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THE MODULI SPACE OF STABLE SUPERCURVES AND ITS
CANONICAL LINE BUNDLE

By GIOVANNI FELDER, DAVID KAZHDAN, and ALEXANDER POLISHCHUK

Abstract. We prove that the moduli of stable supercurves with punctures is a smooth proper DM stack
and study an analog of the Mumford’s isomorphism for its canonical line bundle.

1. Introduction. The moduli space Sg of supercurves of genus g (aka super
Riemann surfaces, aka SUSY curves) has been around in mathematics and physics
since the 1980s. It plays an important role in superstring theory and has been stud-
ied using the language of algebraic geometry in [7, 9, 16, 26] and other works.
One long standing gap in the mathematical side of the story has been the study of
the analog of Deligne-Mumford compactification by stable supercurves (which is
a proper Deligne-Mumford superstack). One of the goals of the present paper is
to contribute to filling this gap. This compactification seems to be necessary for
continuing the study of superstring supermeasure (see [19, 33]).

The definition of a stable supercurve and a sketch of a proof that this gives a
smooth and proper DM-stack is contained Deligne’s letter to Manin [13] (supern-
odes were also introduced independently in physics literature, see [10]). The main
part of Deligne’s letter is devoted to the infinitesimal part of the theory. In partic-
ular, he describes miniversal deformations of two types of supernode singularities
(see Section 3.2). The idea of the rest of the proof is to use the superanalog of the
Artin’s criterion for proving algebraicity of a stack.

In the present paper we revisit Deligne’s letter and generalize its results to
the case of stable supercurves with punctures. One of the special features of the
super-case is that instead of “marked points” we consider supercurves with Neveu-
Schwarz (NS) and Ramond punctures. Of these, NS punctures are like marked
points: for a family of (stable) supercurves X → S they are given by sections
S → X . However, Ramond punctures have a different nature: they are given by
relative Cartier divisors R ⊂ X such that the projection R→ S is smooth of di-
mension 0|1, and also the definition of being a supercurve is modified near R
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(see Section 2.2 for details). Note that the nodes of stable supercurves can also
be of two types, NS and Ramond.

THEOREM A. There exists a smooth and proper DM-stack Sg,nNS ,nR over C
representing the functor of families of stable supercurves of genus g with nNS NS
punctures and nR Ramond punctures.

After we finished this work we learned about the work of Moosavian and
Zhou [27], where Theorem A is also proved. Their work also contains a lot of
useful foundational results in algebraic supergeometry, e.g., proves the existence
of Hilbert superschemes. Another work with some foundational results, including
the existence of Hilbert and Picard superschemes, is the paper [6].

We mostly follow [13] in the part concerning deformation theory (extending
it to the case of stable supercurves with punctures). In the rest of the proof we
avoid using the Artin’s criterion and give a more direct proof based on the existing
solution of the corresponding purely even moduli problem due to Cornalba and
Jarvis. Namely, the functor of families of stable supercurves restricted to even bases
is precisely the functor of generalized spin structures considered in [11, 22].

In the course of proof of Theorem A we find a natural relatively ample line
bundle on any family of stable supercurves with punctures (see Theorem 4.3). Al-
though this is not strictly necessary for Theorem A (where one could use an alge-
braic space to replace the Hilbert scheme), this can be viewed as a super-analog of
the well-known fact that the relative log canonical bundle is relatively ample for a
family of stable curves. The important difference is that in the case of a family of
stable supercurves X → S the relative canonical bundle on the smooth part does
not extend to a line bundle on the entire family (the extension is not locally free at
NS nodes). However, we prove that its square does extend to a line bundle which
we still denote as ω2

X/S . This line bundle plays an important technical role in the
rest of the paper. In the hindsight, this is not too surprizing since the restriction of
ω2
X/S to the reduced part of moduli of supercurves recovers the relative dualizing

sheaf of the corresponding usual family of stable curves.
One point which is not highlighted in [13] is that there is a canonical effective

Cartier divisor ∆ supported on the boundary of the compactification Sg (in the
presence of odd variables, which are nilpotent, such a structure is not unique).
Essentially this structure is already seen from the study of deformations of the
nodes of supercurves which can be of two types, NS and Ramond. We also define
a decomposition ∆ = ∆NS +∆R corresponding to these two types of nodes and
find two global expressions for the line bundle O(∆) using Berezinians of certain
natural morphisms of sheaves associated with the universal curve (see Section 7).

The second goal of this work is to study the canonical line bundleKSg
over Sg,

i.e., the Berezinian of the cotangent vector bundle. The super analog of Mumford
isomorphism for smooth supercurves, expressing the canonical line bundle of Sg

in terms of natural Berezinian line bundles was considered in [29,32] (see also [15]
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where some work is done in the punctured case). Namely, it states that

KSg ≃ Ber5
1,

where
Ber1 := Ber(Rπ∗OX)≃ Ber(Rπ∗ωX/Sg

),

where π :X →Sg is the universal stable supercurve.
In the case of the moduli of stable supercurves (and in the presence of punc-

tures) we still have the line bundle Ber1 defined as above, however the expression
for the canonical bundle has to be corrected.

THEOREM B. Let S = Sg,nNS ,nR . There exists a canonical isomorphism

KS
SMS−−−−→ Ber5

1⊗
nNS⊗
i=1

Ψi(−2∆NS −∆R),

where ∆NS and ∆R are the components of the boundary divisor corresponding to
nodes of NS and Ramond type, and Ψi is the line bundle associated with the ith NS
puncture Pi:

Ψi := P ∗
i ωX/S .

In the case when there are no punctures the isomorphism becomes

KSg
≃ Ber5

1(−2∆NS −∆R).

Finally, we study the restriction of the super-Mumford isomorphism SMSg
to

the NS boundary divisor, and show that it is related to the similar isomorphisms
for lower genus. As in the classical case, each component of ∆NS is an image of
a natural gluing map B → Sg, where B is some lower genus moduli space with
more punctures or a product of two such moduli spaces (see Section 7.5).

THEOREM C. Let B → Sg be the gluing map to one of the components of
∆NS from a lower genus (uncompactified) moduli space B. There exists a natural
isomorphism (see below) of the normal bundle

NB :=O(∆)|B ≃Ψ−1
1 ⊗Ψ−1

2 ,

such that the following diagram is commutative up to a sign

KSg
(2∆)|B

SMSg
|B
> Ber5

1 |B

KB ⊗NB

∨ SMB
> (BerB1 )

5
∨

where SMB is the product of lower genus Mumford’s isomorphisms.
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The identification of NB in Theorem C comes from the identification of ∆ as
the vanishing locus of a morphism induced on Berezinians by the morphism

Rπ∗(ΩX/Sg
)→Rπ∗j∗(ΩU/Sg

),

where j : U →X is the embedding of the smooth locus (see Section 7.2).
The components of the Ramond boundary divisor ∆R have a more compli-

cated relation to lower genus moduli spaces (see Section 7.6), and in this case we
formulate a conjectural analog of Theorem C in Section 9.3.

The paper is organized as follows. In Section 2 we review the basics on stable
supercurves starting from the definitions. In particular, in Section 2.4 we discuss
standard local coordinates of smooth supercurves (near an ordinary point and near
a Ramond puncture). Then in Section 2.5 we discuss a well-known correspondence
between the NS-punctures and divisors.

In Section 3 we study the deformation functor of a stable supercurve X0 with
punctures. The main result is that this functor is smooth (more precisely, it is
smooth over the product of deformation functors of the singularities of X0). We
start with infinitesimal results, reproducing Deligne’s calculation of infinitesimal
deformations of two types of super node singularities (see Theorem 3.3) and iden-
tifying the sheaves of infinitesimal automorphisms of stable supercurves with punc-
tures. Then we study local deformations: of affine neighborhoods of a smooth
point, of a Ramond puncture, and of a singular point (see Sections 3.5, 3.6 and
Lemma 3.18). Finally we prove the smoothness result for global deformations,
Proposition 3.19.

In Section 4 we prove that an extension of the square of the relative canonical
bundle ω2

U/S from the smooth locus U ⊂X of a sufficiently nice family X → S of
stable supercurves is a line bundle, and that after some corrections at the punctures,
it becomes relatively ample (see Theorems 4.1 and 4.3). We then show that the
inverse of this line bundle shows up in the computation of the sheaf of infinitesimal
automorphisms (see Theorem 4.4).

In Section 5 we prove Theorem A. Mostly we use the previous results on de-
formation theory and the known results on the moduli of generalized spin curves.

In Section 6 we study the behavior of the Kodaira-Spencer map for a family of
smooth supercurves degenerating to a stable supercurve. We consider the classical
case of (even) curves in Section 6.1, then the case of an NS node in Section 6.2
and the case of a Ramond node in Section 6.3. The main observation is that the
Kodaira-Spencer map has a natural extension over the entire base involving the
subsheaf of the tangent space to the base consisting of vector fields preserving the
degeneration divisor.

In Section 7 we study the boundary divisor ∆ of the moduli of stable super-
curves. We give a definition of the boundary divisor as a Cartier divisor (which
is not automatic since we work with nonreduced spaces). We compute the corre-
sponding line bundle in terms of the complex [ΩX/S → j∗ΩU/S ], where U ⊂X is
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the smooth locus of a familyX→ S (see Section 7.2). We prove in Section 7.3 that
∆ is a normal crossing divisor and define in Section 7.4 the subdivisors ∆NS and
∆R corresponding to the NS and Ramond type nodes such that ∆ =∆NS +∆R.
Then we discuss in Sections 7.5 and 7.6 the gluing maps from lower genus moduli
spaces to the boundary components. Note that in the case of a Ramond node there
is an extra odd parameter involved in the gluing.

In Section 8 we study the canonical line bundle over the moduli of stable super-
curves with the goal of proving Theorem B. The identification of the canonical line
bundle for the moduli of smooth supercurves is a combination of the isomorphism
coming from the Kodaira-Spencer map and of an analog of the Mumford’s iso-
morphism between different Berezinian line bundles. We have to investigate what
happens with both these ingredients near the boundary divisor. For the Kodaira-
Spencer map this was done in Section 6. The main new nontrivial computation is
that of the behavior of the super Mumford’s isomorphism as the supercurve de-
generates (see Section 8.3). Extending this picture to supercurves with punctures
is relatively easy and is done in Section 8.4.

In Section 9 we prove Theorem C. Again the bulk of the argument is the study
of the restriction of super Mumford’s isomorphism to the boundary divisor in Sec-
tion 9.1. Then in Section 9.2 we do the same for the isomorphism coming from the
Kodaira-Spencer map. In Section 9.3 we describe a conjectural picture for the case
of a Ramond boundary component.

In Appendix A we prove a relative ampleness criterion for flat morphisms of
superschemes (see Proposition A.2), which we use to prove Theorem 4.3.

Conventions. All the rings are assumed to be Z2-graded supercommutative
with 1. We say that a ring (resp., a superscheme) is even if its odd component (resp.,
the odd component of the structure sheaf) is zero. We often say “subscheme” for
brevity where we should say “sub-superscheme”. For a sheaf F of OX -modules on
a superscheme X we denote by F+ and F− its even and odd parts. By a “bundle”
on a superscheme we mean a (Z2-graded) locally free OX -module of finite rank.
By a subbundle F ⊂ E in a bundle E we mean a (Z2-graded) locally free OX -
submodule, which is locally a direct summand. On any superscheme X we denote
by NX ⊂ OX the ideal generated by odd functions. We denote by Xbos the usual
scheme with the same underlying topological space as X and with the structure
sheaf OX/NX . We work over C.

Acknowledgments. We thank Ugo Bruzzo and Daniel Hernández Ruipérez for
useful discussions and for telling us about the work [27]. We thank the anonymous
referee for many useful comments.

2. Stable supercurves. In this section we discuss some basic facts about
stable supercurves and their families, starting with definitions. In particular, we
discuss local descriptions of nodes and punctures, the correspondence between the
NS punctures and divisors, and the connection with generalized spin structures.
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2.1. Superstacks. We refer to [8] and [7, Sec. 2] for some basics on su-
perschemes. The notion of an algebraic (super)stack is developed similarly to the
classical case (see [4, Def. 5.1]): one considers a category fibered in groupoids X
over the category of Noetherian superalgebras over C, which is a limit preserving
stack (see [4, (1.1)]), such that the diagonal X →X ×X is representable and there
exists a smooth surjective morphism from a scheme to X (see [9, Sec. 3]). If the
latter morphism can be chosen to be étale, then one gets the notion of Deligne-
Mumford (DM) stack.

For example, it is proved in [9] that the moduli stack of (smooth) supercurves
is a smooth separated DM stack over C.

2.2. Definition of families of supercurves.

Definition 2.1. Let S be a superscheme. A family of smooth supercurves with
Ramond punctures is a smooth superscheme X over S of relative dimension 1|1,
equipped with a subbundle D ⊂ TX/S of rank 0|1, such that the map given by the
commutator of vector fields

(2.1) D⊗2 →TX/S/D

(which is a map of line bundles of rank 1|0) is injective and its divisor of vanishing
is the disjoint union

R=

nR⊔
i=1

Ri,

where each Ri is smooth connected of dimension 0|1 over S. The components Ri

are called Ramond punctures.

A distribution D as above is often referred to as a superconformal structure on
X . An isomorphism of superschemes X ≃X ′ as above is called superconformal if
it preserves the superconformal structures, i.e., sends the distribution on X to the
distribution on X ′.

In the above situation the map D1 ⊗D2 7→ 1
2 [D1,D2] induces an isomorphism

(2.2) D⊗2 ∼−−→ TX/S/D(−R).

Thus, we have an exact sequence

0 →D→TX/S →D⊗2(R)→ 0,

or dually,

0 →D−2(−R)→ ΩX/S →D−1 → 0.
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From this we get an isomorphism ωX/S := Ber(ΩX/S) ≃ D−1(−R), or equiva-
lently,

(2.3) D ≃ ω−1
X/S(−R).

Hence, taking the dual of the embedding D→TX/S , we get a surjective morphism

δ : ΩX/S →D−1 ≃ ωX/S(R),

whose kernel is exactly the orthogonal to D ⊂ TX/S . Equivalently, we can view δ

as a derivation OX → ωX/S(R), trivial on OS . Note that D is recovered from δ as
the orthogonal to ker(δ).

Example 2.2. Suppose X is an open subscheme in A1|1
S with relative coordi-

nates (z,θ) and D is generated by D = ∂θ+fθ∂z , for some even function f on X .
Then

1
2
[D,D] = f∂z,

so the condition that D defines a structure of a supercurve onX (with no punctures)
is that f is invertible. Thus, the canonical isomorphism

D⊗2 →TX/S/D

sends D⊗D to f∂z mod D. Hence, the isomorphism

D ∼−−→ Ber(TX/S)≃ ω−1
X/S

sends D to f [dz|dθ]−1, where [dz|dθ] is a generator of ωX/S associated with the
basis (dz,dθ) of ΩX/S . Thus, we can compute the dual of the embedding D →
TX/S ,

δ : ΩX/S →D−1 ≃ ωX/S .

Namely, δ sends dz to θ[dz|dθ] and dθ to f−1[dz|dθ]. Thus, if we view δ as a
derivation, we have

δ(ϕ) =D(ϕ) ·f−1[dz|dθ].

Remark 2.3. Assume that S is even. Then for a smooth supercurve (X,D)

over S, the bosonic truncation C =Xbos = (|X|,O+
X) is a family of smooth curves

over S, and we have a natural projection π : X → C. Furthermore, we can view
L = O−

X as a line bundle on C. Since π is a finite morphism, we have a natural
identification of Z2-graded coherent sheaves on C,

ωX = π!ωC = Hom(OX ,ωC) = ωC ⊕Hom(L,ωC),

so the odd part of the derivation δ induces an isomorphism L
∼−→ Hom(L,ωC),

or equivalently L2 ∼−→ ωC . It is well known that under the above identification of
ω+
X with ωC the even part of δ is given by the de Rham differential d : OC → ωC
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(e.g., this can be deduced from the local standard structure of smooth supercurves,
see [13] or Section 2.4 below).

Definition 2.4. (i) A supercurve with punctures over S, is a superscheme X of
finite type over S, flat and relatively Cohen-Macaulay, together with

• a collection of disjoint closed subschemes called NS-punctures and R-
punctures

Pi ⊂X, i= 1, . . . ,nNS ; Ri ⊂X, i= 1, . . . ,nR,

such that the projection Pi → S is an isomorphism, and each Ri is a Cartier divisor
(flat over S);

• a derivation

δ : OX → ωX/S(R),

trivial on pull-backs of functions on S, where R=
∑
Ri. Here ωX/S is the relative

dualizing sheaf so that π!OS = ωX/S [1] (the fact that it is a sheaf follows from the
Cohen-Macaulay property).
We impose the following additional properties.

• There is an open fiberwise dense subset U ⊂X such that U/S is smooth of
dimension 1|1, and Pi ⊂ U , Ri ⊂ U ;

• the derivation δ corresponds to a structure of a smooth supercurve with Ra-
mond punctures on (U,(Ri)) over S;

• on every geometric fiber Xs, δ− induces an isomorphism

(2.4) O−
Xs

∼−−→ ωXs

(∑
Ris

)−
;

By an isomorphism of supercurves with punctures over S we mean an isomorphism
of superschemes over S compatible with all the structures. We say that a relative
vector field on X (i.e., a derivation of OX , trivial on π−1OS) is superconformal if
it preserves δ.

(ii) A supercurve with punctures (X/S,P•,R•) is called stable (resp., pre-
stable) if X is proper over S and for every geometric fiber Xs, passing to the
bosonic truncation (Xs)bos with the marked points induced by (Pi) and (Ri) one
gets a usual stable (resp., prestable) pointed curve.

The role of the isomorphism (2.4) can be understood by looking at the case of
even S (see Lemma 2.6 below). As observed in [13], if U ⊂X is the maximal open
subset which is smooth over S, then δ induces a structure of a smooth supercurve
on U \

⋃
iRi over S.

Since Cohen-Macaulay property appears in the definition of supercurves, we
recall some results involving it that will be useful for us.

LEMMA 2.5. (i) Let X be a Cohen-Macaulay locally Noetherian super-
scheme, j : U →X an open embedding such that Z =X \U has codimension ≥ 2
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(resp., ≥ 1) in X . Then the natural map OX → j∗OU is an isomorphism (resp.,
injective). Similarly, if F is a Cohen-Macaulay coherent sheaf on X with full
support, then the natural map F → j∗j

∗F is an isomorphism (resp., injective).
(ii) Let X → S be flat, relatively Cohen-Macaulay, with fibers of pure dimen-

sion 1, and let j :U ↪→X be a fiberwise dense open subscheme. Then the canonical
map

ωX/S → j∗j
∗ωX/S

is injective.
(iii) Let X be a superscheme over a field k. Then X is Cohen-Macaulay with a

dense open which is smooth of dimension 1|1 if and only Xbos is a reduced curve,
O−

X is a Cohen-Macaulay sheaf with full support on Xbos, locally free of rank 1 on
a dense open, and O−

X ·O−
X = 0.

Proof. (i) It is enough to check the vanishing of the corresponding local coho-
mologyH i

Z(OX)=H i
Z(F) for i= 0,1 (resp., for i= 0). But this follows from [20,

Exp. VII, Cor. 1.4].
(ii) Otherwise, in some neighborhood of a point in X the kernel of this mor-

phism would be a nonzero subsheaf of ωX/S with finite support over S. So we
would get a nonzero morphism

OZ → ωX/S = π!OS [−1],

with Z finite over S. By adjunction of the pair (π∗,π!), it would correspond to a
nonzero morphism π∗OZ →OS [−1] which is impossible.

(iii) This follows easily from the interpretation of the Cohen-Macaulay con-
dition for a superring in terms of the even and odd components given in [27,
Lem. 7.5]. □

Supercurves with punctures over even bases can be described in purely even
terms as follows (cf. [13, Sec. 1.5]).

LEMMA 2.6. Assume that S is even. Then the data of a supercurve (X,P•,R•)

over S is equivalent to the following data:
• a flat family of pointed curves (C,p•, r•) over S with reduced geometric

fibers, smooth near the marked points;
• a coherent sheaf L on C, flat and relatively Cohen-Macaulay over S, locally

free of rank 1 over a fiberwise dense open in C;
• an isomorphism

(2.5) L
∼−−→ Hom

(
L,ωC

(∑
ri

))
.

Under this correspondence one has |C|= |X|,

O+
X =OC , O−

X = L, ω+
X = ωC , ω−

X = Hom(L,ωC)≃ L
(
−
∑

ri

)
,
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where O−
X ·O−

X = 0, O−
X ·ω+

X = 0, and the action map O−
X⊗ω−

X →ω+
X is identified

with the natural evaluation map. The puncture Pi is the image of the composition
S

pi−−→C→X; andRi is the schematic preimage of ri under the projectionX→C.
The isomorphism (2.5) corresponds to δ−.

Proof. Let us consider the decomposition OX = O+
X ⊕O−

X into the even and
odd components. Then the bosonic truncation C =Xbos = (|X|,O+

X) is a family of
curves over S. Every geometric fiber Cs is a Cohen-Macaulay curve, with a dense
smooth open. Equivalently,Cs is a reduced curve. Furthermore,L=O−

X is a coher-
ent sheaf on C with the claimed properties, by Lemma 2.5 (iii). Conversely, using
the same lemma, starting with (C,L) we get a superscheme over S with required
properties by setting OX =OC ⊕L (where the product L ·L is zero in OX ).

The marked points Pi : S →X factor through marked points pi : S → C. On
the other hand, the Cartier divisors Ri ↪→ X induce Cartier divisors ri ↪→ C. By
assumption, the latter are also marked points on C. We claim that Ri is exactly the
preimage of ri under the canonical projection π :X→C. Indeed, this immediately
follows from the fact that locally Ri is given by an even equation f ∈ O+

X =OC ,
and ri is given by the same equation f in C.

We have a natural identification of OX -modules, compatible with the Z2-
grading

ωX = π!ωC = Hom(OX ,ωC).

Taking the odd parts, we get an isomorphism

ω−
X ≃ Hom(L,ωC).

Thus, δ− induces an isomorphism (2.5). On the other hand, δ+ :OC →ωC(
∑
ri) is

induced by the usual de Rham differential (since this is so on a dense open subset,
see Remark 2.3). Hence, we can recover δ from the isomorphism (2.5). □

A coherent sheaf L on a prestable curve C/S equipped with an isomorphism
(2.5) is called a generalized spin structure.

LEMMA 2.7. Let (X,P•,R•) and (X ′,P ′
•,R

′
•) be a pair of supercurves over S,

and let φ :X ∼−→X ′ be an isomorphism of superschemes over S, sending Pi to P ′
i

andRj toR′
j . Assume that the restriction of φ to a fiberwise dense open subscheme

U ⊂X , which is smooth over S, is an isomorphism of smooth supercurves. Then
φ is an isomorphism of supercurves.

Proof. Let j : U →X be the inclusion. By assumption, we have

φ∗ωX ′/S(R
′)≃ ωX/S(R).

Thus, we can view φ∗δX ′ as a derivation OX →ωX/S(R), and we have to prove the
equality φ∗δX ′ = δX . Since we know that this equality holds over U , the assertion
follows from Lemma 2.5 (ii). □
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We will later need the following result about infinitesimal deformations of su-
percurves.

LEMMA 2.8 ( [13, Prop. 1.7]). Let X0 be a supercurve with punctures over C.
Suppose an infinitesimal deformation X of X0 as a supercurve over C[t]/(t2) or
over C[τ ], where t is even and τ is odd, is trivial as a deformation of a superscheme.
Then it is trivial as a deformation of a supercurve.

Proof. Using the correspondence of Lemma 2.6, we get the data (C,L,φ0),
where φ0 is an isomorphism

φ0 : L ∼−−→ Hom(L,ωC),

so that OX0 =OC ⊕L. It is convenient to think of φ0 as a map

φ0 : L⊗2 → ωC .

The case of even base C[t]/(t2). In this case we can still use Lemma 2.6 forX .
Since the underlying superscheme is not deformed, this means that only the map
φ0 is deformed to φ= φ0+ tψ for some map ψ : L→ Hom(L,ωC). Since φ0 is an
isomorphism, we can write ψ = φ0 ◦a, where a is an endomorphism of L. Let us
set

α= id+
t

2
a : L ∼−−→ L.

Then on the locus where L is locally free we can think of a as a function on C, so
α⊗2 = id+ ta, and

φ0 ◦α⊗2 = φ0 + tφ0 ◦a= φ,

which implies that this equality holds everywhere, so the data (C,L,φ0) and
(C,L,φ) are isomorphic.

The case of odd base C[τ ]. We have to consider possible supercurve structures
δ : OX → ωX/S on X =X0 ×S over S = Spec(C[τ ]) reducing to δ0 on X0 over
C. Extending δ0 to X by extension of scalars, we can write

δ = δ0 + τD,

for some odd derivation D : OX0 → ωX0 . Let

D0 : OC → L, D1 : L→ ωC

be the components of D. A simple local calculation shows that the condition for δ
to define a supercurve structure on the smooth part of X implies that D1 is deter-
mined by D0.

We want to find an automorphism α of X/S, trivial on X0, such that δ is
obtained from δ0 by conjugation by α. Note that α necessarily has form

α(f) = f + τE(f),
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where E : OX0 →OX0 is an odd derivation. We take E with the components

E0 =D0 : OC → L, E1 = 0 : L→OC .

An easy calculation (on a smooth locus) shows that αωδ0α
−1 = δ0 + τD̃ produces

D̃ with D̃0 =D0. Here αω :ωX/S →ωX/S is the map induced by α. Hence D̃=D,
as required. □

2.3. Dualizing sheaf on the formal completion. We will sometimes want
to argue “formally locally”, so it will be useful to look at the obtained structure on
the formal completion of OX,x for a supercurve X/S. For this we use the duality
theory for formal schemes developed in [2] (or rather, its superanalog). Namely,
by the results of [2, Sec. 2] (extended to the supercase), we can identify the com-
pletion ω̂X,x with the dualizing sheaf for the morphism of formal superschemes
X̂ = Spf(ÔX,x)→ Ŝ = Spf(ÔS,s), where s ∈ S is the image of x ∈X . The struc-
ture derivation δ : OX → ωX/S induces a continuous derivation

δ̂ : OX̂ → ωX̂/Ŝ ,

which is compatible with the derivation δ̂Xs : OX̂s,x
→ ωX̂s/k(s)

, where X̂s is the
formal neighborhood of x in Xs. In particular, this will allow us to make sense of
deformations of supercurve singularities in Section 3.2.

The following formal local description of ωX/S will be useful (this is a partic-
ular case of [13, Sec. 1.6]).

LEMMA 2.9. Let S = Spec(R), where R is a local Artinian C-superalgebra;
C = Spf(B), with B =R[[w1,w2]]/(w1w2); X = Spf(A), where B ⊂ A is a finite
extension of superalgebras. Assume that for i = 1,2, there exists an odd element
θi ∈A[w−1

i ], such that
A[w−1

i ]≃R((zi))[θi],

where wi = zdi for some d > 0. Then for every ηi ∈ ωX/S [w
−1
i ], for i= 1,2, we can

write
ηi = (ai(zi)+ bi(zi)θi)[dzi|dθi],

where ai(zi) and bi(zi) are Laurent series. We set Reszi=0(ηi) :=Reszi=0 bi(zi)dzi.
Then

ωX/S := {(η1,η2) ∈ ωX/S [w
−1
1 ]⊕ωX/S [w

−1
2 ] | η1,η2 compatible and ∀a ∈A,

Resz1=0(aη1)+Resz2=0(aη2) = 0},

where compatibility of η1 and η2 means that they define the same element of
ωX/S [(w1w2)

−1].

Proof. Since π :X → C is a finite morphism, we have

(2.6) ωX/S ≃ Hom(π∗OX ,ωC/S).
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On the other hand, we have a well-known description of ωC/S(C) as compatible
pairs (η1,η2), with ηi ∈ ωC/S [zi] such that

(2.7) Resz1=0(bη1)+Resz2=0(bη2) = 0,

for every b ∈ B = O(C). Note that the isomorphism (2.6) is induced by the trace
map τ : π∗ωX/S → ωC/S , whose localizations on ωX/S [w

−1
i ] are given by

τ([a(zi)+ b(zi)θi][dzi|dθi]) = b(zi)dzi.

The identification of ωX/S(X) with HomB(A,ωC/S(C)), sends η ∈ ωX/S(X) to
the map A→ ωC/S(C) : a 7→ τ(aη).

Now we use the fact that τ(aη) is determined by the localizations τ(aηi),
i = 1,2, where ηi ∈ ωX/S [w

−1
i ], which should satisfy the sum of residues con-

dition (2.7). It follows that η is determined by ηi, i= 1,2, which should satisfy the
condition

Resz1=0(bτ(a ·η1))+Resz2=0(bτ(a ·η2)) = 0

for any a ∈A, b ∈B. Since τ is B-linear we can absorb the multiplication by b, so
we obtain the claimed characterization. □

2.4. Local descriptions.

2.4.1. Smooth supercurves with punctures. It is well known (see e.g.,
[26, Lem. 1.2] or [16, Lem. 3.1] in the absolute case) that locally in classical topol-
ogy near a point of a smooth supercurve, there exist relative coordinates (z,θ) such
that D is generated by D = ∂θ+ θ∂z and δ is given by δ(f) =D(f) · [dz|dθ]. We
show that the same assertion holds with respect to the étale topology and also con-
sider an analogous statement for the case of Ramond punctures (cf. [7, Prop. 3.6]).

LEMMA 2.10. (i) Let X/S be a smooth supercurve and let (z,θ) be a pair of
even and odd local functions such that dz and dθ generate the relative cotangent
bundle near a point p ∈X . Then there exists another pair (w,η) like this defined
in an étale neighborhood of p, with w ≡ z mod NX , such that D is generated by
∂η+η∂w.

(ii) Now letX/S be a smooth supercurve with a Ramond punctureR⊂X , and
let (z,θ) be a pair of even and odd local functions such that dz and dθ generate
the relative cotangent bundle and such that the ideal of R is generated by z. Then
locally in étale topology there exist a change of coordinates to (w,η), with w ≡
z mod NX , such that D is generated by ∂η+ηw∂w.

Proof. (i) Let D be generated by an odd vector field D of the form D = f∂θ+

g∂z . One has
1
2
[D,D]≡ f∂θ(g) ·∂z mod NXTX/S .
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Note also that modulo nilpotents D reduces to f∂θ. Hence, in order for D and
[D,D] to generate TX/S both f and ∂θ(g) should be invertible.

Thus, we can assume that D is generated by some vector field of the form
D = ∂θ + g∂z , where g = g1(z)+ g0(z)θ, with g0 even and g1 odd. Furthermore,
g0 is invertible. Let us look for w and η in the form

η = a0(z) ·θ,
w = z+a1(z)θ,

where a0 is invertible even and a1 is odd. Changing to the new coordinates we get

D = [a0 +ga
′
0θ]∂η+[−a1 +g(1+a′1θ)]∂w.

In order for D to be generated by ∂η+η∂w we need the equation

−a1 +g(1+a′1θ) = (a0 +ga
′
0θ) ·a0θ

to be satisfied. This is equivalent to the system

−a1 +g1 = 0,

g0 +g1a
′
1 = a2

0.

Since g0 is invertible, in an étale neighborhood we can choose a0 such that a2
0 =

g0 +g1g
′
1. This a0 together with a1 = g1 is a solution.

(ii) Let D = f∂θ+g∂z be a generator of D. From the calculation in the begin-
ning of part (i), we get an isomorphism

(TX/S/D+[D,D])⊗OXbos ≃OXbos/(f∂θ(g)) ·∂z⊕OXbos/(f) ·∂θ

where OXbos = OX/NX . Thus, this sheaf surjects onto OXbos/(f)⊕OXbos/(f).
Since this quotient has to be isomorphic to OX/(NX +(z)), we deduce that f is
invertible modulo N , so f is invertible.

Thus, we can assume that D is generated by D = ∂θ+g∂z , where g = g1(z)+

g0(z)θ. Then we have

1
2
[D,D] = [g0 +g1g

′
1 +(g1g

′
0 −g0g

′
1)θ] ·∂z,

where f ′ denotes the derivative with respect to z. In order for the commutator map
D⊗2 →TX/S/D to vanish exactly on the divisor (z) we should have

g0 +g1g
′
1 +(g1g

′
0 −g0g

′
1)θ = z(u0(z)+u1(z)θ),

with u0 invertible. In other words,

(2.8)
g0 +g1g

′
1 = zu0,

g1g
′
0 −g0g

′
1 = zu1.
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We claim that this implies that g1 is divisible by z. Indeed, let us write

g0 ≡ p0 + q0z mod (z2),

g1 ≡ p1 + q1z mod (z2),

where pi and qi are functions on the base. Note that since g1 is odd, from the first of
the equations (2.8) we get that q0 is invertible. Also, looking at the constant terms
of these equations we get

p0 +p1q1 = 0,

p1q0 −p0q1 = 0.

This implies that
p1(q0 + q

2
1) = p1q0 = 0.

Since q0 is invertible, we deduce that p1 = 0 which proves our claim that g1 is
divisible by z.

Now we are going to make the same change of coordinates as in (i) with an
additional constraint that a1 is divisible by z. Since ηw = a0zθ, we have to solve
the equation

−a1 +g(1+a′1θ) = (a0 +ga
′
0θ) ·a0zθ,

or equivalently, the system

−a1 +g1 = 0,

g0 +g1a
′
1 = a2

0z.

Thus, we get the solution by taking a0 to be the square root of u0 and a1 = g1

(which is divisible by z). □

Definition 2.11. We refer to (w,η) as in Lemma 2.10 as standard coordinates.

By Example 2.2, if (z,θ) are standard coordinates on a smooth supercurve
(away from punctures) then the canonical derivation is given by

δ(f) = (∂θ+θ∂z)(f) · [dz|dθ].

On the other hand, if (z,θ) are standard coordinates near a Ramond puncture then

δ(f) = (∂θ+θz∂z)(f) ·
[
dz

z
|dθ

]
.

2.4.2. Nodes. In the rest of this subsection we consider only the absolute
case, i.e., S = Spec(C). Let X be a stable supercurve over C. We denote by (C,L)

be the underlying generalized spin curve, and fix a node q ∈ C. Recall that by
definition X is required to be Cohen-Macaulay (CM). Using the classification of
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CM sheaves of rank 1 on the nodal singularity (see e.g. [21, Sec. 1]), we obtain that
there are two possibilities for L:

• L is locally free near q. Then we say that this is a Ramond node (or R-node).
• L is the push forward of a line bundle on the normalization of C near q.

Then we say that this is a NS node.
Furthermore, we have the following local descriptions near the nodes (see

[13]), where the description of the generators ωX/S follows from Lemma 2.9.
• Near a Ramond node X has coordinates (z1,z2,θ) (where θ is odd) subject

to z1z2 = 0. The complement of the node is the union of two branches U1 and U2,
where zi is invertible on Ui, and ωX is free with the basis b given by

b =

{[
dz1
z1
|dθ

]
on U1,

−
[
dz2
z2
|dθ

]
on U2.

The derivation δ is given by

δ(f) =

{
(∂θ+θz1∂z1)(f) ·b on U1,

(∂θ−θz2∂z2)(f) ·b on U2.

• Near an NS node X has coordinates z1, z2, θ1, θ2 subject to the equations

z1z2 = z1θ2 = z2θ1 = θ1θ2 = 0.

The complement of the node is given again as the union of two branches U1 and
U2, where zi is invertible on Ui and (zi,θi) form coordinates on Ui. The generators
[dz1|dθ1] and [dz2|dθ2] of ωU1 and of ωU2 extend to sections s1 and s2 of ωX (zero
on another branch), however, they do not generate it: there is an extra section

s0 =

{
θ1
z1
[dz1|dθ1] on U1,

− θ2
z2
[dz2|dθ2] on U2.

The derivation δ is given by

δ(f) =

{
(∂θ1 +θ1∂z1)(f) ·s1 on U1,

(∂θ2 +θ2∂z2)(f) ·s2 on U2.

Remark 2.12. The notions of NS node and NS puncture (resp., Ramond
node and Ramond puncture) are related via the gluing construction that will be
discussed in Section 7. Namely, two prestable supercurves with NS punctures
(X1,P1), (X2,P2) can be glued along their NS punctures forming a new prestable
supercurve with an NS node. Similarly, one can glue two Ramond punctures into
a Ramond node.
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2.5. Correspondence between NS-punctures and divisors. Here we re-
call a natural correspondence between NS-punctures P ⊂X and effective Cartier
divisors D supported at P , for a smooth supercurve X/S (with arbitrary base S),
see [5,28]. Note this correspondence only uses a neighborhood of P inX , so it can
also be applied for stable supercurves with punctures of both types, i.e, for each
NS-puncture Pi we have a natural Cartier divisor Di supported at Pi.

It is based on the fundamental fact that for a smooth supercurve X/S, the
composed map

(2.9) T sc
X/S →TX/S →TX/S/D ≃D⊗2 ≃ ω−2

X/S

is an isomorphism of sheaves, where T sc
X/S ⊂ TX/S is the subsheaf of superconfor-

mal vector fields (those preserving D). Indeed, the proof is easily obtained from
the existence of standard coordinates as in Lemma 2.10 (see [26, Lem. 2.1]). We
denote by

α : ω−2
X/S

∼−−→ T sc
X/S

the inverse isomorphism.

Definition 2.13. We say that an effective relative Cartier divisor D ⊂X corre-
sponds to an NS-puncture P ⊂X ifD is supported at P and the following property
holds. If the ideal of D is generated locally by a function f then the ideal of P is
generated by (f,A(f)), where A is any generator of the distribution giving the su-
perconformal structure. Note that in this case we necessarily have an inclusion of
subschemes P ⊂D.

The existence and uniqueness of a divisor D corresponding to an NS-puncture
P is easy to check using standard coordinates (z,θ). Namely, with respect to such
coordinates the ideal of P has form (z,θ−a), for some odd function a on the base.
Then corresponding divisor D is given by the ideal (z+aθ). In the next lemma we
give a coordinate-free characterization of this correspondence.

LEMMA 2.14. For a smooth supercurveX/S and an NS-puncture P ⊂X there
exists a unique effective relative Cartier divisor D, such that the following square
is commutative

(2.10)

ω−2
X/S

α
> T sc

X/S

ω−2
X/S |D
∨

β
> TX/S |P

∨

where β is an isomorphism of sheaves of OS-modules. Furthermore, the divisor D
corresponds to the NS-puncture P in the sense of Definition 2.13.
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Proof. Let αP : ω−2
X/S →TX/S |P denote the composition of α with the projec-

tion to TX/S |P . The commutativity of the square (2.10) together with injectivity
of β imply that the kernel of αP is exactly the subsheaf ω−2

X/S(−D)⊂ ω−2
X/S . This

shows the uniqueness of D.
Now let us construct β and show the commutativity of (2.10) for P given by

the ideal (z,θ− a) and D given by the ideal (z+ aθ), where (z,θ) are standard
coordinates and a is an odd function on the base. Note that the isomorphism α

locally has form

f ·b−2 7→ f ·∂z+
1
2
(−1)|f |A(f) ·A,

where A = ∂θ + θ∂z and b = [dz|dθ] is a generator of ωX (see the proof of [26,
Lem. 2.1], where however the factor 1

2 is missing). It is easy to see that

αP ((z+aθ)f ·b−2) = 0,

while αP (b−2) and αP (θ ·b−2) form an OS-basis of TX/S |P . Since b−2 and θ ·b−2

project to an OS-basis of ω−2
X/S |D, this shows that the assertion holds with

β(b−2) = αP (b−2), β(θ ·b−2) = αP (θ ·b−2). □

Note that since the composition P ↪→D→ S is an isomorphism, the compo-
sition OS ↪→OD →OP =OD/(IP /ID) is an isomorphism, which means that we
have a canonical splitting

(2.11) OD ≃OS ⊕ IP /ID.

We will use this splitting later (see Remark 8.10).

COROLLARY 2.15. The map (2.9) induces an isomorphism of sheaves

T sc
(X,P )/S

∼−−→ (TX/S/D)(−D)≃ ω−2
X/S(−D),

where T sc
(X,P )/S ⊂ T sc

X/S is the sheaf of superconformal vector fields preserving the
ideal of P .

Proof. This follows from the fact that the map α induces an isomorphism of
the kernels of the vertical arrows in the commutative square (2.10). The kernel of
the left vertical arrow in this square is ω−2

X/S(−D), while the kernel of the right
vertical arrow is T sc

(X,P )/S . □

Remark 2.16. For a general smooth family X→ S of relative dimension (1|1)
there is a canonical dual family X̂ → S, parametrizing irreducible Cartier divisors
in the fibers of X → S (see e.g., [5]). The double dual ˆ̂X is canonically identified
with X . The superconformal structure on X/S can be viewed as an isomorphism
of X with X̂ .
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2.6. Supercurves over even bases and spin curves. If we only consider
even bases, the functor of (stable) supercurves with punctures coincides with the
functor of stable curves with punctures equipped with generalized spin structures
i.e., coherent sheaves L as in Lemma 2.6. Note that in the setting of Lemma 2.6
we still refer to the two kinds of marked points p• and r• and NS and Ramond
punctures.

The moduli stack Sg,nNS ,nR of stable spin curves of genus g with nNS NS-
punctures and nR Ramond punctures (where nR is necessarily even) was studied
in [22, 23], as a particular case of the stack of stable r-spin curves. In particular,
it was shown to be a smooth proper Deligne-Mumford stack. Note that for r > 2
there are different versions of the functor of stable r-spin curves, however, in the
case r = 2, they all coincide (see [21]).

Let us recall how the generalized spin structures over stable curves look like. A
generalized spin structure L over a smooth curve C with punctures is a line bundle
L equipped with an isomorphism

L2 ≃ ωC(r1 + · · ·+ rn),

where (r•) are the Ramond punctures.
Now let (C,p•, r•) be a stable curve, and let ρ : C̃ → C be the partial normal-

ization map, resolving a single node q ∈ C. Let us equip C̃ with punctures in the
following way: first, it inherits all the punctures (NS and Ramond) of C. Secondly,
we mark the two points in ρ−1(q) as two NS (resp., Ramond) punctures on C̃ if q
is a NS (resp., Ramond) node on C.

For a generalized spin structure L over C let us define the sheaf L̃ on C̃ as the
quotient of ρ∗L by the torsion subsheaf. Then L̃ is a line bundle on C̃ and L̃ is a
generalized spin structure on C̃ with NS and Ramond punctures defined as above.

More precisely, if q is a Ramond node then L is locally free near q, so ρ∗L is
still locally free on C̃ and L̃= ρ∗L. If q is an NS node then L is locally isomorphic
to the ideal of the node, so ρ∗L acquires a nontrivial torsion. A local computation
shows that the quotient L̃ of ρ∗L by the torsion subsheaf is locally free, and the
composition of the natural maps L→ ρ∗ρ

∗L→ ρ∗L̃ is an isomorphism.

Remark 2.17. The coarse moduli of the stack Sg,nNS ,nR considered in [22,
23] gives the same compactification of the classical moduli space of spin curves
as the one constructed by Cornalba [11]. On the other hand, there is a different
moduli stack constructed in [1] (which gives the same coarse moduli as the other
constructions), where stable curves are replaced by certain stacky curves. We will
not use the latter moduli stack in this paper.

3. Deformations. In this section we will study the deformation theory of
stable supercurves (with punctures). In particular, we will prove that the deforma-
tion functor of a stable supercurve is smooth and will compute its tangent space.
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3.1. Deformation functors on Artin superalgebras. The development of
deformation theory in the super context goes back to [31], see also [27, Sec. 7.1.9].
We consider the category ArtC of local Artinian C-superalgebras with the residue
field C. Recall that a surjection A→B is called a small extension if

mker(A→B) = 0,

where m is the maximal ideal in A. Every surjection in ArtC is a composition of a
finite number of small extensions.

We apply some standard results of deformation theory (say, those in [18]), or
rather their superanalogs (which are straightforward to prove). Recall that for a
set-valued functor F on ArtC such that F (C) = {∗}, and for morphisms A′ → A,
A′′ →A in ArtC one has a natural map

(⋆) F (A′×AA
′′)→ F (A′)×F (A)F (A

′′)

One considers the following Schlessinger conditions on F :
(H1) The map (⋆) is surjective if A′′ →A is a small extension;
(H2) The map (⋆) is an isomorphism ifA=C andA′′ →A is a small extension.
We refer to functors satisfying (H1) and (H2) as deformation functors. Such a

functor F is called smooth if F (A′)→ F (A) is surjective for any small extension
A′ → A. More generally, a morphism of deformation functors F → G is called
smooth if for every small extension A′ →A in ArtC, the natural map

F (A′)→G(A′)×G(A)F (A)

is surjective.
Note that the tangent space tF to a deformation functor F is defined as the sum

of even and odd components given by

t+F = F (C[ϵ]/ϵ2), t−F = F (C[τ ]/τ 2),

where ϵ is even and τ is odd. Elements of t+F (resp., t−F ) are referred to as even
(resp., odd) infinitesimal deformations.

A morphism hR → F from the functor hR pro-representable by a Noetherian
complete local C-algebra C to a deformation functor F , is called the hull of F if it
is smooth, and the induced map on tangent spaces is an isomorphism. In this case
we also say that the corresponding deformation over R is miniversal.

3.2. Miniversal deformations of the nodes. In this subsection, following
Deligne [13], we describe miniversal deformations of two types of nodal singu-
larities of prestable supercurves. First, we give a precise definition of what do we
mean by deformations of supercurve singularities.
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Definition 3.1. Let A/C be the completion of the local ring of a singular point
on a supercurve over C, so it is equipped with a derivation δA : A→ ωSpf(A)/C
(see Section 2.3). By a deformation of A over a local Artinian superalgebra R we
mean a flat R-superalgebra B equipped with an isomorphism B⊗RC ≃ A, and a
derivation δB :B→ ωSpf(B)/R, inducing δA under the reduction with respect to the
homomorphism R→ C.

We begin by describing two families of supercurves over S = Spec(C[t]),
where t is even.

3.2.1. Ramond node. Define X/S as a subscheme of the affine space S×
A2|1 over S with coordinates z1, z2, θ, given by the equation

z1z2 = t.

Note that we have a natural trivialization b of ωX/S .
Over the open subset where z1 ̸= 0 (resp., z2 ̸= 0), we have b = [dz1

z1
|dθ] (resp.,

b = [−dz2
z2
|dθ]), and δ is given by (∂θ+θz1∂z1) ·b (resp., (∂θ−θz2∂z2) ·b).

3.2.2. NS node. Define X/S as a subscheme of the affine space S×A2|2

over S with coordinates z1, z2, θ1, θ2, given by the equations

(3.1) z1z2 =−t2, z1θ2 = tθ1, z2θ1 =−tθ2, θ1θ2 = 0.

Over the chart where zi ̸= 0 (i= 1,2),

(3.2) δ(f) = (∂θi +θi∂zi)(f)[dzi|dθi].

Remark 3.2. We follow the choice of signs in [13] in the equations (3.1). Note
that one can get rid of signs replacing z1 by −z1 and θ1 and −θ1. As was pointed
out by the anonymous referee, there is a natural way to see this deformation of the
NS node as a quotient of the Ramond node deformation z1z2 = t by the Z2-action

z1 7→ −z1, z2 7→ −z2, θ 7→ −θ.

Namely, the algebra of functions on this Z2-quotient is generated by Z1 = z2
1 ,

Z2 = z2
2 , Θ1 = z1θ and Θ2 = z2θ subject to relations obtained from (3.1) by chang-

ing all signs to +.

The following result is proved in [13]. For the convenience of the reader we
provide the proof below, with some details elaborated.

THEOREM 3.3. The families over C[[t]] induced by the above two families are
miniversal deformations of the completed rings of the two types of nodes.
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Proof. Let us denote by X0 the formal spectrum of the completed algebra R
of one of the two types of nodes over C (see Section 2.4.2). We denote by F the
functor on ArtC of deformations of X0 as a formal supercurve (see Definition 3.1).
It is easy to see that this functor satisfies (H1) and (H2). Namely, in the context
of (H1), if X/A (resp., X ′/A′, X ′′/A′′) is a deformation of X0 over A (resp.,
A′,A′′), then O

X̃
:=OX ′×OX

×OX ′′ can be viewed as a superscheme deformation

X̃ of X0 over Ã :=A′×AA
′′ inducing X ′/A′ and X ′′/A′′. Furthermore, the map

OX ′ ×OX
×OX ′′ → ωX ′/A′ ×ωX/A

ωX ′′/A′′ ≃ ω
X̃/Ã

induced by the supercurve structures on X ′/A′ and X ′′/A′′, gives a supercurve
structure on X̃/Ã. This proves the surjectivity needed for (H1). In the case A=C,
if X̃ is any supercurve overA′×A′′, letX ′/A′,X ′′/A′′ be the induced supercurves
over A′ and A′′. Then we have the induced map

α : O
X̃
→OX ′ ×OX0

OX ′′

compatible with the supercurve structures. Since both algebras are flat overA′×A′′

and the map of algebras over C, induced by α, is the identity map on OX0 , α is an
isomorphism. This proves (H2).

It is enough to prove in both cases triviality of odd infinitesimal deformations
and the fact that the space of even infinitesimal deformations is a 1-dimensional
space with generators coming from the above families over C[t]. Indeed, assume
we know this. We have a natural morphism G→ F from the functor G prorepre-
sentable by C[[t]] corresponding to one of our two families, and by assumption, the
map of tangent spaces tG → tF is an isomorphism. Since the functor G is smooth,
this implies that the morphism G→ F is smooth (and so G→ F is a hull of F ,
i.e., our deformation over C[[t]] is miniversal).

Namely, let A→ B be a small extension with the kernel I . Then as is well
known, there exists a natural transitive action of tF ⊗C I on every nonempty fiber
of the map F (A) → F (B) (and similarly for G). Given xB ∈ G(B) mapping to
yB ∈ F (B), together with a lift yA ∈ F (A) of yB , we need to find xA ∈ G(A)

mapping to both xB and yA. For this, first, we can find some x′A ∈ G(A) lifting
xB ∈ G(B). Let y′A ∈ F (A) be the image of x′A. Then y′A is in the same fiber
of F (A) → F (B) as yA, so it is obtained from yA by the action of an element
z ∈ tG⊗C I ≃ tF ⊗C I . Now we define xA to be the element in the fiber ofG(A)→
G(B) over xB , obtained from x′A by the action of −z.

Thus, we are reduced to calculating the infinitesimal deformations. The calcu-
lation below is from [13, Sec. 3]. First, we calculate the space T 1 := T 1

R/C of first-
order deformations of our superalgebraR over C as Ext1(LR/C,R), where LR/C is
the cotangent complex. The latter is computed using a presentation of R= S/I as
the quotient of a super polynomial ring S, and a presentation I = coker(F1 → F0),
where F0 and F1 are free S-modules. So the generators (ei) of F0 correspond to
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generators (fi) of the ideal I , while generators of F1 correspond to syzygies be-
tween fi. Then T 1 is given by the cohomology in the middle term of the complex

HomS(ΩS/C,R)
d0−−→ HomS(F0,R)

d1−−→ HomS(F1,R),

where the first arrow sends a derivation D : S→R to the map ei 7→D(fi).
In the case of the Ramond node, we have a single (even) relation z1z2 = 0

and no syzygies, so T 1 is identified with the quotient of R by the partial deriva-
tives of z1z2, so the space T 1 has dimension (1,1). The corresponding universal
deformation of the first order is given by the relation

(3.3) z1z2 = t+ τθ

over C[t,τ ]/(t2, tτ) (where t is even and τ is odd).
In the case of the NS node, we have four relations

f = z1z2, ϕ1 = z1θ2, ϕ2 = z2θ1, g = θ1θ2

and 4 generating syzygies

σ1 = θ1f −z1ϕ2, σ2 = θ2f −z2ϕ1, s1 = z1g−θ1ϕ1, s2 = z2g+θ2ϕ2.

Thus, with respect to the dual bases of HomS(Fi,R) and the basis ∂z1 , ∂z2 , ∂θ1 , ∂θ2

of HomS(ΩS/C,R), the maps d0 and d1 are given by

d0 =


z2 z1 0 0
θ2 0 0 z1

0 θ1 z2 0
0 0 θ2 −θ1

 , d1 =


θ1 0 −z1 0
θ2 −z2 0 0
0 −θ1 0 z1

0 0 θ2 z2

 .

We need to calculate ker(d1)/ im(d0).
For v = af∗ + bϕ∗1 + cϕ∗2 + dg∗ ∈ ker(d1), where a,b,c,d ∈ R, one has

z1d= θ1b, and z2d = −θ2c. This implies that d = θ1d1 + θ2d2. Hence, modifying
v by d0(∂θ1) and d0(∂θ2) (the last two columns of d0), we can make d = 0. Let
H ⊂ HomS(F0,R) denote the span of f∗, ϕ∗1 and ϕ∗2. We proved that

ker(d1) = ker(d1)∩H+ im(d0).

Hence,
ker(d1)/ im(d0) = ker(d1)∩H/ im(d0)∩H.

Note that d0(p∂z1 + r∂z2 + s∂θ1 + t∂θ2) ∈ H if and only if θ2s = θ1t, which is
equivalent to s, t ∈ (θ1,θ2). Since d0(θ1∂θ1) = d0(θ2∂θ2) = 0, we obtain that

im(d0)∩H = d0(R∂z1 + r∂z2 +θ2∂θ1 +θ1∂θ2).
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Next, for af∗+bϕ∗1 +cϕ
∗
2 ∈ ker(d1) we have z1c ∈ (θ1), z2b ∈ (θ2), which im-

plies b,c ∈ (θ1,θ2). Thus, adding multiples of d0(∂z1) and d1(∂z2), we can assume
b ∈ (θ1), c ∈ (θ2). Then the condition to be in ker(d1) reduces to a ∈ (θ1,θ2). This
identifies T 1 with the quotient of the space of af∗+ bϕ∗1 + cϕ

∗
2 with a ∈ (θ1,θ2),

b ∈ (θ1), c ∈ (θ2), modulo the submodule generated by θ2d1(∂z1), θ1d1(∂z2),
d1(∂θ1) and d1(∂θ2). Thus, the quotient is 4-dimensional with the basis

θ1f
∗, θ2f

∗, θ1ϕ
∗
1, θ2ϕ

∗
2.

In other words, the universal deformation of the first order is given by the
relations

(3.4) z1z2 + τ1θ1 + τ2θ2 = 0, z1θ2 + t1θ1 = 0, z2θ1 + t2θ2 = 0, θ1θ2 = 0

over C[t1, t2, τ1, τ2]/(t
2
1, t1t2, t

2
2), where t1, t2 are even and τ1, τ2 are odd.

By Lemma 2.8, the tangent space tF to our deformation problem is a subspace
in T 1, and over the restriction of the above family to tF , we have a derivation
δ : OX → ωX/S deforming the derivation δ0 on the special fiber X0. From now
on we denote by X/S the formal superscheme given by either (3.3) or (3.4) over
the superscheme S = SpecR, corresponding to an (even or odd) 1-dimensional
subspace in T 1.

Let Ui/S denote the localization of one of the families (3.3) or (3.4) obtained
by inverting zi, for i= 1,2. Then we have O(Ui)≃R[zi,θi], for i= 1,2, so ωUi/S

is a free O(Ui)-module with the basis [dzi|dθi]. On the other hand, it is easy to
see that in both cases we have z2

1z
2
2 = 0, so the corresponding algebra is a finite

extension of R[[w1,w2]]/(w1w2), where wi = z2
i . Thus, by Lemma 2.9, we can

characterize the pairs ω1 ∈ ωU1/S , ω2 ∈ ωU2/S corresponding to the global sections
of ωX/S by the condition

(3.5) Resz1=0(f1ω1)+Resz2=0(f2ω2) = 0

for any global function f ∈ OX with restrictions f1 = f |U1 , f2 = f |U2 .
Our strategy will be to extend δ0 to a pair of compatible derivations δ0,i :OUi →

ωUi/S , i= 1,2, and then to see whether there exists a pair of compatible derivations
(δ1, δ2), with δi vanishing over Ui∩X0, such that (δ0,1 +δ1, δ0,2 +δ2) takes OX to
ωX/S (we know that such (δ1, δ2) exists if and only if S corresponds to the linear
(super)-subspace of tF ⊂ T 1.) We will construct the extension δ0,1 on U1 using the
original formulas for X0, and then will find a compatible δ0,2 using equations (3.3)
and (3.4).

Case of Ramond node. In this case we just have to check that t−F is zero. In
other words, we have to consider the family given by z1z2 = τθ. Note that ωX/S is
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free is one generator b, such that

b|U1 =

[
dz1

z1
|dθ

]
, b|U2 =

[
− dz2

z2
|dθ

]
.

The derivations δ0,i : OUi → ωUi/S are given by f 7→D0,i(f) ·b, where

D0,1|U1(f) = ∂θ+θz1∂z1 , D0,2|U2(f) = ∂θ−θz2∂z2 .

We need to check that there are no compatible derivations Di : OUi∩X0 →
OUi∩X0 such that (D0,1 +τD1,D0,2 +τD2) sends OX to OX . For this we observe
that

z1|U1 = z1, z1|U2 =
τ

z2
·θ.

Hence,
D0,1(z1)|U1 = θz1, D0,2(z1)|U2 =

τ

z2
.

Note that D2(z1) is zero on U2∩X0 (since z1 vanishes on U2∩X0), hence (D0,1+

τD1,D0,2 + τD2)(z1) would be a global function on X , whose restriction to U2 is
equal to τ

z2
, which is impossible.

Case of NS node, odd deformations. Again we want to check the vanishing
of t−F . We know that t−F is a subspace of the 2 dimensional odd vector space (T 1)−

corresponding to the odd part of the family (3.4). Note that we have an action of
G2

m on the NS node X0, so that the weights of the generating functions are

wt(θ1) = (1,0), wt(θ2) = (0,1), wt(z1) = (2,0), wt(z2) = (0,2).

The subspace t−F is invariant under the induced G2
m-action on (T 1)−. Since the

weights of τ1 and τ2 are

wt(τ1) = (1,2), wt(τ2) = (2,1),

we see that if t−F is nonzero, it coincides with one of the coordinate lines in (T 1)−.
Thus, it is enough to study the restriction of the family (3.4) to the τ1 direction:

z1z2 = τ1θ1, z1θ2 = z2θ1 = θ1θ2 = 0.

Using the description of the global sections of ωX/S as pairs

(ω1,ω2) ∈ ωU1/S ⊕ωU2/S

satisfying the residue condition (3.5), we can lift the generators of ωX0 to global
sections of ωX . Namely, the generator s1 = ([dz1|dθ1],0) can be lifted to

s̃1 :=
(
[dz1|dθ1],−τ1

θ2

z2
2
[dz2|dθ2]

)
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(one has to apply the residue condition to the global function z2). On the other
hand, the generator s2 = (0, [dz2|dθ2]) on X0 lifts to the same pair on X that we
denote s̃2, and the generator

s=

(
θ1

z1
[dz1|dθ1],−

θ2

z2
[dz2|dθ2]

)
on X0 lifts to the same pair on X that we denote s̃.

The derivations δ0,i : OUi → ωUi/S , for i = 1,2, are still given by the for-
mula (3.2). We need to show that for any choice of compatible derivations

δi : OUi → ωUi/S , i= 1,2,

the pair (δ0,1 + τ1δ1, δ0,2 + τ1δ2) does not take OX to ωX/S . Note that

(δ0,1, δ0,2)(θ1,0) = ([dz1|dθ1],0) = s̃1 + τ1

(
0,
θ2

z2
2
[dz2|dθ2]

)
,

Hence, if (δ0,1 + τ1δ1, δ0,2 + τ1δ2)(θ1,0) ∈ ωX/S and δ1(θ1) = η1, then we would
get (

η1,
θ2

z2
2
[dz2|dθ2]

)
∈ ωX/S ,

with η1 regular on U1, which is impossible by the above description of ωX/S .

Case of NS node, even deformations. In this case we work with the first-
order deformation

z1z2 = 0, z1θ2 = t1θ1, z2θ1 = t2θ2, θ1θ2 = 0.

We have to check that the equation t1 + t2 = 0 on S is necessary in order for this
to be in tF .

The generator s1 (resp., s2) of ωX0/S lifts to

s̃1 =

(
[dz1|dθ1],−t1

1
z2
[dz2|dθ2]

) (
resp., s̃2 =

(
− t2

1
z1
[dz1|dθ1], [dz2|dθ2]

))
,

while the generator s lifts to the same pair on X that we denote s̃.
The derivations δ0,i : OUi → ωUi/S , for i = 1,2, are still given by the for-

mula (3.2). We have

(δ0,1, δ0,2)(θ1) = (δ0,1, δ0,2)

(
θ1, t2

θ2

z2

)
=

(
[dz1|dθ1], t2

1
z2
[dz2|dθ2]

)
= s̃1 +(t1 + t2)

(
0,

1
z2
[dz2|dθ2]

)
,
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Suppose (δ0,1 + t1δ1 + t2δ
′
1, δ0,2 + t1δ2 + t2δ

′
2)(θ1) ∈ ωX/S . We have

(t1δ1, t1δ2)(θ1) =

(
t1δ1(θ1), t1δ2

(
t2
θ2

z2

))
= (t1η,0),

(t2δ
′
1, t2δ

′
2)(θ1) = (t2η

′,0),

where we used the relations t1t2 = t22 = 0. Hence, we get(
t1η+ t2η

′,(t1 + t2)
1
z2
[dz2|dθ2]

)
∈ ωX/S ,

with η, η′ regular on U1, which is impossible unless t1 + t2 = 0 on S. □

COROLLARY 3.4. The functors of deformations of both types of nodes are
smooth.

Proof. Indeed, the functor G prorepresentable by C[[t]] is smooth. Since the
morphism of deformation functors G→ F is smooth (where F is our deformation
functor), this implies that F is smooth. □

The result on formal deformations implies in a standard way (essentially via
Artin approximation techniques) the following étale local description of neighbor-
hoods of singular points in families of prestable supercurves.

LEMMA 3.5. Let X → S be a prestable supercurve, where S is of finite type
over C. Then for any node q in a fiberXs over s∈S, there exists an étale neighbor-
hood V of s in S, such that for each preimage q′ of q inXV , there exists a morphism
t : V →A1, such that étale locally near q′ the familyXV → V is identified with the
pull-back under f of the standard NS-node or Ramond-node deformation over A1.

Proof. This is proved in [27, Prop. 7.10]. The key idea (also used in Artin
approximation) is to use a presentation of the formal completion as an inductive
limit of smooth algebras given by Popescu’s theorem. □

3.3. Sheaf of infinitesimal automorphisms. For a moment let us consider
only supercurves over the point base Spec(C).

Definition 3.6. We define the Z2-graded sheaf of infinitesimal automorphisms
A of any geometric structure of the form (superscheme over C plus extra structure)
as follows. The even part A+ is given by automorphisms of the trivial family of
these structures over C[ϵ]/(ϵ2), where ϵ is even, trivial modulo ϵ. Similarly, the
odd part A− is given by automorphisms of the trivial family over C[τ ]/(τ 2), where
τ is odd, trivial modulo τ . For example, the sheaf of infinitesimal automorphisms
of a superscheme is exactly the tangent sheaf.
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For a stable supercurve (X,P•,R•) over C, we denote by

AX,P•,R• ⊂ TX

the sheaf of its infinitesimal automorphisms (where TX is the sheaf of super-
derivations from OX to OX ). Note that the space of locally trivial infinitesimal
deformations of (X,P•,R•) is H1(X,AX,P•,R•).

LEMMA 3.7. Let (X,P•,R•) be a stable supercurve, j : U ↪→ X a smooth
locus. Then A(X,P•,R•) is identified with the subsheaf of j∗AU,P•,R• consisting of
those derivations of OU that send OX to OX .

Proof. Note that OX is a subsheaf in j∗OU , hence the sheaf TX of derivations
from OX to OX , can be identified with the subsheaf in j∗TU consisting of deriva-
tions of OU sending OX to OX . Now the assertion follows from Lemma 2.7 (ap-
plied to automorphisms of X×Spec(C[ϵ]/(ϵ2)) and X×Spec(C[τ ]/(τ 2))). □

Definition 3.8. Now let us consider the relative situation, i.e., consider a stable
super curve with punctures (X,P•,R•) over any base S. We define

AX/S =A(X,P•,R•)/S ⊂ TX/S

as the subsheaf consisting of derivations v in TX/S preserving the punctures and
preserving the distribution D over the smooth locus. We still call AX/S the sheaf
of infinitesimal automorphisms.

In the case S = Spec(C) this agrees with our previous definition. Indeed this
follows easily from Lemma 3.7 which states that AX is the intersection of TX with
j∗AU in j∗TU . Note however that the formation of AX/S is not compatible with
the base change in general.

In the smooth case we have the following useful identification of the sheaf of
infinitesimal automorphisms over an arbitrary (not necessarily even) base.

PROPOSITION 3.9. Let (X,P•,R•) → S be a smooth supercurve with punc-
tures, where (Pi)i∈I are NS punctures and (Rj)j∈J are Ramond punctures. Then
one has a natural isomorphism

A(X,P•,R•)/S ≃ T sc
(X,P•)/S

≃ ω−2
X/S

(
−
∑
i∈I

Di−2
∑
j∈J

Rj

)
,

where Di ⊂X is a divisor associated with the NS puncture Pi (see Section 2.5).

Proof. The first isomorphism corresponds to the fact that the Ramond punc-
tures are recovered from the distribution D ⊂ TX/S as the vanishing divisor of the
OX -linear map

D⊗2 →TX/S/D
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induced by the Lie bracket. Thus, if a relative derivation on X/S preserves D and
the NS punctures then it also preserves the Ramond punctures.

Next, we observe that there is a natural isomorphism

TX/S/D ≃D2
(∑

j

Rj

)
≃ ω−2

X/S

(
−
∑
j

Rj

)
.

(see (2.2) and (2.3)). It remains to check that the natural map T sc
(X,P•)/S

→TX/S/D
induces an isomorphism

T sc
(X,P•)/S

∼−−→ (TX/S/D)
(
−
∑
i∈I

Di−
∑
j∈J

Rj

)
.

This is a local question which is well known away from the punctures. Near the
NS puncture this is Corollary 2.15, while near the Ramond puncture this is proved
in [7, Prop. 3.12] using standard coordinates (see Lemma 2.10). □

In the case when the base is a point it is useful to rewrite the result in terms of
the corresponding spin curve.

COROLLARY 3.10. Let (X,P•,R•) be a smooth supercurve over C with the
underlying spin curve (C,L,p•, r•), where L2 ≃ ωC(

∑
rj). Then

A+
X,P•,R•

≃ TC
(
−
∑

pi−
∑

rj

)
, A−

X,P•,R•
≃ TC ⊗L

(
−
∑

pi−
∑

rj

)
.

Proof. Let π : X → C be the projection. We have ωX ≃ π∗L(−
∑
rj) (see

Lemma 2.6), so

ω−2
X ≃ π∗L−2

(
2
∑

rj

)
≃ π∗TC

(∑
rj

)
.

Hence,

ω−2
X

(
−
∑

pi−2
∑

rj

)
≃ π∗TC

(
−
∑

pi−
∑

rj

)
=OX ⊗OC

TC
(
−
∑

pi−
∑

rj

)
.

Considering even and odd parts we get the result. □

3.4. Sheaf of infinitesimal automorphisms for stable supercurves. The
following local analysis of the sheaf AX,P•,R• is from [13] (we corrected a misprint
in the case of the Ramond node).

Ramond node. Locally near such a node, we have OX =OC ⊕L, where L is
locally free, L⊗2 ≃ ωC , and

AX = TC ⊕L⊗ω−1
C .
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NS node. Let C = B1 ∪B2 be the two branches. Each Bi is equipped with a
square root Li of ωBi . Then AX =A1 ⊕A2, with

Ai = TBi(−qi)⊕Li⊗TBi(−qi)

We can also determine the sheaf of infinitesimal automorphisms globally and
check the absence of infinitesimal automorphisms for stable supercurves by the
standard count (this is done in [13] for the case of supercurves without punctures).

PROPOSITION 3.11. Let (X,P•,R•) be a stable supercurve over C with the
underlying stable spin curve (C,L,p•, r•). Let ρ : C̃ → C be the normalization
with the induced spin structure L̃ (see Section 2.6), and let (X̃, P̃•, R̃•) be the
corresponding smooth supercurve with punctures.

(i) One has natural a isomorphism

A+
X,P•,R•

≃ ρ∗A+

X̃,P̃•,R̃•
≃ TC

(
−
∑

pi−
∑

rj

)
and an exact sequence

0 →A−
X,P•,R•

→ ρ∗A−
X̃,P̃•,R̃•

→
⊕

q R-node

Oq → 0

where the summation is over all Ramond nodes.
(ii) One has H0(X,AX,P•,R•) = 0.

Proof. (i) We have a natural morphism

κ : AX,P•,R• → ρ∗AX̃,P̃•,R̃•

which is an isomorphism away from the nodes. Thus, the assertion can be checked
by a local computation near the nodes (so we can forget about the punctures). Near
an NS node we have

A+
X ≃ ρ∗TC̃(−q1 − q2), A−

X ≃ ρ∗L̃⊗T
C̃
(−q1 − q2),

where {q1, q2} ⊂ C̃ is the preimage of the node, so κ is an isomorphism.
Near a Ramond node we have

A+
X ≃ TC ≃ ρ∗TC̃(−q1 − q2), A−

X ≃ L⊗ω−1
C ,

whereas
A−

X̃
≃ L̃⊗ω−1

C̃
(−q1 − q2)≃ ρ∗(L⊗ω−1

C ).

Thus, κ+ is an isomorphism, while κ− is an embedding with the cokernel of length
1 supported at the node.

(ii) Since global infinitesimal automorphisms of X embed into those for X̃ , it
is enough to prove the assertion in the case when C is smooth. We can also assume
it is connected.
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When C is smooth we have

A+
X = TC

(
−
∑

pi−
∑

rj

)
, A−

X = L⊗TC
(
−
∑

pi−
∑

rj

)
.

We have L2 ≃ ωC(
∑
rj), so

degL= g−1+nR/2,

degL⊗TC
(
−
∑

pi−
∑

rj

)
=−(g−1)−nNS −nR/2,

degTC
(
−
∑

pi−
∑

rj

)
=−2(g−1)−nNS −nR.

Note that degTC(−
∑
pi−

∑
rj)< 0 by stability of the underlying pointed curve.

Hence,

degL⊗TC
(
−
∑

pi−
∑

rj

)
=

1
2

degTC
(
−
∑

pi−
∑

rj

)
−nNS/2< 0,

so A±
X do not have global sections. □

3.5. Smooth affine supercurves without Ramond punctures. Let X0 be
an affine (smooth) supercurve over C.

LEMMA 3.12. For every C-point p ∈X0, and every tangent vector v0 ∈ TpX0,
there exists a superconformal vector field v on X0 with v(p) = v0.

Proof. First, we claim that there is an exact sequence of sheaves with respect
to étale topology

0 →AX0,p →AX0 → i∗TpX0 → 0

where AX0 = T sc
X0

. Indeed, for this we need to check the surjectivity of the last
arrow. Locally in étale topology the distribution D ⊂ TX0 has a generator D =

∂θ + θ∂z (see Lemma 2.10). Then the vector fields D− 2θD2 and D2 are super-
conformal and restrict to a basis of TpX0.

Next, we observe that AX0,p is isomorphic to a coherent sheaf on X0 (see
Proposition 3.9). Hence, H1(X0,AX0,p) = 0 and we deduce the required surjectiv-
ity of the map H0(X0,AX0)→ TpX0. □

LEMMA 3.13. Let A→ A/I = B be a small extension in ArtC, X0 a super-
scheme over C, E0 a vector bundle on X0, D0 ⊂E0 a subbundle. We denote by

(XB =X0 ×Spec(B), EB =B⊗CE0, DB =B⊗CD0)

the trivial deformation of these data over B. Consider XA =X0 ×Spec(A) with
the vector bundle EA = A⊗CE0. Then subbundles DA ⊂ EA reducing to DB ⊂
EB over B are in natural bijection with homomorphisms of bundles D0 → I ⊗C
(E0/D0) over X0.
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Proof. Since mI = 0, we have a natural identification

I ·DA ≃ I⊗ADA ≃ I⊗C (C⊗ADA)≃ I⊗CD0.

Thus, DA is an OX0 ⊗A-submodule in A⊗CE0 containing I⊗CD0 and reducing
to DB modulo I . Furthermore, since D/I ·DA =DB embeds into

EB = (A/I)⊗CE0,

we have

DA∩ I⊗CE0 = I ·DA = I⊗CD0.

Let π :A⊗CE0 →B⊗CE0 be the projection. Let us consider the OX0-submodule

D′
A := π−1(1⊗D0)∩DA ⊂A⊗CE0.

Since D′
A contains I ·DA and π induces a surjection from A ·D′

A to DA/I ·DA =

A⊗CD0, we see that

DA =A ·D′
A,

so DA is determined by D′
A.

But D′
A is in turn determined by the OX0-submodule

DA :=D′
A/(I⊗CD0)⊂A⊗CE0/(I⊗CD0),

which projects to 1⊗D0 ⊂ (A/I)⊗C E0. We have a natural exact sequence of
OX0-modules

0 → I⊗C (E0/D0)→A⊗CE0/(I⊗CD0)→ (A/I)⊗CE0 → 0

equipped with a spitting 1⊗ v 7→ 1⊗ v over 1⊗E0. Hence, we can view DA as
an OX0-submodule of I ⊗C (E0/D0)⊕ 1⊗D0, that intersects the first summand
trivially. In other words,DA is the graph of a homomorphismD0 → I⊗C (E0/D0),
which gives the claimed bijection. □

We consider the functor Def(X0) from ArtC to the category of sets associating
with A the set of isomorphism classes of deformations of X0 over A as an affine
supercurve. A deformation of a smooth supercurve (X0,D0) over A ∈ ArtC con-
sists of a superscheme XA, flat over A, and reducing to X0 over C, as well as a
distribution DA ⊂ TXA/Spec(A) reducing to D0. Note that (XA,DA) will then auto-
matically be a smooth supercurve over A (since both smoothness and surjectivity
of the map (2.1) are open conditions).

Below we will use the fact that a group valued functor on local Artinian C-
algebras, satisfying (H1) and (H2) is automatically smooth (see [18, Thm. 7.19]),
or rather a superanalog of this fact for group valued functors on ArtC.
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LEMMA 3.14. Let X0 be a smooth supercurve over C. Consider the functor
on ArtC that associates with A the group Aut0(XA/A) of automorphisms of XA =

X0 ×Spec(A) as a supercurve over A, reducing to the identity over C. Then this
functor satisfies (H1) and (H2), hence it is smooth.

Proof. It is well known that for any separated scheme Y0 of finite type over
C the functor of automorphisms of Y0 ×Spec(A) over A, reducing to the identity
over C satisfies (H1) and (H2) (see [18, Ex. 7.2]). This result also holds for super-
schemes. Since the functor A 7→ Aut0(XA/A) is a subfunctor in such a functor for
X0, it suffices to check condition (H1) for the functor Aut0. In the situation of (H1),
setB=A′×AA

′′, and suppose we have compatible automorphisms αA′ and αA′′ of
XA′ andXA′′ as supercurves. Then we know that they come from an automorphism
αB of XB as a superscheme over B. We claim that αB automatically preserves the
distribution DB :=B⊗CD0 ⊂B⊗C TX0 . Indeed, since DB =DA′ ×DA

DA′′ , this
follows immediately from the fact that αA′ and αA′′ preserve the distributions DA′

and DA′′ , respectively. □

LEMMA 3.15. (i) Every deformationXA ofX0 overA∈ ArtC is isomorphic to
a trivial deformation X0 ×Spec(A), with the distribution induced by that on X0.

(ii) Given a surjection A→ B in ArtC, and a deformation XA of X0 over A,
any superconformal automorphism ofXB =XA×SpecA SpecB lifts to a supercon-
formal automorphism of XA.

(iii) Analogs of (i) and (ii) hold for deformations of an affine supercurve X0

with an NS-puncture P0 ⊂X0.
(iv) For a surjection A → B in ArtC any superconformal automorphism of

B((z))[θ] (with standard δ) lifts to a superconformal automorphism of A((z))[θ].

Proof. (i) Let X0 = Spec(S0), XA = Spec(SA). Let also m ⊂ A be the maxi-
mal ideal (which is nilpotent). We have an exact sequence

0 →mSA → SA → S0 → 0.

In particular, S+
A is a nilpotent extension of S+

0 in the category of commutative
C-algebras. Since S+

0 is a smooth finitely generated C-algebra, by the infinitesimal
lifting property, there exists a section

σ+ : S+
0 → S+

A ,

which is a homomorphism of C-algebras.
We know that S−

0 is a locally free S+
0 -module of rank 1. In particular, S−

0 is
projective, so we can choose an S+

0 -module splitting

σ− : S−
0 → S−

A
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of the projection S−
A → S−

0 , where we view S−
A as an S+

0 -module via the em-
bedding σ+. Furthermore, we claim that σ−(S−

0 ) · σ−(S−
0 ) = 0 in SA. Indeed,

this follows from the fact that locally S−
0 is generated by one element. Hence,

σ = (σ+,σ−) : S0 → SA is a homomorphism of superalgebras.
From this we get a homomorphism f : S0 ⊗CA→ SA of A-algebras which

induces an isomorphism after tensoring withA/m. Hence, f induces isomorphisms

S0 ⊗Cm
i/mi+1 → SA⊗Ami/mi+1

for i≥ 0. Since SA is flat over A, we have isomorphisms

miSA/m
i+1SA ≃ SA⊗Ami/mi+1.

Since mN = 0 for someN > 0, the descending induction on i shows that f induces
an isomorphism

S0 ⊗Cm
i →miSA.

Hence, f is an isomorphism.
Now let D0 ⊂ TX0/k be the distribution giving the supercurve structure on

X0, and let us set XA = X0 × Spec(A). It remains to show that any distribution
DA ⊂ TXA/A giving a supercurve structure over A, deforming D0, is isomorphic
to the pull-back of A⊗CD0 under some automorphism of XA trivial on X0.

We can assume that for some ideal I ⊂A, such that mI = 0 (so A→A/I is a
small extension), the assertion holds for A/I , so let

DA ⊂ TXA/A ≃A⊗C TX0/k

be a subbundle of rank 0|1, which reduces toA/I⊗D0 overA/I . By Lemma 3.13,
DA corresponds to a homomorphism

f : D0 → I⊗C (TX0/k/D0),

so that DA is generated over A by sections of the form 1⊗x+ f̃(x), for x ∈ D0,
where f̃(x) ∈ I⊗C TX0/k is a representative of f(x).

On the other hand, any I-valued vector field v ∈ I⊗H0(X0,TX0/k) induces an
automorphism αv of XA trivial on XA/I : its action on functions is ϕ 7→ ϕ+v(ϕ).
The automorphism αv acts on vector fields onXA by w 7→w+[v,w], so it changes
the distribution A⊗CD0 to the distribution DA generated over A by sections of
the form 1 ⊗ x+ [v,x]. In other words, DA corresponds to the homomorphism
fv : D0 → I⊗C (TX0/k/D0) induced by the Lie bracket with v. The condition that
the map (2.1) is an isomorphism for X0 is equivalent to the condition that the map

D0 → Hom(D0,TX0/k/D0) : v 7→ x 7→ [v,x]

is an isomorphism. Hence, there is a unique global section v of D0 ⊗ I , such that
fv = f , so the automorphism αv sends A⊗C D0 to DA, as required.
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(ii) By (i) all deformations are trivial. Now the assertion follows from Lemma
3.14.

(iii) Let ϕ : SA →A be the homomorphism corresponding to the NS-puncture,
deforming ϕ0 : S0 → k. By (i), we can assume that SA = S0 ⊗CA. We claim that
there exists an automorphism of SA over A, trivial on S0, and compatible with the
superconformal structure, transforming ϕ0 ⊗A to ϕ.

It is enough to check this assuming that ϕ=ϕ0⊗Amod I , where mI = 0. Then
ϕ−ϕ0 ⊗A is given by a ϕ0-derivation S0 → I , i.e., by an I-valued tangent vector
at P0 ∈ X0. It remains to extend this tangent vector to an I-valued superconfor-
mal vector field (see Lemma 3.12) and consider the corresponding automorphism
of XA.

The fact about automorphisms follows similarly to (ii) from smoothness of the
corresponding group scheme.

(iv) The proof is similar to (ii): the functor associating with A the group of
superconformal automorphisms of A((z))[θ] is a deformation functor. Since we
work over C, it is smooth. □

3.6. Neighborhood of Ramond puncture. Let X0 be an affine supercurve
over C with one Ramond puncture R0 ⊂X0, and let D0 ⊂ TX0/k be the structure
distribution (so that (2.2) is an isomorphism).

LEMMA 3.16. The natural morphism of sheaves

TX0/k → HomO(D0,TX0/k/D0) : v 7→ (v0 7→ [v,v0] mod D0)

is surjective with respect to étale topology. Hence, we have an exact sequence of
sheaves in classical topology

0 →T sc
X0/k

→TX0/k → HomO(D0,TX0/k/D0)→ 0

and the induced map on global sections

H0(X0,TX0/k)→ HomO(D0,TX0/k/D0)

is surjective.

Proof. Locally in étale topology we can assume that D0 be generated by v0 =

∂θ + θz∂z (see Lemma 2.10). Then ∂z projects to a basis of TX0/k. Thus, it is
enough to check that for every function a= a(z,θ) there exists v with

[v,v0] = a∂z mod D0.

We can represent every a in the form a = c0 + c1θ+ bz for some function b and
some constants c0, c1. It remains to note that

[(c0θ+ c1)∂z+ bv0,v0] = (±c0 + c1θ+2bz)∂z.
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The last statement is a consequence of the vanishingH1(X0,T sc
X0/k

) = 0 which
itself follows from the fact that T sc

X0
is isomorphic to a coherent sheaf (see Propo-

sition 3.9). □

We have the following analog of Lemma 3.15.

LEMMA 3.17. (i) Every deformation (XA,RA) of (X0,R0) over A ∈ ArtC
is isomorphic to the trivial deformation (X0 ×Spec(A),R0 ×Spec(A)), with the
distribution induced by that on X0.

(ii) Given a surjection A → B in ArtC, and a deformation (XA,RA) of
(X0,R0) over A, any automorphism of (XB,XR) (obtained by the base change to
B) lifts to an automorphism of (XA,RA).

Proof. (i) As we have seen in Lemma 3.15 (i), we can assume that XA =X0×
Spec(A). We have a distribution DA ⊂ TXA/A deforming D0. It is enough to check
that DA is obtained from D0 ⊗A by an automorphism of XA, trivial on X0. We
can assume that for some ideal I ⊂ A, such that mI = 0, the assertion holds for
A/I , so DA corresponds to a homomorphism

fD : D0 →TX0/k/D0 ⊗ I.

Now the assertion follows from Lemma 3.16.
(ii) As before, this follows from (i) and from smoothness of the corresponding

group scheme. □

3.7. Unobstructedness. Recall that a morphism of deformation functors
Def1 → Def2 is called smooth if for every small extension A→ B in ArtC, the
natural map

Def1(B)→ Def1(A)×Def2(A) Def2(B)

is surjective.

LEMMA 3.18. (i) LetX0 be an affine prestable supercurve over C with a single
NS node q and let Def(Ô) denote the functor of superconformal deformations of
the completion of the local ring of X0 at q,

Ô ≃ C[[z1,z2]][θ1,θ2]/(z1z2,θ1z2,θ2z1,θ1θ2).

Assume that there exists a function f0 on X0 such that in the formal neighbor-
hood of q one has f0 ≡ z1 + z2 mod (z1,z2,θ1,θ2)

2, and the principal open affine
D(f0) ⊂ X0 coincides with X0 \ {q}. Then the natural morphism of deformation
functors

Def(X0)→ Def(Ô)

is smooth.
(ii) Similar assertions hold for am affine prestable supercurve with a single

Ramond node.
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Proof. (i) First, let us introduce the following notation. For A ∈ ArtC and t ∈
mA, we set

ÔA,t :=A[[z1,z2]][θ1,θ2]/(z1z2 + t
2,z1θ2 − tθ1,z2θ1 + tθ2,θ1θ2).

Step 1. Let A ∈ ArtC, t be an element such that tn = 0. Let us consider a
homomorphism of A-algebras,

γ : ÔA,t →A((z1))[θ1]⊕A((z2))[θ2]

: ϕ(z1,z2,θ1,θ2) 7→ (ϕ(z1,−t2/z2,θ1, tθ1/z1),ϕ(−t2/z2,−tθ2/z2,z2,θ2)).

Note that this is well defined since tn = 0. It is also easy to see that γ is injective,
and the elements

(z−i
1 ,z−i

1 θ1,z
−i
2 ,z−i

2 θ2)i≤0

project to a basis of the quotient by the image of γ, as an A-module. We claim that
for any element f ∈ ÔA,t such that f ≡ z1 +z2 mod (z1,z2,θ1,θ2)

2, γ is identified
with the localization map

ÔA,t → ÔA,t[f
−1].

Indeed, since the multiplication by f is invertible on A((z1))[θ1]⊕A((z2))[θ2],
it is enough to check that for every (p,q) ∈ A((z1))[θ1]⊕A((z2))[θ2] one has
fN (p,q) ∈ im(γ) for sufficiently large N . But this follows from the inclusion

zn1A[[z1]][θ1]⊕zn2A[[z2]][θ2]⊂ im(γ).

Note that this entire picture is obtained by the change of coefficients

C[T ]/(Tn)→A

from the standard picture described in Section 3.2. It follows that we have a struc-
ture derivation

δ : ÔA,t → ωÔA,t/A
,

such that after inverting z1 or z2 it is given by the formula (3.2).

Step 2. Let XB be a deformation of X0 over B ∈ ArtC. Then for any function
f ∈ O(XB), lifting f0, the principal open affine D(f) ⊂ XB is the trivial defor-
mation of D(f0) =X0 \ {q} over B. Furthermore, there exist an isomorphism of
supercurves D(f)≃ Spec(B)×D(f0), and a superconformal isomorphism

(3.6) ÔXB ,q ≃ ÔB,t,
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for some element t of the maximal ideal in B, so that we have a cartesian diagram

O(XB) > B⊗O(D(f0))

ÔB,t

∨
γ
> B((z1))[θ1]⊕B((z2))[θ2].

rB

∨

Here rB comes from a certain isomorphism

B⊗ ̂O(D(f0))≃B((z1))[θ1]⊕B((z2))[θ2],

where we equip O(D(f0)) with the topology using powers of Iq, the ideal of a
node in O(XB), and consider the completion.

Indeed, it is clear that D(f) is a deformation of D(f0) as a supercurve. Since
D(f0) is a smooth affine supercurve, by Lemma 3.15 (i) all its deformations are
trivial. The existence of a superconformal isomorphism (3.6) follows from Theo-
rem 3.3. Finally, by Step 1, we have

B((z1))[θ1]⊕B((z2))[θ2]≃ ÔB,t[f
−1]≃ ÔB,t⊗O(XB)O(XB)[f

−1]

≃ ÔB,t⊗O(XB) (B⊗O(D(f0))),

which is isomorphic to the completion ofB⊗O(D(f0)) with respect to the Iq-adic
topology.

Step 3. Now letA→B be a small extension in ArtC. We claim that there exists
a homomorphism

rA :A⊗O(D(f0))→A((z1))[θ1]⊕A((z2))[θ2]

lifting rB and compatible with derivations. Now for an element t̃∈A lifting t∈B,
let us define the ring Õ as the fibered product

(3.7)

Õ > A⊗O(D(f0))

ÔA,t̃

∨
γ
> A((z1))[θ1]⊕A((z2))[θ2].

rA

∨

Then we claim that Õ=O(XA) for some deformation XA of X0 inducing XB (so
there is also a derivation δ on XA).
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First, we have a superconformal isomorphism

α0 : ̂O(D(f0))≃ C((z1))[θ1]⊕C((z2))[θ2].

Hence, the map rB corresponds to the composition of superconformal isomor-
phisms

B⊗ ̂O(D(f0))
B⊗α0−−−−→B((z1))[θ1]⊕B((z2))[θ2]

αB−−−→B((z1))[θ1]⊕B((z2))[θ2]

for some αB . Now we define rA using the composition of superconformal isomor-
phisms

A⊗ ̂O(D(f0))
A⊗α0−−−−→A((z1))[θ1]⊕A((z2))[θ2]

αA−−−→A((z1))[θ1]⊕A((z2))[θ2],

where αA is some lift of αB . We know that such a lift exists by Lemma 3.15 (iv).
Since the lower horizontal arrow in (3.7) is a split embedding of A-modules,

so is the upper horizontal arrow. Hence, Õ is a projective A-module. Applying the
reduction ?⊗AB to our diagram we recover the cartesian diagram from Step 2, so
Õ⊗AB ≃O(XB).

Finally, we observe that we have a cartesian diagram of the dualizing sheaves
parallel to diagram (3.7). Since both rA and γ are compatible with the derivations,
we get a well-defined derivation δ : Õ → ωÕ/A

.
(ii) The proof is similar to (i). □

PROPOSITION 3.19. Let (X,P•,R•) be a stable supercurve with punctures
over C. Let q1, . . . , qm be all the nodes of X . Then the morphism of deformation
functors

(3.8) Def(X,P•,R•)→
m∏
i=1

Def(OX,qi)

is smooth. The induced morphism of tangent spaces fits into an exact sequence

(3.9) 0 →H1(X,AX,P•,R•)→ TDef(X,P•,R•) →
m⊕
i=1

TDef(ÔX,qi
) → 0.

Proof. Roughly speaking, the idea is that away from the nodes, locally all de-
formations are trivial, so deformations are classified by appropriate noncommuta-
tive H1 sets. Now we use the vanishing of the relevant H2.

Suppose B → B/I = A is a small extension in ArtC, and we are given a de-
formation XA of X over A (as a punctured supercurve), and liftings of the induced
deformations of ÔX,qi to deformations of singularities over B. To prove smooth-
ness of the morphism (3.8), we need to construct a deformation XB over B lifting
XA and inducing the given deformations of the singularities over B.
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Let us cover XA by affine opens UiA such that for i = 1, . . . ,m, Ui :=
UiA×Spec(A) Spec(C) contains qi and does not contain other nodes or punctures,
while for i >m, Ui’s lies in the smooth locus and contains at most one R-puncture
or NS-puncture.

By Lemma 3.18, for i= 1, . . . ,m, we can extend the deformationUiA overA to
a deformation UiB over B, inducing the given deformation of the singularity at qi.
By the results of Sections 3.5 and 3.6 all the local deformations UiA, for i >m, are
trivial, so we can lift them to trivial deformations UiB over B. Furthermore, all the
intersections Uij are smooth and contain no punctures, so all their deformations are
trivial, and we have some isomorphisms αijB between the deformations ofUij over
B, induced from UiB and UjB . The induced isomorphisms αijA may differ from
the ones coming from XA, but we can correct each αijB using Lemma 3.15 (ii) to
make sure that αijA are the ones coming from XA.

Thus, considering αkiBαjkBαijB over triple intersections we get a 2-cocycle
with values in I⊗AX,P•,R• . Since the corresponding H2 vanishes, this 2-cocycle
is a coboundary. Hence, we can correct αijB , so that they become compatible on
triple intersections (without changing αijA). Thus, our data will give a deformation
XB of X (as a punctured supercurve).

By smoothness, we have surjectivity in sequence (3.9). It remains to observe
that H1(X,AX,P•,R•) is identified with the space of locally trivial infinitesimal de-
formations, i.e., those infinitesimal deformations of (X,P•,R•) that induce trivial
deformations of the singularities. □

Using the fact that the deformations of nodal singularities of supercurves are
smooth (see Corollary 3.4), we derive the following:

COROLLARY 3.20. The functor Def(X,P•,R•) is smooth.

4. Square of the relative canonical bundle. In this section we will define
the line bundle ω2

X/S on certain families of stable supercurves, as an extension from
the smooth locus. We show that it is useful in finding an ample line bundle over X ,
as well as due to its relation to the sheaf of infinitesimal automorphisms.

4.1. Local freeness and ampleness. It is well known that for a stable curve
with punctures (C,p1, . . . ,pn) over S0, the line bundle

ω
log
C/S0

= ωC/S0(p1 + · · ·+pn)

is relatively ample. Our goal is to find an analogous construction for families of
stable supercurves. The problem is that for a stable supercurve X/S the relative
dualizing sheaf ωX/S is not necessarily locally free.

We show that this problem can be solved by extending ω2
X/S from the smooth

locus.

[1
32

.1
74

.2
48

.2
13

]  
 P

ro
je

ct
 M

U
SE

 (2
02

4­
07

­0
6 

12
:5

4 
G

M
T)

  U
ni

ve
rs

ity
 o

f O
re

go
n



THE MODULI SPACE OF STABLE SUPERCURVES 1817

Note that if X/S is a prestable supercurve and q ∈Xs is a node of some fiber
then the completion ÔX,q gives a formal deformation of the node singularity in Xs

with the base ÔS,s, hence, it induces a map from the formal neighborhood of s in S
to the base of the miniversal deformation of the node (described in Theorem 3.3).

THEOREM 4.1. Let f :X→ S be a family of prestable supercurves inducing a
smooth morphism to the base of the miniversal deformation of every node in a fiber.
Let j :U ↪→X be the open complement to the locus of nodes in fibers. Then for any
n∈Z, the sheaf ω2n

X/S := j∗ω
⊗2n
U/S is a line bundle onX . For a morphism u : S′ → S

such that the induced family X ′ → S′ also satisfies the above assumption, there is
a natural isomorphism

(4.1) v∗ω2n
X/S

∼−−→ ω2n
X ′/S′ ,

where v :X ′ →X is the induced morphism. In the case when S is even, and (C,L)

is the underlying family of curves with spin structures, we have

ω2n
X/S |C ≃ ωn

C/S ⊕ω
n
C/S ⊗L= p∗ωn

C/S ,

where p :X → C is the natural projection. In particular,

ω2n
X/S |C ≃ ωn

C/S .

Proof. We claim that under our assumptions X is Cohen-Macaulay near
the nodes. Indeed, by assumption, S is smooth near every point s with sin-
gular fiber Xs. Since the morphism f is Cohen-Macaulay, the claim follows
from [30, Lem. 37.21.4]. Since the complement to U has codimension ≥ 2 in X ,
by Lemma 2.5 (i), we see that the natural map

OX → j∗OU

is an isomorphism. We will use this fact below.
Let us first prove that j∗ω⊗2

U/S is a line bundle for the miniversal deformations
of the nodes, i.e., when S = Speck[t] and X is given as in (3.2.1) and (3.2.2).

For a Ramond node, ωX/S is a line bundle, hence, ω⊗2
X/S is also a line bundle,

and
ω⊗2
X/S ≃ j∗ω

⊗2
U/S .

For an NS node, the total space C of the underlying usual family of curves is
the quadratic cone xy = −t2, and U red is the complement to the singular point q
in C. Furthermore, we have

OX =OC ⊕L, ωX/S ≃ L⊕ωC/S ,

where L is a CM-sheaf of rank 1 over C (see Lemma 2.6). Over U we have

ω⊗2
U/S ≃ ωU red/S ⊕ωU red/S ⊗L|U .
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We can compute the push-forward j∗ componentwise. Since the complement of U
has codimension ≥ 2, ωC/S is locally free and L is a CM-sheaf with full support,
by Lemma 2.5, we get

j∗ω
⊗2
U/S ≃ ωC/S ⊕ωC/S ⊗L,

which is just the pull-back of ωC/S under the natural projection X → C. Hence,
j∗ω

⊗2
U/S is locally free of rank 1.
To prove the result in the general case, i.e., for an arbitrary family X/S induc-

ing a smooth morphism to the base of the miniversal deformation of every node,
we observe that the question is local, and by Lemma 3.5, an étale neighborhood B
of X will have a smooth morphism t : B → X0 to the miniversal deformation of
the node X0/S0, so that B ∩U = t−1(U0), where U0 ⊂ X0 is the complement to
the node. Then the base change morphism

t∗j0∗ω
2
U0/S0

→ j∗ω
2
U/S

is an isomorphism, hence, j∗ω2
U/S is locally free. The isomorphism (4.1) follows

from this and from the compatibility of the base change morphisms for the maps
to X0 from étale neighborhoods of nodes in X ′ and in X . □

Now we recall that for every NS-puncture Pi, there is a canonical divisor Di

with the same support (see Section 2.5). So, we can define the line bundle on X ,

LX/S := ω⊗2
X/S

(∑
Di+

∑
Rj

)
.

Let f :X → S be a proper morphism of Noetherian superschemes.

Definition 4.2. We say that a line bundle (of rank 1|0) L over X is strongly
relatively ample over S if there exists n > 0, a supervector bundle E over S and a
closed embedding ϕ :X → P(E) over S, such that Ln ≃ ϕ∗O(1).

For a superscheme S we denote by Sbos the usual scheme with the same un-
derlying topological space as S and with the sheaf of rings OS/NS , where NS is
the ideal generated by odd functions.

THEOREM 4.3. Let f : X → S be a family of stable supercurves inducing a
smooth morphism to the base of the miniversal deformation of every node in a fiber.
Then the line bundle LX/S is strongly relatively ample.

Proof. Let C → S0 be the underlying usual family of stable curves over
S0 = Sbos. Since f is flat, by Proposition A.2 of the Appendix, it suffices to prove
that L := LX/S |C is strongly relatively ample over S0. Since L is a line bundle,
the natural map

LX/S → jbos∗j
∗
bosLX/S
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is an isomorphism, where jbos : Ubos → C is the embedding of the complement to
the nodes. We have

j∗bosLX/S ≃ ωUbos/S0

(∑
Dibos +

∑
Rjbos

)
.

Hence,

LX/S ≃ ωC/S0

(∑
Dibos +

∑
Rjbos

)
,

which is relatively ample by a classical result on stable curves (see [14, Thm. 1.2],
[3, Lem. 6.1]). □

4.2. The sheaf of infinitesimal symmetries. Now we can extend Proposi-
tion 3.9 to the case of stable supercurves.

THEOREM 4.4. Let (X,P•,R•)→ S be a family stable supercurve with punc-
tures, where (Pi)i∈I are NS punctures and (Rj)j∈J are Ramond punctures, induc-
ing a smooth morphism to the base of the miniversal deformation of every node in
a fiber. Then one has a natural isomorphism

A(X,P•,R•)/S ≃ ω−2
X/S

(
−
∑
i∈I

Di−2
∑
j∈J

Rj

)
,

where ω−2
X/S is the line bundle defined in Theorem 4.1 and Di ⊂ X is the divisor

associated with the NS puncture Pi (see Section 2.5).

Proof. Over the smooth locus this holds by Proposition 3.9. Now let us show
that the natural map

AX/S → j∗AU/S ,

where j : U →X is the embedding of the smooth locus, is an isomorphism. Since
the condition on v ∈ TX/S to belong to AX/S can be imposed only over the smooth
locus, it is enough to check that the natural map

TX/S → j∗TU/S

is an isomorphism. But this follows immediately from the fact that j∗TU/S can be
identified with relative derivations of j∗OU and the isomorphism j∗OU ≃OX . □

Remark 4.5. Note that neither TX/S nor AX/S are compatible with the base
change. So in the situation of Theorem 4.4 the restriction of AX/S to a fiber Xs,
which is a stable supercurve with at least one node, is a line bundle onXs, whereas
AXs is not (since TC is not locally free for a nodal curve C).

5. Proof of Theorem A. To prove Theorem A we need to check that
Sg,nNS ,nR is a stack with representable diagonal, with an étale atlas, and that it is
smooth and proper over C.
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5.1. Sg,nNS ,nR is a limit preserving stack. A family of stable supercurves
is given by a superscheme X → S, smooth of dimension 1|1, together with a mor-
phism δ : ΩX/S → ωX/S and sections pi : S →X (the R-punctures can be recov-
ered from δ). The fact that isomorphisms between two families over S form a sheaf
in étale topology is proved in the standard way (and also follows from the repre-
sentability proved below). The étale descent for such families follows as in the
classical case from the existence of the relatively ample bundle which we proved
in Theorem 4.3 (see [17, Sec. 4.3.3]; see also [27, Sec. 7.2.1]).

The fact that our stack M is limit preserving, i.e., if S = Spec(A) with A =

lim−→i
Ai, then M(A)≃ lim−→i

M(Ai), is proved essentially by the same arguments as
in the case of the moduli stack of usual curves, see [27, Lem. 7.23] for details.

5.2. Representability of the diagonal. We need to check that for a pair of
families of stable supercurves X → S and Y → T , there is an algebraic space lo-
cally of finite type over C, classifying isomorphisms betweenXs and Yt as abstract
superschemes. Passing to the induced families over S×T , we can assume that we
have two families X → S and Y → S over the same base, and we need to check
that the functor Isom(X,Y ) is representable by an algebraic space over S. In fact,
we will check that it is representable by a superscheme over S.

For this we can use relative projectivity of the morphisms X → S and
Y → S which holds by Theorem 4.3 and the standard approach via the Hilbert
(super)schemes (the construction of Hilbert superschemes for projective mor-
phisms of superschemes is discussed in [6, Sec. 4] and in [27, Sec. 7]). Namely, as
in the classical case, the idea is that to an isomorphism Xs → Ys we can associate
its graph, which is a closed subscheme in Xs×Ys. In more detail, first, let H be
the relative Hilbert superscheme over S parametrizing subschemes in Xs × Ys
(with the same Hilbert series as the Hilbert series of Xs with respect to a large
power of LX/S |Xs). Let

Z ⊂X×S ×Y ×S H

be the universal subscheme. Let us consider the projections

pX : Z →X×S H, pY : Z → Y ×S H.

Then there is a universal open subscheme H1 ⊂H over which pX and pY become
isomorphisms (this is proved as in [17, Thm. 5.22]). Then it is easy to see that H1

represents IsomsSch/S(X,Y ).
Next, assume that our stable supercurves X and Y over the same base are

equipped with the matching number of punctures of each type, (PX
i ,R

X
j ) and

(P Y
i ,R

Y
j ). Let Z ⊂X×S ×Y ×S H1 be the graph of the universal isomorphism.

Then we have the induced sections Z×X P
X
i and Z×Y P

Y
i of the family Z→H1,

and induced divisors Z×X R
X
j and Z×Y R

Y
j in Z, which are smooth of dimen-

sion 0|1 over H1. Let us set PX (resp., PY ) be the subscheme of Z obtained as the
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disjoint union of these subschemes pulled back from X (resp., Y ). Then there ex-
ists the largest closed subscheme H2 ⊂H1 such that PX and PY coincide over H2.
This is a consequence of the following easy lemma.

LEMMA 5.1. (a) Let f : F1 → F2 be a morphism of coherent sheaves over a
superscheme Z, and let Z → S be a morphism. Assume that F1 and F2 are flat
over S. Then there exists the largest closed subscheme T ⊂ S such that f = 0
over T .

(b) Let R and R′ be subschemes in a superscheme Z, and let Z → S be a flat
morphism such that both R and R′ are flat over S. Then there exists the largest
closed subscheme T ⊂ S such that R=R′ over T .

Proof. (a) Let Zf ⊂ Z be the closed subscheme corresponding to the ideal
ker(f : OZ → Hom(F1,F2)). Then T is the schematic image of Zf .

(b) We apply (a) to the morphisms IR →OZ/IR′ and IR′ →OZ/IR and ob-
serve that these morphisms vanish if and only if R=R′. □

Finally, we can define a closed subscheme Hsc ⊂ H that corresponds to su-
perconformal isomorphisms. To this end we observe that we can pull back to Z
both morphisms δX : ΩX/S → ωX/S(RX) and δY : ΩY/S → ωY/S(RY ), and then
apply Lemma 5.1 to the difference. Then Hsc represents the sheaf of isomorphisms
between families X and Y as stable supercurves with punctures.

5.3. Construction of an étale atlas. The main point is to use the existence
of the (purely even) Deligne-Mumford stack S = Sg,nNS ,nR parametrizing stable
curves with spin-structures (and punctures), constructed in [1].

For every stable supercurve X0 over C, we can find a family π : X0 → B0 of
stable supercurves (with punctures) over an affine even base B0, and a C-point
b∈B0 such that we getX0 as a fiber of X0 over b, such that the corresponding map
B0 →S is étale.

Let us consider the corresponding bundle over B0,

E :=R1π∗(A−) =R1π∗

(
ω−1
C/B0

⊗L
(
−
∑

pi−
∑

ri

))
,

where C ⊂ X0 is the corresponding usual curve over B0 with the relative spin-
structure L (recall that A− denotes the sheaf of odd infinitesimal automorphisms
of X0/B0). Note that the fact that E is locally free follows from the vanishing of
π∗(A−), i.e., from the absence of odd infinitesimal automorphisms of X0/B0.

We define the superbase B as

B = SpecB0

(∧•
ΠE∨

)
.

In other words, we view E∨ as extra odd coordinates. Our goal is to extend X0 to a
family X →B (possibly after changing B0 to an étale neighborhood of b).



1822 G. FELDER, D. KAZHDAN, AND A. POLISHCHUK

Let q1, . . . , qN be a finite number of points inC0, including all nodes, q1, . . . , qn,
such that there is an ample effective divisor D supported on {q1, . . . , qN}, and qi
are distinct from all the punctures. Let also q′1, . . . , q

′
m be a set of smooth points

in C0, distinct from all the punctures and from qi’s, such that D′ = q′1 + · · ·+q′m is
ample.

Replacing B0 by an étale neighborhood of b, we can assume the existence of
disjoint relatively ample effective Cartier divisors in C0, extending D and D′, still
denoted as D and D′.

Therefore, we have an affine cover of X0 by two open sets, U0 defined as the
complement to D′ and U1 defined as the complement to D. Now, let us consider
the tautological cohomology class

[c] ∈H0(B0,E∨⊗R1π∗(A−))≃H1(X0,π
∗E∨⊗A−).

We can represent it by a Cech cocycle

c ∈H0(U0 ∩U1,π
∗E∨⊗A−).

Now we observe that there is a natural morphism of sheaves

ω−1
C/B0

⊗L
(
−
∑

pi−
∑

ri

)
=A− →T −

X0/B0,P•,R•
.

Hence, we can view odd sections of π∗E∨⊗A− as even derivations

OX0 →Ππ∗E∨

(relative to B0). Thus, c gives rise to such a derivation over U0 ∩U1. Hence, we
have a homomorphism

exp(c) : O→
∧•

O
Ππ∗E∨,

over U0 ∩U1, reducing to identity modulo
∧≥1. We can extend exp(c) to the au-

tomorphism c̃ of
∧•

OX0
Ππ∗E∨, identical on π−1∧•

OB0
ΠE∨. Now we define X by

gluing

Ui×B0 B ≃ Spec
(∧•

O
Ππ∗E∨|Ui

)
, i= 0,1,

using c̃ as an automorphism of (U0 ∩U1)×B0 B.
Note that since on the smooth locus c acts by a derivation preserving the struc-

ture distribution D ⊂ T , the same is true for c̃. Hence, X has a natural structure of
a stable supercurve over B (see Lemma 2.7).

We claim that the corresponding map from B to the moduli stack SM of
supercurves is étale near b. Indeed, it is enough to check that the induced map on
tangent spaces at b is an isomorphism. The tangent space TbB to B at b is given by

(TbB)+ = TbB0, (TbB)− = Eb =H1(X0,A−
X0

).
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The fact that the map on even tangent spaces is an isomorphism follows from the
assumption that B0 → S is étale. The map on odd tangent spaces corresponds to
the natural map

H1(X0,A−
X0

)→ (TbSM)−.

The fact that it is an isomorphism follows from the exact sequence (3.9) since the
last term of this sequence is purely even.

5.4. Properties of the stack of stable supercurves. Corollary 3.20 shows
that the stack of stable supercurves is smooth. Since it is of finite type (for each
fixed genus and fixed number of punctures), the fact that it is proper can be checked
for its even part, i.e., for the stack of stable curves with spin structures. But this is
known due to works of Cornalba [11] and Jarvis [22].

6. Kodaira-Spencer map. In this section we will study the behavior of the
Kodaira-Spencer map in degenerating families of supercurves where the limiting
curve acquires one NS or Ramond node. This will later help us to calculate the
canonical line bundle of the moduli stack of stable supercurves. We begin with the
classical case of a degenerating family of usual curve and then consider separately
the cases of NS and Ramond nodes.

6.1. Classical case. Let π : C → S be a family of stable curves over a
smooth affine base S, equipped with a smooth morphism t : S → A1. We denote
by S0 ⊂ S the divisor t = 0 and by π0 : C0 → S0 the induced family over S0. We
assume that there is a section q : S0 → C0 such that the map C → S is smooth
away from q(S0), and that the structure sheaf of the completion of C along q(S0)

is isomorphic to OS [[x,y]]/(xy− t) (so that the section q corresponds to x = y =

t= 0). Below we will write simply q to denote the relative node q(S0)⊂ C0.
We would like to discuss the Kodaira-Spencer map for such a family.
Let us denote by TS,S0 the sheaf of derivations of OS preserving the ideal

generated by t. Let also TC,C0 denote the sheaf of derivations of OC preserving the
divisor C0, i.e., preserving the ideal generated by t in OC . Finally, we denote by
TC/S ⊂ TC,C0 the relative tangent sheaf.

Note that π∗TS can be identified with derivations π−1OS → OC (since ΩS

is locally free). The subsheaf π∗TS,S0 corresponds to derivations π−1OS → OC

sending t to OC · t. Thus, we have a natural morphism TC,C0 → π∗TS,S0 sending a
derivation of OC to its restriction to π−1OS . Similarly, we have a map TC0 → π∗0TS0

sending a derivation of OC0 to its restriction to π−1OS0 .

LEMMA 6.1. (i) There are exact sequences

0 →TC/S →TC,C0 → π∗TS,S0 → 0,(6.1)

0 →TC0/S0 →TC0 → π∗0TS0 → 0.(6.2)
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(ii) For the closed point x0 ⊂ S0, the natural map

(6.3) TC0/S0 |Cx0
→TCx0

is an isomorphism.
(iii) Let j : C \ {q} → C denote the open embedding. Then the natural map

ωC/S → j∗ωC\{q}/S is an isomorphism. The corresponding natural map

ΩC/S → j∗ΩC\{q}/S ≃ j∗ωC\{q}/S ≃ ωC/S

is injective with the cokernel isomorphic to Oq. Hence, the dual map

ω−1
C/S →TC/S

is an isomorphism. Also, the coherent sheaf TC,C0 on C is locally free, and the
sheaf TC0/S0 on C0 is flat over S.

(iv) Let us consider the map

TC →OC/(t) = i∗OC0 ,

where i : C0 → C is the natural embedding, sending v to v(t) mod (t). Then its
image is i∗Iq, where Iq ⊂OC0 is the ideal sheaf of q, so we have an exact sequence

(6.4) 0 →TC,C0 →TC → i∗Iq → 0.

(v) There is an exact sequence

0 →TC/TC,C0

t−→ TC,C0/tTC,C0 → i∗TC0 .

Proof. (i) For the first sequence, we have to check that the map TC,C0 →
π∗TS,S0 is surjective. This is clear away from q. It remains to check this in the
formal neighborhood of q. But we can extend the derivation t∂t to the derivation
of k[[x,y, t]]/(xy− t) induced by x∂x+ t∂t.

It follows that the composition

TC,C0 → π∗TS,S0 → i∗π
∗
0TS0

is surjective, which implies surjectivity of the map TC0 → π∗0TS0 , and hence, exact-
ness of the second sequence.

(ii) This follows easily by a local computation near the node. Namely, locally a
derivation v in TC0/S0 is described by a pair of functions v(x) and v(y), satisfying
v(x)y+ xv(y) = 0, or equivalently v(x) ∈ (x), v(y) ∈ (y), so TC0/S0 is locally
isomorphic to

Iq ≃ x ·OC0 ⊕y ·OC0 .

Similarly TCx0
is isomorphic to

Iq0 ≃ x ·OCx0
⊕y ·OCx0

,
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where q0 is the node in Cx0 . The natural map (6.3) corresponds under these iso-
morphisms to the natural map

(x ·OC0 ⊕y ·OC0)|OCx0
→ x ·OCx0

⊕y ·OCx0
,

which is an isomorphism.
(iii) The first assertion follows from the fact that ωC/S is locally free. The

injectivity of ΩC/S → ωC/S only has to be checked in a formal neighborhood of q.
Then we can identify ΩC/S with (Odx⊕Ody)/(xdy+ydx). It is easy to see that
any element of ΩC/S can be written uniquely as

f(t,x,y)dx+g(y)dy.

The map ΩC/S → ωC/S is given by dx 7→ x ·b, dy 7→ −y ·b, where b is a generator
of ωC/S . Hence, it sends the above element to

(f(t,x,y)x−g(y)y) ·b,

which is zero only if f = g= 0. The last assertion follows by dualizing the sequence

0 → ΩC/S → ωC/S →Oq → 0

and using the vanishing Hom(Oq,OC) = Ext1(Oq,OC) = 0.
The fact that TC,C0 is locally free follows from the exact sequence (6.1). The

sheaf TC0/S0 is locally free away from the node. Thus, to check its flatness it is
enough to consider it in the formal neighborhood of the node. Then it can be iden-
tified with the subsheaf of OC0 ⊕OC0 consisting of (f,g) such that f ∈ (x) and
g ∈ (y), so it is locally free as OS0-module.

(iv) Since the map π : C → S is smooth away from q, it is enough to check
the assertion in the formal neighborhood of the node. Then we can extend x, y
to formal coordinates (x,y, t1, . . . , td) on C. Since t = xy, the map in question
TC →OC/(t) is given by

f∂x+g∂y+
∑

fi∂ti 7→ fy+gx mod (t),

so its image is Iq ⊂OC0 .
(v) This follows easily from the fact that the kernel of the projection TC,C0 →

i∗TC0 is tTC ⊂ TC,C0 . □

It follows that we can rewrite the exact sequence (6.1) as

(6.5) 0 → ω−1
C/S →TC,C0 → π∗TS,S0 → 0.
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Hence, applying the functor Rπ∗(·) and using the isomorphism π∗OC ≃ OS , we
get the induced coboundary map

(6.6) KS : TS,S0 →R1π∗ω
−1
C/S

which we call the Kodaira-Spencer map for our family, since it restricts to the usual
Kodaira-Spencer map over S \S0. Note that we also have a similar map coming
from the sequence (6.2),

(6.7) KS0 : TS0 →R1π0∗TC0/S0 .

Let x0 ∈ S0 denote the origin, and let Cx0 be the corresponding curve with
one node. Then by Lemma 6.1 (ii), we have TC0/S0 |Cx0

≃ TCx0
, so the exact se-

quence (6.2) restricts to the standard exact sequence associated with the embedding
Cx0 ↪→ C0 (with the trivial normal bundle):

0 →TCx0
→TC0 |Cx0

→ Tx0S0 ⊗OCx0
→ 0.

We can look at the corresponding coboundary map

κx0 : Tx0S0 →H1(Cx0 ,TCx0
).

PROPOSITION 6.2. Assume that the map κx0 is injective. Then R1π∗ω
−1
C/S is a

vector bundle on S and the map (6.6) is an embedding of a subbundle.

Proof. Since Cx0 is a stable curve, we have H0(Cx0 ,ω
−1) = 0, which im-

plies by semicontinuity that π∗ω−1
C/S = 0, and by the base change theorem that

R1π∗ω
−1
C/S is locally free. Thus, we have a long exact sequence

0 → π∗TC,C0 →TS,S0

KS−−−→R1π∗ω
−1
C/S →R1π∗TC,C0 →R1π∗OC ⊗TS,S0 → 0.

Note that R1π∗OC is locally free of rank g. Also TC,C0 is a vector bundle on C as
follows from the exact sequence (6.1). Thus, if we prove thatH0(Cx0 ,TC,C0 |Cx0

) =

0 then it would follow that π∗TC,C0 = 0 and R1π∗TC,C0 is locally free, and our
assertion would follow.

Let us consider the morphism of exact sequences on C0,

0 > TC/S |C0 > TC,C0 |C0 > π∗0TS,S0 |S0 > 0

0 > TC0/S0

∨
> TC0

∨
> π∗0TS0

∨
> 0.
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Since the rightmost terms are locally free, the restrictions of these sequences toCx0

are still exact, so we get a commutative square of the coboundary maps

TS,S0 |x0

κ′x0> H1(Cx0 ,ω
−1
Cx0

)

Tx0S0

r

∨ κx0> H1(Cx0 ,TCx0
).

∨

We claim that the map κ′x0
is injective. Indeed, by assumption, κx0 is injective.

Also, the map r is surjective with the 1-dimensional kernel spanned by t∂t. Thus,
our claim reduces to the assertion that the restriction of κ′x0

to ker(r) is injective.
To prove the last assertion let us consider the embedding D ⊂ S of the formal

1-dimensional disk with the coordinate t, so that D0 = D∩S0 = {x0}. Then we
can identify ker(r) with the image of the natural embedding

TD,x0 |x0 →TS,S0 |x0 .

Applying Lemma 6.1 (iv)(v) to the induced family of curves πD :CD →D, we get
an exact sequence of sheaves on Cx0

0 →Iqx0

t−→ TCD,Cx0
|Cx0

→TCx0
,

where qx0 ∈ Cx0 is the node. Since H0(Cx0 ,TCx0
) = H0(Cx0 ,Iqx0

) = 0, this im-
plies that

H0(Cx0 ,TCD,Cx0
|Cx0

) = 0.

Therefore, looking at the exact sequence of sheaves on Cx0 ,

0 → ω−1
Cx0

→TCD,Cx0
|Cx0

→ (π∗DTD,x0)|Cx0
→ 0

we get that the corresponding coboundary map

(6.8) H0(Cx0 ,TD,x0 |x0 ⊗OCx0
)≃ TD,x0 |x0 →H1(Cx0 ,ω

−1
Cx0

)

in injective.
Now, restricting to Cx0 the natural morphism of exact sequences of vector bun-

dles

0 > ω−1
CD/D > TCD,Cx0

> π∗DTD,x0 > 0

0 > ω−1
C/S |CD

∼

∨
> TC,C0 |CD

∨
> π∗DTS,S0 |D

∨
> 0
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and considering the morphism between the corresponding long exact sequences
of cohomology on Cx0 , we deduce that the coboundary map (6.8) is equal to the
restriction of κ′x0

to ker(r), which proves our claim.
Finally, by stability of Cx0 , we have H0(Cx0 ,ω

−1
Cx0

) = 0. Hence, the long exact
sequence

0 →H0(Cx0 ,ω
−1
Cx0

)→H0(Cx0 ,TC,C0 |Cx0
)→TS,S0 |x0

κ′
x0−−−→H1(Cx0 ,ω

−1
Cx0

)

shows the vanishing of H0(Cx0 ,TC,C0 |Cx0
). □

COROLLARY 6.3. In the situation of Proposition 6.2 assume in addition that
the map from S to the moduli space of stable curves induces an isomorphism on
tangent spaces at the origin. Then the map (6.6) is an isomorphism. Hence, the
determinant of the usual Kodaira-Spencer map on S′ = S \S0,

detKS : DetTS′ → DetR1π∗ω
−1
C/S |S′

is of the form u/t, where u is a unit (with respect to trivializations regular on S).

Proof. For the second statement, we can argue formally locally. Then we ob-
serve that TS,S0 has a basis t∂t,∂t1 , . . . ,∂td , where (t, t1, . . . , td) are formal coor-
dinates on S. Hence the determinant of the natural morphism TS,S0 → TS with
respect to the standard bases is equal to t. □

6.2. Super case, NS node. First, let us review the Kodaira-Spencer map for
a family of smooth supercurves π :X → S. We have the standard exact sequence

0 →TX/S →TX
dπ−−→ π∗TS → 0.

We also have a relative distribution D ⊂ TX/S . Let us set

AX := {v ∈ TX | [v,D]⊂D}.

Then there is an exact sequence (see [26, Sec. 2])

(6.9) 0 →AX/S →AX → π−1TS → 0

where
AX/S :=AX ∩TX/S .

Indeed, letD be a local generator of D. Since D⊂TX/S , the condition [v,D](f) =

0, for f ∈ π−1OS , is equivalent to D(v(f)) = 0, i.e., to v(f) ∈ π−1OS . Further-
more, locally any v ∈ π−1TS can be extended to a section of AX . Also, as we have
seen before,

AX/S ≃ TX/S/D ≃D2 ≃ ω−2
X/S .
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Now the Kodaira-Spencer map is the coboundary map

(6.10) KS : TS → π∗π
−1TS →R1π∗AX/S ≃R1π∗ω

−2
X/S .

We want to study the behavior of this map near the component of the boundary
divisor of the moduli space where a supercurve acquires a NS node. So let us
consider a family of stable supercurves π : X → S over a smooth affine base with
a smooth map t : S→A1. We denote by S0 ⊂ S the divisor t= 0 and by π0 :X0 →
S0 the induced family. We assume that there is a section q : S0 → X0 such that
q(S0) is the relative node of X0 and the map X → S is smooth away from q(S0).
Furthermore, we assume that the structure sheaf of X completed along q(S0) is
generated over OS by even generators z1, z2 and odd generators θ1, θ2, subject to
the relations

(6.11) z1z2 =−t2, z1θ2 = tθ1, z2θ1 =−tθ2, θ1θ2 = 0

(so that q(S0) corresponds to z1 = z2 = 0, θ1 = θ2 = 0). In this case, by Lemma 3.5,
arguing étale locally, we can assume that the complement to the node is covered by
two charts U1 and U2 where zi is invertible on Ui, and there exist odd sections si
(resp., even section s0) of ωX/S such that

(6.12)

s1 =

{
[dz1|dθ1] on U1,

− t
z2
[dz2|dθ2] on U2,

s2 =

{
t
z1
[dz1|dθ1] on U1,

[dz2|dθ2] on U2,

s0 =

{
θ1
z1
[dz1|dθ1] on U1,

− θ2
z2
[dz2|dθ2] on U2

(see [13, Sec. 2.3]). Note that the relative derivation δ : OX → ωX/S satisfies

δ(zi) = θisi, δ(θi) = si,

for i= 1,2.

LEMMA 6.4. In the above situation, in the formal neighborhood of the node,
ωX/S is generated as an OX -module by global sections s1,s2 and s0 subject to
defining relations

z1s2 = ts1, z2s1 =−ts2, θ1s2 = θ2s1 = ts0,

z1s0 = θ1s1, z2s0 =−θ2s2, θ1s0 = θ2s0 = 0.

It has a topological basis over OS ,

zn1 s1, zn2 s2, zn1 θ1s1, zn2 θ2s2, s0,
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where n≥ 0.

Proof. It is enough to check this when S = C[t], in which case this is dis-
cussed in [13, Sec. 2.3]. In more detail, X is split, with OX = OC ⊕L, where C
is the curve z1z2 = −t2, and L is the OC-module generated by θ1, θ2 (which is a
maximal CM-module over OC). Then ωX = ωC ⊕Hom(L,ωC), and we have an
isomorphism δ : L ∼−→ Hom(L,ωC). The section s0 corresponds to the standard
generator of ωC , while s1 and s2 are the images of the generators θ1, θ2 of L under
δ. Another way to prove this is to use Lemma 2.9. □

Note that the line bundle ω2
X/S := j∗ω

2
U/S is generated near the node by the

section

(6.13) e=

{
1
z1
[dz1|dθ1]

2 on U1,
1
z2
[dz2|dθ2]

2 on U2.

As before, we denote by TX the sheaf of derivations of OX and consider the
subsheaf AX ⊂ TX consisting of v such that [v,D] ⊂ D on the smooth locus
of π :X → S. We also set AX/S = AX ∩TX/S . We use a similar definition for
AX0/S0 ⊂AX0 .

Now similarly to the nodal even case we consider the subsheaf AX,X0 ⊂ AX

consisting of v such that v(t) ∈ (t). We have a natural projection

AX,X0 → π−1TS,S0 .

Note that some of the above sheaves do not have OX -module, only the π−1OS-
module structure. Nevertheless, for a subscheme S′ ⊂ S we have a natural opera-
tion of restriction to π−1(S′): we set for an π−1OS-module F ,

F|π−1(S′) := F ⊗π−1OS
π−1OS′ .

Below we will prove an analog of Lemma 6.1. Note that the slight difference
from the case of the usual curves is that the sheaves AX , AX,X0 and AX/S are
not OX -submodules of TX . However, as we know from Theorem 4.4, there is an
isomorphism of π−1OS-modules

AX/S ≃ ω−2
X/S := j∗ω

−2
U/S ,

where j :U =X \{q}→X denotes the open embedding and ω−2
X/S is a line bundle

on X (see Theorem 4.1).

LEMMA 6.5. (i) There are exact sequences

0 →AX/S →AX,X0 → π−1TS,S0 → 0,(6.14)

0 →AX0/S0 →AX0 → π−1
0 TS0 → 0.(6.15)
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(ii) In the formal neighborhood of a node, derivations in AX0/S0 are in bijec-
tion with pairs of functions a1, a2 in OX0 such that ai ∈ (zi): the corresponding
derivation v is given by

(6.16) v(zi) = ai+(−1)|v|
1
2
Di(ai)θi, v(θi) = (−1)|v|

1
2
Di(ai)

for i= 1,2, where Di = ∂θi +θi∂zi .
For the closed point s0 ∈ S0, the natural morphism

AX0/S0 |Xs0
→AXs0/k

is an isomorphism.
(iii) One has

AX,X0 =AX

and the natural morphism

AX,X0/tAX,X0 → i∗AX0

is injective.

Proof. (i) In both cases it is enough to prove surjectivity of the last arrow in
the formal neighborhood of q. Let us first check this for AX,X0 → π−1TS,S0 . It is
enough to extend t∂t to an even derivation v in the formal neighborhood of q in X ,
such that v|Ui preserves OX · (∂θi + θi∂zi), for i = 1,2. For this, we can take v
given by

v(zi) = zi, v(θi) =
1
2
θi, v(t) = t.

This shows that sequence (6.14) is exact.
The composed arrow

AX,X0 → π−1TS,S0 → i∗π
−1
0 TS0

is still surjective and factors through i∗AX0/S0 . This implies exactness of (6.15).
(ii) Recall that OX0 is the quotient of OS0 [[z1,z2,θ1,θ2]] by the relations

z1z2 = 0, z1θ2 = 0, z2θ1 = 0, θ1θ2 = 0.

Thus, a derivation v in AX0/S0 is described by the functions v(z1), v(z2), v(θ1)

and v(θ2). Furthermore, there should exist a pair of functions a1(z1,θ1) ∈
OX0 [z

−1
1 ], a2(z2,θ2) ∈ OX0 [z

−1
2 ] of the same parity as v such that

v(zi) = ai+(−1)|v|
1
2
Di(ai)θi, v(θi) = (−1)|v|

1
2
Di(ai) in OX0 [z

−1
i ],

for i= 1,2, where Di = ∂θi +θi∂zi .
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The condition v(z1z2) = 0 implies that

v(zi) ∈ (zi,θi)⊂OX0

for i= 1,2. Hence, ai is the image of the element v(zi)−v(θi)θi ∈ (zi,θi)⊂OX0

under the map OX0 →OX0 [z
−1
i ]. Note that the restriction of the latter map to

(zi,θi) =OS [zi]zi⊕OS [zi]θi ⊂OX0

is an embedding. Thus, v(zi) is determined by its image in OX0 [z
−1
i ] and the above

formulas for v(zi) hold in OX0 with some

ai = fi(zi)zi+gi(zi)θi,

for i= 1,2, with fi,gi ∈ OS [zi].
It follows also that v(z1)θ2 = v(z2)θ1 = 0. Hence, the conditions v(z1θ2) =

v(z2θ1) = 0 are equivalent to v(θi) ∈ (zi,θi), for i = 1,2. Since Di(ai) ≡
gi(zi) mod (θi), this is equivalent to gi(zi) ∈ (zi). The condition v(θ1θ2) = 0 is
then automatically satisfied. Note also that the condition v(θi)∈(zi,θi) implies that
v(θi) is determined by its image in OX0 [z

−1
i ]. Thus, the condition on v to define a

section of AX0/S0 is that ai ∈ (zi), for i= 1,2, which is equivalent to our assertion.
For the last assertion, we note that it is enough to check it in the formal neigh-

borhood of the node. Then the statement follows immediately from the above ex-
plicit description of AX0/S0 and from a similar description of AXs0/k

.
(iii) We claim that in fact any derivation v in TX satisfies v(t)∈(t,z1,z2,θ1,θ2).

Indeed, we have
v(z1)z2 +z1v(z2) =−2tv(t),

so tv(t) ∈ (z1,z2). Let us write tv(t) = z1f + z2f
′, and decompose f and f ′ with

respect to the topological OS-basis

1, (zn1 )n≥1, (zn2 )n≥1, (zn1 θ1)n≥0, (zn2 θ2)n≥0.

Then we get the equation of the form

tv(t) = z1

[
a0 +

∑
n≥1

anz
n
1 +

∑
n≥1

bnz
n
2 +

∑
n≥0

cnz
n
1 θ1 +

∑
n≥0

dnz
n
2 θ2

]
+z2

[
a′0 +

∑
n≥1

a′nz
n
1 +

∑
n≥1

b′nz
n
2 +

∑
n≥0

c′nz
n
1 θ1 +

∑
n≥0

d′nz
n
2 θ2

]
.

The relations imply that the free term of the right-hand side is −(b1 +a
′
1)t

2, hence
the free term of v(t) is divisible by t, as claimed.

It follows that for any v ∈AX , we have v(t) ∈ tπ−1OS , so v ∈AX,X0 . For the
last assertion we observe that the kernel of the restriction map

AX,X0 → i∗AX0
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consists of derivations v in AX that are in t · TX . Hence, this kernel is tAX =

tAX,X0 . □

Now, as in the even case, we consider the Kodaira-Spencer maps associated
with sequence (6.14)

(6.17) KS : TS,S0 →R1π∗ω
−2
X/S .

Let s0 ∈ S0 be a closed point, and consider the restriction of the exact se-
quence (6.15) to Xs0 , which can be identified with

0 →AXs0
→AX0 |Xs0

→ Ts0S0 ⊗CXs0
→ 0.

We have the corresponding coboundary map

κs0 : Ts0S0 →H1(Xs0 ,AXs0
).

Now we can prove the following analog of Proposition 6.2.

PROPOSITION 6.6. Assume that the map κs0 is injective. Then near s0,
R1π∗ω

−2
X/S is a vector bundle near s0 and the map (6.17) is an embedding of

a subbundle.

Proof. First, let (Cs0 ,Ls0) be the usual stable curve with a spin structure, un-
derlying Xs0 . We observe that

ω−2
X/S |Xs0

= ω−1
Cs0

⊕ω−1
Cs0

⊗Ls0 .

Indeed, this follows easily from Theorem 4.1 applied to the induced family of
stable supercurvesXD →D over the formal diskD⊂ S0 with the coordinate t. By
stability of Cs0 , we get

H0(Cs0 ,ω
−1) =H0(Cs0 ,ω

−1 ⊗Ls0) = 0.

In other words, we get the vanishing

(6.18) H0(Xs0 ,ω
−2
X/S |Xs0

) = 0.

It follows that
π∗AX/S = π∗ω

−2
X/S = 0,

and that R1π∗ω
−2
X/S is a vector bundle near s0.

Thus, KS is a map of vector bundles on S, so it is enough to show that the
corresponding map of fibers at s0,

KS(s0) : TS,S0 |s0 → (R1π∗ω
−2
X/S)|s0 ≃H1(Xs0 ,ω

−2
X/S |Xs0

),

is injective.
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To this end, let us consider the morphism of exact sequences on X0,

0 > AX/S |X0 > AX,X0 |X0 > π−1
0 TS,S0 |S0 > 0

0 > AX0/S0

∨
> AX0

∨
> π−1

0 TS0

∨
> 0.

Since the rightmost terms are locally free, the restrictions of these sequences to
Xs0 are still exact, so we get a commutative square of the coboundary maps

TS,S0 |s0

KS(s0)
> H1(Xs0 ,ω

−2
X/S |Xs0

)

Ts0S0

r

∨ κs0 > H1(Xx0 ,AXs0
).

∨

Since κs0 is injective, arguing as before, we see that it is enough to check that the
restriction of KS(s0) to the 1-dimensional subspace

TD,s0 |s0 ↪→TS,S0 |s0

is injective.
Considering the induced family πD : XD →D and applying Lemma 6.5 (iv),

we get an inclusion of sheaves on Xx0 ,

AXD,Xs0
|Xs0

↪→AXs0
.

We know that H0(Xs0 ,AXs0
) = 0 (see Proposition 3.11 (ii)), so we get that

H0(Xs0 ,AXD,Xs0
|Xs0

) = 0.

Next, restricting the sequence (6.14) for the family XD/D to Xs0 , we get an
exact sequence

0 → ω−2
XD

|Xs0
→AXD,Xs0

|Xs0
→ (π−1

D TD,s0)|Xs0
→ 0.

From the above vanishing we get that the corresponding coboundary map

(6.19) H0(Xs0 ,TD,s0 |s0 ⊗OXs0
)≃ TD,s0 |s0 →H1(Xs0 ,ω

−2
XD

|Xs0
)

is injective.
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Now, restricting to Xs0 the natural morphism of exact sequences

0 > ω−2
XD/D > AXD,Xs0

> π−1
D TD,s0 > 0

0 > ω−2
X/S |XD

∼

∨
> AX,X0 |XD

∨
> π−1

D TS,S0 |D
∨

> 0

and considering the morphism between the corresponding long exact sequences of
cohomology on Xs0 , we deduce that the coboundary map (6.19) is equal to the
restriction of KS(s0) to ker(r), which proves our claim. □

Note that the Berezinian of the natural morphism TS,S0 → TS is equal to t for
an appropriate choice of bases. As in Corollary 6.3, this leads to the following
result.

COROLLARY 6.7. Assume that the map κs0 is an embedding and the superdi-
mension of S is 3g−3|2g−2. Then the map (6.17) is an isomorphism. Hence, the
Berezinian of the usual Kodaira-Spencer map on S′ = S \S0,

ber(KS) : Ber(TS′)→ BerR1π∗ω
−2
X ′/S′

is of the form u/t, where u is invertible on S (with respect to trivializations regular
on S).

6.3. Super case, Ramond node. Now we consider a family X → S over
a smooth affine base S with the relative Ramond node q : S0 → X0 = π−1(S0)

over the divisor S0 = (t= 0) (where t : S→ A1 is a smooth morphism), such that
X \ q(S0) is smooth over S, and the completion of OX along q(S0) is generated
over OS by generators z1,z2,θ subject to the single relation

z1z2 = t.

The distribution is generated by ∂θ+θzi∂zi over zi ̸= 0.
Note that in this case the relative dualizing sheaf ωX/S is a line bundle on X .

LEMMA 6.8. (i) The sequences (6.14) and (6.15) are still exact.
(ii) In the formal neighborhood of a node, even (resp., odd) derivations in

AX0/S0 are in bijection with pairs of even (resp., odd) functions

ai = fi(zi)+gi(zi)θ ∈ OS [zi,θi], i= 1,2,
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such that g1(0) = g2(0). The corresponding derivation v is given by

v(zi) = aizi+(−1)|v|
1
2
Di(ai)ziθ, for i= 1,2,

v(θ) = (−1)|v|
1
2
[(−1)|v|(g1 +g2 −g2(0))+θz1∂z1(f1)+θz2∂z2(f2)].

where Di = ∂θ+θzi∂zi .
For a closed point s0 ∈ S0, the natural morphism

AX0/S0 |Xs0
→AXs0/k

is an isomorphism.
(iii) One has

AX,X0 =AX

and the natural morphism

AX,X0/tAX,X0 → i∗AX0

is injective.

Proof. (i) To show surjectivity of the morphism AX,X0 →π−1TS,S0 we observe
that the derivation v ∈ AX,X0 , given by

v(t) = 2t, v(zi) = zi, v(θ) = 0,

extends 2t∂t.
(ii) Here is the description of AX0/S0 . The condition v(z1)z2 + v(z2)z1 = 0

implies that v(zi)∈ (zi), in particular v(zi) is determined by its image in OX0 [z
−1
i ].

Also, we should have ai ∈ OS [zi,z
−1
i ,θ] such that

v(zi) = aizi+(−1)|v|
1
2
Di(ai)ziθ, v(θ) = (−1)|v|

1
2
Di(ai) in OX0 [z

−1
i ].

Let us write ai = fi(zi)+ gi(zi)θ. Then a1 and a2 could be arbitrary elements of
OS [z1,θ] and OS [z2,θ] (of the same parity) such that g1(0) = g2(0).

(iii) The proof is similar to that of Lemma 6.5 (iv): we use the condition v(t) ∈
(z1,z2)⊂OX and the topological OS-basis of OX

1, (zn1 )n≥1, (zn2 )n≥1, (zn1 θ)n≥0, (zn2 θ)n≥0. □

Using the same arguments as before we derive the following assertion.

PROPOSITION 6.9. The statements of Proposition 6.6 and Corollary 6.7 hold
in the case of a Ramond degeneration as well.
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6.4. Kodaira-Spencer in the presence of NS and Ramond punctures.
Everything in Sections 6.2 and 6.3 has an analog in the case of families of stable
supercurves with punctures. Namely, for such a family (X,P•,R•)/S, we should
replace the sheaves AX and AX/S with their intersections AX,P,R and A(X,P,R)/S

with the subsheaf TX,P,R ⊂ TX of derivations preserving all the punctures (i.e., the
corresponding ideals in OX ). This will not change the local picture near the nodes,
however, we need to make some changes in the global statements.

Let us assume that we have a family (X,P,R) of stable supercurves with punc-
tures over S, acquiring a single node over S0 = (t= 0)⊂ S, so that forgetting the
punctures we are in the situation of either Section 6.2 or Section 6.3. We will still
have the equality AX,P,R = AX,X0,P,R as in Lemma 6.5, and the analogs of se-
quences (6.14) and (6.15) are

0 →A(X,P,R)/S →AX,P,R → π−1TS,S0 → 0,

0 →A(X0,P0,R0)/S →AX0,P0,R0 → π−1
0 TS0 → 0.

Indeed, the only extra statement is the surjectivity of the right arrows near the
punctures, which follows from the standard local description of the punctures (see
Section 2.4).

Recall also that by Theorem 4.4, we have an isomorphism

A(X,P•,R•)/S ≃ L(X,P•,R•) := ω−2
X/S

(
−
∑
i∈I

Di−2
∑
j∈J

Rj

)
,

where Di ⊂X are the divisors associated with the NS nodes Pi ⊂X , and ω−2
X/S is

defined as in Theorem 4.1.
The analog of Corollary 6.7 states that under the assumption that the map

κs0 : Ts0S0 →H1(Xs0 ,AXs0 ,Ps0 ,Rs0
)

is injective and the superdimension of S is 3g−3|2g−2, the Kodaira-Spencer map
induces an isomorphism of line bundles on S,

Ber(TS)
∼−−→ Ber(R1π∗L(X,P•,R•))(S0).

7. The boundary divisor. In this section we discuss the definition of the
boundary of our compactification as an effective Cartier divisor. We also study the
NS and the Ramond components of the boundary divisor.

7.1. Modified sheaf of differentials. Let π : X → S be a family of stable
supercurves such that the map from S to the deformation space of each node is
smooth. Let j : U →X be the embedding of the smooth locus. We want to study
the sheaf j∗ΩU/S and the map

ΩX/S → j∗ΩU/S .
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Since U/S is a smooth supercurve, we have an exact sequence

0 → ω2
U/S

κ−→ ΩU/S
δ−→ ωU/S → 0

where in standard coordinates

δ(dz) = θ[dz|dθ], δ(dθ) = [dz|dθ],
κ([dz|dθ]⊗2) = dz−θdθ.

Applying the functor j∗, we get an exact sequence

0 → ω2
X/S

κ−→ j∗ΩU/S
j∗δ−−→ ωX/S ,

where ω2
X/S = j∗ωU/S is a line bundle on X (see Theorem 4.1).

LEMMA 7.1. The map j∗δ is surjective, so we have an exact sequence

(7.1) 0 → ω2
X/S

κ−→ j∗ΩU/S
j∗δ−−→ ωX/S → 0.

Proof. We know that j∗δ is surjective over U , so it is enough to check that it is
surjective near the nodes.

Near a Ramond node, the map δ : ΩX/S → ωX/S = j∗ωU/S is surjective. Since
it factors through j∗ΩU/S , we see that j∗δ is surjective near a Ramond node.

To check surjectivity near an NS-node, we can work étale locally and apply
Lemma 3.5. Hence, it remains to make a computation for the standard deformation
of the NS-node. Recall the generators s1, s2, s0 of ωX/S (see Lemma 6.4). We
know that s1 and s2 are in the image of δ : ΩX/S → ωX/S . On the other hand, the
sections dz1/z1 and −dz2/z2 of ΩU/S over z1 ̸= 0 and z2 ̸= 0 glue into a global
section of j∗ΩU/S , which maps to s0 under j∗δ. □

Now let us consider a family of stable supercurves X/S over a smooth affine
base S with a smooth map t : S → A1, such that over S0 = (t = 0) ⊂ S, we have
a relative NS node q : S0 → X0 = S0 ×SX , so that X \ q(S0) is smooth over S,
the completion of OX along q(S0) is given by the standard generators and rela-
tions (6.11), and the derivation δ is given by the standard formula.

LEMMA 7.2. (i) In the above situation, étale locally along q(S0), the sheaf
j∗ΩU/S is generated as an OX -module by global sections

e=
dz1

z1
=−dz2

z2
, dθ1, dθ2, f =

θ1dθ1

z1
=−θ2dθ2

z2
,

with defining relations

(7.2)
tdθ1 −z1dθ2 = tθ1e, z2dθ1 + tdθ2 =−tθ2e,

tf = θ2dθ1 = θ1dθ2, z1f = θ1dθ1, z2f =−θ2dθ2, θ1f = θ2f = 0.
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(ii) We have an exact sequence on X0,

0 →K→ ΩX0/S0 → j∗ΩU/S |X0 →C0 → 0

where K has an OS0-basis

(7.3) z1dz2 =−z2dz1, z1dθ2 =−θ2dz1, z2dθ1 =−θ1dz2, θ1dθ2 = θ2dθ1,

and C0 has as an OS0-basis the images of

(7.4) e, f, θ1e, θ2e.

Furthermore, the map of OS0-modules π∗K → π∗ΩX0/S0 is an embedding of a
direct summand.

Proof. (i) Étale locally we can think of sections of j∗ΩU/S as compatible sec-
tions of ΩU1/S and ΩU2/S , where Ui is the open subset where zi is invertible. Thus,
e is a well-defined section of j∗ΩU/S . Using relations (6.11), we get

z2dθ1 =−tdθ2 −θ1dz2,

so over U1 ∩U2,
θ1

z1
dθ1 =

θ2

t

(
− t

z2
dθ2

)
=−θ2

z2
dθ2,

so f is a well-defined section of j∗ΩU/S .
Let us denote by F the OX -module given by generators e, f , dθ1 and dθ2 and

relations (7.2) It is straightforward to check (by inverting z1 or z2) that these rela-
tions are satisfied in j∗ΩU/S , so we have a well-defined morphism F → j∗ΩU/S .
The map κ : ω2

X/S → j∗ΩU/S sends a generator to e−f . Thus, we have a commu-
tative diagram with exact rows

(7.5)

OX
e−f

> F > F/OX(e−f) > 0

0 > ω2
X/S

∼

∨
κ
> j∗ΩU/S

∨ j∗δ
> ωX/S

∨
> 0.

One can check using Gröbner basis technique that

zn1 e, zn1 θ1e, zn1 dθ1, zn1 θ1dθ1, zn2 e, zn2 θ2e, zn2 dθ2, zn2 θ2dθ2, f,

where n≥ 0, is an OS-basis of F . This easily implies that the map OX
e−f−−−→F is

injective (by looking at the coefficients of e).
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The quotient F/OX(e−f) is generated by e, dθ1, dθ2 subject to relations

tdθ1 −z1dθ2 = 0, z2dθ1 + tdθ2 = 0,

te= θ2dθ1 = θ1dθ2, z1e= θ1dθ1, z2e=−θ2dθ2, θ1e= θ2e= 0.

Note that

δ(dθ1) = s1, δ(dθ2) = s2, δ(e) = s0.

Comparing these with generators and relations of ωX/S (see Lemma 6.4) we de-
duce that the map F/OX(e− f) → ωX/S is an isomorphism. Now the fact that
F → j∗ΩU/S is an isomorphism follows from the diagram (7.5).

(ii) From (i) we see that j∗ΩU/S is a coherent sheaf (since this can be checked
étale locally along q(S0)). Hence, the kernel K and the cokernel C0 of the map
ΩX0/S0 → j∗ΩU/S |X0 are coherent sheaves supported at the node. Also, we get
an explicit description of the completion of j∗ΩU/S |X0 at the node by generators
and relations. Taking the quotient by the image of ΩX0/S , we get that C0 (which
coincides with its completion at the node) is generated by the images (e,f) of
(e,f), with the defining relations

z1e= 0, z2e= 0, z1f = 0, z2f = 0, θ1f = 0, θ2f = 0.

This implies the assertion that the elements (7.4) constitute an OS0-basis of C.
The kernel K coincides with the kernel of the restriction ΩX0/S0 → ΩX1/S0 ⊕

ΩX2/S0 . The four elements (7.3) can be extended to an OS0-basis of ΩX0/S0 : we
have to add

zni dzi, zni θidzi, zni dθi, zni θidθi,

where i= 1,2, n≥ 0. Since the latter elements project to independent elements of
ΩX1/S0 ⊕ΩX2/S0 , the assertion follows. □

Next let us consider the case of a Ramond node, i.e., consider similar data
(X/S,t : S → A1, q : S0 → X0), such that q(S0) is a relative Ramond node, and
étale locally along q(S0), OX is given by the standard generators z1, z2, θ subject
to z1z2 = t, and with the distribution generated by ∂θ+θzi∂zi over zi ̸= 0.

LEMMA 7.3. (i) In the above situation the sheaf j∗ΩU/S is freely generated in
a formal neighborhood of q(S0), as an OX -module, by global sections

e=
dz1

z1
=−dz2

z2
, dθ.

(ii) We have an exact sequence on X0,

0 →K→ ΩX0/S0 → j∗ΩU/S |X0 →C0 → 0
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where K ≃ q∗OS0 is generated by z1dz2 = −z2dz1 and C0 ≃ q∗OS0 is generated
by the image of e. Furthermore, the map of OS0-modules π∗K → π∗ΩX0/S0 is an
embedding of a direct summand.

Proof. The proof is similar to that of Lemma 7.2 but is much easier since both
ωX/S and ω2

X/S are locally free near the Ramond node. Namely, ωX/S is freely
generated by the section glued from 1

z1
[dz1|dθ] and − 1

z2
[dz2|dθ], The map κ sends

a generator of ω2
X/S to e−θdθ. Since δ sends dθ to a generator of ωX/S , we deduce

that e and dθ freely generate j∗ΩU/S over OX .
The map ΩX0/S0 → j∗ΩU/S |X0 sends dz1 to z1e, dz2 to −z2e, and dθ to dθ.

This easily implies that its kernel is generated by z2dz1 =−z1dz2, while its coker-
nel is generated by the image of e. □

7.2. Boundary Cartier divisor. The boundary divisor of the compactified
moduli superspace has codimension 1|0, however, since the supermoduli space is
not reduced, the structure of the Cartier divisor on the boundary is not automatically
given. We claim however that there is a natural such structure.

Let π : X → S be a family of stable supercurves, inducing a surjection to the
miniversal space of deformations of each node. We are going to study the natural
2-term complex

[ΩX/S → j∗ΩU/S ]

placed in degrees −1 and 0, where j : U →X is the open embedding of the com-
plement to the nodes. Note that this complex is acyclic over U . Furthermore, both
terms are flat over S, so the line bundle Berπ∗[ΩX/S → j∗ΩU/S ] is well defined.
Similarly to the theory in the even case (see [24]), we can define a canonical trivi-
alization of this line bundle away from the locus of nodal supercurves.

PROPOSITION 7.4. The canonical trivialization c of B := Berπ∗[ΩX/S →
j∗ΩU/S ] away from the nodal locus extends to a regular section of B on S that
has form t · b near a point corresponding to a stable supercurve with one NS or
Ramond node, for some trivializing local section b of B and some local function t
whose reduction modulo nilpotents gives an equation of the corresponding reduced
divisor.

Proof. We can work in an étale neighborhood of a point on S corresponding to
a stable supercurve with one node. Let us first consider the case of an NS node. We
can choose a sufficiently positive relative Cartier divisorD (disjoint from the node)
such that π∗[ΩX/S → j∗ΩU/S ] will be represented by the compex of supervector
bundles

π∗(ΩX/S(D))
ι−→ π∗(j∗ΩU/S(D)).

To understand this map, we first restrict it to X0. We have an exact sequence on S,

0 → π∗K→ π∗(ΩX0/S0(D))→ π∗(j∗ΩU/S(D)|S0)→ π∗C0 → 0,
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where both π∗K and π∗C0 are locally free of rank 2|2. Furthermore, π∗K embeds
into π∗(ΩX0/S0(D)) as a subbundle, and we have an OS0-basis (7.3) of π∗K. Note
that the elements of this basis are defined in terms of the coordinates which only
exist locally near the node. However, they are killed by the ideal Iq of the node, so
they can be viewed as sections of π∗ΩX0/S0(D).

We can choose liftings of the OS0-basis (7.3) in π∗K to OS-independent sec-
tions b1, b2, b3, b4 in π∗(ΩX/S(D)), so that

b1 ≡ z1dz2 mod (t), b2 ≡ θ2dz1 mod (t),

b3 ≡ θ1dz2 mod (t), b4 ≡ θ2dθ1 mod (t).

Then we can extend it to a basis (b1, . . . , bn) of π∗(ΩX/S(D)) so that the elements
(ι(b5), . . . , ι(bn)) form a basis of a free OS-submodule in π∗(j∗ΩU/S(D)), which
projects modulo (t) to a basis of the image of π∗ΩX0/S0(D).

Next, we adjust our choice of b1 so that

b1 ≡ z1dz2 mod (t2).

Here the right-hand side can be viewed as a section of

π∗(ΩX/S(D))/(t2) = π∗(ΩX
(1)
0 /S

(1)
0
(D)),

where we consider the base change X(1)
0 → S

(1)
0 , where S(1)

0 ⊂ S is given by the
ideal t2. Namely, we observe that near the node one has I2

q ⊂ (z1,z2), which implies

that z1dz2 =−z2dz1 is killed by I2
q on X(1)

0 (due to the relation z1z2 =−t2). Thus,
we can lift z1dz2 mod (t2) to a section b1 ∈ π∗(ΩX/S(D)).

Now let us analyse the images of b1, . . . , b4 under ι. We have ι(bi) = tci for
some ci ∈ π∗(j∗ΩU/S(D)), for i = 2,3,4. In the case of b1 we know that ι(b1) =

t2c1 for some c1 ∈ π∗(j∗ΩU/S(D)).
Furthermore, the restriction of ι(bi) to a formal neighborhood X̂ of the node

is the image of the restriction of bi to this formal neighborhood under the similar
map for X̂ . Since b1 restricts to z1dz2 + t

2x, it maps to

−z1z2e+ t
2x= t2(e+x),

where x comes from ΩX̂/S . Hence,

c1 ≡ e mod ΩX̂/S .

Similarly, we compute

θ2dz1 = θ2z1e= tθ1e,

θ1dz2 =−θ1z2e= tθ2e,

θ2dθ1 = tf.
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Hence, we get

c2 ≡ θ1e mod ΩX̂/S , c3 ≡ θ2e mod ΩX̂/S , c4 ≡ f mod ΩX̂/S .

It follows that c1, c2, c3, c4 project to an OS-basis of π∗C0. Hence, c1, c2, c3, c4 are
linearly independent over OS , and can be extended to an OS-basis (c1, . . . , cn) of
π∗(j∗ΩU/S(D)) by ci = ι(bi) for i > 4. Computing the Berezinian in this basis we
get t.

The case of Ramond node is considered in a similar way using Lemma 7.3.
In this case we can choose bases (b1, . . . , bn) of π∗(ΩX/S(D)) and (c1, . . . , cn)

of π∗(j∗ΩU/S(D)), such that b1 ≡ z1dz2 mod (t2), ι(b1) = −tc1 (since z1dz2 =

−z1z2e = −te in j∗ΩU/S(D)), and ι(bi) = ci for i > 1. This shows that the
Berezinian is t. □

The above Proposition gives a natural definition of the boundary divisor in the
moduli space of stable supercurves S as an effective Cartier divisor. More precisely,
let k : S ′ ↪→S be the complement to the locus of stable supercurves with more than
1 node. Since the even codimension of the latter locus is > 1 and S is smooth, for
any vector bundle V over S, the natural map V → k∗k

∗V is an isomorphism. Let
us consider the line bundle

L := Berπ∗[ΩX/S → j∗ΩU/S ]

over S. By Proposition 7.4, the canonical trivialization c of L over the smooth
locus gives a regular global section of k∗L and hence of L≃ k∗k

∗L. We define the
effective Cartier divisor ∆ to be the vanishing divisor of this global section. Note
that by definition, we have an isomorphism

(7.6) O(∆)≃ L≃ BerRπ∗(j∗ΩU/S)⊗Ber−1Rπ∗(ΩX/S).

The proof of Proposition 7.4 also yields the following characterization of the
divisor ∆.

LEMMA 7.5. The effective Cartier divisor ∆ is a unique Cartier divisor sup-
ported on the locus of nodal supercurves with the following two properties:

• for any stable supercurve X0 with a single NS node q there exists an étale
neighborhood S of the corresponding point [X0] in the moduli space and an étale
neighborhood XS of q in the family X → S induced by the universal family such
that OXS

is generated over OS by z1, z2, θ1, θ2 subject to relations (6.11), where t
is a local equation of ∆ on S;

• for any stable supercurve X0 with a single Ramond node q there exists an
étale neighborhood S of [X0] in the moduli space and an étale neighborhoodXS of
q in the family X → S induced by the universal family such that OXS

is generated
over OS by z1, z2, θ subject to the relation z1z2 = t, where t is a local equation of
∆ on S;
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Proof. These conditions clearly characterize ∆∩S ′. To show uniqueness of
an extension to S, we observe that if I ⊂ OS is an invertible ideal sheaf then I is
identified with k∗k∗I ⊂ k∗OS ′ =OS . □

7.3. Another definition of the boundary divisor and the normal crossing
property. Let X/S be the universal stable supercurve.

LEMMA 7.6. The natural morphism AX → π∗TS of sheaves on X factors
through a morphism AX → π−1TS .

Proof. This follows the fact that AX = j∗AU , whereU ⊂X is the complement
to the nodes (see the proof of Theorem 4.4), and from the corresponding statement
for the smooth locus U →S (see equation (6.9)). □

Let us consider the natural morphism

(7.7) π∗(AX/AX/S)→TS

induced by the map AX → π−1TS .

PROPOSITION 7.7. The OS-module π∗(AX/AX/S) is locally free of rank
(3g− 3|2g− 2) over S , and the Cartier divisor associated with the Berezinian
of the map (7.7) coincides with ∆. Furthermore, ∆ is a normal crossing divisor.

Proof. Note that (7.7) is an isomorphism over the locus of smooth supercurves.
By Lemma 6.5, in an étale neighborhood S of a point [X0], where X0 has a
single NS node, the image of the morphism AX → π−1TS is π−1TS,S0 , where
S0 is the divisor (t). Hence, in this case (7.7) is the embedding TB,B0 ↪→ TB ,
and the Berezinian of this morphism is t. By Lemma 6.8, the similar statement
holds in a neighborhood of a curve with a single Ramond node. This implies that
π∗(AX/AX/S) is locally free over S ′ ⊂ S , and the divisor of the Berezinian of
(7.7) over S ′ is ∆∩S ′.

Next, let us study the situation near a point [X0] of S , such that [X0] has several
nodes q1, . . . , qk. Using the fact that the map from deformations of [X0] to the
product of deformation spaces of the nodes is smooth, we see that there exists an
étale neighborhood B of [X0], together with a smooth map (t1, . . . , tk) : B → Ak

such that the function ti corresponds the induced deformation of the node qi.
Let us consider the normal crossing divisor D = (t1 · · · tk = 0) in B, and let

TB,D ⊂TB be the subsheaf of derivations preservingD. Note that TB,D =
⋂
TB,Di

where Di is the divisor ti = 0.
Let us consider the restriction π :X →B of the universal family and set

AX :=AX/AX/B ⊂ π∗TB.
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Let Ui be an open neighborhood of qi in X , and let πi = π|Ui . Then, as we have
seen above, we have

AX |Ui = π−1
i TB,Di .

Thus, for each i= 1, . . . ,k, we have an inclusion

π∗(AX)⊂ πi∗(AX |Ui) = TB,Di ⊂ TB.

Hence, we deduce the inclusion

π∗(AX)⊂ TB,D.

On the other hand, we claim that there is an inclusion

π−1TB,D ⊂AX .

Indeed, it is enough to check this over each Ui. But then we have

π−1TB,D|Ui ⊂ π−1
i TB,Di =AX ,

as required. Hence, passing to π∗(?), we derive the inclusion

TB,D = π∗π
−1TB,D ⊂ π∗AX .

as claimed.
Thus, we get π∗AX = TB,D. Hence, π∗AX is locally free and the Berezinian

of the morphism TB,D →TB has the required form. □

7.4. NS and Ramond boundary components as effective Cartier divisors.
Recall that we denote by S ′ ⊂ S the open locus of stable supercurves with at most
one node. Note that ∆∩S ′ is the disjoint union of two Cartier divisors, one sup-
ported on stable supercurves with one NS node and another supported on those
with a Ramond node. We want to extend these two divisors on S ′ to effective
Cartier divisors ∆NS and ∆R on S such that ∆=∆NS +∆R.

First, we are going to define the divisor ∆NS giving the NS component. For
this let us consider the structure map

δ : ΩX/S → ωX/S(R).

As we have seen before, it is surjective away from the nodes. It is also surjective
on Ramond nodes. Let us consider the ideal sheaf on S ,

Iδ := Annπ∗ coker(δ),

supported on the locus of stable supercurves with at least one NS node.
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PROPOSITION 7.8. (i) The ideal sheaf Iδ defines an effective Cartier divisor
∆NS on S, which coincides with ∆ in a neighborhood of any point [X0] corre-
sponding to a stable supercurve X0 with only NS nodes.

(ii) There exists a unique effective Cartier divisor ∆R supported on the locus
of stable supercurves with at least one Ramond node, such that

∆=∆NS +∆R.

If X0 is a stable supercurve with NS nodes q1, . . . , qr and Ramond nodes
qr+1, . . . , qk, then there exists an étale neighborhood B of [X0] in S with a
smooth morphism t1, . . . , tk :B→Ak such that t1 · · · tr is an equation of ∆NS and
tr+1 · · · tk is an equation of ∆R.

Proof. Let X0 be a stable supercurve with NS nodes q1, . . . , qr and Ramond
nodes qr+1, . . . , qk. Consider an étale neighborhood B of [X0], equipped with a
smooth map (t1, . . . , tk) : B→ Ak, such that ti gives the universal deformation of
the node qi. Then the ideal of ∆ is generated by t1 · · · tk.

On the other hand, using the description of ωX/S by generators and relations
(see Lemma 6.4), we see that in the formal neighborhood of each NS node qi,
coker(δ) is generated by s0 subject to the relations

θ1s0 = θ2s0 = z1s0 = z2s0 = tis0 = 0.

It is easy to deduce from this that the annihilator of π∗ coker(δ) is generated by
t1 · · · tr. This implies all the assertions. □

7.5. The NS node boundary components. We will use the following con-
struction of gluing two superschemes along a closed subscheme.

Assume that X , X ′ and Y are superschemes, i : Y → X and i : Y → X ′ are
closed embeddings. We want to define a new superscheme Z by gluing X and X ′

along Y . As a topological space we can define Z to be the usual gluing of the topo-
logical spaces ofX andX ′ along Y , so that we have closed embeddings j :X→Z,
j′ : X ′ → Z, so that k := j1 ◦ i = j2 ◦ i. Hence, we have two homomorphisms of
sheaves of rings

ϕ : j∗OX → k∗OY , ϕ′ : j′∗OX ′ → k∗OY ,

and we define OX to be the subsheaf of j∗OX ⊕ j′∗OX ′ , namely, the preimage of
the diagonal k∗OY ⊂ k∗OY ⊕k∗OY under ϕ⊕ϕ′.

We can apply this to gluing two stable supercurves along NS-punctures.
Suppose X/S and X ′/S is a pair of stable supercurves with NS-punctures

P ⊂ X and P ′ ⊂ X ′. We have an isomorphism P ≃ S ≃ P ′, so we can define a
new superscheme Z/S by gluing X and X ′ along P ≃ P ′.
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LEMMA 7.9. The glued superscheme Z/S has a natural stable supercurve
structure such that the derivation δ on Z is defined as the composition

OZ → j∗OX ⊕ j′∗OX ′
(j∗δ,j

′
∗δ

′)−−−−−−→ j∗ωX/S ⊕ j′∗ωX ′/S → ωZ/S .

Proof. If U ⊂X , U ′ ⊂X ′ are smooth loci, then (U \P )⊔ (U ′ \P ′) is an open
subset of Z, which is a smooth supercurve over S. Next, we need to check that in
the case when S is a point, δ− induces an isomorphism of O−

Z with ω−
Z . Since the

base is even, we have identifications

OX =OC ⊕L, OX ′ =OC ′ ⊕L′,

and the smooth marked points P ⊂C, P ′ ⊂C ′, so that the embedding of P into X
corresponds to the projection

OX →OC →OP .

Note that L and L′ are generalized spin-structures, i.e., we have an isomorphism
L

∼−→ Hom(L,ωC) (which corresponds to δ− onX), and similarly, for L′. Further-
more, we know that L (resp., L′) is locally free near P (resp., P ′).

The glued superscheme Z has the underlying nodal curve Z0, which is glued
from C and C ′ along P ≃ P ′, and

OZ ≃OZ0 ⊕ j∗L⊕ j′∗L′.

It is well known that the natural map

j∗L⊕ j′∗L′ → Hom(j∗L⊕ j′∗L′,ωZ0)

is an isomorphism, i.e., j∗L⊕ j′∗L′ is a generalized spin-structure. It is easy to see
that above map is precisely δ−, so this proves that Z/S is a stable supercurve. □

Let Sg;m,n denote the moduli superspace of stable supercurves of genus g with
m NS marked points and n Ramond marked points. Then we can apply the above
gluing construction to the pair of families of stable supercurves over Sg1;m1+1,n1 ×
Sg2;m2+1,n2 , pulled back from each factor and using the last NS puncture on each
of them. This leads to a morphism

(7.8) Sg1;m1+1,n1 ×Sg2;m2+1,n2 →Sg1+g2;m1+m2,n1+n2 .

Similarly, if X/S is a stable supercurve with two disjoint NS-punctures
P,P ′ ⊂X , then we can glue P with P ′ and get a new stable supercurve with a
non-separating node. This leads to a morphism

(7.9) Sg;m+2,n →Sg+1;m,n.
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LEMMA 7.10. Both morphisms (7.8) and (7.9) induce embeddings of codimen-
sion 1|0 on tangent spaces and factor through the divisor ∆NS . Furthermore, near
a stable supercurve with a single separating (resp., non-separating) NS node, the
divisor ∆NS coincides with the schematic image of (7.8) (resp., (7.9)).

Proof. The idea is to use exact sequences (3.9). Let X be a stable supercurve
with punctures and a fixed NS-node q ∈X , and let ρ : X̃→X be the normalization
at q, equipped with the two NS punctures over q. Then by Proposition 3.11 (i), we
have

AX ≃ ρ∗AX̃

(where we take into account all the punctures on both sides). Hence, the natural
map

H1(X̃,A
X̃
)→H1(X,AX)

is an isomorphism.
Let q1, . . . , qm be the nodes of X different from q. Then we have a morphism

of exact sequences

0 > H1(X̃,A
X̃
) > TDef(X̃)

>
m⊕
i=1

TDef(OX,qi
) > 0

0 > H1(X,AX)

∨
> TDef(X)

∨
> TDef(OX,q)⊕

m⊕
i=1

TDef(OX,qi
)

∨

> 0

in which the right vertical arrow is the natural inclusion of codimension 1|0. Since
the left vertical arrow is an isomorphism, the assertion about the map of tangent
spaces follows.

To check that our morphisms factor through ∆NS , we have to check that the
pull-back of the morphism O→O(∆NS) is zero. Since the sources are smooth, it
is enough to check this generically, so we can consider a neighborhood of the point
corresponding to a supercurve with a single NS node. Then we know that the local
equation of ∆NS will be (t = 0), where t corresponds to the map to the universal
deformation of the node. Since the deformation of the node given by the source of
the maps (7.8) and (7.9) is trivial, this proves that the pull-back of t with respect to
one of these maps is zero. Using the fact that the morphism on tangent spaces is an
embedding with the image which is the orthogonal to dt, we deduce that near this
point ∆NS is the schematic image of the morphism. □

7.6. The Ramond node boundary components. Gluing along two Ra-
mond punctures is more subtle.

First, we point out a certain “residual structure” we have on each Ramond
puncture. Let R⊂X be a Ramond puncture in a stable supercurve X/S.
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LEMMA 7.11. The map

δ|R : ΩX/S |R → ωX/R(R)|R ≃ ωR/S

factors through the canonical projection ΩX/S |R →ΩR/S , and induces an isomor-
phism

δR : ΩR/S → ωR/S .

This induces a trivialization of (ΩR/S)
⊗2 (or equivalently, of ω⊗2

R/S) which is locally
given by (dθ)2, for θ such that OR =OS [θ],

Proof. Recall that in appropriate étale local coordinates (z,θ), R is given by
(z = 0) and we have

δ(dz) = zθ

[
dz

z
|dθ

]
, δ(dθ) =

[
dz

z
|dθ

]
.

It follows that δ|R(dz) = 0, and the induced map δR is given by

δR(dθ) = b,

where b is the generator of ωR/S corresponding to [dzz |dθ].
Since the relative dimension of R is 0|1, we have in fact an isomorphism

ω−1
R/S ≃ ΩR/S . Thus, we can view δR as a trivializing section of (ΩR/S)

⊗2. □

The above Lemma implies that every Ramond puncture R has a preferred
system of étale local relative coordinates θi, such that over intersections one has
θj =±θi+aij , where aij are functions on the base. Namely, we require that (dθi)2

is the canonical trivialization of (ΩR/S)
⊗2. In other words, we have a canonical

principal bundle PR → S with the structure supergroup Z/2⋉A0|1.
We can restate the above structure in more invariant terms. Let π : R → S

denote the projection. First, we observe that

(7.10) ΦR := π∗OR/OS ≃ Ber−1π∗OR

is a line bundle of rank 0|1 on S. Furthermore, we have a canonical isomorphism
of odd line bundles on R,

π∗ΦR
∼−−→ ΩR

induced by the de Rham differential OS/OR →ΩR. Furthermore, the trivialization
of (ΩR)

⊗2 in Lemma 7.11 actually comes from the canonical trivialization of Φ2
R

on S.
Let Θ ⊂ tot(ΦR) be the Z/2-torsor over S corresponding to ΦR. Then the

principal bundle PR → S can be identified with the preimage of Θ in tot(π∗OR)

under the natural projection p : π∗OR → π∗OR/OS .
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LEMMA 7.12. The group scheme Aut(ΦR) → S can be identified with the
group of automorphisms of π∗OR, which are identity on OS , and induce ±id on
π∗OR/OS . This group scheme is an extension of Z/2 by the line bundle Φ−1

R .

Now suppose X/S is a (possibly disconnected) stable supercurve with two R-
puncturesR⊂X andR′ ⊂X , equipped with an isomorphismR≃R′ over S. Then
we can glueX with itself alongR≃R′ into a superschemeZ over S equipped with
a finite morphism j :X → Z.

LEMMA 7.13. Assume that the isomorphism α : R ∼−−→ R′ is such that the
induced isomorphism

α∗ω⊗2
R′/S

∼−−→ ω⊗2
R/S

is equal to −1, where we use the trivializations of ω⊗2
R/S and ω⊗2

R′/S coming from the
supercurve structure on X . Then the glued superscheme Z/S has a natural stable
supercurve structure, such that the derivation δ is uniquely determined from the
commutative diagram

OZ
δ

> ωZ/S

j∗OX

r

∨ j∗δ
> j∗ωX/S(R).

∨

Proof. To check that δ is well defined, we need to check that the image of the
composition j∗δ◦r belongs to ωZ/S . For this we can argue locally. Let (z,θ) be the
standard local coordinates onX near the punctureR, so thatR is given by (z = 0),
and

δ(dz) = zθ

[
dz

z
|dθ

]
, δ(dθ) =

[
dz

z
|dθ

]
.

Let also (z′,θ′) be similar coordinates near R′. Then α∗(dθ′)2 =−dθ, so changing
θ to ±θ+a, we can assume that iα∗(θ′) = θ. Let us set θ = iθ′. Then we have

δ(dz′) = z′θ

[
dz

z
|dθ

]
, δ(dθ) =−

[
dz′

z′
|dθ

]
.

Then we have relative coordinates on the glued scheme Z, (z,z′,θ), where
zz′ = 0, θ restricts to θ near R and to θ near R′. Since δ(z) has no pole at R, we
see that (δ(z),0) belongs to ωZ/S . Similarly, (0, δ′(z′)) belongs to ωZ/S . Finally,

(δ(θ), δ′(θ)) =

([
dz

z
|dθ

]
,−

[
dz′

z′
|dθ

])
,

which comes from a section of ωZ/S .



THE MODULI SPACE OF STABLE SUPERCURVES 1851

Over the point, our construction can be recast as follows. We start with a Ra-
mond spin curve (C,p,p′,L), together with an identification

α : L|p ≃ L|p′ ,

such that α2 = −1 (where we use trivializations of ωC(p)|p and ωC(p
′)|p′). We

glue p with p′ and get a nodal curve Z0, and then descend L to a line bundle L over
Z0 using α. Then we have a natural isomorphism L⊗2 ≃ ωZ0 , and one can easily
check that the corresponding isomorphism L ∼−→ Hom(L,ωZ0) is induced by δ−,
where δ is defined as above. □

The choice of an isomorphism α can be interpreted in terms of the principal
Z/2⋉A0|1-bundles PR and PR′ as follows. For every c ∈ C∗ let us denote by [c]

the automorphism of Z/2⋉A0|1 given by the rescaling by c on A0|1 (and trivial on
Z/2). Then a choice of α is equivalent to a choice of an isomorphism of Z/2⋉A0|1-
bundles,

PR → [i]∗PR′ ,

where [i]∗PR′ is the push-out of PR′ with respect to the automorphism [i].
We can apply the above construction to the two last Ramond punctures Rn+1

and Rn+2 on the universal stable supercurve over Sg;m,n+2. Let Pn+1 →Sg;m,n+2

and Pn+2 →Sg;m,n+2 be the corresponding principal Z/2⋉A0|1-bundles. Let

Isom(Pn+1, [i]∗Pn+2)→Sg;m,n+2

denote the bundle of isomorphisms between these Z/2⋉A0|1-bundles. Note that it
is also a principal bundle with the group Z/2×A0|1.

Then the above gluing construction gives a family of stable supercurves with a
Ramond node over Isom(Pn+1, [i]∗Pn+2), so we get a morphism

(7.11) Isom(Pn+1, [i]∗Pn+2)→Sg+1;m,n

Similarly, we can glue the last Ramond punctures R, R′ on the stable super-
curves X , X ′ over the moduli space Sg1;m1,n1+1 ×Sg2;m2,n2+1 pulled back from
each factor. This gives a morphism

(7.12) Isom(PR, [i]∗PR′)→Sg1+g2;m1+m2,n1+n2 .

Note that in this case n1 and n2 are odd, so n1 +n2 ≥ 2.

LEMMA 7.14. Both morphisms (7.11) and (7.12) induce embeddings of codi-
mension 1|0 on tangent spaces and factor through the divisor ∆R. Furthermore,
near a stable supercurve with a single non-separating Ramond node the divisor
∆R coincides with the schematic image of (7.11).
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Proof. Let X be the stable supercurve obtained by gluing two Ramond punc-
tures R, R′ on a stable supercurve X̃ , via an isomorphism α : R → R′ as in
Lemma 7.13. Note that we have an exact sequence

0 →ΠC→ TDef(X̃,α)
→ TDef(X̃)

→ 0,

where the odd line ΠC corresponds to infinitesimal deformations of α. By Propo-
sition 3.11 (i), we have

A+
X ≃ ρ∗A+

X̃
.

As in Lemma 7.10 we deduce from this that

T+

Def(X̃,α)
→ T+

Def(X)

is an embedding of codimension 1.
Next, we claim that the map between the spaces of odd infinitesimal deforma-

tions,
T−

Def(X̃,α)
→ T−

Def(X)

is an isomorphism. Indeed, we know that every odd deformation of X is locally
trivial, i.e.,

T−
Def(X) ≃H1(X,A−

X).

Also, by Proposition 3.11 (i), we have an exact sequence

0 → C→H1(X,A−
X)→H1(X̃,A−

X̃
)→ 0

so
dimT−

Def(X) = dimH1(X̃,A−
X̃
)+1 = dimT−

Def(X̃,α)
.

It remains to observe that every locally trivial deformation of X can be lifted to a
deformation of (X̃,α). □

8. Canonical line bundle on the moduli space of stable supercurves. In
this section we will calculate the canonical line bundle of Sg,nNS ,nR , eventually
proving Theorem B.

8.1. What Kodaira-Spencer isomorphism gives for the canonical bun-
dle. Set S = Sg,nNS ,nR . We are interested in the canonical line bundle KS =

Ber−1(TS). Over the smooth locus S ⊂ S, from the Kodaira-Spencer isomorphism
we get an isomorphism (see Section 6.4)

(8.1) ber(KSS) :KS
∼−−→ Ber−1(R1π∗L(X,P•,R•))≃ Ber(Rπ∗L(X,P•,R•)),

where
L(X,P•,R•) := ω−2

X/S

(
−
∑
i∈I

Di−2
∑
j∈J

Rj

)
.
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Recall that here ω−2
X/S is the line bundle defined in Theorem 4.1, and Di are the

divisors on the universal curve X associated with the NS punctures.
Our study in Section 6 of the behavior of the Kodaira-Spencer map in degen-

erating families of supercurves leads to the following identification of KS .

PROPOSITION 8.1. One has a natural isomorphism

ber(KSS)
−1 :KS

∼−−→ Ber(Rπ∗L(X,P•,R•))(−∆),

where ∆ is the boundary divisor.

Proof. We just have to check that isomorphism (8.1) acquires simple poles
at all generic points of ∆. But this follows from the results of Section 6 and our
local description of ∆ at points corresponding to stable supercurves with single
nodes. □

Next, we will study the line bundle Ber(Rπ∗L(X,P•,R•)). We begin with the
case when there are no punctures. Then the above identification of the canonical
bundle becomes

ber(KSS)
−1 :KS

∼−−→ Ber(Rπ∗(ω−2
X/S)).

8.2. Isomorphisms for Berezinian bundles. Let π : X → S be a smooth
proper morphism of relative dimension 1|1. Then we can define Deligne’s symbol
⟨L1, L2⟩ of a pair of line bundles of rank 1|0 over X similarly to the even case
(considered in [12]), so that for a relative effective Cartier divisor D one has

⟨OX(D),L⟩ ≃ Ber(π∗(L|D))/Ber(π∗OD).

If B(L) denotes the Berezinian of the derived push-forward of L then one has,
as in the classical case,

B(L1 ⊗L2)⊗B(O)≃ B(L1)⊗B(L2)⊗⟨L1,L2⟩.

However, in the supercase, for any line bundles L and L′ of rank 1|0, there is a
canonical isomorphism

(8.2) αD : Ber(π∗L|D)
∼−−→ Ber(π∗(L′|D)),

induced by any local isomorphism L→ L′ (the point is that the Berezinian of a
scalar automorphism of a linear space of rank 1|1 is trivial). Hence, the Deligne’s
symbol is canonically trivial, so we get

(8.3) B(L1 ⊗L2)⊗B(O)≃ B(L1)⊗B(L2)

(see [32]).
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More explicitly, locally over S we can pick a relative positive divisor D such
that L1L2(D), L2(D) and OX(D) have no R1π∗, and assume also that we have an
even section s ∈H0(X,L2(D)), fiberwise regular, vanishing on a relative divisor
E. Then we have the resolutions

Rπ∗(OX) : [π∗L2(D)→ π∗L2(D)|E ],
Rπ∗(L1) : [π∗L1L2(D)→ π∗L1L2(D)|E ],
Rπ∗(L2) : [π∗L2(D)→ π∗L2(D)|D],

Rπ∗(L1L2) : [π∗L1L2(D)→ π∗L1L2(D)|D].

Using these resolutions we get an isomorphism

B(L1L2)⊗B(OX)

= B(L1L2(D))⊗B(L2(D))⊗Ber−1(π∗L1L2(D)|D)⊗Ber−1(π∗L2(D)|E)
id⊗id⊗α−1

D ⊗α−1
E−−−−−−−−−−→B(L1L2(D))⊗B(L2(D))⊗Ber−1(π∗L2(D)|D)

⊗Ber−1(π∗L1L2(D)|E)
= B(L1)⊗B(L2).

Note that isomorphism (8.3) can be used to calculate B(L1L2) when L1 and
L2 are not necessarily of rank 1|0: for a line bundle L of rank 0|1 we use the
isomorphism

B(ΠL)≃ B(L)−1.

For example, for a line bundle L of rank 1|0 one has

B(L3)≃ B(L)3/B(O)2.

Applying this toL=ΠωX , whereX/S is a smooth supercurve, one gets the analog
of Mumford isomorphism in the supercase (see [32]),

(8.4) B(ω3
X/S)≃ B(ωX/S)

3 ⊗B(OX)2 ≃ B(ωX/S)
5,

since B(L) ≃ B(ωX/S ⊗ L−1) by Grothendieck-Serre duality. Thus, denoting
Beri := B(ωi

X/S), we can write this isomorphism as

Ber3 ≃ Ber5
1 .

We will need an extension of isomorphism (8.3) to families of stable super-
curves π :X → S and to the case when L1 is replaced by a not necessarily locally
free sheaf. For a coherent sheaf F over X , flat over S, we denote by B(F) the
Berezinian of the perfect complex Rπ∗(F).
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LEMMA 8.2. Let π :X → S be a stable supercurve, F a coherent sheaf on X
flat over S. Assume that F is locally free of rank 1|0 over the smooth locus of π.
Then for any line bundle L of rank 1|0 on X , one has a canonical isomorphism

(8.5) B(F ⊗L)≃ B(F)⊗B(L)⊗B(OX)−1.

Proof. We can use the similar recipe as above to construct this isomorphism
locally over S: we simply replace L1 by F , L2 by L and take D with support in
the smooth locus of π, and a section s ∈H0(X,L(D)) with the vanishing divisor
E, also contained in the smooth locus of π. □

8.3. Behavior of the super Mumford isomorphism near the NS bound-
ary divisor. Now we want to look at the behavior of the super Mumford isomor-
phism (8.4) near the generic point of boundary divisors. In the case of a Ramond
node it extends to an isomorphism, since ωX/S is still a line bundle. Thus, it re-
mains to study locally the boundary component where one NS node appears. So
let π : X → S be a family of stable supercurves as in Section 6.2, so we have
a smooth morphism t : S → A1, a relative NS node q : S0 → X0 ⊂ X over the
divisor S0 = (t= 0)⊂ S, and OX has the standard description along q(S0).

Let S′ = S \S0, and let X ′ = π−1(S′) be the corresponding family of smooth
supercurves. First, we need to explain how to extend the line bundles B(ω3

X ′/S′)

and B(OX ′) to S. For the second one this is straightforward: the extension is given
by B(OX).

For any integer n let us set

ωn
X/S := j∗ω

n
U/S ,

where U ⊂X is the smooth locus of π. Recall that ω2
X/S is a line bundle on X (see

Theorem 4.1). Thus, we have

ω3
X/S = j∗ω

3
U/S ≃ ω2

X/S ⊗ j∗ωU/S ≃ ω2
X/S ⊗ωX/S .

This is a coherent sheaf, flat over S, so we can take B(ω3
X/S) as the desired exten-

sion of B(ω3
X ′/S′).

Note that by Grothendieck-Serre duality, we have an isomorphism of line bun-
dles on S,

B(ωX/S)≃ B(OX).

Since ωX/S is a coherent sheaf flat over S, we deduce from Lemma 8.2 an
isomorphism

B(Πω3
X/S)≃ B(ΠωX/S)⊗B(ω2

X/S)⊗B(OX)−1 ≃ B(ω2
X/S)⊗B(OX)−2,

or equivalently,

(8.6) B(ω3
X/S)≃ B(ω2

X/S)
−1 ⊗B(OX)2.

[1
32

.1
74

.2
48

.2
13

]  
 P

ro
je

ct
 M

U
SE

 (2
02

4­
07

­0
6 

12
:5

4 
G

M
T)

  U
ni

ve
rs

ity
 o

f O
re

go
n



1856 G. FELDER, D. KAZHDAN, AND A. POLISHCHUK

Thus, our problem reduces to studying the behavior of the isomorphism onX ′,

B(ω2
X ′/S′)≃ B(ΠωX ′/S′)2 ⊗B(OX ′)−1 ≃ B(OX ′)−3

near the divisor S0 ⊂ S. To this end we look more carefully at the recipe for this
isomorphism outlined in Section 8.2.

We can pick a sufficiently positive relative divisor D supported in the smooth
locus of π, and also an even section s of ΠωX/S(D) with the zero locus E. Fur-
thermore, we want to make a special choice of s as described below.

LEMMA 8.3. There exists an exact sequence of OX -modules,

0 → ω
reg
X/S → ωX/S → q∗OS0 → 0

such that in the formal neighborhood of q(S0), ω
reg
X/S is the OX -submodule gen-

erated by the sections s1 and s2 given by (6.12). Furthermore, we can choose an
even section s of Πωreg

X/S(D) in such a way that in the formal neighborhood of q
one has

s= v · (s1 +u ·s2),

for some invertible functions u and v that are congruent to 1 modulo the ideal
of q(S0). By making a change of variables

z1 7→ u−1z1, z2 7→ uz2, θ1 7→ θ1, θ2 7→ uθ2

we can achieve that u= 1.

Proof. In the formal neighborhood of q, the quotient of ωX/S/(OXs1+OXs2)

is generated by s0 and is isomorphic to q∗OS0 . This implies the first assertion.
Furthermore, using Lemma 6.4, we see that ωreg

X/S ⊗ q∗OS0 is a free q∗OS0-module
generated by the images of s1 and s2. For sufficiently positive D, the map

H0(X,ω
reg
X/S(D))→H0(X,ω

reg
X/S ⊗ q∗OS0)

is surjective, so we can choose an odd section s ∈H0(X,ω
reg
X/S(D)) such that

s≡ s1 +s2 mod Jq(S0).

Thus, in the formal neighborhood of q, we can write s= u1s1 +u2s2 where

ui ≡ 1 mod Jq(S0).

It is easy to check that the given change of variables transforms s in the desired
way. □
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Now we define coherent sheaves F and G on X by the exact sequences

0 →OX
s−→ΠωX/S(D)→F → 0,

0 →ΠωX/S
·s−−→ ω2

X/S(D)→G → 0.

Let F̂ and Ĝ denote the completions of F and G at q.

LEMMA 8.4. (a) The space F̂ is a free OS-module with the basis s1, s0.
(b) We have an isomorphism Ĝ ≃ OZ , where Z ⊂ X is a sub-superscheme

given by

z1 =−t, z2 = t, θ1 +θ2 = 0.

In particular, Ĝ is a free OS-module with the basis e,θ1e, where e is the local gen-
erator of ω2

X/S given by (6.13). The sheaf F̂ is also scheme-theoretically supported
on Z.

(c) The Berezinian of the map of OS-modules

s1·? : F̂ → Ĝ

is equal to ft, where f is an invertible function.

Proof. (a) Lemma 6.4 immediately shows that the map

OS →ΠωX/S : f 7→ f · (s1 +s2)

is injective. Furthermore, the submodule OX(s1+s2) has the following topological
basis over OS :

s1+s2, zn+1
1 (s1+s2)= z

n
1 (z1+t)s1, zn2 (z2−t)s2, θ1(s1+s2)= θ1s1+ts0,

zn+1
1 θ1(s1 +s2) = zn1 (z1 + t)θ1s1, θ2(s1 +s2) = θ2s2 + ts0, zn2 (z2 − t)θ2s2,

where n ≥ 0. Hence, the quotient by this submodule has the images of s0,s1 as a
basis over OS .

(b) Near the node, ω2
X/S is a free OX -module with one even generator e. Fur-

thermore, it is easy to check that with respect to the map ω⊗2
X/S → ω2

X/S one has

s2
1 = z1e, s2

2 =−z2e, s1s2 = te, s0si = θie,

for i= 1,2. Thus, the image of the multiplication by s1 +s2 is the OX -submodule
generated by

s1(s1 +s2) = (z1 + t)e, s2(s1 +s2) = (t−z2)e, s0(s1 +s2) = (θ1 +θ2)e.
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In other words, we have an identification

Ĝ ≃ OX/(z1 + t,z2 − t,θ1 +θ2) =OZ ≃OS [θ1],

as claimed.
(c) The operator of multiplication by s1 acts on the bases of F̂ and Ĝ as

s1 7→ s2
1 =−te, s0 7→ s1s0 = θ1e,

Hence, the Berezinian is equal to −t (recall that s1 is an even generator of F̂ , while
s0 is an odd generator). □

Let us consider the following resolutions for the derived push-forwards un-
der π:

Rπ∗(OX) : [π∗(ΠωX/S(D))→ π∗F ],

Rπ∗(ΠωX/S) : [π∗(ω
2
X/S(D))→ π∗G],

Rπ∗(ΠωX/S) : [π∗(ΠωX/S(D))→ π∗(ΠωX/S(D)|D)],
Rπ∗(ω

2
X/S) : [π∗(ω

2
X/S(D))→ π∗(ω

2
X/S(D)|D)].

These resolutions give a canonical isomorphism over S,

(8.7) B(ω2
X/S)⊗B(OX)≃ Ber(Rπ∗(ΠωX/S))

⊗2 ⊗Ber(π∗G)⊗Ber(π∗F)−1.

Now the super Mumford isomorphism for the induced smooth family XS′ → S′ is
obtained by choosing an isomorphism of

F|XS′ ≃ G|XS′

(where both sheaves are supported on the zero divisor of s in XS′) and using the
Berezinian of the induced map on Rπ∗ to get an isomorphism of Ber(π∗F)|S′ with
Ber(π∗G)|S′ (see (8.2)). For this we are going to construct a morphism

α : F → G,

which is an isomorphism away from the node, and use its restriction to XS′ .
Note that both F and G are supported on Z ⊔E, where E is a relative divisor

supported in the smooth locus of π, so we have decompositions into subsheaves
supported on Z and on E,

F ≃ FZ ⊕FE , G ≃ GZ ⊕GE .

We can choose separately morphisms FE →GE and FZ →GZ .
We have

FE ≃ π∗(ΠωX/S(D)|E), GE ≃ π∗(ω
2
X/S(D)|E),
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so both are isomorphic to OE , and we choose any isomorphism between them as a
morphism αE : FE →GE . On the other hand, we have

FZ ≃ F̂ , GZ ≃ Ĝ,

Hence, we can use the morphism of OX -modules,

µs1 : F̂ → Ĝ,

given by the multiplication with s1, as our morphism FZ →GZ . By Lemma 8.4, it
restricts to an isomorphism over t ̸= 0. Thus, we get the desired morphism

α= (µs′ ,αE) : F → G.

By definition, the super Mumford isomorphism for XS′ → S′ is obtained by
restricting the isomorphism of line bundles (8.7) to S′ and multiplying it with
berRπ∗(α|XS′ )

−1 ∈ B(F)⊗B(G)−1. Since berRπ∗(αE′) is invertible on S, we
see that

berRπ∗(α|XS′ ) = u ·berπ∗(µs1),

where u is an invertible function on S. Using Lemma 8.4 (iii), we deduce that

berRπ∗(α|XS′ )
−1 = u′ · t−1,

for some invertible function u′ on S, with respect to some bases of B(F) and B(G)
on S.

Thus, we obtained an isomorphism

(8.8) B(ω2
X/S)

∼−−→B(OX)−1 ⊗Ber(Rπ∗(ΠωX/S))
⊗2(∆),

where ∆ is the divisor given by t= 0. Combining this with isomorphism (8.6), we
get the following local result.

PROPOSITION 8.5. In the above situation the super Mumford isomorphism

B(ω−2
X ′/S′)≃ B(ω3

X ′/S′)≃ B(OX ′)5

extends to an isomorphism

B(ω−2
X/S)≃ B(ω3

X/S)≃ B(OX)5(−∆).

Combining this with Corollary 6.7 and with Proposition 6.9 we obtain the fol-
lowing result.

THEOREM 8.6. Let Sg denote the moduli stack of stable supercurves of genus
g, and let ∆NS ⊂ Sg (resp., ∆R ⊂ Sg) denote the boundary divisor supported on
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the locus where a supercurve acquires an NS node (resp., a Ramond node), defined
in Section 7.2. Then one has an isomorphism of line bundles

(8.9) KSg
≃ Ber5

1(−2∆NS −∆R).

Proof. Let π :X →Sg denote the universal supercurve. First, we have an iso-
morphism

KSg
≃ Ber−1R1π∗ω

−2
X/Sg

(−∆NS −∆R)≃ B(ω−2
X/Sg

)(−∆NS −∆R)

(see Corollary 6.7 and Proposition 6.9). Next, by Proposition 8.5, we have

B(ω−2
X/Sg

)≃ B(ω3
X/Sg

)≃ Ber5
1(−∆NS)

(recall that the super-Mumford isomorphism (8.4) extends over the Ramond type
boundary divisor ∆R). Combining this with the previous isomorphism we get the
result. □

8.4. Canonical line bundle on the moduli space of stable supercurves
with punctures. Let π : X → S be a stable supercurve with NS punctures
P1, . . . ,Pm and Ramond divisors R1, . . . ,Rn. We denote by Di ⊂ X the divisors
associated with Pi as in Section 2.5.

For every i= 1, . . . ,m, let us define a line bundle of rank 0|1 on S,

Ψi := P ∗
i ωX/S .

LEMMA 8.7. One has natural isomorphisms of line bundles of rank 0|1 on S,

Ψi ≃ π∗ODi/OS ,

Ψ−1
i ≃ P ∗

i ωX/S(Di)≃ P ∗
i ωDi/S ≃ Ber(π∗ODi).

Hence, for any line bundle L of rank 1|0 on X , one has

Ber(π∗L|Di)≃Ψ−1
i ,

while for a line bundle M of rank 0|1, one has

Ber(π∗M |Di)≃Ψi.

Proof. Let us set Ψ=Ψi and

Ψ̃ := π∗OD/OS ,

where D =Di and P = Pi. Then Ψ̃ is a line bundle of rank 0|1, and we have

Ber(π∗OD)≃ Ψ̃−1.

Hence, from (8.2) we get the last two isomorphisms with Ψi replaced by Ψ̃.
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Applying this to the line bundle ω−2
X/S of rank 1|0, we get an isomorphism

Ber(π∗ω−2
X/S |D)≃ Ψ̃−1.

But from Lemma 2.14, we have an isomorphism over S,

π∗(ω
−2
X/S |D)≃ TX/S |P .

Hence, passing to the Berezinians we get

Ψ̃−1 ≃ ω−1
X/S |P ,

i.e., Ψ̃≃Ψ.
Next, let ID ⊂ IP ⊂OX be the ideal sheaves ofD=Di and P = Pi. Since the

projection to S induces an isomorphism P ≃ S, we have a decomposition

π∗OD =OS ⊕π∗(IP /ID),

so
Ψ≃ Ψ̃≃ π∗(IP /ID).

Note also that I2
P ⊂ ID, so IP /ID can be identified with the conormal sheaf to P

in D. Now, since ωP/S =OS , the exact sequence

0 →Ψ→ ΩD/S |P →OP → 0

gives an isomorphism
P ∗ωD/S ≃ Ber(Ψ) = Ψ−1. □

COROLLARY 8.8. The line bundle P ∗
i ω

2
X/S(Di) on S is canonically trivial-

ized.

Example 8.9. Suppose X → S, (Pi), is a family of supercurves with NS-
punctures over an even base S. Then OX =OC⊕L, where (C,L) is the underlying
family of curves with spin-structures, and IPi = Ipi ⊕L, where pi ⊂C are marked
points on C. We also have ID = Ipi ⊗OC

OX . Thus,

Ψ−1
i = P ∗

i (ωX/S(Di)) = P ∗
i (L(pi)⊕ωC/S(pi))≃ p∗iL(pi)≃ p∗iL

−1,

where the last isomorphisms is induced by the trivialization of L2(pi)|pi ≃
ωC/S(pi)|pi .

Remark 8.10. Note that for an NS-puncture Pi and the corresponding divisor
Di, the decomposition (2.11) can be rewritten as

π∗ODi =OS ⊕Ψi,
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where Ψi is a square-zero ideal. For any line bundle L over Di we have an exact
sequence

0 → Pi∗(Ψi⊗P ∗
i L)→ L→ Pi∗P

∗
i L→ 0.

In the case L = ωX/S(Di)|Di = ωDi/S , the induced exact sequence of push-
forwards to S has a splitting

π∗(ωX/S(Di)/ωX/S)→OS

given by the residue map for the 0|1-dimensional superscheme Di/S, so we have
a decomposition

π∗(ωDi/S) = Ψ−1
i ⊕OS .

For every Ramond divisor Rj ⊂X let us consider the line bundle on the base,

Φj := Ber(π∗ORj )
−1 ≃ Ber(π∗ωRj ).

Note that Φj =ΦRj (see (7.10)), so the line bundles Φ2
j are canonically trivialized.

Let us consider the line bundle of rank 1|0 over X ,

L(X,P•,R•) := ω−2
X/S

(
−
∑
i

Di−2
∑
j

Rj

)
.

LEMMA 8.11. One has a natural isomorphism

B(L(X,P•,R•))≃ B(ω3
X/S)⊗

⊗
i

Ψi.

Proof. Let us set D =
∑

iDi, R =
∑

jRj . First, the Grothendieck duality
gives an isomorphism

B(L(X,P•,R•))≃ B(ω3
X/S(D+2R)).

Now using the exact sequence

(8.10) 0 → ω3
X/S(2R)→ ω3

X/S(2R)(D)→ ω3
X/S(2R)(D)|D → 0,

we get using (8.2) and Lemma 8.7,

B(ω3
X/S(D+2R))≃ B(ω3

X/S(2R))⊗Ber(π∗ω3
X/M(D)|D)

≃ B(ω3
X/M (2R))⊗

⊗
i

Ψi.

Similarly, using the filtration of ω3
X/S(2R)/ω

3
X/S with subquotients ω3

X/S(2R)|R



THE MODULI SPACE OF STABLE SUPERCURVES 1863

and ω3
X/S(R)|R, we get an isomorphism

B(ω3
X/S(2R))≃ B(ω3

X/S)⊗
⊗
j

Φ2
j .

It remains to we use the trivializations of Φ2
j . □

Now the same argument as in Theorem 8.6 gives the formula for the canonical
line bundle on the moduli stack of stable supercurves with punctures.

Proof of Theorem B. Let S = Sg,nNS ,nR . We combine the isomorphism

KS ≃ Ber−1R1π∗L(X,P•,R•)(−∆NS−∆R)≃B(L(X,P•,R•))(−∆NS−∆R)

(see Section 6.4) with Lemma 8.11 and the isomorphism

B(ω3
X/S)≃ Ber5

1(−∆NS).

This gives the required isomorphism

□(8.11) KS ≃ Ber5
1⊗

m⊗
i=1

Ψi(−2∆NS −∆R),

9. Splitting at the boundary divisor. Now we are going to study the re-
striction of the isomorphism of Theorem B to the boundary divisor. Using our pre-
sentation of the line bundle corresponding to the boundary divisor as a Berezinian
(see Section 7.2) we find a natural identification of the normal line bundle to the
boundary divisor. Then we give a proof of Theorem C concerning the NS bound-
ary component. We also give a conjectural statement for the Ramond boundary
component.

9.1. NS boundary components. Let ι :B→S be the standard gluing map
covering an NS type boundary component, i.e., one of the maps (7.8) or (7.9),
restricted to the locus of smooth supercurves. Let XB → B denote the universal
stable supercurve, which is obtained by identifying two NS punctures P1,P2 on a
smooth supercurve X̃ → B into a node Q ⊂ XB . Let D1,D2 ⊂ X̃ be the corre-
sponding divisors. Note that we have a finite morphism ρ : X̃ →XB , and an exact
sequence on XB ,

0 →OXB
→ ρ∗OX̃

→OQ → 0.

In particular, the Berezinian line bundle B(OXB
) for the family XB → B is natu-

rally identified with B(O
X̃
) defined for the family X̃ →B.

Note that in the case of a separating node, where B = S1 ×S2, the line bundle
B(O

X̃
) is the exterior product of two similar line bundles on the factors S1 and S2.
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We can rewrite (8.11) near B as an isomorphism

KS(2∆NS)≃ B(OX)5.

Thus, pulling it back to B leads to an isomorphism

KB ⊗NB ≃ B(OXB
)5,

where NB is the normal bundle defined as the pull-back of O(∆NS) to B. Note
that the universal supercurve overB is equipped with two NS punctures P1,P2 and
the isomorphism (8.11) in smaller genus gives

KB ≃ B(O
X̃
)5 ⊗Ψ1 ⊗Ψ2.

Comparing with the previous isomorphism we get an isomorphism

NB ≃Ψ−1
1 ⊗Ψ−1

2 .

Below we will define such a canonical isomorphism independently and then will
check its compatibility with two above isomorphisms.

First, recall that we have a line bundle ω2
X/S defined on the universal curve of

S by extending from the smooth locus (see Theorem 4.1).

LEMMA 9.1. (i) For any integer m let us set

ω2m
XB/B := ω2m

X/S

∣∣
B
.

Then one has an exact sequence on XB ,

(9.1) 0 → ω2m
XB/B → ρ∗ω

2m
X̃/B

(mD1 +mD2)→OQ → 0

where Q⊂XB is the relative node obtained by gluing P1 ≃B ≃ P2. Here we use
the canonical trivializations of the restrictions of ω2

X̃/B
(D1 +D2) to P1 and P2

(see Corollary 8.8). Hence, we have a natural isomorphism

(9.2) B(ω2m
X/S)

∣∣
B
≃ B(ω2m

X̃/B
(mD1 +mD2)).

(ii) Let us set ω2m+1
XB/B := ω2m

XB/B⊗ωXB/B . Then one has an exact sequence on
XB ,

(9.3) 0 → ρ∗ω
2m+1
X̃/B

(mD1 +mD2)→ ω2m+1
XB/B →Q∗OS → 0.

Hence, we have a natural isomorphism

(9.4) B(ω2m+1
X/S )

∣∣
B
≃ B(ω2m+1

X̃/B
(mD1 +mD2)).
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In addition, we have a natural exact sequence

0 → ω2m+1
XB/B → ρ∗ω

2m+1
X̃/B

((m+1)D1 +(m+1)D2)→C → 0,

where C is a sheaf supported on the node fitting into an exact sequence

(9.5) 0 →Q∗OS →C →Q∗(Ψ
−1
1 ⊕Ψ−1

2 )→ 0.

(iii) One has an exact sequence on XB ,

0 →K→ ΩXB/B → ρ∗ΩX̃/B
→ 0,

where the sheaf K is supported on the node, and has a filtration with the subfactors

Q∗(Ψ
2
1Ψ

2
2), Q∗(Ψ

2
1Ψ2), Q∗(Ψ1Ψ

2
2), Q∗(Ψ1Ψ2).

In particular, Berπ∗K is canonically trivial, so

BerRπ∗(ΩXB/B)≃ BerRπ∗ΩX̃/B
.

(iv) One has an exact sequence over the smooth locus of B,

0 → j∗ΩU/S
∣∣
XB

→ Ω
X̃/B

(D1 +D2)→ C̃ → 0,

where U ⊂X is the smooth locus of X →S, and the sheaf C̃ is supported on the
node and has a filtration with the subfactors

OQ, OQ, Q∗(Ψ
−1
1 ⊕Ψ−1

2 ).

Proof. (i) We just have to identify the pull-back of the line bundle ω2
XB/B to X̃ ,

ρ∗ω2
XB/B with ω2

X̃/B
(D1+D2). Note that we have a natural identification of these

line bundles over the smooth locus of X̃ . Thus, we need to check that it extends to
an isomorphism over the node. For this, it is enough to study these line bundles in
an étale neighborhood of the node. Thus, we can place ourselves in the framework
of Section 6.2 and use a generator e of ω2

X/S (see (6.13)). Since ρ∗e is a generator
of ω2

X̃/B
(D1 +D2), the assertion follows.

(ii) First, let us consider the case m = 0. Using Lemma 6.4 we easily see that
there is an injective map ωXB/B → ρ∗ωX̃/B

(D1 +D2), and that ωXB/B contains
ρ∗ωX̃/B

. Thus, we have

C := coker(ωXB/B → ρ∗ωX̃/B
(D1 +D2))

= coker(ωXB/B/ωX̃/B
→ ρ∗(ωX̃/B

(D1 +D2)/ωX̃/B
)).
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Note that since Ψ−1
i ≃ P ∗

i ωX̃/B
(Di), by Remark 8.10, we have an exact se-

quence

0 →OP1 ⊕OP2 → ω
X̃/B

(D1 +D2)/ωX̃/B
→ P1∗Ψ

−1
1 ⊕P2∗Ψ

−1
2 → 0.

In local coordinates, the projection to Pi∗Ψ
−1
i sends 1

zi
[dzi|dθi] to a generator, and

sends θi
zi
[dzi|dθi] to zero. In particular, this projection vanishes on the image of

ωXB/B/ωX̃/B
. Thus, we have an embedding

ωXB/B/ωX̃/B
↪→OQ⊕OQ.

We claim that ωXB/B/ωX̃/B
coincides with the kernel of the addition map OQ⊕

OQ → OQ. Indeed, this is a local statement. In local coordinates the generators
of two summands OQ are θi

zi
[dzi|dθi], and the generator s0 of ωXB/B/ωX̃/B

is
mapped to their difference.

From this we also see that C fits into the exact sequence (9.5).
To derive the case of arbitrary m from that of m = 0, we tensor the se-

quence (9.5) with the line bundle ω2m
XB/B . By the triviality of Q∗ω2

XB/B , we get
the sequence of the required form.

(iii) First, we note that K is supported on the node, so it is enough to prove the
assertion after replacing XB with the formal neighborhood of the node. Then X̃
becomes the union of two branches X1 ⊔X2, so that P1 ∈X1, P2 ∈X2. Now we
have inclusions of ideals

ρ∗(IP1 ⊕0), ρ∗(0⊕ IP2)⊂OXB
⊂ ρ∗OX̃

.

Furthermore, the product of these ideals is zero. This implies that for a1 ∈ IP1 ,
a2 ∈ IP2 , one has

(0,a2) ·d(a1,0) =±(a1,0) ·d(0,a2).

Hence, we have a well-defined map

κ : IP1/I
2
P1
⊗ IP2/I

2
P2

→K⊂ ΩXB/B : a1 ⊗a2 7→ (a1,0) ·d(0,a2).

Note that IP1/I
2
P1

fits into an exact sequence

0 → ID1/ID1IP1 → IP1/I
2
P1

→ IP1/ID1 → 0

with ID1/ID1IP1 ≃ Ψ2
1 and IP1/ID1 ≃ Ψ1. Using Lemma 7.2 (ii), one checks that

κ is an isomorphism, and the assertion follows.
(iv) This follows from parts (i), (ii) and from the exact sequence (7.1) (and a

similar exact sequence for Ω
X̃/B

which holds over the smooth locus). □
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We can use the definition of the NS boundary line bundle (7.6) to compute the
normal bundle over the smooth part of B. From the above Lemma we get

BerRπ∗(j∗ΩU/S)|B ≃ BerRπ∗(ΩX̃/B
(D1 +D2))⊗Ψ−1

1 Ψ−1
2 ,

BerRπ∗(ΩX/S |B)≃ BerRπ∗ΩX̃/B
.

Finally the exact sequence

0 → ω2
X̃/B

→ Ω
X̃/B

→ ω
X̃/B

→ 0

near D1, D2, together with Lemma 8.7, show that

BerRπ∗ΩX̃/B
(D1 +D2)≃ BerRπ∗ΩX̃/B

.

Hence, we deduce an isomorphism

(9.6) O(∆)|B ≃ BerRπ∗(j∗ΩU/S)|B ⊗Ber−1Rπ∗(ΩX/S |B)≃Ψ−1
1 Ψ−1

2 .

Now we can state a compatibility result between the super Mumford isomor-
phisms over S and over the NS boundary component B. Recall that we have the
super Mumford isomorphism

µS : B(ω−2
X/S)→B(OX)5(−∆)

near B (see Proposition 8.5). We also have the super Mumford isomorphism for
the family X̃/B, over the smooth locus:

µB : B(ω−2
X̃/B

(−D1 −D2))
∼−−→B(O

X̃
)5 ⊗Ψ1 ⊗Ψ2

(see Lemma 8.11).

THEOREM 9.2. The following diagram of isomorphisms of line bundles on B
is commutative up to a sign

B(ω−2
X/S)|B

µS |B> B(OX)5(−∆)|B

B(ω−2
X̃/B

(−D1 −D2))

(9.2)

∨
µB
> B(O

X̃
)5 ⊗Ψ1 ⊗Ψ2.

(9.6)

∨

Recall that to get µS we used three isomorphisms: the Grothendieck-Serre
duality isomorphism

SDX/S : B(ω−2
X/S)

∼−−→B(ω3
X/S),
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the isomorphism

B(ω3
X/S)≃ B(ω2

X/S)
−1 ⊗B(OX)2,

and the isomorphism

B(ω2
X/S)≃ B(ωX/S)

−2 ⊗B(OX)−1(∆)

(see Section 8.3). Similarly, µB is a composition of similar three isomorphisms. So
we can reduce the proof of Theorem 9.2 to separate compatibilities involving each
of these three isomorphisms. We deal with this compatibilities in the next three
lemmas.

LEMMA 9.3. For any m ∈ Z, the following diagram of isomorphisms between
line bundles on B is commutative:

B(ω−2m
X/S )|B

SDX/S |B
> B(ω2m+1

X/S )|B

B(ω−2m
X̃/B

(−mD1 −mD2))

(9.2)

∨ SD
X̃/B

> B(ω2m+1
X̃/B

(mD1 +mD2))

(9.4)

∨

where the horizontal arrows are given by Grothendieck-Serre duality.

Proof. To begin with we can replace the upper horizontal arrow with the one
induced by the Grothendieck-Serre duality for XB over B,

B(ω−2m
XB/B)

SDXB/B−−−−−−→B(ω2m+1
XB/B).

Let us set for brevity

L := ω−2m
XB/B, L̃ := ω−2m

X̃/B
(−mD1 −mD2).

Recall that for a sufficiently nice morphism f :X → Y and a perfect complex
F on X , the Grothendieck Serre duality gives an isomorphism

SDf :Rf∗(F )
∼−−→Rf∗(RHom(F,ωf [dimf ]))∨.
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Then we claim that there is an isomorphism of the exact triangles induced by
the exact sequences (9.1) and (9.3)

(9.7)

Rπ∗(L) > Rπ∗(ρ∗L̃) > OS > · · ·

Rπ∗(L
−1 ⊗ωXB/B[1])

∨

SDXB/B

∨
> Rπ∗(ρ∗(L̃

−1 ⊗ω
X̃/B

[1]))∨

SD
X̃/B

∨
> OS

id

∨
> · · · .

Clearly this would imply the claimed commutativity.
Now we claim that commutativity of both squares in (9.7) follows from the

general property of Grothendieck-Serre duality for a pair of morphisms X
g−→

Y
f−→X ,

Rf∗(Rg∗(F ))
∼

> R(f ◦g)∗(F )

Rf∗(RHom(Rg∗(F ),ωf [dimf ]))∨

SDf

∨ ∼
> R(f ◦g)∗(RHom(F,ωf◦g[dim(f ◦g)]))∨

SDg

∨

where the lower horizontal arrow is induced by the Grothendieck-Serre duality
isomorphism

RHom(Rg∗(F ),ωf [dimf ])≃Rg∗RHom(F,ωf◦g[dim(f ◦g)]).

Indeed, applying this to f = π, g = ρ and F = L̃ allows us to identify the
middle vertical arrow in (9.7) with the map

Rπ∗(ρ∗L̃)→Rπ∗RHom(ρ∗L̃,ωXB/B[1])
∨

given by the Grothendieck-Serre duality forXB/B. Taking this into account, com-
mutativity of the left square in (9.7) becomes a basic functoriality of SDπ. On the
other hand, commutativity of the right square in (9.7) similarly follows from the
functoriality of SDπ◦ρ applied to the natural morphism L̃→ Q∗OS and from the
above compatibility for f = π ◦ρ, g =Q and F =OS . □

LEMMA 9.4. Let ρ : Y →X be a morphism of families of stable supercurves
over B, which is a fiberwise resolution of the node Q :B→X (so it is an isomor-
phism away from X \Q(B)). For any coherent sheaf F on Y , flat over B, which
is locally free of rank 1|0 over the smooth locus, and any line bundle L on X with
a trivialization of Q∗L, we have a commutative diagram of isomorphisms of line
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bundles on B,

B(ρ∗F ⊗L)
(8.5)

> B(ρ∗F)⊗B(L)⊗B(OX)−1

B(F ⊗ρ∗L)
∨ (8.5)

> B(F)⊗B(ρ∗L)⊗B(OY )
−1

∨

where in the right vertical arrow we use isomorphisms B(OX) ≃ B(OY ) and
B(L)≃ B(ρ∗L) coming from the exact sequences

0 →OX → ρ∗OY →OQ → 0

0 → L→ L⊗ρ∗OY → L⊗OQ → 0

and the trivialization of Q∗L.

Proof. The question is local in the base, so we can assume that we can choose
a relative divisorD⊂X supported in the smooth locus of π :X→B, and a global
section s of L(D) such that the E = div(s) is also supported in the smooth locus.
Now we compute both horizontal arrows using the section s onX and its pull-back
ρ∗s on Y . Thus, for the top horizontal arrow we use resolutions

Rπ∗(OX) : [π∗L(D)→ π∗(L(D)|E)],
Rπ∗(ρ∗F) : [π∗(ρ∗F ⊗L(D))→ π∗(ρ∗F ⊗L(D)|E)],
Rπ∗(L) : [π∗(L(D))→ π∗(L(D)|D)],

Rπ∗(ρ∗F ⊗L) : [π∗(ρ∗F ⊗L(D))→ π∗(ρ∗F ⊗L(D)|D)],

while for the bottom horizontal arrow we use similar resolutions on Y that use the
section ρ∗s of ρ∗L(D′), e.g.,

Rπ∗(OY ) : [π′∗(ρ
∗L(D′))→ π′∗ρ

∗L(D)|E′ ],

where π′ : Y →B is the projection,D′ = ρ−1(D),E′ = ρ−1(E). Note thatD′ →D

and E′ → E are isomorphisms, and the assertion follows from the commutativity
of the squares

π∗(L(D)|E)
∼
> π∗(ρ∗F ⊗L(D)|E)

π′∗(ρ
∗L(D′)|E′)
∨ ∼

> π′∗(F ⊗ρ∗L(D′)|E′)
∨
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π∗(L(D)|D)
∼
> π∗(ρ∗F ⊗L(D)|D)

π′∗(ρ
∗L(D′)|D′)
∨ ∼

> π′∗(F ⊗ρ∗L(D′)|D′).
∨

□

LEMMA 9.5. The following diagram is commutative up to a sign

(9.8)

B(ω2
X/S)|B

∼
> B(ωX/S)

−2|B ⊗B(OX)−1(∆)|B

B(ω2
X̃/B

(D1 +D2))

∼

∨ ∼
> B(ω

X̃/B
)−2 ⊗B(O

X̃
)−1 ⊗Ψ−1

1 Ψ−1
2 .

∼

∨

Proof. Note that it is enough to prove the commutativity of this diagram work-
ing in an étale neighborhood S of a stable supercurve Xs with one NS node. We
also choose standard presentation in an étale neighborhood of the node on Xs, and
use constructions of Section 8.3.

Step 1. Under isomorphism (9.6), the trivialization ofNB induced by the equa-
tion t = 0 of the boundary divisor, corresponds to the trivialization of Ψ−1

1 ⊗Ψ−1
2

given by θ−1
1 ⊗θ−1

2 |B (where we identify Ψi with π∗ODi/OS). Below we will use
the notation from Section 7.

First, let us consider the canonical section c of Berπ∗[ΩX/S → j∗ΩU/S ] (where
j∗ΩU/S is placed in degree 0). The proof of Proposition 7.4 (i) shows that the com-
plex π∗[ΩX/S

ι−→ j∗ΩU/S ] can be represented by a morphism of trivial bundles
with bases (bi), (ci) such that b1, c1, b4, c4 are even; b2, c2, b3, c3 are odd; and the
differential ι is given by

ι(b1) = t2c1, ι(bi) = tci, for i= 2,3,4; ι(bi) = ci, for i > 4.

In addition, over B = S0, the elements b1, . . . , b4 (resp., c1, . . . , c4) induce the stan-
dard bases of the sheaves π∗K and π∗C0 from Lemma 7.2. This shows that the
restriction of c/t to B = S0 corresponds to the trivialization of

Berπ∗[ΩX/S → j∗ΩU/S ]|B ≃ Berπ∗C0 ⊗ (Berπ∗K)−1

induced by the standard bases of π∗K and π∗C0.
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Note that in the commutative square

ΩXB/B > j∗ΩU/S |XB

ρ∗ΩX̃/B

∨
> ρ∗ΩX̃/B

(D1 +D2)
∨

the bottom horizontal arrow and the right vertical arrows are injective. Hence, the
subsheaves K ⊂ ΩXB/B in Lemma 7.2 and in Lemma 9.1 (iii) are the same. This
also means that we have an exact sequence

0 → ρ∗ΩX̃/B
→ j∗ΩU/S |XB

→C0 → 0

and hence, an exact sequence

(9.9) 0 →C0 → Ω
X̃/B

(D1 +D2)|D1+D2 → C̃ → 0

where C̃ is the cokernel of the right vertical arrow in the above diagram (see
Lemma 9.1 (iv)).

Recall that the trivialization of π∗K used in Lemma 9.1 (iii) comes from the fil-
tration of K with the subfactorsQ∗(Ψ

2
1Ψ

2
2),Q∗(Ψ

2
1Ψ2),Q∗(Ψ1Ψ

2
2) andQ∗(Ψ1Ψ2).

It is easy to check that this filtration coincides with the filtration coming from the
basis (7.3) of K. Let us consider the following basis of π∗ΩX̃/B

(D1 +D2)|D1+D2 :

ei :=
dzi−θidθi

zi
,

θidzi
zi

,
dθi
zi
,

θidθi
zi

, i= 1,2.

Note that it is compatible (up to a sign) with the canonical trivialization of
Ber(π∗ΩX̃/B

(D1 +D2)|D1+D2). The filtration of C̃ considered in Lemma 9.1 (iv)
is compatible with this basis: the subsheaf OQ corresponds to the image of e1

(or equivalently of e2); the next subfactor OQ is given by the image of θ1dθ1/z1

(or of θ2dθ2/z2); and the quotient Q∗(Ψ
−1
1 ⊕Ψ−1

2 ) is given by the image of
(dθ1/z1,dθ2/z2). Hence, the trivialization of Berπ∗C̃ coming from this basis is
compatible with the isomorphism

Berπ∗C̃ ≃ (Ψ−1
1 Ψ−1

2 )−1

and the trivializations of Ψ−1
i given by the image of dθi/zi, i.e., by the generator

θi under the identification Ψ−1
i ≃ π∗ODi/OS .

On the other hand, the images in C0 of the basis vectors

e1 −e2,
θ1dθ1

z1
− θ2dθ2

z2
,

θ1dz1

z1
,

θ2dz2

z2
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are given by e− f , f , θ1e, θ2e in terms of the basis (7.4) of C0. Hence, the trivi-
alization of Berπ∗C0 coming from the latter basis coincides up to a sign with its
trivialization induced by the isomorphism

Berπ∗C0 ≃ Ber−1π∗C̃ ≃Ψ−1
1 Ψ−1

2 ,

coming from the exact sequence (9.9), and by the trivialization of Ψ−1
1 Ψ−1

2 given
by θ1 ⊗θ2.

Combining all the above steps we see that the trivialization c/t|B of

Berπ∗[ΩX/S → j∗ΩU/S ]|B

coincides up to a sign with the trivialization coming from the isomorphism

Berπ∗[ΩX/S → j∗ΩU/S ]|B ≃Ψ−1
1 Ψ−1

2

and the trivialization θ1 ⊗θ2 of Ψ−1
1 Ψ−1

2 .

Step 2. Let

ϕ : B(ω2
X/S)→B(ωX/S)

−2 ⊗B(OX)−1(∆)

be isomorphism (8.8). Using the equation (t= 0) of ∆, we get an isomorphism

(9.10) tϕ : B(ω2
X/S)→B(ωX/S)

−2 ⊗B(OX)−1.

Our goal in this step is to compute it.
We start by recalling the exact sequence (which depends on a choice of coor-

dinates)

(9.11) 0 → ω
reg
X/S → ωX/S →OQ → 0

(see Lemma 8.3). On the other hand, by Lemma 9.1 (ii), we have a natural exact
sequence

(9.12) 0 → ω
X̃/B

→ ωXB/B →OQ → 0.

It is easy to see that the restriction of the embedding ωreg
X/S → ωX/S to B gives a

morphism
ω

reg
X/S

∣∣
XB

→ ωXB/B

with the image ω
X̃/B

, so that the restriction of (9.11) is compatible with (9.12).
Recall that we choose a sufficiently positive effective divisor D⊂X with sup-

port in the smooth locus and a global section s of ωreg
X/S(D) as in Lemma 8.3. Let

us set
F reg := ω

reg
X/S(D)/(s).



1874 G. FELDER, D. KAZHDAN, AND A. POLISHCHUK

We can modify the derivation of the isomorphism (8.7) by replacing the resolutions
for Rπ∗(OX) with

[π∗(Πω
reg
X/S(D))→ π∗F reg].

This leads to an isomorphism

(9.13) B(ω2
X/S)≃ B(OX)−1 ⊗B(Πωreg

X/S)⊗B(ΠωX/S)⊗B(G)⊗B(F reg)−1.

In addition, exact sequence (9.11) gives an isomorphism

(9.14) B(ωreg
X/S)≃ B(ωX/S).

On the other hand, we have an isomorphism

αreg = (
µs1

t
,αE) : F reg ∼−−→G

induced by some isomorphism αE of the parts supported on E and by µs1/t on
the parts supported on Z. Namely, near Z, F reg has an OS-basis s1,θ1s1 and µs1/t

sends this basis to the basis e,θ1e of G.
Hence, we get the induced isomorphism

(9.15) ber(π∗αreg) : B(F reg)
∼−−→B(G)

Now we obtain that tϕ is the isomorphism induced by (9.13), together with (9.14)
and (9.15).

Step 3. Let us set

H := ω2
XB/B/ω

2
X̃/B

.

Let also s̃ be the global section of ω
X̃
(D) induced by s|XB

, with the zero divisor
Ẽ ⊂ X̃ (which is disjoint from the preimage of the node). Let us set ZB = Z ∩
XB ⊂XB . Note that ZB is supported on the node and the completion of its ideal
is generated by z1, z2 and θ1 + θ2, so ZB is smooth of dimension 0|1 over B. We
will construct exact sequences

0 →ΠOZB
→F reg|XB

→Πω
X̃/B

(D)|
Ẽ
→ 0,(9.16)

0 → ω2
X̃/B

(D)|
Ẽ
→G|XB

→H/ΠOQ → 0,(9.17)

0 →H→ ω2
X̃/B

(D1)|D1 ⊕ω
2
X̃/B

(D1)|D1 →OQ → 0(9.18)
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such that the following diagram is commutative up to a sign:

B(F reg|XB
)

ber(π∗αreg)
> B(G|XB

)

B(Πω
X̃/B

(D)|
Ẽ
)

∨ ber(π∗(αE)|B, τ)
> B(ω2

X̃/B
(D)|

Ẽ
)⊗B(H/ΠOQ)

∨

where the vertical arrows come from the exact sequences (9.16) and (9.17), and τ
is the trivialization of B(H/ΠOQ) coming from (9.18) and the standard bases
(bi,θibi) of ω2

X̃/B
(Di)|Di .

First, we have a decomposition of F reg into the parts supported onE and on Z.
The latter part is isomorphic to the completion F̂ reg of F reg. It is easy to see that
the section s1 induces an isomorphism

ΠOZ
∼−−→ F̂ reg,

so we obtain a split exact sequence (9.16).
Next, we have an injective morphism of exact sequences

0 > Πω
X̃/B

> ΠωXB/B > ΠOQ > 0

0 > ω2
X̃/B

(D)

s̃

∨
> ω2

XB/B(D)

s|XB

∨
> H

s0(s1 +s2)

∨
> 0.

Passing to the quotients we get (9.17).
Exact sequence (9.18) is immediately obtained from Lemma 9.1. This se-

quence shows that H has an OB-basis (e,θ1e,θ2e), where e is the image of the
local generator e of ω2

XB/B . The embedding ΠOQ →H is given by s0(s1 + s2) =

(θ1 − θ2)e. It follows that e,θ1e is a basis of H/ΠOQ. Now we observe that all
three isomorphisms

ΠOZB

∼−−→F reg
Z |XB

µs1/t−−−−→G|XB

∼−−→H/ΠOQ

send standard OS-bases to each other. This gives the desired commutative diagram.

Step 4. From sequences (9.16), (9.17) and (9.18), together with the identifica-
tions

B(ω2
X̃/B

(Di)|Di)≃Ψ−1
i
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(see Lemma 8.7), we get isomorphisms

(9.19) B(G|XB
)⊗B(F reg|XB

)−1 ≃ B(H)≃Ψ−1
1 Ψ−1

2 .

We claim that the top horizontal arrow in diagram (9.8) composed with the
isomorphism O(∆)|B ≃ Ψ−1

1 Ψ−1
2 gets identified with the composition of (9.13)

with (9.19) (we also take into account (9.14)).
Indeed, if we use the standard trivialization of OS(∆)|B , then the top hor-

izontal arrow in (9.8) is precisely the isomorphism (tϕ)|B . By Step 2, it is ob-
tained as the composition of isomorphisms (9.13) and (9.15), restricted to B. By
Step 3, we can replace (9.15) by (9.19) together with the standard trivialization of
Ψ−1

1 Ψ−1
2 . By Step 1, the latter trivialization corresponds to the standard trivializa-

tion of OS(∆)|B ≃Ψ−1
1 Ψ−1

2 , so our claim follows.

Step 5. We see that the restriction of isomorphism (9.13) to B coincides with
the isomorphism

B(ω2
XB/B)⊗B(Πω

X̃/B
)−1 ⊗B(ΠωXB/B)

−1 ⊗B(OXB
)

→B(G|XB
)⊗B(F reg|XB

)−1
(9.20)

obtained by using resolutions

Rπ∗(OXB
) : [π∗Πω

reg
X/S(D)|XB

→ π∗F reg|XB
],(9.21)

Rπ∗(ΠωXB/B) : [π∗ω
2
XB/B(D)→ π∗G|XB

],(9.22)

Rπ∗(ΠωX̃/B
) : [π∗ΠωX̃/B

(D)→ π∗ΠωX̃/B
(D)|D],(9.23)

Rπ∗(ω
2
XB/B) : [π∗ω

2
XB/B(D)→ π∗ω

2
XB/B(D)|D],(9.24)

and using the isomorphism Ber(π∗ΠωX̃/B
(D)|D)≃ Ber(π∗ω2

XB/B(D)|D).
To prove the commutativity of (9.8) we need to compare (9.20) with the similar

isomorphism where OXB
(resp., ωXB/B and ω2

XB/B) is replaced by O
X̃

(resp.,
ω
X̃

and ω2
X̃/B

). For this we will modify resolutions (9.21), (9.23) and (9.24) in a
controlled manner.

We start by noticing that the exact sequence

0 →OXB
→O

X̃
→OQ → 0

is represented by the exact triangle

[ΠOQ →ΠOZB
]→ [Πω

reg
X/S(D)|XB

→F reg|XB
]→ [Πω

X̃/B
(D)

→Πω
X̃/B

(D)|
Ẽ
]→ ··· ,

which measures the difference between resolution (9.21) and the corresponding
resolution of Rπ∗(OX̃

).
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Next, the exact sequence

0 →Πω
X̃/B

→ΠωXB/B →ΠOQ → 0

is realized by the exact triangle of resolutions

[ω2
X̃/B

(D)→ ω2
X̃/B

(D)|
Ẽ
]→ [ω2

XB/B(D)→G|XB
]→ [H→H/ΠOQ].

This gives the modification of resolution (9.23).
Finally, the exact sequence

0 → ω2
X̃/B

→ ω2
XB/B →H→ 0

is realized by the exact triangle of resolutions

[ω2
X̃/B

(D)→ ω2
X̃/B

(D)|D]→ [ω2
XB/B(D)→ ω2

XB/B(D)|D]→ [H→ 0],

which gives the modification of resolution (9.24).
The modified resolutions,

Rπ∗(OX̃B
) : [π∗ΠωX̃/B

(D)→ π∗ΠωX̃/B
(D)|

Ẽ
],

Rπ∗(ΠωX̃/B
) : [π∗ω

2
X̃/B

(D)→ π∗ω
2
X̃/B

(D)|
Ẽ
],

Rπ∗(ΠωX̃/B
) : [π∗(ΠωX̃/B

(D))→ π∗ΠωX̃/B
(D)|D],

Rπ∗(ω
2
X̃/B

) : [π∗ω
2
X̃/B

(D)→ π∗ω
2
X̃/B

(D)|D],

give an isomorphism

B(ω2
X̃/B

)⊗B(Πω
X̃/B

)−1 ⊗B(Πω
X̃/B

)−1 ⊗B(O
X̃
)

∼−−→B(ω2
X̃/B

(D)|
Ẽ
)⊗B(Πω

X̃/B
(D)|

Ẽ
)−1.

(9.25)

Note that the composition of this isomorphism with the natural trivialization of
B(ω2

X̃/B
(D)|

Ẽ
)⊗B(Πω

X̃/B
(D)|

Ẽ
)−1 is precisely the super Mumford isomor-

phism for X̃/B,

(9.26) B(ω2
X̃/B

)⊗B(Πω
X̃/B

)−1 ⊗B(Πω
X̃/B

)−1 ⊗B(O
X̃
)

∼−−→OB.

From the exact triangles connecting the resolutions above we get the following
commutative square of isomorphisms:

B(ω2
XB/B)⊗B(Πω

X̃/B
)−1 ⊗B(ΠωXB/B)

−1 ⊗B(OXB
)

(9.20)
> B(G|XB

)⊗B(F reg|XB
)−1

B(H)⊗B(ω2
X̃/B

)⊗B(Πω
X̃/B

)−1 ⊗B(Πω
X̃/B

)−1 ⊗B(O
X̃
)

∨ (9.25)
> B(H)⊗B(ω2

X̃/B
(D)|

Ẽ
)⊗B(Πω

X̃/B
(D)|

Ẽ
)−1

(9.19)

∨
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where the left vertical arrow comes from the exact sequences mentioned above. By
Step 4, the composition of the top horizontal and right vertical arrows corresponds
to the same composition in diagram (9.8).

Finally, it is easy to check that the following diagram of isomorphisms

B(ω2
XB/B) > B(ω2

X̃/B
)⊗B(H)

B(ω2
X̃/B

(D1 +D2))

∨
> B(ω2

X̃/B
)⊗Ψ−1

1 ⊗Ψ−1
2

∨

is commutative. This allows us to replace the composition of the left vertical and
bottom horizontal arrows in the previous diagram with the same composition in
diagram (9.8), thus, finishing the proof. □

Proof of Theorem 9.2. Let us consider the diagram

B(ω−2
X )|B > B(ω3

X)|B > B(ω2
X)−1B(OX)2|B > B(ωX)2B(OX)3(−B)|B

B(ω−2
X̃

(−D1 −D2))

∨
> B(ω3

X̃
(D1 +D2))

∨
> B(ω2

X̃
(D1 +D2))

−1B(O
X̃
)2

∨
> B(ω

X̃
)2B(O

X̃
)3Ψ1Ψ2.

∨

We claim that each square in this diagram is commutative. Indeed, the left square is
commutative by Lemma 9.3, while the right square is commutative by Lemma 9.5.
The commutativity of the middle square follows from the commutative diagram

B(ωXB/B ⊗ω2
XB/B)

(8.5)
> B(ωXB/B)B(ω2

XB/B)
−1B(OXB

)

B(ρ∗(ωX̃/B
)⊗ω2

XB/B)

∨ (8.5)
> B(ρ∗(ωX̃/B

))B(ω2
XB/B)

−1B(OXB
)

∨

B(ω3
X̃/B

(D1 +D2))

∨ (8.5)
> B(ω

X̃/B
)B(ω2

X̃/B
(D1 +D2))

−1B(O
X̃
).

∨

Here the lower square is commutative by Lemma 9.4 applied to the morphism
ρ : X̃ → XB , the line bundle ω2

XB/B and the coherent sheaf ω
X̃/B

. The commu-
tativity of the upper square can be checked using the compatibility of the isomor-
phism (8.5) with the resolution [ωXB/B →OQ] for ρ∗ωX̃/B

. □
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9.2. Splitting of the Kodaira-Spencer map at an NS boundary compo-
nent.

LEMMA 9.6. There is an isomorphism of exact sequences on B,

(9.27)

0 > OB > TS,B|B > TB > 0

0 > OB

id

∨
> R1π∗(ω

−2
XB/B)

KSS |B
∨

> R1π∗(ω
−2
X̃/B

(−D1 −D2))

KSB

∨
> 0

where the lower exact sequence is induced by (9.1).

Proof. We have a natural morphism of exact sequences

(9.28)

0 > AX/S |B > AX,XB
|B > π−1TS,B|B > 0

0 > AXB/B

∨
> AXB

∨
> π−1TB

∨
> 0.

Furthermore, the lower sequence can be identified with

0 → ρ∗ω
−2
X̃

(−D1 −D2)→ ρ∗AX̃,P1,P2
→ π−1TB → 0.

Thus, the left vertical arrow in (9.28) can be identified with the natural map

ω−2
X/S → ρ∗ω

−2
X̃

(−D1 −D2)

which has cokernel OQ (by (9.1)). On the other hand, the morphism TS,B|B →TB
has the kernel OB .

Applying the functor Rπ∗ to (9.28) we immediately derive commutativity of
the right square in (9.27).

Next, we claim that the coboundary morphism

ker(π−1TS,B|B → π−1TB)→ coker(ω−2
X/S → ρ∗ω

−2
X̃

(−D1 −D2))

associated with (9.28) gets identified with the natural map π−1OB →OQ. This is a
local statement, so we can use coordinates as in Section 6.2. Note that the section 1
of π−1OB is represented by the vector field t∂t in π−1TS,B|B . It lifts to a vector
field v in AX,XB

given by

v(zi) = zi, v(θi) =
1
2
θi, v(t) = t
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(see Lemma 6.5 (i)). The restriction of v to XB corresponds to the vector field

z1∂z1 +
1
2
θ1∂θ1 +z2∂z2 +

1
2
θ2∂θ2

which lives in A
X̃,P1,P2

. The isomorphism

ω−2
X̃/B

(−D1 −D2)
∼−−→A

X̃,P1,P2

is given by

zi[dzi|dθ]−2 7→ zi∂zi +
1
2
(∂θi +θi∂zi)(zi) · (∂θi +θi∂zi) = zi∂zi +

1
2
∂θi

(see the proof of Lemma 2.14), which immediately implies our claim.
From this we deduce that the following square commutes

π−1OB > π−1TS,B|B

OQ

∨
> ω−2

X/S [1].
∨

Applying Rπ∗ we get the commutativity of the left square in (9.27). □

COROLLARY 9.7. We have a commutative diagram

KS(∆)|B
ber(KSS)

−1|B
> B(ω−2

X/S)|B

KB

∨ ber(KSB)−1
> B(ω−2

X̃/B
(−D1 −D2))

∨

where the horizontal arrows are induced by the Kodaira-Spencer isomorphisms
(see Proposition 8.1), and the right vertical arrow is given by (9.2).

Combining the above corollary with Theorem 9.2, we get the statement of
Theorem C.

9.3. Ramond boundary components. Now let ι :B→S be a gluing map
for the Ramond boundary component, i.e., one of the maps (7.9), restricted to the
locus of smooth supercurves. Recall that we have a smooth map of relative dimen-
sion 0|1,

p :B→B
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to a moduli space B of smooth supercurves of smaller genus, where the universal
smooth supercurve over B is equipped with a pair of Ramond punctures R1,R2.
Furthermore, p has a structure of the principal bundle over the group scheme
Aut(PR1) which is an extension of Z/2 by Φ−1

1 . Thus, we have a natural isomor-
phism

KB ≃ p∗(KB ⊗Φ1).

On the other hand, we have an exact sequence on the universal stable supercurve
XB over B,

0 →OXB
→O

X̃
→OR1 → 0,

where X̃ is induced by the universal curve X over B. Taking push-forwards to B
and considering the Berezinians, we get

ι∗ Ber1 ≃ p∗(BerB1 ⊗Φ1).

Note that since Φ2
1 is canonically trivial, this leads to an isomorphism

ι∗ Ber5
1 ≃ p∗((BerB1 )

5 ⊗Φ1).

We can rewrite (8.11) near B as an isomorphism

KS(∆)≃ Ber5
1 .

Thus, the restriction to B gives an isomorphism

KB ≃ ι∗ Ber5
1 .

We conjecture that the following diagram is commutative (up to a sign)

ι∗(KS(∆)) > ι∗ Ber5
1

KB

∨
> p∗((BerB1 )

5 ⊗Φ1).

∨

Appendix A. Relative ampleness criterion. Recall that for every super-
scheme X let NX ⊂ OX denote the (nilpotent) ideal locally generated by odd
functions, and denote by Xbos the usual scheme such that

OXbos =OX/NX .

LEMMA A.1. Let f : X → S be a morphism of superschemes, where S is
purely even. Assume that f factors through a morphism ϕ : X → P(E∨), where
E = E+⊕E− is a supervector bundle on S. Then ϕ is a closed embedding if and
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only if ϕ|Xbos is a closed embedding (that necessarily factors through P((E+)∨))
and the morphism

(A.1) f∗E−|Xbos →NX/N 2
X ⊗ϕ∗O(1)|Xbos ,

induced by ϕ, is surjective.

Proof. The “only if” part is clear, so let us prove the “if” part. Let us set
N =NX for brevity. The underlying map of topological spaces for ϕ is the same
as ϕXbos : Xbos → P((E+)∨), so we just need to show the surjectivity of the homo-
morphism of sheaves of rings

ϕ♯ :
∧•

OP((E+)∨)
(p∗E−(−1)) =OP(E∨) → ϕ∗OX ,

where p : P(E∨)→ S is the projection. Both sides have a natural filtration by pow-
ers of an ideal: on ϕ∗OX we take the filtration (ϕ∗N i), while on the exterior algebra
the filtration

∧≥i(·). Since the above map is compatible with the surjective map

OP((E+)∨) → ϕ∗(OX/N ) = ϕ∗OXbos ,

we see that ϕ♯ is compatible with the filtrations. Hence, it is enough to check sur-
jectivity on the consecutive quotients, which follows from the surjectivity of the
induced map

p∗E− → ϕ∗(N/N 2)⊗O(1)

or equivalently, of (A.1). □

The following criterion generalizes a similar result for supermanifolds in [25].
Let fbos :Xbos → Sbos be a morphism of usual schemes induced by f .

PROPOSITION A.2. Let f : X → S be a flat morphism of superschemes. If a
line bundle L on X is such that Lbos := L|Xbos is strongly relatively ample over
Sbos, then L is strongly relatively ample over S.

Proof. First, let us show that for every coherent sheaf F on X , for n≫ 0 one
has R>0f∗(F ⊗Ln) = 0 and the natural map

(A.2) f∗f∗(F ⊗Ln)→F⊗Ln

is surjective. Let us consider the commutative diagram

Xbos
i

> X

Sbos

fbos

∨ j
> S.

f

∨
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We know that the above assertion is true with (X,f) replaced by (Xbos,fbos).
Since each F has a finite filtration with subsequent quotients that are scheme-
theoretically supported on Xbos, we can assume that F = i∗F ′ with F ′ a coherent
sheaf on Xbos. We have

Rpf∗(i∗(F ′)⊗Ln) = j∗R
pfbos∗(F ′⊗Ln

bos),

which immediately implies the vanishing of higher direct images. Furthermore, the
restriction of the map (A.2) to Xbos is the map

i∗f∗f∗i∗(F ′⊗Ln
bos) = f∗bosfbos∗(F ′⊗Ln

bos)→ (F ′⊗Ln
bos)

which is surjective. Hence, (A.2) is also surjective.
Applying the above statement for F =OX we see that for n≫ 0,R>0f∗(L

n)=

0 and f∗f∗(Ln)→ Ln is surjective. In particular, in this case f∗(Ln) is locally free
(here we use flatness of f ) and the map

(A.3) X → P(f∗(Ln)∨)

of superschemes over S is well defined. We want to check that (A.3) is a closed
embedding. Let us consider the cartesian square

X0 > X

S0

f0

∨ j
> S

f

∨

with S0 := Sbos (however, X0 ̸=Xbos in general). For n≫ 0 the above assertions
also hold for (X0,f0,L

n
0 ), where L0 = L|X0 , and the base change map

f∗(L
n)|S0 → f0∗(L

n
0 )

is an isomorphism. Thus, the map X0 → P(f0∗(L
n)∨) is obtained by the base

change S0 → S from the map (A.3). Since S0 is defined by a nilpotent ideal in S,
it is enough to check that the map X0 → P(f0∗(L

n)∨) is a closed embedding for
n≫ 0.

Thus, we can assume that S = S0. Then we have a decomposition of the su-
pervector bundle E := f∗(L

n) into even and odd components,

E = E+⊕E−.
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First, we claim that for n≫ 0, the map Xbos → P((E+)∨), corresponding to the
surjection

f∗f∗(L
n)|Xbos → Ln|Xbos ,

is an embedding. Indeed, for n≫ 0, we have a surjection

E = f∗(L
n)→ f∗(i∗OXbos ⊗L

n) = fbos∗(L
n
bos),

which factors through a surjection E+→ fbos∗(L
n
bos). SinceLbos is relatively ample,

we get a composition of two closed embeddings

Xbos ↪→ Proj(S•(fbos∗(L
n
bos))) ↪→ P((E+)∨),

and our claim follows.
By Lemma A.1, it remains to show that the map

f∗E−|Xbos →NX ⊗Ln|Xbos

is surjective. We know that for n≫ 0, the map

f∗f∗(NX ⊗Ln)→NX ⊗Ln

is surjective. Hence, its restriction to Xbos is still surjective. Since NX is generated
by odd functions, we have

NX |Xbos = (NX |Xbos)
−.

Hence, we get the surjectivity of the map

f∗(f∗(NX ⊗Ln)−)|Xbos →NX ⊗Ln|Xbos .

But f∗(NX ⊗Ln)− is a subsheaf in f∗(Ln)− = E−, so we are done. □
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[6] U. Bruzzo, D. Hernández Ruipérez, and A. Polishchuk, Notes on fundamental algebraic supergeometry.

Hilbert and Picard superschemes, Adv. Math. 415 (2023), Paper No. 108890.
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