐1() ⋅ 𝑐1(𝜔−1𝑋 ) > rk() + 1. Then the Feigin–Odesskii bracket associated with |𝐶 extends to
a bihamiltonian structure.

Proof. First, we pick a smooth cubic 𝐶′ ⊂ ℙ2, nonisomorphic to 𝐶. Changing 𝐶′ by an automor-
phism of ℙ2 we can assume that 𝐶 and 𝐶′ intersect transversally. Choose 𝑛 points in 𝐶 ∩ 𝐶′ and
consider the corresponding blowup𝑋. Then both𝐶 and𝐶′ lift to anticanonical divisors of𝑋. Now
we can apply Theorem 4.4(ii). □

Example 4.6. Let 𝑋 = ℙ2 and  = 𝐿 = (𝑘), where 𝑘 = 1 or 2. Then the assumptions of
Theorem 4.4 are satisfied. Note that 𝐻0(ℙ2, 𝜔−1

ℙ2
) is 10-dimensional, while 𝐻0(ℙ2, 𝐿) is three-

dimensional for 𝑘 = 1 and six-dimensional for 𝑘 = 2. Thus, we get a set of 10 compatible
Poisson brackets on ℙ2 (for 𝑘 = 1) and on ℙ5 (for 𝑘 = 2), containing the FO-brackets 𝑞3,1 and
𝑞6,1, respectively.

We can generalize the above example as follows (excluding the trivial cases of 𝑞3,1, 𝑞3,2 = 0 and
𝑞6,5 = 0). Let (𝑓𝑛) denote the Fibonacci sequence, where 𝑓0 = 0, 𝑓1 = 1.
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1408 HUA and POLISHCHUK

Proposition 4.7. For every 𝑛 ⩾ 2, there exists a 10-dimensional subspace of compatible Poisson
brackets on ℙ3𝑓2𝑛−1 containing every 𝑞3𝑓2𝑛−1,𝑓2𝑛−3(𝐶); while for 𝑛 ⩾ 3, there exists a 10-dimensional
subspace of compatible Poisson brackets on ℙ3𝑓2𝑛−1 containing every 𝑞3𝑓2𝑛−1,3𝑓2𝑛−1−𝑓2𝑛−3(𝐶).

Proof. We apply Proposition 4.3 for 𝑋 = ℙ2 by taking  to be any exceptional bundle such that
 ∈ ⟨(1),(2)⟩. Note that the assumptions are satisfied. The exceptional bundles we need form
a helix (𝐸𝑖) in the category ⟨(1),(2)⟩, where 𝐸0 = (1), 𝐸1 = (2). Then for 𝑛 ⩾ 0, we have the
following relations in the Grothendieck group

[𝐸−𝑛] = 𝑓2(𝑛+1)[𝐸0] − 𝑓2𝑛[𝐸1], [𝐸𝑛] = 𝑓2𝑛[𝐸1] − 𝑓2(𝑛−1)[𝐸0].

Hence, for 𝑛 ⩾ 1, we have

rk𝐸−𝑛 = 𝑓2𝑛+1, dim𝐻
0(𝐸−𝑛) = 3𝑓2𝑛−1, rk𝐸𝑛 = 𝑓2𝑛−1, dim𝐻

0(𝐸𝑛) = 3𝑓2𝑛+1.

This leads to the linearmaps from𝐻0(ℙ2,(3)) to the spaces of bivectors on the claimed projective
spaces whose image consist of compatible Poisson brackets.
Finally, let us check that the linear maps

𝐻0(ℙ2,(3)) → 𝐻0
(
ℙ𝑁,

⋀2
𝑇ℙ𝑁

)
corresponding to our families of Poisson brackets are injective. Since all exceptional bundles on
ℙ2 are GL3-equivariant, the above map is compatible with GL3-action. Hence, the kernels of the
above linear maps are GL3-subrepresentations in 𝐻0(ℙ2,(3)). But the representation of GL3 on
𝐻0(ℙ2,(3)) is irreducible, so either the kernel is zero, or the entiremap is zero. Thus, it is enough
to show that our construction does not give identically zero brackets. But this follows from the
well-known fact that the Feigin–Odesskii bracket 𝑞𝑛,𝑘(𝐶) associated with an elliptic curve 𝐶 is
nonzero provided 𝑛 > 𝑘 + 1 (this follows, for example, from Proposition 2.5). □

Example 4.8. Let𝑋 = 𝐹𝑛 = ℙ(⊕ (𝑛)), the Hirzebruch surface (or ℙ1 × ℙ1, for 𝑛 = 0), and let
𝑝 ∶ 𝑋 → ℙ1 be the projection. Then

𝜔−1𝑋 ≃ 𝑝∗((𝑛 + 2))(2),

so

𝐻0(𝑋, 𝜔−1𝑋 ) ≃ 𝐻
0(ℙ1,(𝑛 + 2) ⊕ (2) ⊕ (−𝑛 + 2)).

For |𝑛| ⩽ 3, this is a nine-dimensional vector space. We can take
 = 𝐿 ∶= 𝑝∗((𝑘))(1).

Then 𝑅𝑝∗(𝐿⊗𝜔𝑋) = 0, so 𝐻∗(𝑋, 𝐿⊗𝜔𝑋) = 0. Also, 𝑅𝑝∗(𝐿) ≃ (𝑘) ⊕ (𝑘 − 𝑛), so for 𝑘 ⩾ 𝑛 − 1,
𝐻1(𝑋, 𝐿) = 0. Thus, the conditions of Proposition 4.3 are satisfied in this case, and for |𝑛| ⩽ 3,
we get a family of nine compatible Poisson brackets on the projective space ℙ2𝑘+1−𝑛. Later we
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ELLIPTIC BIHAMILTONIAN STRUCTURES FROM RELATIVE SHIFTED POISSON STRUCTURES 1409

will show that the cases 𝑛 = 1 and 𝑛 = 2 correspond to the examples in Odesskii–Wolf [15] (see
Section 5.3) and that the corresponding nine brackets are linearly independent.

Proposition 4.9. For any 𝑑 > 𝑟 > 0 such that 𝑑 ≡ ±1 mod (𝑟) and 𝑟 is odd and any elliptic curve
𝐶, the Poisson bracket 𝑞𝑑,𝑟(𝐶) extends to a bihamiltonian structure.

Proof. Let us realize 𝐶 is a smooth cubic in ℙ2 and consider the blowup 𝑋 of ℙ2 at five generic
points 𝑝0, 𝑝1, … , 𝑝4 on 𝐶 (so that no three are collinear). Then 𝑋 is a del Pezzo surface. By Corol-
lary 4.5, it is enough to construct an exceptional bundle 𝐸 over𝑋 of rank 𝑟 and 𝜒(𝐸) = 𝑑 such that
(𝑋, 𝐸) is an exceptional pair.
For the construction of 𝐸, it will be more convenient to view 𝑋 as the blowup of a Hirzebruch

surface 𝐹 at four points. More precisely, we need two such realizations with 𝐹 = 𝐹𝑛, where 𝑛 is
either 1 or 0. First, we can identify the blowup ofℙ2 at 𝑝0 with the Hirzebruch surface 𝐹1 and then
view 𝑋 as the blowup of 𝐹1 at 𝑝1, 𝑝2, 𝑝3, 𝑝4. The second way, is to identify the blowup of ℙ2 at 𝑝0
and 𝑝1 with the blowup of 𝐹0 = ℙ1 × ℙ1 at one point 𝑝′1, so we can view 𝑋 as the blowup of 𝐹0 at
𝑝′
1
, 𝑝2, 𝑝3, 𝑝4. We denote by 𝜋 ∶ 𝑋 → 𝐹𝑛 the blow downmap, and by 𝑝 ∶ 𝐹 → ℙ1 the ℙ1-fibration

map and by (1) the corresponding line bundle on 𝐹𝑛, as in Example 4.8.
We observe that any 𝐸 in the subcategory

 ∶= ⟨𝜋∗(𝑝∗𝐷(ℙ1)(1)),𝑒1 , … ,𝑒4⟩,
where 𝑒𝑖 are exceptional divisors for 𝜋, will have Hom∗(𝐸,𝑋) = 0. Let us start with an
exceptional pair

𝑉1 = 𝜋
∗(𝑝∗(𝑘 − 1)(1)), 𝑉2 = 𝜋

∗(𝑝∗(𝑘)(1))(−𝑒1 − 𝑒2 − 𝑒3 − 𝑒4)

in . We have Ext𝑖(𝑉1, 𝑉2) = 0 for 𝑖 ≠ 1, while Ext1(𝑉1, 𝑉2) is two-dimensional. We claim that
this implies that in the helix generated by 𝑉1 and 𝑉2 we will find (up to a shift) vector bundles 𝑉
with

[𝑉] = 𝑚[𝑉1] + (𝑚 − 1)[𝑉2] and [𝑉] = (𝑚 − 1)[𝑉1] + 𝑚[𝑉2]

for all𝑚 ⩾ 1.
Indeed, let𝑉3[1] denote the right mutation of𝑉1 through𝑉2, so that we have an exact triangle

𝑉1 → 𝑉
⊕2
2
[1] → 𝑉3[1] → ⋯

Then 𝑉3 is an extension of 𝑉1 by 𝑉
⊕2
3
, so [𝑉3] = [𝑉1] + 2[𝑉2]. Note that the space Ext∗(𝑉2, 𝑉3) =

Hom(𝑉2, 𝑉3) is two-dimensional. and this property is preserved by the right mutations. Using
this we can check that the part of the helix (𝑉2, 𝑉3, 𝑉4, …) generated by (𝑉2, 𝑉3) consists of vector
bundles satisfying [𝑉𝑚+1] = (𝑚 − 1)[𝑉1] + 𝑚[𝑉2]. Indeed, the equality in𝐾0 follows by induction
from the exact triangles

𝑉𝑚−1 → 𝑉
⊕2
𝑚 → 𝑉𝑚+1 → ⋯
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1410 HUA and POLISHCHUK

Taking into account the fact that rk(𝑉𝑚−1) < 2rk(𝑉𝑚), we see that 𝐻0(𝑉𝑚+1) ≠ 0. Since 𝑉𝑚+1 is
an exceptional object, this implies that it is a sheaf on 𝑋 (see [11, Proposition 2.10]). Since it also
has positive rank, it has to be a vector bundle (by [11, Proposition 2.9]). Similarly, considering left
mutations of the pair (𝑉1, 𝑉2) we find vector bundles 𝑉 with [𝑉] = 𝑚[𝑉1] + (𝑚 − 1)[𝑉2].
It is easy to check that we get the desired 𝑟 and 𝑑 this way. Namely, let us write 𝑟 = 2𝑚 − 1

(recall that 𝑟 is odd). If 𝑑 is even we use 𝑛 = 0, in which case 𝜒(𝑉1) = 2𝑘 and 𝜒(𝑉2) = 2𝑘 − 2,
so we will get from the above 𝑉 either 𝑑 = (2𝑘 − 1)𝑟 + 1 or 𝑑 = (2𝑘 − 1)𝑟 − 1. If 𝑑 is odd we use
𝑛 = 1, in which case 𝜒(𝑉1) = 2𝑘 − 1 and 𝜒(𝑉2) = 2𝑘 − 3, and so, 𝑑 = (2𝑘 − 2)𝑟 ± 1. □

Remark 4.10. In the situation of Proposition 4.9, the dimension of𝐻0(𝑋, 𝜔−1
𝑋
) is 5, sowe can expect

that there exists a five-dimensional linear space of compatible Poisson brackets on ℙ𝑑−1 including
𝑞𝑑,𝑟(𝐶).

5 EXPLICIT COMPUTATIONS

5.1 Szegö kernels

5.1.1 Case of a bundle with vanishing cohomology

Let 𝐶 be an elliptic curve with a fixed nonzero regular differential 𝜂. Let 𝑉 be a vector bundle on
𝐶 such that𝐻∗(𝐶, 𝑉) = 0. Then there is a unique section called the Szegö kernel (see, for example,
[4]),

𝑆𝑉 ∈ 𝐻
0(𝐶 × 𝐶,𝑉∨ ⊠ 𝑉(Δ))

such that ResΔ(𝑆𝑉) = id𝑉 (where we use the trivialization of 𝜔𝐶).

Example 5.1. Assume that we work over complex numbers, 𝐶 = ℂ∕Λ, and 𝑉 = 𝑀, a nontrivial
line bundle of degree zero. We can write𝑀 = 𝐶(𝑎 − 𝑏). Then one has

𝑆𝑀(𝑥, 𝑦) = 𝜁(𝑥 − 𝑦) − 𝜁(𝑥 − 𝑏) + 𝜁(𝑦 − 𝑎) − 𝜁(𝑏 − 𝑎),

where 𝜁 is the Weierstrass zeta function. We can trivialize the pull-back of 𝑀 to ℂ by the sec-
tion 𝜃11(𝑥 − 𝑏)∕𝜃11(𝑥 − 𝑎), where 𝜃11 is the theta-function with zero at 𝑥 = 0. Then with respect
to this trivialization,

𝑆𝑀(𝑥, 𝑦) = [𝜁(𝑥 − 𝑦) − 𝜁(𝑥 − 𝑏) + 𝜁(𝑦 − 𝑎) − 𝜁(𝑏 − 𝑎)] ⋅
𝜃11(𝑥 − 𝑏)𝜃11(𝑦 − 𝑎)

𝜃11(𝑥 − 𝑎)𝜃11(𝑦 − 𝑏)
.

Note that since𝐻∗(𝐶, 𝑉) = 0, the complex

𝐻0(𝐶 − 𝑝,𝑉)
𝛿𝑉
�����→ 𝐻0(𝐶, 𝑉(∞𝑝)∕𝑉)

is exact. Here the target can be identified with the quotient 𝐻0(𝐶, 𝑉(∞𝑝)|∞𝑝)∕𝐻0(𝐶, 𝑉|∞𝑝),
where𝐻0(𝐶, 𝑉|∞𝑝) is the completion of 𝑉𝑝 with respect to the𝔪𝑝-adic topology, while

𝐻0(𝐶, 𝑉(∞𝑝)|∞𝑝) = 𝑉̂𝑝⊗̂𝐶,𝑝
𝐾𝑝,

where 𝐾𝑝 is the field of fractions of ̂𝐶,𝑝.
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ELLIPTIC BIHAMILTONIAN STRUCTURES FROM RELATIVE SHIFTED POISSON STRUCTURES 1411

Our goal is to get a formula for 𝛿−1
𝑉

in terms of the Szegö kernel 𝑆𝑉 (see Lemma 5.2 below). In
fact, for our computations later we will need the case where 𝑉 is a trivial bundle and the above
concept of the Szegö kernel has to be modified (see Section 5.1.2). However, we first consider the
case of 𝑉 with vanishing cohomology since this case is more straightforward.
We have a natural perfect duality

𝐻0(𝐶, 𝑉(∞𝑝)|∞𝑝)⊗𝐻0(𝐶, 𝑉∨(∞𝑝)|∞𝑝) → 𝑘 ∶ 𝐵(𝜙, 𝑓) ∶= Res𝑝(⟨𝜙, 𝑓⟩ ⋅ 𝜂). (5.1)

Also, we have direct sum decompositions

𝐻0(𝐶, 𝑉(∞𝑝)|∞𝑝) = 𝐻0(𝐶 − 𝑝,𝑉) ⊕ 𝐻0(𝐶, 𝑉|∞𝑝),
𝐻0(𝐶, 𝑉∨(∞𝑝)|∞𝑝) = 𝐻0(𝐶 − 𝑝,𝑉∨) ⊕ 𝐻0(𝐶, 𝑉∨|∞𝑝),

such that

𝐻0(𝐶, 𝑉|∞𝑝) = 𝐻0(𝐶, 𝑉∨|∞𝑝)⟂, 𝐻0(𝐶, 𝑉(∞𝑝)|∞𝑝) = 𝐻0(𝐶, 𝑉∨(∞𝑝)|∞𝑝)⟂
with respect to the above duality.

Lemma 5.2.

(i) For any 𝑓 ∈ 𝐻0(𝐶 − 𝑝,𝑉) one has

Res𝑥=𝑝⟨𝑓(𝑥), 𝑆(𝑥, 𝑦)⟩ = −𝑓(𝑦).
(ii) One has

𝑆𝑉|∞𝑝×𝐶⧵𝑝 = −∑
𝑖⩾1

𝜙𝑖 ⊗ 𝑓𝑖, (5.2)

where (𝜙𝑖) and (𝑓𝑖) are dual bases of𝐻0(𝐶, 𝑉∨|∞𝑝) and𝐻0(𝐶 − 𝑝,𝑉).
(iii) There is a well-defined linear operator

𝑄𝑆 ∶ 𝐻
0(𝑉(∞𝑝)∕𝑉) → 𝐻0(𝐶 − 𝑝,𝑉) ∶ 𝑓 ↦ −Res𝑥=𝑝⟨𝑓(𝑥), 𝑆(𝑥, 𝑦)⟩,

and we have 𝑄𝑆 = 𝛿−1𝑉 .

Proof.

(i) Let us fix a generic 𝑦 and consider the restriction of ⟨𝑓(𝑥), 𝑆(𝑥, 𝑦)⟩ to 𝐶 × 𝑦. It has poles at
𝑥 = 𝑝 and 𝑥 = 𝑦, and the residue at 𝑥 = 𝑦 is equal to 𝑓(𝑦). Thus, the assertion follows from
the Residue Theorem.

(ii) First, we observe that 𝑆𝑉|∞𝑝×𝐶⧵𝑝 lies in
lim
←��
𝑛

𝐻0(𝐶, 𝑉∨|𝑛𝑝)⊗𝐻0(𝐶 − 𝑝,𝑉),

 17538424, 2023, 4, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/topo.12315 by U
niversity O

f O
regon L

ibraries, W
iley O

nline L
ibrary on [06/07/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



1412 HUA and POLISHCHUK

which can be viewed as a competed tensor product of 𝐻0(𝐶, 𝑉∨|∞𝑝) and 𝐻0(𝐶 − 𝑝,𝑉). The
right-hand side of (5.2) also makes sense as an element of this completed tensor product.
Now the assertion follows from (i) and from perfect duality (5.2).

(iii) Note that 𝑄𝑆 is well defined since for regular 𝑓 the expression ⟨𝑓(𝑥), 𝑆(𝑥, 𝑦)⟩ will be regular
at 𝑥 = 𝑝. The second assertion follows from (i). □

5.1.2 Case of the trivial bundle

Now let us consider the case 𝑉 = 𝐶 . Here Szegö kernel will depend on an extra datum. Let
𝐷 = 𝑝1 +⋯ + 𝑝𝑑 be a simple divisor on an elliptic curve 𝐶 (so the points 𝑝1, … , 𝑝𝑑 are distinct).
As before, we fix a trivialization 𝜂 of 𝜔𝐶 . We use this trivialization implicitly in formulas with
residues.

Definition 5.3. We say that 𝑆 ∈ 𝐻0(𝐶 × 𝐶,(𝐷) ⊠ (𝐷)(Δ)) is a left Szegö kernel for𝐷 if we have

∙ ResΔ(𝑆) = 1;
∙ Res𝐷×𝐶(𝑆) is constant along 𝐷.

If in addition 𝑆(𝑦, 𝑥) = −𝑆(𝑥, 𝑦) then we say that 𝑆 is a Szegö kernel.

Example 5.4. In the case when 𝐷 = 𝑝 has degree 1, it is easy to check that there is a unique
section

𝑆 = 𝑆𝑝 ∈ 𝐻
0(𝐶 × 𝐶,(𝑝) ⊠ (𝑝)(Δ))

such that 𝑆(𝑦, 𝑥) = −𝑆(𝑥, 𝑦) and ResΔ(𝑆) = 1. Hence, it is a Szegö kernel for 𝑝. Note that
−𝑆(−𝑥,−𝑦) also satisfies these conditions, sowe have 𝑆(−𝑥,−𝑦) = −𝑆(𝑥, 𝑦). In fact, for an elliptic
curve over complex numbers, and 𝑝 corresponds to the origin, then one has

𝑆(𝑥, 𝑦) = 𝜁(𝑥 − 𝑦) − 𝜁(𝑥) + 𝜁(𝑦),

where 𝜁 is the Weierstrass zeta function.

Let 𝑡𝑖 be the formal parameter on 𝐶 at 𝑝𝑖 such that 𝜂 = 𝑑𝑡𝑖 , and let us consider the vector space

𝑉 = 𝑉𝐷 ∶=

𝑑⨁
𝑖=1

𝑘((𝑡𝑖)).

We equip 𝑉 with the nondegenerate pairing

(𝑓, g) =

𝑝∑
𝑖=1

Res𝑡𝑖=0(𝑓g𝑑𝑡𝑖).

We have the isotropic subspaces

Λ ∶=

𝑑⨁
𝑖=1

𝑘[[𝑡𝑖]] ⊂ 𝑉
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ELLIPTIC BIHAMILTONIAN STRUCTURES FROM RELATIVE SHIFTED POISSON STRUCTURES 1413

and

(𝐶 − 𝐷) ⊂ 𝑉,

where the embedding is given by expanding into Laurent series at 𝑝1, … , 𝑝𝑑. The complex

(𝐶 − 𝐷)
𝛿
�����→ 𝑉∕Λ

calculates 𝐻∗(𝐶,), so (𝐶 − 𝐷) ∩ Λ = ⟨1⟩ and (𝐶 − 𝐷) + Λ is precisely the codimension 1
subspace

𝑉′ ∶=

{
𝑓 ∈ 𝑉 | ∑

𝑖

Res𝑡𝑖=0(𝑓𝑑𝑡𝑖) = 0

}
.

We have the following analog of Lemma 5.2. Let us set

Λ′ = {(𝑓𝑖)𝑖=1,…,𝑑 ∈ Λ | ∑
𝑖

𝑓𝑖(0) = 0}.

Note that 𝛿 factors through an embedding

𝛿′

∶ (𝐶 − 𝐷) → 𝑉∕Λ′.

Lemma 5.5. Let 𝑓 be a left Szegö kernel for 𝐷.

(i) For any 𝑓 ∈ (𝐶 − 𝐷) one has

𝑑∑
𝑖=1

Res𝑥=𝑝𝑖 (𝑓(𝑥)𝑆(𝑥, 𝑦)) = −𝑓(𝑦).

(ii) We have a well-defined operator

𝑄′𝑆 ∶ 𝑉∕Λ
′ → (𝐶 − 𝐷) ∶ 𝑓 ↦ −

𝑑∑
𝑖=1

Res𝑥=𝑝𝑖 (𝑓(𝑥)𝑆(𝑥, 𝑦)),

such that

𝑄′𝑆𝛿
′

(𝑓) = 𝑓.

Here we view elements of 𝑉 as functions on a punctured formal neighborhood of 𝐷.

Proof.

(i) This immediately follows from the Residue Theorem (for fixed 𝑦).
(ii) Let us first check that 𝑄′

𝑆
is well defined. Since 𝑆(𝑥, 𝑦) has poles of order 1 at 𝐷, for 𝑓 ∈ Λ′,

one has

𝑑∑
𝑖=1

Res𝑥=𝑝𝑖 (𝑓(𝑥)𝑆(𝑥, 𝑦)) =
∑
𝑖

𝑓(𝑝𝑖)Res𝑥=𝑝𝑖𝑆(𝑥, 𝑦).
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1414 HUA and POLISHCHUK

But by assumption, Res𝑥=𝑝𝑖𝑆(𝑥, 𝑦) does not depend on 𝑖, and
∑
𝑖 𝑓(𝑝𝑖) = 0, so this is zero.

The equality 𝑄′
𝑆
𝛿′

(𝑓) = 𝑓 follows from (i). □

Corollary 5.6. For any 𝑓 ∈ (𝐶 − 𝐷) and any lifting 𝛿(𝑓) ∈ 𝑉∕Λ′ of 𝛿(𝑓) ∈ 𝑉∕Λ, one has

𝑄′𝑆𝛿(𝑓) ≡ 𝑓 mod ⟨1⟩.
For any g ∈ 𝑉′∕Λ ⊂ 𝑉∕Λ and any lifting g̃ ∈ 𝑉′∕Λ′ of g one has

𝛿𝑄
′
𝑆(g̃) = g .

Proof. The first equality follows immediately from Lemma 5.5(ii) since

𝛿(𝑓) = 𝛿
′

(𝑓 + 𝑐) ∈ 𝑉∕Λ′

for some 𝑐 ∈ 𝑘.
Given g ∈ 𝑉′∕Λ, we can find 𝑓 ∈ (𝐶 − 𝐷) such that g = 𝛿(𝑓). Now the second equality

follows from the first, since 𝛿(1) = 0. □

Lemma 5.7. Let 𝐶 be an elliptic curve with a divisor 𝐷 such that either

1. 𝐷 = 𝑝 and 𝐶 − 𝑝 is the curve 𝑦2 = 𝑃(𝑥) in 𝔸2, where 𝑃 is a cubic polynomial; or
2. 𝐷 = 𝑝1 + 𝑝2 and 𝐶 − 𝐷 is the curve 𝑦2 = 𝑃(𝑥) in 𝔸2, where 𝑃 is a quartic polynomial.

As a trivialization of 𝜔𝐶 in both cases we take 𝜂 = 𝑑𝑥∕2𝑦. Then

𝑆 ∶=
𝑦1 + 𝑦2
𝑥2 − 𝑥1

is a Szegö kernel on 𝐶.

Proof. To calculate the residue along the diagonal, we consider the residue of the 2-form

𝑆 ⋅ 𝜂1 ∧ 𝜂2 =
𝑦1 + 𝑦2

4𝑦1𝑦2(𝑥2 − 𝑥1)
⋅ 𝑑𝑥1 ∧ 𝑑𝑥2 =

𝑦1 + 𝑦2
4𝑦1𝑦2

⋅ 𝑑𝑥1 ∧
𝑑(𝑥2 − 𝑥1)

𝑥2 − 𝑥1
,

so the residue is

𝑦1 + 𝑦2
4𝑦1𝑦2

⋅ 𝑑𝑥1|Δ = 2𝑦

4𝑦2
𝑑𝑥 = 𝜂.

Note that 𝑆(𝑦, 𝑥) = −𝑆(𝑥, 𝑦). Thus, it remains to study the polar part of 𝑆 near 𝑥1 ∈ 𝐷. In case
(1), since 𝑥1 has a pole of order 2 at 𝐷 = 𝑝 and 𝑦1 has a pole of order 3, we see that 𝑆 has a pole
of order 1 at 𝑥1 = 𝑝. In case (2), let 𝑃(𝑥) = 𝑎𝑥4 +⋯, where 𝑎 ≠ 0. Then we can take 𝑡 = 1∕𝑥 as a
local parameter at both 𝑝1 and 𝑝2. In terms of this parameter, 𝑦 has an expansion

𝑦 =

√
𝑎

𝑡2
+⋯

at 𝑝1 (for some choice of
√
𝑎; for 𝑝2 it would be a different choice of the square root). Hence, 𝜂

and 𝑆 have the expansions (for fixed 𝑥2, 𝑦2)
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ELLIPTIC BIHAMILTONIAN STRUCTURES FROM RELATIVE SHIFTED POISSON STRUCTURES 1415

𝜂(𝑡) =

(
−
1

2
√
𝑎
+⋯

)
⋅ 𝑑𝑡,

𝑆(𝑡; 𝑥2, 𝑦2) =

√
𝑎∕𝑡2 +⋯

−1∕𝑡 + 𝑥2
= −

√
𝑎

𝑡
+⋯

Hence 𝑆 has a pole of order 1 and

Res(𝑥1,𝑦1)=𝑝1(𝑆 ⋅ 𝜂(𝑥1, 𝑦1)) =
1

2
.

The same calculation works for 𝑝2, so we deduce that 𝑆 is a Szegö kernel for 𝐷. □

5.2 Massey product in terms of Szegö kernel

Now we can present the formula for the Massey product in terms of the Szegö kernel. Assume 𝜉
is a line bundle of positive degree on 𝐶, 𝐷 ⊂ 𝐶 a simple divisor.
The multiplication with a Szegö kernel 𝑆 = 𝑆𝐷 ∈ 𝐻0(𝐶2,(𝐷) ⊠ (𝐷)(Δ)) induces a mor-

phism ⋀2
𝐻0(𝐶, 𝜉)

𝜇𝑆
����→ 𝐻0(𝐶, 𝜉(𝐷))⊗𝐻0(𝐶, 𝜉(𝐷)) (5.3)

that fits into a commutative diagram

Indeed, this follows easily from the fact that the residue of 𝑆 along the diagonal is equal to 1.

Proposition 5.8. Let 𝑆 be a left Szegö kernel for 𝐷. Then for 𝜙 ∈ 𝐻1(𝐶, 𝜉−1) and 𝑠1, 𝑠2 ∈ ⟨𝜙⟩⟂ ⊂
𝐻0(𝐶, 𝜉), one has

⟨𝜙,𝑀𝑃(𝑠1, 𝜙, 𝑠2)⟩ = ±⟨𝜙⊗𝜙, 𝜇𝑆(𝑠1 ∧ 𝑠2)⟩,
where𝜙 is a lifting of𝜙 to𝐻1(𝐶, 𝜉−1(−𝐷)); on the left we use a pairing between ⟨𝜙⟩ ⊂ 𝐻1(𝐶, 𝜉−1) and
𝐻0(𝐶, 𝜉)∕⟨𝑠1, 𝑠2⟩; on the right we use the Serre duality between𝐻1(𝐶, 𝜉−1(−𝐷)) and𝐻0(𝐶, 𝜉(𝐷)).
Proof. We compute this Massey product using the dg-enhancement given by the Cech resolutions
corresponding to the covering by 𝐶 − 𝐷 and the formal neighborhood of 𝐷. Let us represent 𝜙 by
a 1-cocycle 𝜙 ∈ 𝐻0(𝜉−1(∞𝐷)∕𝜉−1). Then with the notation of Section 5.1.2 we have

𝑠1𝜙, 𝑠2𝜙 ∈ 𝑉
′∕Λ ⊂ 𝑉∕Λ

(this follows from the fact that both 𝑠1𝜙 and 𝑠2𝜙 have trivial cohomology class in𝐻1(𝐶,)). Let us
choose a lifting of 𝜙 to 𝜙 ∈ 𝐻0(𝜉−1(∞𝐷)∕𝜉−1(−𝐷)). Then for 𝑖 = 1, 2, 𝑠𝑖𝜙 is an element of 𝑉′∕Λ1
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1416 HUA and POLISHCHUK

lifting 𝑠𝑖𝜙, where

Λ1 ∶=

𝑑⨁
𝑖=1

𝑡𝑖𝑘[[𝑡𝑖]] ⊂ Λ.

Hence,

𝑓𝑖 ∶= 𝑄
′

(𝑠𝑖𝜙)

is a well-defined element of (𝐶 − 𝐷) satisfying

𝛿(𝑓𝑖) = 𝑠𝑖𝜙

(see Corollary 5.6). Therefore, the dg-recipe for calculating the Massey product gives

𝑀𝑃(𝑠1, 𝜙, 𝑠2) = 𝑓1𝑠2 − 𝑠1𝑓2 mod ⟨𝑠1, 𝑠2⟩.
Now we recall the definition of 𝑄′


:

(𝑓1𝑠2)(𝑦) = 𝑄
′

(𝑠1𝜙)𝑠2 = −𝜏𝑥[𝑆(𝑥, 𝑦)𝜙(𝑥)𝑠1(𝑥)𝑠2(𝑦)],

where

𝜏𝑥 =

𝑑∑
𝑖=1

Res𝑥=𝑝𝑖 .

Similarly,

(𝑠1𝑓2)(𝑦) = −𝜏𝑥[𝑆(𝑥, 𝑦)𝜙(𝑥)𝑠2(𝑥)𝑠1(𝑦)].

Hence,

⟨𝜙,𝑀𝑃(𝑠1, 𝜙, 𝑠2)⟩ = 𝜏𝑦[𝜙(𝑦) ⋅𝑀𝑃(𝑠1, 𝜙, 𝑠2)(𝑦)] = −𝜏𝑥𝜏𝑦[𝜙(𝑥)𝜙(𝑦) ⋅ 𝑆(𝑥, 𝑦)(𝑠1(𝑥)𝑠2(𝑦) − 𝑠2(𝑥)𝑠1(𝑦))]
= −⟨𝜙⊗𝜙, 𝑆 ⋅ (𝑠1 ∧ 𝑠2)⟩.

□

Nowwe can give a formula for the Poisson bracket on ℙ𝐻1(𝐶, 𝜉−1) in terms of the Szegö kernel
and certain auxiliary data which exists in some examples.

Theorem 5.9. Let 𝜉 be a line bundle of positive degree on an elliptic curve 𝐶, 𝐷 a simple effective
divisor on 𝐶, 𝑆 a left Szegö kernel for 𝐷. Suppose there exists another effective divisor 𝐸 on 𝐶 and
linear operators

𝐴, 𝐵 ∶ 𝐻0(𝐶, 𝜉) → 𝐻0(𝐶, 𝜉(𝐷 + 𝐸))

such that for any 𝑠1, 𝑠2 ∈ 𝐻0(𝐶, 𝜉) one has

𝑆 ⋅ (𝑠1 ∧ 𝑠2) + 𝑠1⊗𝐴(𝑠2) − 𝑠2⊗𝐴(𝑠1) + 𝐵(𝑠2)⊗𝑠1 − 𝐵(𝑠1)⊗𝑠2 ∈ 𝐻
0(𝐶, 𝜉)⊗𝐻0(𝐶, 𝜉).

 17538424, 2023, 4, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/topo.12315 by U
niversity O

f O
regon L

ibraries, W
iley O

nline L
ibrary on [06/07/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



ELLIPTIC BIHAMILTONIAN STRUCTURES FROM RELATIVE SHIFTED POISSON STRUCTURES 1417

Then for nonzero 𝜙 ∈ 𝐻1(𝐶, 𝜉−1) and 𝑠1, 𝑠2 ∈ ⟨𝜙⟩⟂, one has
Π⟨𝜙⟩(𝑠1 ∧ 𝑠2⟩) = ±⟨𝜙⊗𝜙, 𝑆 ⋅ (𝑠1 ∧ 𝑠2) + 𝑠1⊗𝐴(𝑠2) − 𝑠2⊗𝐴(𝑠1) + 𝐵(𝑠2)⊗𝑠1 − 𝐵(𝑠1)⊗𝑠2⟩.

Proof. By Lemma 2.1 and Proposition 5.8, we have

Π⟨𝜙⟩(𝑠1 ∧ 𝑠2⟩) = ±⟨𝜙,𝑀𝑃(𝑠1, 𝜙, 𝑠2)⟩ = ±⟨𝜙⊗𝜙, 𝑆 ⋅ (𝑠1 ∧ 𝑠2)⟩,
where 𝜙 is a lifting of 𝜙 to𝐻1(𝐶, 𝜉−1(−𝐷 − 𝐸)) (note that in the right-hand side we can replace 𝜙
by the induced lifting of 𝜙 to𝐻1(𝐶, 𝜉−1(−𝐷))). Now we observe that

⟨𝜙, 𝑠𝑖⟩ = ⟨𝜙, 𝑠𝑖⟩ = 0
for 𝑖 = 1, 2, since 𝑠𝑖 ∈ ⟨𝜙⟩. Hence,

⟨𝜙⊗𝜙, 𝑆 ⋅ (𝑠1 ∧ 𝑠2)⟩ = ⟨𝜙⊗𝜙, 𝑆 ⋅ (𝑠1 ∧ 𝑠2) + 𝑠1⊗𝐴(𝑠2) − 𝑠2⊗𝐴(𝑠1) + 𝐵(𝑠2)⊗𝑠1 − 𝐵(𝑠1)⊗𝑠2⟩.
Finally, we can replace 𝜙⊗𝜙 with 𝜙⊗𝜙 since the second argument of the pairing lies in
𝐻0(𝐶, 𝜉)⊗𝐻0(𝐶, 𝜉). □

5.3 Odesskii–Wolf compatible brackets

Herewe are going to prove that nine compatible Poisson brackets on projective spaces constructed
in Example 4.8 coincide with those constructed by Odesskii–Wolf in [15]. Note that for this it is
enough to check the equality between two brackets for a generic value of parameters in the linear
family (resp., a generic anticanonical divisor in the Hirzebruch surface).

5.3.1 Even case

Let us first consider the case of brackets containing 𝑞2𝑘,1. This corresponds to considering anti-
canonical divisors in 𝑋 = ℙ(⊕ (2)). Let 𝑝 ∶ 𝑋 → ℙ1 be the natural projection. We denote by
(𝑡0 ∶ 𝑡1) the homogeneous coordinates on ℙ1 and by (𝑥0 ∶ 𝑥1) the fiberwise homogeneous coordi-
nates on𝑋, where 𝑥0 is a section of𝑋(1) and 𝑥1 is a section of 𝑝∗(2)(1). Since𝜔−1𝑋 = 𝑝∗(4)(2),
we have

𝐻0(𝑋, 𝜔−1𝑋 ) = 𝐤 ⋅ 𝑥21 ⊕ 𝑝
∗𝐻0(ℙ1,(2)) ⋅ 𝑥1𝑥0 ⊕ 𝑝

∗𝐻0(ℙ1,(4))𝑥20.

Thus, a generic anticanonical divisor 𝐶 ⊂ 𝑋 is given by the equation

𝑥21 = 𝑓2(𝑡0, 𝑡1)𝑥1𝑥0 + 𝑓4(𝑡0, 𝑡1)𝑥
2
0,

where 𝑓2 is homogeneous of degree 2 and 𝑓4 is homogeneous of degree 4. Note that 𝑥0 ≠ 0 on 𝐶,
so it gives a trivialization of 𝑋(1)|𝐶 .
Let us denote by 𝐷 ⊂ 𝐶 the divisor 𝑡0 = 0. Then we can use

𝑡 ∶=
𝑡1
𝑡0
, 𝑥 ∶=

𝑥1

𝑥0𝑡
2
0
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1418 HUA and POLISHCHUK

as affine coordinates on 𝐶 − 𝐷 satisfying the equation

𝑥2 = 𝑄(𝑡)𝑥 + 𝑃(𝑡),

where 𝑄(𝑡) has degree ⩽ 2 and 𝑃 has degree ⩽ 4. Note that the space 𝑒𝑣 in [15, Section 2.1] is
precisely the space of functions on 𝐶 − 𝐷.
We can rewrite the equation of 𝐶 − 𝐷 in the form

(𝑥 − 𝑄(𝑡)∕2)2 = 𝑃(𝑡) + 𝑄(𝑡)2∕4.

Hence, by Lemma 5.7,

𝑆 =
𝑥1 − 𝑄(𝑡1)∕2 + 𝑥2 − 𝑄(𝑡2)∕2

𝑡1 − 𝑡2
(5.4)

is a Szegö kernel for 𝐷.
For 𝑘 ⩾ 1, we consider the line bundle

𝜉2𝑘 ∶= 𝑝
∗(𝑘)(1)|𝐶 ≃ 𝑝∗(𝑘) ≃ 𝐶(𝑘𝐷),

where we use the trivialization of 𝑋(1)|𝐶 given by 𝑥0. The restriction map on spaces of global
sections

𝐻0(𝑋, 𝑝∗(𝑘)(1)) → 𝐻0(𝐶, 𝜉2𝑘)

is an isomorphism, and sends the basis

(𝑡𝑖1𝑡
𝑘−𝑖
0 𝑥0)𝑖⩽𝑘, (𝑡

𝑗
1
𝑡
𝑘−2−𝑗
0

𝑥1)𝑗⩽𝑘−2

to the basis (𝑡𝑖)𝑖⩽𝑘, (𝑡𝑗𝑥)𝑗⩽𝑘−2 of 𝐻0(𝐶, 𝜉2𝑘). Thus, we can identify this space with the subspace
2𝑘 ⊂ 𝑒𝑣 defined in [15, Section 2.1].
Recall that Odesskii–Wolf [15] define a derivation on 𝑒𝑣 = (𝐶 − 𝐷) by

(𝑡) = 2𝑥 − 𝑄(𝑡), (𝑥) = 𝑃′(𝑡) + 𝑄′(𝑡)𝑥.

Note that the fact that  descends to a well-defined derivation of (𝐶 − 𝐷) becomes clear if we
rewrite it as

 =
𝜕𝐹

𝜕𝑥
𝜕𝑡 −

𝜕𝐹

𝜕𝑡
𝜕𝑥,

where 𝐹 = 𝑥2 − 𝑄(𝑡)𝑥 − 𝑃(𝑡) is the defining equation of 𝐶 − 𝐷. Also, it is easy to check that

(𝐻0(𝐶,(𝑘𝐷))) ⊂ 𝐻0(𝐶,((𝑘 + 1)𝐷)).

Now the Poisson bracket from [15] on ℙ𝐻0(𝐶, 𝜉2𝑘)∗ ≃ ℙ∗2𝑘 (depending linearly on the
coefficients of 𝑄 and 𝑃) can be rewritten as

⟨Π𝑂𝑊,𝜙, 𝑠1 ∧ 𝑠2⟩ = ⟨𝜙⊗𝜙, 2𝑘 ⋅ 𝑆 ⋅ (𝑠1 ∧ 𝑠2) + 𝑠1⊗(𝑠2) +(𝑠2)⊗𝑠1 − 𝑠2⊗(𝑠1) −(𝑠1)⊗𝑠2⟩,
(5.5)

where 𝜙 ∈ 𝐻0(𝐶, 𝜉2𝑘)∗, 𝑠1, 𝑠2 ∈ ⟨𝜙⟩⟂, and 𝑆 is given by (5.4). Note that a part of the statement
(that is proved in [15] by a direct computation) is that the second argument in the pairing in the
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ELLIPTIC BIHAMILTONIAN STRUCTURES FROM RELATIVE SHIFTED POISSON STRUCTURES 1419

right-hand side of (5.5) lies in𝐻0(𝐶, 𝜉2𝑘)⊗𝐻0(𝐶, 𝜉2𝑘). Therefore, using Theorem 5.9 (with 𝐸 = 0)
we see that our construction of compatible brackets agrees with that of [15] in this case.

Proposition 5.10. The nine compatible Poisson brackets onℙ∗
2𝑘
given in [15] are linearly indepen-

dent and the corresponding nine-dimensional subspace of compatible brackets coincides with the one
coming from Example 4.8 for 𝑛 = 2.

Proof. We checked the compatibility between two constructions. It remains to prove linear
independence. Let us consider the group

𝐺 = GL2 ⋊ Aut(ℙ1 ⊕ ℙ1(2)).

It acts on the Hirzebruch surface 𝑋 and the relevant line bundles are 𝐺-equivariant, so the kernel
of the linear map

𝐻0(𝑋, 𝜔−1𝑋 ) → 𝐻
0
(
ℙ∗
2𝑘
,
⋀2
𝑇
)

is 𝐺-invariant. But it is easy to see that the only nonzero proper 𝐺-subrepresentations of
𝐻0(𝑋, 𝜔−1

𝑋
) are

𝑝∗𝐻0(ℙ1,(2)) ⋅ 𝑥1𝑥0 ⊕ 𝑝
∗𝐻0(ℙ1,(4))𝑥20 and 𝑝∗𝐻0(ℙ1,(4))𝑥20

(for this in addition to GL2 we use automorphisms 𝑥0 ↦ 𝑥0, 𝑥1 ↦ 𝑄(𝑡)𝑥0). Thus, it is enough to
check that our map is nonzero on 𝑝∗𝐻0(ℙ1,(4))𝑥2

0
. Therefore, it suffices to check that the image

of ⟨𝑥2
1
, 𝑡4
0
𝑥2
0
⟩ is two-dimensional.

For this we apply formulas from [15, Section 2.2] to compute the bracket {⋅, ⋅}𝑎0 associated with
the anticanonical divisor 𝐶𝑎0 given by

𝑥21 = 𝑎0𝑡
4
0𝑥
2
0

(which corresponds in the notation of [15] to g2 = 𝑎0) and to check that the constant and linear
terms in 𝑎0 are linearly independent.
Let us consider the linear forms on ℙ∗

2𝑘
(which we view as elements of𝐻0(𝐶, 𝜉2𝑘),

𝓁1 = 1, 𝓁2 = 𝑡, 𝓁3 = 𝑥.

Then using formulas from [15, Section 2.2] we get{
𝓁1
𝓁3
,
𝓁2
𝓁3

}
𝑎0

= −2𝑘
𝓁1
𝓁 3
+ 𝑎0 ⋅ 2𝑘

𝓁3
1

𝓁3
3

.

Hence, we get the required independence. □

5.3.2 Odd case

Now we consider the situation of Example 4.8 for anticanonical divisors in 𝑋 = ℙ(⊕ (1)).
This time we have fiberwise homogeneous coordinates 𝑥0 ∈ 𝑋(1) and 𝑥1 ∈ 𝑝∗(1)(1). We have
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1420 HUA and POLISHCHUK

𝜔−1
𝑋
= 𝑝∗(3)(2), so

𝐻0(𝑋, 𝜔−1𝑋 ) = 𝑝
∗𝐻0(ℙ1,(1)) ⋅ 𝑥21 ⊕ 𝑝

∗𝐻0(ℙ1,(2)) ⋅ 𝑥1𝑥0 ⊕ 𝑝
∗𝐻0(ℙ1,(3))𝑥20.

Thus, a generic anticanonical divisor 𝐶 is given by the equation

(𝑡1 + 𝑐𝑡0)𝑥
2
1 = 𝑓2(𝑡0, 𝑡1)𝑥1𝑥0 + 𝑓3(𝑡0, 𝑡1)𝑥

2
0,

where deg(𝑓2) = 2, deg(𝑓3) = 3. The open affine subset 𝑈 ⊂ 𝐶 given by 𝑡0𝑥0 ≠ 0 has the algebra
of functions generated by 𝑡 = 𝑡1∕𝑡0 and 𝑥 = 𝑥1∕(𝑥0𝑡0) subject to the relation

(𝑡 + 𝑐)𝑥2 = 𝑄(𝑡)𝑥 + 𝑃(𝑡),

where deg𝑄 ⩽ 2 and deg𝑃 ⩽ 3. This algebra is precisely 𝑜𝑑 from [15, Section 2.1].
As before we consider the line bundle 𝑝∗(𝑘)(1) on 𝑋 and its restriction to 𝐶,

𝜉2𝑘+1 ∶= 𝑝
∗(𝑘)(1)|𝐶.

The section 𝑡𝑘
0
𝑥0 trivializes this line bundle over𝑈, so that the basis of global sections of𝑝∗(𝑘)(1)

restricts to the functions

(𝑡𝑖)𝑖⩽𝑘, (𝑡
𝑗𝑥)𝑗⩽𝑘−1. (5.6)

Thus, we have an identification of𝐻0(𝐶, 𝜉2𝑘+1) with the space 2𝑘+1 ⊂ 𝑜𝑑 from [15].
As in the even case, Odesskii–Wolf define a derivation on 𝑜𝑑 = (𝑈) by

(𝑡) = 2(𝑡 + 𝑐)𝑥 − 𝑄(𝑡), (𝑥) = 𝑃′(𝑡) + 𝑄′(𝑡)𝑥 − 𝑥2.

Further, they define the quadratic Poisson bracket on2𝑘+1 (depending linearly on the coefficients
of 𝑄 and 𝑃) which induces a Poisson bracket on ℙ∗

2𝑘+1
= ℙ𝐻0(𝐶, 𝜉2𝑘+1)

∗ given by

⟨Π𝑂𝑊,𝜙, 𝑠1 ∧ 𝑠2⟩ = ⟨𝜙⊗𝜙, (2𝑘 + 1) ⋅ 𝑆 ⋅ (𝑠1 ∧ 𝑠2) + 𝑠1⊗(𝑠2) +(𝑠2)⊗𝑠1 − 𝑠2⊗(𝑠1) −(𝑠1)⊗𝑠2⟩,
where 𝑆 is given by

𝑆 =
(𝑡1 + 𝑐)𝑥1 − 𝑄(𝑡1)∕2 + (𝑡1 + 𝑐)𝑥2 − 𝑄(𝑡2)∕2

𝑡1 − 𝑡2
.

To understand this formula let us consider the divisor 𝐷 ⊂ 𝐶 given by 𝑡0 = 0. Then𝑈 ⊂ 𝐶 − 𝐷
and the complement consists of one point 𝑞 where 𝑡1 + 𝑐𝑡0 = 0 and 𝑥0 = 0. It is easy to see that
𝐶 − 𝐷 is affine and the algebra of functions (𝐶 − 𝐷) is the subring of (𝑈) generated by 𝑡 and
𝑧 ∶= (𝑡 + 𝑐)𝑥. Thus, 𝐶 − 𝐷 is the plane curve given by the equation

𝑧2 = 𝑄(𝑡)𝑧 + (𝑡 + 𝑐)𝑃(𝑡).

Now Lemma 5.7 shows that 𝑆 is a Szegö kernel for the divisor 𝐷 on 𝐶.
On the other hand, since𝑥 ∈ (𝐷 + 𝑞) andhas a pole of order 1 at 𝑞, looking at the basis (5.6)we

see that 𝐻0(𝐶, 𝜉2𝑘+1) = 2𝑘+1 gets identified with the subspace 𝐻0(𝐶,(𝑘𝐷 + 𝑞)) ⊂ (𝑈). It is
easy to check that

(𝐻0(𝐶,(𝑘𝐷 + 𝑞))) ⊂ 𝐻0(𝐶,((𝑘 + 1)𝐷 + 2𝑞)).
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ELLIPTIC BIHAMILTONIAN STRUCTURES FROM RELATIVE SHIFTED POISSON STRUCTURES 1421

Thus, applying Theorem 5.9 (with 𝐸 = 𝑞) we again deduce the agreement of our construction of
compatible Poisson brackets with that of [15].

Proposition 5.11. The nine compatible Poisson brackets on ℙ∗
2𝑘+1

given in [15] are linearly inde-
pendent and the corresponding nine-dimensional subspace of compatible brackets coincides with the
one coming from Example 4.8 for 𝑛 = 1.

Proof. It remains to check that the map

𝐻0(𝑋, 𝜔−1𝑋 ) → 𝐻
0
(
ℙ∗
2𝑘+1

,
⋀2
𝑇
)

is injective. As before, we use the fact that the kernel is invariant underGL2 ⋊ Aut(ℙ1 ⊕ ℙ1(1)),
so it is enough to check that the image of 𝑝∗𝐻0(ℙ1,(3))𝑥2

0
is nonzero. Hence, it suffices to

consider the bracket {⋅, ⋅}𝑎0 corresponding to the anticanonical divisor

𝑡𝑥2 = 𝑎0

and check that the constant and linear terms in 𝑎0 are linearly independent.
Let us consider the linear forms on ℙ∗

2𝑘+1
(which we view as elements of𝐻0(𝐶, 𝜉2𝑘+1),

𝓁1 = 1, 𝓁2 = 𝑡, 𝓁3 = 𝑥.

Then using formulas from [15, Section 2.3] we get

{
𝓁1
𝓁3
,
𝓁2
𝓁3

}
𝑎0

= −2
𝓁1
𝓁3
− (2𝑘 − 1)

𝓁2
𝓁3
+ 𝑎0(2𝑘 + 1)

𝓁3
1

𝓁3
3

,

so we get the required linear independence. □
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