COMPATIBLE FEIGIN-ODESSKII POISSON BRACKETS
NIKITA MARKARIAN AND ALEXANDER POLISHCHUK

ABSTRACT. We prove that several Feigin-Odesskii Poisson brackets associated with nor-
mal elliptic curves in P are compatible if and only if they are contained in a scroll or in
a Veronese surface in P® (with an exception of one case when n = 3). In the case n = 3
we determine the quartic corresponding to the Schouten bracket of two (non-compatible)
Poisson brackets associated with normal elliptic curves E; and FEs.

1. INTRODUCTION

We work over an algebraically closed field k of characteristic 0.

This work is a contribution to the study of a remarkable class of Poisson brackets on pro-
jective spaces associated with elliptic curves, that were introduced by Feigin and Odesskii
(see [3]). Namely, for every normal elliptic curve £ C P, there is an associated Poisson
bracket I1x defined up to rescaling (we refer to these as FO brackets; sometimes they are
denoted as gn41,1(L£)). Setting L = O(1)|g one can identify P* with the projective space
of extensions of L by . Then the bracket IIg can be defined and studied in terms of
geometry of such extensions on F.

Recall that two Poisson structures II;, II; on the same space X are called compatible
if every linear combination A{II; 4+ AoIl; is still a Poisson structure. This is equivalent to
the identity [IT;,II5] = 0, where we use the Schouten bracket of bivectors. More generally,
one can consider larger linear subspaces of Poisson bivectors. In the work [7] Odesskii and
Wolf gave a construction of 9-dimensional subspaces of Poisson structures on P" whose
general member is a bracket I1g for some £ C P". In [5] this construction was interpreted
geometrically in terms of families of anticanonical divisors on Hirzebruch surfaces, and
extended to give new examples of compatible Poisson structures. In the present work we
show that these constructions are the only way to produce compatible FO brackets of type
qn+1.1(F), with one exception occurring for n = 3.

First, let us consider the case of FO brackets associated with normal elliptic curves in
P3.

Theorem A. For a collection of normal elliptic curves (E;)icr in P3 = PV, the brack-
ets (Ilg,) are compatible if and only if either all E; lie on one quadric surface (possibly
singular), or there exists a 3-dimensional subspace W C S?*V* such that every E; is the
intersection of two quadrics in W.
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Theorem A has a natural generalization to FO brackets in higher-dimensional projective
spaces. Let us fix n > 4. With every normal elliptic curve E in P" we can associate
a 1-dimensional family Sg of rational normal scrolls S(r,r) C P" if n = 2r 4+ 1, with
several exceptional members of type S(r — 1,r + 1) (resp., S(r — 1,r) if n = 2r), which
are parametrized by points of Picy(E), see Sec. 2.2 for details. In the case of n = 5,
each normal elliptic curve E in P° is contained in four Veronese surfaces, corresponding to
choices of a square root of the line bundle O(1)|g of degree 6.

Theorem B. For a collection of normal elliptic curves (E;);er in P", where n > 4, the
brackets (Ilg,) are compatible if and only if

e cither the corresponding families (Sg,) have an element in common,
e orn =>5 and all E; are contained in a Veronese surface P? C P5.

The family of elliptic curves contained in a scroll is precisely the family of anticanonical
divisors producing compatible Poisson brackets of Odesskii-Wolf (see [5, Sec. 5.3]). The
fact that elliptic curves contained in a Veronese surface in P° give rise to compatible Poisson
brackets was observed in [5, Ex. 4.6].

Let us call an FO-subspace any linear subspace of compatible Poisson brackets on P",
whose generic point is of the form IIg for some normal elliptic curve E. Odesskii-Wolf
conjectured that their examples of 9 compatible Poisson brackets on P" give maximal
linear subspaces of Poisson brackets. We prove that this is true if n is even, while for odd
n we prove maximality of these subspaces among FO-subspaces.

Corollary C. (a) Given a rational normal scroll S = S(s,r) in P", with 0 < s < r <
s+ 2, consider the 9-dimensional FO-subspace Vg of Poisson brackets on P™ coming from
anticanonical divisors on S. Then Vs is a maximal subspace of Poisson brackets provided
n is even (resp., a mazimal FO-subspace if n is odd).

(b) The mazimal dimension of a linear subspace of Poisson brackets on P", containing some
FO bracket Ilg, 1s 9 provided n is even and n > 4. For odd n, the mazximal dimension of
an FO-subspace of Poisson brackets on P™ is 9, forn > 3, n #5, and is 10 for n = 5.

The construction of compatible Poisson brackets in [5] also produces some families of
compatible FO brackets of type g, x(E) (these are associated with higher rank stable bun-
dles on elliptic curves). It would be interesting to find criteria for compatibility of brackets
of type ¢, x(E) similar to our Theorems A and B.

Let us return to FO brackets on P2. In the case when Ig, and I, are not compatible,
the Schouten bracket [IIg,,IIg] is a section of A*Tps ~ Ops(4), so it gives a quartic
hypersurface in P2. We will compute this hypersurface in terms of defining pairs of quadrics
for ) and Ey. Let P? = PV, where V is a 4-dimensional vector space. Consider a natural
linear map

4
O\ (SPVF) = det(V*) @ S(V7)
that associates with Q1 A Q2 A Q3 A Q4 the polynomial map of degree 4 with values in
det(V*),
v (anl) A (811@2) A (an3) A (anZL)



On the other hand, the Poisson bivector associated with )1 = ()2 = 0 canonically is an
element of det(V*) ® H(PV, A°Tpy), hence the Schouten bracket of two such bivectors is
a section of

(det V¥)¥? ® /\3TP3 ~ (det V*)¥? ®@ det(V) ® Opy(4) ~ det(V*) @ Opy (4).

Theorem D. One has an equality in det(V*) @ S*(V*),
[MQ1=q=0, lgs=qu=0] = 4 - P(Q1 A Q2 A Q3 A Qu).

The quartic surface Xp, g, C P? given by [llg,,Ig,] = 0 can be characterized geomet-
rically as follows. First, with a normal elliptic curve £ C P? and a point p € P3, which
is not the vertex of one of the four singular quadrics through F, we can associate a line
Lg(p) C P3 called the polar line of p with respect to E: if F is given by Q; = Q2 = 0, then
Lg(p) is the intersection of polar planes to p with respect to @1 = 0 and @2 = 0 (it does
not depend on a choice of @1, Q)2). Now Xg, g, is the closure of the set of points p such
that the polars Lg, (p) and Lg,(p) have a nontrivial intersection (this quartic also contains
vertices of singular quadrics through E; and E;). Another definition of the polar line to
a point p with respect to F (for a generic p) is the following. Take two secant lines to FE,
Ly = piqi and Ly = Paga, passing through p (they coincide with two lines through p on the
unique quadric () passing through E and p). On each of these two lines L;, choose a point
r;, such that (p, p;, ¢;, ;) is a harmonic quadruple (have double ratio —1). Then the polar
line Lg(p) is the line passing through r; and rs.
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2. SOME FACTS ABOUT FO BRACKETS

2.1. Conormal Lie algebras. Recall that for any point = of a smooth Poisson variety
(X, 1I), there is a natural Lie algebra structure on the space

O, = ker(IL, - T;X - T,X) C Ty X.

Namely, if we lift a,b € g, C m,/m2 to some local functions 5,5 € m,, then {’(i,g} €m,
and

[a,b] := {@,b} mod m?.
Now let IT = I denote the FO bracket on P" = PExt'(L, O), associated with a normal
elliptic curve E C P"* (so L = O(1)|g). It is known (see [5, Prop. 2.3]) that the rank of II,

is equal to n + 1 — dim End(V'), where V' is the extension of L by O corresponding to x.
The next result realizes this equality by an isomorphism of natural Lie algebras.

Proposition 2.1.1. For v € Ext'(L,0) \ {0}, which is the class of an extension

0—>O—i>V—p>L—>O, (2.1)
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the conormal Lie algebra grn, for the FO-bracket 11 = Ilg is naturally isomorphic to the
Lie algebra End (V') /(id).

Proof. Recall (see [5, Lem. 2.1]) that for x € Ext'(L, 0) \ {0} and sy, s, € (z)* € H(L),
the bivector II, is given by

s1 A s+ (MP(sy,x,82), ),

where M P(sy,x,s9) € H°(L)/(s1,s2) is the Massey product. Note that we can iden-
tify (z)* < H°(L) with the kernel of the connecting homomorphism H°(L) — H'(O)
associated with (2.1), hence, (x)* consists of sections liftable to H°(V'). By definition,
MP(s1,x,59) is the (s, s9)-coset represented by s1(s3), where §; : V' — L is a map ex-
tending s : O — L and 5, € H(V) is a lifting of s,.

Let us consider the map

End(V)/(id) — HO(L) : A po Aoi.

We claim that this map is injective. Indeed, if po Aoi =0 for A € End(V'), then Aci = c-i
for some constant c¢. Hence, (A — cid) o7 = 0, so A — cid factors through a map L — V.
But any such map is zero since the extension (2.1) does not split, so A € (id), which proves
our claim.

Now suppose s; = po Ao, for some A € End(V). Then we can take s; = po A.
Hence, 51(52) = p(A(32)) which lies in (z)* since it is liftable to H°(V'). Thus, we have an
inclusion

End(V)/(id) < ker(II,) C (x)*.

Since the dimensions are equal, in fact, we get an identification of vector spaces
End(V)/(id) —— g, = ker(IL,).

It remains to check compatibility of the brackets. Let us fix a pair of endomorphisms
A A" € End(V), and let s =po Aoi and ' = po A’ o be the corresponding elements of
ker(IL,). Let us also fix a vector v € Ext'(L,O) \ (z), representing a nontrivial tangent
direction to () in the projective space. Let us consider the corresponding line z(t) = x+tv
in Ext'(L,0), and the induced line {x(t)) in the projective space. In order to compute
([s, s'],v) we have to extend s and s to sections s(t), s'(t) of the cotangent bundle along
the line (z(¢)). Then by definition, we have

(15, ) = {1 5(t) A $(0)eco

Furthermore, it is enough to work over dual numbers, where t* = 0. Thus, we can pick
any elements u,u’ € H°(L), such that

(z,u) + (v,s8) =0, {x,u) + (v,8) =0,
and set s(t) = s +tu, s'(t) = s’ +tu'. Then
(x(t),s(t)) = (x+tv,s+tu)y =0, (x(t),s'(t)) =0,



so s(t) and §'(t) are in sections of the cotangent bundle. Now we have to calculate the
derivative at 0 (i.e., the coefficient of ¢)of
(IL, s(t) NS'(t)) = (MP(s + tu,x + tv, s + tu'), x + tv),

To calculate this we use Cech representatives. We cover F with two affine opens U; and
Uy, set Uyp = U; NUsy, and realize x and v by Cech 1-cocycles x € L™ (Uya), v € L™ (Uss).
The extension V =V, of L by O associated with z is equipped with splitting o, : L — V'
over each U,, a = 1,2, such that over U5 we have

(02 —01)(¢) =iz - 9),
where ¢ € L(Uya).
If we have a section s € (z)* C HO(L), then there exist f, € O(U,), a = 1,2, such that
x-S = fl — fg. (22)
Then we can extend s to a section a = af(s, fo) : O — V and to a morphism 5 = 5(s, fe) :
V — L such that p(a) = s = o4, and

aly, = i(fa) + 0a(s), PBlu,(0a(¢)) = —fa- ¢

It is easy to see that an operator A € End(V) with tr(A) = 0, is determined by the
section s = po A o, together with functions f, € O(U,) and sections A4, € L™1(U,),
a = 1,2, satisfying (2.2) and

A2 — A1 = (f1 + fg) - T. (23)

Namely, the operator A : V — V is given over U; by

Ai(1) = fa+ 0a(s), Aoa(9) = i(Aa- @) = fa-0a(9),
for ¢ € L(U,).

Next, we need to consider the extension V.4, of L by O corresponding to x + tv. We
denote by o,(t) : L — V.4, the splittings over U,, a = 1,2, such that

(02(t) — 01 (1)) (¢) = i((x + tv) - §).
We start with two traceless operators A, A’ € Endy(V) and consider the corresponding
sections s,s’ € (x)* C H°(L). Thus, we can assume that we have the corresponding
functions f,, f; € O(U,) and sections A,, A, € L™'(U,) satisfying (2.2), (2.3) and the
similar relations involving ¢, f/ and A/. We also choose functions g,, g, € O(U,) such
that
vestrou=g1—go, v-8+ax-u =g]—gh (2.4)
Then we have the following deformed version of (2.2) over Uys:

(z +tv) - (s +tu) = (fr + 91t) — (f2 + gat).

By definition, the Massey product M P(s + tu,x + tv, s’ + tu’) is the class of the com-
position o o/, where o : O — V4, is the global section projecting to s’ + tu’, while
b: Vit — L is the morphism extending s + tu. As we have seen before, we can define o/
and [ so that over U, we have

a =i(fl +tg,) + o.(s +tu'),
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Bli(f) + 0a(9)) = f(s + tu) = (fa + tga)0-
Hence,
MP = MP(s+tu,z +tv, s +tu") = (s + tu)(f, + tg,) — (&' + tu')(fo + tga) =
sfo =8 fatt(sg, +ufe— 5’90 —u'fa),
and therefore, considering the coefficient of t in (M P,z + tv) we get
[s,8'| =v-(sfi—8fu) + 2 (sg, +uf. —s'g, —uf,) modim(d),

where a = 1 or 2, and we view the right-hand side as a Cech cohomology class H'(O) ~ k
(the answers for a = 1 and a = 2 differ by a cocycle). Therefore, we have

2s, 8’ = v [s(f] + f5) = ' (fi + f2)] + Cmodim(é),
where
C=w-[s(g +g5) +ulfi + f2) — 5" (g1 + g2) — v'(f1 + f2)] mod im(5).

Note that v and u’ are global sections, while z(f; + f2) and x(f] + f5) are coboundaries
due to the relation (2.3). Hence,

C = xs(gy+95)—28'(g1+92) = (fi—fo)(91+95)—(fi—f3)(91+92) = f195— fa01— flg2+ f391 mod im(6),
where we removed the coboundary terms fi¢}, etc.
On the other hand, multiplying the first of the relations (2.4) with f] + f5, we get

fagr = flge = (fi + f2)(g1 — g2) = (fi + f)vs + (fi + fa)wu = (fi + f3)vs mod im(6).
Similarly,
fagi — f195 = (fi + f2)vs'mod im(d).
Hence, we obtain
C=v-[s(fi+ fo) = s(fr + f)l.
which gives
([s,8'],v) =v-[s(f] + f5) — §'(f1 + f2)] mod im(d).
Finally, using (2.2), we get
(fi=fo)-s'=a-s-s"=(fi-f3)s
or equivalently,
sfi—s'fi=sfy—sfo.
Hence, we can rewrite the above formula as
([s, 8, v) = 2v- (sfi = s'f1).-
It remains to compare this with p(AA" — A’A)i(1). We can compute this over U;:
PAA' = A A)i(1) = pAli(f}) + o1(s)] — pATi(f1) + o1(s)] = 2(f1s — fis).
Comparing this with the formula above, we get
<p(AA/ - A/A)i(l)’ U) = <[S’ 3,]’ U>

which proves our assertion. Il



Remark 2.1.2. Proposition 2.1.1 is a part of a broader picture, involving the notion of a
symplectic groupoid (see [13]). Given a symplectic groupoid M with the space of objects
X (in the category of smooth schemes), then X has a natural Poisson structure. In this
situation one can also consider the algebraic stack X associated with the groupoid M.
Then the Lie algebra of automorphisms in M of an object x € X (or equivalently, of the
corresponding point of X') is naturally identified with the coisotropic Lie algebra at z € X
of the Poisson structure on X (see [6, ch. 2, Lem. 1.2]).

In the case of the Feigin-Odesskii Poisson structure on X = PExt'(L, O), the symplectic
groupoid M can be constructed as follows. We have a natural map f : X — Bung, where
Buny, is the stack of rank 2 bundles on E with the determinant L, and f associates the
bundle V' with an extension (2.1). Then we define M to be the 2-fibered product

M := X Xpu, X.

The first part of the proof of Prop. 2.1.1 shows that the map f induces a surjection on
tangent spaces, hence, M is a smooth algebraic space. From the fibered product structure
we get a groupoid structure on M. The corresponding stack X is equipped with a fully
faithful map X — Buny, (see [12, Lem. 93.16.1], so automorphisms of points are the same.
One can show that in fact M has a structure of a symplectic groupoid that induces the
Feigin—Odesskii Poisson structure on X (the details will appear elsewhere). This gives a
more conceptual proof of the identification of Lie algebras in Prop. 2.1.1.

It is well known that the FO-bracket I1z vanishes at any p € E. Hence, in this case we
get a Lie algebra structure on T;P".

Corollary 2.1.3. For p € E C P", the conormal Lie algebra g = T;P" admits a basis
Ti, ... T 1,Y, such that (x1, ... 2, 1) = (T,E)* is an abelian subalgebra, and [y, x;] = x;.
Proof. In this case V' = O(p) @ L(—p) and the algebra End(V)/(id) has an abelian sub-
algebra A corresponding to endomorphisms of the form V- — O(p) — L(—p) — V. The

1-dimensional complement to A is spanned by the idempotent e corresponding to the sum-
mand L(—p), and for any a € A we have ea = a, ae =0, so [e,a] = a. d

Using this description of the conormal Lie algebras, we get the following constraints on
Poisson brackets compatible with I1p.

Proposition 2.1.4. Let E C P™ be a normal elliptic curve, and let I1 be a Poisson bracket
on P*. Assume that [llg, I} = 0. Then for every p € E, one has II|, = v1 A vy, where
U1 € TpE

Proof. We will calculate [I1g, I1]|, for p € E, and then equate it to zero. We have Ilg|, = 0,
and the linear part of Il is

HlEm = Z :cz@mz VAN 3y,

where x1, ..., z,_1,y is a basis of T,P" chosen as in Corollary 2.1.3. The bracket [I1g, I1]|, =
[I1%" 11]|,, depends only on II|,. We have

[H%na axi A ay] =0,
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(5", 0y, A Oy,] = £20,, A Oy; A D,
Hence, [I1g, ]|, = 0 if and only if II|, = v A 9,, for some v € T,P". Since (9,) = T,E, our
assertion follows. g

2.2. Secant variety of E and its fibration in scrolls. Assume n > 4, and let £ C P”
be a normal elliptic curve, L = O(1)|g. Consider the P'-bundle p : X — FEI over
the symmetric square of E, with the fiber PH(L|p)* C PH°(E,L)* = P™ over a point
D € EP. We have X = P(V), for the following vector bundle V on E®. Consider the
natural map 7 : E x £ — EP? then V = (m,piL)Y, where p; : E* — E is the projection to
the first factor.

We have a well defined morphism ¢ : X — P, embedding linearly each line p~ (D) C X
into P", so that its image is precisely the corresponding secant line corresponding to D.
More precisely, the natural morphism H°(L) ® Opz — piL induces a surjection H°(L) —
7.0t L = VY. Hence, we get a closed embedding X = P(V) — EP x PH(L)*, and ¢ is
obtained by the second projection.

Lemma 2.2.1. Assume that n > 4. The map ¢ : X — P" induces a surjective birational
morphism X — Sec*(E) which is an isomorphism over Sec*(E) \ E.

Proof. This is a well known consequence of the fact that L “separates 4 points on E” since
deg(L) > 5 (see Terracini’s Lemma as stated in [1, Lem. 1.2, Lem. 1.4]). O

Next, we consider the Abel-Jacobi map a : EZ — Picy(E) : D — O(D). For each
M € Picy(E), we set Sy := 7 *(a”'(M)) C X. Note that ¢(Sy) C P" is the union of
secant lines pp’ over all pairs p, p’ € E such that Op(p +p') ~ M.

We refer to [2] or [10] for background on rational normal scrolls.

Lemma 2.2.2. Assume thatn > 4. Then the restriction ¢|s,, : Sy — P" is an embedding.
If n = 2r, then ¢(Sy) is a scroll of type S(r — 1,r). If n = 2r + 1, then ¢(Syr) is a scroll
of type S(r,r) if M™1 £ L, and it is of type S(r — 1,7+ 1) if M™ ~ L.

Proof. Let us compute the restriction of the bundle V to the projective line a= (M) C E 2,
By the base change formula,

Vle-1n) = Tare(PT L By )

where Ey; C E? is the preimage of a=*(M) under 7 : E* — EP 7y @ Eyy — a= (M)
is the projection. Thus, Ey = {(z,y) € E* | O(x +y) =~ M}. Note that the projection
p1 : Eyy — E is an isomorphism, and the composition 7y (p1|g,,) " : E — a'(M) is the
double cover that can be identified with the map f : E — P! given by the linear system
|M|. We want to compute the splitting type of f.L.

Assume first that n = 2r, so deg(L) = 2r +1. We claim that in this case f.L ~
O(r—1)@0O(r). Indeed, this follows from the fact that deg(f.L) = deg(L)—2 = 2r—1 and
from the vanishing H°(f,L(—r—1)) = HY(L®@ M~""') = 0 (since deg(L ® M—""1) = —1).

Now assume that n = 2r + 1, so deg(L) = 2r +2. If L 22 M"*! then H(f.L(—r—1)) =
HY(L® M~') =0, so f,L ~ O(r) ® O(r). On the other hand, if L ~ M"*! then
H°(f.(—r — 1)) is 1-dimensional, so f.L ~ O(r — 1) & O(r + 1).



This proves that S, is isomorphic to the projectivization of the rank 2 vector bundle
over a~ (M) ~ P! of one of the types O(n;) @& O(ny) described above. The fact that the
corresponding morphism Sy; — P" is an embedding is the standard fact (using that n; > 0
and ny > 0, which is the case since n > 4). O

Corollary 2.2.3. Assume that n > 4. There is a well defined morphism Sec*(E) \ E —
Picy(E) ~ E, whose fibers are of the form ¢(Sy) \ E, where ¢(Syr) is the scroll of type
S(r—1,r) forn=2r, or of type S(r,r) or S(r — 1,r+1) forn =2r + 1.

2.3. Rank 2 locus. Fix a normal elliptic curve £ C P, where n > 4, and let IIg be the
corresponding FO-bracket on P*. We want to describe the locus of points in P” where the
rank of IIp is < 2.

Let L := O(1)|g, so we can identify the embedding with £ — PH(L)* ~ P Ext'(L, O).
We will use the following well known fact (see [5, Prop. 2.3]): let x € Ext'(L,O) \ {0} be
the class of an extension (2.1). Then the rank of (Ilg), is equal to deg(L) — dim End(V').

In the case n = 5, i.e., L := O(1)|g has degree 6, for each M € Pic3(E) such that
M? ~ L (there are four such M), we define a Veronese surface Py; C P™ as follows. We
observe that the natural map

S?HO(E, M) — H(E, M?) ~ H(E, L)

is an isomorphism (it is known to be surjective and both spaces are 6-dimensional), and
define P); as the image of the Veronese embedding

PHO(M)* — PH°(S?H°(M)*) ~ PH(L)* = P".

Proposition 2.3.1. (i) Assume n =4 orn > 6. Then for x € P", one has rk(Ilg), < 2
if and only if v € Sec?(E).

(i) Assume n = 5. Then for for v € P", one has tk(Ilg), < 2 if and only if v € Sec*(E)
or x € Py CP°, for some M € Pics(E) such that M? ~ L.

Proof. (i) Let Il = IIg. By [5, Prop. 2.3], we have rkII, < 2 if and only if dim End(V) >
deg(L) — 2, where deg(L) = n+ 1. Assume first that n > 6. Then we get dim End(V') > 5,
so V cannot be semistable. Hence, V is isomorphic to a direct sum of line bundles:
V' = L @ Lo, where deg(L1) < deg(Lz). Furthermore, we have

2 + deg(Ly) — deg(Ly) = dimEnd(V) > deg(L) — 2 = deg(L1) + deg(Ls) — 2,

so deg(L;) < 2. The composed map O — V' — L; cannot be zero, so it vanishes on an
effective divisor D of degree < 2. Since V' is a nontrivial extension, we have deg(D) > 1.
If deg(D) = 1 then our extension splits under O — O(p) for some point, so z lies on the
elliptic curve E C P". If deg(D) = 2 then our extension splits under O — O(D), so it lies
on the chord of F in P" corresponding to D.

Conversely, if 2 € Sec?(E), then there exists an effective degree 2 divisor D on E
such that the extension associated with x splits under O — O(D). If © € E then the
extension splits already under O — O(q) for some ¢ € E. Then V ~ O(q) & L(—q), so
dim End(V) = deg(L), which means that II, = 0. Otherwise, if z € Sec*(E) \ E, then we
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get an exact sequence

0—L(-D)—=V —=0(D)—0.
Since deg(L) > 5, we have deg(L(—D)) > 3 > 2 = deg(O(D)), so V. ~ O(D) & L(D).
Hence, deg End(V') = deg(L) — 2 and rkII, = 2.

Assume now that n = 4. Then the extensions V' corresponding to points where rk IT,, < 2
satisfy dim End(V) > 3. Since deg(V') = 5, this means that V is unstable, so V = L; & Ly
where (deg(L1),deg(Ls)) is either (1,4) or (2,3). We finish the proof in the same way as
before.

(ii) Now the condition on V' (which has degree 6) is that dim End(V) > 4. This means
that either V' is unstable, or V.= M & M, for some line bundle M of degree 3, such that
M? ~ L. In the former case, we use the same argument as in part (i) to show that the
correspond point lies on Sec?(C). We claim that extensions with V ~ M @ M correspond
to points of Py \ E, for the Veronese surface Py; C PH?(L)*. Indeed, an extension of the
form

0=+0—=Ma&M—~L—0

corresponds to a base point free pencil (sy, s5) C H°(M), which corresponds to a point £ :=
(s1,89)F C H'(M)* of the projective plane PH®(M)*. The line in PH°(L)* corresponding
to our extension is given by the hyperplane H C H°(L), obtained as the image of the map
H°(M)* — H°(L) induced by p: M & M — L. In other words,

H=s-H'(M)+sy-H' (M) c H(L).

It remains to observe that H is exactly the space of quadrics on PH®(M)* vanishing at the
point £. Hence, it is exactly the image of ¢ under the Veronese embedding PH°(M)* —
PS?2HO(M)* ~PH (L)*. 0

Lemma 2.3.2. Assume n >4, and let v € Sec*(E) \ E. Let D C E be the corresponding

effective divisor of degree 2. Then we can view x as an element of the projective line

PHY(L™Y(D)|p) € PHYL™"), and its lifting T € H*(L™Y(D)|p) gives a trivialization of

L~Y(D)|p. The tangent space to Sec*(E) at x can be identified with H°(L~'(2D)|sp)/(T),

so that the tangent map to the morphism Sec?(E)\ E — Picy(E) is given by the composition
HO(L™(2D)]2p) /(@) — H'(L™'(2D)|p) — H(O(D)|p) = H'(O).

Proof. This is a standard calculation related to Terracini Lemma (see [1, Sec. 1]). U

Recall that for n > 4, the secant variety Sec?(E) has a fibration in scrolls Sy over E,
described in Sec. 2.2.

Lemma 2.3.3. (i) Assume n > 4. For x € Sec*(E) \ E, one has
im((Ip), : TP — T,P") = T, S0,

where Sy is the scroll associated with M € Picy(E), passing through x.

(ii) Assumen = 3. Let X C P denote the set of four vertices of singular quadrics passing
through E. For x € P?\ (EUXg), one has

im((Ilg), : T,P" — T,P") = T,Q,
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where Q) is the unique smooth quadric passing through E and x.

Proof. (i) Set I = I15. We have im(I1,) = ker(II,)*, and as we have seen in the proof of
Proposition 2.1.1, ker(Il,) is precisely the image of the map

End(V)/(id) = (x)* € H(L) : Avs po Aoi, (2.5)

where = corresponds to an extension (2.1).

As we have seen in the proof of Proposition 2.3.1, € Sec*(E) \ E if and only if
V ~ O(D) @ L(—D), where D is an effective divisor of degree 2 and the embedding
i: O — O(D)® L(—D) is given by (1,s), for some section s € H(L(—D)) not vanishing
on D. The projection p : O(D) & L(—D) — L is given by (s,—1). Thus, End(V)/(id)
is generated by the idempotent e corresponding to the factor O(D), and by nilpotent
endomorphisms induced by maps t : O(D) — L(—D). The image of e under the em-
bedding (2.5) is s € H°(L(—D)) € H°(L), while the image of t € H(L(—-2D)) is —t €
H°(L(—2D)) c H°(L). In other words, ker(IL,) is identified with the preimage of the line
L spanned by s|p € H*(L(—D)|p) C H°(L|sp) under the projection H°(L) — H°(L|sp).
It follows that im(I1,) = ker(Il,)" is the image of L+ € H°(L™1(2D)|sp) under the natural
homomorphism H°(L™1(2D)|sp) — HY(L7Y) /(z).

Note that the restriction s|p gives a trivialization of L(—D)|p. We claim that its in-
verse (s|p)™' € H°(L7'(D)|p) induces the class of our extension under the connecting
homomorphism H°(L~Y(D)|p) — H*(L™"). Indeed, this is equivalent to checking that our
extension (2.1) is obtained as the pullback of the standard extension

0—-0—0(D)— O0p(D)—0

under the map (s|p)~! : L — Op(D). But this immediately follows from the existence of
the following morphism of exact sequences

0 @) % L 0
id Po(D) (slp)~*
0 % O(D) —— Op(D) 0

where the middle arrow is the projection onto the summand O(D) C V.
Hence, by Lemma 2.3.2, the tangent map to Sec?(E)\ E — Picy(E) at = can be identified
with the composition

H(L™1(2D)[p)/(7) — H'(L™'(2D)|p) 2~ H(O(D)|p) — H'(O).

But this composition is precisely the pairing with s|p € H°(L|sp), so Lt goes to zero.
(ii) This immediately follows from the well known fact that the quadrics passing through
E are Poisson subvarieties of P3. ]

Remark 2.3.4. Lemma 2.3.3 also follows easily from the fact that the symplectic leaves of
the FO brackets correspond to fixing the isomorphism class of an extension, as mentioned
in Remark 2.1.2.
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3. PROOFS OF THE MAIN RESULTS

3.1. Proof of Theorem A. Consider first the case of two brackets. Assume [IIg,, [1g,] =
0. By Proposition 2.1.4, at every point p € E} \ (Ey U Xg,) (where X g, is the set of four
vertices of singular quadrics through E»), one has (Ilg, ), = v; Ave, where v; € T, E;. Note
also that the subspace (v, v2) C T,P? is exactly the image of (Ilg,), : T;P* — T,P?, which
is contained in 7T,Q) where () is the unique quadric passing through p and Es, (see Lemma
2.3.3(ii)). Hence, we get an inclusion T, £, C T,,Q. It follows that the restriction to £ \ Ey
of the map P?\ Fy — P! given by quadrics through E,, has zero tangent map at every
point. Hence, this map is constant, which means that E; is contained in a single quadric
through Fj.

For the case of a general collection (E;), let (L; = L(E;)) denote the corresponding
collection of projective lines in the projective space of all quadrics (where L(E;) is the
pencil of quadrics passing through E;). Then (Ilg,) are compatible if and only if every pair
of lines L; and L; has nontrivial intersection. It is well known that this happens if and
only if either all lines pass through one point, or all are contained in a projective plane.

Conversely, the fact that the FO brackets associated with anticanonical divisors on a
quadric in P are compatible follows from the results of [5] (see [5, Ex. 4.8]). O

3.2. Proof of Theorem B. Consider first the case when we have two normal elliptic
curves Fy, E5 C P" such that [[Ig,,IIg,] = 0. By Proposition 2.1.4, at every point p € Ej,
one has (Ilg,), = v1 A vg, where v; € T,E;. In particular, tk(Ilg, ), < 2, so by Proposition
2.3.1, we have an embedding E; C Sec?(E,), or (in the case n = 5), E; C Py, where
Py C PP is the Veronese surface associated with some square root M of L. In the latter
case we are done, so we can assume that F, C Sec?(E,). Using Lemma 2.3.3(i), for
p € Ey \ Es, we obtain the inclusion T,E; C T,Sy, where Sy C Sec?(Fs) is some scroll,
which is the (closure of the) fiber of the map Sec?(Es) \ Ey — E,. Thus, the restriction of
the latter map to E; is constant, so Fj is contained in some S);, as claimed.

Next, consider any family (E;) such that (Ilg,) are compatible. Consider a pair Fy # FE,
in this family, and let E; be any other elliptic curve in the family. By the first part of the
proof, there exists a rational surface S C P™ (either a scroll or a Veronese surface), such
that £ and Ey are both anticanonical divisors on S. Note that the linear combinations
of Ilg, + Mg, are the FO brackets associated with elliptic curves E) in the pencil of
anticanonical divisors on S, generated by E; and Es. Hence, for each E) the brackets Ilg,
and Il g, are compatible. By the first part of the proof, this implies that each E) is contained
in Sec®(E;). But the surface S is the closure of the union Uy Ej, hence we get the inclusion
S C Sec*(E;). Since S is rational, the composed map S\ E; — Sec®(E;) — Ej is constant.
Therefore, S is contained in the closure S’ of the fiber of the map Sec*(E;) — E; — Ej,
which is one of the scrolls in Sg,. Since S’ is an irreducible surface, we get S = ', as
claimed.

Conversely, the fact that the FO brackets associated with anticanonical divisors on a

scroll or on a Veronese surface in P° are compatible follows from the results of [5] (see [5,
Ex. 4.6, 4.8)). 0
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Proof of Corollary C. First, we recall that by [9, Cor. 1.2], if n is even then for any FO-
bracket I1g on P", there exists a Zariski open neighborhood of 11 in the variety of Poisson
brackets consisting of FO-brackets. Hence, for even n, any linear subspace of Poisson
brackets containing IIg is an FO-subspace. Thus, we only need to prove our assertions
for FO-subspaces. Now part (b) is immediate from Theorem B since the space H°(S,wg")
is 9-dimensional for a scroll and is 10-dimensional for S = P2. Part (a) also follows from
Theorem B, since if all anticanonical elliptic curves lying on S, which is either or scroll or
a Veronese surface, are contained in another irreducible surface S’, then S = S’. O

3.3. Proof of Theorem D. Let P? = PV, where V is a 4-dimensional vector space.
Since normal elliptic curves in P? are intersections of pairs of quadrics, we can view the
construction of the FO Poisson bracket as associating with a pair of generic quadratic forms
Q1, Q2 € S?V*, a Poisson bivector g, —g,—0 € H°(PV, /\2T) defined up to rescaling. More
precisely, the choice of quadrics @)1,Q> and of a volume form on V' gives a nonvanishing
differential on the elliptic curve E = (@1 = 0)N(Q2 = 0), which is used in the construction
of II(Q1, Q2). We claim that in fact there is a linear GL(V')-equivariant map

U N\ (S2V) = det(V) @ HO®YV, \'T)

such that for 1 and @2 defining an elliptic curve, I1(Q1, @2) coincides with U (G A Q)
up to a factor. Indeed, it is well known that the FO brackets associated with the elliptic
curve Q1 = Q2 = 0 are induced by the quadratic Poisson bracket on S(V*) given by

{61762} = d€1 A dgg A dQl A sz/VOF{/,

where volj, is a generator of det(V*) (see e.g., [11, Sec. 2.1]). This gives the required linear
map ¥ which should be viewed as a normalized version of the bivectors Ilg, —g,—o.

Hence, taking the Schouten bracket of two FO brackets corresponds to a linear GL(V')-
invariant map

B : (N\(S2V)%2 - det(V*)2 @ HOPV, \'T) = det(V*) @ S*(V*),

We claim that this map factors through the multiplication map in the exterior algebra of
SQV*,

i (N SV N\ (82,

The proof will be based on the fact that by Theorem A, U@ ((Q; A Q2) ® (Q3AQ4)) =0
whenever the planes (Q,Q2) and (Qs3,Q4) in S*(V*) have nonzero intersection (since
the corresponding FO brackets are compatible). Set W := S?(V*). Namely, we can
interpret the dual map (¥(?)V as a section of the vector bundle det(V*)® S*(V*)®@O(1,1)
on the square of the Grassmannian variety G(2,W)?, which vanishes on the subvariety
Z C G(2,W)? consisting of pairs of planes Py, P, C W with Py N Py # 0. Tt is well known
that the subspace

H(G(2,W)*,Z5(1,1)) c H*(G(2,W)?, O(1,1))
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is precisely the image of the map
4 2
i Ny = (N )2
dual to the multiplication. Hence, (¥?)V belongs to the subspace det(V*) @ S*(V*) ®

im(p"), or equivalently, ¥ factors through p.
Thus, we get ¥ = @' o 14 for some nonzero GL(V)-invariant map

o' N (52V*) = det(V*) @ SH(V*).

But det(V*) ® S4(V*) is an irreducible GL(V)-representation occurring with multiplicity
one in \*(S2V*), Hence, &' = ¢® for some constant c.
Finally, to find the constant ¢, we calculate both sides for

Q1 = 95%7 Q2 = 1179, Q3 = 1173, Q4 = T1714.
We use coordinates y; = x;/x1, i = 2,3,4 on the affine part of P3. The Poisson structure
associated with (@1, Q)2) has the only nonzero bracket between the coordinates

{3, a1 = 2
(where we trivialize det(V*) using vol = 1 A xg A 3 A 24), SO
II; = 20y, A O,.
The Poisson structure associated with (@3, Q4) has

{y2, 3} = 2y3, {Y2,va} = 2ys, {y3, 94} =0,
SO
Iy = 2y3 - Oy, A Oyy + 2ya - Oy, A Oy,
Therefore,
(111, IIs] = 80, A Oyy A Oy,
which corresponds to the quartic 8z}. On the other hand the quartic polynomial associated
with Q1 A Q2 A Q3 N\ Q4 sends ey to 2 - vol. Hence, ¢ = 4. Il
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