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Abstract. We study the relation between the Hodge filtration of the de Rham cohomology of
a proper smooth supervariety X and the usualHodge filtration of the corresponding reduced
variety X0.

1. Introduction

Let X be a smooth proper supervariety ofdimension n∣m over C.It is known that the de
Rham cohomology H●dR (X) of X is canonically isomorphic to the de Rham cohomology H●

dR (X 0)
of the underlying usualvariety X0 of dimension n.However,the Hodge filtration (FpH i

dR (X))
on Hi

dR (X) in general differs from the Hodge filtration (FpH i
dR (X 0)) on H i

dR (X 0) (see [5]).It is
natural to try to compare these Hodge filtrations.There is an obvious inclusion

F pH i
dR (X) ⊂ F pH i

dR (X 0)

which we can think of as an upper bound for FpH i
dR (X) in terms of the Hodge filtration of X0.

Our main result gives a lower bound for F1H i
dR (X) in terms of the Hodge filtration of X0. It

can also be formulated in terms of the canonical map

κn+i ∶ H i (X, BerX ) → Hn+i
dR (X 0), (1.1)

defined either using Serre duality or using the complex of integral forms (see Sec. 2.2).

Theorem A. For each i, one has an inlcusion F1H i
dR (X) ⊃ F m+1H i

dR (X 0) (recall that the
dimension of X is n∣m).Equivalently, one has an inclusion

im(κn+i) ⊂ Fn−mH n+i
dR (X 0). (1.2)

The equivalence in Theorem A is a consequence of a certain duality statement:we prove that
the κn+i is dual to the natural map Hn−i

dR (X) → H n−i(X, O), with respect to the Serre duality and
the Poincare duality (see Proposition 2.3).The inclusion (1.2) was conjectured by Kontsevich.

It is natural to ask how to generalize Theorem A to give lower bounds for FpH i
dR (X) for p > 1.

We prove a certain generalization of(1.2),which compares an analog of Hodge filtration for the
hypercohomology of the complex of integralforms on X with the classicalHodge filtration (see
Theorem 2.2).Conjecturally, this should lead to the inclusion

F p+1(X) ⊃ F 2p+m+1(X 0).

(see Sec. 2.2).
The crucialrole in our proof is played by a certain naturalfamily of supervarieties X → A1,

whose fiber over t ≠ 0 is isomorphic to X and whose fiber over 0 is the split supervariety Xsp

associated with X.This family is a superanalog of the standard deformation to the normal cone
for the inclusion X0 ⊂ X.
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2. Hodge filtrations for the de Rham complex and for the complex of integral
forms

2.1.De Rham cohomology.We refer to [2]for basics on differentialand integralforms on
supermanifolds (see also [3] for a recent detailed survey).

Recall that for a smooth proper supervariety X we have the de Rham complex Ω●
X (placed in

degrees ≥ 0).The de Rham cohomology H●
dR (X) is defined as the hypercohomology of Ω●.

Let i ∶ X0 ↪ X be the bosonization of X, so OX 0 = OX /N , where N is the ideal generated by
odd functions.The natural map Ω●X → i∗Ω●

X 0
is known to be a quasi-isomorphism (see e.g., [5]),

so it induces isomorphisms
H q

dR (X) ≃ Hq
dR (X 0) ≃ Hq(X 0, C), (2.1)

where Hq(X 0, C) denotes the cohomology of the constant sheaf with respect to the analytic topol-
ogy. Equivalently,the inclusion ofthe constant sheafCX into Ω●

X induces an isomorphism on
cohomology (in the analytic topology).

The Hodge filtration on de Rham cohomology is defined by

F pH i
dR (X) ∶= im(Hi (X, σ≥pΩ●) → H i (X, Ω●),

where σ≥p denotes the stupid truncation of a complex.Equivalently,F pH i
dR (X) is the kernel of

the map to Hi (X, σ≤p−1Ω●).
The commutative diagram

H i (X, Ω≥p
X ) - H i (X 0, Ω≥p

X 0
)

H i (X, Ω●
X )

?
- H i (X 0, Ω●

X 0
)

?

(2.2)

shows that under the identification (2.1) we have an inclusion FpH i
dR (X) ⊂ F pH i

dR (X 0).
Recall that X is called split if there is an isomorphism of algebras OX ≃⋀OX 0

(V) for a vector
bundle V over X0. A weaker condition is that X is projected,i.e., there exists a projection

p ∶ X → X0 such that the composition X0
i- X

p- X 0 is the identity map.

Lemma 2.1. Assume that X is projected.Then under the identification (2.1) one has FpH i
dR (X) =

F pH i
dR (X 0).

Proof. Let π ∶ X → X 0 be a projection.Then the pull-back by π gives a map π∗ ∶ H i (Ω≥p
X 0

) →
H i (Ω≥p

X ) whose composition with the pull-back by i is the identity on Hi (Ω≥p
X 0

). Hence,the top
horizontal map in the diagram (2.2) is surjective, which implies the assertion.

2.2.Complex of integral forms.We denote by BerX the Berezinian line bundle on X (obtained
as the Berezinian of Ω1

X ). Recall that the complex of integral forms Σ●= ΣX,● is a complex of the
form

. . . BerX ⊗⋀
2TX

δ- BerX ⊗TX
δ- BerX ,

placed in degrees ≤ n (so that Σn = BerX ). The formula for the differential δ that uses the right
connection on BerX can be found in [2, ch. IV, 5.4], [4].

It is known (see [4]) that there is a natural isomorphism

H i (X 0, C) = Hi (X 0, Ω●)
∼- H i (Σ ●) (2.3)

and that the map
H n(Ber) → H2n(Σ ●) ≃ H2n(X 0, C) ≃ C (2.4)

is an isomorphism.
Mimicking the de Rham case, we can define the Hodge filtration on hypercohomology integral

forms.Namely, we define Fn−pH i (Σ ●) to be the image of the map

κn−p
i ∶ H i (σ≥n−pΣ●) → H i (Σ ●).
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For example, the image of the map κn+i = κnn+i considered in (1.1) is FnH n+i(Σ ●).
The next result is a generalization of the inclusion (1.2).It will be proved in Section 3.

Theorem 2.2.One has an inclusion

Fn−pH
i (Σ X ) ⊂ Fn−2p−mH i (X 0, C).

It is naturalto conjecture that the Hodge filtrations on the de Rham cohomology and on the
hypercohomology of the complex of integral forms are related.

Conjecture B.F p+1H i (Ω●
X ) is equalto the orthogonalof Fn−pH 2n−i(Σ X,●) with respect to the

Poincare pairing on H●(X 0, C).

Note that the analog of Conjecture B for usual (even) varieties is an easy corollary of the Hodge
decomposition.If Conjecture B is true then the statement ofTheorem 2.2 is equivalent to the
inclusion

F p+1H i
dR (X) ⊃ F 2p+m+1H i

dR (X 0).

We can check Conjecture B for p = 0 using the Serre duality for supervarieties (see [4, Sec. 2.3]
for an analytic proof or [1, Sec. 3.5] for an algebraic one).

Proposition 2.3.The map κn+i ∶ H i (X, BerX ) → Hn+i(X 0, C) is dualto the naturalmap pn−i ∶
H n−i(X 0, C) → H n−i(X, OX ), where we use the Poincare pairing to identify Hn−i(X 0, C) with
the dualof Hn+i(X 0, C), and we use the Serre duality to identify Hn−i(X, OX ) with the dualof
H i (X, BerX ). Hence, Conjecture B holds for p = 0.

Proof. For a pair of classes α ∈ Hi (X, BerX ) and β ∈ Hn−i(X 0, C), we have to check the equality

⟨κi (α), β⟩PD = ⟨α, pn−i(β)⟩SD ,

where on the left we use the Poincare duality and on the right we use the Serre duality.
By definition, the Serre duality is induced by the cup product and by the canonical functional on

H n(X, BerX ). The latter canonical functional can be computed as the composition (2.4).Hence,
we need to check the following identity in H2n(X 0, C):

κi (α) ∪ β = κn(α ∪ pn−i(β)) = κn(α ∪ β),

where the cup-product α ∪ β is induced by the natural pairing of sheaves BerX ⊗ CX → BerX . Now
the assertion follows from the fact that the cup product on de Rham cohomology is induced by
the sheaf pairing ΣX,● ⊗ CX → ΣX,●.

Another case when Conjecture B is true is the case of a projected supervariety X,as follows
from Lemma 2.1 and the next result.

Lemma 2.4.Assume that X is projected.Then under the identification (2.3) we have

Fn−pH
i (Σ X ) = Fn−pH i

dR (X 0).

Proof. Let π ∶ X → X0 be a projection.It induces projections from integral forms on X to those
on X0, which gives a commutative diagram

H q(X, σ≥n−pΣX )
π∗- H q(X 0, σ≥n−pΣX 0 )

H q(X, ΣX )
? π∗- H q(X 0, σ≥n−pΣX 0 )

?

Here the bottom horizontal arrow is the inverse of the isomorphism (2.3).On the other hand, the
inlcusion i ∶ X0 ↪ X induces the map

i∗ ∶ Hq(X 0, σ≥n−pΣX 0) → Hq(X, σ≥n−pΣX )

such that π∗○ i∗ = id.This shows that the top horizontal arrow in the above diagram is surjective,
and the assertion follows.
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2.3.Gauss-Manin connection.There is a relative version ΣX /S of the complex ofintegral
forms for a smooth proper morphism π ∶X → S. Furthermore,for smooth S,there is a natural
Gauss-Manin connection on Rπ∗ΣX /S .

The distribution TX /S ⊂ TX induces a filtration G0Σ●⊂ G1ΣX ,●⊂ . . . ΣX ,● by subcomplexes in
the complex of integral forms on X , where

G0ΣX ,n−p ∶= BerX ⊗⋀
p(TX /S ), G1ΣX ,n−p ∶= BerX ⊗⋀

p−1(TX /S ) ⋅ TX , . . .

Using the identification BerX ≃ π∗BerS ⊗ BerX /S , we get isomorphisms of complexes

G0ΣX ≃ π∗BerS ⊗ΣX /S , G1ΣX /G0ΣX ≃ π∗BerS ⊗ΣX /S [1] ⊗ π∗TS ,

Thus, a short exact sequence of complexes

0 → G0 → G1 → G1/G0 → 0 (2.5)

leads to an exact triangle

BerS ⊗Rπ∗ΣX /S → Rπ∗G1 → BerS ⊗Rπ∗ΣX /S [1] ⊗ π∗TS → BerS ⊗Rπ∗ΣX /S [1]

We can view the corresponding morphism

∇ r ∶ BerS ⊗Rπ∗ΣX /S ⊗ π∗TS → BerS ⊗Rπ∗ΣX /S

as a right connection on BerS ⊗Rπ∗ΣX /S , inducing right connections on the cohomology sheaves.
Using the next term of the filtration,G2, one can check its flatness (but we don’t use it in this
paper, since we only consider the case S = A1).

By the standard relation between left and right connections (see [4]), we get a left connection

∇ ∶ Rπ∗ΣX /S → π∗Ω1
S ⊗ Rπ∗ΣX /S .

Considering stupid truncations of the exact sequence (2.5), we get an exact triangle

BerS ⊗Rπ∗σ≥n−p−1ΣX /S → Rπ∗σ≥n−p−1(G1) → BerS ⊗Rπ∗(σ≥n−pΣX /S )[1]⊗π∗TS → BerS ⊗Rπ∗σ≥n−p−1ΣX /S

we get a commutative diagram

Rπ∗(σ≥n−pΣX /S )
∇- π∗Ω1

S ⊗ Rπ∗(σ≥n−p−1ΣX /S )

Rπ∗ΣX /S

? ∇ - π∗Ω1
S ⊗ Rπ∗ΣX /S

?

which gives an analog of Griffiths transversality for ∇.

3. Deformation to normal cone

3.1. Construction.We consider an analog of the deformation to normal cone for the embedding
X 0 ↪ X. This will be a family of supervarieties π ∶ X → A1, equipped with an identification

π−1(A1 ∖ {0}) = X × (A1 ∖ {0}), (3.1)

and an identification of π−1(0) with the split supervariety Xsp associated with X.In addition,
we will have a naturalaffine morphism f ∶X → X, restricting to the naturalprojection on
π−1(A1 ∖ {0}).

We define X using the following Z-graded quasicoherent sheaf of OX -algebras:

f ∗OX = . . . ⊕ N2 ⋅ t−2⊕ N ⋅ t−1⊕ OX ⊕ OX ⋅ t ⊕ OX ⋅ t2 ⊕ . . . ,

where t is a formal variable, with the obvious algebra structure.
The map to X × A1 corresponds to the naturalinclusion OX [t] ↪ f∗OX . On the other hand,

the embedding f∗OX ↪ OX [t, t−1] corresponds to inverting t, so it gives an identification (3.1).
Finally, the fiber over t = 0 corresponds to the algebra

f ∗OX /t ⋅ f∗OX ≃ . . . ⊕ N2/N 3 ⊕ N /N2 ⊕ OX /N ,

which gives the split supervariety Xsp.
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Note also that the bosonization of X is canonically identified with X0 × A1.

Lemma 3.1.(i) One has an equality

tmf ∗BerX = BerX /A 1 ,

where (n∣m) is the dimension ofX (we view both sides as subsheaves in the sheafof rational
sections of f∗BerX ).
(ii) For p ≥ 0, one has an inclusion

tm+pf ∗ΣX,n−p ⊂ ΣX /A 1 ,n−p.

Proof. (i) The statement is clear over A1 ∖ {0}, so it is enough to check it in the neighborhood of
each point of π−1(0). Let (x1, . . . , xn , θ1, . . . , θm) be local coordinates of the corresponding point
of X. Then (x1, . . . , xn , θ1/t, . . . , θm/t) are relative local coordinates for X /A1, which immediately
implies the assertion.
(ii) This follows from (i) and from the inclusion t ⋅ f∗TX ⊂ TX /S which is proved using the same
relative local coordinates as in (i).

Lemma 3.2.For each i, the canonicalidentification

H i Rπ∗ΣX /A 1 ∣A1∖0 ≃ Hi (X, Σ X ) ⊗ OA1∖0 ≃ Hi (X 0, C) ⊗ OA1∖0

extends to an identification

H i Rπ∗ΣX /A 1 ≃ Hi (X 0, C) ⊗ OA1 .

Proof. Let b ∶ X0 × A1 → X denote the embedding of the bosonization.Then the assertion follows
from the fact that the natural map

b∗Ω●
X 0×A1 /A 1 → ΣX /A 1

induces an isomorphism on Rπ∗.

3.2.Proofs of Theorem 2.2 and of Theorem A.

Proof of Theorem 2.2.Let us denote by κn−p
X ∶ σ≥n−pΣX /A 1 → ΣX /A 1 the natural inclusion.

Below we denote by ∇t the Gauss-Manin connection with respect to d/dt.We will also not
make a distinction between quasicoherent sheaves on A1 and the corresponding modules over C[t]
given by global sections.

From Lemma 3.1(ii) we get an inclusion of complexes

τm+p ∶ f ∗σ≥n−pΣX → σ≥n−pΣX /A 1 ,

which restricts to ⋅tm+p over A1 ∖ {0}.
Thus, starting with a class α ∈ Hq(X, σ≥n−pΣX ), we get the class

τm+pf
∗α ∈ Hq(X , σ≥n−pΣX /A 1 ) ≃ HqRπ∗σ≥n−pΣX /A 1

which restricts to tm+p ⋅ α over A1 ∖ {0}.
We claim that

κn−p
X (τm+pf

∗α) = tm+p ⋅ κn−p(α), (3.2)

where we use the identification

H qRπ∗ΣX /A 1 ≃ Hq(X, Σ X )[t] (3.3)

(see Lemma 3.2).Indeed, it is enough to check (3.2) after inverting t, in which case it follows from
the triviality of the family over A1 ∖ {0} (see (3.1)).

Similarly, we observe that under the identification (3.3), the Gauss-Manin connection ∇t on the
left corresponds to the usual differentiation d/dt on the right (indeed, this is clear after inverting
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t). Hence, using the commutative diagram on A1,

H qRπ∗(σ≥n−pΣX /A 1)
∇- H qRπ∗(σ≥n−p−1ΣX /A 1 )

H qRπ∗ΣX /A 1

κn−p
X

? ∇ - H qRπ∗ΣX /A 1 ,

κn−p−1
X

?

we deduce that

κn−2p−m
X (∇m+pτm+pf

∗α) = (m + p)! ⋅ κn−p(α). (3.4)

Let ι ∶ {0} ↪ A1 denote the embedding of the origin.For a complex of flat π−1OA1 -modules F
on X , we have a natural base change morphism

Lι ∗Rπ∗F → RΓ(π −1(0), j●F ⊗C[t] C),

where j ∶π −1(0) ↪ X is the naturalembedding.On the other hand,since ι∗ is exact,for each
q ∈ Z, we have a morphism

H qRπ∗F → H qι∗Lι ∗Rπ∗F ≃ ι∗H qLι ∗Rπ∗F.

Combining it with the base change morphism, we get natural maps on A1,

H qRπ∗F → ι∗H q(π−1(0), j●F ⊗C[t] C).

We can apply the above construction to F = ΣX /A 1 and to F = σ≥n−2p−mΣX /A 1 . Taking into
account the identification of π−1(0) with Xsp, we get a commutative diagram of OA1 -modules

H qRπ∗(σ≥n−2p−mΣX /A 1 ) - ι∗H q(X sp, σ≥n−2p−mΣX sp )

H qRπ∗ΣX /A 1

κn−2p−m
X

? r - ι∗H q(X sp, ΣX sp )
?

(3.5)

We start with the class ∇m+pτm+pf ∗α in the top left corner and look at the two resulting elements
in the bottom right corner.By Lemma 3.2, the map r is identified with map of the evaluation at
t = 0,

H q(X 0, C)[t] → Hq(X 0, C).

Hence, by (3.4), the class rκn−2p−m
X (∇m+pτm+pf ∗α) is equal to (m+p)!κn−p(α). Finally, by Lemma

2.4, the image of the right vertical map in the diagram (3.5) is contained in the Hodge subspace
F n−2p−mH q

dR (X 0). Thus, we conclude that (m + p)!κn−p(α) lies in that subspace.

Proof of Theorem A.The case p = 0 of Theorem 2.2 gives the inclusion

im(κn
n+i) = FnH n+i(Σ X ) ⊂ Fn−mH n+i(X 0, C).

By Proposition 2.3, passing to the orthogonals, we get the inclusion

F m+1H n−i(X 0, C) ⊂ F1H n−i
dR (X).

6



References

[1] U. Bruzzo, D. Hern´andez Ruip´erez, A. Polishchuk, Notes on Fundamental Algebraic Supergeometry. Hilbert and
Picard superschemes, Adv. Math. 415 (2023), Paper No. 108890, 115 pp.

[2] Yu. I. Manin, Gauge field theory and complex geometry, Springer-Verlag, Berlin, 1988.
[3] S. Noja, On the geometry of forms on supermanifolds, Diff. Geom. Appl. 88 (2023), 101999.
[4] I. Penkov, D-modules on supermanifolds, Invent. Math. 71 (1983), no. 3, 501–512.
[5] A. Polishchuk, De Rham cohomology for supervarieties, arXiv:2305.01858.

Department of Mathematics, University of Oregon, Eugene, OR 97403, USA; and National Research
University Higher School of Economics, Moscow, Russia

Email address:apolish@uoregon.edu

IHES, Le Bois-Marie, Route de Chartres 91440, Bures-sur-Yvette, France
Email address:mvaintrob@ihes.fr

7


	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7

