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1 | INTRODUCTION

Recall that a bihamiltonian structure is a pair of (linearly independent) Poisson bivectors I1,, IT,
which are compatible, that is, such that any linear combination of II; and II, is again Poisson. A
fundamental result of Magri relates bihamiltonian structures to complete integrability [12].

The main goal of this paper is to try to understand the geometry underlying bihamiltonian
structures extending the elliptic Feigin—Odesskii Poisson brackets. Recall that the latter are cer-
tain Poisson brackets g,, ; (C) on the projective space P"~! associated with an elliptic curve C and
a pair of relatively prime integers n > k > 0 (see Section 2). These brackets were introduced by
Feigin and Odesskii in [6] and are supposed to arise as semiclassical limits from Feigin-Odesskii
elliptic algebras introduced in [5] (for k = 1 this is proved in [8, Section 5.2]). Recently interesting
examples of such bihamiltonian structures were constructed by Odesskii-Wolf in [15] (improv-
ing earlier construction of Odesskii in [14]): for every n > 2 they constructed a nine-dimensional
subspace of compatible Poisson brackets on P"~! containing g, ;(C). Our results give a more
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conceptual construction of these compatible brackets, as well as some generalizations involving
4, (C) with k > 1.

The main idea is to use the general setup of shifted Poisson structures on (derived) moduli
stacks of complexes of vector bundles over Calabi-Yau varieties considered in [8]. In [8] we showed
that Feigin—Odesskii brackets appear in this setup as classical shadows of natural 0-shifted Poisson
structures on the moduli stacks of two-term complexes over elliptic curves (in fact, this connec-
tion goes back to [17]). In this paper we extend this setup by allowing the varieties to be singular
Gorenstein and by considering a relative version. More precisely, for a flat family of (possibly sin-
gular) d-Calabi-Yau varieties with an affine base, there is a (1 — d)-shifted Poisson structure on
the relative stack of complexes (see Theorem 3.9). We show that in the case of elliptic fibrations
7 1 C — P"such that we /g ~ 7*Opn(1) this leads to families of compatible Poisson brackets (see
Theorem 4.2).

We then proceed to study families of anticanonical divisors on surfaces. We find a general con-
struction starting from an exceptional bundle V on a surface X, such that (O, V) is an exceptional
pair, and leading to compatible brackets containing Feigin-Odesskii brackets (see Theorem 4.4).
Considering appropriate line bundles on Hirzebruch surfaces we recover the nine compatible
Poisson brackets of Odesskii-Wolf containing g,, ; (C). Proving that these are actually the same
compatible brackets is a nontrivial computation that takes up Section 5. These computations are
based on the connection between the Poisson brackets g, (C) and certain Massey products. We
calculate the relevant Massey products using Szeg6 kernels.

We also discover some new examples of compatible Poisson brackets. Namely, we construct two
infinite families of pairs (n, k) for which each Feigin-Odesskii bracket g, ,(C) is contained in a
10-dimensional family of compatible Poisson brackets, namely, the pairs

(Bfam=15fam—3) form > 2, and (3f5,_1,3f2m—1 — fom—3) form >3,

where (f,,) are Fibonacci numbers (see Proposition 4.7). For example, this gives a 10-dimensional
subspace of compatible Poisson brackets on P> containing de,1(C), which is a bit surprising given
that the nine-dimensional space of compatible brackets of Odesskii-Wolf on P> is maximal, that
is, is not contained in a bigger such space. This leads to a natural question how these two spaces
are related.

Another new example we discover is that for every n > k > 1 such that n = +1 mod (k), with
odd k, there exists a bihamiltonian structure on P*~! containing dy,x(C) (see Proposition 4.9).
In fact, in this example we get 5 compatible brackets but we do not know how to prove their
linear independence.

The natural question is whether for every relatively prime pair (n, k) withn > k + 1, the Feigin—
Odesskii bracket g, ; (C) extends to a bihamiltonian structure. We believe that our construction
using exceptional bundles on surfaces in Theorem 4.4 should at least provide more examples of
such pairs (if not all of them).

It is an interesting question whether bihamiltonian structures containing Feigin-Odesskii
brackets lead to any interesting integrable systems. We plan to address this question in a
future work.

The paper is organized as follows. In Section 2 we study Feigin—Odesskii Poisson brackets
dy, 1 (C). The first result here is the formula for the bracket in terms of a triple Massey product
(see Lemma 2.1). The second result of Section 2, which may be of independent interest, is that
the isomorphism class of an elliptic curve C can be recovered from g, ;(C) provided n > k + 1
(see Theorem 2.4). We prove this by studying the locus where the rank of the Poisson bivector
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drops compare to the generic rank. In Section 3 we generalize the construction of a shifted Pois-
son structure on the moduli of complexes over a smooth Calabi-Yau variety from [8] to the case of
families of not necessarily smooth Calabi-Yau varieties (see Theorem 3.9). In Section 4 we special-
ize to families of CY-curves. Considering a relative version of Feigin—Odesskii Poisson brackets,
under appropriate assumptions we get collections of compatible Poisson brackets on projective
spaces (see Theorem 4.2). We then show that compatible Poisson brackets arise from the linear
system of anticanonical divisors in a smooth projective surface X and an exceptional pair (O, V)
(see Theorem 4.4). We consider examples corresponding to such exceptional pairs on some del
Pezzo surfaces and Hirzebruch surfaces. Finally, in Section 5 we show how to compute our Pois-
son brackets in terms of Szegd kernels and deduce that our construction, applied to exceptional
pairs on Hirzebruch surfaces, recovers the compatible Poisson brackets of Odesskii-Wolf in [15].

2 | FEIGIN-ODESSKII BRACKETS

In this section we discuss some aspects of the Poisson brackets g, ,(C) on projective spaces defined
by Feigin-Odesskii. We use the modular definition of these brackets obtained by studying vector
bundle extensions of a fixed stable vector bundle & on C by O.

2.1 | Formula for the Poisson bracket as a Massey product

We start by giving the definition of the Feigin-Odesskii bracket g,, ,(C) on the projective space
PExt'(¢,0) = PHY(C, V) following [8, Section 5.2]. Let ¢ be a stable vector bundle on an elliptic
curve C of degree n > 0 and rank k. Let us fix a trivialization w, ~ O,. The construction will
depend on £ and a trivialization of w., however, up to an isomorphism and rescaling, the bracket
depends only on n, k and C.

Given a nonzero ¢ € H'(C, £¥) ~ H°(C, £)*, the tangent space to the projective space is given
by H(C, £V)/{¢), while the cotangent space is

() 1= ker (HO(C, o2 Hc, oc)>.
Let

0500 >E->§-0

be the extension corresponding to ¢. Let End(E, O.) be the bundle of endomorphisms of E
preserving Oc. It sits in a natural exact sequence

0 — End(E, O) — End(E) — & — 0,
so by applying the functor RHom(?, O, ), we get a boundary homomorphism
§ : Hom(End(E, O¢), Oc) — Ext'(£,00) = H'(C, £Y).
On the other hand, the exact sequence

0— & - End(E,00) —» End(§) @ O — 0
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1392 | HUA and POLISHCHUK

induces a surjection Hom(End(E, O), O) — ($)*+ € H°(C, £). The Poisson bivector II of the
Feigin—Odesskii bracket is uniquely determined by the condition that its value IT at ¢ fits into a
commutative diagram

H(C,End(E, O¢)¥) =— H(C,£)

o0 i “2l 2.1)

(@Y ——  HI(C,EV)/($).

We are going to show that this Poisson bracket can be computed as a triple Massey product.
We refer to [7, Section 2] for a general background on Massey products. What is important for us
is that they can be calculated in two ways, either using the triangulated structure (this definition
has its origin in Toda brackets, see [3]), or using the dg-resolutions.

Lemma 2.1. The Poisson bracket I1, : ()t — HY(EV)/(¢) is given by x — +MP(¢, x, $), where
we use the triple Massey product

¢[-1] O 3 Ol1].
Equivalently, for s;, s, € (p)* € H(C, £) one has
H¢(31 A 8y) = £(¢, MP(51, 9, 5,)).

Proof. One way to get the first formula is to use the formula for Iy in terms of Cech resolutions
given in [8, Section 5.2]. We will instead use the standard recipe for calculating triple Massey
products based on including the first arrow £[—1] — O into an exact triangle with E as the cone
(see [3, Section 2]. Namely, this recipe tells that the map x » MP(¢, x, ¢) fits into a commutative
diagram

s

H(C,EV®%) HYC,EY)

ﬁli Tﬁz (2.2)

(@t — (e /g,

where §’ is the boundary homomorphism obtained by applying RHom(E, ?) to the extension
sequence. Now the assertion follows easily from the commutative diagram

HY(C,End(E, 0c)") > H'(C, £")

L

HY(C,EV®¢) —2 = H'(C,EY)

together with the fact that the vertical arrows in (2.1) and (2.2) are related by a; = 71,72 = B%,.
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Next, we note that in terms of A -structure obtained by homological perturbation we have

MP(,s,,¢) = £m3($,s1,¢) mod (¢).

Next, we use the cyclic symmetry (here we use the existence of a cyclic minimal A -structure that
follows from [18, Section 6.5]):

(m3(d, 51, 9), 5,) = (P, m3(s1, P, 5,)).

It remains to observe that in the right-hand side of the last formula we can replace m;(s;, ¢, s,)
by the corresponding Massey product

MP(s, ¢, 5,) € H'(C,§)/(51.5,)-
Indeed, the pairing with ¢ is zero on the subspace (s;,s,) C (¢)*. 1
Remark 2.2. The sign ambiguity in Lemma 2.1 (and in other statements below involving Massey
products) can be resolved: the signs appear from the cyclicity constraint for A -structures and
from relating Massey products with m; (see, for example, [7, Section 2]). For our purposes the
exact value of the sign is not important.
We have the following nice formula for the rank of the Poisson bracket IT on PExt! (&, O).
Proposition 2.3. For a nontrivial extension
0->0—>E—-£(-0
with the class ¢ € Ext'(&,0.), one has

rkIly = deg(§) — dimHom(E, E).

Proof. By definition, the map IT : (p)+ — HY(£V)/(¢) fits into the following sequence of arrows,
whose composition is the cup product with ¢:

Hom(E, &) — (¢)* l HYEY)/(¢) - HY(EY) = Ext'(E, ),

where the first map is a surjection induced by the natural map Hom(E, ) - Hom(O, ) and the
last map is an injection induced by the natural map H'(£V) — H'(EV). Hence, the rank of g is
equal to the rank of the cup product with ¢ map,

Hom(E, &) SN Ext!(E, ).

Note that Hom(§, O.) = 0 since § is stable of positive slope, and hence, Hom(E, O) = 0since the
extension does not split. Hence, the kernel of the above map is exactly Hom(E, E). Furthermore,
we have Ext!(E, ) = Hom(¢, E)Y = 0since the extension does not split. Hence, by the Riemann-
Roch formula dimHom(E, §) = deg(§) and the assertion follows. O
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2.2 | Recovering the elliptic curve from the Poisson bracket

Theorem 2.4. Fixan integer d > 2. Suppose & is a stable vector bundle of rankr < d — 1 and degree
d on an elliptic curve C, and &’ a stable vector bundle of rank r' < d — 1 and the same degree d on
another elliptic curve C'. If there exists a Poisson isomorphism PExt!(&,0.) ~ PExt} (¢, Oc) then
C~(.

A trivial example is when r = 1 and d = 3: then C is recovered as the vanishing locus of the
Poisson structure. If r = 1 and d = 4, then C is a connected component of the vanishing locus of
the Poisson structure (the entire vanishing locus is the union of C with four points).

The proof is based on the following observation. We fix an elliptic curve C and a stable vector
bundle £ as in the above Theorem. Let ¢ = ged(d, r + 1).

Proposition 2.5. The generic rank of the Poisson structure TI on PExt!(£,0p) isd —c. Let Z C
PExt} (£, O) be the Zariski closure of the set of all points where the rank of Tl is d — ¢ — 2. Then each
nonrational irreducible component of Z is birational to A™ X C for some m, and there exists at least
one such component.

Let us set

and let yu, = d/(r + 1) be the corresponding slope. Let also set
v:.=(d,r).
We denote by y : 7% x 7> — Z the bilinear form
x((dy,11),(dy,1p)) = dyry — dyrs.
For a vector bundle E we denote by v(E) the corresponding vector (deg(E), rk(E)).

Lemma 2.6. Let E; denote the extension corresponding to a nonzero class ¢ € Ext!(€,00).

(i) We have kIl < d — ¢ with equality if and only if E, = €D E; where E; are indecomposable
bundles of slope o with Hom(E;, E;) = 0 for i # j.
(ii) One has rkIly = d — ¢ — 2 in one of the two cases:
* Ey ~ By @ E,, where both E; and E, are stable, x(v(E),v,) = 1 (and hence, x(v(E,), vy) =
—-1);
* Ey~E @E,® - ®E,, where all E; are indecomposable of slope i, E, is stable and
Hom(E;,E;) = 0 fori # j, (i, j) # (1,2),(2, 1).

The second case occurs only for c > 1.

Proof. (i),(ii) By Proposition 2.3, we have to prove that dimEnd(Ey) > ¢ and to study the cases
where we have an equality and the cases where dimEnd(E,) = ¢ + 2.
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Assume first that Ey is indecomposable (and hence, semistable). The abelian category of
semistable bundles SB(u,) of slope u, is equivalent to the category of torsion sheaves in such
a way that stable bundles of slope (, are simple objects in SB(y,). Hence, a semistable bundle F
of slope 4, has length £ in this category if and only if v(F) = ¢ - v,. Since v(Ey) = cvy, if B is
indecomposable it has dimEnd(Ey) = c.

Now let

Ey=E, @ - ®E,,

where m > 2, each E; is indecomposable, and u(E;) < u(E,) < -+ < u(E,,). Assume first that Eyg
is semistable, and let #; be the length of E; in SB(1). We have

Z dimEnd(E,) = Z ¢, =t(Ey) =c.

Thus, dimEnd(Ey) > ¢ with equality precisely when Hom(E;, E;) = 0 for i # j.
Furthermore, if Hom(E;, E;) # 0 for some i # j then
dimHom(Ei,Ej) = dimHom(Ei,Ej) = min(¢;, fj).
Hence, if dimEnd(E¢) = c + 2 then we can have at most one such pair and we should have
Next, let us consider the case when E¢ is unstable. Then there exists i > 1 such that
x((E;),v(E;)) > 0. Hence, y(v(E;), v(E)) > 0. It follows that

dimHom(E,E, ® -+ E,,) > x(V(E}), v(E,) + - + V(E,,)) = x(V(E,), cvy) = cx(v(E;),vy) = c.

Therefore,

m
dimEnd(Ey) > ) dimEnd(E;) + dimHom(E,, E, @ - E,,) > 2 + .
i=1

Furthermore, the equality is possible only if m = 2, both E; and E, are stable and y(v(E;),v,) =
1. O

Remark 2.7. The proof of Lemma 2.6(i) also shows that in the case r = d — 1 the Feigin—Odesskii
bracket is identically zero.

Proof of Proposition 2.5. It suffices to find a finite nonempty collection of irreducible closed subva-
rieties, Z,, ..., Z,,, each birational to the product of C with an affine space, such that UZ; contains
every point with rkIly = d — ¢ — 2 and also ata generic point of each Z; we have rkIly = d — ¢ — 2.

Step 1. First, let us fix a decomposition cv, = v; + v, in Z2, with v; = (d;,r;) and r; > 0, such
that

x(;,v9) =1 and y(v,,v) =d, —c > 0.
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1396 | HUA and POLISHCHUK

For each such decomposition we will construct an irreducible subvariety Z(v,) in PExt'(£,0.),
which contains all ¢ with E, ~ §; @ &, where §; and §, are stable with v(§;) = vy, v(§;) = v,
(thatis, all points ¢ of the first type from Lemma 2.6(ii)). Furthermore, we will check that a generic
point of Z(v,) is a point of this type.

Let M(v,) denote the moduli space of stable bundles F with v(F) = v, (note that M(v,) ~ C).
Let us consider the projective bundle X — M(v,) with fiber over &, given by PHom(§,, §), and
let X, C X be the open subset corresponding to injective morphisms &, — &. Over X, we have a
projective bundle Y — X, associated with the vector bundle with fibers

ker(Ext! (€, Oc) » Ext'(&,, 0O¢))

(here we use the fact that this map of Ext’s is surjective). Note that X, and Y are irreducible and
Y is birational to the product of M(v,) with an affine space of dimension

x(y,v)—14+d—-dy,—1=d—-c—2.

We have an obvious morphism Y — PExt!(¢, O.) and we denote by Z(v,) the closure of its image.
It is clear that the image of Y consists of all ¢ which split over some embedding &, — &, with
v(§,) = v,.

Assume that Ey ~ §; @ &, where §; are stable and v(§;) = v;. Then both components of the
embedding O, — &, @ &, are nonzero (otherwise the quotient would be decomposable). Hence,
the intersection of the image of O, with 0 @ &, is zero, which implies that the composed map
§, = E4 — £ is an embedding. Since ¢ splits over §, — £, we see that ¢ is contained in Z(v,).

For a generic point of X, the quotient £/&, will be semistable, for a generic point of Y the
corresponding extension of & /&, by O will be semistable with the vector v, hence, stable. So the
corresponding Ey sits in an exact sequence

0—>§2—>E¢—>§'1—>O

which necessarily splits since u(§,) > u(§,).

Now let us check that the map Y — Z(v) is birational. It is enough to check that if Ey ~ £ @E
for some ¢, with §; as above, then there is a unique £, € M(v,) and a unique nonzero mor-
phism &), — &, up to rescaling, such that ¢ splits over this morphism. But Hom(¢/, §;) = 0 and
Hom(¢), &,) # 0 only when &) = &,. Furthermore, if ¢ splits over a morphism &, — £ then this
morphism factors through E, and the statement follows from the fact that dimHom(§,, E,) = 1.

Step 2. We claim that there exists at least one decomposition cv, = v; + v, asin Step 1. Indeed,
assume first that (r + 1)/c > 1. Since d/c and (r + 1)/c are relatively prime, there exists a unique
pair of integers (r,d;) with 0 < r; < (r + 1)/c such that

d r+1

—-r;=d;- + 1
;=4

Furthermore, we necessarily have r; > 0. We define v, as cv, — v;.
Note that sinced > r + 1, d cannot divide r + 1, so % > 1. In particular, we cannot have v, = v,
so it enough to check the nonstrict inequality y(v,,v) > 0, which is equivalent to

dy<d-c.
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The inequality r; < (r + 1)/c implies that d; < %, which gives the required inequality for ¢ = 1.

For ¢ > 2 we use in addition
Q<2<Q_1> <c<g—1> =d-c.
c c c

In the remaining case ¢ = r + 1 we can just taker; = 1and d; = %i -1

Step 3. Assume that ¢ > 2. We will construct an irreducible subvariety Z, in PExt! (¢, O-) which
contains all the points ¢ of the second type described in Lemma 2.6(ii). Furthermore, we will check
that a generic point of Z, is a point of this type.

First, we observe that for every point ¢ of the second type from Lemma 2.6(ii), there exists
an embedding Efaz — E, such that the quotient is semistable (of slope u;). Indeed, since
Hom(E,;, E,) # 0, there exists an embedding E, — E, with the semistable quotient, and the
assertion follows.

Now let X be the relative Grassmannians of 2-planes in the bundle over M(v,) with the fiber
Hom(¢§, &) over &, € M(v,). Let us denote by X, C X the open subset consisting of 2-planes
P c Hom(§, £) such that the corresponding map P®§, — ¢ is injective. Let Y — X, denote the
projectivization of the vector bundle with fibers

ker(Ext'(£,00) = Ext'(P®&,, Op)).

We have an obvious morphism Y — PExt!(£, ©) and we denote by Z, the closure of its image.

Assume that Ey is of the second type from Lemma 2.6(ii). Then we have an embedding ¢ 592 -
Ey such that the quotient is a nonzero semistable bundle E’ of slope y, (here we use the assump-
tion ¢ > 2). We claim that the composed map O, — E’ is nonzero. Indeed, otherwise we would
have a nonzero map from E4/Oc ~ £ to E’ which is impossible since u(E’) = u, < u(§). Thus,
the composed map

2
0

- Ey — &
is injective, and we see that ¢ lies in the image of Y.

We claim that for a generic point of Y the quotient £/(P®§&,) is semistable and the cor-
responding extension E’ of &/(P®E,) by O is also semistable. Hence, we get an exact

sequence
0—>§'§BZ—>E¢—>E’—>O

with E’ semistable of slope u,. Furthermore, for a generic point we will have Hom(¢,,E’) = 0
and dimEnd(E’) = ¢ — 2, so the sequence will split and Ey will be of the second type from
Lemma 2.6(ii).

To see that the map Y — Z, is birational, we first observe that if ¢ is such that E; = 13 SBZ D E'is
of type from Lemma 2.6(ii), then for any stable & of slope u, one has dimHom(§/, E4) < 1 unless
§(’) =~ §,. Furthermore, the two-dimensional subspace of Hom(§, §) is recovered from Ey as the
image of the embedding

Hom(§,, E;) — Hom(&, §). (2.3)

It is also easy to see that Y is birational to A9=5 x C.

Step 4. Finally let us consider the case ¢ = 2. In this case for each of the four nonisomorphic
stable bundle &, with v(§,) = y, such that det(£,)®? ~ det(£), we define a rational subvariety
Z(&,) C PExt!(£,0,) as follows.
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1398 | HUA and POLISHCHUK

Let X(&,) denote the Grassmannian of 2-planes in Hom(§,, ) and let X,(§,) € X(&,) be the
open subset consisting of P such that the corresponding map PQ§, — £ is surjective. In this case
the kernel is necessarily isomorphic to ©, so we get a well-defined map X,(£,) — PExt}(£,O).
We let Z(&,) be the closure of its image.

It is clear that the image of X,(§,) consists precisely of points ¢ such that Ey ~ (E)BZ. Asin Step
3, the point of the Grassmannian is recovered from Ey as the image of the map (2.3). O

Proof of Theorem 2.4. By Proposition 2.5, the isomorphism class of a variety Z, and hence a bira-
tional class of A™ X C is determined by the Poisson structure. Namely, Z is the closure of the set
of points where the rank of the Poisson structure drops by 2 compare to the generic rank. But it is
well known that A™ x C and A" x C’ can be birational only if C ~ C’. O

3 | SHIFTED POISSON MODULI STACKS WITH SINGULAR SOURCE

Throughout this section we fix a base commutative Noetherian ring k of residue characteristics 0.
All stacks and schemes are over k unless we specify otherwise. We call a k-scheme X flat, proper
or projective if the structure morphism X — Spec k is such.

For the basics on derived symplectic and Poisson geometry, we refer to [16, Section 1] [8,
Sections 2 and 3].

3.1 | QO-orientations
Let us recall one of the main results in [16].

Theorem 3.1 ([Theorem 2.5 [16]]). Let F be a locally geometric derived stack locally of finite pre-
sentation over k equipped with an n-shifted symplectic form w. Let X be an O-compact derived stack
over k equipped with an ©-orientation [X] : C(X,Ox) — k[—d] of degree d. Assume that the derived
mapping stack Map(X, F) is itself locally geometric and locally of finite presentation over k. Then
Map(X, F) carries a canonical (n — d)-shifted symplectic structure.

The definition of being ©-compact can be found in [16, Definition 2.1]. Any quasi-projective
scheme is @-compact. By definition C(X, Oy) is defined to be RHom(Oy, Ox), which can be
represented by the Cech complex computing cohomology of O.

Definition 3.2. Let X be an O-compact derived stack and d € Z. An O-orientation of degree d on
X consists of a morphism of complexes

[X] 1 C(X,0x) — k[—d],
such that forany A € cdgai0 and any perfect complexes E on X 4, := X X Spec A, the morphism
CXp,E) — C(XA,EV)V[—d]
induced by
[X4] 1= [X]®id : C(X,4,0x,) =~ C(X, Ox)® A — Al—d]

is a quasi-isomorphism of A-dg-modules.
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Definition 3.3. Let X be a projective scheme over Spec k. We call X is Gorenstein Calabi-Yau
d-fold if

(1) the dualizing complex wy is invertible;
(2) there is an isomorphism Oy = wy;
(3) X is connected.

Lemma 3.4. Let X be a Gorenstein Calabi-Yau d-fold. Then X admits an O-orientation.

Proof. Because X is Gorenstein, the dualizing complex wy is quasi-isomorphic to an invertible
sheaf. A Calabi-Yau structure corresponds to a trivialization 7 : Oy = wy. Let € be a perfect com-
plex on X. Denote by (A,, d) the total complex of the sheaf endomorphism complex Hom(¢&, £).
Then A, = ), Hom(&', €'). Denote by

T 1Ay > Oy

the (super)trace morphism. We extend 7’ to a morphism from A, to Oy by pre-composing it with
the natural projection. Define 7 to be the composition 707’. Clearly, 7’od = 0. The canonical trace
morphism H%(wy) — k (from the definition of dualizing complex), together with the CY structure
7, defines the desired morphism

[X] : C(X,0y) — k[—d].

Now we consider the case when the base is an affine derived scheme. Given A € cdgaio, denote

by X 4 the product X X Spec A. Let € be a perfect complex on X 4. We have a cartesian diagram
of derived schemes

j
Xpog —— X,

Spec HA —— Spec A,

where X0, := X X, Spec H°(A). By the base change formula of derived schemes [19, Proposition
1.4], there is an equivalence

Fu, F ~ v, j*F

for any quasi-coherent complex F on X 4. All functors are derived. Take F = EQEV. We need to
check that the morphism

ne : u,& — RHom,(u,(&Y), A[—d])
is an isomorphism in D(A). We claim that it is equivalent to showing that

i*(ne) : i*u,& - i"RHom(u, (&), A[—d])
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1400 | HUA and POLISHCHUK

is an isomorphism in D(H®A). Because u is proper and flat, both u,.& and RHom(u,(€Y), A[—d])
are perfect A-modules. It suffices to show a perfect A-module M is acyclic if and only if i*M is
acyclic. Because M is perfect and A is nonpositively graded, there exists n such that H/(M) = 0
for i > n. By spectral sequence,

H"(M) = H"(M® 4H°A) = H"(i*M) = 0.

By induction, M is acyclic. The claim is proved.
By the base change, i*(7,) is isomorphic to the morphism

Njee 1 UJE = RHomyo,4 (v, (j*€), H'A[—d]),
induced by the bilinear map
JER(EY) - w, OXHOA.

Then 7« isanisomorphism in D(H°A) by Grothendieck duality for the scheme morphismv. []

3.2 | Shifted Poisson structure on the moduli of complexes

We briefly recall the construction of moduli stack of complexes following [10, Section 2]. The
basics on graded mixed objects can be found in [2, Section 1]. Those readers who are familiar with
[2] can skip the first two pages and read Theorem 3.6 directly.

Let k be a Noetherian commutative ring. Let C(k) be the category of unbounded dg-k-modules
with the standard model structure, where weak equivalences are quasi-isomorphisms and fibra-
tions are epimorphisms of cochain complexes. Let M be a symmetric monoidal model category
with a C(k)-enrichment.

A graded mixed object in category M is a Z-family of {E(p)},, of objects in M together with
morphisms in M

€ ={e, : E(p) > E(p + D1}z,

where [1] is the shift functor defined by the C(k)-enrichment, and €? = 0. We write (E, ¢) for the
family together with the differential. A morphism

f :(E,e) > (F,e)

is a family of maps {f(p) : E(p) — F( p)}pEZ in M that commutes with €. We call a graded mixed
object in M bounded if E(p) = 0 except for finitely many p. Denote the category of graded mixed
objects in M by e — M#".

The category M8" : =[] pez M is naturally a symmetric monoidal model category enriched in
C(k), inherited from M. There is a forgetful functor

€ — M8 - M¢#
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forgetting the k[e]-structure. Equip € — M8 with the symmetric monoidal model structure
through the forgetful functor. Given a triangulated dg category T, following [20] we denote the
category of perfect (or compact) objects by T ,,. Suppose M is triangulated and admits arbitrary
coproducts. An object of € — M8 is called perfect if it is a compact object in M8'. Denote by
€pe — ME' the subcategory of € — M®" consisting of perfect objects.

Let E, F be two mixed graded objects. We define the external hom by

Hom}(E, F) := [ (Hom!'(E,F)(p)),

PEZ
where
Hom['(E, F)(p) = [ | Hom,,(E(q), F(q + p)).
qeN
The differential

e(p) : Hom(E, F)(p) - Hom(E, F)(p + D[1]

is defined by the adjoint action of € on E and F. This defines a C(k)-enrichment of ¢ — M8 and
the forgetful functor € — M8 — M?" is C(k)-enriched.

Example 3.5. When M = C(k), denote the stack of perfect objects in C(k) by RPerf, the stack
of objects in €, — C(k)8" by RePer f the stack of perfect objects in C(k)8" by RPer f bZ . The lower
index b stands for bounded. We have stack morphism

RePer f

N o

RPerf bZ RPer f

where p is induced by the forgetful functor and q is induced by the functor taking the total com-
plex. Denote by Cplx the subcategory of €,, — C(k)" where E(p) has perfect amplitude [0,0] for
all p € Z, and by RC plx the associate stack of objects. Then the above diagram restricts to

RCplx

p q
/ \ (3.2)

RVect, RPerf

where Vect is the stack of vector bundles. In a seminal paper [20], Toen and Vaquie have proved
that RPer f is a locally geometric stack locally of finite presentation over k. The same holds for

RPer f bZ and RVect?.
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Let X be a flat projective k-scheme, and let M = Qcoh(X) be the category of quasi-coherent
complexes on X. An object of €, — M¥®" is a graded mixed complexes of quasi-coherent complexes
{E(p)}pez Where E(p) is a perfect complex on X for all p € Z and E(p) = 0 except for finitely
many p. Denote by Cplx(X) the subcategory of ¢ ,, — M& where E(p) has perfect amplitude [0,0]
for all p € Z. Objects of Cplx(X) are simply bounded complexes of vector bundles (since we have
assumed that X is projective).

Theorem 3.6 ([10, Lemma 2.4, Proposition 7.3, Theorem 2.3]). Let X be a flat projective k-scheme.
Denote by RePer f (X) the stack of objects in €, — Qcoh(X)8" and RCplx(X) the stack of objects of
CplIx(X). Then there is an equivalence of stacks

RePerf(X) = Map(x, RePe_rf) o~ Map(x, Map([A! / G, Rpe_rf)>,

where Map is the internal hom of the category of (derived) stacks. As a consequence, RePer f, RCplx,
RePer f(X) and RC plx(X) are locally geometric stacks locally of finite presentation over k.

Lemma 3.7. Let k be a commutative Noetherian ring of residue characteristics 0 and X be a Goren-
stein Calabi-Yau d-fold (over Spec k). Then for a given isomorphism Ox = wy, RPer f(X) admits a
canonical (2 — d)-shifted symplectic structure.

Proof. By [20, Proposition 3.7], RPerf is locally geometric and locally of finite presentation
over k. It admits a canonical 2-shifted symplectic structure by [16, Theorem 2.12]. Since X is
projective over k, it is @-compact. Applying Lemma 3.4, the isomorphism Oy = wy defines an
O-orientation. By Lemma 3.6, RPer f(X) is locally geometric and locally of finite presentation
over k. Finally by Theorem 3.1, RPer f(X) = Map(X, RPer f) admits a canonical (2 — d)-shifted
symplectic structure. o o O

Remark 3.8. Since RVect(X), the stack of vector bundles on X, is an open substack of RPer f(X), it
inherits the symplectic structure on RPer f(X). Since RPer f Z (X) is locally a finite direct product
of RPer f(X), therefore is also canonically symplectic. The same holds for IRVectf(X ).

The following result is a version of [8, Theorem 3.17] for not necessarily smooth Calabi-Yau
families.

Theorem 3.9 ([10, Theorem 3.4]). Let k be a Noetherian commutative ring of residue characteris-
tics zero and X be a Gorenstein Calabi-Yau d-fold over Spec k. Given a trivialization Oy = wy, the
moduli stack RC plx(X) admits a canonical (1 — d)-shifted Poisson structure.

We refer to [2, 16] for the definitions of a shifted symplectic and a shifted Poisson structure
on a derived stack. The Poisson structure in Theorem 3.9 is indeed constructed via Lagrangian
structure (see [2, 8, 16]) using the following result of Melani and Safronov.

Theorem 3.10. [13, Theorem 4.22] Suppose X', % are locally geometric stacks locally of finite pre-
sentation. Let f : & — % be a stack morphism. Suppose that % is equipped with an n-shifted
symplectic form w and f is Lagrangian. Then X is equipped with a canonical (n — 1)-shifted
Poisson structure.
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Proof of Theorem 3.9. By Theorem 3.6, the commutative diagrams (3.1) and (3.2) are diagrams
of morphisms of locally geometric stacks locally of finite presentation, for which the notion of
Lagrangian morphism is well defined. It is proved in [8, Theorem 3.13] that

(p,q) : RCplx : RVect? x RPerf

is a Lagrangian correspondence (see [10, Appendix A] for a different proof for RePer f via bound-
ary structure, [1, Definition 2.8]). By Theorem 3.6, Lemma 3.4 and transgression of Lagrangian
structure (cf. [1, Theorem 2.10]), we produce a canonical (1 — d)-shifted Poisson structure on

RC plx(X). ]

Remark 3.11. A key feature of the Poisson structure in Theorem 3.9 is that its weight 2 component is
induced by an explicit morphism between certain complexes of coherent sheaves, whose hyper-
cohomology cochain complexes are quasi-isomorphic to the tangent and cotangent complex of
RC plx(X). The formula for this morphism can be found in [8, Theorem 4.7] and [10, Section 3.2].

Since in the applications we need to consider relative moduli stack over a base B that is
not necessary affine, we make the following definition. Let f : X — B be a scheme morphism
where B is a Noetherian scheme of finite type. Denote by RPerf(X/B) the stack of perfect
complexes on X that are also B-perfect. Similarly, we define RVect(X/B), RePerf(X/B) and
RCplx(X/B). In this paper we consider only those f that are flat and projective. In this case,
we indeed have RPer f(X /B) ~ RPer f(X) and an analogue holds for RVect(X /B), RePer f(X /B)
and RCplx(X/B). However, we keep the relative notations to emphasize that we are in the
relative situation.

4 | RELATIVE POISSON STRUCTURES FROM FAMILIES OF
CY-CURVES

4.1 | Relative Poisson structure on the relative moduli spaces of
complexes

We say that 7 : C — S is a family of Gorenstein CY-curves if 7 is flat projective morphism with
connected geometric fibers that are Gorenstein of dimension 1, such that for the relative dualizing
sheaf we have w¢ /g > 7" Lg for some line bundle Lg on S.

We can consider the associated relative moduli stack of complexes RC plx(C/S). For a subset
I C Z, an object F € Perf(C), and a collection of vector bundles (V;);c; on C, we consider the
substack RCplx(C/S;F,(V;);;) corresponding to complexes V, with fixed ith term given by V;
for i € I, and a fixed isomorphism V, ~ F in the derived category (this substack is defined as a
derived fibered product, see [8, Corollary 3.20]).

Proposition 4.1. Let M — S be an open substack in RC plx(C /S, F,(V;);c;) such that M admits a
relative coarse moduli M — M — S, such thatp : M = Sissmooth,and M — Misa G,,-gerbe (in
particular M has trivial derived structure). Then there exists a global section I1 € /\2 Th/s®p*Lg
such that for every point s € S, the bivector Il on the fiber M, is the Poisson structure induced by
0-shifted Poisson structure on M.
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Proof. First, let us consider the case when S is affine. Let S be the total space of the G,,-torsor
associated with the line bundle Lgl, so that S = §/G,,. Then there is a base change diagram

.

Since wg /g = p*wc/s and p*Ly is trivial, C admits an ©-orientation relative to S.

H

p
—_—

< —0

Therefore, by Theorem 3.9, we get a 0-shifted Poisson structure on M X S, which is a G,,-gerbe
over M X S. The argument of [9, Proposition 2.6] can be easily generalized to the relative settlng
Therefore, the 0-shifted Poisson structure on M X S descends to a Poisson structure on M xg S
relative to S. We then obtain a global section IT of the pull-back of A>T, on M X S. It remains to
prove that IT has weight 1 with respect to the natural action of G,,, on S.

By construction, on S we have an isomorphism

8 : 05— p*Lg,
transforming under the action of G, by
A6 =2"1.6. (4.0)
Thus, we get an induced isomorphism
0: 05— awz /5
still satisfying (4.1).
Recall that the tangent space to a point of M is identified with the hypercohomology H'(C;, C),
where C is some natural complex, equipped with a chain map
dot : CV[-1] = C
(see [8, Theorem 4.7]), so that the bivector induced by the 0-shifted Poisson structure is given by
IT : H'(C,, €)Y = H(Cy, C¥®up,) = H'(Cy, C¥[-1]) = H'(C,, O),
where the middle arrow is induced by 6~! and the last map is induced by dot. It follows that
ATM=2-11
as claimed.
For not necessarily affine base S we can pick an open affine covering (S;), and apply the above

argument to get sections IT; of /\2 T\r/s®p*Lg over open subsets p~1(S;). Furthermore, still by the
affine case, II; and IT; have the same restrictions to every open subset of the form p~1(U), where

U C S;nS; is an affine open. Hence, (I1;) glue into a global section of A° T s®p*Ls. O
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4.2 | Compatible Poisson structures from families of CY-curves

Let 7 : C — S be a family of CY-curves, and let Lg be a line bundle on S such that wq /g ~
m*Lg. Assume that V a vector bundle on C, such that the corresponding bundles V, on C; are
endosimple, R'7,V = 0 and

for some vector space V.
Then for each s € S, we have the moduli space M of nontrivial extensions of V; by O¢_on Cg,
which is a G,,,-gerbe over

M, = PExt' (¥, Oc,) =~ PH'(C,, V).
By Serre duality, we have an identification,
M, ~ PH(C,, V)Y ~PV".

Viewing extensions in M, as two-term complexes Oy — E with E/O; ~V,, and using
Proposition 4.1 we get a global section IT of the bundle /\2 Tpy X Lg over M = PVY X S.

Note that this gives us a linear family of bivectors IT,. on PV parameterized by x € H°(S, Lg)".
However, we know only that IT, is integrable for x coming from a point of S.

Now we specialize to the case when S is a projective space, S = PN and Ly = Opn(1). Since in
this case S is identified with PHO(S, Lg)V, the previous discussion gives the following result.

Theorem 4.2. Let 7 : C — S = PN be a family of Gorenstein curves of arithmetic genus 1 with
We /s 7*O(1), and let V be a vector bundle on C, such that V, is endosimple for every s € S,

R'7,V=0and 7,V ~ V@0

for some vector space V. Then we get a global section II of /\2 Tpyv XK Opn (1) over PVY X PN, such
that for every s € PN, the bivector T1, defines a Poisson structure on PV". Equivalently, we get a
collection I, ..., Iy of Poisson structures on PV, such that [11;, I1 j] =0.

4.3 | Families of anticanonical divisors

We will use Theorem 4.2 to get compatible Poisson brackets on projective spaces from linear
systems of anticanonical divisors on surfaces.

Proposition 4.3.

(i) LetX be a smooth projective surface, W := H(X, co;(l). Let C C X X PW be the universal anti-
canonical divisor, viewed as a family over PW via the natural projection m : C — PW. Then
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(ii) In addition, let V be a vector bundle on X such that H*(X, V®wy) = H'(X, V) = 0. Then the
restriction

Ve :=VKOlc
satisfies R'w V- = 0, R°7, Vi ~ VQOpyy, where V := H'(X, V).
(iii) Inthesituation of (i) assumein addition that there exists a smooth anticanonical divisor C, C X.
Then for any vector bundle V on X such that H*(X, V®wyx) = 0 and the restriction Vi, isa

semistable bundle on C of positive degree one has H'(X, V) = 0, that is, the assumptions of (ii)
are satisfied.

Proof.

(i) Note that O(C) ~ co;(l X1 O(1). Hence, by the adjunction formula we get

wepw = (wx KONO)le 2 ORI O)|c = 7 O).

(ii) For every anticanonical divisor C, C X, we have a long exact sequence
H(X,V(-Cy)) = H(X, V) » H(Cy, V|¢,) = H' (X, V(-Cy)) - H'(X, V) -
H'(Cy, V) = HX X, V(=Cy)). (42)
Now our assumptions on V imply that H(X, V) — H%(Cy, V|c,) is an isomorphism and that
Hl(CO, vlco) = 0
Finally, R°7, V- = Rz, V is trivial by base change formula.
(iii) Let us consider the sequence (4.2) for a smooth anticanonical divisor C,. Since
H*(X,V®wy) = 0, we deduce an isomorphism
H'(X,V) =~ H'(Cy, Vlc,)-
But V|, is semistable of positive degree. It follows that
H'(Cy, V|c,) = Hom(V, O¢ )* =0,

so HY(X,V) = 0. O

Now we are ready to prove our main result about families of compatible Poisson brackets
coming from exceptional bundles on surfaces.
Theorem 4.4.

(1) Let X be a smooth projective surface with H>°(X,0x) = 0 and h°(X, ;") > 1, and let V be
an exceptional vector bundle on X such that (O, V) is an exceptional pair and such that ¢;(V) -
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cl(co)_(l) > 0. Then there is a natural linear map
2
X H°<X, wyh) — HOPHX, V)", \ T)

whose image consists of compatible Poisson brackets and such that for every smooth anticanon-
ical divisor C C X, k([C]) is the Feigin—Odesskii bracket associated with V| .

(ii) Assume in addition that c,(V) - cl(co;(l) > rk(V) + 1 and that there exists a pair of nonisomor-
phic smooth anticanonical divisors in X. Then ker(x) is entirely contained in the discriminant
locus (corresponding to singular anticanonical divisors). In particular, for any smooth anti-
canonical divisor C, the Feigin—Odesskii bracket associated with V| extends to a bihamiltonian
structure. If moreover every singular anticanonical divisor C, extends to a nonisotrivial pencil
AC, + uC, with smooth C, then x is injective.

Proof.

(i) Itis well known that for every smooth anticanonical divisor C C X, the restriction V| is an
endosimple (and hence stable) vector bundle on an elliptic curve C,. This implies that the
assumptions of Proposition 4.3(iii) are satisfied, and the assertion follows.

(ii) Let[C]beinker(x). Assume C is smooth. Pick another smooth anticanonical divisor C’ such
that C’ 2 C. Then x({[C],[C’]}) is at most one-dimensional, so the Feigin—Odesskii brack-
ets associated with V|, and V| are proportional. By Theorem 2.4, this implies that C ~ C’
which is a contradiction. This shows that ker(x) is contained in the discriminant locus.
Thus, for a pair C, C’ of nonisomorphic smooth anticanonical divisor on X, the subspace
x({[C],[C"]}) is two-dimensional. Hence, we get a bihamiltonian structure.
For the last assertion, we apply the same argument as above to a nonisotrivial pencil AC, +
1C with [C,] in ker(x) to get a contradiction. O

Corollary 4.5. Let C be a smooth cubic in P? and let us fix n < 7. Assume that for any n generic
points py, ..., p, € C, there exists an exceptional pair (V, ©) on the blowup X of P? at these points,
with c;(V) - ¢; (w;(l) > rk(V) + 1. Then the Feigin-Odesskii bracket associated with V| extends to
a bihamiltonian structure.

Proof. First, we pick a smooth cubic C’ C P2, nonisomorphic to C. Changing C’ by an automor-
phism of P? we can assume that C and C’ intersect transversally. Choose n points in C n C’ and
consider the corresponding blowup X. Then both C and C” lift to anticanonical divisors of X. Now
we can apply Theorem 4.4(ii). O

Example 4.6. Let X = P? and ¥V = L = O(k), where k =1 or 2. Then the assumptions of
Theorem 4.4 are satisfied. Note that HO([P’Z,cogzl) is 10-dimensional, while H°(P2,L) is three-
dimensional for k =1 and six-dimensional for k = 2. Thus, we get a set of 10 compatible
Poisson brackets on P? (for k = 1) and on P> (for k = 2), containing the FO-brackets g3, and
qe.1 respectively.

We can generalize the above example as follows (excluding the trivial cases of g ;, g3, = 0 and
des = 0). Let (f,,) denote the Fibonacci sequence, where f, =0, f; = 1.
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1408 | HUA and POLISHCHUK

Proposition 4.7. For every n > 2, there exists a 10-dimensional subspace of compatible Poisson
brackets on P>/2n-1 containing every g, Fon1sfons (C); While for n > 3, there exists a 10-dimensional
subspace of compatible Poisson brackets on P3/2n-1 containing every q, Fon1:3f a1 —Fans (C)-

Proof. We apply Proposition 4.3 for X = P? by taking V to be any exceptional bundle such that
Y € (O(1), O(2)). Note that the assumptions are satisfied. The exceptional bundles we need form
a helix (E;) in the category (O(1), O(2)), where E;, = O(1), E; = O(2). Then for n > 0, we have the
following relations in the Grothendieck group

[E_,] = fomenEol = fonlErls (Bl = foulEr] = fom-nlEo]-
Hence, for n > 1, we have
rkE—n = f2n+1’ dimHO(E—n) = 3f2n—1’ rkEn = f2n—1’ dimHO(En) = 3on+1'

This leads to the linear maps from H°(P?, O(3)) to the spaces of bivectors on the claimed projective
spaces whose image consist of compatible Poisson brackets.
Finally, let us check that the linear maps

HP?,0(3)) — HO([P’N, /\ZTPN)

corresponding to our families of Poisson brackets are injective. Since all exceptional bundles on
P2 are GL;-equivariant, the above map is compatible with GL;-action. Hence, the kernels of the
above linear maps are GL;-subrepresentations in H(P2, O(3)). But the representation of GL; on
HO(P?,0(3)) is irreducible, so either the kernel is zero, or the entire map is zero. Thus, it is enough
to show that our construction does not give identically zero brackets. But this follows from the
well-known fact that the Feigin-Odesskii bracket g,, , (C) associated with an elliptic curve C is
nonzero provided n > k + 1 (this follows, for example, from Proposition 2.5). O

Example 4.8. LetX = F,, = P(O @ O(n)), the Hirzebruch surface (or P! x P!, for n = 0), and let
p : X — P! be the projection. Then

wy' = p*(O(n +2)(2),
o)
HX, i) = HOP',O(n + 2) ® 02) ® O(—n + 2)).
For |n| < 3, this is a nine-dimensional vector space. We can take
V=L = p*(O(k)D).
Then Rp, (LQ®wy) = 0, so H*(X, LQwy) = 0. Also, Rp,(L) ~ O(k) ® O(k —n),sofork >n—1,

HY(X,L) = 0. Thus, the conditions of Proposition 4.3 are satisfied in this case, and for |n| < 3,
we get a family of nine compatible Poisson brackets on the projective space P21~ Later we
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will show that the cases n = 1 and n = 2 correspond to the examples in Odesskii-Wolf [15] (see
Section 5.3) and that the corresponding nine brackets are linearly independent.

Proposition 4.9. Foranyd > r > 0such thatd = +1 mod (r) and r is odd and any elliptic curve
C, the Poisson bracket q, ,(C) extends to a bihamiltonian structure.

Proof. Let us realize C is a smooth cubic in P? and consider the blowup X of P? at five generic
points py, p;, -, p4 on C (so that no three are collinear). Then X is a del Pezzo surface. By Corol-
lary 4.5, it is enough to construct an exceptional bundle E over X of rank r and y(E) = d such that
(O, E) is an exceptional pair.

For the construction of E, it will be more convenient to view X as the blowup of a Hirzebruch
surface F at four points. More precisely, we need two such realizations with F = F,, where n is
either 1 or 0. First, we can identify the blowup of P? at p, with the Hirzebruch surface F; and then
view X as the blowup of F, at p;, p,, 3, p4- The second way, is to identify the blowup of P? at p,
and p, with the blowup of F, = P! x P! at one point pg, so we can view X as the blowup of F, at
pg, D, D3, P4- We denote by r : X — F,, the blow down map, and by p : F — P! the P!-fibration
map and by O(1) the corresponding line bundle on F,, as in Example 4.8.

We observe that any E in the subcategory

C := (" (p*D(P)(D)), O, -, Op,),
where e; are exceptional divisors for 7, will have Hom*(E,Oy) = 0. Let us start with an
exceptional pair

Vi =7 (p* Ok = 1)Q1)), V, =7 (p"Ok)D))(—e; — e, —e3 —ey)

in C. We have Ext'(V;,V,) = 0 for i # 1, while Ext!(V,V,) is two-dimensional. We claim that
this implies that in the helix generated by V; and V', we will find (up to a shift) vector bundles V'
with

[V] =m[V ]+ (m —1)[V,] and [V] = (m — 1)[V;] + m[V,]

forall m > 1.
Indeed, let V5[1] denote the right mutation of V; through V,, so that we have an exact triangle

V= V1] - vy - -

Then V5 is an extension of V; by V?Z, so [V3] = [V;] + 2[V,]. Note that the space Ext*(V,, V) =
Hom(V,, V) is two-dimensional. and this property is preserved by the right mutations. Using
this we can check that the part of the helix (V,, V5, V,, ...) generated by (V,, V) consists of vector
bundles satisfying [V,,,, ;] = (m — D[V, ] + m[V,]. Indeed, the equality in K, follows by induction
from the exact triangles

2
Vine1 = Vsy? - Vm+1 o
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Taking into account the fact that rk(V,,_;) < 2rk(V,,), we see that H°(V,,, +1) #0.Since V4 is
an exceptional object, this implies that it is a sheaf on X (see [11, Proposition 2.10]). Since it also
has positive rank, it has to be a vector bundle (by [11, Proposition 2.9]). Similarly, considering left
mutations of the pair (V, V,) we find vector bundles V with [V] = m[V,] + (m — 1)[V,].

It is easy to check that we get the desired r and d this way. Namely, let us write r = 2m — 1
(recall that r is odd). If d is even we use n = 0, in which case (V) = 2k and y(V,) = 2k — 2,
so we will get from the above V either d = (2k — 1)r + 1 or d = (2k — 1)r — 1. If d is odd we use
n =1, in which case y(V;) = 2k — 1 and y(V,) =2k — 3, and so, d = (2k — 2)r + 1. O

Remark 4.10. In the situation of Proposition 4.9, the dimension of H 0(x, co;(l) is 5, so we can expect
that there exists a five-dimensional linear space of compatible Poisson brackets on P41 including

q4,(C).

5 | EXPLICIT COMPUTATIONS

5.1 | Szego kernels

5.1.1 | Case of a bundle with vanishing cohomology

Let C be an elliptic curve with a fixed nonzero regular differential 7. Let V be a vector bundle on
C such that H*(C, V) = 0. Then there is a unique section called the Szego kernel (see, for example,

[4]),
Sy € HY(CxC,VV R V(A))

such that Res, (Sy,) = id;, (where we use the trivialization of w.).

Example 5.1. Assume that we work over complex numbers, C = C/A, and V = M, a nontrivial
line bundle of degree zero. We can write M = O-(a — b). Then one has

Sy y) =¢{x-y) = {(x=b)+{(y—a) - {(b—-a),

where ¢ is the Weierstrass zeta function. We can trivialize the pull-back of M to C by the sec-
tion 6;,(x — b)/6;;(x — a), where 8, is the theta-function with zero at x = 0. Then with respect
to this trivialization,

. 01:(x —b)81;(y —a)
011(x —a)fy;(y — b)'

Sy(x,y) =[{(x—=y)={(x=b)+{(y —a)—{(b—a)]
Note that since H*(C, V') = 0, the complex
Sy
H°(C — p,V) —— H°(C,V(cop)/V)

is exact. Here the target can be identified with the quotient H°(C, V(oo p)|mp)/H0(C,V|mp),
where H(C, V|, p) is the completion of V, with respect to the m ,-adic topology, while

HO(C, V(oop)loop) = I7P®(§C‘,pl<p’

where K, is the field of fractions of Oc, b
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Our goal is to get a formula for 5;1 in terms of the Szegd kernel Sy, (see Lemma 5.2 below). In
fact, for our computations later we will need the case where V is a trivial bundle and the above
concept of the Szego kernel has to be modified (see Section 5.1.2). However, we first consider the
case of V with vanishing cohomology since this case is more straightforward.

We have a natural perfect duality

HO(C,V(00P)]op)®H(C, VY (00p)l o) = k © B¢, f) 1= Res, (¢, f) - 7).  (5.)
Also, we have direct sum decompositions

H°(C,V(00p)|ep) = HU(C — p, V) ® H(C, V),

H(C,VY(00D)loop) = HUC = p,VV) @ H(C, V" | ),
such that
H(C,V|wp) = HUC,V|5p)" HY(C,V(e0p)lop) = H(C,VY(00p)lop)
with respect to the above duality.

Lemma 5.2.

(i) Forany f € H°(C — p,V) one has

Res,_,(f(x),S(x,)) = —=f(3).

(ii) One has

Sy leopxc\p = _Z¢i ® fis (5.2)

i>1

where (¢;) and (f;) are dual bases of H(C, Vvloop) and HO(C — p, V).
(iii) There is a well-defined linear operator

Qs : H'(V(cop)/V) —» HUC = p,V) & f > —Res,_p(f(x),S(x, ),
and we have Qg = &,

Proof.

(i) Let us fix a generic y and consider the restriction of (f(x), S(x,y)) to C X y. It has poles at
x = p and x = y, and the residue at x = y is equal to f(y). Thus, the assertion follows from
the Residue Theorem.

(ii) First, we observe that Sy |, ,xc\ p lies in
lim H(C,V"|,,,)®H°(C — p, V),

n
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1412 | HUA and POLISHCHUK

which can be viewed as a competed tensor product of H°(C, VY| wp) and H 9(C - p,V). The
right-hand side of (5.2) also makes sense as an element of this completed tensor product.
Now the assertion follows from (i) and from perfect duality (5.2).

(iii) Note that Qg is well defined since for regular f the expression (f(x), S(x, y)) will be regular
at x = p. The second assertion follows from (i). O

5.1.2 | Case of the trivial bundle

Now let us consider the case V = O.. Here Szegd kernel will depend on an extra datum. Let
D = p; + -+ + p, be a simple divisor on an elliptic curve C (so the points p;, ..., p, are distinct).
As before, we fix a trivialization 7 of w.. We use this trivialization implicitly in formulas with

residues.

Definition 5.3. We say thatS € H(C x C, O(D) [X] O(D)(A)) is a left Szegd kernel for D if we have

* Resp(S)=1;
* Resp,(S) is constant along D.

If in addition S(y, x) = —S(x, y) then we say that S is a Szego kernel.

Example 5.4. In the case when D = p has degree 1, it is easy to check that there is a unique
section

S =5, € HY(CxC,0(p) K O(p)(A)
such that S(y,x) = —S(x,y) and Res,(S) = 1. Hence, it is a Szegd kernel for p. Note that

—S(—x, —y) also satisfies these conditions, so we have S(—x, —y) = —S(x, y). In fact, for an elliptic
curve over complex numbers, and p corresponds to the origin, then one has

S(x, ) = ¢(x —y) = 00) + <),

where ¢ is the Weierstrass zeta function.

Let t; be the formal parameter on C at p; such that# = dt;, and let us consider the vector space

d
v =Vp = @ k).
i=1
We equip V with the nondegenerate pairing

p
(f,9) = ) Res, _o(fgdty).
i=1

We have the isotropic subspaces

d
A:=@Pklslcv
i=1

d ‘¥ €T0T FTHBESLT

:sdiyy) SUORIPUO)) PuE SULd | oYy 998 “[$Z0Z/L0/90] U0 A1eIqI] SUIUQ AO[1AL “SOLBIGIT UOSOIQ) JO ANSIOAIUN Aq S1€T1°0d0NZT [ 170 1/10p WO Koiay-

-Rojim

25U991'] SUOWIWIOY) 9AER1) d[qear[dde ayy £q PAWIGAOS I SIPILIE () 195N JO SO 10§ AIBIQIT SUIUQ K[1A UO
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and
ocCc-D)cV,

where the embedding is given by expanding into Laurent series at py, ..., p;. The complex

8o
O(C —D)—25 v /A

calculates H*(C, ), so O(C —D)n A = (1) and O(C — D) + A is precisely the codimension 1
subspace

V= {f €V | ) Res, (fdt) = 0}.
i
We have the following analog of Lemma 5.2. Let us set

.....

Note that § factors through an embedding
8, : O(C—-D)—V/N\.
Lemma 5.5. Let f be a left Szego kernel for D.

(i) Forany f € O(C — D) one has

d
D Res,_, (f()S(x, 1) = —f ().

i=1

(ii) We have a well-defined operator

d
Qs : V/N = O(C=D): fr =Y Res,_, (f(x)S(x, ),
i=1

such that
Q8(f) = f.
Here we view elements of V' as functions on a punctured formal neighborhood of D.

Proof.

(i) This immediately follows from the Residue Theorem (for fixed y).
(ii) Let us first check that Qg is well defined. Since S(x, y) has poles of order 1 at D, for f € A/,
one has

d
D Res,_, (f()SCx, 1) = Y, f(pRes,_, S(x, y).
i=1 i
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But by assumption, Res,_, S(x, y) does not depend on i, and Y. f(py) = 0, so this is zero.
The equality Q(6;,(f) = f follows from (i). O

Corollary 5.6. Forany f € O(C — D) and any lifting m eV /N of §5(f) € V/A, one has
Qido(f) =/ mod (1).
Forany g € V' /A C V /A and any liftingg € V' /N’ of g one has
8oQ5(7) = g.
Proof. The first equality follows immediately from Lemma 5.5(ii) since
5o(f) =8L(f +c)eV/N

for some c € k.
Given g € V' /A, we can find f € O(C — D) such that g = §-(f). Now the second equality
follows from the first, since §(1) = 0. O

Lemma 5.7. Let C be an elliptic curve with a divisor D such that either

1. D = pand C — p is the curve y* = P(x) in A2, where P is a cubic polynomial; or
2. D = p, + p, and C — D is the curve y> = P(x) in A%, where P is a quartic polynomial.

As a trivialization of w. in both cases we take ) = dx/2y. Then

Ity
Xy =X

S:
is a Szego kernel on C.

Proof. To calculate the residue along the diagonal, we consider the residue of the 2-form

+ + d(x, — x
S ATy = ™ -dxl/\dx2=y1 yz-dxl/\ (x, 1),
4y, y,(x; — x1) Ay, Xy — X4
so the residue is
+ 2
N¥Y -dxllA:—yzdx:n.
Ay, 4y

Note that S(y, x) = —S(x,y). Thus, it remains to study the polar part of S near x; € D. In case
(1), since x; has a pole of order 2 at D = p and y; has a pole of order 3, we see that S has a pole
of order 1at x; = p. In case (2), let P(x) = ax* + ---, where a # 0. Then we can take t = 1/x as a
local parameter at both p; and p,. In terms of this parameter, y has an expansion

Va
y = t—z =+ ...
at p, (for some choice of \/E; for p, it would be a different choice of the square root). Hence, 7
and S have the expansions (for fixed x,, y,)

d ‘¥ €T0T FTHBESLT

:sdiyy) SUORIPUO)) PuE SULd | oYy 998 “[$Z0Z/L0/90] U0 A1eIqI] SUIUQ AO[1AL “SOLBIGIT UOSOIQ) JO ANSIOAIUN Aq S1€T1°0d0NZT [ 170 1/10p WO Koiay-

-Rojim

25U991'] SUOWIWIOY) 9AER1) d[qear[dde ayy £q PAWIGAOS I SIPILIE () 195N JO SO 10§ AIBIQIT SUIUQ K[1A UO



ELLIPTIC BIHAMILTONIAN STRUCTURES FROM RELATIVE SHIFTED POISSON STRUCTURES 1415

1
—( e ) dt,
7o) ( 2\/5 * > !

\/E/t2+... __ﬁ-{_

—1/t+x, ¢

S(t;x3,¥,) =

Hence S has a pole of order 1 and

1
Res(x] Y1)=p1 (S ' n(xl’yl)) - E
The same calculation works for p,, so we deduce that S is a Szeg6 kernel for D. 1
5.2 | Massey product in terms of Szego kernel

Now we can present the formula for the Massey product in terms of the Szeg6 kernel. Assume &
is a line bundle of positive degree on C, D C C a simple divisor.

The multiplication with a Szegd kernel S = S, € H*(C?, O(D) Xl O(D)(A)) induces a mor-
phism

NHOC, &) -5 HOC, ED)®H(C. ED)) 53)

that fits into a commutative diagram

A’ HO(C, §) —— HO(C, £(D)®H(C, £(D))

| |

H(C X C,§ [{§) —= H'(C X C, §(D) M ED))).
Indeed, this follows easily from the fact that the residue of S along the diagonal is equal to 1.

Proposition 5.8. Let S be a left Szegd kernel for D. Then for ¢ € H'(C,E71) and s,,5, € ($)* C
HO(C, &), one has

(¢, MP(s1,9,5,)) = i<$®$: Ms(81 A Sy)),

where ¢ is a lifting of g to H(C, £ ~1(—D)); on the left we use a pairing between (¢p) ¢ H'(C, ¢~1) and
HO(C,&)/(sy,s,); on the right we use the Serre duality between H'(C, £~'(—D)) and H(C, £(D)).

Proof. We compute this Massey product using the dg-enhancement given by the Cech resolutions
corresponding to the covering by C — D and the formal neighborhood of D. Let us represent ¢ by
al-cocycle ¢ € HO((7(coD)/E~1). Then with the notation of Section 5.1.2 we have

$¢,5,p €V /ACV/A

(this follows from the fact that both s;¢ and s,¢ have trivial cohomology class in H(C, ©)). Let us
choose a lifting of ¢ to ¢ € H({~1(coD)/£71(=D)). Then for i = 1,2, 5;¢ is an element of V' /A,
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lifting s;¢p, where

d

i=1

Hence,
fi 1= Qi)
is a well-defined element of O(C — D) satisfying
8o(fi) = 5;¢
(see Corollary 5.6). Therefore, the dg-recipe for calculating the Massey product gives
MP(s1,¢,8,) = f15, —s1f, mod (s,5,).

Now we recall the definition of Qb:

(f15)0) = QZQ(S1$)32 = —Tx[S(x,y)$(><)s1(x)sz(y)],

where
d
T, = Z Resy_p.-
i=1
Similarly,
(51/)@) = =7, [SCx, )P(x)s,(x)s, ()].
Hence,

(¢, MP(s,$,5,)) = T,[$() - MP(s;, 6, 5,)()] = —7,.7, [$(x)PD) - SCx, y)(5,(X)5,(¥) — 5,(x)s;(M))]
= —($®$,S (81 A S))
O

Now we can give a formula for the Poisson bracket on PH!(C, 1) in terms of the Szegd kernel
and certain auxiliary data which exists in some examples.

Theorem 5.9. Let & be a line bundle of positive degree on an elliptic curve C, D a simple effective
divisor on C, S a left Szego kernel for D. Suppose there exists another effective divisor E on C and
linear operators

A,B : H(C,&) - HUC,&(D + E))
such that for any s,,s, € H°(C, &) one has

S (81 A Sy) + 8, ®A(s,) — 5,@A(s)) + B(s,)®s, — B(s;)®s, € H(C,§)®H"(C, §).
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Then for nonzero ¢ € H'(C,E~Y) and sy, s, € ($)*, one has
gy (51 A S2)) = H(P®P, S - (51 A 5;) + 51 ®A(s,) — 5, ®A(s;) + B(5,)®s1 — B(51)®s5,).
Proof. By Lemma 2.1 and Proposition 5.8, we have
T4y (81 ASy) = £($, MP(s1,$,5,)) = £($®¢,S - (51 A 5,)),

where ¢ isa lifting of ¢ to H'(C, £~1(—D — E)) (note that in the right-hand side we can replace ¢
by the induced lifting of ¢ to H'(C, £~1(=D))). Now we observe that

($,51) = (b, 5,) =0
fori =1,2,sinces; € (¢). Hence,
(@, S - (51 A 5y)) = ($RP, S - (51 A 5,) + 5, ®A(s,) — 5;®@A(s)) + B(5,)®s; — B(5,)®5,).

Finally, we can replace $®$ with ¢$®¢ since the second argument of the pairing lies in

HO(C,§)®H(C, §). O

5.3 | Odesskii-Wolf compatible brackets

Here we are going to prove that nine compatible Poisson brackets on projective spaces constructed
in Example 4.8 coincide with those constructed by Odesskii-Wolf in [15]. Note that for this it is
enough to check the equality between two brackets for a generic value of parameters in the linear
family (resp., a generic anticanonical divisor in the Hirzebruch surface).

5.3.1 | Even case

Let us first consider the case of brackets containing g, ;. This corresponds to considering anti-
canonical divisors in X = P(© @ O(2)). Let p : X — P! be the natural projection. We denote by
(t, : t;) the homogeneous coordinates on P! and by (x, : x;) the fiberwise homogeneous coordi-
nates on X, where x,, is a section of Oy (1) and x; is a section of p*©@(2)(1). Since w;(l = p*O4)(2),
we have

H(X, co;(l) =k- xf ® p*H(PL,0Q2)) - x,x, ® p*HO(IP’l,O(4))x3.
Thus, a generic anticanonical divisor C C X is given by the equation
X7 = [t t)x1Xg + falto, X3,

where f, is homogeneous of degree 2 and f, is homogeneous of degree 4. Note that x, # 0on C,
so it gives a trivialization of Ox(1)|..
Let us denote by D C C the divisor ¢, = 0. Then we can use
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as affine coordinates on C — D satisfying the equation
x* = Q(t)x + P(t),

where Q(t) has degree < 2 and P has degree < 4. Note that the space F,, in [15, Section 2.1] is
precisely the space of functions on C — D.
‘We can rewrite the equation of C — D in the form

(x —Q(1)/2)* = P(t) + Q(1)* /4.
Hence, by Lemma 5.7,

S = X —Q(t)/2+ x5, —Q(t,)/2 (5.4)
b=t

is a Szegd kernel for D.
For k > 1, we consider the line bundle

ok 1= P OV = p*O(k) ~ Oc(kD),

where we use the trivialization of Ox(1)|- given by x,,. The restriction map on spaces of global
sections

HO(X, p*O(k)(1)) = H(C, £x)
is an isomorphism, and sends the basis
_ ki
(fllfg lxo)isk:(t{to 2 Jx1)j<k—2

to the basis (t');¢y., (t/X) g, of H(C, &5). Thus, we can identify this space with the subspace
Fy C F,, defined in [15, Section 2.1].
Recall that Odesskii-Wolf [15] define a derivation D on F,, = O(C — D) by

D(t) = 2x — Q(t), D(x) =P'(t) + Q'(t)x.

Note that the fact that D descends to a well-defined derivation of @(C — D) becomes clear if we
rewrite it as

oF oF
D=-—"8 ——34,,
ax ' a4t *

where F = x? — Q(t)x — P(t) is the defining equation of C — D. Also, it is easy to check that
D(H’(C,0(kD))) c H°(C,O((k + 1)D)).

Now the Poisson bracket from [15] on PHO(C,&,;,)* ~ IPF;k (depending linearly on the
coefficients of Q and P) can be rewritten as

(How g,51 A 5y) = ($@¢, 2k - S - (51 A 5y) + 5,QD(s,) + D(5)®5; — 5,@D(s) — D(51)®s,),
(5.5)
where ¢ € H(C, &,,)%, 51,5, € ()1, and S is given by (5.4). Note that a part of the statement
(that is proved in [15] by a direct computation) is that the second argument in the pairing in the
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right-hand side of (5.5) lies in H(C, &,;,)®H(C, &,;). Therefore, using Theorem 5.9 (with E = 0)
we see that our construction of compatible brackets agrees with that of [15] in this case.

Proposition 5.10. The nine compatible Poisson brackets on [P’?’Z*k given in [15] are linearly indepen-
dent and the corresponding nine-dimensional subspace of compatible brackets coincides with the one
coming from Example 4.8 forn = 2.

Proof. We checked the compatibility between two constructions. It remains to prove linear
independence. Let us consider the group

G = GL, X Aut(Op1 @ Op1(2)).

It acts on the Hirzebruch surface X and the relevant line bundles are G-equivariant, so the kernel
of the linear map

0 -1 0 2
HO(X,w5!) > H (Pr;k,/\ T)

is G-invariant. But it is easy to see that the only nonzero proper G-subrepresentations of
H(X, ") are

p*H'(P,0(2)) - x;x, ® p*HO(P!, (9(4))x§ and p*HO(IP’l,(D(4))x§

(for this in addition to GL, we use automorphisms X, - x;, X; = Q(t)x,). Thus, it is enough to
check that our map is nonzero on p* HO(P!, (9(4))x§. Therefore, it suffices to check that the image
of (x7,t;x7) is two-dimensional.

For this we apply formulas from [15, Section 2.2] to compute the bracket {-, -}, associated with

the anticanonical divisor C, given by

2 _ 4442
xX] = aplX;

(which corresponds in the notation of [15] to g? = a,) and to check that the constant and linear
terms in q, are linearly independent.

Let us consider the linear forms on [P’F;k (which we view as elements of H°(C, &),
flzl, fzzt, f3:x.

Then using formulas from [15, Section 2.2] we get

fl I’pZ Lﬂl ff
L2200 = 2kl 4qp-2k—
{f3 f3}ao £s 0 T

Hence, we get the required independence. O

5.3.2 | 0Odd case

Now we consider the situation of Example 4.8 for anticanonical divisors in X = P(OQ & O(1)).
This time we have fiberwise homogeneous coordinates x, € Ox(1) and x; € p*O(1)(1). We have
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wy! = p*O(3)(2), so
H(X, co)_(l) = p*H'(P!,0(1)) - x% ® p*H(PL,0(2)) - x,x, ® p*H (P!, (9(3))x(2).
Thus, a generic anticanonical divisor C is given by the equation

where deg(f,) = 2, deg(f;) = 3. The open affine subset U C C given by t,x, # 0 has the algebra
of functions generated by ¢ = t; /t, and x = x; /(xt,) subject to the relation

(t + c)x? = Q(t)x + P(¢),

where degQ < 2 and degP < 3. This algebra is precisely F,4 from [15, Section 2.1].
As before we consider the line bundle p*©@(k)(1) on X and its restriction to C,

Eokr1 = PO -

The section t'gx0 trivializes this line bundle over U, so that the basis of global sections of p*©O(k)(1)
restricts to the functions

(k> V) k1 (5.6)

Thus, we have an identification of H(C, &,;,,) with the space F;,; C F,4 from [15].
As in the even case, Odesskii-Wolf define a derivation D on F,; = O(U) by

D(t) = 2(t + c)x — Q(t), D(x) =P'(t) + Q'(t)x — x>.

Further, they define the quadratic Poisson bracket on 7, ; (depending linearly on the coefficients
of Q and P) which induces a Poisson bracket on [P’Fz*k = PHO(C, &,41)* given by

(How ¢ 51 A Sy) = (B¢, (2k +1) - S - (51 A 55) + 5:®D(5;) + D(s5,)®8; — $,@D(s1) — D(51)®5,),
where S is given by

_ (ty+0)x; — Q) /2 +(t; + o)x, — Q(t,)/2
t—t, '

S

To understand this formula let us consider the divisor D C C given by t; = 0. ThenU c C — D
and the complement consists of one point g where ¢; + ct, = 0 and x, = 0. It is easy to see that
C — D is affine and the algebra of functions O(C — D) is the subring of @O(U) generated by ¢t and
z 1= (t + ¢)x. Thus, C — D is the plane curve given by the equation

22 = Q(t)z 4 (t + c)P(1).

Now Lemma 5.7 shows that S is a Szegd kernel for the divisor D on C.

On the other hand, since x € O(D + q) and has a pole of order 1at g, looking at the basis (5.6) we
see that H(C, &,,,1) = Fyr4q gets identified with the subspace H(C, O(kD + q)) Cc O(U). 1t is
easy to check that

D(H(C,O(kD + q))) c H’(C,O((k + 1)D + 2q)).
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Thus, applying Theorem 5.9 (with E = q) we again deduce the agreement of our construction of
compatible Poisson brackets with that of [15].

Proposition 5.11. The nine compatible Poisson brackets on [P’Fz*kJrl given in [15] are linearly inde-
pendent and the corresponding nine-dimensional subspace of compatible brackets coincides with the
one coming from Example 4.8 forn = 1.

Proof. It remains to check that the map

) 2
H(X, i) = HO (P50 \'T)

isinjective. As before, we use the fact that the kernel is invariant under GL, X Aut(Op1 @ Op1(1)),
so it is enough to check that the image of p*H 0(P1,0(3))x§ is nonzero. Hence, it suffices to
consider the bracket {-, '}ao corresponding to the anticanonical divisor

and check that the constant and linear terms in a, are linearly independent.

Let us consider the linear forms on PF;k “ (which we view as elements of H(C, £5;11),

£1=1, £,=t, £3=x.

Then using formulas from [15, Section 2.3] we get

£, ¢ ¢ 2 ‘)
{ 1 4 } = 271 2k - )2 + a2k + D)=,
. Z5 ‘

¢3¢ 3 3
so we get the required linear independence. O
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