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ORDINARY DEFORMATIONS ARE UNOBSTRUCTED IN THE
CYCLOTOMIC LIMIT*

ASHAY BURUNGALE! AND LAURENT CLOZEL*

Abstract. The deformation theory of ordinary representations of the absolute Galois groups of
totally real number fields (over a finite field k) has been studied for a long time, starting with the work
of Hida, Mazur and Tilouine, and continued by Wiles and others. Hida has studied the behaviour
of these deformations when one considers the p-cyclotomic tower of extensions of the field. In the
limit, one obtains a deformation ring Roo classifying the ordinary deformations of the (Galois group
of) the p-cyclotomic extension. We show that if Rso is Noetherian and certain adjoint p-invariants
vanish (as is often expected), then R is free over the ring of Witt vectors of k.
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1. Introduction.

1.1. Setup. Let p be an odd prime. Let F' be a totally real field of degree d over
Q, unramified at p. All extensions of F" are contained in a fixed algebraic closure. Let
F be the cyclotomic Z,-extension of F', and F,, C F the subextension of degree
p". Thus Fy = F. Note that F' (and therefore F),) does not contain the p-th roots of
unity.
We write p for a prime of F' dividing p. Since F is unramified at p, we have
(ram) F,,/Fy is totally ramified at p.

Let S be a finite set of places of F', containing the infinite and p-adic places, and
let Fs be the maximal extension of F' unramified outside S; ditto F, s. We define
'y = Gal(Fg/F) and similarly I';, = Gal(F, s/Fp).

In this setting, given an ordinary residual representation p : I'g — GLy(k) for k
a finite field of characteristic p (cf. §1.3) one has the ordinary deformation ring R,
of p|r,,, classifying weight two ordinary deformations of p|r, unramified outside S. It
has been first studied by Hida [15]. One expects the size of R, to grow as n — oo.
We can form the inverse limit Ro, = lim R,,. Suitably interpreted (below), it is the
ordinary deformation ring of p|p_. Our goal is to show that, under certain natural
assumptions, such ordinary deformations are unobstructed:

Roo 2 W(E)[X1, ..., X]

for W (k) the Witt ring and s > 1 an integer. Theorem 1.6 is our main result. The
assumptions are R, is Noetherian, and certain adjoint u-invariants vanish (see §4.2).

In general, the obstructions are measured by the second adjoint Galois cohomol-
ogy. Note that the p-cohomological dimension of F, is 1, cf. Serre [23, Ch.2, Prop.
9]. (Recall that primes of F' over p are totally ramified in F,, and that primes not di-
viding p are inert, at least after a finite extension F,, of F.) So, without the ‘ordinary’
condition, the deformations are unobstructed over F,,. The corresponding deforma-
tion ring is however non-Noetherian. In contrast the ordinary deformation ring R, is
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406 A. BURUNGALE AND L. CLOZEL

expected to be often Noetherian and well-controlled (cf. Hida’s non-abelian Leopoldt
conjecture [13]). To investigate whether it is smooth, one needs appropriately to ac-
count for the ordinary condition, which could yield obstructions. Much of our work
will consist in proving the vanishing of the relevant H?’s over F.,. There will be
two main steps: a calculation of tangent spaces for infinite level local deformation
problems (cf. section 2) and a weak Leopoldt-type result (cf. section 4). The latter
relies on the finiteness of the adjoint Bloch-Kato Selmer groups over F), (due to Allen
[1]), and is also closely related to the adjoint u-invariants.

1.2. Context. Following Hida’s discovery of p-adic families of modular forms
(cf. [10], [11]), Mazur [17] introduced Galois deformation theory in the mid 80’s.
It has a rich history (cf. [27]), and continues to be fundamental to the study of
Galois representations and their arithmetic. Iwasawa theory of deformation rings was
initiated by Hida in the late 90’s (cf. [14], [15]). It arose in the context of Iwasawa
theory of the adjoint of a p-adic family of modular forms.

The problem of the growth of deformation rings in the cyclotomic tower has
been posed by Hida [15, pp. 354-357]. He proved that the vanishing of an adjoint
p-invariant implies R is Noetherian (cf. [15, Cor. 5.11]). The mysterious invariant
s > 1 encodes the growth. In [3] we will provide examples with s > 1 for p verifying
suitable conditions, and for a large set of ramification S. One may seek arithmetic
significance of the invariant s, such as its link with the adjoint Iwasawa theory. It is
especially instructive to consider the residually CM case, which may lead to link with
CM Iwasawa theory (cf. [19], [16]). Another basic problem is to explore connections
with infinite level modular forms introduced in [5], [6].

As for the assumptions in our main theorem, it is expected that the p-invariant
typically vanishes if the underlying Galois representation is residually irreducible
(cf. [24]). We are not aware of any general result towards it. Nevertheless, Remark
1.7 (2) presents some examples which illustrate the main theorem. The vanishing of
the p-invariant seems critical (following Perrin-Riou) for Proposition 4.5.

We may ask' if the main result can be proved for “G-valued deformations of
a “G-valued mod p Galois representation with G' a reductive group. To follow the
current approach, it seems essential to impose adequacy for the image of the mod p
Galois representation and suppose the vanishing of certain adjoint p-invariants. We
remark that a key input in the current approach due to Allen [1] is already available

for G = GLg,.
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NOTATIONS. Let Fj, , be the localisation of F,, at the unique prime above p.
When p is understood we will write K,, := F,, ,. Thus [K,, : Ko| = p™.
We set A, = Gal(F,,/F) 2 Z/p"Z and A = @An = Z,. Also put

Q = lim k[A,] = K[T]

ITilouine and Urban have recently announced such a generalisation.
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for the (modular) Iwasawa algebra, where k is a finite field of characteristic p, and
A =1 Z,[A,] = Z,[T].

If V is a k-vector space we write V* for its linear dual.
If L is a perfect field, we write G, for its absolute Galois group (for a choice of
an algebraic closure).

1.3. Ordinarity. Let K be a p-adic field, k& its residue field, and A a local W (k)-
algebra. A representation p : G — GLa(A) is called ordinary of weight two if it has

the form
we %
( ” ) (L1)

where € : Gg — A is unramified, &2 # 1 for z := € mod my, and
w:Gr — Z; — A~

is the cyclotomic character. (Actually, £2 # 1 is an additional hypothesis, often
referred to as the p-distinguished hypothesis.)

We will write A[y] for the free A-module of rank 1 on which G acts by the char-
acter x. The coefficient * defines a class e € Extl (A[e™'], Alwe]) = HY(K, Awe?]).

For a global field F, a representation p of the Galois group into GLa(A) is called
ordinary of weight two if its restriction to F), (for any prime v above p) is ordinary of
weight two. We also assume that the determinant of p is the cyclotomic character.

We will consider representations of I';;, thus unramified outside S. For the places
in S away from p, we impose no conditions (‘unrestricted deformations’.) (We could
impose local conditions, given by compatible deformation data (D, 4) for the primes g
dividing S\ {p|p}, the conditions being compatible with respect to the field extensions.
However it seems delicate to check the arguments of §4 in this more general situation.)

Let k be a finite field of characteristic p. Let p: 'y — GLz2(k) be an absolutely
irreducible representation satisfying the following.
(ord) p is ordinary of weight 2.
(irrr(c,)) PlGr,, is irreducible.
(NS) The restriction of p to F, is absolutely indecomposable? for all p.
(det) The determinant is the cyclotomic character.

In particular p is totally odd (the image of each complex conjugation has deter-
minant —1).

Note that these conditions remain satisfied when p is restricted to F},: €2 remains
non-trivial as F, ,/F}, is totally ramified, and then inflation-restriction implies that
HY(K, klwe?]) — HY(K,, klwe?]) is injective (K = F, C K,, = F,, ). In particular,
for all n, plg,, is indecomposable. The same argument applies to the restriction
to Gk, (c,)-Thus p, restricted to Gk, (c,), is semi-simple by Clifford theory ([7, Thm.
1.1]) and indecomposable, and therefore irreducible. In this paragraph and henceforth,
we let € = g, the latter as in (1.1) for p and w also denotes the mod p cyclotomic
character of G, .

2See Remark 1.7 (3) for the general case.
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Write Cy for the category of complete local W-rings (W = W (k)) with residue
field k; write Cyy for the subcategory of Artinian objects in Cy . (Cf. [18, p. 267].
Note however that we do not assume rings in 5W to be Noetherian.) We simply
write Hom(—, —) for the continuous homomorphisms in 5W. For the representability
properties it suffices to consider liftings of p to elements of Cyy .

For any non-negative integer n, there exists a universal deformation ring R,, over
W (k), the ordinary deformation ring for F,, parametrising ordinary liftings (of weight
2) of p over algebras in Cy. By results which are now well-known, we have

THEOREM 1.1. R, is a complete Noetherian algebra in 5W for finite n.

1.4. Deformation rings over F,,. By construction, for A € CAW, there exists
a natural bijection

Hom(R,, A) <+ p'y = {ordinary deformations of p|r, over A}

(the representations on the right taken modulo conjugation by 1+ m4M5(A)).
By restriction p'; yields an ordinary representation for I',,;,. Taking A = R,, we
see that there exists a natural homomorphism R, 11 — R,.

LEMMA 1.2. The homomorphism R, +1 — R, is surjective.
Proof. We have the tangent spaces
(mR/(p7 m%%))* - H;rd(ra Adoﬁ)

where Adoﬁ is the representation of I" on the traceless endomorphisms of the space
of p (see §2) for I' =T, I', 11, and R = Ry, Rpq1 (cf. [4]). The definition of H? , is
recalled in §3.1.

Note that F, ;1.5 = F}, 5. Consider the exact sequence

e P P AV |
where A,, 11 = Gal(F,4+1/F,). This yields the exact sequence
0— HY (A, H' (T, W) = HY(T,,, W) = H(A, H (T )1, W)).

Since the representation of T', 11 on V is indecomposable, H?(T,, 41, W) = 0,
whence an exact sequence

0— HYT,,Ad’p) = HY(T',,11,Ad"p) (1.2)

Now the definition of ordinary cohomology (see §3.1) yields a commutative dia-
gram

H;rd(rm W) —— H(}rd(rnﬂ, W)

| J

0 —— HY(T, W) — H'(Tpyr, W)
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(the local conditions defining H;rd being compatible), with injective vertical maps,
whence

0— HLq(Ty,Adp) — HYy(Try1,Ad"p) (1.3)
This yields first R,41 ® k — R, ® k since these algebras are Noetherian and
complete, and then R, 11 — R,, as both algebras are p-complete. O

Now we define
Ry = @1 R,,.

It belongs to Cy . It is not known to be Noetherian. (Compare [15, pp. 354-357].)

We now want to consider ordinary deformations of p|p_. First note that
ﬁ'Gal(Fooy s/F.) remains ordinary of weight 2 (with the previous definition); in par-
ticular €2 # 1 on this subgroup. The exact sequence

1 — Gal(K/Ky) — Gal(K/K) - A — 1
where A = 7Z,,, yields again
0— HY (A, HY(K /Ky, k) - HY(K /K, k) — H (A, H' (K /Ko, k)
where k is endowed with the representation we?, so the class of e in H(K /K, k) is

non-zero as the first term vanishes (we? being equal to €2 on the subgroup).

However standard deformation theory does not seem to apply here. Indeed:

(i) The group IT = Gal(Fs/F) does not satisfy the usual finiteness condition,
viz., Hom(II, Z/pZ) being finite. In fact all we seem to know is that II*" is
finitely generated over the Z,-Iwasawa algebra A (Cf. [20, p. 735]).

(ii) Even with a proper definition of H. (I, Ad’(5)), this may not be finite
without further conditions.

Nevertheless we will see that R still represents the natural deformation problem.

(See also Dickinson’s appendix to [9].) We first have:

LEMMA 1.3. For A € Cyy,
Hom(Rw, A) = hﬂHom(Rn, A).
Proof. This is clear since A is finite and R, is the projective limit of compact
rings. Note that Hom(R,,, A) C Hom(R,,1+1,A4). O

PROPOSITION 1.4. Let (A,pa) be an ordinary deformation of pln to A € Cyw .
Then there exists n < co such that pa extends to Gal(Fs/F,).

(By ‘ordinary’” we mean henceforth verifying the condition (1.1).)

Proof. As before we have an exact sequence
1—-1II— Gal(Fs/F) - A—1

with A = Z,. The choice of a lifting of a topological generator of A gives a splitting;
we identify A with its image by this section.
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Now A acts continuously on II by conjugation. Let II; C II be the kernel of py,
an invariant subgroup of finite index. There exists a subgroup of finite index A; C A
such that

896~ = g mod II;

for 6 € Aq.

We can then set pa(gd) = pa(g) for g € II,§ € Ay; Ay corresponds to a finite
extension F), and p4 extends to Gal(Fs/F),) (cf. [6, §3.3]).

This yields a representation of I',,, but it is not yet ordinary. However the lower
left coefficient of the matrix is a continuous function with values in A, vanishing on
II. Thus it vanishes on '), for some n’ > n. Likewise, the diagonal will be given
by (we,e~1) upon restriction to I',, since A is finite. Similarly, one checks that the
deformation of this extension (rather than the lifting) is well-defined. O

COROLLARY 1.5. R, represents the ordinary deformations of pli.

Note in particular that there is a natural universal deformation of p|, over Ro,
defined by 1&1 Pr-

1.5. Main result. The purpose of this paper is the following theorem.

THEOREM 1.6. Let p: Gp — GLy(k) be an absolutely irreducible representation
as in §1.3. Let (p, V') be a deformation of p over the integer ring of a p-adic field, V
the underlying vector space and let T C Ad°V be a Gp-stable lattice. Assume R is
Noetherian. Assume further that
(Aut) p is automorphic,
(adr(c,)) PlGr, is adequate and
(1) (X (E,T*(1))sor) = 0= p(X ' (F, T)ror)

Then it is formally smooth, i.e.
R =~ W (E)[X1, ..., X5]

for some s > 1.

(Refer to §4 for the definition of the Iwasawa modules X' and the corresponding
p-invariants, and the notion of ‘adequate’.)

REMARK 1.7.

(1) For conditions on the data ensuring that R., is Noetherian, see [15, Cor.
5.11].

(2) Let F be Q and

p € {11,17,19,23,29,31, 37,41, 43, 47,59, 61, 67}.

Then there exists a p-ordinary f € S2(To(p)) such that Ry ~ W (k)[X] (cf.
(15, Ex. 1.68]). Here we consider deformations of the associated mod p Galois
representation.

(3) The hypothesis (NS) is inessential. It is currently used for arguments in
section 2, specifically Lemma 2.7, which is key for the proof of Theorem 1.6.
However, even otherwise, the lemma remains true. (Basically, various exact
sequences in section 2 are split otherwise and can be analysed directly.) The
details will appear in [3].
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REMARK 1.8. In light of Hida theory, one has dim(R.) > 2. An outline:

First, assume F' = Q and Fo = Q4 the Z,-extension of Q. In this case the
R,’s are finite over Z, but R, has Krull dimension at least two: let f be a weight
2 eigenform, ordinary. Then there is a Hida family F through f (cf. [10, Cor. 3.2]),
whence

p~ : GQ’S — GLQ(H)
for T finite over Z,[X] (cf. [11, Thm. II]). In Hida’s construction, / parametrises a
family of representations of varying weights. However:
LEMMA 1.9. ﬁ|Ga1(@wYS/@m) s of weight 2.
Proof. For example, suppose that the Hida family F corresponds to (f;) where
fr has weight k, and fo = f. Set
np=2+(p—1)p".
Then the base change of f,, to F), reduced modulo p”, has weight 2. O

Thus the surjection Ry — I yields dim(R) > 2 without the hypotheses in
Theorem 1.6. (The surjectivity just follows by considering the traces of Frobenii for
the universal representation.) A similar argument applies to the general case (cf. [12,
Thm. IIJ).

2. Local cohomology. In this section K = F, , is local and p is an ordinary
representation of Gk (verifying the conditions of §1). In particular the extension class
arising from p is non-split (cf. (NS)). For simplicity we write d for dy, = [F}, : Q).

Let V = k2 be the space of p, and W = End’(V) be the space of traceless
endomorphisms of V. It is endowed with the natural representation Ad"(p). Let
Ad°p(1) be the Tate twist, the tensor product Ad%(p) ® k[w] with the cyclotomic
character. (Recall that k[x] is the module associated to a character y; V(1) =V ®
klw].) The main result is Lemma 2.7.

2.1. Local cohomology of the adjoint. Let W, C W7, C Wy = W be the

filtration of W
we{(1)) we G} e

preserved by Gi. Then as Gx-modules,
Wo = k[%w],  Wi/Wo ZEk[],  Wa/W; =Eklw 'e?

for 1 being the trivial character.
The exact sequence

O—>W0—>W1—>W1/W0—>O

induces

HO(K,Wy) —  HYK,Wy/Wy) — HYK,W,) — HYK, W) —
HY(K, W1 /W) — H2(K, W) — H2(K, W) — H*(K, W1 /W) — 0.

Write hi (K, —) = dimy H' (K, —).
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LEMMA 2.1.

(i) hO(K,W1/Wy) =1 and the map HO(K, W1 /Wy) — H*(K,Wy) is injective.
(ii) h'(K, W) = p"d.

(iii) hl(K,Wy) = 2p"d.

(iv) hl(K Wi /W) =p"d + 1.

(v) B2, W) = 0.

Proof. Write V! = V*(1). Then
Wo = k[e™?,  (Wi/Wo) = klw].

By Tate duality we see that h%(K, Wy) = h?(K, W1 /W) = 0. This implies (v).

The first part of (i) is obvious; we have h°(K, W) = 0 since the extension is non-
split, so the map is injective. The map H'(K,W;) — H(K,W;/Wy) is surjective
since H2(K,Wy) = 0. Now the formulas (ii)-(iii) follow from Tate’s Euler-Poincaré
formula and (iv) from the exact sequence. O

Now recall that for X a representation of G on a k-vector space,
H (K, X)=ker{H" (Gg,X) — H'(Ix, X)}

where I is the inertia. We define the unramified classes H. (K, W) to be the inverse
image of HL (K, Wy /Wy).
At this point we have the exact sequence

0 — HYK, Wy /Wy) — HY(K,Wy) — H (K, W) — HY(K,W,/Wy) -0 (2.2)

where the corresponding dimensions are (1, p™d, 2p™d, p™d + 1). Since Wy /W is with
trivial G g-action, H! (K, W;/Wy) = k. Thus

dimy, H} (K, W) = p"d.
Now the exact sequence
0—->W), =W —=W/W; =0
induces
0— HY (K, W) - HY(K,W) = H'(K,W/W;) = 0 (2.3)

by Lemma 2.1.

We define H! (K, Ad"p) as the image of H. (K, W;) in H*(K,W). We also note
the vanishing of H?(K,Ad’p) by the analogue of (2.3) for H?, and Tate duality for
W/Wi.

We summarise the results obtained so far:

LEMMA 2.2.
(i) HY(K,Ad"p) = H*(K,Ad’p) = 0.
(i) dimy HL ,(K,Ad"p) = p"d.
(iii) dimg H'(K,Ad’p) = 3p™d.
(The third equality coming from (i) and the Euler-Poincaré formula applied to

Now consider the extension K = F), , = K,, of Ky = F},, whence an action of
A, = Gal(K,,/Kj) on the cohomology groups H*(K,, —).
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LEMMA 2.3. HY(K,,Ad°5(1)) is free over k[A,] of rank 3d .

Proof. Write M,, = H'(K,,Ad"5(1)). Note that W is self-dual, so dimy M, =
3p™d by Lemma 2.2 and Tate duality.

We show that the space of coinvariants Hy(A,,, M,,) has dimension 3d: this implies
by Nakayama’s lemma that there is a surjective map k[A,,]?¢ — M,,, and we conclude
by counting dimensions.

However, the dual of Hy(A,, M,) is HO(A,, H'(K,,Ad"p)); this is isomorphic
to H' (Ko, Ad"p) by inflation-restriction as H°(K,,Ad’s) = 0. By Lemma 2.2, the
dimension of this space is 3d. 00

L (K, Adp), of dimension p"d. Note that the
filtration W; of W gives rise to cohomology spaces on which A,, acts.

LEMMA 2.4. H! (K., Wi/Wy), H}.(K,,,W1) and H.,
by the action of A,.

We now consider the subspace H!
(Kn,Ad’p) are invariant

Proof. Tt suffices to check this for the first space, and this is obvious as the inertia
I, is invariant by A,,. O

In k[A,], the space of A, -invariants is
{fzx-Zé’xEk}.
Ay

The space H°(A,,, k[A,]?) is the sum of these lines. If j;, j» are two injections of
the trivial A,,-module into H°(A,,, k[A,]%), it follows that there is a A,,-equivariant
isomorphism of k[A,]¢ conjugating them. We write k[A,,]¢/k for the quotient, inde-
pendent of the map up to isomorphism as a k[A,,]-module.

LEMMA 2.5. ngd(Kn,AdOﬁ) is isomorphic, as a k[Ay]-module, to
(K[AW]/k) @ k

with k being the trivial k[A,]-module.
Proof. Indeed the exact sequence (2.2) yields first

0— Hl(Kn, WQ)/ImHO(Kn,Wl/WO) — HLllr(Kna Wl) — Hl%r(K”HWl/WO) =0 (24)

with H (K, W;) = H! ,(K,,Ad’p) and the dimensions being (p"d — 1,p"d, 1). The
argument given for Lemma 2.3 shows that H'(K,,, W;) is free of rank d over k[A,,].
Recall that W7 /W) is the trivial module (for G, ). It follows that

H! (K,,W1/Wy) = Hom(U, W1 /W),

where U = Gal(K!/K,,) = Gal(K{§"/Ky), is the trivial module for k[A,]. Similarly,
the image of HO(K,,, W1 /Wy) = k is trivial.

Finally, the exact sequence is split: by the previous argument computing
HL (K,,Wi/Wy) we can fix an element o € H} (Ko, W1/W,) that is a basis of
HL (K,,Wi/Wy). We then lift it to 3 € HL. (Ko, W7): its restriction to K, is an
element 3, € H} (K,,W7) that is A,-invariant. O

Consider now 7 : A, 11 — A,. This induces a natural map k[A,] — k[A,11],
f(0) = f(70), dual to the projection of Iwasawa theory. It is equivariant under the
action of A, 1, acting on k[A,] via the quotient map.
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LEMMA 2.6. The restriction H. (K, Ad’p) — H (Kni1,Ad%p) is injective.

It is compatible with the splitting of Lemma 2.5, and equivariant for the action of
An-‘,—l-

Proof. Write 0 — H), — H, — L, — 0 for the exact sequence (2.4), with
H, = H. (K,,W)) = H! ,(K,,Ad’p). We get natural maps

ur

0 —- H, - H, - L, — 0

l l l

0 — H.:l+1 — H7L+1 — L7L+1 — 0

As shown in the proof of Lemma 2.5, L, = Hom(U,W;/Wy) = L,41 since
Gal(K"/K,) = Gal(K},/K,11). We are reduced to looking at the map Res :

1

HY(K,,,Wy) — H' (K, +1,Ws). Both spaces contain the line k = Im(H?), on which
restriction is an isomorphism. Finally,

HY (K, Wo) 2 K[AL]Y, H'(Kpy1, Wo) 2 k[Ap 4]

by the exact analogue of Lemma 2.2. The two isomorphisms are respectively as
modules over A, and A, ;. As Wy = k[e2w], HY(K,,,Wy) — HY (K41, W) is
injective. This proves the first part of the lemma.

In fact we can be more precise. As in the proof of Lemma 2.2, H'(K,,, W) =
k[A,]¢ was deduced, through Nakayama’s lemma, from

HO (A, HY (K, W3 (1)) = H (Ko, Wy (1) = &,

dual to H'(Ky, Wy) = k% The last isomorphism is independent of n. As a con-
sequence, the restriction H}  (K,,Ad"(p)) — H. (K,11,Ad"(p)) is given (on the
spaces H/), in a suitable basis of the free modules, by taking the natural map

kALY = E[Ani1]?

and quotienting through a line Zf z; ), 0, sent to Zf TiYoa,,, 0 (2 €K).
The other assertions of the lemma are now clear. O

2.2. Local cohomology, dualised. We now use the Tate pairing
HY(K,,Ad°p) x HY(K,,Ad’5(1)) — k.

Let H)y, C H'(K,,Ad’5(1)) be the orthogonal space of H' ;. We set

T

Hgq (K, Ad°p(1)) = H' (K, Ad’p(1))/ Hgpa, 1

rd,*

So this is naturally dual to H,,. When K, is concerned, we write H} 4, etc. We

can take the limit of these spaces under corestriction. In fact we obtain naturally a
diagram

1 ~ 1 *
Hord,*,n+1:(Hord,n+1)

l l

H(}rd,*,n = (H;rd,n)*

2
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where the surjection on the right comes from the previous injection (Lemma 2.6) and
the surjection on the left completes the diagram. We must however check that this is
given by corestriction on the left: i.e., that for 8 € H} 4, ., and o € H]

ord,n’
(Cor B,a) = (B,Res ) € (1/p)Z/Z =Ty,

(We assume k = F,; in general an easy argument of restriction of scalars reduces to
this case.)

The duality is given by the cup-product, with values in H?(K, py=)[p] =
(1/p)Z/Z = F,,. The general formula is Cor(S U Resa) = CorS U cv. For the canonical
identification of Br(K) with Q/Z, the restriction Br(K,) — Br(K,4+1) is given by
a — pa (cf. [22, XIII, §3]); on the other hand Cor o Res : Br(K,,) — Br(X,) is also
a + pa. Thus Cor(pa) = pa for a € Br(K,41) and Cor : H2(K, 11, ipe)[p] —
H?(K,,, pp=)[p] is bijective?.

We now dualise the expression of H!  (K,,Ad’p) obtained in Lemma 2.5. As in
the proof of Lemma 2.3, write M, for H'(K,,Ad"5(1)) and M? for M, /k. Thus

Hy (K, Ad%p)* == (M) @ k)" = (M) © k,

(6}

and
0= E, = k[A])¢ = M2 =0

where F,, = k.

If we restrict to K, 41, the corresponding map k£ — k is an isomorphism as was
seen in the proof of Lemma 2.5. We can now choose the line E,, equal to (e, 0, ...,0) €
k[Ap]? with e, = Y505, 0. Then (k[A,]/E,)* = I, is the augmentation ideal of
k[A,]. We obtain

l'&nHird,*,n = Qd_l D l&nln D k.
The limit of the augmentation ideals is nothing but the augmentation ideal in €2:
I=T- k[T] CK[T] = Q.

Thus we have proved:

LEMMA 2.7. As an Q-module,

m Hlg o (Kny Ad%5(1)) = Q7 @ k.

rd,*,n

3. Ordinary global Galois cohomology. In this section we return to the
global setup of ordinary deformation rings in §1.

3.1. Tangent and obstruction space. We will now compute, first for fixed n,
the tangent and obstruction space of the ordinary deformation space for p|g, .

Note that we are looking at deformations with fixed determinant. The tangent
and obstruction space are then H! (T, Ad%(p)) and HZ,(T,, Ad%(p)), which are

ord

3This is certainly well-known but we could not find a reference.
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given by the following exact sequence (see [4, §2.2]; recall that we are considering
unrestricted deformations at the places in S away from p):

0= Hyq(Tn, Ad°p) — H' (T, Ad°p) = @D H' (Frp, Ad°p)/H} iy (Frp, Ad"p) —
p
2T, Ad®p) — H* (T, Ad%p) — @D H?(Frp, Ad%p) — Hi\ (T, Ad°p) —
p
H3(',,, Ad°p) — 0. (3.1)

For the definition of H2 j and H3, see [4, Def.2.2.7]. Note that restriction yields

natural morphisms between these exact sequences relative to F}, and Fj, 4.
In particular, we obtain for the direct limits:

0—>th1 (T, )—>113H1(F ) —
Plim H' (Fop)/Hoa(Fp) = lim Ho g (Tn) = .. (3.2)

H

o

where the coefficients are in Ad°p.
The full cohomology spaces H*(T',,Ad’5) can be fitted together by means of
Shapiro’s lemma:

H'(T,Ad%p) = H' (T, Ind° Ad%p) = H'(To, Ad°p @ k[A])
since Ad°p extends to I'y. The group Ty acts diagonally.

For m > n, the restriction map is then given by k[A,] — k[A,,] (cf before
Lemma 2.6). Dually, the corestriction map : H*(T',,, Ad’5) — H*(T",,, Ad°p) is then
given by

H(To,Ad°5 ® k[A,,]) = H'(Ig, Ad"5 @ k[A,)) (3.3)
(Cf. [26, §6.3]*) where k[A,,] — k[A,] is the surjection defining the Iwasawa algebra.

3.2. Continuous Galois cohomology. Before passing to the limit in (3.3), we
must make some remarks on Galois cohomology. So far our Galois modules were dis-
crete, and we were using the corresponding version of cohomology (cf. [23]). However
(3.3) leads us to the limit

@k[An] = yLnQn = Qy
seen as a ['g-module via I' — A. It is easy to see that this I'p-module is not discrete.
On the other hand, if we endow  with its compact topology, A acts continuously.

We therefore consider the continuous cohomology HY (o, —) (cf. [20, IL.7]).
We now have, with ,, = k[A,,]:

LEMMA 3.1. For all i > 0, there exists an exact sequence
0 — lim" B~ (Lo, Ad°5 ® Q) — HE(To, Ad"p @ Q) — lim H' (T, Ad’5 @ 2,,) = 0
(Cf. [20, 2.7.5 Theorem] ®)

In our case, the groups of continuous cohomology are limits of finite-dimensional
vector spaces, so the Mittag-Leffler condition is satisfied and ]&n vanishes [26, Ex.
3.5.2]. In particular,

lim H' (To, Ad"p © Q) = Hey(To, Ad"p @ Q). (3.4)

4Note that there the induced module is called coinduced.
5This is a general result, cf [26, p. 84].



ORDINARY DEFORMATIONS IN THE CYCLOTOMIC LIMIT 417

4. Weak Leopoldt for adjoint. In this section we consider the vanishing of
the second global Galois cohomology for adjoint over the cyclotomic tower.

4.1. Weak Leopoldt I. In this subsection we consider the vanishing of the sec-
ond global Galois cohomology for adjoint with rational coeflicients over the cyclotomic
tower.

Let the notation and hypotheses be as in §1-§3. Let p be a deformation of p
over the ring of integers A of a p-adic field; we also denote by p the corresponding
rational representation, on a space V. Let W denote Adop(l) or Ad’pand T C W a
Galois-stable lattice.

PROPOSITION 4.1. Suppose that
(i) H°(F,,W*(1)) = 0 for plp and
ii) the localisation H} (F,W*(1)) — H}(F,,W*(1)) is injective.
f plp TTEATP
Then,

T%Hz(l“n, W/T) =0

(See Perrin-Riou [21, Prop. B.5]).

REMARK 4.2. The above criteria for weak Leopoldt holds rather generally
(cf. [21)).

In view of Allen’s result [1, Thm. B], we deduce the following.

COROLLARY 4.3. Suppose that W = Ad°p or Ad°p(1) and
(Aut) p is automorphic and
(adr(c,)) ﬁ|Gp<<p) is adequate ([1, Def. 3.1.1]).

Then,

lim H*(T,,, W/T) = 0.

n

Proof. The first hypothesis in Proposition 4.1 follows from our assumptions on p

(§1.5).
From [1, Thm. B], we have

H{(F,Ad%p*(1)) = 0.
We thus conclude

lim H*(T',,, Ad"p/T) = 0.

As weak Leopoldt (i.e., the conclusion of Proposition 4.1) for a p-adic Galois rep-
resentation W implies the same for W (j) with j € Z (21, 1.3.3]), this finishes the
proof. O

REMARK 4.4.

(1) For p > 5, adequacy is equivalent to absolute irreducibility ([25, Thm. A.9]).

(2) The automorphy hypothesis (Aut) can be replaced with an analogous one
involving potential automorphy ([1, Thm.B]). Such a potential automorphy
is indeed available under mild hypotheses ([2, Thm. 4.5.2]).
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4.2. Weak Leopoldt II. In this subsection we consider the vanishing of the sec-
ond global Galois cohomology for adjoint with mod p coefficients over the cyclotomic
tower.

Let the notation and hypotheses be as in §4.1. Let

XN F,T) = (lig H'(Dy, W*(1)/T*(1)))",

cf. [21, 1.3.1]. Recall that these groups are A-modules of finite type ([21], ibid.)

PRrOPOSITION 4.5. The following are equivalent.
(i) i H3(L,p\T/T) = 0
(if) lim H?(T,, W/T) = 0 and u(X*(F,T*(1))tor) = 0 for p(-) the Iwasawa ju-
invariant’.
([21, p. 126]).

COROLLARY 4.6. Suppose that W = Ad°p or Ad°p(1) for an automorphic lift p
and T C W is a stable lattice. Assume
(irrr(c,)) Plar, i irreducible and
(W) WX F,T*(1))tor) =0
Then, the dimensions

dimy, H*(Tp,p~*T/T)

are bounded as n — 00.

Proof. 1t suffices to show that the dimensions
dimy, HY(T,,, W/T)/p, dimy H*(T,,, W/T)[p]

are bounded as n — oo.
o From [21, (1.2) p. 10] and (irrp(,)),
Gal(Foo/Fn)

H' Ty, W/T) = (lim H" (T, W/T))

limy (4.1)

Note that the Pontryagin dual of (hﬂ HY(T,,, W/T))Gal(F“/F")/p is the Z,-
submodule of X' (F,T*(1))Gai(r../F,) annihilated by p ([21, p. 126]).
In view of structure theorem for finitely generated A-modules,

XYE,T*(D)Pleara /ry ~ X (F,T*(1)Gat(Fu s 7o) [P]-

Here ‘~’ denotes up to bounded kernel and cokernel.
From hypothesis (¢'), the A-module X*(F,T*(1))[p] is trivial ([21, p. 126]).
Thus, the k-modules X' (F,T*(1))Gai(r.. /F,)[p] are bounded (for example, [8,
Prop. 2.3.1]).
We conclude that the dimensions dimy H*(T',, W/T)/p are bounded.

e From Corollary 4.3,

liny H*(T,,W/T) =0, (4.2)

6See for example [24, §2]
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Thus, from [21, (1.3) p. 10]
HY(T,, @Hl(rm, W/T)) ~ H*(T,,, W/T). (4.3)

Note that the Pontryagin dual of H? (Fn,ling(Fm, W/T)[p] is
XY (F,T*(1))621F</Fa) /p. (Use the exact sequences (1.3) and (1.5)
p.10,11 in [21]). As X'(F,T*(1)) is a finitely generated A-module, the
Z,-modules X (F,T*(1))(F</) have bounded rank ([21, p. 11]).
We conclude that the dimensions dimy H%(T',,, W/T')[p] are bounded.

a

5. Main result. In this section we consider the vanishing of the second ordinary
global Galois cohomology for adjoint over the cyclotomic tower.
Let the notation and hypothesis be as in §1-§3.

ProrosITION 5.1. Suppose that
(Aut) p is automorphic,
(adr(c,)) Plp, is adequate ([1, Def. 3.1.1]) and
(1) p(XY(E, T*(1)tor) = 0 = (X (F, T)or) for T corresponding to Ad°(p) with
p arising from an automorphic lift.
Then, HL (I'o, Ad°5(1) @ Q) is free over Q of rank [F : Q).

Proof. We first show that H, (T, Ad"5(1) @) is free as a Q-module. It’s enough
to show that it’s a Q2-submodule of a free 2-module, since Q2 is a PID. However, the
map

HY (To, Ad’p(1) @ Q) = ) Hi(Fp, Adp(1) @ Q)
PP free by Lemma 2.3 and §3.2

is injective: Tate duality and Corollary 4.6 imply that

lim ( ker | H'(T,, Ad°5(1)) — @) H' (F, 5, Ad°5(1)) | | =0.
plp

Indeed, the left hand side is dual to lim ITI*(T,,, Ad°), which by Corollary 4.6 vanishes
as I'so has cohomological dimensioﬁ.

At this point we know that H*(T'g, Ad°5(1) ® Q) is free of rank , and must just
show r = [F : Q).

Note that, in view of the oddness of p, the eigenvalues of complex conjugation
on Ad’p are —1,—1,+1, and therefore the eigenvalues of complex conjugation on
Ad°p(1) are +1,41, —1. By Tate’s global Euler-Poincaré formula,

—dimy, H(T',,, Ad°5(1))+dimy, H(T,,, Ad°5(1))—dimy, H*(T,,, Ad°5(1)) = p"[F : Q).

The first term is vanishing, and dimy, H?(T',,, Ad° p(1)) remains bounded by Corollary
4.6. We conclude that there exists a constant C such that

[dimg H' (T, Ad5(1)) — p"[F : Q]| < C (5.1)

As before we can identify Q ~ k[T in such a way that the quotient k[T7]/(T?")
is identified with the natural map Q — k[A,,]. Then from the sequence 0 — (T?") —
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E[T] — k[T]/(TP") — 0 we get

H., (To, Ad’p(1) ® Q)/T"" — HY(To, Ad’p(1) @ k[A,]) — HZ(To, Ad°p(1)@0Q)[T7"]

rp" ~[F:Q]p™

The final term is I'&nHQ(Fm,AdOﬁ(l))[Tpn], and we saw in Corollary 4.6 that each
term of the projective limit has dimension bounded above by C, thus the projective
limit does too.

We conclude by comparing dimensions that » = [F': Q]. O

REMARK 5.2. The freeness of H, (I'y, Ad°5(1) ® Q) as an Q-module may be seen
more directly: it’s Q-torsion submodule is (Ad’5(1) ® Q)" (cf. [21, p. 12]), which
vanishes since (Ad°5(1))" = 0 by our hypotheses.

We are ready for the main theorem:

THEOREM 5.3. Suppose that
(Aut) p is automorphic,
(adr(c,)) Plar, is adequate ([1, Def. 5.1.1]) and
() w(XYE,T*(1))tor) = 0 = p(XY(F, T)tor) for T arising from an automorphic
lift.
Moreover, suppose that R is Noetherian. Then h_n} ngd(I‘n, Adoﬁ) = 0; in particular

Roo ~ W(k)[X1,. .., XJ].

Proof. To verify smoothness it is enough to check that a map R,, — A lifts to an
infinitesimal extension A — A possibly after pullback via R,,, — R,, for some m > n.
Equivalently, it is enough to verify the vanishing of

liénlfgrd (Fn’ Adoﬁ)
By a duality argument, we have
ngd,n is dual to ker(Hl(FTH Adoﬁ(l)) - @ Hl(FmPv Adop(l))/H;rd,*n)
plp

Moreover, restriction maps for H, 3rd7n
duality.
It remains to check that

are identified with corestriction maps under the

limker(H' (T, Ad°5(1)) = @D H' (Frp. Ad5(1))/Hova )

n plp

(projective limit with respect to corestriction maps) vanishes. Applying Shapiro’s
lemma as before (§3.2), and noting that all the involved modules are finite and we can
therefore commute cohomology and inverse limits (Mittag-Leffler) this is equivalent
to checking the injectivity of

H (Lo, Ad(p)(1) © Q) 5 €D H.y (B, Ad (1) @ A)/Hyg (5:2)

~QIF:Q) Pl

kaQFr:Qpl

where we used the results of Proposition 5.1, Lemma 2.7.
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We will show that
R Noetherian = dimy, coker(¢) < 0o

which implies ¢ is injective.
Now the cokernel of ¢ is

lim coker (H' (T’ Ad°p(1)) — P H (Frp, Ad°p(1))/Hop )
n plp

and thus we deduce
coker(yp) — @ngd,*,n

where the group H? is defined as in §3.1.

ord,*,n

From Tate global duality H?2 ~ (H, grd’n)*. Recall that

ord,*,n
lim H,q (T, Ad”p)

is isomorphic to the tangent space of Ry, : indeed, H} (T, Ad°p) = Hom(R,, k[¢])
and the tangent space of Ry, Hom(R, k[¢]) is then the injective limit. In particular,
it is finite-dimensional if R, is Noetherian.

We thus obtain
(T, Ad"p)".

ord

dimy, coker(p) < dimy h_n} H!

This concludes our argument. 0
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