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Abstract

We consider Takahashi’s categorical interpretation of the Berglund—Hubsch mirror
symmetry conjecture for invertible polynomials in the case of chain polynomials. Our
strategy is based on a stronger claim that the relevant categories satisfy a recursion of
directed A o-categories, which may be of independent interest. We give a full proof
of this claim on the B-side. On the A-side we give a detailed sketch of an argument,
which falls short of a full proof because of certain missing foundational results in
Fukaya—Seidel categories, most notably a generation statement.

1 Introduction

Recall that a polynomial w € C[x1, ..., x,] is called invertible if

n n
w = E Ci H)Caij
= i ;

i=1 j=I

forc; € C* and anondegenerate integer matrix A = (a;;) and w has an isolated critical
point at the origin. Such a polynomial is weighted homogeneous for a canonical system
of weights, which is uniquely determined by requiring the weight of the action on w
to be det(A). Rescaling the variables one can make all ¢; = 1.

For an invertible polynomial w defined by the matrix A, the dual invertible poly-
nomial w" is defined by the transposed matrix A’.
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Invertible polynomials can be classified by an elementary argument [12]. Every
invertible polynomial is the sum of atomic ones in different sets of variables. The
atomic invertible polynomials are of the following three types:

e Fermat type: xi",
e chain type: x{'x2 + x52x3 + - 4+ x0" 7 X, + X",
e loop type: x{'x + x52x3 4+ - + xs":llxn +xxy,

where n > 1 and all ¢; > 1. In fact, we will think of the Fermat polynomials as chain
type polynomials with n = 1.

The homological mirror symmetry conjecture for invertible polynomials states for
an invertible w and its dual w" that there is an equivalence of triangulated categories

D(F (w)) =~ D(MFr(w")) (1.1

between the derived Fukaya—Seidel category of w and the derived category of maxi-
mally graded matrix factorizations of w" (see Conjecture 21 from [20], which seems
to have been inspired by Conjecture 7.6 from [21]). To be precise, here we use the
Fukaya—Seidel category as constructed in Seidel’s very first paper in the subject [16].

In the present work we consider this conjecture in the case of chain polynomials.
Note that for the chain polynomial

ap—
Pa =x{"x2+xx3+ -+ x," Xy + X0

depending on the vector a = (aj, ..., a,) € Z’;l, the dual polynomial is p,v where
a” = (ay, ..., ay).Letus mention that for chain polynomials in one and two variables,

complete proofs of the conjecture exist (see [8] for the n = 1 and a = (2, ay) cases,
and [9] for the general n = 2 case).

Our strategy is based on a recursive computation of the relevant categories which
may be of independent interest. It is known that the categories on both sides admit
full exceptional collections. On the A-side we use the Morsification and distinguished
basis introduced in [22], while on the B-side we use the full exceptional collection con-
structed by Aramaki and Takahashi in [1] (to which we often refer as AT-collection).
That these two full exceptional collections should correspond to each other under a
homological mirror functor was conjectured in [22]. Thus, we can reformulate the con-
jecture as an equivalence of the corresponding directed Aso-categories (with objects
given by the specified full exceptional collections), which we denote as F(p,) and
AT (aY).

1.1 Arecursion for directed A..-categories and the main claim

We say that two directed Ao-categories are equivalent if there is an Ay, quasi-
isomorphism between them which preserves the ordering of the objects.

Our recursion is based on the following operation for directed A, -categories. Given
a directed Ao-category C with objects e = (Ey, ..., E,;) and a number N > n, we
construct a new directed Aoo-category CT with N objects e™, as follows.
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e Extend e to a helix inside 7w (C) and take the segment f of length N in this helix
ending with E.

e Note that f is no longer an exceptional collection in general (it can even have
repeated elements). We define C’ as the directed Aoo-category defined by the
directed Ao-subcategory of f (keeping track of only morphisms from left to right
in the order of the helix).

o Inside Tw(C’), we consider the right dual exceptional collection et and define
C™ to be the corresponding directed Aoo-category.

We will loosely say that a directed Ao,-category is obtained from C by the recursion
R with number N ifitis equivalent (as a directed A oo-category) to C* described above.

For any directed Aoo-category and an m-tuple of integers o = (o1, ..., 0p), We
can define the o -shifted directed Aoo-category by changing the grading of morphism
spaces by o; — o;. If one directed A-category is equivalent to a shifted version
of another, we say that these two are equivalent up to shifts. We say that a directed
Axo-category is obtained from C by the recursion R with number N up fo shifts if
it is equivalent up to shifts to C* described above. Note that the application of R to
directed Ao-categories equivalent up to shifts result in directed A.-categories which
are equivalent up to shifts.

Let us call the following our Main Claim for A- and B-sides. On the A-side we
claim that F(pg,,...q,) is obtained from F (py,.....,) by the the recursion R up to shifts
with N = p(ay, ..., a,), the Milnor number of the singularity of p,. On the B-side
we claim that AT (ay, ..., a;) is obtained by the recursion R from AT (a,, ..., az)
again with N = u(ay, ..., a,), up to shifts.

In fact, we make this claim starting from n» = 0, where the corresponding A
categories on both sides are the same: the category C» with one object E and
Hom(E, E) = Z concentrated in degree 0. Therefore, our Main Claim for A- and
B-sides lead to a proof of the homological mirror symmetry conjecture for the chain
polynomials.

We prove the Main Claim for B-side fully. We are also able to compute the relevant
shifts. On the A-side we give a detailed sketch of an argument that we believe the
reader will find quite convincing. We do not attempt to compute the shifts. A full
proof on the A-side awaits the development of a couple of foundational results about
Fukaya—Seidel categories of tame Landau—Ginzburg models. We explain these results
in Sect. 2.1, specifically see Remarks 2.1 and 2.4. There is a less major point in which
our argument falls short of a full proof, which is explained in Remark 2.23.

Remark 1.1 The recursion R is bound to be related to the recursion of Seifert matrices
that was used in [22], but we do not know exactly how.

1.2 An equivariant equivalence

In this section, we introduce some notation that will be used later and also discuss
the symmetries of both sides. How the symmetries on both sides correspond to each
other is an important guiding principle for our strategy. Of course symmetries played
an important since inception of Berglund—Hubsch—Henningson mirror symmetry con-
jecture [3, 4].
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We define the group of symmetries of p, to be

Fai= (s d D) 120 = - = A0 = A = 3) € (€)™ (1)

We also define:
T = {(. . h) [A{d = = A, =20 c €)™, (13)

which is isomorphic to the subgroup of I'; given by A = 1. In what follows we denote

the generator of 1“2 with A1 = e% by ¢,. By an abuse of notation we use ¢, also for
the symplectomorphism of C" given by the action of ¢, € Fg.

Now consider f‘2 the group of graded symplectomorphisms of C" whose underlying
symplectomorphism is given by the action of an element of Fg. There is a short exact
sequence of groups:

0->7Z—T%-T1%-0.

The group f‘2 naturally acts on D(F(p,)), with the image of 1 in f‘g acting as the
shift [1]. We will not use this action except for stating Conjecture 1.3 and the remark
proceeding it, so we omit the details.

Let us also consider the Pontrjagin dual of 'y,

L, := Hom(T,, C"),

which we identify with the abelian group with the generators x71, ..., x,, p and the
defining relations

ajx; +x2 =---=ay_1Xp—1 + Xy = apX, = Pp.

The action of I'y on C" provides C[xy, ..., x,] with an L,-grading, so that x; has
degree X; and p, has degree p (this is the maximal grading for which p, is homoge-
nous). As a result, L, canonically acts on D(MFr(p,)) (see [1, Sec. 2]). In fact, it is
more convenient to consider a Z /2 extension of L, called Za, Nwhich has an additional
generator T acting on D(MFr(p,)) by a shift. The group L, is generated by two
elements: 7 and

T =(—1)"x;
subject to the single relation
d(a)t = (=1)"2(d(a) — n(a)T, (1.4)
where w(a) = ulay,...,ap) =ay...ay —ay...a, +as...a, — --- is the Milnor

number, and d(a) = ay .. .a, (see Sect. 3.3.1).
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Finally, we set
0. __ 0 *
L, := Hom(I'y,C"),
and note the existence of the short exact sequence
O—>Z—>Za—>L2—>O.

It is well known that F(a) is isomorphic to Lgv , but the following extension appears
to be new.

Proposition 1.2 f‘(a) is isomorphic to Zav as an extension of 1"2 = LSv by Z.. Under
this isomorphism, the element T € L,v corresponds to some explicit graded lift ¢, of

Pa-

Proof Let us take the graded lift ¢, of ¢, that comes from it being the time 1 map of
the flow

2mti (—1)yn—12zi
X1, ..., xp) > (ed@xq, ... e an xy).

We need to check that the generators ¢, and 1 € Z of I'0 satisfy the same relation
as T and T in Zuv, i.e. Eq. (1.4). We know that ~,'11(“) is a graded lift of the identity
symplectomorphism. We need to compute how it differs from the trivial graded lift.
For this we choose the holomorphic volume form dx; A ... A dx, and use the fact

that the origin is fixed. Thus, we need to find the winding number of the path

Arti(l—ay+-+(—D"ay..a,_1)
e d(a)

as ¢ goes from O to d(a). This number is (—1)"2(d(a) — u(a")), which gives the
required relation. O

Conjecture 1.3 There is an HMS equivalence
D(F(pa)) =~ D(MFL ., (pav)) (1.5)

equivariant with respect to the actions of f’g = Zav.

Remark 1.4 We already know that the generator T’ € L,v acts on both sides as the
shift functor. It is also known (Proposition 3.1 of [1] and Lemma 3.6 below) that the
second generator T € L,v acts on the B-side by the autoequivalence satisfying

@ = TN@g=1 (1.6)
where S is the Serre functor and N (a) is an explicit integer. If the expected relationship

between monodromy and Serre functor on the A-side is true (see e.g. [11] for a survey),
then it can be shown that the action of ¢, on the A-side satisfies the same property as
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well. Therefore, for the subgroup of Lo generated by T and 4@ the equivariance
follows from this. The relation (1.4) shows that this subgroup is the entire L,v in
the case when p(a) and d(a) are coprime, so in this case the equivariant conjecture
follows from the non-equivariant one. The equivariant conjecture does not seem to
follow from the non-equivariant one if @ (a) and d(a) are not coprime.

We will use the perturbation x; 4+ p, whose distinguishing property is that the
symmetry by FO persists to it in a way that we can explicitly describe. First, note that
X1 + pq 1s equivariant with respect to the order u(a) cyclic subgroup of I', given

by A1 = A. Let us denote the generator of this group with A = eH(a) by v,. Let
us also define a symplectomorphism p,  of C" by lifting (using parallel transport)
the following diffeomorphism ¢, of the base of ex; + p, for all |e] < 1: it does
nothing inside a disk which contains all the critical points; then starts rotating in an

annulus in clockwise direction; the amount of rotatlon increases until it reaches =~ m (n) ;

and everything outside the annulus gets rotated by (n) clockwise (see the right side

of Fig. 1). Recall that the group Fg is generated by the symplectomorphism ¢,. The
following proposition gives a symmetry of x| + p,, isotopic to ¢,.

Proposition 1.5 p, ¢ o Y, is isotopic to ¢, through symplectomorphisms.

Proof It is clear that p, o V¥, is isotopic to p,.0 o ¥, through symplectomorphisms
by considering a path in the complex plane from € to 0.
Now we note that the rotation of the base of p, by 6 lifts to the symplectomorphism

iOw iOwy

(Z],--~,Zn)'_)(e Zlyeees€ Zn)’

where wy = an) Hence, we see that p, ¢ is isotopic through symplectomor-

phisms to

_ 2miwg _ 2miwy
(21, evszn) > e @ zq, ... ,e r@ z,|.
Recalling the definitions of ¥, and ¢,, we see that the assertion follows from

1 _ u(as, ..., ag) _ 1
w(a) d(a)u(a) d@@a)’

1.3 More details on the A-side

The following choice of perturbation and distinguished basis of vanishing paths for
pa Was introduced and analyzed at the Grothendieck group level in [22]. We consider
the Morsification

X1+ pa(x1, ..., xn).
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Fig.1 On the left is the diffeomorphism of the base that gives the monodromy and on the right the one that
gives pg,e

We consider the diffeomorphism ¢ := ¢ o rota;/;(a), Where ¢ was defined in the
previous section and roty;/,,(4) is the rotation by ;% counterclockwise. Note that ¢
preserves the set of critical values and has a symplectomorphism lift ® := p,; 1 o ¥,.
Note also that ¢ acts as identity outside the outer boundary of the annulus on Fig. 1.

We choose a critical value, a positive real regular value that is outside of the support
of ¢ and a vanishing path y between them which lies outside of the circle containing
the critical values. We choose

Ve o)s . MO ()

as our distinguished basis of vanishing paths. We also grade the corresponding
Lefschetz thimbles in a way that is compatible with a fixed graded lift of ® (see
Propositions 1.2 and 1.5.)

Remark 1.6 We mentioned this convenient grading choice but we will not actually be
using it. This is possible only because in this paper, on the A-side we are attempting
to prove the Main Claim up to shifts. The grading convention that we just spelled out
will without doubt play a role if one tries to upgrade the argument to a proof of the
Main Claim taking into account the shifts.

This gives rise to a directed Fukaya—Seidel A -category A, (which is a directed
Aso-category) in the sense of [16]. We had temporarily called this category F(p,)
above, but we will not do that anymore.

Remark 1.7 We will make a definite choice of y in Sect.2.2 but note that because of
the symmetry by the graded lift of @ different choices give rise to equivalent directed
Ao-categories.

For a = & the empty tuple, we set Ay := Cx. This corresponds to the Fukaya—
Seidel category obtained from the linear map pg : C° — C and a vanishing path.
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2338 U. Varolgunes, A. Polishchuk

Fora = (ay, ..., ay,) let us set
—a:=(ap,...,ay), a—:=(ay,...,a,—1).

Conjecture 1.8 A, can be obtained from A_, by the recursion R.

As mentioned above, we give a detailed sketch of a computation strongly suggesting
that this statement is true. We fall short of a full proof mainly because of some miss-
ing foundations in the theory of Fukaya—Seidel categories of tame Landau—Ginzburg
models.

Remark 1.9 Note that even though this statement is purely in terms of directed Fukaya—
Seidel categories in their earliest incarnation from [16], our suggested proof crucially
relies on the existence of a category which admits all thimbles as objects as is the
case in the modern reincarnations. The main property whose proof is missing is the
generation statement.

It is instructive to give a proof of this conjecture for tuples of length 1. In this case
our Morsification is

x+x4:C— C.

Let us denote by .4 the directed A-category obtained from the exceptional collection
in the category of representations of the graded quiver Q4,1

1 52 S 00 Sy g -1,

where |c| = 1 and ¢ = 0, given by the simple modules. It is straightforward to show
directly that Ag, := A(g) :is isomorphic to A but we will derive this from our general
strategy.

First, we will show that A arises from Cg via the recursion R and then we will see
how this is realized geometrically on the A-side.

The helix inside 7w (Cg) is simply the only object E of C repeated over and over.
Therefore, the directed Ao-category we obtain by keeping a; — 1 adjacent members
of this list is the directed category with objects Py, ..., P, —1, where forevery i < j,
we have Hom(P;, P;) = Z[0] and all compositions are induced by multiplication
in Z. This can be identified with the exceptional collection given by the projective
modules over the quiver O, —1. Passing to right dual dual collection we obtain the
collection given by the simple objects, so we get A as the result of the recursion.

Geometrically, we are looking at the Lefschetz fibration x + x*' : C — C and
a distinguished collection as described above. Corresponding to “taking right dual
exceptional collection” step, we compute the directed Fukaya—Seidel category asso-
ciated to the left dual basis of vanishing paths. This can be computed inside the fiber
over 0 by appropriately moving (see Fig.5 for the same move with slightly different
conventions) the base point—with the radial vanishing paths as shown in Fig.2. We
consider the map {x + x*' = 0} — C given by projecting to the x coordinate (i.e.,
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*x—> <«—X

Fig. 2 On the left we see the critical values of x + x“1 along with the choice of vanishing paths that we
use in the computation—they are obtained by dragging the reference fiber to the origin appropriately. The
middle picture shows the matching path corresponding to the movement of the fiber shown on the left. The
right picture shows all the matching paths and the behavior of outer critical values as r — 0

the natural embedding). The vanishing cycles of the radial paths computed using the
Lefschetz bifibration method are given by the radial matching paths, see Fig.2. All
the intersections (and structure maps) for the matching cycles are localized in the
central fiber. In fact considering the family x + rx“!, where r goes from 1 to O the
directed categories with the continuously deformed matching paths do not change.
When r = 0 what we see is precisely the map py : C° — C and radial paths going
to infinity. The directed intersection numbers give the directed subcategory associated
to the repetition of E inside Tw(Cgx)! that arose from the truncation of the helix in
the previous paragraph.

Remark 1.10 The strategy for n > 1 is very similar but it involves an extra step. We
would like to refer the reader to Remark 3.8 (and also Remark 3.7 for some related
notation) of [22] for the immediate difficulty that arises when one applies the same
strategy for n > 1. What is achieved in the present paper relies on an additional
perturbation (adding a small multiple of x;) to the Morsification x| + p, before we
project the fiber above the origin to C using the x| coordinate (this projection is called
gq in Remark 3.8 of [22] ). Note that we continue to use the fiber above 0 and the
radial paths as vanishing paths after the second perturbation. We also still analyze the
fiber above 0 by projecting it to the x; coordinate. The second perturbation breaks
the Z/wu(a)Z symmetry and splits the fat singularity of the x| projection into p(—a)
non-degenerate singularities but it allows us to capture the information that was hidden
in the very degenerate fiber above O of the x-projection.

! Here we are omitting an explanation of how Cg can be considered as a directed Fukaya—Seidel Ao
category of pg : €Y — C. This can be done using [19]’s approach but it is confusing and not needed. To
be able to interpret the distinct radial paths as objects of a geometric category the most natural option is to
use a formalism similar to the one presented in Sect.2.1.

@ Springer



2340 U. Varolgunes, A. Polishchuk

1.4 More details on the B-side

We consider the dg-category MFr, (p,) of I'4-equivariant (or equivalently, L,-graded)
matrix factorizations of p,. For each L,-homogeneous ideal Z of the polynomial
algebra S, there is a well-defined object of this category, which we denote by stab(Z):
it is the stabilization of the module S/Z, coming from the relation between matrix
factorizations and the singularity category (see e.g., [15]).

Following Aramaki—Takahashi [1] we consider the following graded matrix factor-
izations of p,:

£ stab(xy, x4, ..., X,), n even
" |stab(xy, x3, ..., x4), nodd

The collection
eq = (E,T(E),..., T @~1(E))

is afull exceptional collection in MFr, (p,), where ¥ (a) := u(a“) = u(ay, ..., ai).
We refer to it as the AT-collection and denote the corresponding directed A,-category
by AT (a).

Theorem 1.11 (Theorem 3.19) AT (a) can be obtained from AT (a—) by the recursion
R up to shifts.

The first ingredient in the proof is a construction of a fully faithful functor

MFr,_(pa-) = MFr,(pa). 1.7

As was observed in [7], there is a natural such functor arising from the VGIT machinery
of Ballard—Favero—Katzarkov [2].

The next step, based on explicit computations with matrix factorizations, is the
identification of the image under the above functor of the exceptional collection e,_
with the left dual of the initial segment of the exceptional collection e,. This is done
by a standard computation of morphisms between Koszul matrix factorizations.

The last step is the identification of the directed Ao-algebra of e, with that of the
part of the helix in the subcategory generated by the initial segment, which we identified
with AT (a—). This is proved using some special features of the AT-collection. Namely,
the key property is that for this collection we have Hom* (E, T/ E) = Ofori > u" (a—)
while the morphisms for the subcollection (E, tE, ..., N 5 ) form a Frobenius
algebra (note that the length of this subcollection is one more than the initial segment
that corresponds to AT (a—)). Using this, plus a little bit more, we compute the image
of the left dual collection to the AT-collection under the left adjoint functor to the
inclusion (1.7) and show that the corresponding directed Hom-spaces are preserved.
Strangely, our argument for this uses very little information about the functor (1.7),
but depends crucially on the properties of the Ext-algebra of the Aramaki—Takahashi
exceptional collection.
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Structure of the paper

Section 2 is entirely about the A-side and contains our detailed strategy for the proof
of Conjecture 1.8. In Sect.2.1, we give an overview of a Fukaya—Seidel category of
thimbles. This section is rather conjectural and brief. In Sect.2.2, we give an outline
of our strategy and reduce the Main Claim to a concrete statement in Theorem 2.10.
Section 2.3 is an elementary section containing results about roots of a certain family of
polynomials. These results then used to compute certain vanishing cycles as matching
cycles in Sect.2.4, which is the heart of the argument in the A-side.

Section 3 is entirely about the B-side and contains our proof of Theorem 3.19.
After recalling some basic tools from the theory of exceptional collections, we recall
in Sect. 3.3 the definition and some properties of the Aramaki—Takahashi exceptional
collection in the category of graded matrix factorizations of chain polynomials. In
Sect. 3.4 we outline the construction of the functor (1.7) and give a characterization
of the image of the AT-collection under it. In Sect. 3.5, we find a mutation functor that
takes the image of the collection AT (a—) under (1.7) to the dual collection to the
initial segment of AT (a). Finally, in Sect. 3.6, we combine the previous ingredients
with some additional purely formal manipulations to prove Theorem 3.19.

In Appendix A, we provide the simple Mathematica code used in discovering the
statements of Sect.2.3 and Proposition 2.20.

2 Computation on the A-side

Let us use the standard Fubini-Study Kahler structure on C”* along with the holomor-
phic volume form 2 = dz; A ... A dz, in what follows.

2.1 A Fukaya-Seidel category of thimbles

Throughout this section let f : C" — C be a tame Lefschetz (i.e. Morse) LG model
in the sense of [6]. Using Proposition 2.5 of [6], we see that for any a € Z” | and
oy, ...,a, € C,

Pa(x1, ..., xp) +ajx;+--+apx, :C" = C

is a tame LG model.

We will assume that the construction of the Fukaya—Seidel category introduced
in an unpublished manuscript of Abouzaid—Seidel (see [18]: the A, -category A as
defined in equation (5.58) as a localization of the A,-category A2 that is defined
in the first line of page 40) can be undertaken for f. We will call the resulting A-
category F(f). Below we discuss some properties of this Ax-category referring to
[18] for details.

Let us call path p in the base of f a horizontal at infinity (HAI) vanishing path if
it can be parametrized by a smooth proper embedding y : [0, co) — C satisfying the
following properties
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2342 U. Varolgunes, A. Polishchuk

e y(¢) is acritical value if and only if r = 0.
e For some #p > 0 and ord(p) € R, Re(y(t)) > 0 and Im(y(t)) = ord(p) for all
t = 1.

Let us call ord(p) the ordinal of p.

To each HAI vanishing path, we can associate a (Lefschetz) thimble, which is an
embedded non-compact Lagrangian submanifold of C". By equipping these thimbles
with gradings, we can view them as Lagrangian branes, which we call graded thimbles.

Let Ly, ..., Ly beanordered collection of graded Lagrangians in C" each of which
is either a closed exact Lagrangian sphere or a graded thimble of a HAI vanishing path.
We also make the crucial assumption that the no two of the HAI vanishing paths have
the same ordinal. Then, we can define a directed Aoo-category Fuk™ (L1, ..., Ly)
with the ordered list of objects corresponding to L1, ..., Ly using

e consistent choices of compactly supported Hamiltonian perturbations to make
Lagrangians transverse (directedness really helps here);

e almost complex structures which agree with the standard complex structure of C”
outside of a compact subset

to define the structure maps. Fuk™ (L1, ..., Ly) is well defined up to Ao-quasi-
isomorphism respecting the ordering of the objects. This is standard (see [19] for
example) except obtaining the necessary C%-estimates in our particular set-up.

Let us give more details on one of the few possible approaches on obtaining the C°
bounds. A standard application of the open mapping principle shows that all of the
curves that are solutions of the various perturbed pseudo-holomorphic curve equations
that we need to consider in the procedure project into a compact subset K C C of the
base of f. To deal with escaping to infinity within £ ~!(K) we can use monotonicity
techniques since L; N f~'(K) is compact for all i = 1, ..., N and the standard flat
metric on C" is geometrically bounded.

Let us now recall very briefly what the objects of F(f) are in the Abouzaid—
Seidel approach. For every homotopy class of HAI vanishing paths let us choose a
representative path pg. Next, for each graded thimble T (pg) over pg, we choose an
infinite sequence 7 (p1), T (p2), . . . of graded thimbles, such that the underlying HAI
vanishing paths p; are homotopic to pg and the gradings are transported from 7 (pg),
and such that the sequence of real numbers ord(p;) is strictly increasing and tends
to infinity. Objects of F(f) are all the graded thimbles obtained as a result of this
procedure (we assume that our choices of paths are sufficiently generic). Note that the
objects T'(p;) are all quasi-isomorphic to 7' (pg) as objects of F(f).

Remark 2.1 To achieve this last crucial point, Abouzaid-Seidel procedure involves
localizing an auxillary Ao-category at certain continuation elements. Obtaining the
CO estimates that are necessary to define these elements and prove that they satisfy the
desired properties is non-trivial. The relevant perturbed pseudo-holomorphic curve
equations involve moving boundary conditions (thimbles moving at infinity), which
makes it difficult to use the open mapping principle. Therefore one needs to rely
entirely on monotonicity techniques. Even though we fully believe that this can be
done, we do not explain how to do it. This is one of the remaining steps to turn our
strategy into a full proof.
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N waG

Fig.3 On the left we see HAI vanishing paths of objects ordered as written. Their directed subcategory can
be computed using the HAI vanishing paths on the right

Given HAI vanishing paths py, ..., py and graded thimbles 71, . . . Ty above them,
which are assumed to be objects of F(f), one has a concrete way of computing the
directed Ao-subcategory of the ordered collection 77, ... Ty in F(f). Namely, we
find graded thimbles Ti, ..., Ty (not necessarily objects of the category) such that
HALI vanishing paths pi, ..., py are in the same homotopy class with py, ..., pn,
respectively, and the brane structure on 7; is transported from 7, with the following
property

e the ordinals of py, ..., py are strictly decreasing.

Then the directed Aoo-category Fuk™ (Th, ..., TN)~ is quasi-isomorphic to the
directed Aoo-subcategory we are interested in, where 7; is sent to 7;. We call this
the Computability property of F. See Fig.3 for a depiction of the process.

Remark 2.2 For the Ao-category constructed in Seidel’s book (Section 18 of [17])
such a computation involves the double covering trick and computing the invariant
part of a certain A, algebra of closed Lagrangians under a Z/2 action. This makes it
hard to use in our argument.

There is a more refined version of the Computability property if pi, ..., py are
pairwise disjoint paths with ord(p1) < --- < ord(p,). We choose a sufficiently large
positive integer A and bend the paths to py, ..., py near Re = oo such that they all
pass through (A, 0), but do not intersect otherwise. Then, we obtain an ordered col-
lection of graded Lagrangian spheres (vanishing cycles) Vi, ..., Vy inside f “1A).
Now, we can define a directed Fukaya—Seidel category FS™ (V1, ..., Vy) asin [16].
Combining the results of [19] with the Computability property, we can show that
FS™(Vy, ..., Vy)is quasi-isomorphic to the subcategory of T1, ... Ty with V; map-
ping to T;. Let us call this the Computability in the fiber property.

The usefulness of F(f) is entirely due to the following generation property. We
first state it and then briefly explain the terms used in it.

Conjecture 2.3 (Generation by distinguished collections) Yoneda images of a sequence
of objects of F () which correspond to a distinguished collection of graded thimbles
generate Tw(F(f)).
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Remark 2.4 Ttis widely expected that this property will follow from a geometric trans-
lation to the Weinstein sector framework, but this has not been done in the literature
yet. This is the main missing piece from our strategy being a full proof.

A collection of pairwise collection HAI vanishing paths, one for each critical value,
is called a distinguished collection of HAI vanishing paths. Choosing an arbitrary brane
structure on each of the thimbles gives what we called above a distinguished collection
of graded thimbles. Note that such a collection T, . . ., T,, can be naturally ordered by
requiring that the corresponding paths py, ..., p, satisfy ord(p1) < - -+ < ord(py).
With this order (71, . .., T,) is an exceptional collection in Tw(F(f)), and the above
conjecture states that this exceptional collection is full.

The following weak version of the old conjecture “monodromy gives a Serre func-
tor” is crucial in our argument. Its proof is quite simple given the Generation by
distinguished collections property.

Proposition 2.5 (Geometric helix equals algebraic helix) Consider a collection of
homotopy classes of HAI vanishing paths {y;}icz such that

® V1, ...Vn can be represented by a distinguished collection of HAI vanishing paths
e For every i € Z, a representative of yi_, is given by applying the monodromy
diffeomorphism (see the left side of Fig. 1) to a representative of y;.

Assume that {T;};cy, are some corresponding objects of F (f). The brane structures
can be chosen such that the Yoneda images of this collection forms a helix inside

Tw(F(f)).

Proof sketch From Fig.3 (which gives an example with n = 3) we see that
Hom(7;, Tp) = O fori = 1,...,n — 1, and Hom(7},, Ty) is 1-dimensional. This
implies that 7o with an appropriate brane structure is the left mutation of 7,, through
(Th, ..., Ty—1). Similarly, Hom(7; 41, T;) = 0fori =2, ..., n, and Hom(7}+1, T1)
is 1-dimensional. Hence, 7,41 with an appropriate brane structure is the right mutation
of 71 through (7>, ..., T,). Since the helix is obtained by iterating these two kinds of
mutations, our assertion follows. O

We will also use the following geometric realization of dual exceptional collections
(see Sect. 3.1 for the definitions concerning exceptional collections). The proof is again
straightforward assuming generation by distinguished collections.

Given a homotopy class of a distinguished collection of HAI vanishing paths
[{yi}!_o). we can talk about the left and right dual homotopy class of a distinguished
collection of HAI vanishing paths. The left (resp. right) dual admits a representative

distinguished collection {Vyi}?:_n (resp. {yiv}?in) all of whose ordinals are smaller

(resp. larger) than the ordinals of y;, i = 0,...,n and y; and Vy; (resp.y,’) can
only intersect at a critical value for all i = 0,...,n and j = —n,...,0 (resp.
k=n,...,2n).

Proposition 2.6 (Geometric dual equals algebraic dual) Consider a homotopy class
of a distinguished collection of HAI vanishing paths [{y;}'_,] and let [{*y; }?:_n] be
the left dual. Assume that {T;}}_, and (119 are some corresponding objects of

= i=—n
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F(f). Up to shifts, the Yoneda images of the {T,-}?:_n give the left dual exceptional
collection to the one of {T;}!_ inside Tw(F (f)). The analogous statement holds for
the right duals.

2.2 Outline of the recursion on the A-side

n

21> n = 1, we define the

For an n-tuple of positive integers a = (ay, ..,a,) € Z
polynomial:

Pa(@is ... zn) = —z{' 22+ 25723 — -+ (=D)"zi. 2.1)

Note that we have changed the signs of some of terms from the original definition
of p, given in the introduction. This choice makes the critical point computations
much cleaner. It is straightforward to relate our statements here to the statements in
the introduction by simple diagonal changes of variables.

Let us also define g, : C"* — C as the Lefschetz fibration given by

> 21 + pa(2).
Recall that we defined
u() =play,...,ap)=ay...ap —az...ap+az...ay, —---

in the introduction. It is well known that p(a) is the Milnor number of the singularity
of p,. For a discussion of the convenient numerics of u(a) see Sect.3.3.1. The map g,
has w(a) critical points, and the corresponding critical values are distinct and placed
equiangularly on a circle centered at the origin. One of the critical values is on the
positive real axis. For proofs of these statements see Appendix A in [22]. Furthermore,
the fact that the number of critical points of €z; + p,(z) for all € € C* is equal to the
Milnor number w(a) implies that the critical points of g, are nondegenerate.

Let us fix a large positive real number A and introduce some vanishing paths in the
base of g, whose one end is at A and none of which intersect the positive real axis to
the right of A. Figure4 should help the reader follow along. We will call some of our
vanishing paths standard and others dual. We will not be careful about distinguishing
between vanishing paths and their homotopy classes.

We first describe the standard vanishing paths {y;}7°_ . These are indexed by
integers and the one corresponding to 0, i.e. yy, is the straight path from the positive
real critical value to A. Recall that we defined the diffeomorphism ¢ : C — C as the
composition ¢ := @1 o 10ta/,(a) in Sect. 1.3. Note that ¢ preserves the set of critical
values and has a symplectomorphism lift ® := p, 1 o ¥,. For all i € Z, we define

Vi i= o' (n).
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Fig.4 Vanishing paths in the
base of g,

0
i=—p@+1 88

distinguished collection of vanishing paths to the distinguished collection {y;
These are the dashed paths from Fig. 4.

In what follows we will not be keeping track of the gradings of Lagrangian branes,
and only talk about the underlying Lagrangian submanifolds, see Remark 1.6. This is
of course an abuse, but we believe it will not cause confusion. Since, we will not be
able to keep track of the gradings in our arguments, adding grading data would only
result in cluttering up the notation.

Let (Ag; Eo, ..., Ey@—1) be the directed Fukaya—Seidel A, category with
the exceptional collection defined using the vanishing Lagrangian spheres of
Y05 -+ - s Yu(a)—1 as in [16].

the left dual
w(@)—1
Yio -

Second, we introduce the dual vanishing paths {Vy;}

Remark 2.7 Note that because of the symmetry by @ the directed Ao -categories
defined using yx, . . ., Yk+u(a)—1 are quasi-isomorphic for all k € Z where the ordering
of the objects is preserved.

Letus call D, the directed Fukaya—Seidel A, category of the Lagrangian vanishing
spheres of Vy_, )41, - .-, 0. The following proposition can be proven using the
results in [17]. Note that it can also be deduced formally from the properties of F(g,)
discussed in Sect.2.1 (Generation by a distinguished collection, Computability in the
fiber and Geometric dual equals algebraic dual).

Proposition 2.8 D, is quasi-isomorphic to the Ao subcategory of Tw(A,) corre-
sponding to the exceptional collection left dual to the Yoneda image of the defining
exceptional collection of A,.

Finally, let N be a positive integer and let us consider an ordered collection of HAI
vanishing paths in the base of g, defined as follows. Let y be the HAI vanishing path
starting at the positive real critical value and going along the real axis. Consider the
collection

AR (72 WY ¢ ) WY
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and isotope them slightly (keeping them HAI vanishing paths) to

VoNt1s s V=1, 70 (2.2

so that the ordinals of y_ny1,...,Y_1, 0 are strictly decreasing. As we dis-
cussed in Sect.2.1, we can define a directed Aoo-category of the graded thimbles
of V_N+1, ..., V1, Yo. Let us call this category H,(N).

The following Proposition follows from the Computability, Computability in the
fiber, Generation by a distinguished collection and Geometric helix equals algebraic
helix properties of F(g,) as discussed in Sect.2.1. We are not aware of a proof that
only relies on results in existing literature.

Proposition 2.9 H,(N) is quasi-isomorphic to the directed A, subcategory of
Tw(A,) corresponding to the length N truncation of the helix generated by (Yoneda
image of) the exceptional collection Ey, ..., E, -1 with the last element of the
truncated helix being E.

Proof Let us fix arbitrary objects {7;};cz of F(g,) corresponding to the collection
{[¢' (7)1}iez of homotopy classes of HAI vanishing paths. By the generation and
computability in the fiber properties, we have a quasi-equivalence of triangulated
Ao-categories

Tw(Aa) — Tw(F(ga))

sending Eo, ..., Ey@)-1t0 Ty, ..., Ty@a)—1-

It suffices to prove that H, (N) is quasi-isomorphic to the directed A, subcategory
of Tw(F(g,)) corresponding to the truncated helix of length N of the Yoneda images
of To, T1, . .., Tya)—1 with the last element of the truncated helix being Tp.

We now use the Geometric helix equals algebraic helix property for the collection
{[(pi (7)1}iez of homotopy classes of HAI vanishing paths and objects {7;};c7. Note
that ¢ ~#@ is a monodromy diffeomorphism. As a result, the (Yoneda images of)
(T})iez 1s a helix generated by To, ..., Tyya)—1-

We should take the truncation (7_n41, . . ., Tp) of the helix (7;) and match it with
the category H, (). For this we observe that the Computability property gives a quasi-
isomorphism of the directed category with the objects T_y+1, ..., T1, Tp and H, (N)
(since by construction the ordinals of y_n41, ..., V1, Yo are strictly decreasing). O

We apply Proposition 2.9 with —a instead of a and with N = u(a). This will
give a geometric realization of the first part of the recursion, namely of the category
generated by the truncated helix of length w(a) in Tw(A—_,;). Since the left dual to
the natural collection in 7w (.A,) is realized geometrically in Proposition 2.8, we will
know that the category A, is obtained from .A_, by recursion R, once we prove the
following statement.

Theorem 2.10 There is an equivalence up to shifts

Dy — H-a(u(a))),
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of directed A-categories.

We will prove Theorem 2.10 in Sect. 2.4.

2.3 Roots of a family of polynomials

The results of this section will be used in computing certain matching paths in the next
section.

Letz, s be complex numbers and c a positive real number. We consider the following
equation in P':

ylal= = e(sy® + 1x9)-, (2.3)

where (y : x) are the homogeneous coordinates, and i, (t—, a, d_ are positive integers
satisfying

u+pu_=d:=ad-_.

We will be interested in how the roots of this equation vary when we vary c, ¢, s in a
certain region.

Fix c. Note that for s = + = 0, we have one root with multiplicity p_ at the point
x = 0 (called 0) and another one with multiplicity p« at y = 0 (called 0o). Once
we make s non-zero, the root at 0 splits into p_ simple roots. We are going to keep
|s| sufficiently small (with some bound depending on ¢, i, —, a, d_) and positive
but arbitrary otherwise. Then, we will show that turning on the ¢ parameter does not
change the locations of the pu_ simple roots near 0 “too much" unless |f| becomes
larger than a number depending only on ¢, most importantly independently of s. In
particular, it is possible for |7| to be much larger than |s| in this statement. We will
specify what “too much" means below—indeed we have something specific in mind.
As a first approximation to why something like this might true let us note that if we
keep s = 0, then no matter how large |¢| is, the multiplicity p_ root at 0 never moves.
If the reader has access to Mathematica, we provided a simple code in the Appendix
to experiment with the roots of this family of polynomials.

LetA;:= A z and A; := A be the standard affine charts in P!. Let us equip them
with the standard Kahler structure for their chosen affine coordinate.

Letussetz = ;. The equation in A| becomes

M = (s + 129 2.4)

Below we will analyze the roots of this equation but all results hold equally well in
the other chart (with the roles of ¢ and s swapped). We also assume that ¢ = 1, noting
that the general case can be recovered by rewriting ¢ and s as ¢!/4-¢ and ¢!/4-s.
Fory € [0, 2m), let R, denote the ray in the complex plane starting from the origin
that makes a positive angle of y with the positive real axis. For any ¥ € (0, 27), let
Ny (R)) be the conical region in the plane consisting of points (seen as vectors starting

at the origin) that make less than % % angle with R), (in positive or negative directions).
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For every € > 0, n positive integer, ¢ > 0 such that 2n¢ < 2, and y € [0, 27)
we define

Dart(e,n,¢,y) :={(z€ C||z|] <€eandz" € Nopg(R))}.

Proposition 2.11 Let us divide the solutions of the Eq. (2.4) with ¢ = 1 into two
groups: the ones that lie inside the closed disk of radius % in Ay (small roots) and the
others (large roots). There exists a positive constant C = C(a, u—, d_) depending
only on a, u_, d_ with the following properties.

(1) Forall [t] < 1and0 < |s| < C, there are (t— many small roots.
(2) For|t| < 1and0 < |s| < C, there exist0 < €(s) = €(|s]) < %,O < ¢P(s) < /f—_,
and y (s) € [0, 2) with the following properties:

e There is exactly one small root inside each connected component of

Dart(e(s), u—, ¢(s), y(s)) C Ar.

e Ass — 0, e(s) and ¢ (s) converge to 0.
e y(s) is the argument of s%~ valued in [0, 27).
e All small roots are simple.

Proof We follow the strategy of the proof of Theorem 4.1 in Melman’s beautiful paper
[14]. In particular, his Lemma 2.7 will play a very crucial role.
We rewrite Eq. (2.4) with ¢ = 1 as

@ —s%) = (dos®"lez + 4102 =, 2.5)

Let us prove (1). We will use Rouche’s theorem (e.g. Theorem 2.1 in [14]). For
lz] = 1/2,|t] < 1 and |s| < 1, we have the following two inequalities:

lZ4- — 59| = (1/2)" — |s|%

ld_s™ 177 + o 1) < dosz 4+ 12 < |sIC 4+ (1/2)4,

where C is a constant depending on a and d_. Hence, using u— < d = ad_, for
sufficiently small |s|, we have

|24 — s > |d_s"Ne0 4 1924, (2.6)

Therefore, the number of solutions of the Eq. (2.5) inside the disk of radius 1/2
centered at the origin is the same as the number of solutions of z*~ = s~ in the same
region, as desired.

Now let us proceed to prove (2). This is again an application of Rouche’s theorem.
Let |[#] < 1, and |s| < 1 be sufficiently small as required by the previous step.
Moreover, |s| should also satisfy a possibly stronger bound that we will explain now.
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Using again that u_ < d, we can choose § > O such that § < d/u_ — 1. Now we
require that |s| satisfies the inequality

d— d— d—
51970 > d_|s| 7125172 - sl (25177 + (125157

The right hand side of this inequality is obtained by inputting 1 for each ¢, |s| for s
d.

and |2s]| = for z in the expression d_s"1¢z% + ... 4+ 19-7% as'in Eq. (2.5). To see
that for sufficiently small |s| this inequality is satisfied note that the power of |s| in
each term of the RHS is strictly bigger than d_ + §:

d_ d_
d —k+Ska>a +E4 1445,
[ [

fork=1,...,d_.
Let us define

€= |s|d‘+‘s,

and note that ¢ < |s|%. Note that if |2/~ — s9-| < e, then |z]*~ < 2|s?-|, and
therefore

d_
|z < |2s]%-.

This time we will apply Rouche’s theorem in the connected components of the
domain in z described by the inequality
d*| <e.

|zH- —s

For s # 0this domain has p_ simply connected components all of which are contained
in the disk of radius 1/2 centered at the origin (assuming s is small).

We now again consider Eq. (2.5). We want to prove that the Inequality (2.6) holds
on the set |74~ — s%| = €. This follows immediately since

d_ d_
€ >d_|s|"= 71257 4 - 4 d|s](125]= )T
d_
+(2s)F )¢ > |d_s ez + - 41929,
Hence we obtain that each connected component of {|z/~ — s9-| < €} contains
exactly one solution. These are all the small roots. To relate these regions to the dart-

like regions in the statement we use Lemma 2.7 of [14]. All four bullet points follow.
O

To state the following corollary which is what we will directly use in later chapters,
we make a new definition. For every r > 0, n positive integer, ¢ > 0 such that
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2n¢ < 2m,
Dart®(r,n,¢) :={(z € C| |z| > rand 2" € Nauy(Ro)}.

Corollary 2.12 Let t be a real number and s a complex one. Let us call the solutions
of the Eq. (2.4) that lie inside the closed disk of radius % the small roots and the ones
that lie outside the closed disk of radius 2 the large roots.

Then, there exists a positive constant C = C(a, u—,d_, c¢) depending only on
a, u—,d—, c such that forall0 <t < Cand0 < |s| < C.

(1) There are p_ many small roots and | large roots. In particular, all roots are
either large or small.

(2) There exist 0 < €(s) = €(|s]) < %, 0<o¢(s) < lf—_ and y (s) € [0, 27) with
the following properties:

e There is exactly one small root inside each connected component of

Dart(e(s), p—, ¢(s), y(s)) C Ay.

e Ass — 0, €(s) and ¢ (s) converge to 0.
e y(s) is the argument ofsd* valued in [0, 27).
e All small roots are simple.
(3) There existr(t) > 0and 0 < ¢'(t) < %, with the following properties:
e There is exactly one large root inside each connected component of

Dart™®r(t), u, ¢' (1)) C Ay.

e Ast — 0, r(t) — oo and ¢ (s) — O.
e All large roots are simple.

Proof The statement about small roots is an immediate consequence of Proposition
2.11. To deduce the statement about large roots we rewrite the Eq. (2.4) in terms of the
variable u = 1/z (equivalently, we consider solutions of Eq. (2.3) in the affine chart
Az):

ut = c(su + ).
Now we observe that the small roots of this equation correspond to large roots of the

equation in the affine chart A, and the assertion follows again from Proposition 2.11.
O

2.4 The vanishing spheres

In this section we will prove Theorem 2.10. Assume that n > 1 (the case n = 1 was
discussed at the end of Sect. 1.3).
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r ra

Fig.5 Moving the dual vanishing paths to radial ones

It will be convenient to analyze D, inside g, 1(0) instead of 84 (A) by dragging
the regular point from A to 0 along a path that goes slightly below yy. Let us define the
radial vanishing paths ry, . .. 7, (,) in the base of g, as the straight radial paths from the
critical values to the origin. They are ordered in the clock-wise direction and the last
one in the ordering is the vanishing path of the positive real critical value. See Fig. 5.
The directed Fukaya—Seidel Aoo-category &, of the Lagrangian vanishing spheres of
1, ...¥u(a) 18 quasi-isomorphic to D,,.

Let us define the map g;* : C* — C by

(Z1s-ovzn) P> 21 —s220 — 121'22 — p—a(22, .. . Zn),
for complex numbers ¢, s. Note that g;'o = g,. Let us also note that for ¢ # 0,
801 2n) = W (TN Ry, £z, (X))
where £ is a (a1 1(a))™" root of ¢ and
gi = n(@iyi1, ..., ap)d(ai, ..., ai—1)

are as in the Equation (3.2) of [22]. See Remark 1.10 for what lead us to consider the
extra perturbation by s.

Lemma 2.13 For every positive real number t, there exists a §(t) > 0 such that

o for every complex number s with |s| < 8(t), g&* is a Lefschetz fibration with p(a)

critical points;
o there exist j1(a) analytic maps p1, ..., pu@ : C — C" defined for |s| < 5(1)
such that p1(s), ..., pu)(s) are exactly the critical points of gb°;
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o ifd is the distance between the two closest critical values of g;’o then for|s| < §(t),
each critical value of g&* is contained in a d /10 neighborhood of a critical value

of g5°.

Proof We already know that g, is a Lefschetz fibration with critical values regularly
placed on a circle centered at the origin. Using Eq. (2.7), we see that the same statement
is true for gfjo for ¢ # 0, in particular for ¢ a positive real number.

From Eq. (2.7) and the first paragraph of Sect.2.1 it follows that g* is tame for
all complex numbers 7, s. This implies that for fixed z, s the critical points of gl,* are
contained in a compact subset of C" in the complex analytic topology. In fact the
argument in Proposition 2.5 of [6] shows that if we fix ¢ then there exists a compact
subset K C C" such that the critical points of g/,* are contained in K if |s| < 1.

Moreover, note that by non-degeneracy the natural scheme structure on the critical
points of g;’o is smooth. Let us denote by X the scheme of critical points of gl* for
fixed ¢ and varying s, so that we have a projection X — C; and the fiber X is the
scheme of critical points of g;*. Since the projection from X to C; is proper and
X is smooth, we deduce that the map X — C; is étale over a small neighborhood
of 0. This implies the non-degeneracy of critical points of gi;* for small s. Also, it
follows that there exist () analytic sections p1, ..., pu(a) of the projection X — C;
defined in the neighborhood of 0. This implies the second assertion. The last assertion
follows from the fact that the critical values gé’s( pi(s)), fori =1,..., u(a), depend
continuously on s. O

Let us also define the maps
8. sy —1
R (g% (0) - C,
given by projecting to the z; coordinate.

We are going to compute all critical values of h;*. More generally, we will compute
the critical values of z; on (g5*)~!(y), for any regular value y of gy’

Let us set for brevity g = gi*. Consider the family of maps

Wy : ¢ '(y) > C,
for y € C, given by projecting to the z; coordinate (so wo = hl;*).

Let us define the Zariski closed subset C C C" as the zero locus of 9, g, ..., 9;,8.
Note that the tangent space to g~ (y) at a smooth point z is given by the kernel dg,
and that z € C is a critical point of wy, = z1 on g '(y), where y = g(z), if and only
if

dzil; = x-dgl|; inT}C", (2.8)
for some (necessarily nonzero) A € C. In other words, for any y € C we have

cn g_l(y) \ crit(g) = crit(wy) \ crit(g). 2.9)

Proposition 2.14 We fix t, s € C and use the notation introduced above.
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®

(ii)

The map
C—>Cr:iz=(21,....20) — (g(2),21)
induces a bijective morphism
1:C—C,
where C' C (Cg’ 2, IS the plane curve
ca(s +12{H9CD — (71 — D =0, (2.10)

where c, is some easily computable positive rational number. Furthermore,
restricts to an isomorphism of algebraic varieties C \ 11 (S) — C'\ S, where

SZ{(y,Z])|y=Z1,s+tz?1 :O}

In other words, we have awell defined inverse morphismi1=" : C'\S — C\t=1(S).
For fixed y, which is not a critical value of g, the set of critical values of wy is
exactly the set of roots 71 of the Eq. (2.10). Furthermore, the critical values of
distinct critical points of wy are distinct.

Proof (i) Let us write the equations defining C C C":

-1
s+1z{' = a2y’ 23

-1
5 =a3zy’

Z) = anzpr”!
Also, setting y = g(z), we have
21—y —sm—t2{'20=p_a(z2,...20). (2.11)
Assuming that (y, z1, . . ., 2,) satisfy these equations we have to show that (y, z1)

satisfies (2.10) and that (z;);>2 are determined by (y, z1), and that for (y, z1) ¢ S,
they are given by regular functions z; (y, z1).

Ifs + tz'l“ = 0 then the equations of C imply that zp = --- = z,, = 0, and the
Eq. (2.11) gives z1 =y, so that (y, z1) € S.

Now assume that s + tz‘f‘ # 0. Then we also have z; # O for i > 2. The last
n — 1 equations for C lead to

a ag,..., a as,..., a
Z22ﬂ( 4 n) — CZéL( 3 n)’
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for a positive rational number c that is straightforward to compute. Using the first
equation for C we get:

(s 1l yHasmn) = fgh(e2n) (2.12)

Next, using equations for C, we can also obtain recursively fork =2, ...,n—1,
d(aa, ..., a7 2k = sz22 + 121 22.

Plugging this into the definition of p_,(z2, ..., z,) and then into (2.11), we get

21 =" (s22 4 12" 22),

which leads to

Z1
= 2.13
c”(s + tztlll) ( )
Plugging this into (2.12), we deduce the Eq. (2.10) for (v, z1).
The desired formulas for z», . . ., z, as rational functions of (y, z1) defined away
from S, are now easily obtained from (2.13) and from the equations for C.
(i1) In light of (2.9), this follows from part (i). O

Lemma 2.15 Assume that s # 0 and t is such that 0 is not a critical value of g = g&°.
Then all critical points of hl* on g~ (0) are nondegenerate.

Proof Let z° = (20, ..., z0) be a critical point of 7;° on g~!(0). Then z° belongs to
C and due to the relation (2.8), we have

-1
dglo =0 —aitz]' z2)l0 #0,
where we set 9; = 9. Thus, we can view z, ..., z, as local coordinates on g’] (V)]
near z° and compute the derivatives of 4 = K = z; with respect to zo, . . ., Z, using

the equation

h—th%zy =s72 + p,

where p = p_4(z2, ..., zn). This gives
th® 4+ 9
o = S o,
1 —aitzi' 22
8.
ojh = AP fori > 2.

-1
l—aitz]' 22
In particular, we have

(s +th +3p)lo=0, 9plo=0 fori>2.

@ Springer



2356 U. Varolgunes, A. Polishchuk

Taking this into account we derive that for all i, j > 2,

8,-8jp

0;0jh|,0 = — T
1 —aitz]’ 22

[;0.

Thus, it remains to show that the matrix (9;9; pl,0);, j>2 is invertible.

First, we observe that z? # O0fori =1, ..., n.Indeed, as we have seen in the proof
of Proposition 2.14, the only other possibility is that all z? = 0, which is possible only
when s = 0 (due to Eq. (2.10)).

Now our assertion follows from the following identity (applied to p = p_,). For
a=(ai,...,a),

A(a) := det(9;0; pa)i<i,j<n-
Then at any point z where 9; p, = 0 for i > 1, one has
A@ = (D) =201 g
(@ = (=) .. 0720l
with r > 0. Indeed, this can be checked easily by induction since
A@) = —ai(a = D' Pz - (D" A=) —ajz " TP A= —a)
=ai(a; — D" Pz - (—1)'A(=a) — dlarz{ 22T A= —a),

where —a = (a2, ...,ay), — —a = (a3, ...,a,) (we used the equation z'f' =
ar—1
azy’ 23). O

Recall Corollary 2.12 and Lemma 2.13. Let us fix #y and s, positive real numbers
with

tO < C(a11 M(_Cl), d(_Cl), Ca)
and
so < min {C(ay, u(—a), d(—a), cq), 5(t)}.

In the base of gi*°, we consider the radial vanishing paths

ry, .. ~’7u(a)

from each of the critical values to the origin. These are again ordered clockwise and
so that 7, (4) aligns with the positive real axis.

Remark 2.16 Note that g/** indeed has a unique positive real critical value. This
follows because we know that the only critical value of gé’o whose d /10 neighborhood
intersects the positive real axis is the positive real one and that the set of critical values
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of X% is closed under complex conjugation of C. Therefore, Fu(a) still aligns with

the positive real line.

The directed Fukaya—Seidel A,-category &, of the Lagrangian vanishing spheres
of 71, ... u(a) is equivalent (as a directed Axo-category) to &, and therefore, to D,,.
Our goal is to compute the Lagrangian vanishing spheres of 7, ...7 ) as
Lagrangian matching spheres inside (g/**)~!(0) corresponding to matching paths

in the base of 1%,

By Proposition 2.14 (ii), the critical values of 42"** are solutions of the equation
lel(*a) =c, (SO + tozl{ll )d(—a)’

Moreover, the critical values of distinct critical points of 21" are not equal to each
other. These critical values are divided into two groups:

e small ones: one in each connected component of an inner dart

Dart(e(so), u(—a), ¢(s0), 0)
e large ones: one in each connected component of an outer dart

Dart®(r(to), u(a), ¢’ (1p)).

Note that €(sg) < 1/2 and r(tp) > 2.
Recall that we have defined in the introduction the symplectomorphism v, of C"

2mi

which gives the action of the element of [, with A = A| = er@ ,

Lemma 2.17 We have the following commutative diagram

cr Yo, cn (2.14)

gé.sl \Lg:{gm,x

’

—_—
10027 /14(a)

with

_ 2may
n(a)’

Proof This is a straightforward computation. O

Recall that for y € [0, 2), we denote by R,, the ray in the complex plane starting
from the origin that makes a positive angle of y with the positive real axis.
2k

Proposition 2.18 Let ¢ := @ forsomek =0, ..., u(a) — 1. Consider

2mikay
s = spe Ha |

We have:
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gM% and h* are Lefschetz fibrations.

g% has a unique critical value b on Ry.

The map h'* has precisely two critical values by, by on Ry.

The vanishing Lagrangian sphere of the straight vanishing path from 0 to b is
Hamiltonian isotopic to the matching Lagrangian sphere of the matching path
between by and by along Ry. In particular, this straight path is a matching path.

Proof By Lemma 2.17, it suffices to proves this for k = 0.

By the choice of sq, g2* is a Lefschetz fibration. Also, by Lemma 2.15, /% is
Lefschetz fibration.

That g2 has a unique critical value on the positive real axis was already remarked
above. The proof that 2/9"*° has precisely two critical values on the positive real axis
follows exactly the same strategy. We know that the unique connected component of
both Dart(e(sg), u(—a), ¢ (so), 0) and Dart®>®(r(ty), u(a), ¢’ (ty)) that intersect the
positive real axis contain exactly one critical value and that they are preserved under
complex conjugation.

We come to the last bullet point. This is a simple application of the Lefschetz
bifibration technique. Let us denote the unique positive real critical value of g = g/***
by b.

We claim that for (y, z;) € C’ the map pri|cr : C' — C is étale at (y, z1) (i.e.,
induces an isomorphism of tangent spaces, so in particular, C’ is smooth at this point)
unless (y, z1) € Sand~!(y, z1) is a critical point of g. Indeed, first, one can immedi-
ately check that pr; is unramified at the points of S C C’. Thus, it is enough to check
that the map g = pry ot : C — Cis unramified at all z ¢ (crit(g) Ut'(S)).

Indeed, let T;*C denote the Zariski cotangent space to C at any such point z. Since
(g, z1) gives an embedding of C \ = !(S) into C?, T}C is generated by the images of
dzi|; and dg|;. Now from (2.8) we see that in fact 7.*C is generated by dg| alone. This
implies that diim 7,*C = 1, so C is smooth, and the tangent map to g is an isomorphism
at z as claimed.

As a consequence, if » € [0, 00) is so that the Eq. (2.10) for y = r has a positive
real root z; with multiplicity more than one, then ¢~ ! (y, z;) is a critical point of g/*"*
(*). In particular, this can only happen for r = b.

Consider the Eq. (2.10) for y = r € [0, 0co). We already know that for r = O there
are two simple positive real roots. It is also easy to see that for r sufficiently large,
there are no positive real roots that are larger than r. Also note that z; = r is never a
root. Combining these with the previous paragraph, we conclude that the two positive
real roots at » = 0 come together on the positive real axis for the first time at r = b.?

Moreover, using * from two paragraphs ago, it follows that the critical points above
the two positive real critical values of w, (as elements of C") come together at the

unique singular point p = (p1, ..., p,) of (")~ 1(b) as r goes from 0 to b.

2 It also follows that for larger values of r there is never a real root larger than r. Note that we are not
claiming that are no other positive roots, we only consider the positive roots that are larger than r in this
argument.
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Instead of proving that

10-50
cn (8a " »21) 2 pri C (2.15)

is a Lefschetz bifibration, we will prove that the there are coordinates near p € C",
(b, p1) € C%and b € C as in Lemma 15.9 of [17].

We first find coordinates as in equation in the last line of pg 219 in [17] using the
argument given there. On C? and C we use the given coordinates on this step. All we
need to prove is that the map C"~! — C obtained by substituting z; = p; in g/>"*°
has a non-degenerate singularity at p. This map is given by

aj
p1 —s0z2 —topy 22 — P—a(22, - Zn)-

Note that since sg, fp and p; are all positive real numbers
so +topy' # 0.

Therefore, we know that —(sg + #o p‘fl )22 — p—a(22, . .. Z5) has only non-degenerate
critical points, proving our claim.

To finish finding the desired local coordinates, we can repeat the part of the proof
of Lemma 15.9 of [17] on pg 220 verbatim since we know that p is a non-degenerate
critical point of g/,

Hence, using Lemma 16.15 of [17], we conclude that the path between the two pos-
itive real critical values of wo = 2" is a matching path and the matching Lagrangian
sphere above is Hamiltonian isotopic to the vanishing Lagrangian sphere of the straight
path from the origin to b in the base of g/"*. ]
Remark 2.19 Note that we never proved that our C" — C?> — C is a Lefschetz
bifibration, which would require checking a number of non-degeneracy requirements

as explained in page 218 of [17].

Let A := {x € C|1/2 < |x| < 2}. We define a diffeomorphism coil, : A — A,
which is in polar coordinates

(0,0) = (0,0 + f(p)),

where f(p) is non-decreasing in p, equal to —% near p = 1/2, and equal to
near p = 2.

Recall that we have the matching path in the base of & which is the straight
line segment [b1, b>] connecting the two positive critical values b; < b,. Now for ¢,
0<t<ty,andk =0,...,u(a) — 1, we will define a path o (k, t) connecting two
critical values of hfl’SO in C. Note that by < 1/2 and by > 2.

We apply coilgk to [b1,b2] N A = [1/2,2] and obtain a path from p; =
coilgk(l/Z) to pp = coilgk(Z) in A. Then we connect p; to a point p] €
Dart(e(so), u(—a), ¢(s0), 0) and ps to a point p5 € Dart™(r(t), u(a), ¢'(t))
by radial paths. Finally, we connect p| (resp., p5) by a smooth path depending

2z
wuia)

10,50
a
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Fig.6 The coiling matching
paths

smoothly on 7 to a critical value without leaving Dart(e(sg), i(—a), ¢ (so), 0) (resp.,
Dart®(r(t), u(a), ¢’(1))). See Fig.6. These paths together form the path we call
o(k,t).

Letusdenote by Co(¢) (resp., Coo (¢)) the component of Dart(e(sp), w(—a), ¢ (so),
0) (resp., Dart®(r (1), u(a), ¢'(t))) centered around the ray with argument ¢. Note
that o (k, t) connects a critical value of 2% in Co(—2m ﬁ) with a critical value of

,50 3 k
ht %0 in COO(ZJT m)
We set
o (k) := o (k, tg).
Proposition 2.20 The vanishing spheres of 71, ..., ) are Hamiltonian isotopic to

the Lagrangian matching spheres of the paths
o(u(a) —1),...,0(1),0(0)

in the base of h>"*.

Proof By Proposition 2.18, for every k = 0, ..., u(a) — 1, we can compute the
vanishing Lagrangian sphere of the critical value of g!** with argument ¢ := ,57(11,1]() as

the matching Lagrangian sphere of an explicit straight matching path 8 connecting

I 10,8
two critical values of h;"* on the ray R, for
2mikay
s = spe @

Let us call an embedded path in the base of Lefschetz fibration with endpoints on
critical values and interiors disjoint from critical values a pre-matching path. Note that
a matching path is in particular a pre-matching path.

Now all we need to do is to prove that there exists a smoothly varying family of
pre-matching paths B;, where T varies in [0, 1], in the bases of 12*" for

2mikay (1-1)
St = sp€ uia)
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such that

e f is isotopic to B through pre-matching paths;
e f is isotopic to o (k) through pre-matching paths.

By Corollary 2.12, we know that for every t € [0, 1], the critical values of hﬁ?’s’
are divided into small ones and big ones and into sectors as follows:

e there is one critical value b,,(7) in each connected component

t C (2 )
T0l(1—-17)p, T )
(1—7)0k ( a)

m=0,1,..., u(—a)—1,of Dart(e(s;), u(—a), ¢(sy), u(—a)(1—1)6;), where

_ 2rkayd(—a)
- u(—apa)’

o there is one critical value B, (7) in each connected component Coo (277 lﬁ), p=
0,1,..., u(a) — 1, of Dart>(r(tp), u(a), ¢'(to)).

In particular that there is never any critical value in the annulus A. To summarize in
words these two bullet points, as T changes from O to 1, the component containing
b, (t) (for a fixed m) rotates clockwise with the angular velocity 6, while the com-
ponents containing B, (t) do not move (although the critical points can move inside
them).

Note that we have the identity

k
= 27— + 6,
@ - T

2
which shows that the straight path 8 connects the small critical value b_j (0) with the
big critical value By (0).

Here is how we define ;. First, we connect the critical value b_(7) by a radial
path with a point g1 (t) lying on the circle of radius 1/2. Similarly, we connect the
critical value By (7) by a radial path with a point g»(t) lying on the circle of radius 2.

To continue let us introduce the isotopy n; : A — A, which is in polar coordinates

(p,0) = (.0 +1f(p)),

where f(p) is non-decreasing in p, equal to —6; near p = 1/2, and equal to O near
p=2.

We finally connect g (t) with one end of 1, (8 N A) using the short arc on the circle
of radius 1/2 and g, () with the other end of n,(8 N A) using the short arc on the
circle of radius 2. This completes the construction of pre-matching paths 8, with the
desired properties.
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Fig.7 Turning radial at infinity paths into horizontal at infinity paths

Remark 2.21 Note that the braid monodromy of the bases of 4.""* as s = e'? sy makes
a full counter clock-wise rotation is non-trivial and can be easily computed using the
proof above. Noting that the Hamiltonian fiber bundle over S' of the total spaces of
these fibrations is actually trivial (it extends to a fiber bundle over the disk that bounds
the S'), we can generate lots of matching paths in the base of /. with Hamiltonian
isotopic Lagrangian matching spheres.

We come to the final geometric argument of our proof. For ¢ € [0, fp], consider
the family of Lefschetz fibrations /;**. For all values of ¢ in this interval the critical
values stay in the same darts from /4/9'*, but as  — 0, the large roots go to infinity in
a very controlled way.

For every t € [0, tp], we have a directed A,-category called C;, which is the
directed Aoo-category of the matching paths of

o(u@ —1,t),...,0(,1),0(0,1)

for 7 > 0. For t = to, by Proposition 2.20, we have an equivalence of directed Aoo-
categories C;, =~ &,. On the other hand, for + = 0 we get a directed collection of
vanishing paths, radial at infinity. These can be homotoped to HAI vanishing paths
with strictly decreasing ordinals,

o(u(a) —1),...,5(0),

in the way that is explained in Fig. 7 without changing them inside the disk of radius
2.

Note that we can choose perturbations so that for all ¢, all the solutions of the
perturbed pseudo-holomorphic curve equations that contribute to the structure maps
of C; lie inside (h*°)~' (D), where I is the disk of radius 2, by the open mapping
principle.

Using the homotopy method (Section (10e) of [17]), we obtain the following state-
ment

Proposition 2.22 There is an Ao quasi-isomorphism Cy, —+ Cy preserving the
ordering of the objects.
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Remark 2.23 Our setup is slightly different than Seidel. Our Lagrangians are not known
to be pair-wise transverse at all times, so one does have to consider possible birth-death
bifurcations. It might be possible to use more geometry to prove that the Lagrangians
we are considering are already transverse or that one can find smoothly varying Hamil-
tonian perturbations that achieve this property, but we did not check this. Regardless,
we do not expect a problem with the birth-death analysis because we are consid-
ering directed Ao-categories in the exact case. The skeptic reader can assume this
proposition not proven.

The following proposition finishes the proof of Theorem 2.10.

Proposition 2.24 e D, is equivalent (up to shifts) to Cy, as directed Aoo-categories.
e H_, is equivalent (up to shifts) to Cg as directed A~o-categories.

Proof We already know the first statement: D, >~ &, =~ ~a >~ Cy.
For the second one, note that we have

8021, - ) = 21 — 8022 — P—a(@2. -1 2n) = 21 — §(@20 - Zn),
where g(z2,...,21) = 5022 + p—a(22,...,2y) is a perturbation of p_,, which is
equivalent to the perturbation zo + p_,(z2, ..., 2,). Thus, hS’SO is nothing but the

projection from the graph of g,
{21 =8, ...,z CC"

to the z; coordinate, which can be identified with g : C"! — C.The map on the total
spaces is not a symplectomorphism but the induced Ehresmann connections do go to
each other, which is enough for our purposes. It remains to observe that the collection of
HATI vanishing paths (G (1 (a)—1), ..., 5 (0)) ishomotopic to (Y_ i a)+1, - - - » V=1, Y0)
(see (2.2)). O

3 B-side
3.1 Semiorthogonal decompositions, exceptional collections and mutations

For the most part, on the B-side we can work at the level of triangulated categories,
without using dg-enhancements. However, we will use existence of dg-liftings of some
adjoint functors. Namely, by the results of [ 13, Sec. 4], if D is an enhanced triangulated
category and C C D is an admissible subcategory, then with respect to the induced
dg-enhancement on C, the left and right adjoint functors A, p : D — C can be lifted
to quasi-functors between the corresponding dg-categories. We will tacitly use such
liftings below in the results that use the dg-enhancements.

Given an admissible subcategory C C D, we define the functor of left mutation
through C,

Le:tc—ct

@ Springer



2364 U. Varolgunes, A. Polishchuk

by the exact triangle
C—>X—>Le(X)—> ---

Note that L is just the restriction to ~C of the left adjoint functor to the inclusion of
ct.

This definition has the following transitivity property. Suppose C;,C» C D is a
pair of admissible subcategories such that Hom(C,, C;) = 0. Then the subcategory
(C1, C2) C D is also admissible and

Lici.co) = Ley o Leylie, )
Similarly, the functor of right mutation through C,
Re:Ct—*cC
is defined by the exact triangle
Re(X) > X—>C— ---

One can immediately see that Rz and L¢ are mutually inverse equivalences.

Lemma 3.1 LetC C D be an admissible subcategory, andlet 1., p : D — C denote the
left and right adjoint functors to the inclusion. Then for X € +C, one has a functorial
isomorphism

p(X) = A(Le(X)[=1]).
Proof By definition, there is an exact triangle
Le(X)[-1] > C — X — Le(X)
with C € C, and we have X € +C, Lo(X) € Ct. This immediately implies that
C = p(X) = A(Le(X)[-1D.

m}

For an exceptional object E we set Lg := L), where (E) is the admissible
subcategory generated by E.

Definition 3.2 Let Ey, ..., E, be an exceptional collection. The left dual exceptional
collection to Ey, ..., E, is the unique full exceptional collection F_,, ..., Fy in
(Eo, ..., Ep) with Hom*(E;, F_;) = 0 for j # i and Hom*(E;, F_;) = k[0]. In
fact, one has Fp = Eg and fori > 0,

F i=Lg,...Lg,_,E;.
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In this situation we also say that Ey, ..., E, is the right dual exceptional collection
toF_,,..., Fy.

Lemma3.3 Let D = (C,C’) be a semiorthogonal decomposition. Let Ey, ..., E,
(resp., Ej, ..., E, ) be an exceptional collection generating C (resp., C'), and let
F_,,..., Fy (resp., FLm, R Fé) be the left dual exceptional collection. Then the
exceptional collection

Le(F ). ... Le(FY). Fop. ..., Fy

is left dual to Ey, ..., E,, E, ..., E,

-
3.2 Serre functor and helices

We have the following well known connection between the Serre functor and muta-
tions.

Lemma 3.4 Let E be an exceptional object in D and let C = (E)*, so that we have a
semiorthogonal decomposition

D = (C. (E)).
Then there is an isomorphism
Sp(E) >~ L¢(E).
Definition 3.5 Let Ey, ..., E, be an exceptional collection generating the category
C. The helix generated by this exceptional collection is the sequence of exceptional

objects (E;);cz, extending (E1, ..., E,), such that ScE; = E;_,, where S¢ is the
Serre functor of C.

By Lemma 3.4, we see that in a helix we have
Ei~Lg, ...LE 1 Eitn.
3.3 Aramaki-Takahashi exceptional collection
3.3.1 Basic definitions
Recall that for a = (ay, ..., a,) € ZZ | we consider the chain polynomial
Pa = X710 + X523 + -+ x5y 4 x0

Recall that we set d(a) = ajas .. .a, (with d(¥) = 1) and we have the recursion
for the Milnor numbers

u@ =d@) —u(—a)=ay...ap, —ay...a,+az...a, —---
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(with (%) = 1). Let us set
w(a) == pu(a"),
so that
w(a) =d(a) — pn’(a-).

We denote by L = L, the maximal grading group for which p = p, is homoge-
neous, i.e., the abelian group with generators x;, p and defining relations

aixX1 +x2 =axy + X3 = =ayX; = p.

Note that the quotient L/(p) is a cyclic group of order d(a), generated by the image
of X1, so that we have an exact sequence

07 2 L - 7/d(a) — 0.
It will be convenient for us to set
T = (—1)"x].

By a graded matrix factorization of p, we always mean L-graded matrix factor-
izations, or equivalently I'-equivariant matrix factorizations, where I' = I'; is the
subgroup of G/, that has L as the character group. ~

It will also be useful to consider the slightly bigger group L: it has an extra generator
T and the relation

2T =Tp.
It fits into an exact sequence
07 -5 L - Z/d(a) — 0.
It is easy to see that Lis generated by 7 and t with the defining relation

d(a)t = (—=1)"2(d(a) — n@)T. (3.1

Note that for every £ € L we have a natural grading shift operation for a graded
matrix factorization of pg:

M— M),
where M (T') := M[1]. In addition, we denote

M@G) = M(it).
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Since L is generated by t and T, for every £, we have M (¢) = M (i)[j] for some
i, j. We also have a functorial isomorphism

M(d(a)) >~ M[(-1)"2(d(a) — n(a))].

For an L-homogeneous ideal Z C C[xy, ..., x,] such that p, € 7 we denote by
stab(Z) the graded matrix factorization of p, corresponding to the module O/Z.
In particular, we consider the following graded matrix factorization of p,:

stab(xp, x4, ..., X,), n even,

stab(xy, x3, ..., %,), nodd,

Note that by definition the grading of x; is x;.

We denote by MFr(p,) the dg-category of graded matrix factorizations of p,.
We denote by Hom* (or Ext*) the cohomology of the morphism complexes in this
category. For most of our considerations it will be enough to do computations on the
level of cohomology (however, we will use existence of various natural functors as
quasi-functors at the dg-level).

By the main result of [1], for any i € Z, the collection

(E@,EG+1),...,E(i +p'(a)— 1)

is a full exceptional collection in MFr(p,). We refer to it (for i = 0) as the AT
exceptional collection. We should point out that in the original proof of [1] there are
gaps in the proofs of Lemmas 4.7 and 4.10. These can be filled using the results of
Hirano—Ouchi in [10, Sec. 4.2] (especially [10, Lem. 4.4, Lem. 4.5]), where the fully
faithful embedding needed for the induction is constructed using VGIT technique
(note that these are different VGIT embeddings than the ones used in Sect. 3.4 below).

We denote by AT (a) the directed Ao-category corresponding to the AT exceptional
collection in MFr(p,).

3.3.2 Ext-algebra

Let us consider the associative algebra

B, = @HomO(E, E(0)),

tel

wherea = (ay, ..., ay,). Thglby [1,Lem.4.1,Lem. 4.2] (extended to the case a; = 2),
one has an isomorphism of L-graded algebras

k[xl,x3,...,xn_l]/(xf',...,x;l"__l'), n even,

B, ~ 3.2
“ {k[xo,m,...,x,,_l]/(xg—8x2,x;2,...,xa"_'), n odd, (3-2)

n—1

@ Springer



2368 U. Varolgunes, A. Polishchuk

where

0, a; > 2,
1, a; = 2.

The Z-gradings of x; are given as follows:
deg(xg) =t+T
and fori > O,

deg(x;)) =X; = (=)' 'd(ai, ..., ai_ )X,
+(=D'2@d(a1, ...,ai-1) — play,...,a;1)T.  (3.3)

Note that B, hag a natural monomial basis, and the elements of this basis have
distinct degrees in L/Z - T ~ 7Z/d(a). This implies that whenever 0 < j —i < d(a),
the space Ext*(E (i), E(j)) is at most 1-dimensional, and can be identified with the
graded component of degree (j — i)t in B,, with appropriate shift.

Also, we see that the algebra B, is Gorenstein with the 1-dimensional socle in
degree 1Y (a—) mod d(a). This implies that for u¥(a—) < j —i < d(a) one has
Ext*(E (i), E(j)) = 0, while Ext*(E, E(u" (a—)) is 1-dimensional and the compo-
sitions

Ext*(E(i), E(u" (a—)) ® Ext*(E, E(i)) — Ext*(E, E(1" (a—))
are perfect pairing. The latter property will play a crucial role below.

3.3.3 Serre functor on the category of matrix factorizations

By [1, Prop. 2.9], the Serre functor on MFr(p,) is given by M +— M ({s), where
bs=nT —X| — - — Xn.
Combining this with (3.3) and taking into account (3.1), we get the following formula.
Lemma 3.6 The Serre functor on MFr(p,) is given by M — M (Lg), with
ls =—p (@t + (n+2m@)T = p’'(a—)t + (n +2m@—)T,

where

ma) = (=D)"uY (@) — 1+ (@) — plar, a) + -+ (D" iy, ..., an).
(3.4)

It follows that up to shifts, the helix generated by the AT exceptional collection is
simply (E(i))iez.
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3.4 VGIT embedding

Here we record a specialization of the construction in [7], which itself is a particular
case of the general VGIT construction in [2].
Let us consider the polynomials

W= x{"x +x32x3 + -+ x5 x," |,
wy = x}'xy + x5%x3 4 -+ x4,

Aap—1 [

_ al az
Wo =X X2+ X3+ -+ X, —i—an.

Note that W is invariant with respect to the G,,-action on A"*! with the following
weights:

eci=1,c0=—a,3=aiaz,..., ch = —aA1A2...An_1, Cpy1 = A1Q2 ...An_1,
for n even;
eci = -1, ¢ = ay, ¢3 = —a1az,..., ¢ = —aA1A2...4y_1, Cpp| =

ayaz . ..a,_1, for n odd.

The main idea of [7] is to apply the VGIT construction to this G,,-action.
Let us set

a, ‘=a1ay...a, +ayaz...ap—2+ -+,

where the last term is 1 if n is even, and a; if n is odd. Note that uV (a) = o, — atp—1.
We define the intervals of weights as follows:

I"=[0,04_1 — 11 CIT =[0,a1a2...ap—1 + oty — 1].
We consider the corresponding windows
Wi- C Wi+ C MFp(W).
Here we use the embedding of G, into I,
At (TN T2, L O,
and consider weights of the restriction of a matrix factorization to the origin, so for
example, the weight of k(x;) is u(x;, X) = —c;.

We have natural restriction functors

r+ i MFp(W) — MFr, (wy) : E = Ely,, =1,
r— :MFr(W) - MFr_(w-) : E +— E|y,—1,

Here T is the group of diagonal transformations preserving W up to rescaling; 'y are
similar groups for w..
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Theorem 3.7 [7] The functors
relw,s : Wi = MFr (wz)

are equivalences. Hence, there exists a fully faithful functor ® making the following
diagram commutative:

W[* E—— W]+
o)
MFr_(w_) % MFr, (wy)

Proof Since our result is a bit more precise than that of [7], we will give the proof.
Consider the ideals

Iy =(xjlc;j>0), I-=(xj|cj <0)
in K[x1, ..., x,41], and let us set
Yo = AN\ Z(Ty), Usp = A"\ Z00n), U- = A"\ Z(x).
Then [7, Lem. 3.7] states that the natural restriction functors
MFr (Y1, W) - MFr(U+, W)

are equivalences.
On the other hand, it is easy to see that the restriction functors

MFr (U4, W) — MFr_ (wy) : E— Ely,, =1,
MFr(U-, W) - MFr_(w-) : E+— E|y,=1

are equivalences (see [7, Lem. 2.3]).
Finally, we claim that [2, Cor. 3.2.2+Prop. 3.3.2] imply that the compositions

Wi+ < MFr(W) — MFr(Y+, W)

are equivalences. Indeed, we observe that
Z(I4) = {x e ATl | lirr(l)ki(t)x = 0} .
t—

The lengths of the intervals d* giving the windows are given by

df=— > pEi A -l1=% Y -1

ix;ely ix;€ly
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(see [2, Sec. 3.1]). Thus, we get

dt =leapi+e+ - l=aar...ap—1 +ap2— 1,

d=—[lecp+epa2+-1-l=01— 1

Note that w4 = p,, whereas
Aan
W_ = pa— + X, .

where we set a— := (ay, ..., a,—1). We combine the above functor with the embed-

ding
t:MFr, (pa—) = MFr_(w_-) : F — F K stab(x,41).
This allows us to define the fully faithful functor
®g:= Dot :MFr, (pa—) = MFr,(pa).

Lemma 3.8 (i) Assume n is even. Then

. ,xn—lsxnxn+l)(_ifl> € W[* for0<i < l‘vv(a_) -1,

stab(x1, x3, ..
r—(stab(xy, x3, ..., Xp—1, XnXp1)(—iX1)) 2 stab(xy, X3, ..., Xp—1, Xp4+1) (—iX ),
ry(stab(xy, x3, ..., Xp—1, XpXp41)(—iX1)) 2 stab(xy, X3, ..., Xp—1, X0) (—IX1),

Do(E (i) = stab(xy, X3, ..., Xp—1, %,)(—i¥]) for0 <i <pV(a—)— 1.

(i) Assume n is odd. Then

C Xn—1, XnXn 1) (iX1) € Wy for0 <i < p’(a—) — 1,

stab(xp, x4, ..
r_(stab(xa, x4, ..., Xp—1, XpXu 1) (iX1)) = stab(xz, X4, ..., Xp—1, Xp1) (IX1),
ry(stab(xz, x4, ..., Xp—1, XpXp4+1)(iX1)) = stab(xz, X4, ..., Xp—1, X,) (IX1),

D (E(i)) = stab(xz, X4, ..., Xp—1, X,)(iX1) for0 <i < pu"(a—)— 1.

Proof (i) We have

—ux,A)=c=1,—pux3,A) =cz=maz, ..., —puXp—1, A)

=cCp—1 = a1az...ap-2, W(XpXp+1, A) = 0.

Hence, the A-weights of stab(xy, x3,...,X,—1, XpXy+1)|0 are given by the
weights of the elements of the exterior algebra with generators of weights

Cl, ..., Cn—1,0, so they lie in the interval

[0,c1+c3+ -+ 1] =10, 2]
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Thus, for 0 < i < uV(a—) — 1, the weights of stab(xy, x3, ..., Xy—1, XpXn+1)

(—ix1)|o will lie in the segment from O to

a2+ p'@a=)—1=a,1 — 1.

(i1) The proof is completely analogous to (i), using the weights of x2, x4, . ..

XnXn+1-
3.5 Dual exceptional collections

Recall that

stab(xp, x4, ..., X»), n even,
stab(xy, x3, ..., Xn), n odd,

Let us consider another graded matrix factorization of p,:

stab(x1, X3, ..., Xp—1, Xn), n even,
stab(xp, X4, ..., Xp—1, Xn), n odd.

Lemma 3.9 (i) One has an ungraded isomorphism

’

I =a,-3,a,—1mod(a1ay . ..ay),

Hom™(E, F(i)) =
( @) {O, otherwise.

The degrees are determined as follows: we have

Hom?2 ~\(E, F(=%2 = X4 — - — Fy-2))
— Hom? (E, F(—% — ¥4 — - — %))
=k ifn iseven,

n—1
Hom'Z (E, F(—X| — X3 — -+ — X4_2))
ntl
=Hom 2 (E, F(=X1 —X3 —--- —Xy))
=k ifn isodd.

(i) One has an ungraded isomorphism

k,
Hom*(F, E(i)) = .
0, otherwise.

The degrees are determined as follows: we have

Hom? (F, E(—X| — %3 — -+ — ¥n_1))
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=Hom >\ (F, E(~X| — X3 — -+ — X1 — %))
=Kk ifn iseven,

Hom"T (F, E(=X2 — X4 — -+ —Xn_1))
= Hom"? (F, E(—%2 — X4 — -+ — ¥n_1 — %n)
=Kk ifn isodd.

Proof This is a standard computation based on the quasiisomorphism
Hom(E, stab(ay, ..., ar)) =~ EY|g=.—q,

for a regular sequence ay, ..., ar (see e.g. [5, Lem. 4.2]). O

Corollary 3.10 Let us define the integer N (n) by the following relation in L:

—X2 —X4— -+ —Xp—2 =0p3T+Nn)-p, ifn iseven,

—X1 —X3— -+ —Xp_2 =0p3T+N@n)-p, ifn isodd.
Then
Hom!"Z 12V (B F(a,_3)) = k.
Proposition 3.11 Let us consider the subcategory
B=(E(-an-2), E(1 —0y-2),..., E(—oty—3 — 1)). (3.5)
Let
Lg:tB— Bt

denote the left mutation functor (which is an equivalence). Then the exceptional col-
lection

n—1
(F(u'(@a=)=1),..., F(1), F)[LTJ +2N )], (3.6)
where N (n) is defined in Corollary 3.10, is left dual to the exceptional collection

LB(E(=an-3)), LB(E(=an-3 + 1)), ..., LB(E(1n’(a=) —an—3 — ). (3.7)

Proof To begin with, by Lemma 3.9, the only nonzero morphisms from objects of the
collection

E(—an-3), E(—ay—3+ 1), ..., E(u(a=) —ay—3— 1)
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to objects of the collection (3.6) are of the form
Hom*(E(—a,—3 + i), F(i)) =Kk, fori =0, ..., u"(@a=) — 1.

Also, by Lemma 3.9, the collection (3.6) belongs to 3+ It follows that the only nonzero
morphisms from objects of the collection (3.7) to those of (3.6) are

Hom™*(Lg(E(—a,—3 + 1)), F(i)) =Kk, fori =0,...,u"(a—) — 1.
Set
C=(E(=an-3), E(~an—3+ 1), ..., E(u’(a=) — ap—3 — 1)), (3.8)
and let C’ denote the subcategory generated by the collection (3.6). It remains to prove
that C’ is contained in the subcategory generated by the collection (3.7), i.e., C' C
Lg(C). To this end, we first observe that we have a semiorthogonal decomposition
MFr, (pa) = (E(—an-2), L(C), B, D),
where
D=(E(un’(a=) —an-3), E(—pn"(@=) —an—3+1),..., E(u' (@) —oy—2 — 1)).
By Lemma 3.9, we have
¢’ C (B.D)*,
so we get an inclusion
C' C{E(=an-2), LB(C).
On the other hand, again by Lemma 3.9, we have
C' C(E(=an_2))*,

so we deduce that ' C Lg(C). O
Corollary 3.12 One has LB(E(—a,—3)) ~ F[I_%J + 2N (n)].

Putting together the above computations we derive the following result. Let us
consider the functor

W : MFr, (pa-) = MFr,(pa) : X = Rp((®oX)(n"(@—) — 1))(@n-3)

n—1
X |1—J + 2N(n):| ,
2
where B C MFr, (p,) is given by (3.5).
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Theorem 3.13 The functor V is fully faithful and
W(E), W(E(D),..., ¥(E(u'(a—) = 1)
is the left dual collection to the exceptional collection
E.EQ),...,E(n'(@a=)—1)

Proof The computation of Lemma 3.8 gives

Dy(E(i)) ~ F(—i) for0<i<u"(a—)— 1. (3.9)
Hence, from Proposition 3.11 we get that the image of X > (®oX)(n"(a—) — 1) is
contained in +B. Since Rz : *B — B is an equivalence, we derive that W is fully

faithful. The duality of the needed collections follows from (3.9) and from Proposition
3.11. O

3.6 Recovering the collection from the initial segment
3.6.1 Perfect pairing property

Theorem 3.13 implies that the directed Aoo-category corresponding to the subcollec-
tion

(E,....,E(u’(a=) = 1)

of the AT-collection in MFr(p,) is equivalent to the directed Ao-category corre-
sponding to the right dual of the AT-collection in MF(p,_). Now we need to identify
the relation of the next object E(u (a—)) to this subcollection.

For this we use the following general observations about exceptional collections.
Let Eq, ..., E;4+1 be an exceptional collection in a triangulated Ao-category D, and
consider the subcategory

C:=(E1,...,Epn)

Let A, p : D — C denote the left and right adjoint functors to the inclusion, and let
Sc denote the Serre functor on the subcategory C.

Lemma 3.14 The following conditions are equivalent.
(i) Hom*(Eq, Ejq1) = Homd(El, Eny1) =Kkand foreachi, 1 <i <m+ 1, the
compositions
Hom/ (E;, Ep+1) ® Hom* ™/ (E1, Ei) - Hom (E1, Ent1) =K,
for all j are perfect pairings.
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(i') Hom*(E{, Eym41) = Hom?(E1, E;pt1) = Kk and for each C € C, the composi-
tions

Hom“(C, Epp11) ® Hom’(Ey, C) — Hom?(E1, Epy1) =Kk,
are perfect pairings.
(i"y Hom*(E1, Ept1) = Hom?(E|, Epy1) = k and for each i, 1 <i < m + 1, one
has
HOHl*(LE1 Ei, Em+1) =0.
(ii) One has an isomorphism
p(Em+1)[d] >~ Sc(E1).
(ii') One has an isomorphism

MLc(Emt1))ld — 1] = S¢(E1).

(iii) For any exceptional collection (E1, . .., E,,) generating C, there is an equivalence
of directed Ao-categories

end (Sc(E1), Ey, ..., E,) ~end (Le(En)ld — 11, EY, ..., Ep),

identical onend_ (E{, ..., E;,) =end(E|, ..., E,).

Proof (i) <= (i’). The pairing in (i’) corresponds to a morphism of cohomological
functors

Hom(C, E;41[d]) — Hom(Eq, C)V.
Condition (i) states that this morphism is an isomorphism for the generators
(Ei[n]1<i<m of C. Hence, the assertion follows from the five-lemma.
(i) < (i"). For every E; with 1 < i < m + 1, we have an exact triangle
Lg,(E))[-1] > RHom(Ey, E;) ® E; - E; — Lg,(E;)

Taking Hom(?, E,,+1[d]) we get an exact sequence

... = Hom Y/ (Lg, (E}), Emy1) — Hom“™ (E;, Eppy1)
— Hom ™/ (Ey, E;)¥ @ Hom*(E|, Eppi1) — -+ -

Now we see that the perfect pairing property for E; is equivalent to the vanishing
Hom™(LE, (E;), Em+1) = 0.
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(i") <= (ii). Condition (i") is equivalent to a functorial isomorphism in C € C,
Hom(C, E;,41[d]) ~ Hom(E{, C)".
But we have functorial identification

Hom(C, Ey1[d]) =~ Hom(C, p(Ep+1)[d]),
Hom(E;, €)Y ~ Hom(C, Sc(E))).

Hence, (') is equivalent to a functorial isomorphism in C € C,
Hom(C, p(Ep+1)[d]) ~ Hom(C, Sc(E1)),

i.e., to an isomorphism p (E,,;+1)[d] >~ Sc(Ey).
(i1) &= (i1’). This follows from Lemma 3.1.
(ii") < (iii). By adjunction, we have

end%(LC(Em-Fl)[d - 1]7 El’ R E;/n) x~ end‘)()\.(Lc(Eerl))[d - 1]7 E/s RN E;/n)s

so condition (iii) simply states that the A.-modules corresponding to S¢(E1) and
A(Lc(Emn+1))ld — 1] are equivalent. It remains to use the fact that the functor C +—
hom(C, E| @ ... ® E;,) gives an equivalence of C?” with the category of left An-
modules over end(E] & ... ® E,). O

We will call the property (i) the perfect pairing property for the collection
E1, ..., Eyq1.Notethat as we observed in Sect. 3.3.2, this property holds for the initial
segment (E, E(1), ..., E(unY(a—))) of the AT exceptional collection in MFr, (p,).

3.6.2 Adjoints and mutations

Assume that we have an exceptional collection Ey, ..., E,4; in a triangulated Ao-
category D, with 0 <[ < m, such that

e there exists an autoequivalence t of D such that t(E;) = Ej11;
e Hom*(E;, Ej) =0for j —i > m.

LetC = (Ey,...,Ep), and let p : D — C be the right adjoint functor to the
inclusion.

Lemma 3.15 (i) Assume that the perfect pairing property holds for Ey, ..., Ep+1,
with Homd(El, En+1) =k Thenfori =1,...,1, one has

P(Em4i)ld] = Sc(E;). (3.10)

(i) Assume in addition that for every pair of morphisms o : E1 — E;ila] and
B:E; = Eut+1ld —al, such that 1 <i <1, one has

N Boa)=1"(a)o B. (3.11)

@ Springer



2378 U. Varolgunes, A. Polishchuk

Then the restriction of p,

o (Entt, ..., Emy) — c

is fully faithful.

Proof (i) Note that for eachi =1, cees [, the collection E;, Eit1, ..., Ep4i is the
image of E1, ..., E;41 under ' ~!, hence, the perfect pairing property holds for
E;,Eiyy, ..., Eyti. We claim that this property also holds for the collection

Ei,RE,E\,REEy...,REEi—1,Eit1, ..., Em, Emyi.

Indeed, this follows immediately from Lemma 3.14 since
Hom*(Lg, RE,Ej, Epyi) = Hom™(Ej, Epyyi) =0
forj <i—1.

Since (E;, Rg;E1,...,RE,Ei—1, Ei+1,..., Ey) = C, by Lemma 3.14, we
deduce an isomorphism

p(Em+i)ld] >~ Sc(Ei).
(ii) Equation (3.11)implies that a similar property holds for any paire : E; — Ej[a]
and B8 : E; — Epild —al, where i < j < I. Let us choose identifications
Hom?(E;, E,1;) ~ k for all i, compatibly with 7. Then the above property

implies that for any object C € C and any morphism « : E; — Ej[a], the
following diagram is commutative:

Hom?(C, Ey4:) ® Hom™*(E;, €) —22%% Hom(C, Ey+i[d)) ® Hom(E;, C)

(" (a)o?)®id

Hom?*%(C, Eyyj) ® Hom™“(E;, C) k
Indeed, for f € Hom?(C, E,4;)and g € Hom™“(E;, C), we have equality
(fogoa=1"(@)o(fog).
Equivalently, the following diagram is commutative for any C € C:
Hom(E;, C)¥V — Hom(C, E,,1;[d])

(20at)V " (a)o?

Hom(E;, C)" — Hom(C, E 4 [d])
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which leads to the commutative diagram

Sc(Ei) — p(Epnti)ld]

Sc () pr’"[d](a)\

Sc(Eplal — p(Epyj)ld + al

for every a : E; — Ej[a]. Since the horizontal arrows are isomorphisms (see
Lemma 3.14), It follows that the composed map

Hom*(E;, E;) — Hom*(Epti, Em+j) — Hom*(0(Ep+i), p(Em+)))

gets identified with @ — Sg (@), so it is an isomorphism. Hence, the restriction
of pto (Ept1, ..., Epyj) is fully faithful. O

Lemma3.16 Let D = (Cy,Cy, ..., Cy,) be a semiorthogonal decomposition, and let
pi : D — C; denote the right adjoint functor to the inclusion. Assume that

e Hom(C;,Cj) =0for j >i+1;
e foreveryi < n, the restriction

pilc,y : Civ1 = Ci

is fully faithful.

Then we have canonical isomorphisms of functors
POL01 s LC,;] |C,‘ = P0P1 - - Pi—1 |C,* [i —11, (3.12)

and for everyi > j > 1, for C; € C;, Cj € Cj, the functor py gives an isomorphism

Hom(Lcl e LC,;] Ci, LC1 e LCHCj) —~> Hom(,ooLcl e LCFIC,', ,()()Lcl e LCj,]Cj)-

In particular, pg is fully faithful on each subcategory L¢, ... Lc,_ C;.

Proof Step 1. We claim that for any C; € C;, where i > 1, and any C; € Cy, the map
induced by po,

Hom(L¢, ... L¢, ,Ci, C1) — Hom(poL¢, ... L¢, ,Ci, poC1)

is an isomorphism. For i = 1 this true by assumption, so we can assume i > 1.
Equivalently, we need to check that the canonical morphism

pole, ... Le,_Ci — L¢, ... Lc,_,C;
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induces an isomorphism on Hom(?, C). Let us consider the commutative square
induced by the adjunction morphism for po,

poLe, ... Le, ,Ci = popile, ... Le,  Cill]
(3.13)
Ley...Le, ,Ci — pi1L¢, ... Le, Ci[1]

Note that the cocone of the bottom horizontal arrow is L¢, ... L¢,_,C; which is in
COL = ker(pp), so the top horizontal arrow is an isomorphism. Let us consider the
induced commutative square

Hom(poLc, - - Le,_, Ci, C1) <= Hom(popiLe, - . Le,_, Gil1], C1)

Hom(L¢, ...L¢,_,Ci, C1) =—— Hom(piLg, ... L¢,_,Ci[1], C1)
Note that the right vertical arrow is an isomorphism since pg|c, is fully faithful (we
apply this to the objects p1L¢, ... L¢,_,Ci[1] and Cy of Cy). Finally the bottom hor-
izontal arrow is an isomorphism since Hom(L¢, ... L¢, ,C;, C1) = 0. This implies
that the left vertical arrow is an isomorphism as claimed.
Also, applying the isomorphism in diagram (3.13) to the categories (Ci, ..., C;)
we get the functorial isomorphisms

poLe, ... Le,_Ci = popiLe, ... Le,_ Cilll >~ pop1p2Les - - - Le,_, Cil2].

Continuing in this way we derive (3.12).
Step 2. Now we restate the result of Step 1 as

Hom(L¢,L¢, ... L¢,_,Ci,C1) =0
for i > 1. Indeed, this immediately follows from the exact triangle
pole,...Le, Ci — L¢,...Le,_ ,Ci — LeyLe, ... Le, (Ci — -+
Similarly, fori > j > 1, we have
Hom(Lijchj ...Le,_Ci,Cj) =0.

Step 3. We claim that forany i > j > k > 1, one has

Hom(L¢,_ L¢, ... L¢,_Ci,Le, ... Lc;_,Cj) =0,
or equivalently, for C; € C; and C; € Cj, the natural map
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Hom(Lg¢, ... L¢;_Ci, Ly ... Lcj_]Cj) — Hom(px—1L¢,Le;_Ciy pr—1Lcy - - - Lcj_]Cj)

is an isomorphism.
We use induction on j — k. The case j = k is exactly Step 2, so let us assume that
J > k. Note that by Step 2, we have

Hom(L¢, L¢, ... Le, Ci,Cr) =0,
hence, for C; € C; and C; € C; we have an isomorphism

Hom(L¢, L¢, ...L¢,_Ci, Lg, ... Le; C;j) ~Hom(L¢, ,L¢,
xLe,_1Ci, Legy, - - - Lc/.ile).

Since Hom(Cy—1, L¢y ., - - - Le, Cj), we further have an isomorphism

Hom(L¢,_ Le, ---L¢;_,Ci, Leyy, - - - Lc].71 C;) ~ Hom(L¢,
xL¢, \Ci, Ley,, ---Le;  Cj)

which vanishes by the induction assumption.
Finally, taking k = 1 we obtain the assertion we wanted to prove. O

Remark 3.17 Note that the restriction of pg to the subcategory
(C1,....Ch)=(L¢e,...Lc, ,Cy,...,Lc,C2,C1)

is not fully faithful provided C, # 0. Indeed, this is clear since po(C2) = 0. Lemma
3.16 only checks that morphisms from left to right with respect to the mutated
semiorthogonal decomposition are preserved. However, we have Hom(Cy, L¢,C2) =
0, whereas Hom(po(C1), po(Lc, C2)) is not necessarily zero for Cy € Cq, C2 € Cs.

Proposition 3.18 Assume that we have an exceptional collection Ey, ..., Ey in a
triangulated Aoo-category D, and for some m < N the following conditions hold

there exists an autoequivalence T such that T(E;) = Ej4+1,

Hom(E;, E;) =0 for j —i > m;

the perfect pairing property holds for Ey, . . ., E,, with Hom?(Eq, E,;) = k;

for every pair of morphisms o : Ey — E;la]land B : E; — E,,[d — al, such that
0<m+1i <N, Eq. (3.11) holds.

Let F_pn, ..., F_1, Fy be the left dual exceptional collection to Ey, ..., Ey, so that
F_m+1, ..., Foisthe left dual collectionto Ey, ..., Ey—1. LetC := (Eqo, ..., En—1)
and let A : D — C denote the left adjoint functor to the inclusion (which exists as an
Aoo-functor). Then

N .
A(F_y) Hﬂ d— 1)} e (P H’;J d— 1)} ,
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~~-9)\(F—m)[d_l]»F—m—I—ls"'vFO

is a part of the helix associated with the full exceptional collection F_,, 41, ..., Foin
C, and A induces an equivalence of directed A-endomorphism algebras

end_ (F_y, ..., Fo) — end  (AMF_N), ..., M(F_n), Fpmit, ..., Fo).
Proof Let N = mNy + r, where 0 < r < m, and let us set

(Emis s Emiym—1), 0 <1i < Ny,
(EmNo»w-aEmN(H»r)’ [ =N0

Ci:=1"(C) = {

Note that C = Cp and C;  C* fori > 1. Let also p; denote the right adjoint functor
to the inclusion of C;.
First, we observe that by Lemma 3.15, the functor po|c, is fully faithful and

p0(Em+j) = Sc(Ej)[—d]

for j =0,...,m — 1. Using the autoequivalence t, we deduce that for each i < Ny,
the functor p;|c,,, is fully faithful and

Pi (EmGi+1)+j) = Sc, (Emi+j)[—d]. (3.14)
It follows that for i < Ny, the functor p;_1l¢, : C; — C;—1 is an equivalence.
Thus, the conditions of Lemma 3.16 are satisfied for our collection of categories

(C;). Hence, the functor pg preserves morphisms from left to right on the semiorthog-
onal subcategories
Le,...Le,_Ciy...,Le,Ca, Cy

and is fully faithful on each of them. By Lemma 3.1, this is equivalent to the fact that
the functor A preserves morphisms from left to right on

LeyLe, ... Lg, (Ci, ..., L¢y, Le,Co, LeyCi, Co

and is fully faithful on each of these subcategories.
In addition, using (3.12) and (3.14) we compute

poLe, ... Le,_ (Emivj) = pop1 ... pi—1(Emi+j)li — 1] = Sé(E,/)[—di +i—1]

(we also used the fact that the equivalences p;_1|c, fori < Np commute with the
Serre functors). Using Lemma 3.1 we can rewrite this as

ALcyLe, ... Lo, (Emisj) =~ SH(E)[—di +i]. (3.15)
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By Lemma 3.3, the left dual exceptional collection to Eo, ..., Ex has form
LCO s LCNO,lmeO(F*r+lv ooy Fo), LCO
Loy 7" N DE ), (Fomtts - - - Fo).

No—2

Note that any fully faithful functor sends the left dual of an exceptional collection to
the left dual of its image. Hence, by (3.15), applying A to the above collection we get

8P INo(1 = ) N(Fpits .y Fo)y oo S5O N0 — (1 = d))(Fopo1,
R 4179 FEPY S D )

which is the part of the helix generated by F_,,11, ..., Fo (up to shifts).
We also see from above that the map on directed Ext’s (from left to right) of this
collection, induced by A, is an isomorphism. O

3.6.3 Recursion for categories of matrix factorizations

Finally, we can prove the directed Aoo-category AT (a) is obtained from AT (a—) by
the recursion R with N = Y (a).

Theorem 3.19 Let us start with the AT exceptional collection E, E(1), ..., E(u (a—)

—1)inMFr,_(pa-), extenditto a helix and take the segment H_ ;v (qy41, ..., H_1, Hp
such that Hy = E. Now take the directed Aoo-subcategory with the objects
F_yv@+1s .-, F-1, Fo, where
i
F_; = H; |:— {—J (n+2m@a—) — 1)i| ,
m
where m(a—) = m(ay, ..., ay—1) is determined by (3.4). Then the directed Aso-

category corresponding to the dual right exceptional collection to F_,v )41, .- .,
F_1, F is equivalent to AT (a).

Proof Using Theorem 3.13 and Proposition 3.18 we get the statement with

F_j:=H; [— LLJ (D(a) — l)} )
m

where D(a) is the unique integer such that Hom?@ (E, E(u"(a—))) # 0 in
MFr, (pq). Note that Eq. (3.11) holds in our case, due to the commutativity of the
Ext-algebra of the AT collection. The perfect pairing property also follows from the
structure of the Ext-algebra (see Sect. 3.3.2).

It remains to check the equality

D(a) =n+2m(a—).
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To this end we observe that D(a) is determined as follows. If n is even then we should
have

(a1 — Dx1+ (a3 — Dx3+ -+ (ap—1 — DXp—1 = n"(a—)x1 + D(@)T.
If n is odd then we have
T —X1+ (@ — DX+ (@ — DXs+ -+ (ap—1 — DXy—1 = =" (@—)x1 + D(@)T.

But using the relations a;x; = 2T — X4+, we immediately see that in both cases the
left-hand side is equal to £ = nT — x| — - - - — X,,. Hence, the assertion follows from
Lemma 3.6. O
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Appendix A: Mathematica code

We provide a simple Mathematica code in Figure A for the readers who want to
experiment with the results in Sect. 2.4. We stress that we do not use such numerical
approximations in our argument. We did use this experimentation to come up with the
arguments.
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Manipulate[

ComplexListPlot[x /. NSolve[(EA (2PixIxa) r*x"A4 +EA (2Pi*xIxb)s)A7- (x-t)"r6, x],
PlotStyle » PointSize[Medium]], {r, 0, 2, 0.01}, {a, 6, 1, 0.01}, {s, 0, 1, 0.001},
{b, 0, 1, 0.01}, {t, 0, 1, 0.01}]
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