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Abstract

We consider Takahashi’s categorical interpretation of the Berglund–Hubsch mirror

symmetry conjecture for invertible polynomials in the case of chain polynomials. Our

strategy is based on a stronger claim that the relevant categories satisfy a recursion of

directed A∞-categories, which may be of independent interest. We give a full proof

of this claim on the B-side. On the A-side we give a detailed sketch of an argument,

which falls short of a full proof because of certain missing foundational results in

Fukaya–Seidel categories, most notably a generation statement.

1 Introduction

Recall that a polynomial w ∈ C[x1, . . . , xn] is called invertible if

w =

n∑

i=1

ci

n∏

j=1

x
ai j

j

for ci ∈ C
∗ and a nondegenerate integer matrix A = (ai j ) and w has an isolated critical

point at the origin. Such a polynomial is weighted homogeneous for a canonical system

of weights, which is uniquely determined by requiring the weight of the action on w

to be det(A). Rescaling the variables one can make all ci = 1.

For an invertible polynomial w defined by the matrix A, the dual invertible poly-

nomial w∨ is defined by the transposed matrix At .
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2332 U. Varolgunes, A. Polishchuk

Invertible polynomials can be classified by an elementary argument [12]. Every

invertible polynomial is the sum of atomic ones in different sets of variables. The

atomic invertible polynomials are of the following three types:

• Fermat type: x
a1

1 ,

• chain type: x
a1

1 x2 + x
a2

2 x3 + · · · + x
an−1

n−1 xn + x
an
n ,

• loop type: x
a1

1 x2 + x
a2

2 x3 + · · · + x
an−1

n−1 xn + x
an
n x1,

where n > 1 and all ai > 1. In fact, we will think of the Fermat polynomials as chain

type polynomials with n = 1.

The homological mirror symmetry conjecture for invertible polynomials states for

an invertible w and its dual w∨ that there is an equivalence of triangulated categories

D(F(w)) � D(MF�(w∨)) (1.1)

between the derived Fukaya–Seidel category of w and the derived category of maxi-

mally graded matrix factorizations of w∨ (see Conjecture 21 from [20], which seems

to have been inspired by Conjecture 7.6 from [21]). To be precise, here we use the

Fukaya–Seidel category as constructed in Seidel’s very first paper in the subject [16].

In the present work we consider this conjecture in the case of chain polynomials.

Note that for the chain polynomial

pa := x
a1

1 x2 + x
a2

2 x3 + · · · + x
an−1

n−1 xn + xan
n

depending on the vector a = (a1, . . . , an) ∈ Z
n
>1, the dual polynomial is pa∨ where

a∨ = (an, . . . , a1). Let us mention that for chain polynomials in one and two variables,

complete proofs of the conjecture exist (see [8] for the n = 1 and a = (2, a2) cases,

and [9] for the general n = 2 case).

Our strategy is based on a recursive computation of the relevant categories which

may be of independent interest. It is known that the categories on both sides admit

full exceptional collections. On the A-side we use the Morsification and distinguished

basis introduced in [22], while on the B-side we use the full exceptional collection con-

structed by Aramaki and Takahashi in [1] (to which we often refer as AT-collection).

That these two full exceptional collections should correspond to each other under a

homological mirror functor was conjectured in [22]. Thus, we can reformulate the con-

jecture as an equivalence of the corresponding directed A∞-categories (with objects

given by the specified full exceptional collections), which we denote as F(pa) and

AT (a∨).

1.1 A recursion for directed A∞-categories and themain claim

We say that two directed A∞-categories are equivalent if there is an A∞ quasi-

isomorphism between them which preserves the ordering of the objects.

Our recursion is based on the following operation for directed A∞-categories. Given

a directed A∞-category C with objects e = (E1, . . . , En) and a number N > n, we

construct a new directed A∞-category C+ with N objects e+, as follows.
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• Extend e to a helix inside T w(C) and take the segment f of length N in this helix

ending with E1.

• Note that f is no longer an exceptional collection in general (it can even have

repeated elements). We define C′ as the directed A∞-category defined by the

directed A∞-subcategory of f (keeping track of only morphisms from left to right

in the order of the helix).

• Inside T w(C′), we consider the right dual exceptional collection e+ and define

C+ to be the corresponding directed A∞-category.

We will loosely say that a directed A∞-category is obtained from C by the recursion

R with number N if it is equivalent (as a directed A∞-category) to C+ described above.

For any directed A∞-category and an m-tuple of integers σ = (σ1, . . . , σm), we

can define the σ -shifted directed A∞-category by changing the grading of morphism

spaces by σi − σ j . If one directed A∞-category is equivalent to a shifted version

of another, we say that these two are equivalent up to shifts. We say that a directed

A∞-category is obtained from C by the recursion R with number N up to shifts if

it is equivalent up to shifts to C+ described above. Note that the application of R to

directed A∞-categories equivalent up to shifts result in directed A∞-categories which

are equivalent up to shifts.

Let us call the following our Main Claim for A- and B-sides. On the A-side we

claim that F(pa1,...,an ) is obtained from F(pa2,...,an ) by the the recursion R up to shifts

with N = μ(a1, . . . , an), the Milnor number of the singularity of pa . On the B-side

we claim that AT (an, . . . , a1) is obtained by the recursion R from AT (an, . . . , a2)

again with N = μ(a1, . . . , an), up to shifts.

In fact, we make this claim starting from n = 0, where the corresponding A∞
categories on both sides are the same: the category C∅ with one object E and

Hom(E, E) = Z concentrated in degree 0. Therefore, our Main Claim for A- and

B-sides lead to a proof of the homological mirror symmetry conjecture for the chain

polynomials.

We prove the Main Claim for B-side fully. We are also able to compute the relevant

shifts. On the A-side we give a detailed sketch of an argument that we believe the

reader will find quite convincing. We do not attempt to compute the shifts. A full

proof on the A-side awaits the development of a couple of foundational results about

Fukaya–Seidel categories of tame Landau–Ginzburg models. We explain these results

in Sect. 2.1, specifically see Remarks 2.1 and 2.4. There is a less major point in which

our argument falls short of a full proof, which is explained in Remark 2.23.

Remark 1.1 The recursion R is bound to be related to the recursion of Seifert matrices

that was used in [22], but we do not know exactly how.

1.2 An equivariant equivalence

In this section, we introduce some notation that will be used later and also discuss

the symmetries of both sides. How the symmetries on both sides correspond to each

other is an important guiding principle for our strategy. Of course symmetries played

an important since inception of Berglund–Hubsch–Henningson mirror symmetry con-

jecture [3, 4].
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We define the group of symmetries of pa to be

�a := {(λ1, . . . , λn, λ) | λ
a1

1 λ2 = · · · = λ
an−1

n−1 λn = λan
n = λ} ⊂ (C∗)n+1. (1.2)

It is easy to see that �a is a graph over {λ
d(a)
1 = λμ(a2,...,an)} ⊂ (C∗)2.

We also define:

�0
a := {(λ1, . . . , λn) | λ

a1

1 λ2 = · · · = λ
an−1

n−1 λn = λan
n } ⊂ (C∗)n+1, (1.3)

which is isomorphic to the subgroup of �a given by λ = 1. In what follows we denote

the generator of �0
a with λ1 = e

2π i
d(a) by φa . By an abuse of notation we use φa also for

the symplectomorphism of C
n given by the action of φa ∈ �0

a .

Now consider �̂0
a the group of graded symplectomorphisms of C

n whose underlying

symplectomorphism is given by the action of an element of �0
a . There is a short exact

sequence of groups:

0→ Z→ �̂0
a → �0

a → 0.

The group �̂0
a naturally acts on D(F(pa)), with the image of 1 in �̂0

a acting as the

shift [1]. We will not use this action except for stating Conjecture 1.3 and the remark

proceeding it, so we omit the details.

Let us also consider the Pontrjagin dual of �a ,

La := Hom(�a, C
∗),

which we identify with the abelian group with the generators x1, . . . , xn, p and the

defining relations

a1x1 + x2 = · · · = an−1xn−1 + xn = an xn = p.

The action of �a on C
n provides C[x1, . . . , xn] with an La-grading, so that xi has

degree x i and pa has degree p (this is the maximal grading for which pa is homoge-

nous). As a result, La canonically acts on D(MF�(pa)) (see [1, Sec. 2]). In fact, it is

more convenient to consider a Z/2 extension of La called L̃a , which has an additional

generator T acting on D(MF�(pa)) by a shift. The group L̃a is generated by two

elements: T and

τ = (−1)n x1

subject to the single relation

d(a)τ = (−1)n2(d(a)− μ(a))T , (1.4)

where μ(a) = μ(a1, . . . , an) = a1 . . . an − a2 . . . an + a3 . . . an − · · · is the Milnor

number, and d(a) = a1 . . . an (see Sect. 3.3.1).
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Finally, we set

L0
a := Hom(�0

a, C
∗),

and note the existence of the short exact sequence

0→ Z→ L̃a → L0
a → 0.

It is well known that �0
a is isomorphic to L0

a∨
, but the following extension appears

to be new.

Proposition 1.2 �̂0
a is isomorphic to L̃a∨ as an extension of �0

a = L0
a∨

by Z. Under

this isomorphism, the element τ ∈ L̃a∨ corresponds to some explicit graded lift φ̃a of

φa .

Proof Let us take the graded lift φ̃a of φa that comes from it being the time 1 map of

the flow

(x1, . . . , xn)→ (e
2π ti
d(a) x1, . . . , e

(−1)n−1 2π ti
an xn).

We need to check that the generators φ̃a and 1 ∈ Z of �̂0
a satisfy the same relation

as τ and T in L̃a∨ , i.e. Eq. (1.4). We know that φ̃
d(a)
a is a graded lift of the identity

symplectomorphism. We need to compute how it differs from the trivial graded lift.

For this we choose the holomorphic volume form dx1 ∧ . . . ∧ dxn and use the fact

that the origin is fixed. Thus, we need to find the winding number of the path

e
4π ti(1−a1+···+(−1)na1 ...an−1)

d(a)

as t goes from 0 to d(a). This number is (−1)n2(d(a) − μ(a∨)), which gives the

required relation. ��

Conjecture 1.3 There is an HMS equivalence

D(F(pa)) � D(MFLa∨
(pa∨)) (1.5)

equivariant with respect to the actions of �̂0
a = L̃a∨ .

Remark 1.4 We already know that the generator T ∈ L̃a∨ acts on both sides as the

shift functor. It is also known (Proposition 3.1 of [1] and Lemma 3.6 below) that the

second generator τ ∈ L̃a∨ acts on the B-side by the autoequivalence satisfying

τμ(a) = T N (a)S−1, (1.6)

where S is the Serre functor and N (a) is an explicit integer. If the expected relationship

between monodromy and Serre functor on the A-side is true (see e.g. [11] for a survey),

then it can be shown that the action of φ̃a on the A-side satisfies the same property as
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well. Therefore, for the subgroup of L̃a∨ generated by T and τμ(a), the equivariance

follows from this. The relation (1.4) shows that this subgroup is the entire L̃a∨ in

the case when μ(a) and d(a) are coprime, so in this case the equivariant conjecture

follows from the non-equivariant one. The equivariant conjecture does not seem to

follow from the non-equivariant one if μ(a) and d(a) are not coprime.

We will use the perturbation x1 + pa whose distinguishing property is that the

symmetry by �0
a persists to it in a way that we can explicitly describe. First, note that

x1 + pa is equivariant with respect to the order μ(a) cyclic subgroup of �a given

by λ1 = λ. Let us denote the generator of this group with λ = e
2π i
μ(a) by ψa . Let

us also define a symplectomorphism ρa,ε of C
n by lifting (using parallel transport)

the following diffeomorphism ϕε of the base of εx1 + pa for all |ε| ≤ 1: it does

nothing inside a disk which contains all the critical points; then starts rotating in an

annulus in clockwise direction; the amount of rotation increases until it reaches 2π
μ(n)

;

and everything outside the annulus gets rotated by 2π
μ(n)

clockwise (see the right side

of Fig. 1). Recall that the group �0
a is generated by the symplectomorphism φa . The

following proposition gives a symmetry of x1 + pa , isotopic to φa .

Proposition 1.5 ρa,ε ◦ ψa is isotopic to φa through symplectomorphisms.

Proof It is clear that ρa,ε ◦ ψa is isotopic to ρa,0 ◦ ψa through symplectomorphisms

by considering a path in the complex plane from ε to 0.

Now we note that the rotation of the base of pa by θ lifts to the symplectomorphism

(z1, . . . , zn) �→ (eiθw1 z1, . . . , eiθwn zn),

where wk =
μ(ak+1,...,an)

ak ...an
. Hence, we see that ρa,0 is isotopic through symplectomor-

phisms to

(z1, . . . , zn) �→

(
e
−

2π iw1
μ(a) z1, . . . , e

− 2π iwn
μ(a) zn

)
.

Recalling the definitions of ψa and φa , we see that the assertion follows from

1

μ(a)
−

μ(a2, . . . , ak)

d(a)μ(a)
=

1

d(a)
.

��

1.3 More details on the A-side

The following choice of perturbation and distinguished basis of vanishing paths for

pa was introduced and analyzed at the Grothendieck group level in [22]. We consider

the Morsification

x1 + pa(x1, . . . , xn).
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Fig. 1 On the left is the diffeomorphism of the base that gives the monodromy and on the right the one that

gives ρa,ε

We consider the diffeomorphism ϕ := ϕ1 ◦ rot2π/μ(a), where ϕ1 was defined in the

previous section and rot2π/μ(a) is the rotation by 2π
μ(a)

counterclockwise. Note that ϕ

preserves the set of critical values and has a symplectomorphism lift 
 := ρa,1 ◦ψa .

Note also that ϕ acts as identity outside the outer boundary of the annulus on Fig. 1.

We choose a critical value, a positive real regular value that is outside of the support

of ϕ and a vanishing path γ between them which lies outside of the circle containing

the critical values. We choose

γ, ϕ(γ ), . . . , ϕμ(a)−1(γ )

as our distinguished basis of vanishing paths. We also grade the corresponding

Lefschetz thimbles in a way that is compatible with a fixed graded lift of 
 (see

Propositions 1.2 and 1.5.)

Remark 1.6 We mentioned this convenient grading choice but we will not actually be

using it. This is possible only because in this paper, on the A-side we are attempting

to prove the Main Claim up to shifts. The grading convention that we just spelled out

will without doubt play a role if one tries to upgrade the argument to a proof of the

Main Claim taking into account the shifts.

This gives rise to a directed Fukaya–Seidel A∞-category Aa (which is a directed

A∞-category) in the sense of [16]. We had temporarily called this category F(pa)

above, but we will not do that anymore.

Remark 1.7 We will make a definite choice of γ in Sect. 2.2 but note that because of

the symmetry by the graded lift of 
 different choices give rise to equivalent directed

A∞-categories.

For a = ∅ the empty tuple, we set A∅ := C∅. This corresponds to the Fukaya–

Seidel category obtained from the linear map p∅ : C
0 → C and a vanishing path.
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2338 U. Varolgunes, A. Polishchuk

For a = (a1, . . . , an) let us set

−a := (a2, . . . , an), a− := (a1, . . . , an−1).

Conjecture 1.8 Aa can be obtained from A−a by the recursion R.

As mentioned above, we give a detailed sketch of a computation strongly suggesting

that this statement is true. We fall short of a full proof mainly because of some miss-

ing foundations in the theory of Fukaya–Seidel categories of tame Landau–Ginzburg

models.

Remark 1.9 Note that even though this statement is purely in terms of directed Fukaya–

Seidel categories in their earliest incarnation from [16], our suggested proof crucially

relies on the existence of a category which admits all thimbles as objects as is the

case in the modern reincarnations. The main property whose proof is missing is the

generation statement.

It is instructive to give a proof of this conjecture for tuples of length 1. In this case

our Morsification is

x + xa1 : C→ C.

Let us denote by A the directed A∞-category obtained from the exceptional collection

in the category of representations of the graded quiver Qa1−1

1 2 · · · a1 − 1,
c c c

where |c| = 1 and c2 = 0, given by the simple modules. It is straightforward to show

directly that Aa1 := A(a1) : is isomorphic to A but we will derive this from our general

strategy.

First, we will show that A arises from C∅ via the recursion R and then we will see

how this is realized geometrically on the A-side.

The helix inside T w(C∅) is simply the only object E of C∅ repeated over and over.

Therefore, the directed A∞-category we obtain by keeping a1 − 1 adjacent members

of this list is the directed category with objects P1, . . . , Pa1−1, where for every i ≤ j ,

we have Hom(Pi , Pj ) = Z[0] and all compositions are induced by multiplication

in Z. This can be identified with the exceptional collection given by the projective

modules over the quiver Qa1−1. Passing to right dual dual collection we obtain the

collection given by the simple objects, so we get A as the result of the recursion.

Geometrically, we are looking at the Lefschetz fibration x + xa1 : C → C and

a distinguished collection as described above. Corresponding to “taking right dual

exceptional collection” step, we compute the directed Fukaya–Seidel category asso-

ciated to the left dual basis of vanishing paths. This can be computed inside the fiber

over 0 by appropriately moving (see Fig. 5 for the same move with slightly different

conventions) the base point—with the radial vanishing paths as shown in Fig. 2. We

consider the map {x + xa1 = 0} → C given by projecting to the x coordinate (i.e.,
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Fig. 2 On the left we see the critical values of x + xa1 along with the choice of vanishing paths that we

use in the computation—they are obtained by dragging the reference fiber to the origin appropriately. The

middle picture shows the matching path corresponding to the movement of the fiber shown on the left. The

right picture shows all the matching paths and the behavior of outer critical values as r → 0

the natural embedding). The vanishing cycles of the radial paths computed using the

Lefschetz bifibration method are given by the radial matching paths, see Fig. 2. All

the intersections (and structure maps) for the matching cycles are localized in the

central fiber. In fact considering the family x + r xa1 , where r goes from 1 to 0 the

directed categories with the continuously deformed matching paths do not change.

When r = 0 what we see is precisely the map p∅ : C
0 → C and radial paths going

to infinity. The directed intersection numbers give the directed subcategory associated

to the repetition of E inside T w(C∅)1 that arose from the truncation of the helix in

the previous paragraph.

Remark 1.10 The strategy for n > 1 is very similar but it involves an extra step. We

would like to refer the reader to Remark 3.8 (and also Remark 3.7 for some related

notation) of [22] for the immediate difficulty that arises when one applies the same

strategy for n > 1. What is achieved in the present paper relies on an additional

perturbation (adding a small multiple of x2) to the Morsification x1 + pa before we

project the fiber above the origin to C using the x1 coordinate (this projection is called

ga in Remark 3.8 of [22] ). Note that we continue to use the fiber above 0 and the

radial paths as vanishing paths after the second perturbation. We also still analyze the

fiber above 0 by projecting it to the x1 coordinate. The second perturbation breaks

the Z/μ(a)Z symmetry and splits the fat singularity of the x1 projection into μ(−a)

non-degenerate singularities but it allows us to capture the information that was hidden

in the very degenerate fiber above 0 of the x1-projection.

1 Here we are omitting an explanation of how C∅ can be considered as a directed Fukaya–Seidel A∞

category of p∅ : C
0 → C. This can be done using [19]’s approach but it is confusing and not needed. To

be able to interpret the distinct radial paths as objects of a geometric category the most natural option is to

use a formalism similar to the one presented in Sect. 2.1.
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1.4 More details on the B-side

We consider the dg-category MF�a (pa) of �a-equivariant (or equivalently, La-graded)

matrix factorizations of pa . For each La-homogeneous ideal I of the polynomial

algebra S, there is a well-defined object of this category, which we denote by stab(I):

it is the stabilization of the module S/I, coming from the relation between matrix

factorizations and the singularity category (see e.g., [15]).

Following Aramaki–Takahashi [1] we consider the following graded matrix factor-

izations of pa :

E :=

{
stab(x2, x4, . . . , xn), n even

stab(x1, x3, . . . , xn), n odd

The collection

ea := (E, τ (E), . . . , τμ∨(a)−1(E))

is a full exceptional collection in MF�a (pa), where μ∨(a) := μ(a∨) = μ(an, . . . , a1).

We refer to it as the AT-collection and denote the corresponding directed A∞-category

by AT (a).

Theorem 1.11 (Theorem 3.19) AT (a) can be obtained from AT (a−) by the recursion

R up to shifts.

The first ingredient in the proof is a construction of a fully faithful functor

MF�a−(pa−)→ MF�a (pa). (1.7)

As was observed in [7], there is a natural such functor arising from the VGIT machinery

of Ballard–Favero–Katzarkov [2].

The next step, based on explicit computations with matrix factorizations, is the

identification of the image under the above functor of the exceptional collection ea−

with the left dual of the initial segment of the exceptional collection ea . This is done

by a standard computation of morphisms between Koszul matrix factorizations.

The last step is the identification of the directed A∞-algebra of ea with that of the

part of the helix in the subcategory generated by the initial segment, which we identified

with AT (a−). This is proved using some special features of the AT-collection. Namely,

the key property is that for this collection we have Hom∗(E, τ i E) = 0 for i > μ∨(a−)

while the morphisms for the subcollection (E, τ E, . . . , τμ∨(a−)E) form a Frobenius

algebra (note that the length of this subcollection is one more than the initial segment

that corresponds to AT (a−)). Using this, plus a little bit more, we compute the image

of the left dual collection to the AT-collection under the left adjoint functor to the

inclusion (1.7) and show that the corresponding directed Hom-spaces are preserved.

Strangely, our argument for this uses very little information about the functor (1.7),

but depends crucially on the properties of the Ext-algebra of the Aramaki–Takahashi

exceptional collection.
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Structure of the paper

Section 2 is entirely about the A-side and contains our detailed strategy for the proof

of Conjecture 1.8. In Sect. 2.1, we give an overview of a Fukaya–Seidel category of

thimbles. This section is rather conjectural and brief. In Sect. 2.2, we give an outline

of our strategy and reduce the Main Claim to a concrete statement in Theorem 2.10.

Section 2.3 is an elementary section containing results about roots of a certain family of

polynomials. These results then used to compute certain vanishing cycles as matching

cycles in Sect. 2.4, which is the heart of the argument in the A-side.

Section 3 is entirely about the B-side and contains our proof of Theorem 3.19.

After recalling some basic tools from the theory of exceptional collections, we recall

in Sect. 3.3 the definition and some properties of the Aramaki–Takahashi exceptional

collection in the category of graded matrix factorizations of chain polynomials. In

Sect. 3.4 we outline the construction of the functor (1.7) and give a characterization

of the image of the AT-collection under it. In Sect. 3.5, we find a mutation functor that

takes the image of the collection AT (a−) under (1.7) to the dual collection to the

initial segment of AT (a). Finally, in Sect. 3.6, we combine the previous ingredients

with some additional purely formal manipulations to prove Theorem 3.19.

In Appendix A, we provide the simple Mathematica code used in discovering the

statements of Sect. 2.3 and Proposition 2.20.

2 Computation on the A-side

Let us use the standard Fubini-Study Kahler structure on C
n along with the holomor-

phic volume form � = dz1 ∧ . . . ∧ dzn in what follows.

2.1 A Fukaya–Seidel category of thimbles

Throughout this section let f : Cn → C be a tame Lefschetz (i.e. Morse) LG model

in the sense of [6]. Using Proposition 2.5 of [6], we see that for any a ∈ Z
n
>1 and

α1, . . . , αn ∈ C,

pa(x1, . . . , xn)+ α1x1 + · · · + αn xn : C
n → C

is a tame LG model.

We will assume that the construction of the Fukaya–Seidel category introduced

in an unpublished manuscript of Abouzaid–Seidel (see [18]: the A∞-category A as

defined in equation (5.58) as a localization of the A∞-category Aord that is defined

in the first line of page 40) can be undertaken for f . We will call the resulting A∞-

category F( f ). Below we discuss some properties of this A∞-category referring to

[18] for details.

Let us call path p in the base of f a horizontal at infinity (HAI) vanishing path if

it can be parametrized by a smooth proper embedding γ : [0,∞)→ C satisfying the

following properties
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• γ (t) is a critical value if and only if t = 0.

• For some t0 > 0 and ord(p) ∈ R, Re(γ (t)) > 0 and I m(γ (t)) = ord(p) for all

t ≥ t0.

Let us call ord(p) the ordinal of p.

To each HAI vanishing path, we can associate a (Lefschetz) thimble, which is an

embedded non-compact Lagrangian submanifold of C
n . By equipping these thimbles

with gradings, we can view them as Lagrangian branes, which we call graded thimbles.

Let L1, . . . , L N be an ordered collection of graded Lagrangians in C
n each of which

is either a closed exact Lagrangian sphere or a graded thimble of a HAI vanishing path.

We also make the crucial assumption that the no two of the HAI vanishing paths have

the same ordinal. Then, we can define a directed A∞-category Fuk→(L1, . . . , L N )

with the ordered list of objects corresponding to L1, . . . , L N using

• consistent choices of compactly supported Hamiltonian perturbations to make

Lagrangians transverse (directedness really helps here);

• almost complex structures which agree with the standard complex structure of C
n

outside of a compact subset

to define the structure maps. Fuk→(L1, . . . , L N ) is well defined up to A∞-quasi-

isomorphism respecting the ordering of the objects. This is standard (see [19] for

example) except obtaining the necessary C0-estimates in our particular set-up.

Let us give more details on one of the few possible approaches on obtaining the C0

bounds. A standard application of the open mapping principle shows that all of the

curves that are solutions of the various perturbed pseudo-holomorphic curve equations

that we need to consider in the procedure project into a compact subset K ⊂ C of the

base of f . To deal with escaping to infinity within f −1(K ) we can use monotonicity

techniques since L i ∩ f −1(K ) is compact for all i = 1, . . . , N and the standard flat

metric on C
n is geometrically bounded.

Let us now recall very briefly what the objects of F( f ) are in the Abouzaid–

Seidel approach. For every homotopy class of HAI vanishing paths let us choose a

representative path p0. Next, for each graded thimble T (p0) over p0, we choose an

infinite sequence T (p1), T (p2), . . . of graded thimbles, such that the underlying HAI

vanishing paths pi are homotopic to p0 and the gradings are transported from T (p0),

and such that the sequence of real numbers ord(pi ) is strictly increasing and tends

to infinity. Objects of F( f ) are all the graded thimbles obtained as a result of this

procedure (we assume that our choices of paths are sufficiently generic). Note that the

objects T (pi ) are all quasi-isomorphic to T (p0) as objects of F( f ).

Remark 2.1 To achieve this last crucial point, Abouzaid–Seidel procedure involves

localizing an auxillary A∞-category at certain continuation elements. Obtaining the

C0 estimates that are necessary to define these elements and prove that they satisfy the

desired properties is non-trivial. The relevant perturbed pseudo-holomorphic curve

equations involve moving boundary conditions (thimbles moving at infinity), which

makes it difficult to use the open mapping principle. Therefore one needs to rely

entirely on monotonicity techniques. Even though we fully believe that this can be

done, we do not explain how to do it. This is one of the remaining steps to turn our

strategy into a full proof.
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Fig. 3 On the left we see HAI vanishing paths of objects ordered as written. Their directed subcategory can

be computed using the HAI vanishing paths on the right

Given HAI vanishing paths p1, . . . , pN and graded thimbles T1, . . . TN above them,

which are assumed to be objects of F( f ), one has a concrete way of computing the

directed A∞-subcategory of the ordered collection T1, . . . TN in F( f ). Namely, we

find graded thimbles T̃1, . . . , T̃N (not necessarily objects of the category) such that

HAI vanishing paths p̃1, . . . , p̃N are in the same homotopy class with p1, . . . , pN ,

respectively, and the brane structure on T̃i is transported from Ti , with the following

property

• the ordinals of p̃1, . . . , p̃N are strictly decreasing.

Then the directed A∞-category Fuk→(T̃1, . . . , T̃N ) is quasi-isomorphic to the

directed A∞-subcategory we are interested in, where T̃i is sent to Ti . We call this

the Computability property of F . See Fig. 3 for a depiction of the process.

Remark 2.2 For the A∞-category constructed in Seidel’s book (Section 18 of [17])

such a computation involves the double covering trick and computing the invariant

part of a certain A∞ algebra of closed Lagrangians under a Z/2 action. This makes it

hard to use in our argument.

There is a more refined version of the Computability property if p1, . . . , pN are

pairwise disjoint paths with ord(p1) < · · · < ord(pn). We choose a sufficiently large

positive integer A and bend the paths to p̃1, . . . , p̃N near Re = ∞ such that they all

pass through (A, 0), but do not intersect otherwise. Then, we obtain an ordered col-

lection of graded Lagrangian spheres (vanishing cycles) V1, . . . , VN inside f −1(A).

Now, we can define a directed Fukaya–Seidel category F S→(V1, . . . , VN ) as in [16].

Combining the results of [19] with the Computability property, we can show that

F S→(V1, . . . , VN ) is quasi-isomorphic to the subcategory of T1, . . . TN with Vi map-

ping to Ti . Let us call this the Computability in the fiber property.

The usefulness of F( f ) is entirely due to the following generation property. We

first state it and then briefly explain the terms used in it.

Conjecture 2.3 (Generation by distinguished collections) Yoneda images of a sequence

of objects of F( f ) which correspond to a distinguished collection of graded thimbles

generate T w(F( f )).
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Remark 2.4 It is widely expected that this property will follow from a geometric trans-

lation to the Weinstein sector framework, but this has not been done in the literature

yet. This is the main missing piece from our strategy being a full proof.

A collection of pairwise collection HAI vanishing paths, one for each critical value,

is called a distinguished collection of HAI vanishing paths. Choosing an arbitrary brane

structure on each of the thimbles gives what we called above a distinguished collection

of graded thimbles. Note that such a collection T1, . . . , Tn can be naturally ordered by

requiring that the corresponding paths p1, . . . , pn satisfy ord(p1) < · · · < ord(pn).

With this order (T1, . . . , Tn) is an exceptional collection in T w(F( f )), and the above

conjecture states that this exceptional collection is full.

The following weak version of the old conjecture “monodromy gives a Serre func-

tor” is crucial in our argument. Its proof is quite simple given the Generation by

distinguished collections property.

Proposition 2.5 (Geometric helix equals algebraic helix) Consider a collection of

homotopy classes of HAI vanishing paths {γi }i∈Z such that

• γ1, . . . γn can be represented by a distinguished collection of HAI vanishing paths

• For every i ∈ Z, a representative of γi−n is given by applying the monodromy

diffeomorphism (see the left side of Fig.1) to a representative of γi .

Assume that {Ti }i∈Z are some corresponding objects of F( f ). The brane structures

can be chosen such that the Yoneda images of this collection forms a helix inside

T w(F( f )).

Proof sketch From Fig. 3 (which gives an example with n = 3) we see that

Hom(Ti , T0) = 0 for i = 1, . . . , n − 1, and Hom(Tn, T0) is 1-dimensional. This

implies that T0 with an appropriate brane structure is the left mutation of Tn through

〈T1, . . . , Tn−1〉. Similarly, Hom(Tn+1, Ti ) = 0 for i = 2, . . . , n, and Hom(Tn+1, T1)

is 1-dimensional. Hence, Tn+1 with an appropriate brane structure is the right mutation

of T1 through 〈T2, . . . , Tn〉. Since the helix is obtained by iterating these two kinds of

mutations, our assertion follows. ��

We will also use the following geometric realization of dual exceptional collections

(see Sect. 3.1 for the definitions concerning exceptional collections). The proof is again

straightforward assuming generation by distinguished collections.

Given a homotopy class of a distinguished collection of HAI vanishing paths

[{γi }
n
i=0], we can talk about the left and right dual homotopy class of a distinguished

collection of HAI vanishing paths. The left (resp. right) dual admits a representative

distinguished collection {∨γi }
0
i=−n (resp. {γ ∨i }

2n
i=n) all of whose ordinals are smaller

(resp. larger) than the ordinals of γi , i = 0, . . . , n and γi and ∨γ j (resp.γ ∨k ) can

only intersect at a critical value for all i = 0, . . . , n and j = −n, . . . , 0 (resp.

k = n, . . . , 2n).

Proposition 2.6 (Geometric dual equals algebraic dual) Consider a homotopy class

of a distinguished collection of HAI vanishing paths [{γi }
n
i=0] and let [{∨γi }

0
i=−n] be

the left dual. Assume that {Ti }
n
i=0 and {Ti }

0
i=−n are some corresponding objects of
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F( f ). Up to shifts, the Yoneda images of the {Ti }
0
i=−n give the left dual exceptional

collection to the one of {Ti }
n
i=0 inside T w(F( f )). The analogous statement holds for

the right duals.

2.2 Outline of the recursion on the A-side

For an n-tuple of positive integers a = (a1, .., an) ∈ Z
n
>1, n ≥ 1, we define the

polynomial:

pa(z1, . . . , zn) := −z
a1

1 z2 + z
a2

2 z3 − · · · + (−1)nzan
n . (2.1)

Note that we have changed the signs of some of terms from the original definition

of pa given in the introduction. This choice makes the critical point computations

much cleaner. It is straightforward to relate our statements here to the statements in

the introduction by simple diagonal changes of variables.

Let us also define ga : C
n → C as the Lefschetz fibration given by

z �→ z1 + pa(z).

Recall that we defined

μ(a) = μ(a1, . . . , an) = a1 . . . an − a2 . . . an + a3 . . . an − · · ·

in the introduction. It is well known that μ(a) is the Milnor number of the singularity

of pa . For a discussion of the convenient numerics of μ(a) see Sect. 3.3.1. The map ga

has μ(a) critical points, and the corresponding critical values are distinct and placed

equiangularly on a circle centered at the origin. One of the critical values is on the

positive real axis. For proofs of these statements see Appendix A in [22]. Furthermore,

the fact that the number of critical points of εz1 + pa(z) for all ε ∈ C
∗ is equal to the

Milnor number μ(a) implies that the critical points of ga are nondegenerate.

Let us fix a large positive real number A and introduce some vanishing paths in the

base of ga whose one end is at A and none of which intersect the positive real axis to

the right of A. Figure 4 should help the reader follow along. We will call some of our

vanishing paths standard and others dual. We will not be careful about distinguishing

between vanishing paths and their homotopy classes.

We first describe the standard vanishing paths {γi }
∞
i=−∞. These are indexed by

integers and the one corresponding to 0, i.e. γ0, is the straight path from the positive

real critical value to A. Recall that we defined the diffeomorphism ϕ : C→ C as the

composition ϕ := ϕ1 ◦ rot2π/μ(a) in Sect. 1.3. Note that ϕ preserves the set of critical

values and has a symplectomorphism lift 
 := ρa,1 ◦ ψa . For all i ∈ Z, we define

γi := ϕi (γ0).
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Fig. 4 Vanishing paths in the

base of ga

Second, we introduce the dual vanishing paths {∨γi }
0
i=−μ(a)+1 as the left dual

distinguished collection of vanishing paths to the distinguished collection {γi }
μ(a)−1
i=0 .

These are the dashed paths from Fig. 4.

In what follows we will not be keeping track of the gradings of Lagrangian branes,

and only talk about the underlying Lagrangian submanifolds, see Remark 1.6. This is

of course an abuse, but we believe it will not cause confusion. Since, we will not be

able to keep track of the gradings in our arguments, adding grading data would only

result in cluttering up the notation.

Let (Aa; E0, . . . , Eμ(a)−1) be the directed Fukaya–Seidel A∞ category with

the exceptional collection defined using the vanishing Lagrangian spheres of

γ0, . . . , γμ(a)−1 as in [16].

Remark 2.7 Note that because of the symmetry by 
 the directed A∞-categories

defined using γk, . . . , γk+μ(a)−1 are quasi-isomorphic for all k ∈ Z where the ordering

of the objects is preserved.

Let us call Da the directed Fukaya–Seidel A∞ category of the Lagrangian vanishing

spheres of ∨γ−μ(a)+1, . . . ,
∨ γ0. The following proposition can be proven using the

results in [17]. Note that it can also be deduced formally from the properties of F(ga)

discussed in Sect. 2.1 (Generation by a distinguished collection, Computability in the

fiber and Geometric dual equals algebraic dual).

Proposition 2.8 Da is quasi-isomorphic to the A∞ subcategory of T w(Aa) corre-

sponding to the exceptional collection left dual to the Yoneda image of the defining

exceptional collection of Aa .

Finally, let N be a positive integer and let us consider an ordered collection of HAI

vanishing paths in the base of ga defined as follows. Let γ̃ be the HAI vanishing path

starting at the positive real critical value and going along the real axis. Consider the

collection

ϕ−N+1(γ̃ ), . . . , ϕ−1(γ̃ ), γ̃
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and isotope them slightly (keeping them HAI vanishing paths) to

γ̃−N+1, . . . , γ̃−1, γ̃0 (2.2)

so that the ordinals of γ̃−N+1, . . . , γ̃−1, γ̃0 are strictly decreasing. As we dis-

cussed in Sect. 2.1, we can define a directed A∞-category of the graded thimbles

of γ̃−N+1, . . . , γ̃1, γ̃0. Let us call this category Ha(N ).

The following Proposition follows from the Computability, Computability in the

fiber, Generation by a distinguished collection and Geometric helix equals algebraic

helix properties of F(ga) as discussed in Sect. 2.1. We are not aware of a proof that

only relies on results in existing literature.

Proposition 2.9 Ha(N ) is quasi-isomorphic to the directed A∞ subcategory of

T w(Aa) corresponding to the length N truncation of the helix generated by (Yoneda

image of) the exceptional collection E0, . . . , Eμ(a)−1 with the last element of the

truncated helix being E0.

Proof Let us fix arbitrary objects {Ti }i∈Z of F(ga) corresponding to the collection

{[ϕi (γ̃ )]}i∈Z of homotopy classes of HAI vanishing paths. By the generation and

computability in the fiber properties, we have a quasi-equivalence of triangulated

A∞-categories

T w(Aa)→ T w(F(ga))

sending E0, . . . , Eμ(a)−1 to T0, . . . , Tμ(a)−1.

It suffices to prove that Ha(N ) is quasi-isomorphic to the directed A∞ subcategory

of T w(F(ga)) corresponding to the truncated helix of length N of the Yoneda images

of T0, T1, . . . , Tμ(a)−1 with the last element of the truncated helix being T0.

We now use the Geometric helix equals algebraic helix property for the collection

{[ϕi (γ̃ )]}i∈Z of homotopy classes of HAI vanishing paths and objects {Ti }i∈Z. Note

that ϕ−μ(a) is a monodromy diffeomorphism. As a result, the (Yoneda images of)

(Ti )i∈Z is a helix generated by T0, . . . , Tμ(a)−1.

We should take the truncation (T−N+1, . . . , T0) of the helix (Ti ) and match it with

the category Ha(N ). For this we observe that the Computability property gives a quasi-

isomorphism of the directed category with the objects T−N+1, . . . , T1, T0 and Ha(N )

(since by construction the ordinals of γ̃−N+1, . . . , γ̃1, γ̃0 are strictly decreasing). ��

We apply Proposition 2.9 with −a instead of a and with N = μ(a). This will

give a geometric realization of the first part of the recursion, namely of the category

generated by the truncated helix of length μ(a) in T w(A−a). Since the left dual to

the natural collection in T w(Aa) is realized geometrically in Proposition 2.8, we will

know that the category Aa is obtained from A−a by recursion R, once we prove the

following statement.

Theorem 2.10 There is an equivalence up to shifts

Da → H−a(μ(a))),
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of directed A∞-categories.

We will prove Theorem 2.10 in Sect. 2.4.

2.3 Roots of a family of polynomials

The results of this section will be used in computing certain matching paths in the next

section.

Let t, s be complex numbers and c a positive real number. We consider the following

equation in P
1:

yμxμ− = c(sya + t xa)d− , (2.3)

where (y : x) are the homogeneous coordinates, and μ,μ−, a, d− are positive integers

satisfying

μ+ μ− = d := ad−.

We will be interested in how the roots of this equation vary when we vary c, t, s in a

certain region.

Fix c. Note that for s = t = 0, we have one root with multiplicity μ− at the point

x = 0 (called 0) and another one with multiplicity μ at y = 0 (called ∞). Once

we make s non-zero, the root at 0 splits into μ− simple roots. We are going to keep

|s| sufficiently small (with some bound depending on c, μ, μ−, a, d−) and positive

but arbitrary otherwise. Then, we will show that turning on the t parameter does not

change the locations of the μ− simple roots near 0 “too much" unless |t | becomes

larger than a number depending only on c, most importantly independently of s. In

particular, it is possible for |t | to be much larger than |s| in this statement. We will

specify what “too much" means below—indeed we have something specific in mind.

As a first approximation to why something like this might true let us note that if we

keep s = 0, then no matter how large |t | is, the multiplicity μ− root at 0 never moves.

If the reader has access to Mathematica, we provided a simple code in the Appendix

to experiment with the roots of this family of polynomials.

Let A1 := A x
y

and A2 := A y
x

be the standard affine charts in P
1. Let us equip them

with the standard Kahler structure for their chosen affine coordinate.

Let us set z = x
y
. The equation in A1 becomes

zμ− = c(s + t za)d− . (2.4)

Below we will analyze the roots of this equation but all results hold equally well in

the other chart (with the roles of t and s swapped). We also assume that c = 1, noting

that the general case can be recovered by rewriting t and s as c1/d− t and c1/d−s.

For γ ∈ [0, 2π), let Rγ denote the ray in the complex plane starting from the origin

that makes a positive angle of γ with the positive real axis. For any ψ ∈ (0, 2π), let

Nψ (Rγ ) be the conical region in the plane consisting of points (seen as vectors starting

at the origin) that make less than
ψ
2

angle with Rγ (in positive or negative directions).
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For every ε > 0, n positive integer, φ > 0 such that 2nφ < 2π , and γ ∈ [0, 2π)

we define

Dart(ε, n, φ, γ ) := {(z ∈ C | |z| < ε and zn ∈ N2nφ(Rγ )}.

Proposition 2.11 Let us divide the solutions of the Eq. (2.4) with c = 1 into two

groups: the ones that lie inside the closed disk of radius 1
2

in A1 (small roots) and the

others (large roots). There exists a positive constant C = C(a, μ−, d−) depending

only on a, μ−, d− with the following properties.

(1) For all |t | ≤ 1 and 0 < |s| < C, there are μ− many small roots.

(2) For |t | ≤ 1 and 0 < |s| < C, there exist 0 < ε(s) = ε(|s|) < 1
2

, 0 < φ(s) < π
μ−

,

and γ (s) ∈ [0, 2π) with the following properties:

• There is exactly one small root inside each connected component of

Dart(ε(s), μ−, φ(s), γ (s)) ⊂ A1.

• As s → 0, ε(s) and φ(s) converge to 0.

• γ (s) is the argument of sd− valued in [0, 2π).

• All small roots are simple.

Proof We follow the strategy of the proof of Theorem 4.1 in Melman’s beautiful paper

[14]. In particular, his Lemma 2.7 will play a very crucial role.

We rewrite Eq. (2.4) with c = 1 as

(zμ− − sd−)− (d−sd−−1t za + · · · + td− zd) = 0. (2.5)

Let us prove (1). We will use Rouche’s theorem (e.g. Theorem 2.1 in [14]). For

|z| = 1/2, |t | ≤ 1 and |s| ≤ 1, we have the following two inequalities:

|zμ− − sd− | ≥ (1/2)μ− − |s|d−

|d−sd−−1t za + · · · + td− zd | ≤ |d−sd−−1t za | + · · · + |td− zd | < |s|C + (1/2)d ,

where C is a constant depending on a and d−. Hence, using μ− < d = ad−, for

sufficiently small |s|, we have

|zμ− − sd− | > |d−sd−−1t za + · · · + td−zd |. (2.6)

Therefore, the number of solutions of the Eq. (2.5) inside the disk of radius 1/2

centered at the origin is the same as the number of solutions of zμ− = sd− in the same

region, as desired.

Now let us proceed to prove (2). This is again an application of Rouche’s theorem.

Let |t | ≤ 1, and |s| < 1 be sufficiently small as required by the previous step.

Moreover, |s| should also satisfy a possibly stronger bound that we will explain now.
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Using again that μ− < d, we can choose δ > 0 such that δ < d/μ− − 1. Now we

require that |s| satisfies the inequality

|s|d−+δ > d−|s|
d−−1(|2s|

d−
μ− )a + · · · + d−|s|(|2s|

d−
μ− )d−a + (|2s|

d−
μ− )d .

The right hand side of this inequality is obtained by inputting 1 for each t , |s| for s

and |2s|
d−
μ− for z in the expression d−sd−−1t za + · · · + td−zd as in Eq. (2.5). To see

that for sufficiently small |s| this inequality is satisfied note that the power of |s| in

each term of the RHS is strictly bigger than d− + δ:

d− − k +
d−

μ−
ka ≥ d− +

d−a

μ−
− 1 > d− + δ,

for k = 1, . . . , d−.

Let us define

ε := |s|d−+δ,

and note that ε < |s|d− . Note that if |zμ− − sd− | ≤ ε, then |z|μ− < 2|sd− |, and

therefore

|z| < |2s|
d−
μ− .

This time we will apply Rouche’s theorem in the connected components of the

domain in z described by the inequality

|zμ− − sd− | ≤ ε.

For s �= 0 this domain has μ− simply connected components all of which are contained

in the disk of radius 1/2 centered at the origin (assuming s is small).

We now again consider Eq. (2.5). We want to prove that the Inequality (2.6) holds

on the set |zμ− − sd− | = ε. This follows immediately since

ε > d−|s|
d−−1(|2s|

d−
μ− )a + · · · + d−|s|(|2s|

d−
μ− )d−a

+(|2s|
d−
μ− )d > |d−sd−−1t za + · · · + td− zd |.

Hence we obtain that each connected component of {|zμ− − sd− | ≤ ε} contains

exactly one solution. These are all the small roots. To relate these regions to the dart-

like regions in the statement we use Lemma 2.7 of [14]. All four bullet points follow.

��

To state the following corollary which is what we will directly use in later chapters,

we make a new definition. For every r > 0, n positive integer, φ > 0 such that
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2nφ < 2π ,

Dart∞(r , n, φ) := {(z ∈ C | |z| > r and zn ∈ N2nφ(R0)}.

Corollary 2.12 Let t be a real number and s a complex one. Let us call the solutions

of the Eq. (2.4) that lie inside the closed disk of radius 1
2

the small roots and the ones

that lie outside the closed disk of radius 2 the large roots.

Then, there exists a positive constant C = C(a, μ−, d−, c) depending only on

a, μ−, d−, c such that for all 0 < t < C and 0 < |s| < C.

(1) There are μ− many small roots and μ large roots. In particular, all roots are

either large or small.

(2) There exist 0 < ε(s) = ε(|s|) < 1
2

, 0 < φ(s) < π
μ−

, and γ (s) ∈ [0, 2π) with

the following properties:

• There is exactly one small root inside each connected component of

Dart(ε(s), μ−, φ(s), γ (s)) ⊂ A1.

• As s → 0, ε(s) and φ(s) converge to 0.

• γ (s) is the argument of sd− valued in [0, 2π).

• All small roots are simple.

(3) There exist r(t) > 0 and 0 < φ′(t) < π
μ

, with the following properties:

• There is exactly one large root inside each connected component of

Dart∞(r(t), μ, φ′(t)) ⊂ A1.

• As t → 0, r(t)→∞ and φ(s)→ 0.

• All large roots are simple.

Proof The statement about small roots is an immediate consequence of Proposition

2.11. To deduce the statement about large roots we rewrite the Eq. (2.4) in terms of the

variable u = 1/z (equivalently, we consider solutions of Eq. (2.3) in the affine chart

A2):

uμ = c(sua + t)d− .

Now we observe that the small roots of this equation correspond to large roots of the

equation in the affine chart A1, and the assertion follows again from Proposition 2.11.

��

2.4 The vanishing spheres

In this section we will prove Theorem 2.10. Assume that n > 1 (the case n = 1 was

discussed at the end of Sect. 1.3).
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Fig. 5 Moving the dual vanishing paths to radial ones

It will be convenient to analyze Da inside g−1
a (0) instead of g−1

a (A) by dragging

the regular point from A to 0 along a path that goes slightly below γ0. Let us define the

radial vanishing paths r1, . . . rμ(a) in the base of ga as the straight radial paths from the

critical values to the origin. They are ordered in the clock-wise direction and the last

one in the ordering is the vanishing path of the positive real critical value. See Fig. 5.

The directed Fukaya–Seidel A∞-category Ea of the Lagrangian vanishing spheres of

r1, . . . rμ(a) is quasi-isomorphic to Da .

Let us define the map g
t,s
a : C

n → C by

(z1, . . . , zn) �→ z1 − sz2 − t z
a1

1 z2 − p−a(z2, . . . zn),

for complex numbers t, s. Note that g
1,0
a = ga . Let us also note that for t �= 0,

gt,0
a (z1, . . . , zn) = ξ−d(a)ga(ξμ(a)+q1 z1, ξ

q2 z2, . . . , ξ
qn zn), (2.7)

where ξ is a (a1μ(a))th root of t and

qi = μ(ai+1, . . . , an)d(a1, . . . , ai−1)

are as in the Equation (3.2) of [22]. See Remark 1.10 for what lead us to consider the

extra perturbation by s.

Lemma 2.13 For every positive real number t, there exists a δ(t) > 0 such that

• for every complex number s with |s| < δ(t), g
t,s
a is a Lefschetz fibration with μ(a)

critical points;

• there exist μ(a) analytic maps p1, . . . , pμ(a) : C → C
n defined for |s| < δ(t)

such that p1(s), . . . , pμ(a)(s) are exactly the critical points of g
t,s
a ;
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On homological mirror symmetry for... 2353

• if d is the distance between the two closest critical values of g
t,0
a then for |s| < δ(t),

each critical value of g
t,s
a is contained in a d/10 neighborhood of a critical value

of g
t,0
a .

Proof We already know that ga is a Lefschetz fibration with critical values regularly

placed on a circle centered at the origin. Using Eq. (2.7), we see that the same statement

is true for g
t,0
a for t �= 0, in particular for t a positive real number.

From Eq. (2.7) and the first paragraph of Sect. 2.1 it follows that g
t,s
a is tame for

all complex numbers t, s. This implies that for fixed t, s the critical points of g
t,s
a are

contained in a compact subset of C
n in the complex analytic topology. In fact the

argument in Proposition 2.5 of [6] shows that if we fix t then there exists a compact

subset K ⊂ C
n such that the critical points of g

t,s
a are contained in K if |s| < 1.

Moreover, note that by non-degeneracy the natural scheme structure on the critical

points of g
t,0
a is smooth. Let us denote by X the scheme of critical points of g

t,s
a for

fixed t and varying s, so that we have a projection X → Cs and the fiber Xs is the

scheme of critical points of g
t,s
a . Since the projection from X to Cs is proper and

X0 is smooth, we deduce that the map X → Cs is étale over a small neighborhood

of 0. This implies the non-degeneracy of critical points of g
t,s
a for small s. Also, it

follows that there exist μ(a) analytic sections p1, . . . , pμ(a) of the projection X → Cs

defined in the neighborhood of 0. This implies the second assertion. The last assertion

follows from the fact that the critical values g
t,s
a (pi (s)), for i = 1, . . . , μ(a), depend

continuously on s. ��

Let us also define the maps

ht,s
a : (g

t,s
a )−1(0)→ C,

given by projecting to the z1 coordinate.

We are going to compute all critical values of h
t,s
a . More generally, we will compute

the critical values of z1 on (g
t,s
a )−1(y), for any regular value y of g

t,s
a .

Let us set for brevity g = g
t,s
a . Consider the family of maps

wy : g−1(y)→ C,

for y ∈ C, given by projecting to the z1 coordinate (so w0 = h
t,s
a ).

Let us define the Zariski closed subset C ⊂ C
n as the zero locus of ∂z2 g, . . . , ∂zn g.

Note that the tangent space to g−1(y) at a smooth point z is given by the kernel dg,

and that z ∈ C is a critical point of wy = z1 on g−1(y), where y = g(z), if and only

if

dz1|z = λ · dg|z in T ∗z C
n, (2.8)

for some (necessarily nonzero) λ ∈ C. In other words, for any y ∈ C we have

C ∩ g−1(y) \ cri t(g) = cri t(wy) \ cri t(g). (2.9)

Proposition 2.14 We fix t, s ∈ C and use the notation introduced above.
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2354 U. Varolgunes, A. Polishchuk

(i) The map

C → C
2 : z = (z1, . . . , zn) �→ (g(z), z1)

induces a bijective morphism

ι : C → C
′,

where C′ ⊂ C
2
y,z1

is the plane curve

ca(s + t z
a1

1 )d(−a) − (z1 − y)μ(−a) = 0, (2.10)

where ca is some easily computable positive rational number. Furthermore, ι

restricts to an isomorphism of algebraic varieties C \ ι−1(S)→ C′ \ S, where

S = {(y, z1) | y = z1, s + t z
a1

1 = 0}.

In other words, we have a well defined inverse morphism ι−1 : C′\S→ C\ι−1(S).

(ii) For fixed y, which is not a critical value of g, the set of critical values of wy is

exactly the set of roots z1 of the Eq. (2.10). Furthermore, the critical values of

distinct critical points of wy are distinct.

Proof (i) Let us write the equations defining C ⊂ C
n :

s + t z
a1

1 = a2z
a2−1
2 z3

z
a2

2 = a3z
a3−1
3 z4

. . .

z
an−1

n−1 = anzan−1
n .

Also, setting y = g(z), we have

z1 − y − sz2 − t z
a1

1 z2 = p−a(z2, . . . zn). (2.11)

Assuming that (y, z1, . . . , zn) satisfy these equations we have to show that (y, z1)

satisfies (2.10) and that (zi )i≥2 are determined by (y, z1), and that for (y, z1) /∈ S,

they are given by regular functions zi (y, z1).

If s + t z
a1

1 = 0 then the equations of C imply that z2 = · · · = zn = 0, and the

Eq. (2.11) gives z1 = y, so that (y, z1) ∈ S.

Now assume that s + t z
a1

1 �= 0. Then we also have zi �= 0 for i ≥ 2. The last

n − 1 equations for C lead to

z
a2μ(a4,...,an)
2 = cz

μ(a3,...,an)
3 ,
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for a positive rational number c that is straightforward to compute. Using the first

equation for C we get:

(s + t z
a1

1 )μ(a3,...,an) = c′z
μ(a2,...,an)
2 . (2.12)

Next, using equations for C, we can also obtain recursively for k = 2, . . . , n−1,

d(a2, . . . , ak)z
ak

k zk+1 = sz2 + t z
a1

1 z2.

Plugging this into the definition of p−a(z2, . . . , zn) and then into (2.11), we get

z1 = c′′(sz2 + t z
a1

1 z2),

which leads to

z2 =
z1

c′′(s + t z
a1

1 )
. (2.13)

Plugging this into (2.12), we deduce the Eq. (2.10) for (y, z1).

The desired formulas for z2, . . . , zn as rational functions of (y, z1) defined away

from S, are now easily obtained from (2.13) and from the equations for C.

(ii) In light of (2.9), this follows from part (i). ��

Lemma 2.15 Assume that s �= 0 and t is such that 0 is not a critical value of g = g
t,s
a .

Then all critical points of h
t,s
a on g−1(0) are nondegenerate.

Proof Let z0 = (z0
1, . . . , z0

n) be a critical point of h
t,s
a on g−1(0). Then z0 belongs to

C and due to the relation (2.8), we have

∂1g|z0 = (1− a1t z
a1−1
1 z2)|z0 �= 0,

where we set ∂i = ∂zi
. Thus, we can view z2, . . . , zn as local coordinates on g−1(0)

near z0 and compute the derivatives of h = h
t,s
a = z1 with respect to z2, . . . , zn using

the equation

h − tha1 z2 = sz2 + p,

where p = p−a(z2, . . . , zn). This gives

∂2h =
s + tha1 + ∂2 p

1− a1t z
a1−1
1 z2

,

∂i h =
∂i p

1− a1t z
a1−1
1 z2

for i > 2.

In particular, we have

(s + tha1 + ∂2 p)|z0 = 0, ∂i p|z0 = 0 for i > 2.
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Taking this into account we derive that for all i, j ≥ 2,

∂i∂ j h|z0 =
∂i∂ j p

1− a1t z
a1−1
1 z2

|z0 .

Thus, it remains to show that the matrix (∂i∂ j p|z0)i, j≥2 is invertible.

First, we observe that z0
i �= 0 for i = 1, . . . , n. Indeed, as we have seen in the proof

of Proposition 2.14, the only other possibility is that all z0
i = 0, which is possible only

when s = 0 (due to Eq. (2.10)).

Now our assertion follows from the following identity (applied to p = p−a). For

a = (a1, . . . , an),

�(a) := det(∂i∂ j pa)1≤i, j≤n .

Then at any point z where ∂i pa = 0 for i > 1, one has

�(a) = (−1)(
n+1

2 ) · r · z
a1−2
1 z

a2−1
2 . . . zan−1

n

with r > 0. Indeed, this can be checked easily by induction since

�(a) = −a1(a1 − 1)z
a1−2
1 z2 · (−1)n−1�(−a)− a2

1 z
2a1−2
1 ·�(−− a)

= a1(a1 − 1)z
a1−2
1 z2 · (−1)n�(−a)− a2

1a2z
a1−2
1 z

a2−1
2 ·�(−− a),

where −a = (a2, . . . , an), − − a = (a3, . . . , an) (we used the equation z
a1

1 =

a2z
a2−1
2 z3). ��

Recall Corollary 2.12 and Lemma 2.13. Let us fix t0 and s0, positive real numbers

with

t0 < C(a1, μ(−a), d(−a), ca)

and

s0 < min {C(a1, μ(−a), d(−a), ca), δ(t0)}.

In the base of g
t0,s0
a , we consider the radial vanishing paths

r̃1, . . . r̃μ(a)

from each of the critical values to the origin. These are again ordered clockwise and

so that r̃μ(a) aligns with the positive real axis.

Remark 2.16 Note that g
t0,s0
a indeed has a unique positive real critical value. This

follows because we know that the only critical value of g
t,0
a whose d/10 neighborhood

intersects the positive real axis is the positive real one and that the set of critical values
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of g
t0,s0
a is closed under complex conjugation of C. Therefore, r̃μ(a) still aligns with

the positive real line.

The directed Fukaya–Seidel A∞-category Ẽa of the Lagrangian vanishing spheres

of r̃1, . . . r̃μ(a) is equivalent (as a directed A∞-category) to Ea , and therefore, to Da .

Our goal is to compute the Lagrangian vanishing spheres of r̃1, . . . r̃μ(a) as

Lagrangian matching spheres inside (g
t0,s0
a )−1(0) corresponding to matching paths

in the base of h
t0,s0
a .

By Proposition 2.14 (ii), the critical values of h
t0,s0
a are solutions of the equation

z
μ(−a)
1 = ca(s0 + t0z

a1

1 )d(−a),

Moreover, the critical values of distinct critical points of h
t0,s0
a are not equal to each

other. These critical values are divided into two groups:

• small ones: one in each connected component of an inner dart

Dart(ε(s0), μ(−a), φ(s0), 0)

• large ones: one in each connected component of an outer dart

Dart∞(r(t0), μ(a), φ′(t0)).

Note that ε(s0) < 1/2 and r(t0) > 2.

Recall that we have defined in the introduction the symplectomorphism ψa of C
n

which gives the action of the element of �a with λ = λ1 = e
2π i
μ(a) .

Lemma 2.17 We have the following commutative diagram

C
n ψa

g
t,s
a

C
n

g
t,eiθ ·s
a

C
rot2π/μ(a)

C,

(2.14)

with

θ =
2πa1

μ(a)
.

Proof This is a straightforward computation. ��

Recall that for γ ∈ [0, 2π), we denote by Rγ the ray in the complex plane starting

from the origin that makes a positive angle of γ with the positive real axis.

Proposition 2.18 Let ϕ := 2πk
μ(a)

for some k = 0, . . . , μ(a)− 1. Consider

s = s0e
2π ika1
μ(a) .

We have:
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• g
t0,s
a and h

t0,s
a are Lefschetz fibrations.

• g
t0,s
a has a unique critical value b on Rϕ .

• The map h
t0,s
a has precisely two critical values b1, b2 on Rϕ .

• The vanishing Lagrangian sphere of the straight vanishing path from 0 to b is

Hamiltonian isotopic to the matching Lagrangian sphere of the matching path

between b1 and b2 along Rϕ . In particular, this straight path is a matching path.

Proof By Lemma 2.17, it suffices to proves this for k = 0.

By the choice of s0, g
t0,s0
a is a Lefschetz fibration. Also, by Lemma 2.15, h

t0,s0
a is

Lefschetz fibration.

That g
t0,s0
a has a unique critical value on the positive real axis was already remarked

above. The proof that h
t0,s0
a has precisely two critical values on the positive real axis

follows exactly the same strategy. We know that the unique connected component of

both Dart(ε(s0), μ(−a), φ(s0), 0) and Dart∞(r(t0), μ(a), φ′(t0)) that intersect the

positive real axis contain exactly one critical value and that they are preserved under

complex conjugation.

We come to the last bullet point. This is a simple application of the Lefschetz

bifibration technique. Let us denote the unique positive real critical value of g = g
t0,s0
a

by b.

We claim that for (y, z1) ∈ C′ the map pr1|C′ : C
′ → C is étale at (y, z1) (i.e.,

induces an isomorphism of tangent spaces, so in particular, C′ is smooth at this point)

unless (y, z1) ∈ S and ι−1(y, z1) is a critical point of g. Indeed, first, one can immedi-

ately check that pr1 is unramified at the points of S ⊂ C′. Thus, it is enough to check

that the map g = pr1 ◦ ι : C → C is unramified at all z /∈ (cri t(g) ∪ ι−1(S)).

Indeed, let T ∗z C denote the Zariski cotangent space to C at any such point z. Since

(g, z1) gives an embedding of C \ ι−1(S) into C
2, T ∗z C is generated by the images of

dz1|z and dg|z . Now from (2.8) we see that in fact T ∗z C is generated by dg|z alone. This

implies that dim T ∗z C = 1, so C is smooth, and the tangent map to g is an isomorphism

at z as claimed.

As a consequence, if r ∈ [0,∞) is so that the Eq. (2.10) for y = r has a positive

real root z1 with multiplicity more than one, then ι−1(y, z1) is a critical point of g
t0,s0
a

(�). In particular, this can only happen for r = b.

Consider the Eq. (2.10) for y = r ∈ [0,∞). We already know that for r = 0 there

are two simple positive real roots. It is also easy to see that for r sufficiently large,

there are no positive real roots that are larger than r . Also note that z1 = r is never a

root. Combining these with the previous paragraph, we conclude that the two positive

real roots at r = 0 come together on the positive real axis for the first time at r = b.2

Moreover, using � from two paragraphs ago, it follows that the critical points above

the two positive real critical values of wr (as elements of C
n) come together at the

unique singular point p = (p1, . . . , pn) of (g
t0,s0
a )−1(b) as r goes from 0 to b.

2 It also follows that for larger values of r there is never a real root larger than r . Note that we are not

claiming that are no other positive roots, we only consider the positive roots that are larger than r in this

argument.
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Instead of proving that

C
n

(g
t0,s0
a ,z1)

C
2 pr1

C (2.15)

is a Lefschetz bifibration, we will prove that the there are coordinates near p ∈ C
n ,

(b, p1) ∈ C
2 and b ∈ C as in Lemma 15.9 of [17].

We first find coordinates as in equation in the last line of pg 219 in [17] using the

argument given there. On C
2 and C we use the given coordinates on this step. All we

need to prove is that the map C
n−1 → C obtained by substituting z1 = p1 in g

t0,s0
a

has a non-degenerate singularity at p. This map is given by

p1 − s0z2 − t0 p
a1

1 z2 − p−a(z2, . . . zn).

Note that since s0, t0 and p1 are all positive real numbers

s0 + t0 p
a1

1 �= 0.

Therefore, we know that −(s0 + t0 p
a1

1 )z2 − p−a(z2, . . . zn) has only non-degenerate

critical points, proving our claim.

To finish finding the desired local coordinates, we can repeat the part of the proof

of Lemma 15.9 of [17] on pg 220 verbatim since we know that p is a non-degenerate

critical point of g
t0,s0
a .

Hence, using Lemma 16.15 of [17], we conclude that the path between the two pos-

itive real critical values of w0 = h
t0,s0
a is a matching path and the matching Lagrangian

sphere above is Hamiltonian isotopic to the vanishing Lagrangian sphere of the straight

path from the origin to b in the base of g
t0,s0
a . ��

Remark 2.19 Note that we never proved that our C
n → C

2 → C is a Lefschetz

bifibration, which would require checking a number of non-degeneracy requirements

as explained in page 218 of [17].

Let A := {x ∈ C|1/2 ≤ |x | ≤ 2}. We define a diffeomorphism coila : A → A,

which is in polar coordinates

(ρ, θ) �→ (ρ, θ + f (ρ)),

where f (ρ) is non-decreasing in ρ, equal to − 2π
μ(−a)

near ρ = 1/2, and equal to 2π
μ(a)

near ρ = 2.

Recall that we have the matching path in the base of h
t0,s0
a which is the straight

line segment [b1, b2] connecting the two positive critical values b1 < b2. Now for t ,

0 < t ≤ t0, and k = 0, . . . , μ(a) − 1, we will define a path σ(k, t) connecting two

critical values of h
t,s0
a in C. Note that b1 < 1/2 and b2 > 2.

We apply coil◦ka to [b1, b2] ∩ A = [1/2, 2] and obtain a path from p1 =

coil◦ka (1/2) to p2 = coil◦ka (2) in A. Then we connect p1 to a point p′1 ∈

Dart(ε(s0), μ(−a), φ(s0), 0) and p2 to a point p′2 ∈ Dart∞(r(t), μ(a), φ′(t))

by radial paths. Finally, we connect p′1 (resp., p′2) by a smooth path depending
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Fig. 6 The coiling matching

paths

smoothly on t to a critical value without leaving Dart(ε(s0), μ(−a), φ(s0), 0) (resp.,

Dart∞(r(t), μ(a), φ′(t))). See Fig. 6. These paths together form the path we call

σ(k, t).

Let us denote by C0(ϕ) (resp., C∞(ϕ)) the component of Dart(ε(s0), μ(−a), φ(s0),

0) (resp., Dart∞(r(t), μ(a), φ′(t))) centered around the ray with argument ϕ. Note

that σ(k, t) connects a critical value of ht,s0 in C0(−2π k
μ(−a)

) with a critical value of

ht,s0 in C∞(2π k
μ(a)

).

We set

σ(k) := σ(k, t0).

Proposition 2.20 The vanishing spheres of r̃1, . . . r̃μ(a) are Hamiltonian isotopic to

the Lagrangian matching spheres of the paths

σ(μ(a)− 1), . . . , σ (1), σ (0)

in the base of h
t0,s0
a .

Proof By Proposition 2.18, for every k = 0, . . . , μ(a) − 1, we can compute the

vanishing Lagrangian sphere of the critical value of g
t0,s
a with argument ϕ := 2πk

μ(a)
as

the matching Lagrangian sphere of an explicit straight matching path β connecting

two critical values of h
t0,s
a on the ray Rϕ for

s = s0e
2π ika1
μ(a) .

Let us call an embedded path in the base of Lefschetz fibration with endpoints on

critical values and interiors disjoint from critical values a pre-matching path. Note that

a matching path is in particular a pre-matching path.

Now all we need to do is to prove that there exists a smoothly varying family of

pre-matching paths βτ , where τ varies in [0, 1], in the bases of h
t0,sτ
a for

sτ = s0e
2π ika1(1−τ )

μ(a) ,
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such that

• β0 is isotopic to β through pre-matching paths;

• β1 is isotopic to σ(k) through pre-matching paths.

By Corollary 2.12, we know that for every τ ∈ [0, 1], the critical values of h
t0,sτ
a

are divided into small ones and big ones and into sectors as follows:

• there is one critical value bm(τ ) in each connected component

rot(1−τ)θk
C

(
2π

m

μ(−a)

)
,

m = 0, 1, . . . , μ(−a)−1, of Dart(ε(sτ ), μ(−a), φ(sτ ), μ(−a)(1−τ)θk), where

θk =
2πka1d(−a)

μ(−a)μ(a)
;

• there is one critical value Bp(τ ) in each connected component C∞(2π
p

μ(a)
), p =

0, 1, . . . , μ(a)− 1, of Dart∞(r(t0), μ(a), φ′(t0)).

In particular that there is never any critical value in the annulus A. To summarize in

words these two bullet points, as τ changes from 0 to 1, the component containing

bm(τ ) (for a fixed m) rotates clockwise with the angular velocity θk , while the com-

ponents containing Bp(τ ) do not move (although the critical points can move inside

them).

Note that we have the identity

2π
k

μ(a)
= −2π

k

μ(−a)
+ θk,

which shows that the straight path β connects the small critical value b−k(0) with the

big critical value Bk(0).

Here is how we define βτ . First, we connect the critical value b−k(τ ) by a radial

path with a point q1(τ ) lying on the circle of radius 1/2. Similarly, we connect the

critical value Bk(τ ) by a radial path with a point q2(τ ) lying on the circle of radius 2.

To continue let us introduce the isotopy ητ : A→ A, which is in polar coordinates

(ρ, θ) �→ (ρ, θ + τ f (ρ)),

where f (ρ) is non-decreasing in ρ, equal to −θk near ρ = 1/2, and equal to 0 near

ρ = 2.

We finally connect q1(τ ) with one end of ητ (β∩A) using the short arc on the circle

of radius 1/2 and q2(τ ) with the other end of ητ (β ∩ A) using the short arc on the

circle of radius 2. This completes the construction of pre-matching paths βτ with the

desired properties.
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Fig. 7 Turning radial at infinity paths into horizontal at infinity paths

Remark 2.21 Note that the braid monodromy of the bases of h
t0,s
a as s = eiθ s0 makes

a full counter clock-wise rotation is non-trivial and can be easily computed using the

proof above. Noting that the Hamiltonian fiber bundle over S1 of the total spaces of

these fibrations is actually trivial (it extends to a fiber bundle over the disk that bounds

the S1), we can generate lots of matching paths in the base of h
s0,t0
a with Hamiltonian

isotopic Lagrangian matching spheres.

We come to the final geometric argument of our proof. For t ∈ [0, t0], consider

the family of Lefschetz fibrations h
t,s0
a . For all values of t in this interval the critical

values stay in the same darts from h
t0,s0
a , but as t → 0, the large roots go to infinity in

a very controlled way.

For every t ∈ [0, t0], we have a directed A∞-category called Ct , which is the

directed A∞-category of the matching paths of

σ(μ(a)− 1, t), . . . , σ (1, t), σ (0, t)

for t > 0. For t = t0, by Proposition 2.20, we have an equivalence of directed A∞-

categories Ct0 � Ẽa . On the other hand, for t = 0 we get a directed collection of

vanishing paths, radial at infinity. These can be homotoped to HAI vanishing paths

with strictly decreasing ordinals,

σ̃ (μ(a)− 1), . . . , σ̃ (0),

in the way that is explained in Fig. 7 without changing them inside the disk of radius

2.

Note that we can choose perturbations so that for all t , all the solutions of the

perturbed pseudo-holomorphic curve equations that contribute to the structure maps

of Ct lie inside (h
t,s0
a )−1(D), where D is the disk of radius 2, by the open mapping

principle.

Using the homotopy method (Section (10e) of [17]), we obtain the following state-

ment

Proposition 2.22 There is an A∞ quasi-isomorphism Ct0
∼� C0 preserving the

ordering of the objects.
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Remark 2.23 Our setup is slightly different than Seidel. Our Lagrangians are not known

to be pair-wise transverse at all times, so one does have to consider possible birth-death

bifurcations. It might be possible to use more geometry to prove that the Lagrangians

we are considering are already transverse or that one can find smoothly varying Hamil-

tonian perturbations that achieve this property, but we did not check this. Regardless,

we do not expect a problem with the birth-death analysis because we are consid-

ering directed A∞-categories in the exact case. The skeptic reader can assume this

proposition not proven.

The following proposition finishes the proof of Theorem 2.10.

Proposition 2.24 • Da is equivalent (up to shifts) to Ct0 as directed A∞-categories.

• H−a is equivalent (up to shifts) to C0 as directed A∞-categories.

Proof We already know the first statement: Da � Ea � Ẽa � Ct0 .

For the second one, note that we have

g0,s0
a (z1, . . . , zn) = z1 − s0z2 − p−a(z2, . . . , zn) = z1 − g̃(z2, . . . , zn),

where g̃(z2, . . . , zn) = s0z2 + p−a(z2, . . . , zn) is a perturbation of p−a , which is

equivalent to the perturbation z2 + p−a(z2, . . . , zn). Thus, h
0,s0
a is nothing but the

projection from the graph of g̃,

{z1 = g̃(z2, . . . , zn)} ⊂ C
n

to the z1 coordinate, which can be identified with g̃ : Cn−1 → C. The map on the total

spaces is not a symplectomorphism but the induced Ehresmann connections do go to

each other, which is enough for our purposes. It remains to observe that the collection of

HAI vanishing paths (̃σ (μ(a)−1), . . . , σ̃ (0)) is homotopic to (γ̃−μ(a)+1, . . . , γ̃−1, γ̃0)

(see (2.2)). ��

3 B-side

3.1 Semiorthogonal decompositions, exceptional collections andmutations

For the most part, on the B-side we can work at the level of triangulated categories,

without using dg-enhancements. However, we will use existence of dg-liftings of some

adjoint functors. Namely, by the results of [13, Sec. 4], if D is an enhanced triangulated

category and C ⊂ D is an admissible subcategory, then with respect to the induced

dg-enhancement on C, the left and right adjoint functors λ, ρ : D → C can be lifted

to quasi-functors between the corresponding dg-categories. We will tacitly use such

liftings below in the results that use the dg-enhancements.

Given an admissible subcategory C ⊂ D, we define the functor of left mutation

through C,

LC :
⊥
C → C

⊥
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by the exact triangle

C → X → LC(X)→ · · ·

Note that LC is just the restriction to ⊥C of the left adjoint functor to the inclusion of

C⊥.

This definition has the following transitivity property. Suppose C1, C2 ⊂ D is a

pair of admissible subcategories such that Hom(C2, C1) = 0. Then the subcategory

〈C1, C2〉 ⊂ D is also admissible and

L〈C1,C2〉 � LC1
◦ LC2

|⊥〈C1,C2〉
.

Similarly, the functor of right mutation through C,

RC : C
⊥→ ⊥

C

is defined by the exact triangle

RC(X)→ X → C → · · ·

One can immediately see that RC and LC are mutually inverse equivalences.

Lemma 3.1 Let C ⊂ D be an admissible subcategory, and let λ, ρ : D→ C denote the

left and right adjoint functors to the inclusion. Then for X ∈ ⊥C, one has a functorial

isomorphism

ρ(X) � λ(LC(X)[−1]).

Proof By definition, there is an exact triangle

LC(X)[−1] → C → X → LC(X)

with C ∈ C, and we have X ∈ ⊥C, LC(X) ∈ C⊥. This immediately implies that

C � ρ(X) � λ(LC(X)[−1]).

��

For an exceptional object E we set L E := L〈E〉, where 〈E〉 is the admissible

subcategory generated by E .

Definition 3.2 Let E0, . . . , En be an exceptional collection. The left dual exceptional

collection to E0, . . . , En is the unique full exceptional collection F−n, . . . , F0 in

〈E0, . . . , En〉 with Hom∗(Ei , F− j ) = 0 for j �= i and Hom∗(Ei , F−i ) = k[0]. In

fact, one has F0 = E0 and for i > 0,

F−i = L E0 . . . L Ei−1
Ei .
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In this situation we also say that E0, . . . , En is the right dual exceptional collection

to F−n, . . . , F0.

Lemma 3.3 Let D = 〈C, C′〉 be a semiorthogonal decomposition. Let E0, . . . , En

(resp., E ′0, . . . , E ′m) be an exceptional collection generating C (resp., C′), and let

F−n, . . . , F0 (resp., F ′−m, . . . , F ′0) be the left dual exceptional collection. Then the

exceptional collection

LC(F ′−m), . . . , LC(F ′0), F−n, . . . , F0

is left dual to E0, . . . , En, E ′0, . . . , E ′m .

3.2 Serre functor and helices

We have the following well known connection between the Serre functor and muta-

tions.

Lemma 3.4 Let E be an exceptional object in D and let C = 〈E〉⊥, so that we have a

semiorthogonal decomposition

D = 〈C, 〈E〉〉.

Then there is an isomorphism

SD(E) � LC(E).

Definition 3.5 Let E1, . . . , En be an exceptional collection generating the category

C. The helix generated by this exceptional collection is the sequence of exceptional

objects (Ei )i∈Z, extending (E1, . . . , En), such that SC Ei = Ei−n , where SC is the

Serre functor of C.

By Lemma 3.4, we see that in a helix we have

Ei � L Ei+1
. . . L Ei+n−1

Ei+n .

3.3 Aramaki–Takahashi exceptional collection

3.3.1 Basic definitions

Recall that for a = (a1, . . . , an) ∈ Z
n
>1 we consider the chain polynomial

pa = x
a1

1 x2 + x
a2

2 x3 + · · · + x
an−1

n−1 xn + xan
n .

Recall that we set d(a) = a1a2 . . . an (with d(∅) = 1) and we have the recursion

for the Milnor numbers

μ(a) = d(a)− μ(−a) = a1 . . . an − a2 . . . an + a3 . . . an − · · ·
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(with μ(∅) = 1). Let us set

μ∨(a) := μ(a∨),

so that

μ∨(a) = d(a)− μ∨(a−).

We denote by L = La the maximal grading group for which p = pa is homoge-

neous, i.e., the abelian group with generators x i , p and defining relations

a1x1 + x2 = a2x2 + x3 = · · · = an xn = p.

Note that the quotient L/(p) is a cyclic group of order d(a), generated by the image

of x1, so that we have an exact sequence

0→ Z
p� L → Z/d(a)→ 0.

It will be convenient for us to set

τ = (−1)n x1.

By a graded matrix factorization of pa we always mean L-graded matrix factor-

izations, or equivalently �-equivariant matrix factorizations, where � = �a is the

subgroup of G
n
m that has L as the character group.

It will also be useful to consider the slightly bigger group L̃: it has an extra generator

T and the relation

2T = p.

It fits into an exact sequence

0→ Z
T� L̃ → Z/d(a)→ 0.

It is easy to see that L̃ is generated by T and τ with the defining relation

d(a)τ = (−1)n2(d(a)− μ(a))T . (3.1)

Note that for every � ∈ L̃ we have a natural grading shift operation for a graded

matrix factorization of pa :

M �→ M(�),

where M(T ) := M[1]. In addition, we denote

M(i) := M(iτ).
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Since L̃ is generated by τ and T , for every �, we have M(�) = M(i)[ j] for some

i, j . We also have a functorial isomorphism

M(d(a)) � M[(−1)n2(d(a)− μ(a))].

For an L-homogeneous ideal I ⊂ C[x1, . . . , xn] such that pa ∈ I we denote by

stab(I) the graded matrix factorization of pa corresponding to the module O/I.

In particular, we consider the following graded matrix factorization of pa :

E :=

{
stab(x2, x4, . . . , xn), n even,

stab(x1, x3, . . . , xn), n odd,
.

Note that by definition the grading of xi is x i .

We denote by MF�(pa) the dg-category of graded matrix factorizations of pa .

We denote by Hom∗ (or Ext∗) the cohomology of the morphism complexes in this

category. For most of our considerations it will be enough to do computations on the

level of cohomology (however, we will use existence of various natural functors as

quasi-functors at the dg-level).

By the main result of [1], for any i ∈ Z, the collection

(E(i), E(i + 1), . . . , E(i + μ∨(a)− 1))

is a full exceptional collection in MF�(pa). We refer to it (for i = 0) as the AT

exceptional collection. We should point out that in the original proof of [1] there are

gaps in the proofs of Lemmas 4.7 and 4.10. These can be filled using the results of

Hirano–Ouchi in [10, Sec. 4.2] (especially [10, Lem. 4.4, Lem. 4.5]), where the fully

faithful embedding needed for the induction is constructed using VGIT technique

(note that these are different VGIT embeddings than the ones used in Sect. 3.4 below).

We denote by AT (a) the directed A∞-category corresponding to the AT exceptional

collection in MF�(pa).

3.3.2 Ext-algebra

Let us consider the associative algebra

Ba :=
⊕

�∈L̃

Hom0(E, E(�)),

where a = (a1, . . . , an). Then by [1, Lem. 4.1, Lem. 4.2] (extended to the case a1 = 2),

one has an isomorphism of L̃-graded algebras

Ba �

{
k[x1, x3, . . . , xn−1]/(x

a1

1 , . . . , x
an−1

n−1 ), n even,

k[x0, x2, . . . , xn−1]/(x2
0 − εx2, x

a2

2 , . . . , x
an−1

n−1 ), n odd,
(3.2)
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where

ε =

{
0, a1 > 2,

1, a1 = 2.

The L̃-gradings of xi are given as follows:

deg(x0) = τ + T

and for i > 0,

deg(xi ) = x i = (−1)i−1d(a1, . . . , ai−1)x1

+(−1)i 2(d(a1, . . . , ai−1)− μ(a1, . . . , ai−1))T . (3.3)

Note that Ba has a natural monomial basis, and the elements of this basis have

distinct degrees in L̃/Z · T � Z/d(a). This implies that whenever 0 ≤ j − i < d(a),

the space Ext∗(E(i), E( j)) is at most 1-dimensional, and can be identified with the

graded component of degree ( j − i)τ in Ba , with appropriate shift.

Also, we see that the algebra Ba is Gorenstein with the 1-dimensional socle in

degree μ∨(a−) mod d(a). This implies that for μ∨(a−) < j − i < d(a) one has

Ext∗(E(i), E( j)) = 0, while Ext∗(E, E(μ∨(a−)) is 1-dimensional and the compo-

sitions

Ext∗(E(i), E(μ∨(a−))⊗ Ext∗(E, E(i))→ Ext∗(E, E(μ∨(a−))

are perfect pairing. The latter property will play a crucial role below.

3.3.3 Serre functor on the category of matrix factorizations

By [1, Prop. 2.9], the Serre functor on MF�(pa) is given by M �→ M(�S), where

�S = nT − x1 − · · · − xn .

Combining this with (3.3) and taking into account (3.1), we get the following formula.

Lemma 3.6 The Serre functor on MF�(pa) is given by M �→ M(�S), with

�S = −μ∨(a)τ + (n + 2m(a))T = μ∨(a−)τ + (n + 2m(a−))T ,

where

m(a) = (−1)nμ∨(a)− 1+ μ(a1)− μ(a1, a2)+ · · · + (−1)n−1μ(a1, . . . , an).

(3.4)

It follows that up to shifts, the helix generated by the AT exceptional collection is

simply (E(i))i∈Z.
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3.4 VGIT embedding

Here we record a specialization of the construction in [7], which itself is a particular

case of the general VGIT construction in [2].

Let us consider the polynomials

W = x
a1

1 x2 + x
a2

2 x3 + · · · + xan
n x

an

n+1,

w+ = x
a1

1 x2 + x
a2

2 x3 + · · · + xan
n ,

w− = x
a1

1 x2 + x
a2

2 x3 + · · · + x
an−1

n−1 + x
an

n+1.

Note that W is invariant with respect to the Gm-action on A
n+1 with the following

weights:

• c1 = 1, c2 = −a1, c3 = a1a2, . . . , cn = −a1a2 . . . an−1, cn+1 = a1a2 . . . an−1,

for n even;

• c1 = −1, c2 = a1, c3 = −a1a2, . . . , cn = −a1a2 . . . an−1, cn+1 =

a1a2 . . . an−1, for n odd.

The main idea of [7] is to apply the VGIT construction to this Gm-action.

Let us set

αn := a1a2 . . . an + a1a2 . . . an−2 + · · · ,

where the last term is 1 if n is even, and a1 if n is odd. Note that μ∨(a) = αn − αn−1.

We define the intervals of weights as follows:

I− = [0, αn−1 − 1] ⊂ I+ = [0, a1a2 . . . an−1 + αn−2 − 1].

We consider the corresponding windows

WI− ⊂WI+ ⊂ MF�(W ).

Here we use the embedding of Gm into �,

λ : t �→ (t−c1 , t−c2 , . . . , t−cn+1),

and consider weights of the restriction of a matrix factorization to the origin, so for

example, the weight of k(xi ) is μ(xi , λ) = −ci .

We have natural restriction functors

r+ : MF�(W )→ MF�+(w+) : E �→ E |xn+1=1,

r− : MF�(W )→ MF�−(w−) : E �→ E |xn=1,

Here � is the group of diagonal transformations preserving W up to rescaling; �± are

similar groups for w±.
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Theorem 3.7 [7] The functors

r±|WI±
:WI± → MF�±(w±)

are equivalences. Hence, there exists a fully faithful functor 
 making the following

diagram commutative:

WI−
� WI+

MF�−(w−)

r− ∼

�

� MF�+(w+)

r+ ∼

�

Proof Since our result is a bit more precise than that of [7], we will give the proof.

Consider the ideals

I+ := (x j | c j > 0), I− = (x j | c j < 0)

in k[x1, . . . , xn+1], and let us set

Y± = A
n+1 \ Z(I±), U+ = A

n+1 \ Z(xn+1), U− = A
n+1 \ Z(xn).

Then [7, Lem. 3.7] states that the natural restriction functors

MF�(Y±, W )→ MF�(U±, W )

are equivalences.

On the other hand, it is easy to see that the restriction functors

MF�(U+, W )→ MF�+(w+) : E �→ E |xn+1=1,

MF�(U−, W )→ MF�−(w−) : E �→ E |xn=1

are equivalences (see [7, Lem. 2.3]).

Finally, we claim that [2, Cor. 3.2.2+Prop. 3.3.2] imply that the compositions

WI± ↪→ MF�(W )→ MF�(Y±, W )

are equivalences. Indeed, we observe that

Z(I±) =

{
x ∈ A

n+1 | lim
t→0

λ±(t)x = 0

}
.

The lengths of the intervals d± giving the windows are given by

d± = −
∑

i :xi∈I±

μ(xi , λ
±)− 1 = ±

∑

i :xi∈I±

ci − 1.
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(see [2, Sec. 3.1]). Thus, we get

d+ = [cn+1 + cn−1 + · · · ] − 1 = a1a2 . . . an−1 + αn−2 − 1,

d− = −[cn + cn−2 + · · · ] − 1 = αn−1 − 1.

��

Note that w+ = pa , whereas

w− = pa− + x
an

n+1.

where we set a− := (a1, . . . , an−1). We combine the above functor with the embed-

ding

ι : MF�a−(pa−)→ MF�−(w−) : F �→ F � stab(xn+1).

This allows us to define the fully faithful functor


0 := 
 ◦ ι : MF�a−(pa−)→ MF�a (pa).

Lemma 3.8 (i) Assume n is even. Then

stab(x1, x3, . . . , xn−1, xn xn+1)(−i x1) ∈WI− for 0 ≤ i ≤ μ∨(a−)− 1,

r−(stab(x1, x3, . . . , xn−1, xn xn+1)(−i x1)) � stab(x1, x3, . . . , xn−1, xn+1)(−i x1),

r+(stab(x1, x3, . . . , xn−1, xn xn+1)(−i x1)) � stab(x1, x3, . . . , xn−1, xn)(−i x1),


0(E(i)) = stab(x1, x3, . . . , xn−1, xn)(−i x1) for 0 ≤ i ≤ μ∨(a−)− 1.

(ii) Assume n is odd. Then

stab(x2, x4, . . . , xn−1, xn xn+1)(i x1) ∈WI− for 0 ≤ i ≤ μ∨(a−)− 1,

r−(stab(x2, x4, . . . , xn−1, xn xn+1)(i x1)) � stab(x2, x4, . . . , xn−1, xn+1)(i x1),

r+(stab(x2, x4, . . . , xn−1, xn xn+1)(i x1)) � stab(x2, x4, . . . , xn−1, xn)(i x1),


0(E(i)) = stab(x2, x4, . . . , xn−1, xn)(i x1) for 0 ≤ i ≤ μ∨(a−)− 1.

Proof (i) We have

− μ(x1, λ) = c1 = 1,−μ(x3, λ) = c3 = a1a2, . . . ,−μ(xn−1, λ)

= cn−1 = a1a2 . . . an−2, μ(xn xn+1, λ) = 0.

Hence, the λ-weights of stab(x1, x3, . . . , xn−1, xn xn+1)|0 are given by the

weights of the elements of the exterior algebra with generators of weights

c1, . . . , cn−1, 0, so they lie in the interval

[0, c1 + c3 + · · · + cn−1] = [0, αn−2].
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Thus, for 0 ≤ i ≤ μ∨(a−) − 1, the weights of stab(x1, x3, . . . , xn−1, xn xn+1)

(−i x1)|0 will lie in the segment from 0 to

αn−2 + μ∨(a−)− 1 = αn−1 − 1.

(ii) The proof is completely analogous to (i), using the weights of x2, x4, . . . , xn−1,

xn xn+1. ��

3.5 Dual exceptional collections

Recall that

E =

{
stab(x2, x4, . . . , xn), n even,

stab(x1, x3, . . . , xn), n odd,

Let us consider another graded matrix factorization of pa :

F :=

{
stab(x1, x3, . . . , xn−1, xn), n even,

stab(x2, x4, . . . , xn−1, xn), n odd.

Lemma 3.9 (i) One has an ungraded isomorphism

Hom∗(E, F(i)) =

{
k, i ≡ αn−3, αn−1 mod(a1a2 . . . an),

0, otherwise.
.

The degrees are determined as follows: we have

Hom
n
2
−1

(E, F(−x2 − x4 − · · · − xn−2))

= Hom
n
2 (E, F(−x2 − x4 − · · · − xn))

= k if n is even,

Hom
n−1

2 (E, F(−x1 − x3 − · · · − xn−2))

= Hom
n+1

2 (E, F(−x1 − x3 − · · · − xn))

= k if n is odd.

(ii) One has an ungraded isomorphism

Hom∗(F, E(i)) =

{
k, i ≡ −αn−2, a1a2 . . . an−1 − αn−2 mod(a1a2 . . . an),

0, otherwise.

The degrees are determined as follows: we have

Hom
n
2 (F, E(−x1 − x3 − · · · − xn−1))
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= Hom
n
2+1(F, E(−x1 − x3 − · · · − xn−1 − xn))

= k if n is even,

Hom
n−1

2 (F, E(−x2 − x4 − · · · − xn−1))

= Hom
n+1

2 (F, E(−x2 − x4 − · · · − xn−1 − xn))

= k if n is odd.

Proof This is a standard computation based on the quasiisomorphism

Hom(E, stab(a1, . . . , ak)) � E∨|a1=···=ak

for a regular sequence a1, . . . , ak (see e.g. [5, Lem. 4.2]). ��

Corollary 3.10 Let us define the integer N (n) by the following relation in L:

−x2 − x4 − · · · − xn−2 = αn−3τ + N (n) · p, if n is even,

−x1 − x3 − · · · − xn−2 = αn−3τ + N (n) · p, if n is odd.

Then

Hom�
n−1

2 �+2N (n)(E, F(αn−3)) = k.

Proposition 3.11 Let us consider the subcategory

B = 〈E(−αn−2), E(1− αn−2), . . . , E(−αn−3 − 1)〉. (3.5)

Let

LB :
⊥
B→ B

⊥

denote the left mutation functor (which is an equivalence). Then the exceptional col-

lection

(F(μ∨(a−)− 1), . . . , F(1), F)[�
n − 1

2
� + 2N (n)], (3.6)

where N (n) is defined in Corollary 3.10, is left dual to the exceptional collection

LB(E(−αn−3)), LB(E(−αn−3 + 1)), . . . , LB(E(μ∨(a−)− αn−3 − 1)). (3.7)

Proof To begin with, by Lemma 3.9, the only nonzero morphisms from objects of the

collection

E(−αn−3), E(−αn−3 + 1), . . . , E(μ∨(a−)− αn−3 − 1)
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to objects of the collection (3.6) are of the form

Hom∗(E(−αn−3 + i), F(i)) = k, for i = 0, . . . , μ∨(a−)− 1.

Also, by Lemma 3.9, the collection (3.6) belongs to B⊥. It follows that the only nonzero

morphisms from objects of the collection (3.7) to those of (3.6) are

Hom∗(LB(E(−αn−3 + i)), F(i)) = k, for i = 0, . . . , μ∨(a−)− 1.

Set

C = 〈E(−αn−3), E(−αn−3 + 1), . . . , E(μ∨(a−)− αn−3 − 1)〉, (3.8)

and let C′ denote the subcategory generated by the collection (3.6). It remains to prove

that C′ is contained in the subcategory generated by the collection (3.7), i.e., C′ ⊂

LB(C). To this end, we first observe that we have a semiorthogonal decomposition

MF�a (pa) = 〈E(−αn−2), LB(C),B,D〉,

where

D = 〈E(μ∨(a−)− αn−3), E(−μ∨(a−)− αn−3 + 1), . . . , E(μ∨(a)− αn−2 − 1)〉.

By Lemma 3.9, we have

C
′ ⊂ 〈B,D〉⊥,

so we get an inclusion

C
′ ⊂ 〈E(−αn−2), LB(C).

On the other hand, again by Lemma 3.9, we have

C
′ ⊂ 〈E(−αn−2)〉

⊥,

so we deduce that C′ ⊂ LB(C). ��

Corollary 3.12 One has LB(E(−αn−3)) � F[� n−1
2
� + 2N (n)].

Putting together the above computations we derive the following result. Let us

consider the functor

� : MF�a−(pa−)→ MF�a (pa) : X �→ RB

(
(
0 X)(μ∨(a−)− 1)

)
(αn−3)

×

[⌊
n − 1

2

⌋
+ 2N (n)

]
,

where B ⊂ MF�a (pa) is given by (3.5).
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Theorem 3.13 The functor � is fully faithful and

�(E),�(E(1)), . . . , �(E(μ∨(a−)− 1))

is the left dual collection to the exceptional collection

E, E(1), . . . , E(μ∨(a−)− 1)

Proof The computation of Lemma 3.8 gives


0(E(i)) � F(−i) for 0 ≤ i ≤ μ∨(a−)− 1. (3.9)

Hence, from Proposition 3.11 we get that the image of X �→ (
0 X)(μ∨(a−)− 1) is

contained in ⊥B. Since RB :
⊥B → B⊥ is an equivalence, we derive that � is fully

faithful. The duality of the needed collections follows from (3.9) and from Proposition

3.11. ��

3.6 Recovering the collection from the initial segment

3.6.1 Perfect pairing property

Theorem 3.13 implies that the directed A∞-category corresponding to the subcollec-

tion

(E, . . . , E(μ∨(a−)− 1))

of the AT-collection in MF�(pa) is equivalent to the directed A∞-category corre-

sponding to the right dual of the AT-collection in MF(pa−). Now we need to identify

the relation of the next object E(μ∨(a−)) to this subcollection.

For this we use the following general observations about exceptional collections.

Let E1, . . . , Em+1 be an exceptional collection in a triangulated A∞-category D, and

consider the subcategory

C := 〈E1, . . . , Em〉

Let λ, ρ : D → C denote the left and right adjoint functors to the inclusion, and let

SC denote the Serre functor on the subcategory C.

Lemma 3.14 The following conditions are equivalent.

(i) Hom∗(E1, Em+1) = Homd(E1, Em+1) = k and for each i , 1 < i < m + 1, the

compositions

Hom j (Ei , Em+1)⊗ Homd− j (E1, Ei )→ Homd(E1, Em+1) = k,

for all j are perfect pairings.
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(i′) Hom∗(E1, Em+1) = Homd(E1, Em+1) = k and for each C ∈ C, the composi-

tions

Homd(C, Em+1)⊗ Hom0(E1, C)→ Homd(E1, Em+1) = k,

are perfect pairings.

(i′′) Hom∗(E1, Em+1) = Homd(E1, Em+1) = k and for each i , 1 < i < m + 1, one

has

Hom∗(L E1 Ei , Em+1) = 0.

(ii) One has an isomorphism

ρ(Em+1)[d] � SC(E1).

(ii′) One has an isomorphism

λ(LC(Em+1))[d − 1] � SC(E1).

(iii) For any exceptional collection (E ′1, . . . , E ′m) generating C, there is an equivalence

of directed A∞-categories

end→(SC(E1), E ′1, . . . , E ′m) � end→(LC(Em)[d − 1], E ′1, . . . , E ′m),

identical on end→(E ′1, . . . , E ′m) = end(E ′1, . . . , E ′m).

Proof (i) ⇐⇒ (i′). The pairing in (i′) corresponds to a morphism of cohomological

functors

Hom(C, Em+1[d])→ Hom(E1, C)∨.

Condition (i) states that this morphism is an isomorphism for the generators

(Ei [n])1≤i≤m of C. Hence, the assertion follows from the five-lemma.

(i)⇐⇒ (i′′). For every Ei with 1 < i < m + 1, we have an exact triangle

L E1(Ei )[−1] → R Hom(E1, Ei )⊗ E1 → Ei → L E1(Ei )

Taking Hom(?, Em+1[d]) we get an exact sequence

. . .→ Homd+ j (L E1(Ei ), Em+1)→ Homd+ j (Ei , Em+1)

→ Hom− j (E1, Ei )
∨ ⊗ Homd(E1, Em+1)→ · · ·

Now we see that the perfect pairing property for Ei is equivalent to the vanishing

Hom∗(L E1(Ei ), Em+1) = 0.
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(i′)⇐⇒ (ii). Condition (i′) is equivalent to a functorial isomorphism in C ∈ C,

Hom(C, Em+1[d]) � Hom(E1, C)∨.

But we have functorial identification

Hom(C, Em+1[d]) � Hom(C, ρ(Em+1)[d]),

Hom(E1, C)∨ � Hom(C,SC(E1)).

Hence, (i′) is equivalent to a functorial isomorphism in C ∈ C,

Hom(C, ρ(Em+1)[d]) � Hom(C,SC(E1)),

i.e., to an isomorphism ρ(Em+1)[d] � SC(E1).

(ii)⇐⇒ (ii′). This follows from Lemma 3.1.

(ii′)⇐⇒ (iii). By adjunction, we have

end→(LC(Em+1)[d − 1], E ′1, . . . , E ′m) � end→(λ(LC(Em+1))[d − 1], E ′1, . . . , E ′m),

so condition (iii) simply states that the A∞-modules corresponding to SC(E1) and

λ(LC(Em+1))[d − 1] are equivalent. It remains to use the fact that the functor C �→

hom(C, E ′1 ⊕ . . . ⊕ E ′m) gives an equivalence of Cop with the category of left A∞-

modules over end(E ′1 ⊕ . . .⊕ E ′m). ��

We will call the property (i) the perfect pairing property for the collection

E1, . . . , Em+1. Note that as we observed in Sect. 3.3.2, this property holds for the initial

segment (E, E(1), . . . , E(μ∨(a−))) of the AT exceptional collection in MF�a (pa).

3.6.2 Adjoints andmutations

Assume that we have an exceptional collection E1, . . . , Em+l in a triangulated A∞-

category D, with 0 ≤ l ≤ m, such that

• there exists an autoequivalence τ of D such that τ(Ei ) = Ei+1;

• Hom∗(Ei , E j ) = 0 for j − i > m.

Let C = 〈E1, . . . , Em〉, and let ρ : D → C be the right adjoint functor to the

inclusion.

Lemma 3.15 (i) Assume that the perfect pairing property holds for E1, . . . , Em+1,

with Homd(E1, Em+1) = k. Then for i = 1, . . . , l, one has

ρ(Em+i )[d] � SC(Ei ). (3.10)

(ii) Assume in addition that for every pair of morphisms α : E1 → Ei [a] and

β : Ei → Em+1[d − a], such that 1 < i ≤ l, one has

τ i−1(β ◦ α) = τm(α) ◦ β. (3.11)
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Then the restriction of ρ,

ρ : 〈Em+1, . . . , Em+l〉 → C

is fully faithful.

Proof (i) Note that for each i = 1, . . . , l, the collection Ei , Ei+1, . . . , Em+i is the

image of E1, . . . , Em+1 under τ i−1, hence, the perfect pairing property holds for

Ei , Ei+1, . . . , Em+i . We claim that this property also holds for the collection

Ei , REi
E1, REi

E2 . . . , REi
Ei−1, Ei+1, . . . , Em, Em+i .

Indeed, this follows immediately from Lemma 3.14 since

Hom∗(L Ei
REi

E j , Em+i ) = Hom∗(E j , Em+i ) = 0

for j ≤ i − 1.

Since 〈Ei , REi
E1, . . . , REi

Ei−1, Ei+1, . . . , Em〉 = C, by Lemma 3.14, we

deduce an isomorphism

ρ(Em+i )[d] � SC(Ei ).

(ii) Equation (3.11) implies that a similar property holds for any pair α : Ei → E j [a]

and β : E j → Em+i [d − a], where i < j ≤ l. Let us choose identifications

Homd(Ei , Em+i ) � k for all i , compatibly with τ . Then the above property

implies that for any object C ∈ C and any morphism α : Ei → E j [a], the

following diagram is commutative:

Homd(C, Em+i )⊗ Hom−a(E j , C)
id⊗(?◦α)� Hom(C, Em+i [d])⊗ Hom(Ei , C)

Homd+a(C, Em+ j )⊗ Hom−a(E j , C)

(τm (α)◦?)⊗id

�
� k

�

Indeed, for f ∈ Homd(C, Em+i ) and g ∈ Hom−a(E j , C), we have equality

( f ◦ g) ◦ α = τm(α) ◦ ( f ◦ g).

Equivalently, the following diagram is commutative for any C ∈ C:

Hom(Ei , C)∨ � Hom(C, Em+i [d])

Hom(E j , C)∨

(?◦α)∨

�
� Hom(C, Em+ j [d])

τm (α)◦?

�
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which leads to the commutative diagram

SC(Ei ) � ρ(Em+i )[d]

SC(E j )[a]

SC(α)

�
� ρ(Em+ j )[d + a]

ρτm [d](α)

�

for every α : Ei → E j [a]. Since the horizontal arrows are isomorphisms (see

Lemma 3.14), It follows that the composed map

Hom∗(Ei , E j )
τm
� Hom∗(Em+i , Em+ j )→ Hom∗(ρ(Em+i ), ρ(Em+ j ))

gets identified with α �→ SC(α), so it is an isomorphism. Hence, the restriction

of ρ to 〈Em+1, . . . , Em+ j 〉 is fully faithful. ��

Lemma 3.16 Let D = 〈C0, C1, . . . , Cn〉 be a semiorthogonal decomposition, and let

ρi : D→ Ci denote the right adjoint functor to the inclusion. Assume that

• Hom(Ci , C j ) = 0 for j > i + 1;

• for every i < n, the restriction

ρi |Ci+1
: Ci+1 → Ci

is fully faithful.

Then we have canonical isomorphisms of functors

ρ0 LC1
. . . LCi−1

|Ci
� ρ0ρ1 . . . ρi−1|Ci

[i − 1], (3.12)

and for every i ≥ j ≥ 1, for Ci ∈ Ci , C j ∈ C j , the functor ρ0 gives an isomorphism

Hom(LC1 . . . LCi−1
Ci , LC1 . . . LC j−1

C j )
∼� Hom(ρ0 LC1 . . . LCi−1

Ci , ρ0 LC1 . . . LC j−1
C j ).

In particular, ρ0 is fully faithful on each subcategory LC1
. . . LCi−1

Ci .

Proof Step 1. We claim that for any Ci ∈ Ci , where i ≥ 1, and any C1 ∈ C1, the map

induced by ρ0,

Hom(LC1
. . . LCi−1

Ci , C1)→ Hom(ρ0 LC1
. . . LCi−1

Ci , ρ0C1)

is an isomorphism. For i = 1 this true by assumption, so we can assume i > 1.

Equivalently, we need to check that the canonical morphism

ρ0 LC1
. . . LCi−1

Ci → LC1
. . . LCi−1

Ci
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induces an isomorphism on Hom(?, C1). Let us consider the commutative square

induced by the adjunction morphism for ρ0,

ρ0 LC1
. . . LCi−1

Ci
∼� ρ0ρ1LC2

. . . LCi−1
Ci [1]

LC1
. . . LCi−1

Ci

�
� ρ1LC2

. . . LCi−1
Ci [1]

�
(3.13)

Note that the cocone of the bottom horizontal arrow is LC2
. . . LCi−1

Ci which is in

C⊥0 = ker(ρ0), so the top horizontal arrow is an isomorphism. Let us consider the

induced commutative square

Hom(ρ0 LC1
. . . LCi−1

Ci , C1) �∼ Hom(ρ0ρ1LC2
. . . LCi−1

Ci [1], C1)

Hom(LC1
. . . LCi−1

Ci , C1)

�

� Hom(ρ1LC2
. . . LCi−1

Ci [1], C1)

�

Note that the right vertical arrow is an isomorphism since ρ0|C1
is fully faithful (we

apply this to the objects ρ1LC2
. . . LCi−1

Ci [1] and C1 of C1). Finally the bottom hor-

izontal arrow is an isomorphism since Hom(LC2
. . . LCi−1

Ci , C1) = 0. This implies

that the left vertical arrow is an isomorphism as claimed.

Also, applying the isomorphism in diagram (3.13) to the categories (C1, . . . , Ci )

we get the functorial isomorphisms

ρ0 LC1
. . . LCi−1

Ci � ρ0ρ1LC2
. . . LCi−1

Ci [1] � ρ0ρ1ρ2 LC3
. . . LCi−1

Ci [2].

Continuing in this way we derive (3.12).

Step 2. Now we restate the result of Step 1 as

Hom(LC0
LC1

. . . LCi−1
Ci , C1) = 0

for i ≥ 1. Indeed, this immediately follows from the exact triangle

ρ0 LC1
. . . LCi−1

Ci → LC1
. . . LCi−1

Ci → LC0
LC1

. . . LCi−1
Ci → · · ·

Similarly, for i ≥ j ≥ 1, we have

Hom(LC j−1
LC j

. . . LCi−1
Ci , C j ) = 0.

Step 3. We claim that for any i ≥ j ≥ k ≥ 1, one has

Hom(LCk−1
LCk

. . . LCi−1
Ci , LCk

. . . LC j−1
C j ) = 0,

or equivalently, for Ci ∈ Ci and C j ∈ C j , the natural map
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Hom(LCk
. . . LCi−1

Ci , LCk
. . . LC j−1

C j )→ Hom(ρk−1 LCk
LCi−1

Ci , ρk−1 LCk
. . . LC j−1

C j )

is an isomorphism.

We use induction on j − k. The case j = k is exactly Step 2, so let us assume that

j > k. Note that by Step 2, we have

Hom(LCk−1
LCk

. . . LCi−1
Ci , Ck) = 0,

hence, for Ci ∈ Ci and C j ∈ C j we have an isomorphism

Hom(LCk−1
LCk

. . . LCi−1
Ci , LCk

. . . LC j−1
C j ) � Hom(LCk−1

LCk

×LCi−1
Ci , LCk+1

. . . LC j−1
C j ).

Since Hom(Ck−1, LCk+1
. . . LC j−1

C j ), we further have an isomorphism

Hom(LCk−1
LCk

. . . LCi−1
Ci , LCk+1

. . . LC j−1
C j ) � Hom(LCk

×LCi−1
Ci , LCk+1

. . . LC j−1
C j )

which vanishes by the induction assumption.

Finally, taking k = 1 we obtain the assertion we wanted to prove. ��

Remark 3.17 Note that the restriction of ρ0 to the subcategory

〈C1, . . . , Cn〉 = 〈LC1
. . . LCn−1

Cn, . . . , LC1
C2, C1〉

is not fully faithful provided C2 �= 0. Indeed, this is clear since ρ0(C2) = 0. Lemma

3.16 only checks that morphisms from left to right with respect to the mutated

semiorthogonal decomposition are preserved. However, we have Hom(C1, LC1
C2) =

0, whereas Hom(ρ0(C1), ρ0(LC1
C2)) is not necessarily zero for C1 ∈ C1, C2 ∈ C2.

Proposition 3.18 Assume that we have an exceptional collection E0, . . . , EN in a

triangulated A∞-category D, and for some m < N the following conditions hold

• there exists an autoequivalence τ such that τ(Ei ) = Ei+1;

• Hom(Ei , E j ) = 0 for j − i > m;

• the perfect pairing property holds for E0, . . . , Em with Homd(E0, Em) = k;

• for every pair of morphisms α : E0 → Ei [a] and β : Ei → Em[d − a], such that

0 < m + i ≤ N, Eq. (3.11) holds.

Let F−N , . . . , F−1, F0 be the left dual exceptional collection to E0, . . . , EN , so that

F−m+1, . . . , F0 is the left dual collection to E0, . . . , Em−1. Let C := 〈E0, . . . , Em−1〉

and let λ : D→ C denote the left adjoint functor to the inclusion (which exists as an

A∞-functor). Then

λ(F−N )

[⌊
N

m

⌋
(d − 1)

]
, . . . , λ(F−i )

[⌊
i

m

⌋
(d − 1)

]
,
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. . . , λ(F−m)[d − 1], F−m+1, . . . , F0

is a part of the helix associated with the full exceptional collection F−m+1, . . . , F0 in

C, and λ induces an equivalence of directed A∞-endomorphism algebras

end→(F−N , . . . , F0)
∼� end→(λ(F−N ), . . . , λ(F−m), F−m+1, . . . , F0).

Proof Let N = m N0 + r , where 0 ≤ r < m, and let us set

Ci := τmi (C) =

{
〈Emi , . . . , Emi+m−1〉, 0 ≤ i < N0,

〈Em N0 , . . . , Em N0+r 〉, i = N0.

Note that C = C0 and Ci ⊂ C⊥ for i > 1. Let also ρi denote the right adjoint functor

to the inclusion of Ci .

First, we observe that by Lemma 3.15, the functor ρ0|C1
is fully faithful and

ρ0(Em+ j ) � SC(E j )[−d]

for j = 0, . . . , m − 1. Using the autoequivalence τ , we deduce that for each i ≤ N0,

the functor ρi |Ci+1
is fully faithful and

ρi (Em(i+1)+ j ) � SCi
(Emi+ j )[−d]. (3.14)

It follows that for i < N0, the functor ρi−1|Ci
: Ci → Ci−1 is an equivalence.

Thus, the conditions of Lemma 3.16 are satisfied for our collection of categories

(Ci ). Hence, the functor ρ0 preserves morphisms from left to right on the semiorthog-

onal subcategories

LC1
. . . LCi−1

Ci , . . . , LC1
C2, C1

and is fully faithful on each of them. By Lemma 3.1, this is equivalent to the fact that

the functor λ preserves morphisms from left to right on

LC0
LC1

. . . LCi−1
Ci , . . . , LC0

, LC1
C2, LC0

C1, C0

and is fully faithful on each of these subcategories.

In addition, using (3.12) and (3.14) we compute

ρ0 LC1
. . . LCi−1

(Emi+ j ) � ρ0ρ1 . . . ρi−1(Emi+ j )[i − 1] � S
i
C
(E j )[−di + i − 1]

(we also used the fact that the equivalences ρi−1|Ci
for i < N0 commute with the

Serre functors). Using Lemma 3.1 we can rewrite this as

λLC0
LC1

. . . LCi−1
(Emi+ j ) � S

i
C
(E j )[−di + i]. (3.15)
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By Lemma 3.3, the left dual exceptional collection to E0, . . . , EN has form

LC0
. . . LCN0−1

τm N0(F−r+1, . . . , F0), LC0

. . . LCN0−2
τm(N0−1)(F−m+1, . . . , F0), . . . , (F−m+1, . . . , F0).

Note that any fully faithful functor sends the left dual of an exceptional collection to

the left dual of its image. Hence, by (3.15), applying λ to the above collection we get

S
N0

C
[N0(1− d)](F−r+1, . . . , F0), . . . ,S

N0−1
C
[(N0 − 1)(1− d)](F−m+1,

. . . , F0), . . . , F−m+1, . . . , F0

which is the part of the helix generated by F−m+1, . . . , F0 (up to shifts).

We also see from above that the map on directed Ext’s (from left to right) of this

collection, induced by λ, is an isomorphism. ��

3.6.3 Recursion for categories of matrix factorizations

Finally, we can prove the directed A∞-category AT (a) is obtained from AT (a−) by

the recursion R with N = μ∨(a).

Theorem 3.19 Let us start with the AT exceptional collection E, E(1), . . . , E(μ∨(a−)

−1) in MF�a−(pa−), extend it to a helix and take the segment H−μ∨(a)+1, . . . , H−1, H0

such that H0 = E. Now take the directed A∞-subcategory with the objects

F−μ∨(a)+1, . . . , F−1, F0, where

F−i := Hi

[
−

⌊
i

m

⌋
(n + 2m(a−)− 1)

]
,

where m(a−) = m(a1, . . . , an−1) is determined by (3.4). Then the directed A∞-

category corresponding to the dual right exceptional collection to F−μ∨(a)+1, . . . ,

F−1, F is equivalent to AT (a).

Proof Using Theorem 3.13 and Proposition 3.18 we get the statement with

F−i := Hi

[
−

⌊
i

m

⌋
(D(a)− 1)

]
,

where D(a) is the unique integer such that HomD(a)(E, E(μ∨(a−))) �= 0 in

MF�a (pa). Note that Eq. (3.11) holds in our case, due to the commutativity of the

Ext-algebra of the AT collection. The perfect pairing property also follows from the

structure of the Ext-algebra (see Sect. 3.3.2).

It remains to check the equality

D(a) = n + 2m(a−).
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To this end we observe that D(a) is determined as follows. If n is even then we should

have

(a1 − 1)x1 + (a3 − 1)x3 + · · · + (an−1 − 1)xn−1 = μ∨(a−)x1 + D(a)T .

If n is odd then we have

T − x1 + (a2 − 1)x2 + (a4 − 1)x4 + · · · + (an−1 − 1)xn−1 = −μ∨(a−)x1 + D(a)T .

But using the relations ai x i = 2T − x i+1, we immediately see that in both cases the

left-hand side is equal to �S = nT − x1− · · ·− xn . Hence, the assertion follows from

Lemma 3.6. ��
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Appendix A: Mathematica code

We provide a simple Mathematica code in Figure A for the readers who want to

experiment with the results in Sect. 2.4. We stress that we do not use such numerical

approximations in our argument. We did use this experimentation to come up with the

arguments.
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