A BOUND ON THE HODGE FILTRATION OF THE DE RHAM
COHOMOLOGY OF SUPERVARIETIES

ALEXANDER POLISHCHUK AND DMITRY VAINTROB

Abstract. We study the relation between the Hodge filtration of the de Rham cohomology of
a proper smooth supervariety X and the usuaHodge filtration of the corresponding reduced
variety Xp.

1. Introduction

Let X be a smooth proper supervariety afimension n|m over Clt is known that the de
Rham cohomology$4(X) of X is canonically isomorphic to the de Rham cohomolg,g@(l'd)
of the underlying usuahriety )X of dimension n.Howeverthe Hodge filtration (PH / (X))
on Hi (X) in general differs from the Hodge filtratioRHE, (X o)) on Hlx (X o) (see [5])It is
natural to try to compare these Hodge filtrati®here is an obvious inclusion

FPHr(X) € FPHIR (X o)

which we can think of as an upper bound RHC’,';; (X) in terms of the Hodge filtration ofpX
Our main result gives a lower bound foH £ (X) in terms of the Hodge filtration ofpX It
can also be formulated in terms of the canonical map

Kn+i i H'(X, Berx) = HiZ' (X o), (1.1)
defined either using Serre duality or using the complex of integral forms (see Sec. 2.2).

Theorem A. For each i, one has an inlcusion F*H!z (X) > F ™*H[. (X o) (recall that the
dimension of X is n|m)Equivalently, one has an inclusion

iM(Kn+i) € P~HGE (X o). (1.2)

The equivalence in Theorem A is a consequence of a certain duality stavemoue that
the K4 is dual to the natural mapg,H(X) - H "~i(X, 0), with respect to the Serre duality and
the Poincare duality (see Proposition 2I3)e inclusion (1.2) was conjectured by Kontsevich.

It is natural to ask how to generalize Theorem A to give lower bourﬂtsggdv(ffor p>1.

We prove a certain generalization®),which compares an analog of Hodge filtration for the
hypercohomology of the complex of intdgrahs on X with the classicdlodge filtration (see
Theorem 2.2)Conjecturally, this should lead to the inclusion

FPYYX) o F2P*MH(X ).

(see Sec. 2.2).

The crucialrole in our proof is played by a certain natufaiily of supervarieties X -A
whose fiber over t # 0 is isomorphic to X and whose fiber over 0 is the split supervagjety X
associated with XThis family is a superanalog of the standard deformation to the normal cone
for the inclusion c X.
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2. Hodge filtrations for the de Rham complex and for the complex of integral
forms

2.1.De Rham cohomology.We refer to [2]for basics on differentiahd integralforms on
supermanifolds (see also [3] for a recent detailed survey).

Recall that for a smooth proper supervariety X we have the de Rham cofpielacd in
degrees = OYhe de Rham cohomology®{X) is defined as the hypercohomology &f Q

Leti: Xo = X be the bosonization of X, so & = Q«/N, where N is the ideal generated by
odd functionsThe natural map - i,Q®  is known to be a quasi-isomorphism (see e.g., [5]),
so it induces isomorphisms

Hdq (X) = Hg (X 0) = H(X o, C), (2.1)

where H(X o, C) denotes the cohomology of the constant sheaf with respect to the analytic topol-
ogy. Equivalentlythe inclusion ofhe constant shedyx into Q® induces an isomorphism on
cohomology (in the analytic topology).

The Hodge filtration on de Rham cohomology is defined by

FPHIR (X) == im(H (X, 02,09 - H'(X, Q9),
where g, denotes the stupid truncation of a compkuivalentlyF PH. (X) is the kernel of

the map to H(X, 0<p-029).
The commutative diagram

H'(X, Q3P = H'(Xo, &)

? ?
H'(X, Q) =— H'(Xo, )
shows that under the identification (2.1) we have an incItBH{;p(X) c FPHQR (Xo).

Recall that X is called split if there is an isomorphism of algekras/g, (V) for a vector
bundle V over Xo. A weaker condition is that X is projectedi.e., there exists a projection

p : X = Xo such that the compositionp X-= X R X, is the identity map.

Lemma 2.1. Assume that X is projectédn under the identification (2.1) one ngRX) =
FPH QR (X o).

Proof. Let m: X - X o be a projection.Then the pull-back by m gives a mag nH"(Qi‘;) -
H"(Q)E(p) whose composition with the pull-back by i is the identity ’dﬁf’;). Hence,the top
horizontal map in the diagram (2.2) is surjective, which implies the assertion.

2.2.Complex of integral form¥.e denote by Betthe Berezinian line bundle on X (obtained
as the Berezinian ofQ. Recall that the complex of integral forgs 3 ¢ is a complex of the
form
... Bar®\’Tx —% Bery ®Tx —> Berx,
placed in degrees = n (so that= Bex ). The formula for the differential 6 that uses the right
connection on Bgrcan be found in [2, ch. IV, 5.4], [4].
It is known (see [4]) that there is a natural isomorphism

H'(Xo, C) = H(Xo, ) — H'(Z¢) (2.3)
and that the map

H"(Ber) » H*"(3 ¢ = H"(Xo, C) = C (2.4)
is an isomorphism.

Mimicking the de Rham case, we can define the Hodge filtration on hypercohomology integral
forms.Namely, we defing £,H'(Z ¢ to be the image of the map
KIP:H (0sn-2 e = H'(Z o).
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For example, the image of the map & £, considered in (1.1) is,A"(Z ).
The next result is a generalization of the inclusion (L&)l be proved in Section 3.

Theorem 2.2.0ne has an inclusion
FrpH'(2x) € Frogp-nt' (X o, C).
It is naturalto conjecture that the Hodge filtrations on the de Rham cohomology and on the
hypercohomology of the complex of integral forms are related.
Conjecture B.F P+1H"(Q}) is equalto the orthogonalf F,_,H 2n-i(3 ) With respect to the
Poincare pairing on MX ,, C).

Note that the analog of Conjecture B for usual (even) varieties is an easy corollary of the Hodge
decompositionlf Conjecture B is true then the statement@fieorem 2.2 is equivalent to the
inclusion

Fp+1HéR (X) ) F2p+m+]f'léR (XO)

We can check Conjecture B for p = 0 using the Serre duality for supervarieties (see [4, Sec. 2.3]

for an analytic proof or [1, Sec. 3.5] for an algebraic one).

Proposition 2.3The map 4 : H' (X, Berx ) » H"*/(X o, C) is dualto the naturatap f-; :
H™ (X o, C) » H" (X, Ox ), where we use the Poincare pairing to identif{y HX o, C) with
the dualof H™*(X o, C), and we use the Serre duality to identify X, Ox ) with the duabf
H'(X, Beryx ). Hence, Conjecture B holds for p = 0.

Proof. For a pair of classes a ¥ Bery ) and B € /(X o, C), we have to check the equality

(ki(a), Bep = {(a, p-i(B))sp,

where on the left we use the Poincare duality and on the right we use the Serre duality.

By definition, the Serre duality is induced by the cup product and by the canonical functional on
H"™(X, Berx ). The latter canonical functional can be computed as the compositioHdac).
we need to check the following identity ¥y, C):

Ki(a) U B = kla u p-i(B)) = k(a u B),

where the cup-product a u B is induced by the natural pairing of she@vés BdBery . Now
the assertion follows from the fact that the cup product on de Rham cohomology is induced by
the sheaf pairingxe ® G = Zx -

Another case when Conjecture B is true is the case of a projected supervariatyoXpws
from Lemma 2.1 and the next result.

Lemma 2.4.Assume that X is projecte@ihen under the identification (2.3) we have
FrpH(Zx) = F""PH Iz (X o).

Proof. Let m: X - Xo be a projectionlt induces projections from integral forms on X to those

on Xp, which gives a commutative diagram

T
HIX, Osn-pZx) = HYX o, Gn-pZx,)

? ?
; . .
HIX, Zx) —= HYX o, Gn-pZx,)

Here the bottom horizontal arrow is the inverse of the isomorphis@n(2h&)other hand, the
inlcusion j : ¥ < X induces the map

isx:HI(Xo, Uzn—pzxo) - HI(X, O'zn—pzx)

such that gO 4 = id.This shows that the top horizontal arrow in the above diagram is surjective,
and the assertion follows.
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2.3.Gauss-Manin connectionThere is a relative version J,s of the complex ofintegral
forms for a smooth proper morphismXt+ S. Furthermorefor smooth S,there is a natural
Gauss-Manin connection on £ /s .

The distribution ¥;s © & induces a filtration {2 ¢< G2x ¢< . . . X ¢ DY subcomplexes in
the complex of integral forms on X , where

GoZx.,n-p'= Bex ®A\"(Txss), GiZx n—p:= Bex @\ " (Txss) " &, . ..
Using the identification Ber= 1t Bers ® Beg s, we get isomorphisms of complexes
GoZx =1fBers ®3y,s, G1Ix/GoIx = f'Bers ®3y/s[1] ® ffTs,
Thus, a short exact sequence of complexes
0-G@G-»G1-» G1/Gyg~0 (2.5)
leads to an exact triangle
Bers ® Rmyx ;s = Rm«G1 = Bers ®Rmy Iy s[1] ® #Ts » Bers ®RmyZ x ;s [1]
We can view the corresponding morphism
V,:Bek ®RmIy s ® MTs - Bes ®RMyI /s

as a right connection on B&®Rm2 x /s, inducing right connections on the cohomology sheaves.
Using the next term of the filtratio@,, one can check its flatness (but we don’t use it in this
paper, since we only consider the case §.= A

By the standard relation between left and right connections (see [4]), we get a left connection

V:RMIx s = MQE ® Ry s.
Considering stupid truncations of the exact sequence (2.5), we get an exact triangle
Bers ® RMx0=n—p-L x /s = RMx0=n—p-1G1) = Bel ®RMx(0=p—p2 x /5 )[11®1*Ts - Bers ®RM0=p—p-2 x /s
we get a commutative diagram

v
RI(Osn-pZxss) = ML ® RM(O=n—p-Tx/s)

? ?
i v
R4 Ixs ——— m*Qi ® RmIy s
which gives an analog of Griffiths transversality for V.

3. Deformation to normal cone

3.1. Construction.We consider an analog of the deformation to normal cone for the embedding
Xo © X. This will be a family of supervarieties m: X équipped with an identification
m AT\ {0}) = X x (A {0}), (3.1)

and an identification of #0) with the split supervariety & associated with X.In addition,
we will have a naturalaffine morphism f:X —» X, restricting to the naturaprojection on
m YA\ {0}).
We define X using the following Z-graded quasicoherent sheabtifabras:
fOx=...0Nf?eN - floex o teQ -ta...,
where t is a formal variable, with the obvious algebra structure.
The map to X x A corresponds to the naturalklusion @ [t] & f4Ox. On the other hand,
the embedding®x < Ox [t, t'1] corresponds to inverting t, so it gives an identification (3.1).
Finally, the fiber over t = 0 corresponds to the algebra

fOx/t fOx =... @ MN 3@ N/N?@® O(/N,
which gives the split supervariety. X



Note also that the bosonization of X is canonically identified wikhaX
Lemma 3.1.(i) One has an equality
t"f*Bery = Begja1,

where (n|m) is the dimension &f (we view both sides as subsheaves in the shefafational
sections of ¥Bery ).
(ii) For p = 0, one has an inclusion

trn+pf*z)(,n_p (e Z(/Alln_p.
Proof. (i) The statement is clear over\WW{0}, so it is enough to check it in the neighborhood of
each point of T(0). Let (x1, ... .nx4Q, ...~ be local coordinates of the corresponding point
of X. Then (x, . .. ,nx8/t, ... ,@t) are relative local coordinates for X #hich immediately
implies the assertion.

(i) This follows from (i) and from the inclusion ¥Fxf < % ,s which is proved using the same
relative local coordinates as in (i).

Lemma 3.2.For each i, the canonidalentification
H'RT Iy a1 hivo=H(X, Zx) ® Quyo = H(Xo, C) ® Quyo
extends to an identification
H'RmZx a1 = H(X o, C) ® Qu.

Proof. Let b : % x A - X denote the embedding of the bosonizafiben the assertion follows
from the fact that the natural map

b*Q).(ngl/Al = Zx /A1

induces an isomorphism on,Rm
3.2.Proofs of Theorem 2.2 and of Theorem A.

Proof of Theorem 2.2.et us denote byyk”: G.n_p x a1 = Zx a1 the natural inclusion.

Below we denote by ¥the Gauss-Manin connection with respect to d/#e will also not
make a distinction between quasicoherent sheavesnahtAe corresponding modules over C[t]
given by global sections.

From Lemma 3.1(ii) we get an inclusion of complexes

. £k
Tn+p: [ O2p-pZx = O=n—pZx /AL,

which restricts to™#? over A \ {0}.
Thus, starting with a class a &K, 0-,_ x ), we get the class

Tm+pf*a € H(X, Cén—,DZX/Al) = thn*azn—pZX/Al

which restricts td"#?- a over A\ {0}.
We claim that

Ky P(Tmapf *a) = P K7P(a), (3.2)
where we use the identification
Han*ZX/A1 = hq(X, ZX)[t] (33)

(see Lemma 3.2Indeed, it is enough to check (3.2) after inverting ¢, in which case it follows from
the triviality of the family ovet A {0} (see (3.1)).
Similarly, we observe that under the identification (3.3), the Gauss-Manin copoactien V
left corresponds to the usual differentiation d/dt on the right (indeed, this is clear after inverting
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t). Hence, using the commutative diagram®on A

v
HIRM(Ozn-pZ x ja1) — HIRM(O=n—p-2x/a1)

- -p-1
Ky P Ky’
? v ?
Han*ZX/Al = Hqu[*zX/All
we deduce that
K;—Zp—m(vm+p.l.m+pf*a) - (m + p)! n_,e(a)' (3.4)

Let ¢ : {0} - Adenote the embedding of the oriffior. a complex of flat7#Oa:-modules F
on X, we have a natural base change morphism

Li*RmF - RT( ~Y0), j® ®ciy C),

where j :m~%0) » X is the naturalembedding.On the other handsince  is exact,for each
g € Z, we have a morphism

HOIRMF = H ULt *RTT4F = HILL R F.
Combining it with the base change morphism, we get natural malps on A
HIRMF - 1,H (1~ Y0), j%F ®c[y C).
We can apply the above construction to F & and to F = &p—2p-n x/a1. Taking into
account the identification of{d) with Xs,, we get a commutative diagram gf-®odules

Han*(ozn—Zp—nzx /Al) - l*H q(X sps Uzn—Zp—niXsp )

—2p—
Kg=20=m (3.5)
? r ?
Han*zX/Al _— L*Hq(XSpr ZXsp)

We start with the clasé”vprm+pf *a in the top left corner and look at the two resulting elements
in the bottom right corneBy Lemma 3.2, the map r is identified with map of the evaluation at
t=0,

H9(X o, C)[t] = H'(X o, C).

Hence, by (3.4), the clas§ PR™™(V"*P1,, of *a) is equal to (m+py'#(a). Finally, by Lemma
2.4, the image of the right vertical map in the diagram (3.5) is contained in the Hodge subspace
Fn=2P=MH 3. (X 0). Thus, we conclude that (m + pjPa) lies in that subspace.

Proof of Theorem AThe case p = 0 of Theorem 2.2 gives the inclusion
im(kp,;) = RH™ (x) € F_mH ™ (X o, C).
By Proposition 2.3, passing to the orthogonals, we get the inclusion

FmM+IHn=i(X, C) € PHIZ(X).
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