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THE MODULI SPACE OF STABLE SUPERCURVES AND ITS
CANONICAL LINE BUNDLE

By GIOVANNI FELDER, DAVID KAZHDAN, and ALEXANDER POLISHCHUK

Abstract. We prove that the moduli of stable supercurves with punctures is a smooth proper DM stack
and study an analog of the Mumford’s isomorphism for its canonical line bundle.

1. Introduction. The modulispace S, of supercurves of genus g (aka super
Riemann surfaces, aka SUSY curves) has been around in mathematics and physics
since the 1980s. It plays an important role in superstring theory and has been stud-
ied using the language of algebraic geometry in [7, 9, 16, 26] and other works.
One long standing gap in the mathematical side of the story has been the study of
the analog of Deligne-Mumford compactification by stable supercurves (which is
a proper Deligne-Mumford superstack). One of the goals of the present paper is
to contribute to filling this gap. This compactification seems to be necessary for
continuing the study of superstring supermeasure (see [19,33]).

The definition of a stable supercurve and a sketch of a proof that this gives a
smooth and proper DM-stack is contained Deligne’s letter to Manin [13] (supern-
odes were also introduced independently in physics literature, see [10]). The main
part of Deligne’s letter is devoted to the infinitesimal part of the theory. In partic-
ular, he describes miniversal deformations of two types of supernode singularities
(see Section 3.2). The idea of the rest of the proof is to use the superanalog of the
Artin’s criterion for proving algebraicity of a stack.

In the present paper we revisit Deligne’s letter and generalize its results to
the case of stable supercurves with punctures. One of the special features of the
super-case is that instead of “marked points” we consider supercurves with Neveu-
Schwarz (NS) and Ramond punctures. Of these, NS punctures are like marked
points: for a family of (stable) supercurves X — S they are given by sections
S — X. However, Ramond punctures have a different nature: they are given by
relative Cartier divisors R C X such that the projection R — S is smooth of di-
mension 0|1, and also the definition of being a supercurve is modified near R
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(see Section 2.2 for details). Note that the nodes of stable supercurves can also
be of two types, NS and Ramond.

THEOREM A. There exists a smooth and proper DM-stack gg,n ~snp over C
representing the functor of families of stable supercurves of genus g with nyg NS
punctures and ng Ramond punctures.

After we finished this work we learned about the work of Moosavian and
Zhou [27], where Theorem A is also proved. Their work also contains a lot of
useful foundational results in algebraic supergeometry, e.g., proves the existence
of Hilbert superschemes. Another work with some foundational results, including
the existence of Hilbert and Picard superschemes, is the paper [6].

We mostly follow [13] in the part concerning deformation theory (extending
it to the case of stable supercurves with punctures). In the rest of the proof we
avoid using the Artin’s criterion and give a more direct proof based on the existing
solution of the corresponding purely even moduli problem due to Cornalba and
Jarvis. Namely, the functor of families of stable supercurves restricted to even bases
is precisely the functor of generalized spin structures considered in [11,22].

In the course of proof of Theorem A we find a natural relatively ample line
bundle on any family of stable supercurves with punctures (see Theorem 4.3). Al-
though this is not strictly necessary for Theorem A (where one could use an alge-
braic space to replace the Hilbert scheme), this can be viewed as a super-analog of
the well-known fact that the relative log canonical bundle is relatively ample for a
family of stable curves. The important difference is that in the case of a family of
stable supercurves X — S the relative canonical bundle on the smooth part does
not extend to a line bundle on the entire family (the extension is not locally free at
NS nodes). However, we prove that its square does extend to a line bundle which
we still denote as wg( /s This line bundle plays an important technical role in the
rest of the paper. In the hindsight, this is not too surprizing since the restriction of
wg( /s 1o the reduced part of moduli of supercurves recovers the relative dualizing
sheaf of the corresponding usual family of stable curves.

One point which is not highlighted in [13] is that there is a canonical effective
Cartier divisor A supported on the boundary of the compactification S, (in the
presence of odd variables, which are nilpotent, such a structure is not unique).
Essentially this structure is already seen from the study of deformations of the
nodes of supercurves which can be of two types, NS and Ramond. We also define
a decomposition A = A g+ Ap corresponding to these two types of nodes and
find two global expressions for the line bundle O(A) using Berezinians of certain
natural morphisms of sheaves associated with the universal curve (see Section 7).

The second goal of this work is to study the canonical line bundle Kgg over Sy,
i.e., the Berezinian of the cotangent vector bundle. The super analog of Mumford
isomorphism for smooth supercurves, expressing the canonical line bundle of S,
in terms of natural Berezinian line bundles was considered in [29,32] (see also [15]
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where some work is done in the punctured case). Namely, it states that
5
Ks, ~ Bery,

where
Ber; :=Ber(Rm.Ox) ~ Ber(meX/gg),
where 7 : X — S, is the universal stable supercurve.
In the case of the moduli of stable supercurves (and in the presence of punc-
tures) we still have the line bundle Ber; defined as above, however the expression
for the canonical bundle has to be corrected.

THEOREM B. LetS=S

gnns,ng- 1here exists a canonical isomorphism

SMs s 5
Kg — Ber{ ® ® U, (—2Ans — AR),
i=1
where Ang and A g are the components of the boundary divisor corresponding to
nodes of NS and Ramond type, and V; is the line bundle associated with the ith NS
puncture P;:
‘1/1' = .Pi*wx/g‘

In the case when there are no punctures the isomorphism becomes
5
Kgg ~ Berl (_2ANS - AR)

Finally, we study the restriction of the super-Mumford isomorphism SMgg to
the NS boundary divisor, and show that it is related to the similar isomorphisms
for lower genus. As in the classical case, each component of A g is an image of
a natural gluing map B — S, where B is some lower genus moduli space with
more punctures or a product of two such moduli spaces (see Section 7.5).

THEOREM C. Let B — gg be the gluing map to one of the components of
Ang from a lower genus (uncompactified) moduli space B. There exists a natural
isomorphism (see below) of the normal bundle

Np:=0A)|p=9; ',
such that the following diagram is commutative up to a sign

SMs s .
Kg (2A>‘B %g Berl ‘B
g

SM
Kp®Np ——5> (BerP)S

where S Mp is the product of lower genus Mumford’s isomorphisms.
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The identification of Ng in Theorem C comes from the identification of A as
the vanishing locus of a morphism induced on Berezinians by the morphism

RW*(QX/EQ) — Rﬂ'*j*(QU/gg),

where j : U — X is the embedding of the smooth locus (see Section 7.2).

The components of the Ramond boundary divisor Ar have a more compli-
cated relation to lower genus moduli spaces (see Section 7.6), and in this case we
formulate a conjectural analog of Theorem C in Section 9.3.

The paper is organized as follows. In Section 2 we review the basics on stable
supercurves starting from the definitions. In particular, in Section 2.4 we discuss
standard local coordinates of smooth supercurves (near an ordinary point and near
a Ramond puncture). Then in Section 2.5 we discuss a well-known correspondence
between the NS-punctures and divisors.

In Section 3 we study the deformation functor of a stable supercurve Xy with
punctures. The main result is that this functor is smooth (more precisely, it is
smooth over the product of deformation functors of the singularities of Xj). We
start with infinitesimal results, reproducing Deligne’s calculation of infinitesimal
deformations of two types of super node singularities (see Theorem 3.3) and iden-
tifying the sheaves of infinitesimal automorphisms of stable supercurves with punc-
tures. Then we study local deformations: of affine neighborhoods of a smooth
point, of a Ramond puncture, and of a singular point (see Sections 3.5, 3.6 and
Lemma 3.18). Finally we prove the smoothness result for global deformations,
Proposition 3.19.

In Section 4 we prove that an extension of the square of the relative canonical
bundle sz /s from the smooth locus U C X of a sufficiently nice family X — S of
stable supercurves is a line bundle, and that after some corrections at the punctures,
it becomes relatively ample (see Theorems 4.1 and 4.3). We then show that the
inverse of this line bundle shows up in the computation of the sheaf of infinitesimal
automorphisms (see Theorem 4.4).

In Section 5 we prove Theorem A. Mostly we use the previous results on de-
formation theory and the known results on the moduli of generalized spin curves.

In Section 6 we study the behavior of the Kodaira-Spencer map for a family of
smooth supercurves degenerating to a stable supercurve. We consider the classical
case of (even) curves in Section 6.1, then the case of an NS node in Section 6.2
and the case of a Ramond node in Section 6.3. The main observation is that the
Kodaira-Spencer map has a natural extension over the entire base involving the
subsheaf of the tangent space to the base consisting of vector fields preserving the
degeneration divisor.

In Section 7 we study the boundary divisor A of the moduli of stable super-
curves. We give a definition of the boundary divisor as a Cartier divisor (which
is not automatic since we work with nonreduced spaces). We compute the corre-
sponding line bundle in terms of the complex [{2 x/5 = 3:Quy 5], where U C X is
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the smooth locus of a family X — S (see Section 7.2). We prove in Section 7.3 that
A is a normal crossing divisor and define in Section 7.4 the subdivisors A g and
Ap corresponding to the NS and Ramond type nodes such that A = Ayg + Ag.
Then we discuss in Sections 7.5 and 7.6 the gluing maps from lower genus moduli
spaces to the boundary components. Note that in the case of a Ramond node there
is an extra odd parameter involved in the gluing.

In Section 8 we study the canonical line bundle over the moduli of stable super-
curves with the goal of proving Theorem B. The identification of the canonical line
bundle for the moduli of smooth supercurves is a combination of the isomorphism
coming from the Kodaira-Spencer map and of an analog of the Mumford’s iso-
morphism between different Berezinian line bundles. We have to investigate what
happens with both these ingredients near the boundary divisor. For the Kodaira-
Spencer map this was done in Section 6. The main new nontrivial computation is
that of the behavior of the super Mumford’s isomorphism as the supercurve de-
generates (see Section 8.3). Extending this picture to supercurves with punctures
is relatively easy and is done in Section 8.4.

In Section 9 we prove Theorem C. Again the bulk of the argument is the study
of the restriction of super Mumford’s isomorphism to the boundary divisor in Sec-
tion 9.1. Then in Section 9.2 we do the same for the isomorphism coming from the
Kodaira-Spencer map. In Section 9.3 we describe a conjectural picture for the case
of a Ramond boundary component.

In Appendix A we prove a relative ampleness criterion for flat morphisms of
superschemes (see Proposition A.2), which we use to prove Theorem 4.3.

Conventions. All the rings are assumed to be Z;-graded supercommutative
with 1. We say that a ring (resp., a superscheme) is even if its odd component (resp.,
the odd component of the structure sheaf) is zero. We often say “subscheme” for
brevity where we should say “sub-superscheme”. For a sheaf F' of O x-modules on
a superscheme X we denote by F'™ and I~ its even and odd parts. By a “bundle”
on a superscheme we mean a (Z;-graded) locally free O x-module of finite rank.
By a subbundle F' C E in a bundle E we mean a (Z,-graded) locally free Ox-
submodule, which is locally a direct summand. On any superscheme X we denote
by Nx C Ox the ideal generated by odd functions. We denote by Xy, the usual
scheme with the same underlying topological space as X and with the structure
sheaf Ox /Nx. We work over C.

Acknowledgments. We thank Ugo Bruzzo and Daniel Herndndez Ruipérez for
useful discussions and for telling us about the work [27]. We thank the anonymous
referee for many useful comments.

2. Stable supercurves. In this section we discuss some basic facts about
stable supercurves and their families, starting with definitions. In particular, we
discuss local descriptions of nodes and punctures, the correspondence between the
NS punctures and divisors, and the connection with generalized spin structures.
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2.1. Superstacks. We refer to [8] and [7, Sec. 2] for some basics on su-
perschemes. The notion of an algebraic (super)stack is developed similarly to the
classical case (see [4, Def. 5.1]): one considers a category fibered in groupoids X’
over the category of Noetherian superalgebras over C, which is a limit preserving
stack (see [4, (1.1)]), such that the diagonal X — & x X is representable and there
exists a smooth surjective morphism from a scheme to X (see [9, Sec. 3]). If the
latter morphism can be chosen to be étale, then one gets the notion of Deligne-
Mumford (DM) stack.

For example, it is proved in [9] that the moduli stack of (smooth) supercurves
is a smooth separated DM stack over C.

2.2. Definition of families of supercurves.

Definition 2.1. Let S be a superscheme. A family of smooth supercurves with
Ramond punctures is a smooth superscheme X over S of relative dimension 1|1,
equipped with a subbundle D C T/ of rank 0|1, such that the map given by the
commutator of vector fields

2.1 D** = Tx/s/D

(which is a map of line bundles of rank 1|0) is injective and its divisor of vanishing
is the disjoint union

nR
R=| |R;
=1

where each R; is smooth connected of dimension 0|1 over S. The components R;
are called Ramond punctures.

A distribution D as above is often referred to as a superconformal structure on
X. An isomorphism of superschemes X ~ X' as above is called superconformal if
it preserves the superconformal structures, i.e., sends the distribution on X to the
distribution on X',

In the above situation the map D ® D, — %[Dl , D5] induces an isomorphism

(2.2) D** =5 Ty/s/D(—R).
Thus, we have an exact sequence
0—D — Tx/s = D**(R) =0,

or dually,
0D *(—R)—=Qy/s > D' =0.
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From this we get an isomorphism wy g := Ber({2x,g) =~ D~!(—R), or equiva-
lently,

(2.3) D~ w;(}s(—R).

Hence, taking the dual of the embedding D — Ty g, we get a surjective morphism
§: Qx5 — D~ wx/s(R),

whose kernel is exactly the orthogonal to D C T/ g. Equivalently, we can view §
as a derivation Ox — wx/g(R), trivial on Og. Note that D is recovered from ¢ as
the orthogonal to ker(d).

Example 2.2. Suppose X is an open subscheme in Aiqll with relative coordi-
nates (z,6) and D is generated by D = 0y + f60,, for some even function f on X.
Then |

5[D.D] = fo,
so the condition that D defines a structure of a supercurve on X (with no punctures)
is that f is invertible. Thus, the canonical isomorphism

D** — Tx/s/D
sends D ® D to f0, mod D. Hence, the isomorphism
D — Ber(Tx/s) =~ w)}}s

sends D to f[dz|d6] ™", where [dz|df] is a generator of wy g associated with the
basis (dz,df) of Qx/g. Thus, we can compute the dual of the embedding D —
Tx/s>

6 QX/S D~ wx/s-
Namely, § sends dz to 0[dz|df] and df to f~'[dz|df]. Thus, if we view § as a
derivation, we have

3(¢) = D(¢)- f[dz[db)].

Remark 2.3. Assume that S is even. Then for a smooth supercurve (X, D)
over S, the bosonic truncation C' = Xpos = (| X |, O% ) is a family of smooth curves
over S, and we have a natural projection 7 : X — C. Furthermore, we can view
L = Oy as a line bundle on C'. Since 7 is a finite morphism, we have a natural
identification of Z;-graded coherent sheaves on C,

wx = T'we = Hom(Oyx,we) = we ®Hom(L,we ),

so the odd part of the derivation & induces an isomorphism L — Hom(L,wc),
or equivalently L? = w¢. It is well known that under the above identification of
w} with we the even part of § is given by the de Rham differential d : Oc — we
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(e.g., this can be deduced from the local standard structure of smooth supercurves,
see [13] or Section 2.4 below).

Definition 2.4. (i) A supercurve with punctures over .S, is a superscheme X of
finite type over S, flat and relatively Cohen-Macaulay, together with

e a collection of disjoint closed subschemes called NS-punctures and R-
punctures

FcX,i=1,....nys; R;CX,i=1,...,ng,

such that the projection P; — S is an isomorphism, and each R; is a Cartier divisor
(flat over S);
e aderivation

0. OX — OJX/S(R),

trivial on pull-backs of functions on S, where R =) | R;. Here wy/g is the relative
dualizing sheaf so that 7'Og = wy /5[1] (the fact that it is a sheaf follows from the
Cohen-Macaulay property).
We impose the following additional properties.

e There is an open fiberwise dense subset U C X such that U/.S is smooth of
dimension 1|1, and P, C U, R; C U,

e the derivation § corresponds to a structure of a smooth supercurve with Ra-
mond punctures on (U, (R;)) over S;

e on every geometric fiber X, 6~ induces an isomorphism

2.4) Ox, wx. (D Ris)

By an isomorphism of supercurves with punctures over S we mean an isomorphism
of superschemes over S compatible with all the structures. We say that a relative
vector field on X (i.e., a derivation of Oy, trivial on 7~ Oy) is superconformal if
it preserves 9.

(ii) A supercurve with punctures (X/S, P., R,) is called stable (resp., pre-
stable) if X is proper over S and for every geometric fiber X, passing to the
bosonic truncation (Xj)pes With the marked points induced by (P;) and (R;) one
gets a usual stable (resp., prestable) pointed curve.

The role of the isomorphism (2.4) can be understood by looking at the case of
even S (see Lemma 2.6 below). As observed in [13], if U C X is the maximal open
subset which is smooth over S, then J induces a structure of a smooth supercurve
on U\ |J, R; over S.

Since Cohen-Macaulay property appears in the definition of supercurves, we
recall some results involving it that will be useful for us.

LEMMA 2.5. (i) Let X be a Cohen-Macaulay locally Noetherian super-
scheme, j : U — X an open embedding such that Z = X \ U has codimension > 2
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(resp., > 1) in X. Then the natural map Ox — j5.Oy is an isomorphism (resp.,
injective). Similarly, if F is a Cohen-Macaulay coherent sheaf on X with full
support, then the natural map F — j,j*F is an isomorphism (resp., injective).

(i) Let X — S be flat, relatively Cohen-Macaulay, with fibers of pure dimen-
sion 1, and let j : U — X be a fiberwise dense open subscheme. Then the canonical
map

wx/s = JxJj wx/s
is injective.

(iii) Let X be a superscheme over a field k. Then X is Cohen-Macaulay with a
dense open which is smooth of dimension 1|1 if and only Xy is a reduced curve,
O is a Cohen-Macaulay sheaf with full support on Xyes, locally free of rank 1 on
a dense open, and O, - Oy, = 0.

Proof. (i) It is enough to check the vanishing of the corresponding local coho-
mology HY,(Ox) = H%(F) fori=0, 1 (resp., for i = 0). But this follows from [20,
Exp. VII, Cor. 1.4].

(i1) Otherwise, in some neighborhood of a point in X the kernel of this mor-
phism would be a nonzero subsheaf of wy/,s with finite support over S. So we
would get a nonzero morphism

Oz = wx/g =7 Og[—1],

with Z finite over S. By adjunction of the pair (7,,7"), it would correspond to a
nonzero morphism 7.0z — Og[—1] which is impossible.

(ii1) This follows easily from the interpretation of the Cohen-Macaulay con-
dition for a superring in terms of the even and odd components given in [27,
Lem. 7.5]. [l

Supercurves with punctures over even bases can be described in purely even
terms as follows (cf. [13, Sec. 1.5]).

LEMMA 2.6. Assume that S is even. Then the data of a supercurve (X, P,, R,)
over S is equivalent to the following data:

e a flat family of pointed curves (C,pe,rs) over S with reduced geometric
fibers, smooth near the marked points;

o a coherent sheaf L on C, flat and relatively Cohen-Macaulay over S, locally
free of rank 1 over a fiberwise dense open in C;

e an isomorphism

2.5) L;>H(>7m<L,wc(Zn)>.

Under this correspondence one has |C| = | X

>

0% =0¢, Ox=L, wi=uwc, w)}:Hoim(L,wc):L<—Zm>,
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where Oy -Oy =0, Oy -w} =0, and the action map Oy, Quy — w} is identified
with the natural evaluation map. The puncture P; is the image of the composition
S 2 € — X; and R; is the schematic preimage of r; under the projection X — C.
The isomorphism (2.5) corresponds to 6.

Proof. Let us consider the decomposition Ox = (’);} ® Oy into the even and
odd components. Then the bosonic truncation C' = Xpes = (| X |, 0% ) is a family of
curves over S. Every geometric fiber C; is a Cohen-Macaulay curve, with a dense
smooth open. Equivalently, C is a reduced curve. Furthermore, L = O is a coher-
ent sheaf on C' with the claimed properties, by Lemma 2.5 (iii). Conversely, using
the same lemma, starting with (C, L) we get a superscheme over S with required
properties by setting Ox = O¢ & L (where the product L - L is zero in Ox).

The marked points P; : S — X factor through marked points p; : S — C. On
the other hand, the Cartier divisors R; — X induce Cartier divisors r; < C. By
assumption, the latter are also marked points on C'. We claim that R; is exactly the
preimage of r; under the canonical projection 7 : X — C'. Indeed, this immediately
follows from the fact that locally R; is given by an even equation f € O3 = O,
and r; is given by the same equation f in C.

We have a natural identification of O x-modules, compatible with the Z;-
grading

wx = W!w(; = M(Ox,wC).
Taking the odd parts, we get an isomorphism

wy ~ Hom(L,we).

Thus, 6~ induces an isomorphism (2.5). On the other hand, 6% : O¢ — we (D r;) is
induced by the usual de Rham differential (since this is so on a dense open subset,
see Remark 2.3). Hence, we can recover § from the isomorphism (2.5). O

A coherent sheaf L on a prestable curve C'/S equipped with an isomorphism
(2.5) is called a generalized spin structure.

LEMMA 2.7. Let (X, Ps, Ro) and (X', P, R.,) be a pair of supercurves over S,
and let ¢ : X — X' be an isomorphism of superschemes over S, sending P; to P}
and R to R;. Assume that the restriction of ¢ to a fiberwise dense open subscheme
U C X, which is smooth over S, is an isomorphism of smooth supercurves. Then
@ is an isomorphism of supercurves.

Proof. Let j: U — X be the inclusion. By assumption, we have
P wxs(R) ~wx/s(R).

Thus, we can view "0y as a derivation Oy — wx/s(R), and we have to prove the
equality "0y = §x. Since we know that this equality holds over U, the assertion
follows from Lemma 2.5 (i1). O
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We will later need the following result about infinitesimal deformations of su-
percurves.

LEMMA 2.8 ([13, Prop. 1.7]). Let Xy be a supercurve with punctures over C.
Suppose an infinitesimal deformation X of Xo as a supercurve over C[t]/(t*) or
over C[t|, where t is even and T is odd, is trivial as a deformation of a superscheme.
Then it is trivial as a deformation of a supercurve.

Proof. Using the correspondence of Lemma 2.6, we get the data (C, L, o),
where (g is an isomorphism

o : L — Hom(L,wc),
so that Ox, = O¢ @ L. It is convenient to think of ¢ as a map
0o L% = we.

The case of even base C[t]/(t*). In this case we can still use Lemma 2.6 for X.
Since the underlying superscheme is not deformed, this means that only the map
o is deformed to ¢ = g + t¢) for some map ¢ : L — Hom(L,wc). Since g is an
isomorphism, we can write 1) = g o a, where a is an endomorphism of L. Let us
set

a:id+§a:LL>L.
Then on the locus where L is locally free we can think of @ as a function on C, so
a®? =id +ta, and
pooa® =y +tpooa=g,
which implies that this equality holds everywhere, so the data (C,L,¢) and
(C, L, ) are isomorphic.

The case of odd base C[r]. We have to consider possible supercurve structures
§:0x = wyx/g on X = Xg x S over S = Spec(C|r]) reducing to 5 on X, over
C. Extending dp to X by extension of scalars, we can write

d=00+7D,
for some odd derivation D : Ox, — wx,. Let
D()ZOC*)L, DliL—)wC

be the components of D. A simple local calculation shows that the condition for &
to define a supercurve structure on the smooth part of X implies that D, is deter-
mined by Dj.

We want to find an automorphism « of X /S, trivial on Xy, such that 0 is
obtained from §y by conjugation by «. Note that « necessarily has form

a(f) = f+7E(f),
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where E : Ox, — Oy, is an odd derivation. We take & with the components

E0:D0:OC—>L, E']ZOiL-)OC.

An easy ¢ calculation (on a smooth locus) shows that o, dpa ™! = 6y + D produces
D with DO = Dy. Here o, : wx /s — wx g 18 the map induced by . Hence D=D,
as required. U

2.3. Dualizing sheaf on the formal completion. We will sometimes want
to argue “formally locally”, so it will be useful to look at the obtained structure on
the formal completion of Ox , for a supercurve X/S. For this we use the duality
theory for formal schemes developed in [2] (or rather, its superanalog). Namely,
by the results of [2, Sec. 2] (extended to the supercase), we can identify the com-
pletion @x , with the dualizing sheaf for the morphism of formal superschemes
X =5pf(Ox.) — S = Spf(Ds,s), where s € S is the image of = € X. The struc-
ture derivation § : Ox — wx /S induces a continuous derivation

SZOX —>w)g/g,

which is compatible with the derivation ) x,: 0 o WKL Jk(s) where Xs is the
formal neighborhood of x in X§. In particular, this will allow us to make sense of
deformations of supercurve singularities in Section 3.2.

The following formal local description of wx /s will be useful (this is a partic-
ular case of [13, Sec. 1.6]).

LEMMA 2.9. Let S = Spec(R), where R is a local Artinian C-superalgebra;
C = Spf(B), with B = R[Jwy,w;]]/(wiw,); X = Spf(A), where B C A is a finite
extension of superalgebras. Assume that for i = 1,2, there exists an odd element
0; € Alw; '], such that

Alw; '] = R((z1))[6i],
where w; = z§ 4 for some d > 0. Then for every n; € WX/S[ ] fori=1,2, we can
write
i = (ai(2i) + bi(2:)0;) [dz;]db;],

where a;(z;) and b;(z;) are Laurent series. We set Res,—o(n;) := Res,—0 bi(2;)dz;.
Then

wx/s = {(m,mn) € wX/S[wl_l] @wX/S[wz_l] | 1,12 compatible and Va € A,
Reszlzo(am) +Resz2:0(cm2) = 0},

where compatibility of n1 and n, means that they define the same element of
—1
wx/sl(wiwz) 7).

Proof. Since m: X — C'is a finite morphism, we have

(2.6) wx/s =~ Hom(m.Ox,we)g).-
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On the other hand, we have a well-known description of w¢/g(C') as compatible
pairs (11,72), with 7; € weys[zi] such that

2.7 Reszl:o(bm) + RCSZZZ()(bnz) =0,

for every b € B = O(C'). Note that the isomorphism (2.6) is induced by the trace
map 7 : T.wyx/s — Weys, Whose localizations on wy /g [w; 11 are given by

T([a(z;) +b(2;:)0:)[dz;|d0;]) = b(z;)dz;.

The identification of wx,g(X) with Homp(4,wc/s(C)), sends n € wx/s(X) to
the map A — we,5(C) 1 a— 7(an).

Now we use the fact that 7(an) is determined by the localizations 7(an;),
i = 1,2, where 7; € wy/gs[w; 1], which should satisfy the sum of residues con-
dition (2.7). It follows that 1 is determined by 7;, ¢ = 1,2, which should satisfy the
condition

Res,—o(b7(a-m1))+Res,,—o(br(a-1m2)) =0

forany a € A, b € B. Since 7 is B-linear we can absorb the multiplication by b, so
we obtain the claimed characterization. O

2.4. Local descriptions.

2.4.1. Smooth supercurves with punctures. It is well known (see e.g.,
[26, Lem. 1.2] or [16, Lem. 3.1] in the absolute case) that locally in classical topol-
ogy near a point of a smooth supercurve, there exist relative coordinates (z,6) such
that D is generated by D = 0y + 60, and § is given by §(f) = D(f) - [dz|df]. We
show that the same assertion holds with respect to the étale topology and also con-
sider an analogous statement for the case of Ramond punctures (cf. [7, Prop. 3.6]).

LEMMA 2.10. (i) Let X/S be a smooth supercurve and let (z,0) be a pair of
even and odd local functions such that dz and df generate the relative cotangent
bundle near a point p € X. Then there exists another pair (w,n) like this defined
in an étale neighborhood of p, with w = z mod N, such that D is generated by
Op +n0y.

(ii) Now let X /S be a smooth supercurve with a Ramond puncture R C X, and
let (z,0) be a pair of even and odd local functions such that dz and df generate
the relative cotangent bundle and such that the ideal of R is generated by z. Then
locally in étale topology there exist a change of coordinates to (w,n), with w =
z mod N, such that D is generated by Oy + nw0,,.

Proof. (i) Let D be generated by an odd vector field D of the form D = fdy +

g0,. One has
1

E[D,D] = fag(g) . az mOdNXTX/S.
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Note also that modulo nilpotents D reduces to fdy. Hence, in order for D and
[D, D] to generate Tx /g both f and 0y(g) should be invertible.

Thus, we can assume that D is generated by some vector field of the form
D = 0y + g0, where g = g1(2) + go(z)6, with gy even and g; odd. Furthermore,
go 1s invertible. Let us look for w and 7 in the form

1= ao(z) -0,
w=z+a1(2)0,

where ay is invertible even and a; is odd. Changing to the new coordinates we get
D = [ao + gagb]0y + [—a1 + g(1 +a}0)]0w.
In order for D to be generated by 0, +1J,, we need the equation
—ay +g(1+a\0) = (ag+ gayh) - aph
to be satisfied. This is equivalent to the system

—a;+g1 =0,

9o+ g1} = ag.
Since gy is invertible, in an étale neighborhood we can choose ag such that a% =
g0+ g19}. This ag together with a; = g¢; is a solution.

(ii) Let D = f0p + g0, be a generator of D. From the calculation in the begin-
ning of part (i), we get an isomorphism

(Tx/s/DP+[D,D]) @ Ox,,, ~ Ox,,,/(f06(9)) - 0: ® Ox,,./(f) - Do

where Oy, . = Ox/Nx. Thus, this sheaf surjects onto Ox,  /(f) ® Ox,../(f)-
Since this quotient has to be isomorphic to Ox /(Nx + (z)), we deduce that f is
invertible modulo A/, so f is invertible.

Thus, we can assume that D is generated by D = 0y + g0, where g = g1 (2) +
go(2)6. Then we have

1

5D, D] = [90+ 9191 + (9190 — 9091)0] - 02,

where f’ denotes the derivative with respect to z. In order for the commutator map
D2 — Tx,g/D to vanish exactly on the divisor (z) we should have

9o+ 9191 + (9190 — 9091)8 = 2(uo(2) +u1(2)0),
with ug invertible. In other words,

90 +919§ = ZUop,

(2.8) S
9190 — ogi = zu1.
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We claim that this implies that g; is divisible by z. Indeed, let us write

go =po+qoz mod (22)7
g1 =p1+qz mod (zz),

where p; and g; are functions on the base. Note that since g; is odd, from the first of
the equations (2.8) we get that g is invertible. Also, looking at the constant terms
of these equations we get

po+p1g1 =0,
190 — pogq1 = 0.

This implies that
pi1(q0+47) =pigo=0.
Since qp is invertible, we deduce that p; = 0 which proves our claim that g; is
divisible by z.
Now we are going to make the same change of coordinates as in (i) with an
additional constraint that a; is divisible by z. Since nw = agz6, we have to solve
the equation

—ay +g(1+a\0) = (ag+ gayh) - apz0,
or equivalently, the system
—aj +gl = 07
go+gi1a} = adz.

Thus, we get the solution by taking agp to be the square root of ug and a; = g
(which is divisible by z2). O

Definition 2.11. We refer to (w,n) as in Lemma 2.10 as standard coordinates.

By Example 2.2, if (z,60) are standard coordinates on a smooth supercurve
(away from punctures) then the canonical derivation is given by

6(f) = (0 +00.)(f) - [d=|d6).

On the other hand, if (z,6) are standard coordinates near a Ramond puncture then
dz
0(f) = (09 +020:)(f)- | —1db |-

2.4.2. Nodes. In the rest of this subsection we consider only the absolute
case, i.e., S = Spec(C). Let X be a stable supercurve over C. We denote by (C, L)
be the underlying generalized spin curve, and fix a node ¢ € C. Recall that by
definition X is required to be Cohen-Macaulay (CM). Using the classification of
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CM sheaves of rank 1 on the nodal singularity (see e.g. [21, Sec. 1]), we obtain that
there are two possibilities for L:

e [ islocally free near q. Then we say that this is a Ramond node (or R-node).

e [ is the push forward of a line bundle on the normalization of C' near q.
Then we say that this is a NS node.

Furthermore, we have the following local descriptions near the nodes (see
[13]), where the description of the generators wx,g follows from Lemma 2.9.

e Near a Ramond node X has coordinates (z1,22,60) (where 6 is odd) subject
to z12zp = 0. The complement of the node is the union of two branches U; and U,
where z; is invertible on U;, and wx is free with the basis b given by

[@|d9} on Uy,
—[dZ—ZZZ\dG] on U>.

The derivation ¢ is given by

_ J (9o +0210:,)(f)-b onUi,
o= {(39 —020,,)(f)-b onU,.

e Near an NS node X has coordinates zi, 23, 01, 65 subject to the equations
z120 = 2102 = 201 = 6,6, = 0.

The complement of the node is given again as the union of two branches U; and
U,, where z; is invertible on U; and (z;, ;) form coordinates on U;. The generators
[dz1]|df1] and [dz|dB,] of wy, and of wy, extend to sections s; and s, of wx (zero
on another branch), however, they do not generate it: there is an extra section

o Z—;[dzl\d&] OIlU],
"7\ -&[dz)d6s] on Us.

The derivation 4 is given by

5(f) {(ael +610.)(f)-s1 only,
(O, +6020,,)(f)-s2 onU,.

Remark 2.12. The notions of NS node and NS puncture (resp., Ramond
node and Ramond puncture) are related via the gluing construction that will be
discussed in Section 7. Namely, two prestable supercurves with NS punctures
(X1,P), (X2, P,) can be glued along their NS punctures forming a new prestable
supercurve with an NS node. Similarly, one can glue two Ramond punctures into
a Ramond node.
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2.5. Correspondence between NS-punctures and divisors. Here we re-
call a natural correspondence between NS-punctures P C X and effective Cartier
divisors D supported at P, for a smooth supercurve X /.S (with arbitrary base .5),
see [5,28]. Note this correspondence only uses a neighborhood of P in X, so it can
also be applied for stable supercurves with punctures of both types, i.e, for each
NS-puncture P; we have a natural Cartier divisor D; supported at F;.

It is based on the fundamental fact that for a smooth supercurve X/S, the
composed map

(2.9) Tx)s = Txys = Txys/D =~ DY~ W?{?S

is an isomorphism of sheaves, where 7}‘}; g C Tx/s is the subsheaf of superconfor-
mal vector fields (those preserving D). Indeed, the proof is easily obtained from
the existence of standard coordinates as in Lemma 2.10 (see [26, Lem. 2.1]). We
denote by

.2 ~ sc
Qi Wyg —7 Ix/s

the inverse isomorphism.

Definition 2.13. We say that an effective relative Cartier divisor D C X corre-
sponds to an NS-puncture P C X if D is supported at P and the following property
holds. If the ideal of D is generated locally by a function f then the ideal of P is
generated by (f, A(f)), where A is any generator of the distribution giving the su-
perconformal structure. Note that in this case we necessarily have an inclusion of
subschemes P C D.

The existence and uniqueness of a divisor D corresponding to an NS-puncture
P is easy to check using standard coordinates (z,6). Namely, with respect to such
coordinates the ideal of P has form (z,0 — a), for some odd function a on the base.
Then corresponding divisor D is given by the ideal (z + af). In the next lemma we
give a coordinate-free characterization of this correspondence.

LEMMA 2.14. For a smooth supercurve X /S and an NS-puncture P C X there
exists a unique effective relative Cartier divisor D, such that the following square
is commutative

) (07
Wyx/s — = X/
(2.10)

w)_<55|D — Txyslp

where ( is an isomorphism of sheaves of Og-modules. Furthermore, the divisor D
corresponds to the NS-puncture P in the sense of Definition 2.13.
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Proof. Letap: w;& s = Tx/s|p denote the composition of o with the projec-
tion to Ty, s|p. The commutativity of the square (2.10) together with injectivity
of 3 imply that the kernel of ap is exactly the subsheaf w;j s(=D)C w;& - This
shows the uniqueness of D.

Now let us construct 3 and show the commutativity of (2.10) for P given by
the ideal (2,0 —a) and D given by the ideal (z + af), where (z,0) are standard
coordinates and a is an odd function on the base. Note that the isomorphism o
locally has form

1
F02 e 0o+ S (-DVIA() - A,
where A = 0y + 00, and b = [dz|df)] is a generator of wx (see the proof of [26,
Lem. 2.1], where however the factor % is missing). It is easy to see that

ap((z+ab)f-b2) =0,

while ap(b~2) and aup(#-b~?) form an Og-basis of Ty/s|p. Since b~ and 6-b~>
project to an Og-basis of w;& S\ D, this shows that the assertion holds with

B ) =apd?), BO-b ) =ap® b ?). O

Note that since the composition P <— D — S is an isomorphism, the compo-
sition Og — Op — Op = Op/(Ip/Ip) is an isomorphism, which means that we
have a canonical splitting

2.11) ODEOSEBIP/ID.
We will use this splitting later (see Remark 8.10).

COROLLARY 2.15. The map (2.9) induces an isomorphism of sheaves

x.p)s — (Txs/D)(=D) =~ w;&S(—D),

where ’78? p)/s C 7}2’? g IS the sheaf of superconformal vector fields preserving the
ideal of P.

Proof. This follows from the fact that the map « induces an isomorphism of
the kernels of the vertical arrows in the commutative square (2.10). The kernel of
the left vertical arrow in this square is w;& g(=D), while the kernel of the right
vertical arrow is 78? P)/s" O

Remark 2.16. For a general smooth family X — S of relative dimension (1|1)
there is a canonical dual family X — S, parametrizing ilireducible Cartier divisors
in the fibers of X — S (see e.g., [5]). The double dual X is canonically identified
with X. The superconformal structure on X/S can be viewed as an isomorphism
of X with X.
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2.6. Supercurves over even bases and spin curves. If we only consider
even bases, the functor of (stable) supercurves with punctures coincides with the
functor of stable curves with punctures equipped with generalized spin structures
i.e., coherent sheaves L as in Lemma 2.6. Note that in the setting of Lemma 2.6
we still refer to the two kinds of marked points p, and 7, and NS and Ramond
punctures.

The moduli stack S, .ny Of stable spin curves of genus g with nyg NS-
punctures and nr Ramond punctures (where ng is necessarily even) was studied
in [22, 23], as a particular case of the stack of stable r-spin curves. In particular,
it was shown to be a smooth proper Deligne-Mumford stack. Note that for » > 2
there are different versions of the functor of stable r-spin curves, however, in the
case r = 2, they all coincide (see [21]).

Let us recall how the generalized spin structures over stable curves look like. A
generalized spin structure L over a smooth curve C' with punctures is a line bundle
L equipped with an isomorphism

L*~wo(ri+-+rp),

where (7,) are the Ramond punctures.

Now let (C,pe,7) be a stable curve, and let p : C — C be the partial normal-
ization map, resolving a single node ¢ € C'. Let us equip C with punctures in the
following way: first, it inherits all the punctures (NS and Ramond) of C'. Secondly,
we mark the two points in p~!(q) as two NS (resp., Ramond) punctures on C if q
is a NS (resp., Ramond) node on C'.

For a generalized spin structure L over C' let us define the sheaf Lon C as the
quotient of p*L by the torsion subsheaf. Then L is a line bundle on C and L is a
generalized spin structure on C with NS and Ramond punctures defined as above.

More precisely, if ¢ is a Ramond node then L is locally free near ¢, so p*L is
still locally free on Cand L= p* L. If ¢ is an NS node then L is locally isomorphic
to the ideal of the node, so p* L acquires a nontrivial torsion. A local computation
shows that the quotient L of p*L by the torsion subsheaf is locally free, and the
composition of the natural maps L — p,p*L — p*z is an isomorphism.

Remark 2.17. The coarse moduli of the stack S, 4.n, considered in [22,
23] gives the same compactification of the classical moduli space of spin curves
as the one constructed by Cornalba [11]. On the other hand, there is a different
moduli stack constructed in [1] (which gives the same coarse moduli as the other
constructions), where stable curves are replaced by certain stacky curves. We will

not use the latter moduli stack in this paper.

3. Deformations. In this section we will study the deformation theory of
stable supercurves (with punctures). In particular, we will prove that the deforma-
tion functor of a stable supercurve is smooth and will compute its tangent space.
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3.1. Deformation functors on Artin superalgebras. The development of
deformation theory in the super context goes back to [31], see also [27, Sec. 7.1.9].
We consider the category Artc of local Artinian C-superalgebras with the residue
field C. Recall that a surjection A — B is called a small extension if

mker(A — B) =0,

where m is the maximal ideal in A. Every surjection in Artc is a composition of a
finite number of small extensions.

We apply some standard results of deformation theory (say, those in [18]), or
rather their superanalogs (which are straightforward to prove). Recall that for a
set-valued functor F' on Artc such that F/(C) = {x}, and for morphisms A" — A,
A" — Ain Artc one has a natural map

(*) F(A x4 A") = F(A") X pa) F(A")

One considers the following Schlessinger conditions on F:

(H1) The map (%) is surjective if A” — A is a small extension;

(H2) The map (%) is an isomorphism if A= C and A” — A is a small extension.

We refer to functors satisfying (H1) and (H2) as deformation functors. Such a
functor F is called smooth if F(A") — F(A) is surjective for any small extension
A" — A. More generally, a morphism of deformation functors F' — G is called
smooth if for every small extension A" — A in Artc, the natural map

F(A) — G(A) Xaa) F(A)

is surjective.
Note that the tangent space t to a deformation functor F'is defined as the sum
of even and odd components given by

ty =F(Cld/e}), tp=F(Clr]/r),

where € is even and 7 is odd. Elements of t; (resp., 1) are referred to as even
(resp., odd) infinitesimal deformations.

A morphism hp — F' from the functor hp pro-representable by a Noetherian
complete local C-algebra C to a deformation functor F, is called the hull of F' if it
is smooth, and the induced map on tangent spaces is an isomorphism. In this case
we also say that the corresponding deformation over R is miniversal.

3.2. Miniversal deformations of the nodes. In this subsection, following
Deligne [13], we describe miniversal deformations of two types of nodal singu-
larities of prestable supercurves. First, we give a precise definition of what do we
mean by deformations of supercurve singularities.



THE MODULI SPACE OF STABLE SUPERCURVES 1797

Definition 3.1. Let A/C be the completion of the local ring of a singular point
on a supercurve over C, so it is equipped with a derivation d4 : A — wspr(4)/C
(see Section 2.3). By a deformation of A over a local Artinian superalgebra R we
mean a flat R-superalgebra B equipped with an isomorphism B®rC ~ A, and a
derivation 6 : B — wspg(p)/ . inducing 0 4 under the reduction with respect to the
homomorphism R — C.

We begin by describing two families of supercurves over S = Spec(C[t]),
where ¢ is even.

3.2.1. Ramond node. Define X/S as a subscheme of the affine space S x
A2 over S with coordinates 21, 23, 6, given by the equation

212y =t.

Note that we have a natural trivialization b of wx /g.
Over the open subset where z; # 0 (resp., 2o # 0), we have b = [dZ—Zl‘ |df] (resp.,
b= [—dz—?\da]), and 0 is given by (O + 0210z, ) - b (resp., (0p — 0220.,) - b).

3.2.2. NS node. Define X/S as a subscheme of the affine space S x A2
over S with coordinates z1, z3, 01, 62, given by the equations

(3.1 2120 = —12, 2100 =10, 20, = —tb, 6,6, =0.
Over the chart where z; # 0 (1 = 1,2),
(3.2) 3(f) = (Op, + 0:0,)(f)[dz:]db;].

Remark 3.2. We follow the choice of signs in [13] in the equations (3.1). Note
that one can get rid of signs replacing z; by —z; and #; and —0;. As was pointed
out by the anonymous referee, there is a natural way to see this deformation of the
NS node as a quotient of the Ramond node deformation z;z, = t by the Z;-action

Z1 = —21, 2t —2, 60— —0.

Namely, the algebra of functions on this Z;-quotient is generated by Z; = z12
7y = z%, O = z10 and ©, = 2,0 subject to relations obtained from (3.1) by chang-
ing all signs to +.

The following result is proved in [13]. For the convenience of the reader we
provide the proof below, with some details elaborated.

THEOREM 3.3. The families over C|[t] induced by the above two families are
miniversal deformations of the completed rings of the two types of nodes.
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Proof. Let us denote by X the formal spectrum of the completed algebra R
of one of the two types of nodes over C (see Section 2.4.2). We denote by F' the
functor on Artc of deformations of X as a formal supercurve (see Definition 3.1).
It is easy to see that this functor satisfies (H1) and (H2). Namely, in the context
of (H1), if X/A (resp., X'/A', X" /A") is a deformation of X, over A (resp.,
A', A”),then O := Ox' X 0 xOxr can be viewed as a superscheme deformation
X of X over A:= A’ x 4 A” inducing X’ /A’ and X" /A" . Furthermore, the map

OX’ XOX XOX/I —)(,UX//A/ XwX/AO.)X///A// ’:OJ)Z/A“

induced by the supercurve structures on X’'/A" and X" /A", gives a supercurve
structure on X / A. This proves the surjectivity needed for (H1). In the case A =C,
if X is any supercurve over A’ x A”, let X'/A’, X" /A" be the induced supercurves
over A" and A”. Then we have the induced map

(07 Of( — OX/ XOXO OX//

compatible with the supercurve structures. Since both algebras are flat over A’ x A”
and the map of algebras over C, induced by ¢, is the identity map on Ox,, o is an
isomorphism. This proves (H2).

It is enough to prove in both cases triviality of odd infinitesimal deformations
and the fact that the space of even infinitesimal deformations is a 1-dimensional
space with generators coming from the above families over C[t]. Indeed, assume
we know this. We have a natural morphism G — F' from the functor G prorepre-
sentable by C|[[t] corresponding to one of our two families, and by assumption, the
map of tangent spaces tg — ¢ is an isomorphism. Since the functor G is smooth,
this implies that the morphism G — F' is smooth (and so G — F' is a hull of F,
i.e., our deformation over C|[t] is miniversal).

Namely, let A — B be a small extension with the kernel I. Then as is well
known, there exists a natural transitive action of tr @c I on every nonempty fiber
of the map F'(A) — F(B) (and similarly for G). Given zp € G(B) mapping to
yp € F(B), together with a lift y4 € F(A) of yp, we need to find x4 € G(A)
mapping to both 2 and y4. For this, first, we can find some z/y € G(A) lifting
zp € G(B). Let ¥, € F(A) be the image of 2/y. Then y/; is in the same fiber
of F(A) — F(B) as yg4, so it is obtained from y4 by the action of an element
z €tg®c I ~tp@c I. Now we define z 4 to be the element in the fiber of G(A) —
G(B) over z g, obtained from z’ by the action of —z.

Thus, we are reduced to calculating the infinitesimal deformations. The calcu-
lation below is from [13, Sec. 3]. First, we calculate the space T! .= TIEL /C of first-

order deformations of our superalgebra R over C as Ext' (Lp /e, R), where L ¢ is
the cotangent complex. The latter is computed using a presentation of R = S/I as
the quotient of a super polynomial ring S, and a presentation I = coker(F; — Fp),
where F and Fj are free S-modules. So the generators (e;) of Fy correspond to
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generators (f;) of the ideal I, while generators of F} correspond to syzygies be-
tween f;. Then T'! is given by the cohomology in the middle term of the complex

Homg(Qgc. R) s Homg(Fy, R) -2 Homg(F}, R),

where the first arrow sends a derivation D : S — R to the map e; — D(f;).

In the case of the Ramond node, we have a single (even) relation z12, = 0
and no syzygies, so T is identified with the quotient of R by the partial deriva-
tives of 212, so the space T'! has dimension (1,1). The corresponding universal
deformation of the first order is given by the relation

(3.3) z1zp=1t+70

over C[t,7]/(t?,t7) (where t is even and 7 is odd).
In the case of the NS node, we have four relations

=212, ¢1=26 o¢r2=unb, g=00;
and 4 generating syzygies
or=01f—21¢2, oa=0f —2¢1, si=z19—01¢1, s2=29+02¢2.

Thus, with respect to the dual bases of Homg (F;, R) and the basis 0., 0.,, Oy, , Og,
of HomS(QS/@, R), the maps dy and d; are given by

z z 0 0 066 0 —z O
g — 6 0 0 =z g — b —2 O 0
1o 6 o " "0 -6 0 2z
0O 0 6, —6; 0 0 0, =

We need to calculate ker(d;)/im(dp).

For v = af* 4 bo} + c¢5 + dg* € ker(d;), where a,b,c,d € R, one has
z1d = 01b, and z,d = —0,c. This implies that d = 6,d; + 6,d,. Hence, modifying
v by do(Jg,) and dop(9p,) (the last two columns of dy), we can make d = 0. Let
H C Homg(Fpy, R) denote the span of f*, ¢} and ¢5. We proved that

ker(d;) =ker(d;) N H +im(dp).

Hence,

ker(d;)/im(dp) =ker(d;) N H/im(do) N H.
Note that do(p0., + 10, + s0p, +t0g,) € H if and only if 6,s = 6,¢, which is
equivalent to s,t € (61,6,). Since do(010p,) = do(620s,) = 0, we obtain that

lm(do) NH= dO(Razl +r8Z2 +02891 +01(‘992).
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Next, for a f* +b¢; + co; € ker(d;) we have zic € (01), 22b € (6,), which im-
plies b,c € (61,602). Thus, adding multiples of dy(0;,) and d;(9.,), we can assume
b€ (01), c € (62). Then the condition to be in ker(d; ) reduces to a € (61,6,). This
identifies 7! with the quotient of the space of af* + bg} + c¢3 with a € (61,62),
be (01), c € (62), modulo the submodule generated by 6»d;(0s,), 61di(0,),
d1(0p,) and d;(0p,). Thus, the quotient is 4-dimensional with the basis

glf*7 62f*7 61¢>{7 92(725;

In other words, the universal deformation of the first order is given by the
relations

B4 zizmp+1014+m0,=0, z10,+t101=0, 20,+t0,=0, 6,6,=0

over (C[tl,tz,ﬂ,fz]/(t%,tltg,t%), where ¢, ty are even and 71, 7 are odd.

By Lemma 2.8, the tangent space ¢ to our deformation problem is a subspace
in 7, and over the restriction of the above family to ¢, we have a derivation
d: Ox — wy/g deforming the derivation dy on the special fiber X¢. From now
on we denote by X/S the formal superscheme given by either (3.3) or (3.4) over
the superscheme S = Spec R, corresponding to an (even or odd) 1-dimensional
subspace in T''.

Let U;/S denote the localization of one of the families (3.3) or (3.4) obtained
by inverting z;, for i = 1,2. Then we have O(U;) >~ R|[z;,0;], fori = 1,2, so wy, /s
is a free O(U;)-module with the basis [dz;|df;]. On the other hand, it is easy to
see that in both cases we have z%z% = 0, so the corresponding algebra is a finite
extension of R[wy,ws]/(wiw,), where w; = z?. Thus, by Lemma 2.9, we can
characterize the pairs wy € wy, /g, w2 € wyy, /g corresponding to the global sections
of wx/g by the condition

(3.5) Res.,—o(fiw1) +Resz,—o(fowz) =0

for any global function f € Ox with restrictions fi = f|v,, f> = flu,-

Our strategy will be to extend dy to a pair of compatible derivations dg ; : Oy, —
wy, /s> @ = 1,2, and then to see whether there exists a pair of compatible derivations
(01,02), with §; vanishing over U; N X, such that (do,; + 1,002 + 92) takes Ox to
wx/g (we know that such (d1,6,) exists if and only if S corresponds to the linear
(super)-subspace of t z C T''.) We will construct the extension do,1 on U using the
original formulas for Xy, and then will find a compatible o> using equations (3.3)
and (3.4).

Case of Ramond node. In this case we just have to check that ¢, is zero. In
other words, we have to consider the family given by 212, = 76. Note that wy /g is
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free is one generator b, such that

dz dz
b|U1 = |:z1|d9:|, b‘U2 = [_ Zz\d&] .

The derivations &y ; : Oy, — wy, /g are given by f + Do ;(f) -b, where

Do1lu, (f) = 0p+6210;,, Dy >

U, (f) = a@ - 9Z2azz'

We need to check that there are no compatible derivations D; : Oy,nx, —
Ou,nx, such that (Do 1 +7Dy, Do 2+ 7D;) sends Ox to Ox. For this we observe
that

T
Z]|U1:Z1, Z1|U2:;2'9'

Hence,
-
D0»1(21)|U1 = 9217 D072(21)|U2 = Z—z

Note that D, (z) is zero on U, N X (since z; vanishes on U, N X)), hence (Do 1 +
7Dy, Do2+7D>)(21) would be a global function on X, whose restriction to U is
equal to ZLZ, which is impossible.

Case of NS node, odd deformations. Again we want to check the vanishing
of t-. We know that ¢}, is a subspace of the 2 dimensional odd vector space (1)~
corresponding to the odd part of the family (3.4). Note that we have an action of
G2, on the NS node X, so that the weights of the generating functions are

wt(0;) = (1,0), wt(6) =(0,1), wit(z1)=(2,0), wt(z)=/(0,2).

The subspace t is invariant under the induced G2, -action on (T'')~. Since the
weights of 71 and 7, are

wt() = (1,2), wt(m)=(2,1),

we see that if ¢, is nonzero, it coincides with one of the coordinate lines in (7' H-.
Thus, it is enough to study the restriction of the family (3.4) to the 7 direction:

21z =T1101, 2160 = 2001 = 6016, =0.
Using the description of the global sections of w5 as pairs
(wi,w2) € wy, /s BWy, /5

satisfying the residue condition (3.5), we can lift the generators of wy, to global
sections of wy. Namely, the generator s; = ([dz1|d#,],0) can be lifted to

~ 0
S1 = ([dzl ‘d@]], —T1 Z;[dzﬂd(gz])
2
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(one has to apply the residue condition to the global function 23). On the other
hand, the generator s, = (0, [dz;|d6;]) on X lifts to the same pair on X that we
denote s, and the generator

S = <91 [dZ1|d91]

21

o [dz2|d92]>

2
,——
22

on X lifts to the same pair on X that we denote s.
The derivations do; : Oy, — wy, /s, for © = 1,2, are still given by the for-
mula (3.2). We need to show that for any choice of compatible derivations

0; ¢ OU«; —>in/5, 1=1,2,

the pair (do,1 + 7101, 0,2 + 7102) does not take Ox to wx/s- Note that

~ 0
(801:002)(61,0) = (a1 d811,0) =51 + 7 (0, S ] ).
2

Hence, if (do,1 4 7101,00.2 +7102)(01,0) € wx /g and d1(01) = 1, then we would
get

0
<771, i[dzﬂd@z}) CEwxy/s,
&)
with 7, regular on Uy, which is impossible by the above description of wx /g.

Case of NS node, even deformations. In this case we work with the first-
order deformation

2122 =0, 216 =101, 201 =100, 6,6,=0.
We have to check that the equation ¢; +¢, = 0 on .S is necessary in order for this

tobeintp.
The generator s; (resp., s2) of wy, /g lifts to

~ 1 - 1
51 = ([d21|d91]7—t122[d22’d92]> <resp., 5y = (—tzz][dzlfdel]a [dzz\d92}>>7

while the generator s lifts to the same pair on X that we denote s.
The derivations do; : Oy, — wy, /s, for © = 1,2, are still given by the for-
mula (3.2). We have

0 1
(90.1,802)(61) = (0.1,80.2) (91 @5) _ ([dzl \del},tzzz[dmdez])

- 1
=51+ (t1+t2) (0, z[dz2|d92]> ,
2
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Suppose (do,1 + t101 + 1261, 00.2 + 1102 +1205)(01) € wx/g. We have

)
(161,152 (61) = (t151<91>,t152 (t)) _ (tim,0),
(t201,t205)(01) = (t217',0),

where we used the relations ¢t; = t% = 0. Hence, we get

1
(tm +tan, (11 + tz);z [d22|d92]> € wx/s,

with n), 7’ regular on U}, which is impossible unless ¢} +¢, =0 on S. g

COROLLARY 3.4. The functors of deformations of both types of nodes are
smooth.

Proof. Indeed, the functor G prorepresentable by C[[t] is smooth. Since the
morphism of deformation functors G — F' is smooth (where F' is our deformation
functor), this implies that F' is smooth. U

The result on formal deformations implies in a standard way (essentially via
Artin approximation techniques) the following étale local description of neighbor-
hoods of singular points in families of prestable supercurves.

LEMMA 3.5. Let X — S be a prestable supercurve, where S is of finite type
over C. Then for any node q in a fiber X over s € S, there exists an étale neighbor-
hoodV of s in S, such that for each preimage q' of q in Xy, there exists a morphism
t:V — Al such that étale locally near ¢' the family Xy — V is identified with the
pull-back under f of the standard NS-node or Ramond-node deformation over A'.

Proof. This is proved in [27, Prop. 7.10]. The key idea (also used in Artin
approximation) is to use a presentation of the formal completion as an inductive
limit of smooth algebras given by Popescu’s theorem. U

3.3. Sheaf of infinitesimal automorphisms. For a moment let us consider
only supercurves over the point base Spec(C).

Definition 3.6. We define the Z;-graded sheaf of infinitesimal automorphisms
A of any geometric structure of the form (superscheme over C plus extra structure)
as follows. The even part A" is given by automorphisms of the trivial family of
these structures over C[e]/(€?), where ¢ is even, trivial modulo e. Similarly, the
odd part A~ is given by automorphisms of the trivial family over C[r]/(7?), where
T is odd, trivial modulo 7. For example, the sheaf of infinitesimal automorphisms
of a superscheme is exactly the tangent sheaf.
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For a stable supercurve (X, P,, R,) over C, we denote by
Ax p, r, CTx

the sheaf of its infinitesimal automorphisms (where 7Tx is the sheaf of super-
derivations from Ox to Ox). Note that the space of locally trivial infinitesimal
deformations of (X, Py, R.) is H' (X, Ax p, r.)-

LEMMA 3.7. Let (X, P., Rs) be a stable supercurve, j : U — X a smooth
locus. Then A(x p, r.) is identified with the subsheaf of j.Au p, r, consisting of
those derivations of Oy that send Ox to Ox.

Proof. Note that Ox is a subsheaf in j,Op, hence the sheaf Tx of derivations
from Ox to Ox, can be identified with the subsheaf in j,7;; consisting of deriva-
tions of Oy sending Ox to Ox. Now the assertion follows from Lemma 2.7 (ap-
plied to automorphisms of X x Spec(C[e]/(€?)) and X x Spec(C[7]/(7%))). O

Definition 3.8. Now let us consider the relative situation, i.e., consider a stable
super curve with punctures (X, P,, R,) over any base S. We define

Axss =Ax,p.r)/s C Txys

as the subsheaf consisting of derivations v in T /g preserving the punctures and
preserving the distribution D over the smooth locus. We still call Ax /g the sheaf
of infinitesimal automorphisms.

In the case S = Spec(C) this agrees with our previous definition. Indeed this
follows easily from Lemma 3.7 which states that A x is the intersection of Tx with
J«Au in j.Ty. Note however that the formation of Ax /g is not compatible with
the base change in general.

In the smooth case we have the following useful identification of the sheaf of
infinitesimal automorphisms over an arbitrary (not necessarily even) base.

PROPOSITION 3.9. Let (X, Ps,R,) — S be a smooth supercurve with punc-
tures, where (P;);cr are NS punctures and (R;)jcj are Ramond punctures. Then
one has a natural isomorphism

Axparyys = T s = wxss (=D Di=2)_Ry),
el jed
where D; C X is a divisor associated with the NS puncture P; (see Section 2.5).
Proof. The first isomorphism corresponds to the fact that the Ramond punc-
tures are recovered from the distribution D C Tx/s as the vanishing divisor of the

Ox-linear map
82 — TX /S / D
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induced by the Lie bracket. Thus, if a relative derivation on X /.S preserves D and
the NS punctures then it also preserves the Ramond punctures.
Next, we observe that there is a natural isomorphism

Tx/s/'DZ'DZ(ZRj) gw;(ﬁs(—ZRj).

(see (2.2) and (2.3)). It remains to check that the natural map 78? Py/s Tx/s/D
induces an isomorphism

(X.P))s TX/S/D< Z]D Z;Rj)-
1€ ViS

This is a local question which is well known away from the punctures. Near the
NS puncture this is Corollary 2.15, while near the Ramond puncture this is proved
in [7, Prop. 3.12] using standard coordinates (see Lemma 2.10). O

In the case when the base is a point it is useful to rewrite the result in terms of
the corresponding spin curve.

COROLLARY 3.10. Let (X, P, Rs) be a smooth supercurve over C with the
underlying spin curve (C, L,ps,7s), where L* ~ wc (> r;). Then

AX PR, zTg(—ZPi—ZW>a Ax.p. R, ETC@’L(_Z“_ZW)'

Proof. Let m : X — C be the projection. We have wx ~ 7*L(—) ;) (see
Lemma 2.6), so

w)}z ~ ¥ [ 72 <2er> ~71"To (er>.

Hence,
w)_(z(— Zpi —227“]-) o W*TC(—ZM — er)
= OX®OC7-C<—ZM—ZTJ‘>.
Considering even and odd parts we get the result. O

3.4. Sheaf of infinitesimal automorphisms for stable supercurves. The
following local analysis of the sheaf Ax p, g, is from [13] (we corrected a misprint
in the case of the Ramond node).

Ramond node. Locally near such a node, we have Ox = O¢c @ L, where L is
locally free, L®? ~ wc, and

Ax =Te®Lowg".
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NS node. Let C'= B U B, be the two branches. Each B; is equipped with a
square root L; of wp,. Then Ax = A; & Ay, with

Ai =Tp,(—qi) ® L; ® Tp,(—ai)

We can also determine the sheaf of infinitesimal automorphisms globally and
check the absence of infinitesimal automorphisms for stable supercurves by the
standard count (this is done in [13] for the case of supercurves without punctures).

PROPOSITION 3.11. Let (X, P,, Rs) be a stable supercurve over C with the
underlying stable spin curve (C,L,pe,7s). Let p: C — C be the normalization
with the induced spin structure L (see Section 2.6), and let ()? ,ﬁ.,ﬁ.) be the
corresponding smooth supercurve with punctures.

(1) One has natural a isomorphism

Axpp, = PAS 5 5 = TC ( =D pi— er)

and an exact sequence

09 Axpn = 0 Az p g, D 00
q R-node

where the summation is over all Ramond nodes.
(ii) One has H(X, Ax p, r,) = 0.

Proof. (i) We have a natural morphism

K: -AX,P.,R. — p*A)?f.ﬁ.

which is an isomorphism away from the nodes. Thus, the assertion can be checked
by a local computation near the nodes (so we can forget about the punctures). Near
an NS node we have

Aj( ~pTa(—q1 —q), Ax pi@T(j(—éh —q2),

where {q1,q2} C C is the preimage of the node, so x is an isomorphism.
Near a Ramond node we have

AL ~To = p.To(—a1 — @), Ay ~Lows',

whereas N
A L®w51(—q1 —q) ~p(Lew).
Thus, 7 is an isomorphism, while s~ is an embedding with the cokernel of length
1 supported at the node.
(i1) Since global infinitesimal automorphisms of X embed into those for X, it
is enough to prove the assertion in the case when C' is smooth. We can also assume
it is connected.
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When C' is smooth we have

Ak =Tc<—2pi—2rj>, Ax :L®T¢~<—Zpi—2rj>.
We have L? ~ wc (Y- r;), so
degL=g—1+ng/2,
degL&To (=Y pi=d i) =—(9—1)—nns —ng/2
degTe (=D pi=d_1;) = —2(g—1)—ns—nn.

Note that deg 7o (— > p; — > rj) < 0 by stability of the underlying pointed curve.
Hence,

1
degL®TC<—2pi —Zm) = EdegT(;(—Zpi —er) —nns/2 <0,
SO .Af( do not have global sections. U

3.5. Smooth affine supercurves without Ramond punctures. Let X be
an affine (smooth) supercurve over C.

LEMMA 3.12. For every C-point p € Xy, and every tangent vector vy € T, X,
there exists a superconformal vector field v on X with v(p) = vy.

Proof. First, we claim that there is an exact sequence of sheaves with respect
to étale topology

0— Ax,p — Ax, = :1,X0— 0

where Ax, = T)f-g Indeed, for this we need to check the surjectivity of the last
arrow. Locally in étale topology the distribution D C Tx, has a generator D =
O + 00, (see Lemma 2.10). Then the vector fields D — 20D? and D? are super-
conformal and restrict to a basis of 7}, Xo.

Next, we observe that Ay, , is isomorphic to a coherent sheaf on X (see
Proposition 3.9). Hence, H'!(Xy, Ax, ,) = 0 and we deduce the required surjectiv-
ity of the map H°(Xo, Ax,) — TpXo. O

LEMMA 3.13. Let A — A/I = B be a small extension in Artc, X a super-
scheme over C, Ey a vector bundle on Xy, Dy C Ey a subbundle. We denote by

(XB = X X Spec(B), Ep=B®ckEy, Dp= B®(CD0)

the trivial deformation of these data over B. Consider X 4 = X x Spec(A) with
the vector bundle Ex = A @c Ey. Then subbundles D4 C E 4 reducing to D C
FEp over B are in natural bijection with homomorphisms of bundles Dy — I Q¢
(Eo/Dy) over X,.
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Proof. Since mI = 0, we have a natural identification
I - Dy~I®ADy~I®c(C®aD4)~1®cDy.

Thus, D 4 is an Ox, ® A-submodule in A ®¢ Ey containing I ®c Dy and reducing
to D modulo I. Furthermore, since D/I- D 4 = Dp embeds into

Ep = (A/I)®c Ey,

we have
DaNI®cEy=1-Dy=1x®cDy.
Let 7 : A®c Ey — B ®c Ej be the projection. Let us consider the O x,-submodule

Dy =n'1®Dy)NDyC A®c Eo.

Since D', contains I - D 4 and 7 induces a surjection from A - Df4 to Dy/I1-Dy=
A®c Dy, we see that

Dy=A-D),

s0 D 4 is determined by D’,.
But D;l is in turn determined by the O x,-submodule

bA = DA/(I@(CD()) C A®@Eo/([®(cD0),

which projects to 1® Dy C (A/I) ®c Ey. We have a natural exact sequence of
O x,-modules

0—)I®(C (E()/Do) —)A@CEo/(I®CDO) — (A/I)@CEO -0

equipped with a spitting 1 ® v — 1 ® v over 1 ® Ej. Hence, we can view D4 as
an Ox,-submodule of I @c (Eo/Dy) & 1 ® Dy, that intersects the first summand
trivially. In other words, D 4 is the graph of a homomorphism Dy — I ®¢ (Ey/ D),
which gives the claimed bijection. O

We consider the functor Def(X() from Artc to the category of sets associating
with A the set of isomorphism classes of deformations of X over A as an affine
supercurve. A deformation of a smooth supercurve (Xo,Dg) over A € Artc con-
sists of a superscheme X 4, flat over A, and reducing to Xy over C, as well as a
distribution D4 C Tx, /spec(4) reducing to Dy. Note that (X 4,D4) will then auto-
matically be a smooth supercurve over A (since both smoothness and surjectivity
of the map (2.1) are open conditions).

Below we will use the fact that a group valued functor on local Artinian C-
algebras, satisfying (H1) and (H2) is automatically smooth (see [18, Thm. 7.19]),
or rather a superanalog of this fact for group valued functors on Artc.
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LEMMA 3.14. Let X¢ be a smooth supercurve over C. Consider the functor
on Artc that associates with A the group Auty(X 4 /A) of automorphisms of X 4 =
Xo x Spec(A) as a supercurve over A, reducing to the identity over C. Then this
functor satisfies (HI) and (H2), hence it is smooth.

Proof. It is well known that for any separated scheme Y{ of finite type over
C the functor of automorphisms of Y{ x Spec(A) over A, reducing to the identity
over C satisfies (H1) and (H2) (see [18, Ex. 7.2]). This result also holds for super-
schemes. Since the functor A — Autg(X 4/A) is a subfunctor in such a functor for
X, it suffices to check condition (H1) for the functor Auty. In the situation of (H1),
set B= A’ x 4 A”, and suppose we have compatible automorphisms «v 4 and a4~ of
X 4 and X 4 as supercurves. Then we know that they come from an automorphism
ap of Xp as a superscheme over B. We claim that o automatically preserves the
distribution Dp := B ®c Dy C B ®c Tx,. Indeed, since Dp = Dy Xp, D 4r, this
follows immediately from the fact that a4 and a4~ preserve the distributions D 4/
and D 4, respectively. U

LEMMA 3.15. (i) Every deformation X 4 of Xy over A € Artc is isomorphic to
a trivial deformation X x Spec(A), with the distribution induced by that on Xy.

(ii) Given a surjection A — B in Artc, and a deformation X 5 of X over A,
any superconformal automorphism of X g = X o X spec A Spec B lifts to a supercon-
formal automorphism of X 4.

(iii) Analogs of (i) and (ii) hold for deformations of an affine supercurve Xy
with an NS-puncture Py C X.

(iv) For a surjection A — B in Artc any superconformal automorphism of
B((2))[0] (with standard 0) lifts to a superconformal automorphism of A((2))[6].

Proof. (i) Let Xo = Spec(Sp), X4 = Spec(S4). Let also m C A be the maxi-
mal ideal (which is nilpotent). We have an exact sequence

0—-mS4y— S4—Sy—0.
In particular, S} is a nilpotent extension of S; in the category of commutative
C-algebras. Since SS’ is a smooth finitely generated C-algebra, by the infinitesimal
lifting property, there exists a section
ot S5 — ST,
which is a homomorphism of C-algebras.
We know that S; is a locally free Sy -module of rank 1. In particular, S is

projective, so we can choose an S(;r -module splitting

oSy =8,
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of the projection Sy — S, where we view S, as an Sy -module via the em-
bedding o*. Furthermore, we claim that o~ (S;) -0~ (S;) = 0 in S4. Indeed,
this follows from the fact that locally S, is generated by one element. Hence,
o= (o%,07):Sy— S, is a homomorphism of superalgebras.

From this we get a homomorphism f : .Sy ®c A — S4 of A-algebras which
induces an isomorphism after tensoring with A/m. Hence, f induces isomorphisms

So®@mi/mi+1 — SA®Ami/mi“

for i > 0. Since S, is flat over A, we have isomorphisms
miSA/mi“SA ~ 5S4 ®Ami/mi+1.

Since m" = 0 for some N > 0, the descending induction on 7 shows that f induces
an isomorphism

So@cm’ — miSy.
Hence, f is an isomorphism.

Now let Dy C Ty, be the distribution giving the supercurve structure on
Xy, and let us set X4 = X x Spec(A). It remains to show that any distribution
Da C Tx, a4 giving a supercurve structure over A, deforming Dy, is isomorphic
to the pull-back of A ®¢ Dy under some automorphism of X 4 trivial on Xj.

We can assume that for some ideal I C A, suchthatm/ =0 (so A — A/l isa
small extension), the assertion holds for A/I, so let

D4 CTx,ya~=A®c Txy/k

be a subbundle of rank 0|1, which reduces to A/I @ Dy over A/I. By Lemma 3.13,
D 4 corresponds to a homomorphism

f:Do— I'®c (Txy/x/Do),

so that D4 is generated over A by sections of the form 1 ® x + f(x), for z € Dy,
where R;) € I ®c Tx, i is a representative of f(z).

On the other hand, any I-valued vector field v € I ® H°(X, T, /k) induces an
automorphism av, of X 4 trivial on X 4,;: its action on functions is ¢ — ¢ +v(¢).
The automorphism «,, acts on vector fields on X 4 by w — w + [v,w], so it changes
the distribution A ®¢ Dy to the distribution D4 generated over A by sections of
the form 1 ® « + [v,z]. In other words, D4 corresponds to the homomorphism
fv: Do — I ®c (Tx, /Do) induced by the Lie bracket with v. The condition that
the map (2.1) is an isomorphism for X is equivalent to the condition that the map

Dy — Hom(Dy, Tx,/x/Do) : v = x> [v, 2]

is an isomorphism. Hence, there is a unique global section v of Dy ® I, such that
fv = f, so the automorphism «,, sends A ®¢ Dy to D 4, as required.
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(i) By (i) all deformations are trivial. Now the assertion follows from Lemma
3.14.

(iii) Let ¢ : S4 — A be the homomorphism corresponding to the NS-puncture,
deforming ¢g : So — k. By (i), we can assume that Sy = Sy ®c A. We claim that
there exists an automorphism of S 4 over A, trivial on Sy, and compatible with the
superconformal structure, transforming ¢g ® A to ¢.

It is enough to check this assuming that ¢ = ¢9® A mod I, where m/ = (. Then
® — o ® A is given by a ¢g-derivation Sy — I, i.e., by an [-valued tangent vector
at Py € Xp. It remains to extend this tangent vector to an /-valued superconfor-
mal vector field (see Lemma 3.12) and consider the corresponding automorphism
of X 4.

The fact about automorphisms follows similarly to (ii) from smoothness of the
corresponding group scheme.

(iv) The proof is similar to (ii): the functor associating with A the group of
superconformal automorphisms of A((2))[f] is a deformation functor. Since we
work over C, it is smooth. O

3.6. Neighborhood of Ramond puncture. Let X be an affine supercurve
over C with one Ramond puncture Ry C X, and let Dy C Tx, Jk be the structure
distribution (so that (2.2) is an isomorphism).

LEMMA 3.16. The natural morphism of sheaves
TXo/k — I'I()JO(DO’TXO/k/DO) LU (Uo — [U,U()] mod Do)

is surjective with respect to étale topology. Hence, we have an exact sequence of
sheaves in classical topology

0= T3 /1, = Txoyx — Home (Do, Ty 1/ Do) — 0
and the induced map on global sections
H(Xo, Tx, k) — Homo (Do, Tx, /Do)
is surjective.

Proof. Locally in étale topology we can assume that Dy be generated by vy =
Op + 020, (see Lemma 2.10). Then 9, projects to a basis of Tx, ;. Thus, it is
enough to check that for every function a = a(z,6) there exists v with

[v,v9] = ad, mod Dy.

We can represent every a in the form a = ¢o + ¢160 + bz for some function b and
some constants ¢, ¢;. It remains to note that

[(609 +c1 )82 + bug, 'U()] = (:l:C() +c160+ 2bz)6z
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The last statement is a consequence of the vanishing H' (X, )?E /k) =0 which
itself follows from the fact that 7¢* is isomorphic to a coherent sheaf (see Propo-
sition 3.9). ]

We have the following analog of Lemma 3.15.

LEMMA 3.17. (i) Every deformation (X a,R4) of (Xo,Ro) over A € Artc
is isomorphic to the trivial deformation (X x Spec(A), Ry x Spec(A)), with the
distribution induced by that on Xy.

(ii) Given a surjection A — B in Artc, and a deformation (X4, RA) of
(Xo, Ro) over A, any automorphism of (Xp, XRr) (obtained by the base change to
B) lifts to an automorphism of (X 4, R ).

Proof. (i) As we have seen in Lemma 3.15 (i), we can assume that X 4 = X x
Spec(A). We have a distribution D4 C Tx, /4 deforming Dy. It is enough to check
that D4 is obtained from Dy ® A by an automorphism of X 4, trivial on X,. We
can assume that for some ideal I C A, such that m/ = 0, the assertion holds for
A/I, s0 D4 corresponds to a homomorphism

fp:Dy _>TX0/k/D0®I-

Now the assertion follows from Lemma 3.16.
(ii) As before, this follows from (i) and from smoothness of the corresponding
group scheme. g

3.7. Unobstructedness. Recall that a morphism of deformation functors
Def; — Def; is called smooth if for every small extension A — B in Artc, the
natural map

Def; (B) — Def (A) X Def(A) Def2(B)

is surjective.

LEMMA 3.18. (i) Let X be an affine prestable supercurve over C with a single
NS node q and let Def(@) denote the functor of superconformal deformations of
the completion of the local ring of Xy at q,

O =~ Clz1, 22])[01,602]/(2122,01 22,0221, 0165).

Assume that there exists a function fo on Xo such that in the formal neighbor-
hood of q one has fo = 21 + 2 mod (21, 22,01,02)?, and the principal open affine
D(fo) C Xo coincides with Xy \ {q}. Then the natural morphism of deformation
functors
Def(Xy) — Def(O)

is smooth.

(i) Similar assertions hold for am affine prestable supercurve with a single
Ramond node.
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Proof. (i) First, let us introduce the following notation. For A € Artc and ¢ €
m4, we set

@A,t = A[[ZI,ZQ]] [91,92]/(212’2 +t2,2192 — 101,270, +t92,9192).

Step 1. Let A € Artc, t be an element such that ¢ = 0. Let us consider a
homomorphism of A-algebras,

7:Oas = A(21))[01] ® A((22))162]

L 4(21,22,01,00) = (921, =7/ 22,601,101/ 21), §(—17 | 20, — 102/ 22, 22, 62)).
Note that this is well defined since ¢™ = 0. It is also easy to see that -y is injective,
and the elements

(Z;i7zfi017zgia zgiel)iéo

project to a basis of the quotient by the image of -, as an A-module. We claim that
for any element f € @A,t such that f = 2| + 2, mod (21, 22,01,60,)?, 7 is identified
with the localization map

@A,t — @A,t[f_l]-

Indeed, since the multiplication by f is invertible on A((21))[61] ® A((22))[62],
it is enough to check that for every (p,q) € A((21))[01] ® A((22))[f2] one has
N (p,q) € im(v) for sufficiently large N. But this follows from the inclusion

2 Alz1][[01] © 2 All2] [02] € im(v).
Note that this entire picture is obtained by the change of coefficients
CITI/(T™) - A

from the standard picture described in Section 3.2. It follows that we have a struc-
ture derivation
o: OAﬂg — W@A,t/A’

such that after inverting z; or 2; it is given by the formula (3.2).

Step 2. Let X be a deformation of X over B € Artc. Then for any function
f € O(Xp), lifting fy, the principal open affine D(f) C Xp is the trivial defor-
mation of D(fy) = Xo\ {¢q} over B. Furthermore, there exist an isomorphism of
supercurves D( f) ~ Spec(B) x D( fy), and a superconformal isomorphism

(3.6) Oxp.q=Opy,
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for some element ¢ of the maximal ideal in B, so that we have a cartesian diagram
O(Xp) ——> B®O(D(fo))

B

O —5 B((21))[01] & B((22))[62].

Here rp comes from a certain isomorphism

B®O( (fo)) = B((21))[6h] © B((#2))[62],

where we equip O(D(fp)) with the topology using powers of I,, the ideal of a
node in O(Xp), and consider the completion.

Indeed, it is clear that D(f) is a deformation of D(fy) as a supercurve. Since
D(fo) is a smooth affine supercurve, by Lemma 3.15 (i) all its deformations are
trivial. The existence of a superconformal isomorphism (3.6) follows from Theo-
rem 3.3. Finally, by Step 1, we have

B((21))[01] ® B((22))[62] ~ Opalf '] ~ Ot ®0(x,) O(XB) ]
~Op, ®o(xp) (B@O(D(fo))),

which is isomorphic to the completion of B ® O(D( fy)) with respect to the ,-adic
topology.

Step 3. Now let A — B be a small extension in Artc. We claim that there exists
a homomorphism

ra: A®O(D(fo)) — A((21))[01] ® A((22))[62]

lifting r g and compatible with derivations. Now for an element t e Alifting t € B,
let us define the ring O as the fibered product

0 ————= A®O(D(fy))
3.7) ra

A((21))[0h] © A((22))[62]-

Then we claim that O = O(X 4) for some deformation X 4 of Xy inducing X5 (so
there is also a derivation § on X 4).
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First, we have a superconformal isomorphism

a0 : O(D(fo)) = C((21))[01] © C((22))[62)-

Hence, the map rp corresponds to the composition of superconformal isomor-
phisms

B®a0

B ®O( (f0)) == B((21))[01] ® B((22))[62] == B((1))[61] ® B((22))[65]

for some ap. Now we define 7 4 using the composition of superconformal isomor-
phisms

A®O( (fo) 290 A((20)[01] @ A((22))[02] 2 A((z1)[01] @ A((22))[62],

where « 4 is some lift of a.p. We know that such a lift exists by Lemma 3.15 (iv).

Since the lower horizontal arrow in (3.7) is a split embedding of A-modules,
so is the upper horizontal arrow. Hence, Oisa projective A-module. Applying the
reduction ?® 4 B to our diagram we recover the cartesian diagram from Step 2, so
O®sB~0(Xp).

Finally, we observe that we have a cartesian diagram of the dualizing sheaves
parallel to diagram (3.7). Since both 4 and ~ are compatible with the derivations,
we get a well-defined derivation ¢ : O — W& /A

(i) The proof is similar to (i). [l

PROPOSITION 3.19. Let (X, P, Rs) be a stable supercurve with punctures
over C. Let qy,...,qm be all the nodes of X. Then the morphism of deformation
functors

(3.8) Def(X, P, Ra) — | [ Def(Ox 4,)
=1

is smooth. The induced morphism of tangent spaces fits into an exact sequence

m

(39 0= H'(X,Ax p.r.) = Toet(x,p.R.) — @TDef(@X’qi) — 0.

i=1

Proof. Roughly speaking, the idea is that away from the nodes, locally all de-
formations are trivial, so deformations are classified by appropriate noncommuta-
tive H' sets. Now we use the vanishing of the relevant H2.

Suppose B — B/I = A is a small extension in Artc, and we are given a de-
formation X 4 of X over A (as a punctured supercurve), and liftings of the induced
deformations of Ox,, to deformations of singularities over B. To prove smooth-
ness of the morphism (3.8), we need to construct a deformation X g over B lifting
X 4 and inducing the given deformations of the singularities over B.
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Let us cover X4 by affine opens U;4 such that for ¢ = 1,...,m, U; :=
Uia Xspec(A) Spec(C) contains ¢; and does not contain other nodes or punctures,
while for 7 > m, U;’s lies in the smooth locus and contains at most one R-puncture
or NS-puncture.

By Lemma 3.18, fori = 1,...,m, we can extend the deformation U, 4 over A to
a deformation U;p over B, inducing the given deformation of the singularity at g;.
By the results of Sections 3.5 and 3.6 all the local deformations U 4, for ¢ > m, are
trivial, so we can lift them to trivial deformations U, g over B. Furthermore, all the
intersections U;; are smooth and contain no punctures, so all their deformations are
trivial, and we have some isomorphisms «;; g between the deformations of U;; over
B, induced from U;p and U, g. The induced isomorphisms ;4 may differ from
the ones coming from X 4, but we can correct each «;;p using Lemma 3.15 (ii) to
make sure that ;4 are the ones coming from X 4.

Thus, considering ay;pajrpa;jp over triple intersections we get a 2-cocycle
with values in I ® Ax p, gr,. Since the corresponding H 2 vanishes, this 2-cocycle
is a coboundary. Hence, we can correct «;;p, so that they become compatible on
triple intersections (without changing «;; 4). Thus, our data will give a deformation
Xp of X (as a punctured supercurve).

By smoothness, we have surjectivity in sequence (3.9). It remains to observe
that H'(X, Ax p, g,) is identified with the space of locally trivial infinitesimal de-
formations, i.e., those infinitesimal deformations of (X, P,, R,) that induce trivial
deformations of the singularities. O

Using the fact that the deformations of nodal singularities of supercurves are
smooth (see Corollary 3.4), we derive the following:

COROLLARY 3.20. The functor Def(X, P, R,) is smooth.

4. Square of the relative canonical bundle. In this section we will define
the line bundle wgf /g on certain families of stable supercurves, as an extension from
the smooth locus. We show that it is useful in finding an ample line bundle over X,
as well as due to its relation to the sheaf of infinitesimal automorphisms.

4.1. Local freeness and ampleness. It is well known that for a stable curve
with punctures (C,py,...,pn) over Sy, the line bundle

1
s, =iy o+ )

is relatively ample. Our goal is to find an analogous construction for families of
stable supercurves. The problem is that for a stable supercurve X /S the relative
dualizing sheaf wy /g is not necessarily locally free.

We show that this problem can be solved by extending wg( /s from the smooth
locus.
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Note that if X/.S is a prestable supercurve and ¢ € X is a node of some fiber
then the completion o x,q gives a formal deformation of the node singularity in X,
with the base (’55, s> hence, it induces a map from the formal neighborhood of s in S
to the base of the miniversal deformation of the node (described in Theorem 3.3).

THEOREM 4.1. Let f: X — S be a family of prestable supercurves inducing a
smooth morphism to the base of the miniversal deformation of every node in a fiber.
Let j : U — X be the open complement to the locus of nodes in fibers. Then for any
n € 7, the sheafwggb/s = j*w%g is a line bundle on X. For a morphismu: S’ — S
such that the induced family X' — S’ also satisfies the above assumption, there is
a natural isomorphism

4.1 vwis = WX g

where v : X' — X is the induced morphism. In the case when S is even, and (C, L)
is the underlying family of curves with spin structures, we have

wiysle = wis Gwi s ® L =p*wig,

where p : X — C' is the natural projection. In particular,

Proof. We claim that under our assumptions X is Cohen-Macaulay near
the nodes. Indeed, by assumption, S is smooth near every point s with sin-
gular fiber X;. Since the morphism f is Cohen-Macaulay, the claim follows

from [30, Lem. 37.21.4]. Since the complement to U has codimension > 2 in X,
by Lemma 2.5 (i), we see that the natural map

Ox = j.Ou

is an isomorphism. We will use this fact below.

Let us first prove that j*wﬁfs is a line bundle for the miniversal deformations
of the nodes, i.e., when S = Speck[t] and X is given as in (3.2.1) and (3.2.2).

For a Ramond node, wx/s is a line bundle, hence, w% g 1s also a line bundle,
and

W%S = j*“’??S'

For an NS node, the total space C of the underlying usual family of curves is
the quadratic cone xy = —t2, and U™ is the complement to the singular point ¢
in C'. Furthermore, we have

Ox=0c®L, wx/s~Lbwgs,
where L is a CM-sheaf of rank 1 over C' (see Lemma 2.6). Over U we have

®2
cuU/S ~ wUred/S @wUred/S(@L’U.
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We can compute the push-forward j,. componentwise. Since the complement of U
has codimension > 2, w5 is locally free and L is a CM-sheaf with full support,
by Lemma 2.5, we get

j*wgis ~we/sbweoys @ L,

which is just the pull-back of w¢/g under the natural projection X — C'. Hence,
j*w%s is locally free of rank 1.

To prove the result in the general case, i.e., for an arbitrary family X /.S induc-
ing a smooth morphism to the base of the miniversal deformation of every node,
we observe that the question is local, and by Lemma 3.5, an étale neighborhood B
of X will have a smooth morphism ¢ : B — Xy to the miniversal deformation of
the node X/, so that BNU = t~!(Uy), where Uy C X is the complement to
the node. Then the base change morphism

* 2 : 2
t JosWgy /5, — JxWi )5

is an isomorphism, hence, j*w%] /s is locally free. The isomorphism (4.1) follows
from this and from the compatibility of the base change morphisms for the maps
to X from étale neighborhoods of nodes in X’ and in X . O

Now we recall that for every NS-puncture F;, there is a canonical divisor D;
with the same support (see Section 2.5). So, we can define the line bundle on X,

ﬁX/S = w?}?S(ZDZ +ZRj> .
Let f : X — S be a proper morphism of Noetherian superschemes.

Definition 4.2. We say that a line bundle (of rank 1]/0) L over X is strongly
relatively ample over S if there exists n > 0, a supervector bundle £ over S and a
closed embedding ¢ : X — IP(€) over S, such that L™ ~ ¢*O(1).

For a superscheme S we denote by Spos the usual scheme with the same un-
derlying topological space as S and with the sheaf of rings Og/Ng, where Ny is
the ideal generated by odd functions.

THEOREM 4.3. Let f: X — S be a family of stable supercurves inducing a
smooth morphism to the base of the miniversal deformation of every node in a fiber.
Then the line bundle Lx g is strongly relatively ample.

Proof. Let C — Sy be the underlying usual family of stable curves over
So = Shos- Since f is flat, by Proposition A.2 of the Appendix, it suffices to prove
that L := Ly/g|c is strongly relatively ample over Sp. Since L is a line bundle,
the natural map

LX/S — jbos*jgosLX/S
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is an isomorphism, where jpos : Upos — C' is the embedding of the complement to
the nodes. We have

j;osLX/S = Wlipos/So (Z Dibos + Z ijos) .

Hence,

Lxs=weys, ( > Divos+ Y ijos) ;

which is relatively ample by a classical result on stable curves (see [14, Thm. 1.2],
[3, Lem. 6.1]). ]

4.2. The sheaf of infinitesimal symmetries. Now we can extend Proposi-
tion 3.9 to the case of stable supercurves.

THEOREM 4.4. Let (X, Py, Rs) — S be a family stable supercurve with punc-
tures, where (P;);cr are NS punctures and (Rj) jc.y are Ramond punctures, induc-
ing a smooth morphism to the base of the miniversal deformation of every node in
a fiber. Then one has a natural isomorphism

A(X,P.,R.) /S ™ W%ﬁs(_ >_Di _ZZRj>’

el jeJ

where w;& g is the line bundle defined in Theorem 4.1 and D; C X is the divisor
associated with the NS puncture P; (see Section 2.5).

Proof. Over the smooth locus this holds by Proposition 3.9. Now let us show
that the natural map

Ax/s = j+Auys,
where j : U — X is the embedding of the smooth locus, is an isomorphism. Since

the condition on v € Tx/g to belong to Ax /g can be imposed only over the smooth
locus, it is enough to check that the natural map

Tx/s = J<Tuys

is an isomorphism. But this follows immediately from the fact that j. 77,5 can be
identified with relative derivations of 7, O and the isomorphism j,Opy ~ Ox. [

Remark 4.5. Note that neither Tx,g nor Ax,g are compatible with the base
change. So in the situation of Theorem 4.4 the restriction of Ay /g to a fiber X,
which is a stable supercurve with at least one node, is a line bundle on X, whereas
Ax, is not (since T¢ is not locally free for a nodal curve C).

5. Proof of Theorem A. To prove Theorem A we need to check that
Sgnnsmnp 18 a stack with representable diagonal, with an étale atlas, and that it is
smooth and proper over C.
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5.1.  Sgnng.np is alimit preserving stack. A family of stable supercurves
is given by a superscheme X — S, smooth of dimension 1|1, together with a mor-
phism 0 : Qx5 — wyx/,5 and sections p; : S — X (the R-punctures can be recov-
ered from ¢). The fact that isomorphisms between two families over .S form a sheaf
in étale topology is proved in the standard way (and also follows from the repre-
sentability proved below). The étale descent for such families follows as in the
classical case from the existence of the relatively ample bundle which we proved
in Theorem 4.3 (see [17, Sec. 4.3.3]; see also [27, Sec. 7.2.1]).

The fact that our stack M is limit preserving, i.e., if S = Spec(A) with A =
lim, Aj, then M(A) ~ lim, M (A;), is proved essentially by the same arguments as
in the case of the moduli stack of usual curves, see [27, Lem. 7.23] for details.

5.2. Representability of the diagonal. We need to check that for a pair of
families of stable supercurves X — S and Y — T, there is an algebraic space lo-
cally of finite type over C, classifying isomorphisms between X; and Y; as abstract
superschemes. Passing to the induced families over S x T', we can assume that we
have two families X — S and Y — S over the same base, and we need to check
that the functor Isom(X,Y") is representable by an algebraic space over S. In fact,
we will check that it is representable by a superscheme over S.

For this we can use relative projectivity of the morphisms X — S and
Y — S which holds by Theorem 4.3 and the standard approach via the Hilbert
(super)schemes (the construction of Hilbert superschemes for projective mor-
phisms of superschemes is discussed in [6, Sec. 4] and in [27, Sec. 7]). Namely, as
in the classical case, the idea is that to an isomorphism X, — Y we can associate
its graph, which is a closed subscheme in X X Y;. In more detail, first, let 7{ be
the relative Hilbert superscheme over S parametrizing subschemes in X x Y
(with the same Hilbert series as the Hilbert series of X with respect to a large
power of Lx/g|x,). Let

ZCXxgxY xgH

be the universal subscheme. Let us consider the projections
px 4 —>XxXgH, py:Z—Y xgH.

Then there is a universal open subscheme H; C H over which px and py become
isomorphisms (this is proved as in [17, Thm. 5.22]). Then it is easy to see that H
represents Isomggp, /5(X,Y).

Next, assume that our stable supercurves X and Y over the same base are
equipped with the matching number of punctures of each type, (PiX ,R}X ) and
(Piy, R}f) Let Z C X xg xY xgH; be the graph of the universal isomorphism.
Then we have the induced sections Z x x P;X and Z xy P} of the family Z — H,,
and induced divisors Z X x RJX and Z Xy R}/ in Z, which are smooth of dimen-
sion 0|1 over H;. Let us set Py (resp., Py’) be the subscheme of Z obtained as the



THE MODULI SPACE OF STABLE SUPERCURVES 1821

disjoint union of these subschemes pulled back from X (resp., Y). Then there ex-
ists the largest closed subscheme H, C H such that Px and Py coincide over H».
This is a consequence of the following easy lemma.

LEMMA 5.1. (a) Let f : F| — F» be a morphism of coherent sheaves over a
superscheme Z, and let Z — S be a morphism. Assume that F| and F, are flat
over S. Then there exists the largest closed subscheme T’ C S such that f =0
overT.

(b) Let R and R’ be subschemes in a superscheme Z, and let Z — S be a flat
morphism such that both R and R’ are flat over S. Then there exists the largest
closed subscheme T' C S such that R = R' over T.

Proof. (a) Let Z;y C Z be the closed subscheme corresponding to the ideal
ker(f: Oz — Hom(F', F>)). Then T is the schematic image of Z.

(b) We apply (a) to the morphisms Ir — Oyz/Ir and I — Oz/IR and ob-
serve that these morphisms vanish if and only if R = R/. U

Finally, we can define a closed subscheme Hs. C H that corresponds to su-
perconformal isomorphisms. To this end we observe that we can pull back to Z
both morphisms dx : Qx5 — wx/s(Rx) and dy : Qy/g — wy,s(Ry), and then
apply Lemma 5.1 to the difference. Then H . represents the sheaf of isomorphisms
between families X and Y as stable supercurves with punctures.

5.3. Construction of an étale atlas. The main point is to use the existence
of the (purely even) Deligne-Mumford stack S = S 5 5.0y, Parametrizing stable
curves with spin-structures (and punctures), constructed in [1].

For every stable supercurve X, over C, we can find a family 7 : Xy — By of
stable supercurves (with punctures) over an affine even base By, and a C-point
b € By such that we get X as a fiber of &j over b, such that the corresponding map
By — S is étale.

Let us consider the corresponding bundle over By,

£:=R'n. (A7) =R'n, (wE/B()@»C(—ZPi_ZTi))a

where C C AX) is the corresponding usual curve over By with the relative spin-
structure L (recall that A~ denotes the sheaf of odd infinitesimal automorphisms
of Xy/By). Note that the fact that £ is locally free follows from the vanishing of
7« (A7), i.e., from the absence of odd infinitesimal automorphisms of Xy / By.

We define the superbase B as

B = Specp, (/\.Hé’v).

In other words, we view £V as extra odd coordinates. Our goal is to extend X to a
family X — B (possibly after changing B to an étale neighborhood of b).
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Letq,...,qn be a finite number of points in Cy, including all nodes, q, ..., gy,
such that there is an ample effective divisor D supported on {q,...,qn}, and g;
are distinct from all the punctures. Let also ¢j,...,q,, be a set of smooth points
in Cj, distinct from all the punctures and from ¢;’s, such that D’ = ¢} +---+ ¢}, is
ample.

Replacing By by an étale neighborhood of b, we can assume the existence of
disjoint relatively ample effective Cartier divisors in Cy, extending D and D', still
denoted as D and D'.

Therefore, we have an affine cover of Ay by two open sets, {4y defined as the
complement to D’ and U, defined as the complement to D. Now, let us consider
the tautological cohomology class

[c] € H'(Bo,EY @ R'm (A7) ~ H (Xp, 7Y @ A7).
We can represent it by a Cech cocycle
ce HO(UyNnUy,m*EY @ A7).

Now we observe that there is a natural morphism of sheaves

We /By ®£(_ > pi- Z”) =A" = Ty p.pRe

Hence, we can view odd sections of 7*€Y ® A~ as even derivations
* oV
OXO — IIr*E

(relative to Bp). Thus, c gives rise to such a derivation over Uy NU;. Hence, we
have a homomorphism

exp(c): O — /\;HW*SV,

over Uy Ny, reducing to identity modulo A='. We can extend exp(c) to the au-
tomorphism ¢ of /\29;(0 II7*£Y, identical on 7! /\2930 IIEY. Now we define X’ by
gluing

U; x g, B ~ Spec (/\OHW*SV]L{Z.), i=0,1,

using ¢ as an automorphism of (U NU;) X g, B.

Note that since on the smooth locus c acts by a derivation preserving the struc-
ture distribution D C T, the same is true for ¢. Hence, X’ has a natural structure of
a stable supercurve over B (see Lemma 2.7).

We claim that the corresponding map from B to the moduli stack SM of
supercurves is étale near b. Indeed, it is enough to check that the induced map on
tangent spaces at b is an isomorphism. The tangent space 13 B to B at b is given by

(TyB)" =TyBo, (TyB)” =& = H'(Xo, Ay,)-
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The fact that the map on even tangent spaces is an isomorphism follows from the
assumption that By — & is étale. The map on odd tangent spaces corresponds to
the natural map

H' (X0, Ax,) = (ThSM)".

The fact that it is an isomorphism follows from the exact sequence (3.9) since the
last term of this sequence is purely even.

5.4. Properties of the stack of stable supercurves. Corollary 3.20 shows
that the stack of stable supercurves is smooth. Since it is of finite type (for each
fixed genus and fixed number of punctures), the fact that it is proper can be checked
for its even part, i.e., for the stack of stable curves with spin structures. But this is
known due to works of Cornalba [11] and Jarvis [22].

6. Kodaira-Spencer map. In this section we will study the behavior of the
Kodaira-Spencer map in degenerating families of supercurves where the limiting
curve acquires one NS or Ramond node. This will later help us to calculate the
canonical line bundle of the moduli stack of stable supercurves. We begin with the
classical case of a degenerating family of usual curve and then consider separately
the cases of NS and Ramond nodes.

6.1. Classical case. Let 7:(C — S be a family of stable curves over a
smooth affine base S, equipped with a smooth morphism ¢ : § — A!. We denote
by So C S the divisor ¢ = 0 and by ¢ : Cyp — Sy the induced family over Sy. We
assume that there is a section ¢ : Sy — Cjy such that the map C' — S is smooth
away from ¢(Sp), and that the structure sheaf of the completion of C' along ¢(.Sp)
is isomorphic to Og[[x,y]]/(zy —t) (so that the section ¢ corresponds to x =y =
t = 0). Below we will write simply ¢ to denote the relative node ¢(.Sy) C Cp.

We would like to discuss the Kodaira-Spencer map for such a family.

Let us denote by 7g g, the sheaf of derivations of Og preserving the ideal
generated by ¢. Let also 7¢ ¢, denote the sheaf of derivations of O¢ preserving the
divisor Cy, i.e., preserving the ideal generated by ¢ in O¢. Finally, we denote by
Tcys C Te,c, the relative tangent sheaf.

Note that 775 can be identified with derivations 7~'Og — O¢ (since Qg
is locally free). The subsheaf 7*7g g, corresponds to derivations m10g — O
sending ¢ to Oc¢ - t. Thus, we have a natural morphism 7¢ ¢, — 7*7Ts s, sending a
derivation of O¢ to its restriction to 7~ ! Og. Similarly, we have a map Toy — 5 7Ts,
sending a derivation of O, to its restriction to 7! Og,.

LEMMA 6.1. (i) There are exact sequences

(6.1) 0—Toys = Tocy, — 7 Ts.s, — 0,
(6.2) 0— Tey/sy = Toy — o Ts, — 0.
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(i) For the closed point xo C Sy, the natural map

6.3) Tco/S0lCuy = T,

is an isomorphism.
(iii) Let j : C'\ {q} — C denote the open embedding. Then the natural map
We/s = Jxwe(q) /s s an isomorphism. The corresponding natural map

Qcys = 38de\(qy/s = Jswo\(gy/s = Woys
is injective with the cokernel isomorphic to O,. Hence, the dual map
wa} g To /S
is an isomorphism. Also, the coherent sheaf Tc c, on C' is locally free, and the

sheaf Tc, /s, on Cy is flat over S.
(iv) Let us consider the map

To — OC/(t) = i*OCO;

where i : Co — C' is the natural embedding, sending v to v(t) mod (t). Then its
image is 1,1y, where L, C Oc, is the ideal sheaf of q, so we have an exact sequence

(6.4) 0—=Tcc, = Tc —iZy —0.
(v) There is an exact sequence

0— TC/TC,CO L> 7-0700/1‘/7-(]700 — 0Ty

Proof. (i) For the first sequence, we have to check that the map 7c ¢, —
7 Ts,s, is surjective. This is clear away from g. It remains to check this in the
formal neighborhood of ¢. But we can extend the derivation t0; to the derivation
of k[[z,y,t]]/(xy —t) induced by x0,, + t0;.

It follows that the composition

Tc.co = 7 Ts,5, = ixmyTs,

is surjective, which implies surjectivity of the map 7¢, — m;7s,, and hence, exact-
ness of the second sequence.

(ii) This follows easily by a local computation near the node. Namely, locally a
derivation v in ¢, /g, is described by a pair of functions v(z) and v(y), satisfying
v(x)y + zv(y) = 0, or equivalently v(z) € (z), v(y) € (y), s0 Tg,/sg, is locally
isomorphic to

Ty ~x-Oc,®y-Oc,.
Similarly ’T(;xo is isomorphic to

IqO :xoczo@yoczo7
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where qp is the node in Cy,. The natural map (6.3) corresponds under these iso-
morphisms to the natural map

(x'oco@y'oco)‘ocmo Hm'OCzo @y'OCzov

which is an isomorphism.

(ii1) The first assertion follows from the fact that wg,g is locally free. The
injectivity of 2¢/g — wcy s only has to be checked in a formal neighborhood of g.
Then we can identify Q¢ /g with (Odz @ Ody) /(vdy + ydz). It is easy to see that
any element of )¢/ 5 can be written uniquely as

f(t,z,y)dz+g(y)dy.

The map 2¢/5 — wc/g is given by dx — x-b, dy — —y-b, where b is a generator
of wes. Hence, it sends the above element to

(f(t,z,y)z —g(y)y)-b,
which is zero only if f = g =0. The last assertion follows by dualizing the sequence
0_>QC/S_>WC/S_>O(]—>O

and using the vanishing Hom(O,, O¢) = Ext! (O4,0¢) =0.

The fact that 7¢ ¢, is locally free follows from the exact sequence (6.1). The
sheaf 7¢, /s, is locally free away from the node. Thus, to check its flatness it is
enough to consider it in the formal neighborhood of the node. Then it can be iden-
tified with the subsheaf of O¢, & O, consisting of (f,g) such that f € (z) and
g € (y), so it is locally free as Og,-module.

(iv) Since the map 7 : C' — S is smooth away from ¢, it is enough to check
the assertion in the formal neighborhood of the node. Then we can extend z, y
to formal coordinates (x,y,t1,...,tq) on C. Since t = zy, the map in question
To — O¢/(t) is given by

fOu+90y+>_ fidy, — fy+gz mod (1),
so its image is Z, C O¢,.

(v) This follows easily from the fact that the kernel of the projection 7¢ ¢, —
i Tc, is tTc C Te,cy- Il

It follows that we can rewrite the exact sequence (6.1) as

(6.5) 0= weyg = Tecy = T Ts,sy = 0-
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Hence, applying the functor R, (-) and using the isomorphism 7.O¢ ~ Og, we
get the induced coboundary map

(6.6) KS:Tss, — le*wg} s

which we call the Kodaira-Spencer map for our family, since it restricts to the usual
Kodaira-Spencer map over S\ Sp. Note that we also have a similar map coming
from the sequence (6.2),

(6.7) KSo: Ts, = R'm0. 70, 5,-

Let g € Sp denote the origin, and let C,, be the corresponding curve with
one node. Then by Lemma 6.1 (ii), we have 7¢,/s,|c,, =~ Tc,, so the exact se-
quence (6.2) restricts to the standard exact sequence associated with the embedding
Cz, = Cop (with the trivial normal bundle):

0—Tc,, = Tcylc,, = TagSo® Oc,, — 0.
We can look at the corresponding coboundary map

/{:L'() : Tx()SO — Hl (C$077bzo)‘

PROPOSITION 6.2. Assume that the map k,, is injective. Then Rlﬂ*wa}s isa
vector bundle on S and the map (6.6) is an embedding of a subbundle.

Proof. Since C,, is a stable curve, we have H°(C,,,w™!) = 0, which im-
plies by semicontinuity that w*wa} g = 0, and by the base change theorem that

lewa} g 18 locally free. Thus, we have a long exact sequence

KS _
0—=mTcc, — Ts,sy — RIW*MC}S — RIF*TQCO — RIW*OC ®7Ts,5, =+ 0.

Note that R'w,O¢ is locally free of rank g. Also T¢ ¢, is a vector bundle on C' as
follows from the exact sequence (6.1). Thus, if we prove that H O(Cxo, Tc,c, |CIO) =
0 then it would follow that 7, 7¢c ¢, = 0 and RIW*TC@O is locally free, and our
assertion would follow.

Let us consider the morphism of exact sequences on Cp,

0——> TC/S|CO > TC,C’O|CO > W8%750|50 >0

0 —— Tays, Ton L —)
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Since the rightmost terms are locally free, the restrictions of these sequences to Cy,
are still exact, so we get a commutative square of the coboundary maps

K
%»Solzo —2 Hl(Cévovwaio)

K
TrySo —= H'(Cy, T, )-

We claim that the map «, is injective. Indeed, by assumption, ., is injective.
Also, the map r is surjective with the 1-dimensional kernel spanned by ¢J;. Thus,
our claim reduces to the assertion that the restriction of 7, to ker(r) is injective.

To prove the last assertion let us consider the embedding D C S of the formal
1-dimensional disk with the coordinate ¢, so that Dy = D NSy = {x¢}. Then we
can identify ker(r) with the image of the natural embedding

TD,xo|$o - 73750’900'

Applying Lemma 6.1 (iv)(v) to the induced family of curves mp : Cp — D, we get
an exact sequence of sheaves on Cy,

t
0— quo — TCDaCacO ‘Ca:o — TC:c()’

where ¢;, € Cy, is the node. Since H O(meTCIO) =H O(CIO,I%O) = 0, this im-
plies that
HO(CJ»’O?TC&C% ‘Cxo) =0.

Therefore, looking at the exact sequence of sheaves on Cy,,
0— wéi_o = TCp,Cay |Cro — (WETD,JEO)’CIO -0
we get that the corresponding coboundary map
(6.8) H(Cay, Toaoley ® Oc,y) = Tooaglag = H' (Cayywc), )
in injective.

Now, restricting to C,, the natural morphism of exact sequences of vector bun-
dles

—1
0 > Wop /D > TCD:CzO > 7D 7TD,z >0

—1
0 > wC/S|CD > 767CO|CD — 7"-237375'0|D >0
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and considering the morphism between the corresponding long exact sequences
of cohomology on C,,, we deduce that the coboundary map (6.8) is equal to the
restriction of «, to ker(r), which proves our claim.

Finally, by stability of C;,, we have H O(Cmo,waio) = 0. Hence, the long exact
sequence

K, B
0_>H0(Czo7wc )_>H (CCU()?TCCO‘C'Q: %73750‘360—0)[{1(033070”0;0)

shows the vanishing of H°(Cy,, Tc.c, .y )- O

COROLLARY 6.3. In the situation of Proposition 6.2 assume in addition that
the map from S to the moduli space of stable curves induces an isomorphism on
tangent spaces at the origin. Then the map (6.6) is an isomorphism. Hence, the
determinant of the usual Kodaira-Spencer map on S' = S\ Sp,

det S : DetTg — Det R'muwg gl
is of the form u/t, where u is a unit (with respect to trivializations regular on S).

Proof. For the second statement, we can argue formally locally. Then we ob-

serve that Tg g, has a basis t0;,0;,,...,0;,, where (t,t1,...,t4) are formal coor-
dinates on S. Hence the determinant of the natural morphism 7g 5, — 75 with
respect to the standard bases is equal to . U

6.2. Super case, NS node. First, let us review the Kodaira-Spencer map for
a family of smooth supercurves 7 : X — S. We have the standard exact sequence

0—=Tx/s—Tx d—”>7r*7'5—>0.
We also have a relative distribution D C Ty, g. Let us set
Ax :={v e Tx | [v,D] C D}.
Then there is an exact sequence (see [26, Sec. 2])
(6.9) 0= Ay/s > Ax =71 'Ts =0

where

AX/S =Ax ﬂTX/S.
Indeed, let D be a local generator of D. Since D C T/, the condition [v, D](f) =
0, for f € 7710g, is equivalent to D(v(f)) =0, i.e., to v(f) € 7' Og. Further-
more, locally any v € 7! Tg can be extended to a section of Ax. Also, as we have
seen before,

Axss = Txys/D =D = wy.
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Now the Kodaira-Spencer map is the coboundary map
(6.10) KS:Ts—ma 'Ts = R'mAxs =~ Rlmwy .

We want to study the behavior of this map near the component of the boundary
divisor of the moduli space where a supercurve acquires a NS node. So let us
consider a family of stable supercurves 7w : X — S over a smooth affine base with
asmoothmap t: S — A'. We denote by Sy C S the divisor ¢ = 0 and by 7y : Xo —
Sp the induced family. We assume that there is a section ¢ : Sy — X¢ such that
q(So) is the relative node of Xy and the map X — S is smooth away from ¢(5p).
Furthermore, we assume that the structure sheaf of X completed along ¢(.Sp) is
generated over Og by even generators 21, 2, and odd generators 6}, 6, subject to
the relations

6.11) 2120 = —t2, 210 =10, 20, =—tb,, 0,6,=0

(so that ¢(Sp) corresponds to z; = 2, =0, §; = 6, = 0). In this case, by Lemma 3.5,
arguing étale locally, we can assume that the complement to the node is covered by
two charts U; and U, where z; is invertible on U;, and there exist odd sections s;
(resp., even section sp) of wy,g such that

B [le ]d&l] on U],
b [dz2|d6s] on Us,

_t
22

i[dzl\del] on Ul,
(6.12) Sy =< 7
[de’d@z] on Uz,

Z—i[dzl\dﬂl] OIlU],
|~ 2[dzldoy] onT;

(see [13, Sec. 2.3]). Note that the relative derivation ¢ : Ox — wx/g satisfies
0(2i) = bisi,  0(0;) = s,
fori=1,2.

LEMMA 6.4. In the above situation, in the formal neighborhood of the node,
wx/s is generated as an Ox-module by global sections sy,s, and sg subject to
defining relations

z18p =181, 281 = —1tsy, 0180 =051 =15y,

z180 = 0181, 280= —0rs2, 0150 =650=0.
It has a topological basis over Og,

n n n n
zl S1, 22827 Zl 613]7 2292327 50,
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where n > 0.

Proof. It is enough to check this when S = CJ[t], in which case this is dis-
cussed in [13, Sec. 2.3]. In more detail, X is split, with Ox = O¢ @ L, where C'
is the curve 2120 = —t2, and L is the Oc-module generated by 61, 6, (which is a
maximal CM-module over O¢). Then wx = we @ Hom(L,w¢), and we have an
isomorphism & : L = Hom(L,wc). The section sq corresponds to the standard
generator of we, while s; and s; are the images of the generators 60, 6, of L under
0. Another way to prove this is to use Lemma 2.9. g

Note that the line bundle w3, /g = Jawf /s is generated near the node by the
section

Lldz|d6)* onUy,
(6.13) _{zl[zl‘ 1 !

é[dZZ‘dGQ]Q on U2.

As before, we denote by Tx the sheaf of derivations of Ox and consider the
subsheaf Ax C Tx consisting of v such that [v,D] C D on the smooth locus
of m: X — 5. We also set Ax/s = Ax NTx/s. We use a similar definition for
A Xo/Sy © AX()-

Now similarly to the nodal even case we consider the subsheaf Ax x, C Ax
consisting of v such that v(t) € (¢). We have a natural projection

—1
Ax x, =1 Ts,s,-

Note that some of the above sheaves do not have O x-module, only the 7 10g-
module structure. Nevertheless, for a subscheme S’ C S we have a natural opera-
tion of restriction to 7~ !(S’): we set for an 7~ !Og-module F,

.7"‘7[.—1(5/) = F®7I”IOS 777105'.

Below we will prove an analog of Lemma 6.1. Note that the slight difference
from the case of the usual curves is that the sheaves Ax, Ax x, and Ax/g are
not O x-submodules of Ty . However, as we know from Theorem 4.4, there is an
isomorphism of 7~ !Og-modules

=2 i D
Axys 2wx)g = Iy s

where j: U = X \ {¢} — X denotes the open embedding and w;& g is aline bundle
on X (see Theorem 4.1).

LEMMA 6.5. (i) There are exact sequences

(6.14) 0— Ay/s = Ax x, = 7 T8, — 0,

(6.15) 0— Ax,/s, = Ax, — 1o T, — 0.
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(ii) In the formal neighborhood of a node, derivations in Ay, s, are in bijec-
tion with pairs of functions ay, ay in Ox, such that a; € (z;): the corresponding
derivation v is given by

(6.16) v(z) = a;+ (—l)'”%Di(ai)Hi, v(0;) = (—1)‘”|%Di(ai)

fori=1,2, where D; = 0g, + 0;0;,.
For the closed point sg € Sy, the natural morphism

Axy /8ol Xsy = Axyy /i
is an isomorphism.
(iii) One has
Ax x, = Ax

and the natural morphism
Ax x,/tAx x, = i Ax,
is injective.

Proof. (i) In both cases it is enough to prove surjectivity of the last arrow in
the formal neighborhood of ¢. Let us first check this for Ax x, — 7T_17:q750. Itis
enough to extend t0; to an even derivation v in the formal neighborhood of ¢ in X,
such that v|y, preserves Ox - (0p, + 0;0;,), for i = 1,2. For this, we can take v
given by

v(z) =z, v(b;)=

This shows that sequence (6.14) is exact.
The composed arrow

1 .
2

—1 R
-AX,XO — T 7?9750 —>Z*7TO 7?90

is still surjective and factors through i..Ax, /s,. This implies exactness of (6.15).
(ii) Recall that Ox; is the quotient of Og, [[z1, 22,01,6] by the relations

z120=0, 2z16,=0, z60;=0, 6,6,=0.

Thus, a derivation v in Ay, /s, is described by the functions v(21), v(22), v(6)
and v(6y). Furthermore, there should exist a pair of functions a;(z1,60;) €
Ox, [zl’l], az(z2,02) € Ox, |2, 1] of the same parity as v such that

o) L

o1
2D¢(CL¢)9¢, v(6;) = (_1)| |

v(z) =a;+(-1) 2Di(ai) in OXO[zfl],

fori = 1,2, where D; = 0y, + 0,0;,.
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The condition v(z]2;) = 0 implies that
U(Zz) c (ZZ,HZ) C OXO

for i = 1,2. Hence, a; is the image of the element v(z;) —v(6;)60; € (2;,6;) C Ox,
under the map Ox, — Ox,[z; 1. Note that the restriction of the latter map to

(Zi,ei) = (’)S[zi]zi D Os[zi]ei C OXO

is an embedding. Thus, v(z;) is determined by its image in Ox,[2; '] and the above
formulas for v(z;) hold in O, with some

a; = fi(zi)zi+ gi(2)0;,

fori = 1,2, with f;,g; € Oglz].

It follows also that v(z1)0, = v(22)0; = 0. Hence, the conditions v(z6,) =
v(z201) = 0 are equivalent to v(#;) € (z;,0;), for i = 1,2. Since D;(a;) =
gi(z;) mod (0;), this is equivalent to g;(z;) € (2;). The condition v(6,6,) = 0 is
then automatically satisfied. Note also that the condition v(6;) € (z;,6;) implies that
v(6;) is determined by its image in Ox,[2;"']. Thus, the condition on v to define a
section of Ay, /g, is that a; € (z;), for i = 1,2, which is equivalent to our assertion.

For the last assertion, we note that it is enough to check it in the formal neigh-
borhood of the node. Then the statement follows immediately from the above ex-
plicit description of Ax, /5, and from a similar description of .A X/l

(iii) We claim that in fact any derivation v in Tx satisfies v(t) € (¢, 21, 22,61, 602).
Indeed, we have

v(z1)z2 4+ z10(22) = —2tw(t),
s0 tv(t) € (21,22). Let us write tv(t) = 2 f + 22 f', and decompose f and f’ with
respect to the topological Og-basis

Lo ezt (2)nz1, (2101020, (2302)n>0-

Then we get the equation of the form

to(t) =z [ao + Z anzy + Z bnzy + Z 21 + Z dnzgez}

n>1 n>1 n>0 n>0
/ / / / U
+2 [ao—i- E apz + g b,z + E cn21 0 + E dnzgez}.
n>1 n>1 n>0 n>0

The relations imply that the free term of the right-hand side is —(b; + a})t*, hence
the free term of v(¢) is divisible by ¢, as claimed.

It follows that for any v € A, we have v(t) € tm~'Og, sov € Ax x,. For the
last assertion we observe that the kernel of the restriction map

AX,XO — i Ax,
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consists of derivations v in Ax that are in ¢ - 7x. Hence, this kernel is tAx =
t.AX, Xo- O

Now, as in the even case, we consider the Kodaira-Spencer maps associated
with sequence (6.14)

(6.17) KS:Tss, = R'mwylg.

Let sop € Sy be a closed point, and consider the restriction of the exact se-
quence (6.15) to X, which can be identified with

0— Ax,, = Ax,lx,, = TsyS0 ®QXSO — 0.
We have the corresponding coboundary map
Fso : TspS0 = H' (X5, Ax,,)-
Now we can prove the following analog of Proposition 6.2.

PROPOSITION 6.6. Assume that the map kg, is injective. Then near s,
Rlﬂ*w;és is a vector bundle near sy and the map (6.17) is an embedding of
a subbundle.

Proof. First, let (Cs,, Lg,) be the usual stable curve with a spin structure, un-
derlying X . We observe that

-2 _ -1 -1
wxyslxe = we,, ®Wo,, @ L

Indeed, this follows easily from Theorem 4.1 applied to the induced family of
stable supercurves X p — D over the formal disk D C Sy with the coordinate ¢. By
stability of C,, we get

H(Cypow™) = HY(Cypw '@ L) = 0.
In other words, we get the vanishing
6.18) H(Xg,wyyslx,,) =0.

It follows that
W*AX/S = 77*”)_(55 =0,

and that lew)_(z S is a vector bundle near s.
Thus, K.S is a map of vector bundles on S, so it is enough to show that the
corresponding map of fibers at sy,

KS(SO) : 73,50’80 — (Rlﬂ*w;&s)‘so = Hl(Xsovwias‘Xso)v

is injective.
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To this end, let us consider the morphism of exact sequences on X,

—1
0 > AX/S|X0 > AX»XO|XO — T 73750|So >0

00— Ayys, Ax, oy p—

Since the rightmost terms are locally free, the restrictions of these sequences to
X, are still exact, so we get a commutative square of the coboundary maps

KS(

S0 _
7T5V750|80 HI(XSWW)&AXSO)

K/S() 1
TSQSO — > H (XmovAXs())-

Since kg, 1s injective, arguing as before, we see that it is enough to check that the
restriction of K.S(s) to the 1-dimensional subspace

TD,SO ’80 — 7:q,50 |80
is injective.

Considering the induced family mp : Xp — D and applying Lemma 6.5 (iv),
we get an inclusion of sheaves on X,

AXD7XSO |Xso — AXSO °
We know that H%(X,, A XSO) = 0 (see Proposition 3.11 (ii)), so we get that

HO(XSC”AXD?XSO x,,) =0.

S0

Next, restricting the sequence (6.14) for the family Xp/D to X, we get an
exact sequence

0= wy x,, = Axp.x, |x,, = (75 Tpso)lx,, =0
From the above vanishing we get that the corresponding coboundary map
(619) HO(XSO, TD,SQ |so & OXSO) = TD,SO |50 — Hl (X507w_;(2L) ’XSO)

is injective.
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Now, restricting to X, the natural morphism of exact sequences

-2 -1
0 ——wy)p—> Axp,x,, —> 7p Tnsy —>0

-2 -1
0 > wX/S|XD — AXvXOIXD —>Tp 73750‘D >0

and considering the morphism between the corresponding long exact sequences of
cohomology on X, we deduce that the coboundary map (6.19) is equal to the
restriction of K S(sg) to ker(r), which proves our claim. O

Note that the Berezinian of the natural morphism 7s s, — Ts is equal to ¢ for
an appropriate choice of bases. As in Corollary 6.3, this leads to the following
result.

COROLLARY 6.7. Assume that the map kg, is an embedding and the superdi-
mension of S is 3g — 3|2g — 2. Then the map (6.17) is an isomorphism. Hence, the
Berezinian of the usual Kodaira-Spencer map on S' = S\ Sp,

ber(KS) : Ber(Tg) — Berlew;(%/S,

is of the form u/t, where w is invertible on S (with respect to trivializations regular
on S).

6.3. Super case, Ramond node. Now we consider a family X — S over
a smooth affine base S with the relative Ramond node ¢ : Sy — Xo = 7! (So)
over the divisor Sy = (t = 0) (where ¢ : S — A! is a smooth morphism), such that
X'\ ¢(So) is smooth over S, and the completion of Ox along ¢(.Sy) is generated
over Og by generators zi, 23,6 subject to the single relation

212y =t.

The distribution is generated by 0y + 0z;0,, over z; # 0.
Note that in this case the relative dualizing sheaf wy/s is a line bundle on X.

LEMMA 6.8. (i) The sequences (6.14) and (6.15) are still exact.
(i) In the formal neighborhood of a node, even (resp., odd) derivations in
Ax, /s, are in bijection with pairs of even (resp., odd) functions

a; = fi(zi) +gi(2)0 € Oglz;,0:], i=1,2,
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such that g1(0) = g2(0). The corresponding derivation v is given by

o

v(zi) = aizi+(=1)" 5 Di(ai)z0, fori=12,

v(0) = (—1)'”%[(—1)‘”'(91 +92 - 92(0)) +0210:, (/1) + 0220, (f2)]-

where D; = 0p 4 02;0.,,.
For a closed point sy € Sy, the natural morphism

Axo/80Xsy = Axyy /1

is an isomorphism.
(iii) One has

Ax x, = Ax
and the natural morphism
Ax x, /[tAX x, = i AX,
is injective.
Proof. (i) To show surjectivity of the morphism Ax x, — 7r*17fg7 s, We observe
that the derivation v € Ax x,, given by

v(t) =2t, v(z) =2z, v(0)=0,

extends 2¢0;.

(ii) Here is the description of Ay, /g,. The condition v(21)z; +v(22)21 =0
implies that v(z;) € (2;), in particular v(z;) is determined by its image in Ox,[2;'].
Also, we should have a; € Og[z;,2; ! 0] such that

v(z;) = aiz; + (—1)‘1)%171(&@)%97 v(0) = (‘Ulv%Di(ai) in Ox, [z ].

Let us write a; = f;(z;) + gi(2;)0. Then a; and a, could be arbitrary elements of
Oglz1,0] and Og|[z2,0] (of the same parity) such that g;(0) = g2(0).

(iii) The proof is similar to that of Lemma 6.5 (iv): we use the condition v(t) €
(z1,22) C Ox and the topological Og-basis of Ox

Lo (zZnz1s (#)nz1, (270)n>0,  (250)n>o0. O
Using the same arguments as before we derive the following assertion.

PROPOSITION 6.9. The statements of Proposition 6.6 and Corollary 6.7 hold
in the case of a Ramond degeneration as well.
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6.4. Kodaira-Spencer in the presence of NS and Ramond punctures.
Everything in Sections 6.2 and 6.3 has an analog in the case of families of stable
supercurves with punctures. Namely, for such a family (X, P, R,)/S, we should
replace the sheaves Ax and Ax/g with their intersections Ax p g and A(x p r)/s
with the subsheaf 7Tx p r C Tx of derivations preserving all the punctures (i.e., the
corresponding ideals in Ox). This will not change the local picture near the nodes,
however, we need to make some changes in the global statements.

Let us assume that we have a family (X, P, R) of stable supercurves with punc-
tures over .S, acquiring a single node over Sy = (t = 0) C S, so that forgetting the
punctures we are in the situation of either Section 6.2 or Section 6.3. We will still
have the equality Ax pr = Ax x,,p,r as in Lemma 6.5, and the analogs of se-
quences (6.14) and (6.15) are

0— Ax.prys = Ax,pr =T Ts5 —0,

—1
0 — A(xy,R,Ro)/S — AxXo,Ro,Ro — T 15, — 0.

Indeed, the only extra statement is the surjectivity of the right arrows near the
punctures, which follows from the standard local description of the punctures (see
Section 2.4).

Recall also that by Theorem 4.4, we have an isomorphism

-A(X,P.,R.)/SZE(XaPMR —Wx/s( ZD 2ZRJ>7
iel jeJ
where D; C X are the divisors associated with the NS nodes P; C X, and w;& is
defined as in Theorem 4.1.

The analog of Corollary 6.7 states that under the assumption that the map

S

Ko TsgS0 = H' (Xs0, Ax, Py Rey)

S0t S0

is injective and the superdimension of S is 3g — 3|2¢g — 2, the Kodaira-Spencer map
induces an isomorphism of line bundles on S,

Ber(7s) — Ber(R'm.L(X, P, R4))(So).

7. The boundary divisor. In this section we discuss the definition of the
boundary of our compactification as an effective Cartier divisor. We also study the
NS and the Ramond components of the boundary divisor.

7.1. Modified sheaf of differentials. Let 7: X — S be a family of stable
supercurves such that the map from S to the deformation space of each node is
smooth. Let j : U — X be the embedding of the smooth locus. We want to study
the sheaf j.{);/s and the map

Qx5 = 3:8y/s-
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Since U/ S is a smooth supercurve, we have an exact sequence
0= w? e 2 Qg 2 0
—>wU/S U/S —>wU/S—>
where in standard coordinates

6(dz) = 0[dz|dA], &(dO) = [dz|dd),
r([dz|d6)**) = dz — 6db.

Applying the functor j,., we get an exact sequence
. j O
0— Wg{/s im*QU/S AN Wx/s)
where wg(/s = J«wy/s is a line bundle on X (see Theorem 4.1).

LEMMA 7.1. The map j.9 is surjective, so we have an exact sequence
2 Kk . 3«0
7.1) 0—>wx/s—>J*QU/s—>wX/s—>0-

Proof. We know that 5,0 is surjective over U, so it is enough to check that it is
surjective near the nodes.

Near a Ramond node, the map § : Q2x /g — wx/g = jxwy/ s is surjective. Since
it factors through j.{);;/g, we see that j.d is surjective near a Ramond node.

To check surjectivity near an NS-node, we can work étale locally and apply
Lemma 3.5. Hence, it remains to make a computation for the standard deformation
of the NS-node. Recall the generators sy, s2, So of wx /S (see Lemma 6.4). We
know that s1 and s; are in the image of § : Qx5 — wx/s. On the other hand, the
sections dz1/z1 and —dzy /2 of Qg over 21 # 0 and 2, # 0 glue into a global
section of j.{2;7/g, which maps to so under j.0. O

Now let us consider a family of stable supercurves X /S over a smooth affine
base S with a smooth map ¢ : S — A!, such that over Sy = (t = 0) C S, we have
a relative NS node ¢ : Sp — Xo = Sp x5 X, so that X \ ¢(Sp) is smooth over S,
the completion of Ox along ¢(Sp) is given by the standard generators and rela-
tions (6.11), and the derivation ¢ is given by the standard formula.

LEMMA 7.2. (i) In the above situation, étale locally along q(Sy), the sheaf
780y s is generated as an O x-module by global sections

o= _dn gy g o Oid6_ 6adfy
1 <2 21 22

with defining relations

79 td01 — Z1d92 = t91€, 22d91 +td02 = —t@z@,
(7:2) tf =0,d0) = 01d0>, =z f=01d0), z=nf=-—0dh, Of=0,f=0.
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(i1) We have an exact sequence on Xy,
0— K = Qy, /5, — 3:Q0/slx, = Co— 0
where K has an Og,-basis
(7.3) z1dzy = —zpdzy, z1dbr) = —brdz1, 2d0; = —01dzy, 61dO; = 6,db,
and Cy has as an Og,-basis the images of
(7.4) e, f, bie, 6se.

Furthermore, the map of Og,-modules 7. — 7.8l s, is an embedding of a
direct summand.

Proof. (i) Etale locally we can think of sections of 7,0/ /s as compatible sec-
tions of O, /5 and §2y;, /5, where Uj is the open subset where 2; is invertible. Thus,
e is a well-defined section of j.{2;/g. Using relations (6.11), we get

22dfy = —tdfs — 0,d2,

soover U1 NU,,
ﬁdt91 = 02(— td@g) = —@d02,
21 t 2 2

so f is a well-defined section of 7.2y g.

Let us denote by F the O x-module given by generators e, f, df; and df, and
relations (7.2) It is straightforward to check (by inverting z; or z;) that these rela-
tions are satisfied in j.{);/g, so we have a well-defined morphism F — 7.y /5.
The map « : w§< /s 782y s sends a generator to e — f. Thus, we have a commu-

tative diagram with exact rows

ox Lo F/Ox(e—f) —>0
(7.5) ~
) k. J«0
O%wX/SHJ*QU/S wx/s 0.

One can check using Grobner basis technique that

n n n n n n n n
zre, zi0ie, =z1'dby, 2'01d0;, zye, zybhe, zydbh, 2zy0dbr, f,

where n > 0, is an Og-basis of F. This easily implies that the map Ox “, Fis
injective (by looking at the coefficients of e).
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The quotient 7 /Ox (e — f) is generated by e, df;, df, subject to relations

tdfy — z1df, =0, 2,d0 +1tdb6, =0,
te:92d01 :61d92, zle:01d61, e = —62d92, 916:92620.

Note that
5(dr) = s1, 0(db2) =s2, d(e) = so.

Comparing these with generators and relations of w5 (see Lemma 6.4) we de-
duce that the map F/Ox (e — f) — wx/g is an isomorphism. Now the fact that
F — ji8dys is an isomorphism follows from the diagram (7.5).

(ii) From (i) we see that 7, /S is a coherent sheaf (since this can be checked
étale locally along ¢(.Sp)). Hence, the kernel K and the cokernel Cy of the map
Qx,/5, = J+Qu/s|x, are coherent sheaves supported at the node. Also, we get
an explicit description of the completion of j.2;;/|x, at the node by generators
and relations. Taking the quotient by the image of {1x, /g, we get that Cy (which
coincides with its completion at the node) is generated by the images (e, f) of
(e, f), with the defining relations

21€6=0, 2e=0, z2f=0, 2f=0, 6,f=0, 6,f=0.

This implies the assertion that the elements (7.4) constitute an Og,-basis of C.

The kernel K coincides with the kernel of the restriction Q. /5, — Qx, /5, @
x,/s,- The four elements (7.3) can be extended to an Og,-basis of x; /g,: we
have to add

n n n n
Z; dZi, Z; Oidzi, Z; dgl, Z; 91d91,

where ¢ = 1,2, n > 0. Since the latter elements project to independent elements of
Qx, /5, ®8x, /s, the assertion follows. 0

Next let us consider the case of a Ramond node, i.e., consider similar data
(X/S,t: 8 — Al q: Sy — Xo), such that ¢(Sp) is a relative Ramond node, and
étale locally along ¢(Sp), Ox is given by the standard generators z1, z;, 6 subject
to 212 = t, and with the distribution generated by 0y + 0z;0,, over z; # 0.

LEMMA 7.3. (i) In the above situation the sheaf j.Sy s is freely generated in
a formal neighborhood of q(So), as an O x-module, by global sections

o= de.

dz
21 2

(i) We have an exact sequence on Xy,

0— K — Qx,/5, = 3+Qu/slxy = Co— 0



THE MODULI SPACE OF STABLE SUPERCURVES 1841

where K ~ q.Og, is generated by z1dz, = —z2dz and Cy ~ q.Og, is generated
by the image of e. Furthermore, the map of Og,-modules 7.K — 7.8, /s, is an
embedding of a direct summand.

Proof. The proof is similar to that of Lemma 7.2 but is much easier since both
wy/s and wgf /g are locally free near the Ramond node. Namely, wx/g is freely

generated by the section glued from ?1. [dz|df] and —% [dz2|df], The map « sends
a generator of wg( jgtoe— fdf. Since 0 sends df to a generator of wx /g, we deduce
that e and df freely generate j.{);;/g over Ox.

The map Qx, /s, — J+Qu/s|x, sends dz; to zie, dz; to —ze, and db to df.
This easily implies that its kernel is generated by 2,dz; = —z1dz2,, while its coker-

nel is generated by the image of e. O

7.2. Boundary Cartier divisor. The boundary divisor of the compactified
moduli superspace has codimension 1|0, however, since the supermoduli space is
not reduced, the structure of the Cartier divisor on the boundary is not automatically
given. We claim however that there is a natural such structure.

Let 7 : X — S be a family of stable supercurves, inducing a surjection to the
miniversal space of deformations of each node. We are going to study the natural
2-term complex

[Qx/5 = 3:Quys]
placed in degrees —1 and O, where j : U — X is the open embedding of the com-
plement to the nodes. Note that this complex is acyclic over U. Furthermore, both
terms are flat over S, so the line bundle Ber . [Q2x/g — 7.y /g] is well defined.
Similarly to the theory in the even case (see [24]), we can define a canonical trivi-
alization of this line bundle away from the locus of nodal supercurves.

PROPOSITION 7.4. The canonical trivialization ¢ of B := Berm[Qx/s —
JxQu 5] away from the nodal locus extends to a regular section of B on S that
has form t-b near a point corresponding to a stable supercurve with one NS or
Ramond node, for some trivializing local section b of B and some local function t
whose reduction modulo nilpotents gives an equation of the corresponding reduced
divisor.

Proof. We can work in an étale neighborhood of a point on S corresponding to
a stable supercurve with one node. Let us first consider the case of an NS node. We
can choose a sufficiently positive relative Cartier divisor D (disjoint from the node)
such that 7, [Qx 15 — 380y, 5] will be represented by the compex of supervector
bundles
m(Qx/5(D)) = m(j:Qu;5(D))-

To understand this map, we first restrict it to Xo. We have an exact sequence on .5,

0— TF*IC — 7T*(QX()/S()(D)) — 71-*(j*QU/S(Z))|50) — 71-*CO — 07
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where both 7./ and 7.Cy are locally free of rank 2|2. Furthermore, 7./ embeds
into 7.(Q2x,,5,(D)) as a subbundle, and we have an Og-basis (7.3) of 7. K. Note
that the elements of this basis are defined in terms of the coordinates which only
exist locally near the node. However, they are killed by the ideal I, of the node, so
they can be viewed as sections of 7.Qx, /s, (D).

We can choose liftings of the Og,-basis (7.3) in 7K to Og-independent sec-
tions by,b2,b3, b4 in w*(QX/S(D)), so that

by = z1dz; mod (t), by =6dz; mod (),
by =01dz; mod (t), by=06d6; mod (t).

Then we can extend it to a basis (b, ..., b,) of 7.(€2x,5(D)) so that the elements
(¢(bs),...,t(by)) form a basis of a free Og-submodule in 7. (j.{2;7/s(D)), which
projects modulo (%) to a basis of the image of m.Qx, /g, (D).

Next, we adjust our choice of b; so that

b1 = z1dzp, mod (tz).
Here the right-hand side can be viewed as a section of

7. (/s (D)) = 7m0 (D)),

where we consider the base change Xél) — S(()l) , where S(()l) C S is given by the
ideal ¢2. Namely, we observe that near the node one has J g C (z1,22), which implies
that 21z, = —zdz; is killed by 12 on X' (due to the relation 2z, = —#2). Thus,
we can lift zdz; mod (£2) to a section by € 7. (Qx/5(D)).

Now let us analyse the images of by, ...,bs under .. We have ¢(b;) = tc; for
some ¢; € (7« (D)), for i = 2,3,4. In the case of b; we know that ¢(b;) =
t*¢; for some ¢ € . (j. Qs (D)).

Furthermore, the restriction of «(b;) to a formal neighborhood X of the node
is the image of the restriction of b; to this formal neighborhood under the similar
map for X. Since by restricts to z1dz + t2x, it maps to

—zzme+tir =t (e+x),
where x comes from €2 X/ Hence,
¢y =e mod QX/S'
Similarly, we compute

Ordzy = 0yz1e = tbhe,
91d22 = —912’26 = teze,
0,d6, = tf.
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Hence, we get
o =0e monX/S7 cz = bhe monX/S7 ca=f monX/S.

It follows that ¢, ¢, 3, ¢4 project to an Og-basis of 7,Cy. Hence, ¢y, 2, c3, ¢4 are
linearly independent over Og, and can be extended to an Og-basis (cy,...,c,) of
T«(jxQ0/5(D)) by ¢; = 1(b;) for i > 4. Computing the Berezinian in this basis we
get t.

The case of Ramond node is considered in a similar way using Lemma 7.3.
In this case we can choose bases (b,...,b,) of m.(Qx/s(D)) and (cy,...,cn)
of m.(j:Qu/s(D)), such that by = z1d2; mod (%), 1(by) = —tcy (since z1dzy =
—z12me = —te in j*QU/S(D)), and ¢(b;) = ¢; for ¢ > 1. This shows that the
Berezinian is . U

The above Proposition gives a natural definition of the boundary divisor in the
moduli space of stable supercurves S as an effective Cartier divisor. More precisely,
let k: S’ — S be the complement to the locus of stable supercurves with more than
1 node. Since the even codimension of the latter locus is > 1 and S is smooth, for
any vector bundle V over S, the natural map V — k.k*V is an isomorphism. Let
us consider the line bundle

over S. By Proposition 7.4, the canonical trivialization ¢ of £ over the smooth
locus gives a regular global section of k* L and hence of £ ~ k.k*L. We define the
effective Cartier divisor A to be the vanishing divisor of this global section. Note
that by definition, we have an isomorphism

(7.6) O(A) ~ L ~Ber Rm,(j.Qy/s) ©@Ber ' R, (Qx/s).

The proof of Proposition 7.4 also yields the following characterization of the
divisor A.

LEMMA 7.5. The effective Cartier divisor A is a unique Cartier divisor sup-
ported on the locus of nodal supercurves with the following two properties:

e for any stable supercurve X with a single NS node q there exists an étale
neighborhood S of the corresponding point [Xy| in the moduli space and an étale
neighborhood Xg of q in the family X — S induced by the universal family such
that Ox is generated over Og by z1, 2, 01, 02 subject to relations (6.11), where t
is a local equation of A on S;

e for any stable supercurve Xy with a single Ramond node q there exists an
étale neighborhood S of [ Xo| in the moduli space and an étale neighborhood X s of
q in the family X — S induced by the universal family such that Ox g is generated

over Og by z1, z3, 0 subject to the relation z1z, =t, where t is a local equation of
Aon S;
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Proof. These conditions clearly characterize A NS’. To show uniqueness of
an extension to S, we observe that if Z C Oz is an invertible ideal sheaf then Z is
identified with k.k*Z C k.Os = Os. O

7.3. Another definition of the boundary divisor and the normal crossing
property. Let X/S be the universal stable supercurve.

LEMMA 7.6. The natural morphism Ax — 7*Tg of sheaves on X factors
through a morphism Ax — 7r*17'§.

Proof. This follows the fact that Ax = j.. Ay, where U C X is the complement
to the nodes (see the proof of Theorem 4.4), and from the corresponding statement
for the smooth locus U — S (see equation (6.9)). [l

Let us consider the natural morphism
7D m(Ax/Axss) = T

induced by the map Ay — 7 ! T5.

PROPOSITION 7.7. The Og-module m(AX/AX/g) is locally free of rank

(39 — 3|29 — 2) over S, and the Cartier divisor associated with the Berezinian
of the map (7.7) coincides with A. Furthermore, A is a normal crossing divisor.

Proof. Note that (7.7) is an isomorphism over the locus of smooth supercurves.
By Lemma 6.5, in an étale neighborhood S of a point [Xy|, where X, has a
single NS node, the image of the morphism Ax — 7~ !'7Tg is 7~ !Tg s,, where
Sp is the divisor (t). Hence, in this case (7.7) is the embedding 75 B, — 7B,
and the Berezinian of this morphism is ¢{. By Lemma 6.8, the similar statement
holds in a neighborhood of a curve with a single Ramond node. This implies that
m(Ax /Ay /z) is locally free over S C S, and the divisor of the Berezinian of
(7. 7HoverS'is ANS'.

Next, let us study the situation near a point [Xo] of S, such that [ X(] has several
nodes qi,...,q. Using the fact that the map from deformations of [Xy] to the
product of deformation spaces of the nodes is smooth, we see that there exists an
étale neighborhood B of [X], together with a smooth map (t1,...,%) : B — A*
such that the function ¢; corresponds the induced deformation of the node g;.

Let us consider the normal crossing divisor D = (¢ ---t; = 0) in B, and let
Tp.p C Tp be the subsheaf of derivations preserving D. Note that Tp p =(\75,p,
where D; is the divisor ¢; = 0.

Let us consider the restriction 7 : X — B of the universal family and set

ZX = .AX/.A)(/B CTp.
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Let U; be an open neighborhood of ¢; in X, and let m; = 7|y,. Then, as we have
seen above, we have

I —1
Ax|v, =m; TB,D;-

Thus, for each i = 1,..., k, we have an inclusion
m(Ax) C min(Ax|v;,) = Te,p, C TB.
Hence, we deduce the inclusion
W*(jx) C TByp.
On the other hand, we claim that there is an inclusion
7T717-B7 p C A X-
Indeed, it is enough to check this over each U;. But then we have
= "Tsplv, €7 " Te.p, = Ax,
as required. Hence, passing to 7. (?), we derive the inclusion

TB,D = 7T*7T717-B7D C ﬂ*jx.

as claimed.
Thus, we get m.Ax = T p. Hence, m. Ay is locally free and the Berezinian
of the morphism 7 p — 7p has the required form. O

7.4. NS and Ramond boundary components as effective Cartier divisors.
Recall that we denote by S’ C S the open locus of stable supercurves with at most
one node. Note that AN S’ is the disjoint union of two Cartier divisors, one sup-
ported on stable supercurves with one NS node and another supported on those
with a Ramond node. We want to extend these two divisors on &’ to effective
Cartier divisors Axg and Ag on S such that A = Ayg+ Apg.

First, we are going to define the divisor A g giving the NS component. For
this let us consider the structure map

As we have seen before, it is surjective away from the nodes. It is also surjective
on Ramond nodes. Let us consider the ideal sheaf on S,

Zs := Ann, coker(d),

supported on the locus of stable supercurves with at least one NS node.
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PROPOSITION 7.8. (i) The ideal sheaf L5 defines an effective Cartier divisor
Ans on S, which coincides with A in a neighborhood of any point [X,] corre-
sponding to a stable supercurve Xo with only NS nodes.

(i) There exists a unique effective Cartier divisor A supported on the locus
of stable supercurves with at least one Ramond node, such that

A=AyNs+Ag.

If Xo is a stable supercurve with NS nodes q,...,q. and Ramond nodes
Qri1,---,qk then there exists an étale neighborhood B of [Xy] in S with a
smooth morphismty,...,tp : B — AF such thatt, ---t, is an equation of Ang and
tri1 -ty is an equation of AR.

Proof. Let X be a stable supercurve with NS nodes qi,...,q and Ramond
nodes ¢,41,...,q,. Consider an étale neighborhood B of [X)], equipped with a
smooth map (ti,...,tx) : B — AF, such that t; gives the universal deformation of
the node ¢;. Then the ideal of A is generated by £ - - - tx.

On the other hand, using the description of w5 by generators and relations
(see Lemma 6.4), we see that in the formal neighborhood of each NS node g¢;,
coker(0) is generated by s subject to the relations

9180 = 9280 = 2180 = 2280 = tiS() =0.

It is easy to deduce from this that the annihilator of 7, coker(d) is generated by
t---t,. This implies all the assertions. g

7.5. The NS node boundary components. We will use the following con-
struction of gluing two superschemes along a closed subscheme.

Assume that X, X' and Y are superschemes, i: Y — X andi:Y — X' are
closed embeddings. We want to define a new superscheme Z by gluing X and X’
along Y. As atopological space we can define Z to be the usual gluing of the topo-
logical spaces of X and X’ along Y, so that we have closed embeddings j : X — Z,
g X' — Z, so that k := jj oi = j, oi. Hence, we have two homomorphisms of
sheaves of rings

(f) : j*OX — k*(/)y, (f)/ :jiOX/ — k*(/)y,

and we define Oy to be the subsheaf of j,Ox & j.Ox/, namely, the preimage of
the diagonal k,.Oy C k,Oy ® k.Oy under ¢ & ¢'.
We can apply this to gluing two stable supercurves along NS-punctures.
Suppose X/S and X'/S is a pair of stable supercurves with NS-punctures
P C X and P’ C X'. We have an isomorphism P ~ S ~ P’, so we can define a
new superscheme Z/S by gluing X and X' along P ~ P’.
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LEMMA 7.9. The glued superscheme Z/S has a natural stable supercurve
structure such that the derivation 6 on Z is defined as the composition
. y (J«0,528") . y
Oz = 3x0x ©J,0x) ——— Juwx/s D Jwx1 /5 — Wz/s-
Proof. If U C X, U’ C X' are smooth loci, then (U \ P) U (U’ \ P’) is an open
subset of Z, which is a smooth supercurve over S. Next, we need to check that in

the case when S is a point, 6~ induces an isomorphism of O, with w,. Since the
base is even, we have identifications

Ox=0c®L, Ox :Oc/@L,,

and the smooth marked points P C C, P’ C C’, so that the embedding of P into X
corresponds to the projection

Ox—>(90—>0p.

Note that L and L’ are generalized spin-structures, i.e., we have an isomorphism
L= Hom(L,w¢) (which corresponds to §~ on X), and similarly, for L'. Further-
more, we know that L (resp., L') is locally free near P (resp., P’).

The glued superscheme Z has the underlying nodal curve Zy, which is glued
from C and C’ along P ~ P’, and

Oz7~0z®j.LDj,L.
It is well known that the natural map
L@ j. L' — Hom(j. LD j. L  wz,)

is an isomorphism, i.e., . L & j. L' is a generalized spin-structure. It is easy to see
that above map is precisely 6, so this proves that Z/S is a stable supercurve. [J

Let S g.m,n denote the moduli superspace of stable supercurves of genus g with
m NS marked points and n Ramond marked points. Then we can apply the above
gluing construction to the pair of families of stable supercurves over S, :m,+1,n, X
8 gy:ma-+1,my» pulled back from each factor and using the last NS puncture on each
of them. This leads to a morphism

(7.8) Sgimitm X Sgymatiing = Sgitgymitma,nitny:

Similarly, if X/S is a stable supercurve with two disjoint NS-punctures
P,P’" C X, then we can glue P with P’ and get a new stable supercurve with a
non-separating node. This leads to a morphism

(7.9) Sgms2n = Sgrtmn-
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LEMMA 7.10. Both morphisms (7.8) and (7.9) induce embeddings of codimen-
sion 1|0 on tangent spaces and factor through the divisor Ag. Furthermore, near
a stable supercurve with a single separating (resp., non-separating) NS node, the
divisor Ang coincides with the schematic image of (7.8) (resp., (71.9)).

Proof. The idea is to use exact sequences (3.9). Let X be a stable supercurve
with punctures and a fixed NS-node ¢ € X, and let p : X — X be the normalization
at g, equipped with the two NS punctures over ¢. Then by Proposition 3.11 (i), we
have

Ax ~pAg
(where we take into account all the punctures on both sides). Hence, the natural
map
H' (X, Az) — H' (X, Ax)
is an isomorphism.

Let q1,...,qm be the nodes of X different from q. Then we have a morphism

of exact sequences

0 ——= H'(X, Ag) —> Tpyz) —> D Toetion,) ——>0

T

m
0 ——> H' (X, Ax) —> Tper(x) —> Tef(0x.,) @@TDef(Oxyqi) ——>0
i=1

in which the right vertical arrow is the natural inclusion of codimension 1|0. Since
the left vertical arrow is an isomorphism, the assertion about the map of tangent
spaces follows.

To check that our morphisms factor through A g, we have to check that the
pull-back of the morphism O — O(Axyg) is zero. Since the sources are smooth, it
is enough to check this generically, so we can consider a neighborhood of the point
corresponding to a supercurve with a single NS node. Then we know that the local
equation of A g will be (t = 0), where ¢ corresponds to the map to the universal
deformation of the node. Since the deformation of the node given by the source of
the maps (7.8) and (7.9) is trivial, this proves that the pull-back of ¢ with respect to
one of these maps is zero. Using the fact that the morphism on tangent spaces is an
embedding with the image which is the orthogonal to d¢, we deduce that near this
point A g is the schematic image of the morphism. U

7.6. The Ramond node boundary components. Gluing along two Ra-
mond punctures is more subtle.

First, we point out a certain “residual structure” we have on each Ramond
puncture. Let R C X be a Ramond puncture in a stable supercurve X /S.
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LEMMA 7.11. The map

Slr: Qx/slr = wx/r(R)|R ~wr/s

Jfactors through the canonical projection 2 slr—= Qg /s, and induces an isomor-
phism

SR . QR/S —)OJR/S.

This induces a trivialization of (g / 5)%2 (or equivalently, of w%i g) whichis locally
given by (d0)?, for 6 such that O = Og|0),

Proof. Recall that in appropriate étale local coordinates (z,6), R is given by
(2 =0) and we have

5(dz) = 20 [f\d@} . 6(do) = [fue} .

It follows that §|g(dz) = 0, and the induced map 6 is given by
Or(df) =1b,

where b is the generator of wp /5 corresponding to [% |do)].
Since the relative dimension of R is 0|1, we have in fact an isomorphism
w}_z}s ~ (dp/g. Thus, we can view dr as a trivializing section of (QR/S)®2. O

The above Lemma implies that every Ramond puncture R has a preferred
system of étale local relative coordinates 6;, such that over intersections one has
0; = £0; + a;j, where a;; are functions on the base. Namely, we require that (d@i)2
is the canonical trivialization of (2g, 5)“2. In other words, we have a canonical
principal bundle Pr — S with the structure supergroup Z/2 x A0,

We can restate the above structure in more invariant terms. Let 7 : R — .S
denote the projection. First, we observe that

(7.10) dp :=m,0r/Og ~Ber ' 1,0R

is a line bundle of rank 0|1 on S. Furthermore, we have a canonical isomorphism
of odd line bundles on R,

W*@R ; QR
induced by the de Rham differential Og/Opr — . Furthermore, the trivialization
of (Q25)®? in Lemma 7.11 actually comes from the canonical trivialization of <I>%%
on S.
Let © C tot(®PR) be the Z/2-torsor over S corresponding to ® . Then the
principal bundle Pr — S can be identified with the preimage of © in tot(7.OR)
under the natural projection p : 7,0 — m.0Or/Og.
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LEMMA 7.12. The group scheme Aut(®r) — S can be identified with the
group of automorphisms of w,Og, which are identity on Og, and induce +id on
7«ORr/QOg. This group scheme is an extension of /2 by the line bundle @1_%1.

Now suppose X /S is a (possibly disconnected) stable supercurve with two R-
punctures R C X and R’ C X, equipped with an isomorphism R ~ R’ over S. Then
we can glue X with itself along R ~ R’ into a superscheme Z over S equipped with
a finite morphism j : X — Z.

LEMMA 7.13. Assume that the isomorphism o : R — R' is such that the

induced isomorphism
*, ®2 ~ ®2
@ Wpig —7 Wgig

. . ST ®2 ®2 .
is equal to — 1, where we use the trivializations of wp, /s and w p; /g coming from the
supercurve structure on X. Then the glued superscheme Z/S has a natural stable
supercurve structure, such that the derivation § is uniquely determined from the
commutative diagram

o
O7 —> wz/s

: g0
7xO0x ——> ]*WX/S(R)’

Proof. To check that § is well defined, we need to check that the image of the
composition j.d or belongs to wy,g. For this we can argue locally. Let (z,) be the
standard local coordinates on X near the puncture R, so that R is given by (z =0),
and

5(dz) = 20 [fue} 8o = [dj|d9} .

Let also (2/,0') be similar coordinates near R'. Then a*(df’)? = —d#, so changing
6 to 60 + a, we can assume that ia* (") = 6. Let us set § = if’. Then we have

Tdz — _ ds
5(d2) =2’ [Z\de} . o(df) = — [Z,\de] :
z z
Then we have relative coordinates on the glued scheme Z, (z,2',0), where

2z =0, 0 restricts to § near R and to  near R'. Since §(z) has no pole at R, we
see that (6(z),0) belongs to wy, . Similarly, (0,6’(2")) belongs to wy,g. Finally,

6060 = (| Zlas ]| % 1a9] ),

which comes from a section of wyg.
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Over the point, our construction can be recast as follows. We start with a Ra-
mond spin curve (C,p,p’, L), together with an identification

a:Llp=~ Ly,

such that a® = —1 (where we use trivializations of wc(p)l, and we(p')|y). We
glue p with p’ and get a nodal curve Z, and then descend L to a line bundle £ over
Zo using . Then we have a natural isomorphism £%2 ~ wz,, and one can easily
check that the corresponding isomorphism £ — Hom(L,wz,) is induced by 6,
where ¢ is defined as above. g

The choice of an isomorphism « can be interpreted in terms of the principal
7./2 x A%'-bundles P and Pg as follows. For every ¢ € C* let us denote by [c]
the automorphism of Z/2 x A% given by the rescaling by ¢ on A%! (and trivial on
7./2). Then a choice of « is equivalent to a choice of an isomorphism of Z/2 x A%'-
bundles,

where [i].Pg is the push-out of P with respect to the automorphism [i].
We can apply the above construction to the two last Ramond punctures I+

and R, on the universal stable supercurve over gg;m,n+2« Let Pri1 — Sgimont2
and Py,12 — Sgum.n2 be the corresponding principal Z /2 x A%'_bundles. Let

Isom (P 1, [i]«Pns2) = Sgimn+2

denote the bundle of isomorphisms between these Z /2 x A%!-bundles. Note that it
is also a principal bundle with the group Z /2 x U

Then the above gluing construction gives a family of stable supercurves with a
Ramond node over Isom(Py, 1, [i]+ Pn+2), S0 we get a morphism

(7.11) Isom(Prt1, [i]«Prt2) = Sgttimin

Similarly, we can glue the last Ramond punctures R, R’ on the stable super-
curves X, X’ over the moduli space Sg,.m, n+1 X Sgyimanat1 pulled back from
each factor. This gives a morphism

(7.12) ISOIII(PR, [i]*PR’) - g91'i‘_¢)2;7711+m2,7"01-*-nz‘
Note that in this case n; and n, are odd, so n; +ny > 2.

LEMMA 7.14. Both morphisms (7.11) and (7.12) induce embeddings of codi-
mension 1|0 on tangent spaces and factor through the divisor Ag. Furthermore,
near a stable supercurve with a single non-separating Ramond node the divisor
AR coincides with the schematic image of (7.11).
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Proof. Let X be the stable supercurve obtained by gluing two Ramond punc-
tures R, R’ on a stable supercurve X, via an isomorphism a : R — R’ as in
Lemma 7.13. Note that we have an exact sequence

0—-IIC—T

Def(%,0) 1

pef(%) 0

where the odd line IIC corresponds to infinitesimal deformations of «.. By Propo-
sition 3.11 (i), we have
A;} ~ p*.A;l(.
As in Lemma 7.10 we deduce from this that
+ +
Def(X o) - TDef(X)
is an embedding of codimension 1.
Next, we claim that the map between the spaces of odd infinitesimal deforma-
tions,
T];ef()?,oz) T];ef( X)
is an isomorphism. Indeed, we know that every odd deformation of X is locally
trivial, i.e.,
— 1 —
TDef( x) = ~ H (X, Ay).

Also, by Proposition 3.11 (i), we have an exact sequence

O—>(C—>H1(X,A;()—>Hl()~(,¢4;z)—>0

SO
. _ . 1/ < _
dim Ty ¢ ) = dim H (X, AL)+1=dimT f(F o)
It remains to observe that every locally trivial deformation of X' can be lifted to a
deformation of (X, «). O

8. Canonical line bundle on the moduli space of stable supercurves. In
this section we will calculate the canonical line bundle of S

gnng.mps €ventually
proving Theorem B.

8.1. What Kodaira-Spencer isomorphism gives for the canonical bun-
dle. Set S =Sy sny We are interested in the canonical line bundle Kg =
Ber™!(Tg). Over the smooth locus S C S, from the Kodaira-Spencer isomorphism
we get an isomorphism (see Section 6.4)

(8.1) ber(KSz): Ks — Ber ' (R'm.L(X, Ps, Ra)) ~ Ber(Rm. L(X, Py, R)),

where

L(X, P R) i=wide (=S Di=2) Ry).

el jeJ



THE MODULI SPACE OF STABLE SUPERCURVES 1853

Recall that here w;& g is the line bundle defined in Theorem 4.1, and D; are the

divisors on the universal curve X associated with the NS punctures.
Our study in Section 6 of the behavior of the Kodaira-Spencer map in degen-
erating families of supercurves leads to the following identification of K.

PROPOSITION 8.1. One has a natural isomorphism
ber(K Sg) ' : Kz — Ber(Rm.L(X, P, Rd))(—A),
where A is the boundary divisor.

Proof. We just have to check that isomorphism (8.1) acquires simple poles
at all generic points of A. But this follows from the results of Section 6 and our
local description of A at points corresponding to stable supercurves with single
nodes. 0

Next, we will study the line bundle Ber(Rm.L(X, P,, R.)). We begin with the
case when there are no punctures. Then the above identification of the canonical
bundle becomes

ber(K S5) ' : K5 — Ber(R, (w;&s))

8.2. Isomorphisms for Berezinian bundles. Let 7 : X — S be a smooth
proper morphism of relative dimension 1|1. Then we can define Deligne’s symbol
(L1, Ly) of a pair of line bundles of rank 1|0 over X similarly to the even case
(considered in [12]), so that for a relative effective Cartier divisor D one has

(Ox(D),L) ~Ber(m(L|p))/Ber(m.Op).

If B(L) denotes the Berezinian of the derived push-forward of L then one has,
as in the classical case,

B(L] ®L2) ®B(O) ~ B(L]) ®B(L2) &® <L1,L2>.

However, in the supercase, for any line bundles L and L’ of rank 1|0, there is a
canonical isomorphism

(8.2) ap : Ber(m.L|p) — Ber(m(L'|p)),

induced by any local isomorphism L — L’ (the point is that the Berezinian of a
scalar automorphism of a linear space of rank 1|1 is trivial). Hence, the Deligne’s
symbol is canonically trivial, so we get

(8.3) B(L® Ly) @ B(O) ~ B(L) @ B(L»)

(see [32]).
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More explicitly, locally over S we can pick a relative positive divisor D such
that L1 L(D), Ly(D) and Ox (D) have no R!r,, and assume also that we have an
even section s € H%(X, L,(D)), fiberwise regular, vanishing on a relative divisor
E'. Then we have the resolutions

Rr(Ox): [mLo(D) — m.Lo(D)|g),
Rro(Ly): [mL1La(D) — w,L1Lo(D)| ),
Rr.(Ly): [mLa(D) — mLa(D)|p),

R (LiLy):  [mL1Lao(D) — m L1 La(D)|p).

Using these resolutions we get an isomorphism

B(LiL2) ® B(Ox)
= B(L1Ly(D)) ® B(Ly(D)) @ Ber (. L1 L2(D)|p) @ Ber ! (1. L2(D)| )

idgidoa g ®ay!
D P L B(LyLa(D)) ® B(La(D)) @ Ber ™ (m.La(D)|p)

®BCI'_1 (W*LILZ(D)‘E)
=B(L1)®B(Ly).
Note that isomorphism (8.3) can be used to calculate 5(L;L,) when L; and
L, are not necessarily of rank 1]0: for a line bundle L of rank 0|1 we use the
isomorphism
B(IIL) ~ B(L)~".

For example, for a line bundle L of rank 1|0 one has
B(L?) ~B(L)*/B(0)*.

Applying this to L = Ilwy, where X/S is a smooth supercurve, one gets the analog
of Mumford isomorphism in the supercase (see [32]),

(8.4) B(wi/s) ~ Bwy/s)’ ® B(Ox)* ~ Blwx/s)’,

since B(L) ~ B(wx/s ® L") by Grothendieck-Serre duality. Thus, denoting
Ber; := B(w&/s), we can write this isomorphism as

5
Ber; ~ Ber .

We will need an extension of isomorphism (8.3) to families of stable super-
curves 7 : X — S and to the case when L is replaced by a not necessarily locally
free sheaf. For a coherent sheaf F over X, flat over S, we denote by B(F) the
Berezinian of the perfect complex R, (F).
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LEMMA 8.2. Let m: X — S be a stable supercurve, F a coherent sheaf on X
flat over S. Assume that F is locally free of rank 1|0 over the smooth locus of .
Then for any line bundle L of rank 1|0 on X, one has a canonical isomorphism

(8.5) B(F®L)~B(F)®B(L)®B(Ox)™".

Proof. We can use the similar recipe as above to construct this isomorphism
locally over S: we simply replace L; by F, L, by L and take D with support in
the smooth locus of 7, and a section s € H%(X, L(D)) with the vanishing divisor
E, also contained in the smooth locus of 7. U

8.3. Behavior of the super Mumford isomorphism near the NS bound-
ary divisor. Now we want to look at the behavior of the super Mumford isomor-
phism (8.4) near the generic point of boundary divisors. In the case of a Ramond
node it extends to an isomorphism, since wx g 1s still a line bundle. Thus, it re-
mains to study locally the boundary component where one NS node appears. So
let 7 : X — S be a family of stable supercurves as in Section 6.2, so we have
a smooth morphism ¢ : S — A, a relative NS node ¢ : Sy — Xy C X over the
divisor Sy = (¢t =0) C S, and Ox has the standard description along ¢(Sp).

Let S’ = S\ Sy, and let X' = 7~1() be the corresponding family of smooth
supercurves. First, we need to explain how to extend the line bundles B(wgf, / )
and B(Ox) to S. For the second one this is straightforward: the extension is given
by B(Ox).

For any integer n let us set

n P n
Wx/s = JxWyys>

where U C X is the smooth locus of 7. Recall that wg( /8 is a line bundle on X (see
Theorem 4.1). Thus, we have

3 -3 2 : 2
Wy /s = JxWir/g = Wx/s®]*WU/S ~ Wx/s@)WX/S-

This is a coherent sheaf, flat over .S, so we can take B (w} / ) as the desired exten-
sion of B(w3, / o)
Note that by Grothendieck-Serre duality, we have an isomorphism of line bun-
dles on S,
Bwx/s) =~ B(Ox).
Since wyx/g is a coherent sheaf flat over S, we deduce from Lemma 8.2 an
isomorphism

B(ng(/s) ~ B(Mwy/s) ®B(w§(/5) QB(Ox) ' ~ B(wg(/s) @B(Ox)7?,
or equivalently,

(8.6) Bwy/s) = B(wx/s) ' @ B(Ox)?,
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Thus, our problem reduces to studying the behavior of the isomorphism on X',
B(W%{//S/) ~ B(HWX//S/)Z (9] B(OX/)il ~ B’(C)X/)i3

near the divisor Sy C S. To this end we look more carefully at the recipe for this
isomorphism outlined in Section 8.2.

We can pick a sufficiently positive relative divisor D supported in the smooth
locus of 7, and also an even section s of Hwyx /(D) with the zero locus E. Fur-
thermore, we want to make a special choice of s as described below.

LEMMA 8.3. There exists an exact sequence of Ox-modules,
0— w;‘;’js — wx/s = ¢:0g, =0

such that in the formal neighborhood of q(So), wﬂ?‘j g s the Ox-submodule gen-

erated by the sections s\ and sy given by (6.12). Furthermore, we can choose an
reg

X/ 5(D) in such a way that in the formal neighborhood of q

even section s of Ilw
one has

s=wv-(s1+u-s),

for some invertible functions u and v that are congruent to 1 modulo the ideal
of ¢(So). By making a change of variables

21 |—>u*121, = uz, 0101, 6 ub
we can achieve that v = 1.

Proof. In the formal neighborhood of ¢, the quotient of wx/g/(Oxs1+Oxs2)
is generated by so and is isomorphic to ¢.Og,. This implies the first assertion.
Furthermore, using Lemma 6.4, we see that w;?j g ®ax Og, is a free ¢.Og,-module
generated by the images of s and s,. For sufficiently positive D, the map

HO(X,w;?jS(D)) — HO(X,wg?‘j ¢ ®¢:0s,)

is surjective, so we can choose an odd section s € HO(X ,wﬁ% 5(D)) such that
s=s;+s mod Jq(So)'
Thus, in the formal neighborhood of ¢, we can write s = u;s| 4+ u2s, where

ui =1 mod Jys)-

It is easy to check that the given change of variables transforms s in the desired
way. O
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Now we define coherent sheaves F and G on X by the exact sequences

0— Ox — HNwy/g(D) — F —0,

0 — Twy g — wy/s(D) =G = 0.

Let F and G denote the completions of F and G at q.

LEMMA 8.4. (a) The space Fis a free Og-module with the basis si, So.
(b) We have an isomorphism G ~ Oy, where Z C X is a sub-superscheme
given by

z1=—t, z=t, 6;+6,=0.

In particular, C; is a free Og-module with the basis e, 0\e, where e is the local gen-
erator of wg( /s given by (6.13). The sheaf F is also scheme-theoretically supported
on .

(¢) The Berezinian of the map of Og-modules
S1 -7 ]:- — G
is equal to ft, where f is an invertible function.

Proof. (a) Lemma 6.4 immediately shows that the map
Os = Nwxys: frr f-(s1+52)

is injective. Furthermore, the submodule O x (s1 + s7) has the following topological
basis over Og:

$1+52, z?“(s]—i—sz):z?(zl—i—t)s], 2y (z—t)sa, O1(s1+s2) =60181+ts0,

Z?+191(81—|—82):Z?(Zl—i-t)elsl, 92(81+82):9282+t80, Z?(Zz—t)@zsb

where n > 0. Hence, the quotient by this submodule has the images of sp,s; as a
basis over Og.
(b) Near the node, wg( /s is a free O x-module with one even generator e. Fur-

®2

thermore, it is easy to check that with respect to the map wy /s

2
—>wX/Sonehas
2 2 _ _ =0
51 =z1e, 8;=—zme, S15=te, sps;="0;e,

for ¢ = 1,2. Thus, the image of the multiplication by s + s is the O x-submodule
generated by

81<81 +57) = (2’1 +tle, s2(s1 +82> = (t—22>6, 80(81 +s2) = (6, —l—@z)fﬁ.
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In other words, we have an identification
G~ Ox/(z1+t,20—1,01+6,) = Oz ~ Og01],

as claimed.
(¢) The operator of multiplication by s; acts on the bases of F and G as

S1 > 5% = —te, 8o+ 8180 =0Oie,

Hence, the Berezinian is equal to —¢ (recall that s, is an even generator of F, while
so is an odd generator). O

Let us consider the following resolutions for the derived push-forwards un-
der 7:

R (Ox): [m(

RW*(HWX/S) [ﬂ*(wX/S( ) _>7T*g]7
): [W*(HWX/S( ) = m(Hwx,s(D)[p)];
)i (w3

T (Wyys(D)) = me(wis(D)p))-

m(HMwx/5(D)) — mF],

Rﬂ'* (HWX/S

Rr.(w% s
These resolutions give a canonical isomorphism over .S,
(8.7) B(wg(/s) ® B(Ox) ~ Ber(Rm, (HWX/S))®2 ® Ber(7,G) ® Ber(m, F) !

Now the super Mumford isomorphism for the induced smooth family Xg — 5’ is
obtained by choosing an isomorphism of

Flxg =Glxg

(where both sheaves are supported on the zero divisor of s in Xg/) and using the
Berezinian of the induced map on R, to get an isomorphism of Ber (7. .F)|s with
Ber(m.G)|s (see (8.2)). For this we are going to construct a morphism

a:F—g,

which is an isomorphism away from the node, and use its restriction to X g.

Note that both F and G are supported on Z U E, where E is a relative divisor
supported in the smooth locus of 7, so we have decompositions into subsheaves
supported on Z and on F,

F~Fz;®Fp, G§~G7®0E.

We can choose separately morphisms Fr — Gg and Fz — Gz.
We have

Fg~ W*(HWX/S(D)’E), Op ~ 7T*(“-’§(/S<D)’E)7



THE MODULI SPACE OF STABLE SUPERCURVES 1859

so both are isomorphic to O, and we choose any isomorphism between them as a
morphism af : Fg — Gg. On the other hand, we have

fZ = F) gZ = gAu
Hence, we can use the morphism of O x-modules,
s, 2 F = G,

given by the multiplication with s;, as our morphism F; — Gz. By Lemma 8.4, it
restricts to an isomorphism over ¢ # 0. Thus, we get the desired morphism

a:(us’vaE):]:%g-

By definition, the super Mumford isomorphism for X g — S’ is obtained by
restricting the isomorphism of line bundles (8.7) to S’ and multiplying it with
ber R, (|x,,)~" € B(F)®B(G)~". Since ber R, (ag) is invertible on S, we
see that

ber R, (ol x,,) = u-berm (s, ),

where u is an invertible function on S. Using Lemma 8.4 (iii), we deduce that
berR7r*(04\XS,)’1 =t

for some invertible function u’ on .S, with respect to some bases of B(F) and B(G)
onS.
Thus, we obtained an isomorphism

(8.8) B(wy/s) — B(Ox) ™' @Ber(Rm. (llwx/s))**(A),

where A is the divisor given by ¢t = 0. Combining this with isomorphism (8.6), we
get the following local result.

PROPOSITION 8.5. In the above situation the super Mumford isomorphism
B(W;(%/S/) >~ B(W%{//S/) ~ B(OX/)S
extends to an isomorphism
B(wy}s) = Blwys) = B(Ox ) (=A).

Combining this with Corollary 6.7 and with Proposition 6.9 we obtain the fol-
lowing result.

THEOREM 8.6. Let gg denote the moduli stack of stable supercurves of genus
g, and let Ang C S, (resp., Ap C Sy) denote the boundary divisor supported on
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the locus where a supercurve acquires an NS node (resp., a Ramond node), defined
in Section 7.2. Then one has an isomorphism of line bundles

8.9) K, ~ Ber; (—2Ans — AR).
Proof. Let m: X — S, denote the universal supercurve. First, we have an iso-
morphism
Kg, ~ Ber ! le*w;igg (—Ans—AR) ~ B(w;igg)(—ANs —ApR)
(see Corollary 6.7 and Proposition 6.9). Next, by Proposition 8.5, we have

B(w;gg) ~ B(wi/gg) ~ Ber;(—Aps)

(recall that the super-Mumford isomorphism (8.4) extends over the Ramond type
boundary divisor Ag). Combining this with the previous isomorphism we get the
result. U

8.4. Canonical line bundle on the moduli space of stable supercurves
with punctures. Let 7 : X — S be a stable supercurve with NS punctures
Py,..., P, and Ramond divisors Ry,...,R,. We denote by D; C X the divisors
associated with P; as in Section 2.5.

For every i = 1,...,m, let us define a line bundle of rank 0|1 on .S,

\I/Z' = Pi*wX/S'
LEMMA 8.7. One has natural isomorphisms of line bundles of rank 0|1 on S,

U, ~7,.0p,/Og,
Ul Plwx/s(Di) ~ Pfwp, s ~ Ber(m.Op,).

Hence, for any line bundle L of rank 1|0 on X, one has
Ber(m.L|p,) ~ ¥, !,

while for a line bundle M of rank 0|1, one has

Ber(m.M|p,) ~ ¥,.
Proof. Letus set ¥ =W, and
U :=m,0p/0g,
where D = D; and P = P;. Then U is a line bundle of rank 0|1, and we have
Ber(m,Op) ~ ¥~ 1.

Hence, from (8.2) we get the last two isomorphisms with ¥; replaced by v,
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Applying this to the line bundle w;&  of rank 1]0, we get an isomorphism

Ber(mw;{islp) ~ gt
But from Lemma 2.14, we have an isomorphism over S,

m(wyyslp) = Txyslp-

Hence, passing to the Berezinians we get

-1 -1
)\ ng/S|P’

1.e., U~
Next, let Ip C Ip C Ox be the ideal sheaves of D = D; and P = P,. Since the
projection to S induces an isomorphism P ~ S, we have a decomposition

m.0p = Os @ (Ip/Ip),

SO

U~ U~ (Ip/Ip).
Note also that ]23 C Ip, so Ip/Ip can be identified with the conormal sheaf to P
in D. Now, since wp/g = Og, the exact sequence

0¥ —Qpslp—0p—0

gives an isomorphism
P*wps ~Ber(¥) =¥ O

COROLLARY 8.8. The line bundle Pi*wgqs(Di) on S is canonically trivial-
ized.

Example 8.9. Suppose X — S, (P;), is a family of supercurves with NS-
punctures over an even base S. Then Ox = O¢ @ L, where (C, L) is the underlying
family of curves with spin-structures, and Zp, = 7,,, & L, where p; C C' are marked
points on C'. We also have Z7p = 7,,, ®o, Ox. Thus,

U, = P (wxys(Di)) = P (L(pi) ®weys (i) = pi Lpi) = pi L

where the last isomorphisms is induced by the trivialization of L?(p;)|y, =~
weys(pi)lpi-

Remark 8.10. Note that for an NS-puncture P; and the corresponding divisor
D;, the decomposition (2.11) can be rewritten as

1.0p, = Os DY,
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where ¥; is a square-zero ideal. For any line bundle L over D; we have an exact
sequence

0— P, (U;®PfL) — L — P,PfL —0.

In the case L = wy;s(D;)|p, = wp,/s, the induced exact sequence of push-
forwards to S has a splitting

T (wx/s(Di)/wx/s) = Os

given by the residue map for the 0|1-dimensional superscheme D; /S, so we have
a decomposition

W*(wDi/S) = \I/;I ® Og.
For every Ramond divisor R; C X let us consider the line bundle on the base,
Q= Ber(7r*(91:5j)_1 ~ Ber(mwg; )-

Note that ®; = g, (see (7.10)), so the line bundles <I>§ are canonically trivialized.
Let us consider the line bundle of rank 1|0 over X,

L(X, P Ra) =il g~ ZD 221%)

LEMMA 8.11. One has a natural isomorphism

B(L(X, ., Ra)) = B(ws) @ @) Wi

Proof. Let us set D = 37, D;, R =}, R;. First, the Grothendieck duality
gives an isomorphism

B(L(X, Py, Ro)) = B(wy/s(D +2R)).
Now using the exact sequence
(8.10) 0= wy/g(2R) = wy/5(2R)(D) = wy,5(2R)(D)|p — 0,
we get using (8.2) and Lemma 8.7,

B(w}/S(D+2R)) ~ B(w}/s(ﬂ%)) ®Ber(7r*w§(/M(D)]D)
:B(W;/M(zR))@@(g)\pi.

Similarly, using the filtration of w3, / s(2R) /w3 /5 With subquotients w3 / s2R)|r
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and w3} / s(R)|r, we get an isomorphism
B(w/s(2R)) = B(w/s) ® 3.

It remains to we use the trivializations of <I>§. O

Now the same argument as in Theorem 8.6 gives the formula for the canonical
line bundle on the moduli stack of stable supercurves with punctures.

Proof of Theorem B. Let S =S

gnns,ng- e combine the isomorphism

Kg ~ Ber! Rlﬂ'*ﬁ(X, P.,R.)(*ANS — AR) ~ B(ﬁ(X, P.,R.))(*ANS — AR)
(see Section 6.4) with Lemma 8.11 and the isomorphism

B(Wi/g) ~ Ber;(—Ans).

This gives the required isomorphism
m
(8.11) KggBeﬁ@@\pi(—zANs—AR), O

9. Splitting at the boundary divisor. Now we are going to study the re-
striction of the isomorphism of Theorem B to the boundary divisor. Using our pre-
sentation of the line bundle corresponding to the boundary divisor as a Berezinian
(see Section 7.2) we find a natural identification of the normal line bundle to the
boundary divisor. Then we give a proof of Theorem C concerning the NS bound-
ary component. We also give a conjectural statement for the Ramond boundary
component.

9.1. NS boundary components. Let:: B — S be the standard gluing map
covering an NS type boundary component, i.e., one of the maps (7.8) or (7.9),
restricted to the locus of smooth supercurves. Let Xp — B denote the universal
stable supercurve, which is obtained by identifying two NS punctures P, P> on a
smooth supercurve X — B into a node Q C Xp. Let Dl,Dz C X be the corre-
sponding divisors. Note that we have a finite morphism p : X — Xp, and an exact
sequence on X p,

0—Oxpz = pOg5 — Og —0.
In particular, the Berezinian line bundle B(Ox ) for the family Xp — B is natu-
rally identified with B(O ;) defined for the family X — B.

Note that in the case of a separating node, where B = S| X S5, the line bundle
B(O )?) is the exterior product of two similar line bundles on the factors S; and S,.
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We can rewrite (8.11) near B as an isomorphism
Ks(2ANs) ~B(Ox)°.
Thus, pulling it back to B leads to an isomorphism
Kp®Np~B(Ox,),

where Np is the normal bundle defined as the pull-back of O(Ayg) to B. Note
that the universal supercurve over B is equipped with two NS punctures P, P> and
the isomorphism (8.11) in smaller genus gives

Kp~B(0z) ¥ @7,
Comparing with the previous isomorphism we get an isomorphism
Np~¥,'ewu,!

Below we will define such a canonical isomorphism independently and then will
check its compatibility with two above isomorphisms.
First, recall that we have a line bundle wg( /s defined on the universal curve of

S by extending from the smooth locus (see Theorem 4.1).

LEMMA 9.1. (i) For any integer m let us set

2m e, 2m
WXp/B = wX/S‘B'
Then one has an exact sequence on X g,

©.1) 0= Wi g = puw) (mDi+mD;) = Og =0

e (
X/B

where Q) C Xp is the relative node obtained by gluing P| ~ B ~ P,. Here we use
the canonical trivializations of the restrictions of w% /B (D1 + Dy) to Py and P,
(see Corollary 8.8). Hence, we have a natural isomorphism

9.2) B(wﬁg/%) s B(wg L(mDi+mD;)).

i 2m+1 . 2m
(i1) Let us set w Xp/B = WXy/B ®wxp/B- Then one has an exact sequence on

XB,

(9.3) 0— p*wigf;;‘ (mDy+mDs) = Wi — Q.05 — 0.

Hence, we have a natural isomorphism

9.4) B(win/%”] )| 5~ B(w?;;l (mDy+mDy)).
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In addition, we have a natural exact sequence

0wyl — p*wzi’?;;l((m—i— 1)Dy +(m+1)D;) — C — 0,

where C is a sheaf supported on the node fitting into an exact sequence
9.5) 0— Q.05 —C— Q.(¥'av;!) —0.
(iii) One has an exact sequence on X g,

0= K—=Qx,/p—pf =0,

X/B
where the sheaf IC is supported on the node, and has a filtration with the subfactors

Q.(Ti¥3), Q.(Vi¥s), Q.(V1U3), Q.(¥Vy).

In particular, Ber m,. K is canonically trivial, so

BerRm(QXB/B) ~ BerRmQ;(/B.

(iv) One has an exact sequence over the smooth locus of B,

0= 5: /5|y, = Qg,p(D1+D2) — C —0,
where U C X is the smooth locus of X — S, and the sheaf Cis supported on the
node and has a filtration with the subfactors

OQ? OQ7 Q*(\III_I@\IIZ_])

Proof. (i) We just have to identify the pull-back of the line bundle wg(B /B0 X,

P*Wch /B with w% /B (D1 + D»). Note that we have a natural identification of these
line bundles over the smooth locus of X. Thus, we need to check that it extends to
an isomorphism over the node. For this, it is enough to study these line bundles in
an étale neighborhood of the node. Thus, we can place ourselves in the framework
of Section 6.2 and use a generator e of wg( /s (see (6.13)). Since p*e is a generator
of w% /B (D) + D), the assertion follows.

(i) First, let us consider the case m = 0. Using Lemma 6.4 we easily see that
there is an injective map wx, /g — p*wX/B(Dl + D3), and that wx , /p contains
PWF e Thus, we have

C :=coker(wx, /B — p*w;(/B(Dl +D»))

= coker(wXB/B/w)?/B — p*(w)z-/B(Dl —‘FDZ)/LU)}/B)).
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Note that since ¥; ' ~ Pfwz ,.(D;), by Remark 8.10, we have an exact se-

quence

X/B
0= Op ®O0p, »wg, 5(Di+Ds)/wg p— PV @ PLT, ! = 0.

In local coordinates, the projection to /W, ! sends i[dzﬂd&i} to a generator, and

sends %[dzi|d9i] to zero. In particular, this projection vanishes on the image of
WXB/B/W)?/B' Thus, we have an embedding

wXB/B/w)FZ/B %OQ@OQ

We claim that wy /B Jwg /B coincides with the kernel of the addition map Og @
Og — Og. Indeed, this is a local statement. In local coordinates the generators
of two summands O are %[dzi]dﬁi}, and the generator sy of wx,/p/wx /B 18
mapped to their difference.

From this we also see that C fits into the exact sequence (9.5).

To derive the case of arbitrary m from that of m = 0, we tensor the se-
quence (9.5) with the line bundle w_%g /B By the triviality of Q*wE(B /> We get
the sequence of the required form.

(iii) First, we note that K is supported on the node, so it is enough to prove the
assertion after replacing X p with the formal neighborhood of the node. Then X
becomes the union of two branches X LI X5, so that P, € X, P» € X,. Now we
have inclusions of ideals

p*(Ipl EBO), p*(OEBIpz) C OXB C p*O)?

Furthermore, the product of these ideals is zero. This implies that for a; € Ip,,
ay € Ip,, one has

(0,a2) - d(a1,0) = +(a1,0) - d(0,a2).
Hence, we have a well-defined map
K: IPI/IIZDI ®Ip2/I%>2 — K C QXB/B a1 ®ap — (al,O) ‘d(o,az).
Note that Ip, /1 }2,1 fits into an exact sequence

0— Ip,/Ip,Ip, — Ip /I — Ip/Ip, —0

with Ip, /Ip, Ip, ~ \If% and Ip,/Ip, ~ ¥,. Using Lemma 7.2 (ii), one checks that
K is an isomorphism, and the assertion follows.

(iv) This follows from parts (i), (ii) and from the exact sequence (7.1) (and a
similar exact sequence for (2 ¢ /B which holds over the smooth locus). U
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We can use the definition of the NS boundary line bundle (7.6) to compute the
normal bundle over the smooth part of B. From the above Lemma we get

Ber R, (j«Qy/5)| B =~ Ber R, (2
BerRW*(QX/S\B) ~ Ber R}

55D+ D)@y
X/B
Finally the exact sequence

0= wk,, =05

/B X/B—>w)~(/B—>O

near Dy, D,, together with Lemma 8.7, show that

BCI‘RW*Q)’Z/B(Dl +D2) ~ Beer*Q;{/B.

Hence, we deduce an isomorphism

9.6)  O(A)|p ~BerRm,(j.Qy/s)|p ®@Ber ' R, (Qx/s]p) = U705 L

Now we can state a compatibility result between the super Mumford isomor-
phisms over S and over the NS boundary component B. Recall that we have the
super Mumford isomorphism

ps B(w)_(ig) — B(Ox)*(—-4)

near B (see Proposition 8.5). We also have the super Mumford isomorphism for
the family X /B, over the smooth locus:

pp:BwZ (—Di—Dy)) = B(05) @V @0,

X/B
(see Lemma 8.11).

THEOREM 9.2. The following diagram of isomorphisms of line bundles on B
iLs commutative up to a sign

_ U<
B(wX§§)|B S‘B B(OX)S(_A)‘B
9.2) (9.6)
B, (~Di—D2)) 2 BOg) @ v o Ws.

Recall that to get uz we used three isomorphisms: the Grothendieck-Serre
duality isomorphism

SDX/g : B(w;(ig) RN B(wi(/g),
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the isomorphism

and the isomorphism

Bwy5) = Blwys) 2 ©B(0x)(A)
(see Section 8.3). Similarly, ;5 is a composition of similar three isomorphisms. So
we can reduce the proof of Theorem 9.2 to separate compatibilities involving each
of these three isomorphisms. We deal with this compatibilities in the next three
lemmas.

LEMMA 9.3. For any m € Z, the following diagram of isomorphisms between
line bundles on B is commutative:

SD. |5
—om X/S 2m+1
Blw )l Bw{Ts )l
9.2) 9.4)
Bw 2™ (—=mDy —mD)) D%/m, B2 (mDy +mDy))
w)z/B m 1 miy (A))»Z/B m 1 miy

where the horizontal arrows are given by Grothendieck-Serre duality.

Proof. To begin with we can replace the upper horizontal arrow with the one
induced by the Grothendieck-Serre duality for X g over B,

SDxp/B

B(w2m+1 )

B(w;é:}B) XB/B

Let us set for brevity

L:= w;é”}B, L:= w}i(z/g(—le —mDy).

Recall that for a sufficiently nice morphism f : X — Y and a perfect complex
F on X, the Grothendieck Serre duality gives an isomorphism

SDy: Rf.(F) ~» Rf.(RHom(F,wy[dim f]))".
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Then we claim that there is an isomorphism of the exact triangles induced by
the exact sequences (9.1) and (9.3)

R, (L) R, (p.L) Og

9.7  SDx,/B SDg 5 id

R (L™ @wx, 1)) = Rru(p (L7 ©wg p1])Y — Os = ---.

Clearly this would imply the claimed commutativity.
Now we claim that commutativity of both squares in (9.7) follows from the
general property of Grothendieck-Serre duality for a pair of morphisms X EN

y Ly x,

Rf.(Rg.(F)) R(fog)«(F)

SDy SD,

Rf.(RHom(Rg.(F),ws[dim f]))" —> R(f o g).(RHom(F,wjos[dim(f o g)]))"

where the lower horizontal arrow is induced by the Grothendieck-Serre duality
isomorphism

RHom(Rg.(F),wy[dim f]) ~ Rg, RHom(F,wy4[dim(f o g)]).

Indeed, applying this to f =7, g =p and F = L allows us to identify the
middle vertical arrow in (9.7) with the map

R, (p.L) — RW*RHom(p*E,wXB/B[l])V

given by the Grothendieck-Serre duality for X 5/ B. Taking this into account, com-
mutativity of the left square in (9.7) becomes a basic functoriality of SD,. On the
other hand, commutativity of the right square in (9.7) similarly follows from the
functoriality of SDr., applied to the natural morphism L— @Q+Og and from the
above compatibility for f =mop, g =@ and F = Og. O

LEMMA 9.4. Let p: Y — X be a morphism of families of stable supercurves
over B, which is a fiberwise resolution of the node Q) : B — X (so it is an isomor-
phism away from X \ Q(B)). For any coherent sheaf F on'Y, flat over B, which
is locally free of rank 1|0 over the smooth locus, and any line bundle L on X with
a trivialization of Q* L, we have a commutative diagram of isomorphisms of line
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bundles on B,

Bip.For) B2 Bp. 7)o B(L)©BOx)"!

8.5
B(F®p*L) ©) B(F)@B(p*L)@B(Oy)™!
where in the right vertical arrow we use isomorphisms B(Ox) ~ B(Oy) and
B(L) ~ B(p*L) coming from the exact sequences

0—=0x = p«sOy = 0g—0
0—=+L—=LopOy = L0Og—0

and the trivialization of Q* L.

Proof. The question is local in the base, so we can assume that we can choose
a relative divisor D C X supported in the smooth locus of 7 : X — B, and a global
section s of L(D) such that the E = div(s) is also supported in the smooth locus.
Now we compute both horizontal arrows using the section s on X and its pull-back
p*s on Y. Thus, for the top horizontal arrow we use resolutions

R, (Ox):  [mL(D) = m(L(D)|g)],
Rr.(psF): [mu(peF @ L(D)) — mu(p«F @ L(D)|E)],
Rm.(L):  [m(L(D)) = m(L(D)|p)];
Rr.(pF®L): [m(peF ® L(D)) = m(psF @ L(D)|p)],

while for the bottom horizontal arrow we use similar resolutions on Y that use the
section p*s of p*L(D'), e.g.,

Rm.(Oy) : [7(p"L(D")) = m.p" L(D)| '],
where 7’ : Y — B is the projection, D' = p~!(D), E' = p~!(E). Note that D’ — D

and ' — F are isomorphisms, and the assertion follows from the commutativity
of the squares

7.(L(D)|p) —= m.(p-F © L(D)|)

7 (p L(D) ) —> 7 (F & p" L(D') )
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7(L(D)|p) —= m(p.F © L(D)|p)

7 (p" L(D)|pr) = 7L(F @ p*L(D')|pr)- O

LEMMA 9.5. The following diagram is commutative up to a sign

B(w X/S)!B %B(MX/S) 2lp@B(0x) " (A)|p
(9.8) ~ ~
B(w X/B(D1+D2)) %B(WX/B) RB(0g) 'eu v,

Proof. Note that it is enough to prove the commutativity of this diagram work-
ing in an étale neighborhood S of a stable supercurve X with one NS node. We
also choose standard presentation in an étale neighborhood of the node on X, and
use constructions of Section 8.3.

Step 1. Under isomorphism (9.6), the trivialization of N induced by the equa-
tion ¢ = 0 of the boundary divisor, corresponds to the trivialization of \Ifl_l Wy !
given by 91’1 ® 0, ! |B (where we identify W; with 7,Op, /Og). Below we will use
the notation from Section 7.

First, let us consider the canonical section ¢ of Berm, [ x 15— 3y 5] (wWhere
782y s 1s placed in degree 0). The proof of Proposition 7.4 (i) shows that the com-
plex . [Qx /5 = J«Qy/s] can be represented by a morphism of trivial bundles
with bases (b;), (¢;) such that by, ¢y, ba, c4 are even; by, ¢z, b3, c3 are odd; and the
differential ¢ is given by

v(by) =t?cr,  u(b) =teg, fori=2,3,4; u(b;) = ¢y, fori > 4.

In addition, over B = Sy, the elements by,...,bs (resp., cy,...,cs) induce the stan-
dard bases of the sheaves 7, /C and 7.Cy from Lemma 7.2. This shows that the
restriction of ¢/t to B = Sy corresponds to the trivialization of

Berm Qx5 — j:Qu/s]|p =~ Berm.Co® (Berm, k)™

induced by the standard bases of 7, /C and 7,Cy.
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Note that in the commutative square

Qxp/B —> 3:8ys] x4

p*Q)?/B — p*Q)?/B<D1 +D2)

the bottom horizontal arrow and the right vertical arrows are injective. Hence, the
subsheaves K C 1x,,/p in Lemma 7.2 and in Lemma 9.1 (iii) are the same. This
also means that we have an exact sequence

0—>p*Q)~(/B = 3+ Quyslxp — Co— 0

and hence, an exact sequence

9.9) O%CQ%QX/B(D1+D2)|D1+D2*)C*)O
where C is the cokernel of the right vertical arrow in the above diagram (see
Lemma 9.1 (iv)).

Recall that the trivialization of 7, /C used in Lemma 9.1 (iii) comes from the fil-
tration of K with the subfactors Q. (U3¥2), Q. (¥3W3), Q.(¥1V3) and Q. (¥ V).
It is easy to check that this filtration coincides with the filtration coming from the
basis (7.3) of KC. Let us consider the following basis of F*Q)Z/B(Dl +Ds)|p,+D,:

€; .= 3 ) BV y 1= 172'
Z5 Z Z Z3

Note that it is compatible (up to a sign) with the canonical trivialization of
Ber(m. ()¢ /B (D14 D3)|p,+D,)- The filtration of C considered in Lemma 9.1 (iv)
is compatible with this basis: the subsheaf g corresponds to the image of e;
(or equivalently of e;); the next subfactor O, is given by the image of 6;df;/z
(or of 6df,/z); and the quotient Q*(\I/fl ®Vv, 1) is given by the image of

(d01/z1,d02/z). Hence, the trivialization of Berm.C coming from this basis is
compatible with the isomorphism

Berr,C ~ (oo, h!

and the trivializations of W ! given by the image of df; /zi, i.e., by the generator
0; under the identification \IJ;I ~7.0p,/Os.
On the other hand, the images in Cy of the basis vectors

91d91 _ 92d92 91d2’1 92d22
21 2 ’ 21 ' 22

€1 — €,



THE MODULI SPACE OF STABLE SUPERCURVES 1873

are given by e — f, f, 01e, 61e in terms of the basis (7.4) of Cy. Hence, the trivi-
alization of Berm.Cy coming from the latter basis coincides up to a sign with its
trivialization induced by the isomorphism

Berm,Cy ~ Ber ! mgz \1/1—1\112—17

coming from the exact sequence (9.9), and by the trivialization of \Ill_1 v ! given
by 01 ®6,.
Combining all the above steps we see that the trivialization c¢/t|p of

Berm.[Qx/s — j+QuysllB
coincides up to a sign with the trivialization coming from the isomorphism
Berm.[Qx/s — J«QuysllB =~ \IJII\IIEI
and the trivialization 61 ® 6, of \Ifl_l v, I
Step 2. Let
¢ 1 B(wy 5) = Blwys) @ B(Ox)1(A)
be isomorphism (8.8). Using the equation (¢t = 0) of A, we get an isomorphism
(9.10) tqb:B(wi(/g) = Blwys) @ B(0x) ",

Our goal in this step is to compute it.
We start by recalling the exact sequence (which depends on a choice of coor-
dinates)

(9.11) O—>w§§s—>wx/s—>(’)Q—>0

(see Lemma 8.3). On the other hand, by Lemma 9.1 (ii), we have a natural exact
sequence

9.12) O—>w)~(/B—>wXB/B—>OQ—>O.

It is easy to see that the restriction of the embedding w;‘zg/ g — wx/s to B gives a

morphism
reg
wX/S‘XB — Wxp/B

with the image w ¢ /B> SO that the restriction of (9.11) is compatible with (9.12).

Recall that we choose a sufficiently positive effective divisor D C X with sup-
port in the smooth locus and a global section s of w;‘?j ¢(D) as in Lemma 8.3. Let
us set

Fr8 = wiis(D)/(s)-
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We can modify the derivation of the isomorphism (8.7) by replacing the resolutions
for Rm,.(Ox) with
[7s (Hw;?g/S(D)) — T F 8.

This leads to an isomorphism
(9.13) Blwg) ~B(Ox)™! ®B(Ilw ) ® B(llwy/s) @ B(G) @ B(Free) 1,
In addition, exact sequence (9.11) gives an isomorphism
(9.14) B(w;?g/s) ~ B(wx/s)-
On the other hand, we have an isomorphism
reg __ Hs, . Treg ™~
Oég—(T,OéE).J_'.g—>g

induced by some isomorphism az of the parts supported on E and by us, /t on
the parts supported on Z. Namely, near Z, F"°¢ has an Og-basis s1,6;s1 and s, /t
sends this basis to the basis e,6;¢e of G.

Hence, we get the induced isomorphism

(9.15) ber(m.a"¢) : B(F*¢) — B(G)
Now we obtain that t¢ is the isomorphism induced by (9.13), together with (9.14)
and (9.15).
Step 3. Let us set
2 2
H = wXB/B/w)?/B'

Let also s be the global section of w (D) induced by s|x,, with the zero divisor
EcX (which is disjoint from the preimage of the node). Let us set Zp = Z N
Xp C Xp. Note that Zp is supported on the node and the completion of its ideal
is generated by 21, 2z, and 0 + 605, so Zp is smooth of dimension 0|1 over B. We
will construct exact sequences

(9.16) 0= Oz, — F*€|x, = wg, 5(D)|5 =0,
9.17) 0—>w§z/B(D)\E—>Q|XB—>'H/H(’)Q—>0,
(9.18) 0—H—wl (D1)lp, ®wg p(D1)lp, = Og =0
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such that the following diagram is commutative up to a sign:

ber(m.a®)

B(F*|x5) B(Glx5)

ber(m(ap)|B,T)

B(Ilwg (D)) 5) B ,(D)|5) & B(H/TIOg)
where the vertical arrows come from the exact sequences (9.16) and (9.17), and 7
is the trivialization of B(H/IIO0g) coming from (9.18) and the standard bases
(b,-,@l-bi) Of wi}/B(Dl)‘Dz

First, we have a decomposition of F"# into the parts supported on E and on Z.
The latter part is isomorphic to the completion F™€ of F'¢_ 1t is easy to see that

the section s; induces an isomorphism
11O, 5 F reg7

so we obtain a split exact sequence (9.16).
Next, we have an injective morphism of exact sequences

0 ——>Twg,z —> Mwy,/p —> 110G ———=>0

s slxp so(s1+s2)

0o—> D) = wi, /5(D) H 0.

wi?/B(
Passing to the quotients we get (9.17).

Exact sequence (9.18) is immediately obtained from Lemma 9.1. This se-
quence shows that H has an Op-basis (€,6,¢,6,€), where € is the image of the
local generator ¢ of wg(B /- The embedding IIOg — H is given by sg(s1 +s2) =
(61 — 62)e. It follows that €,6;€ is a basis of H/IIOq. Now we observe that all
three isomorphisms

~ S t ~
MOz, = F¥|x, /% G, = H/1Og
send standard Og-bases to each other. This gives the desired commutative diagram.

Step 4. From sequences (9.16), (9.17) and (9.18), together with the identifica-
tions

2 |
B ,(Di)lp,) > ¥,

)
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(see Lemma 8.7), we get isomorphisms
(9.19) B(Glxp) ©B(F[x,) " = B(H) ~ U705

We claim that the top horizontal arrow in diagram (9.8) composed with the
isomorphism O(A)|p ~ W, "W, gets identified with the composition of (9.13)
with (9.19) (we also take into account (9.14)).

Indeed, if we use the standard trivialization of Og(A)|p, then the top hor-
izontal arrow in (9.8) is precisely the isomorphism (¢¢)|s. By Step 2, it is ob-
tained as the composition of isomorphisms (9.13) and (9.15), restricted to B. By
Step 3, we can replace (9.15) by (9.19) together with the standard trivialization of
\Ill’llllz’ ! By Step 1, the latter trivialization corresponds to the standard trivializa-
tion of O5(A)|p =~ ¥ ', , so our claim follows.

Step 5. We see that the restriction of isomorphism (9.13) to B coincides with
the isomorphism

B(wy,p) ©B(Mwg, 5) ' ©B(lwy,/5) " ©B(Ox,)

(9.20) 1
= B(G]x,) ©B(F*¥[xp)"

obtained by using resolutions

(9.21) Rmi(Oxp):  [mdlwifo(D)x, = mF | x,),
(9.22) Rm(Mwx, /)t [m wXB/B(D) — G| x5,

(9.23) Rﬂ'*(HwX/B) D [ ID X/B(D)—HT*HwX/B( )Ipl,
(9.24) Rm(wX /)i [m wXB/B(D) —>7r*wXB/B( )| D],

and using the isomorphism Ber(me)?/B (D)|p) ~ Ber(mwng/B(D) D).

To prove the commutativity of (9.8) we need to compare (9.20) with the similar
isomorphism where O, (resp., wx,/p and wE{B / p) is replaced by O (resp.,
wy and w% /B). For this we will modify resolutions (9.21), (9.23) and (9.24) in a

controlled manner.
We start by noticing that the exact sequence

0— Ox, —>O)~(—>(’)Q—>0
is represented by the exact triangle

[HOQ — HOZB] [Hw;?js(D)’XB — freg’XB] - [Hw)?/B(D)

—>HwX/B(D)|E]—>---,

which measures the difference between resolution (9.21) and the corresponding
resolution of R, (O).
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Next, the exact sequence
O—>Hw)~(/B — lwx,/p = IOg — 0
is realized by the exact triangle of resolutions
W 5(D) >k (D)5l = W, 5(D) = Glx,] = [H = H/TIOG],

This gives the modification of resolution (9.23).
Finally, the exact sequence

2 2
is realized by the exact triangle of resolutions

[wi?/B(D) = ng/B<D)’D] - [WE(B/B(D) — w%(B/B(D)‘D] — [H—0],

which gives the modification of resolution (9.24).
The modified resolutions,

Rr.(O XB) [W*HwX/B(D)—>7r*HwX/B(D)]E],
Rm(og )¢ [k (D) = ma (D))
Rw*(HwX/B): [Tr*(HwX/B(D))_)ﬂ-*HwX/B( )| D]
R )5 [k (D) - k(D)o

give an isomorphism

B(w X/B)®B(HWX/B) ®B(HWX/B) '®B(05)

(9.25) ;
— B(wg,5(D)I) @ Bllwg (D)l 5) "
Note that the composition of this isomorphism with the natural trivialization of

B(w%/B(ZZ)]E) ® B(Hw)?/B(D)\E)*l is precisely the super Mumford isomor-
phism for X /B,

(9.26) B(wk,p) ©B(wg p) ' ©B(llwg,p) "' @ B(Og) = Op.

“X/B
From the exact triangles connecting the resolutions above we get the following
commutative square of isomorphisms:

_ _ (9.20) e _
B(wg(B/B)@B(Hw);/B) '@B(Mwy,,5) "' @ B(Ox,) ————————> B(Glx,) ® B(F™|x,)"

| .

B(H) @ Bl ) @ B(llug ) @ Blllug, )~ 9 B(O; ) O g e B W% (D)) © BTl (D))
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where the left vertical arrow comes from the exact sequences mentioned above. By
Step 4, the composition of the top horizontal and right vertical arrows corresponds
to the same composition in diagram (9.8).

Finally, it is easy to check that the following diagram of isomorphisms
® B(H)

B(wng/B) — B( X/B)

B(w% (D) +Dy)) — B(w 20 'er,!

X/B( X/B)

is commutative. This allows us to replace the composition of the left vertical and
bottom horizontal arrows in the previous diagram with the same composition in
diagram (9.8), thus, finishing the proof. O

Proof of Theorem 9.2. Let us consider the diagram

Blwy)|p ———= B(wy)|lp ——= BwX) 'B(Ox)*[p —= Blwx)’B(Ox)*(~B)|s

N |

Bw(~Di— D)) = Bwk(Dy +D2)) —> B(w (D1 + D)) ' B(Og)? —> Blwz)*B(Og) U0y,

We claim that each square in this diagram is commutative. Indeed, the left square is
commutative by Lemma 9.3, while the right square is commutative by Lemma 9.5.
The commutativity of the middle square follows from the commutative diagram

(8.5)

B(wxy/B©wWy,/p) B(wx,/B)B(wx, 5) " B(Ox;)

8.5
Blp.(wg ) ©why ) s Blp.(wg ) By ) B(Ox,)

8.5)

B} (D1 +D2) —> Blug 5)B (D1 +D2)) ' B(Og).

Here the lower square is commutative by Lemma 9.4 applied to the morphism
p: XX B, the line bundle wg(B /B and the coherent sheaf w /B The commu-
tativity of the upper square can be checked using the compatibility of the isomor-
phism (8.5) with the resolution [wx, /5 — Og] for Pz - O
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9.2. Splitting of the Kodaira-Spencer map at an NS boundary compo-
nent.

LEMMA 9.6. There is an isomorphism of exact sequences on B,

0 Op Ts yls Tp 0
9.27) id KSql Bl KSg
0 OB R]W*(w;é/s) — le(w;?z/B(fDl —Dy)) ——>0

where the lower exact sequence is induced by (9.1).

Proof. We have a natural morphism of exact sequences
0——— AX/§|B —> Ax x,|B — W_1%73|B —0
(9.28)

00— -AXB/B — Ax, ——> ' Tp ——= 0.
Furthermore, the lower sequence can be identified with

0= puwZ(=Di—D2) = p. A — 7 T —0.

X PP,

Thus, the left vertical arrow in (9.28) can be identified with the natural map

w;ig — p*w;zz(—Dl — D)
which has cokernel Og (by (9.1)). On the other hand, the morphism 75 z|p — Tp
has the kernel Op.

Applying the functor R, to (9.28) we immediately derive commutativity of
the right square in (9.27).

Next, we claim that the coboundary morphism

ker(w‘ngB\B — 71 1T) = coker(w;(ig — p*w):(z(—Dl —Dy))

associated with (9.28) gets identified with the natural map 7~ 'O — Og. Thisis a
local statement, so we can use coordinates as in Section 6.2. Note that the section 1
of 7-'Op is represented by the vector field t9; in 7' Tg 5|p. It lifts to a vector
field v in Ax x, given by

v(z) =z, v(b;)=
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(see Lemma 6.5 (1)). The restriction of v to X p corresponds to the vector field

1 1
Zlazl + 591891 +Z2822 + 592892

which lives in A . The isomorphism

X, P, P,
_2 ~ _
‘*’)?/B( Dy=D2) —> Az p p,

is given by

k3

(see the proof of Lemma 2.14), which immediately implies our claim.
From this we deduce that the following square commutes

'0p —> 7' T5 5|8

O —> w gl

Applying Rm. we get the commutativity of the left square in (9.27). U
COROLLARY 9.7. We have a commutative diagram

ber(KS<) !B _
K(A)]p om0 BluyZs)ls

ber(KSp)~!
Kp (K 55) B(wy,(~Di—D2))

where the horizontal arrows are induced by the Kodaira-Spencer isomorphisms
(see Proposition 8.1), and the right vertical arrow is given by (9.2).

Combining the above corollary with Theorem 9.2, we get the statement of
Theorem C.

9.3. Ramond boundary components. Now let c: B — S be a gluing map
for the Ramond boundary component, i.e., one of the maps (7.9), restricted to the
locus of smooth supercurves. Recall that we have a smooth map of relative dimen-
sion 0|1,

p:B—B
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to a moduli space B of smooth supercurves of smaller genus, where the universal
smooth supercurve over B is equipped with a pair of Ramond punctures Ry, R.
Furthermore, p has a structure of the principal bundle over the group scheme
Aut(Pg,) which is an extension of Z/2 by (I>f1. Thus, we have a natural isomor-
phism
Kp~p (Kz®®).
On the other hand, we have an exact sequence on the universal stable supercurve
Xp over B,
0—>OXB _>O)Z_>OR1 —>0,

where X is induced by the universal curve X over B. Taking push-forwards to B
and considering the Berezinians, we get

" Ber) ~ p*(BerIE®<I>1).
Note that since 113% is canonically trivial, this leads to an isomorphism
/* Ber; ~ p*((BerIE)5 ® ).
We can rewrite (8.11) near B as an isomorphism
K=(A) ~Ber;.
Thus, the restriction to B gives an isomorphism
Kp~ 1 Ber;.

We conjecture that the following diagram is commutative (up to a sign)

1 (K5(A)) ——> " Ber]

Kp ——> p*((Berlg)S(X)(I)]).

Appendix A. Relative ampleness criterion. Recall that for every super-
scheme X let Nx C Ox denote the (nilpotent) ideal locally generated by odd
functions, and denote by Xyos the usual scheme such that

OXbos = Ox/Nx.

LEMMA A.l. Let f: X — S be a morphism of superschemes, where S is
purely even. Assume that f factors through a morphism ¢ : X — P(EY), where
E=ET®E is a supervector bundle on S. Then ¢ is a closed embedding if and
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only if ¢|x,,, is a closed embedding (that necessarily factors through P((E1)"))
and the morphism

(Al) f*gi‘Xb(ys _>NX/N)2(®¢*O(1>‘Xb0s’
induced by ¢, is surjective.

Proof. The “only if” part is clear, so let us prove the “if” part. Let us set
N = Nx for brevity. The underlying map of topological spaces for ¢ is the same
as ¢x,., - Xvos = P((ET)Y), so we just need to show the surjectivity of the homo-
morphism of sheaves of rings

N\, E(=1) = Opev) = 6.0x,

P((ET)V)

where p: P(€Y) — S is the projection. Both sides have a natural filtration by pow-
ers of an ideal: on ¢, Ox we take the filtration (¢ N'), while on the exterior algebra
the filtration \~"(-). Since the above map is compatible with the surjective map

Op(e+)r) = ¢+(Ox /N) = ¢.O0x,,,

we see that ¢f is compatible with the filtrations. Hence, it is enough to check sur-
jectivity on the consecutive quotients, which follows from the surjectivity of the
induced map

PE = g N/NH®O(1)
or equivalently, of (A.1). O

The following criterion generalizes a similar result for supermanifolds in [25].
Let fros : Xbos — Shos be @ morphism of usual schemes induced by f.

PROPOSITION A.2. Let f: X — S be a flat morphism of superschemes. If a
line bundle L on X is such that Ly := L|x,,, is strongly relatively ample over
Shos, then L is strongly relatively ample over S.

Proof. First, let us show that for every coherent sheaf F on X, for n >> 0 one
has R>°f,(F ® L™) = 0 and the natural map

(A.2) Fr(FOLY) = FoL"

is surjective. Let us consider the commutative diagram
i
Xpos —> X

f bos f

Sbos j% S-
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We know that the above assertion is true with (X, f) replaced by (Xpos, foos)-
Since each F has a finite filtration with subsequent quotients that are scheme-
theoretically supported on Xp,s, we can assume that F = i, F’ with 7’ a coherent
sheaf on X},s. We have

RP £, (i (F') @ L™) = 5. RP foos: (F' @ Lik,),

which immediately implies the vanishing of higher direct images. Furthermore, the
restriction of the map (A.2) to Xpos is the map

Z*f*f*z*(f/(g)ljgos) = fgosfbos*(fl(g)[’gos) — (‘F/®LETJLOS)

which is surjective. Hence, (A.2) is also surjective.

Applying the above statement for 7 = Ox we see that forn >0, R>f, (L") =
Oand f* f.(L™) — L™ is surjective. In particular, in this case f.(L") is locally free
(here we use flatness of f) and the map

(A.3) X = P(f.(L™)Y)

of superschemes over S is well defined. We want to check that (A.3) is a closed
embedding. Let us consider the cartesian square

Xo——> X

Jo f
So—71 =5
with Sy := Spos (however, Xy # Xpos in general). For n >> 0 the above assertions
also hold for (X, fo, L), where Ly = L|x,, and the base change map

f*(Ln)‘So - fO*(Lg)

is an isomorphism. Thus, the map X — P(fo.(L™)Y) is obtained by the base
change Sy — S from the map (A.3). Since Sy is defined by a nilpotent ideal in 5,
it is enough to check that the map Xy — P(fo.(L")") is a closed embedding for
n > 0.

Thus, we can assume that S = Sp. Then we have a decomposition of the su-
pervector bundle £ := f.(L") into even and odd components,

E=ETpE.
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First, we claim that for n > 0, the map Xpos — P((£1)Y), corresponding to the
surjection

f*f*(Ln)|Xbos - Ln|Xbos7

is an embedding. Indeed, for n > 0, we have a surjection

E = [u(L") = 1110, © L") = fross (Lley),

which factors through a surjection £ — fyoss (LQOS). Since Ly, s relatively ample,
we get a composition of two closed embeddings

Kbos < Proj(S* (foos: (Lios))) = P((E7)"),

and our claim follows.
By Lemma A.1, it remains to show that the map

f*gi ’Xbos - NX ® Ln‘Xbos
is surjective. We know that for n > 0, the map
FrWNx@L") - Nx®L"

is surjective. Hence, its restriction to Xy, is still surjective. Since Nx is generated
by odd functions, we have

NX|Xbos = (NX|Xbos)7'

Hence, we get the surjectivity of the map
A WNx @ L)) Xppe = Nx @ L[ xy -

But f.(Nx ® L™)~ is a subsheaf in f.(L")~ =&, so we are done. O
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