
ASIAN J. MATH. c© 2023 International Press
Vol. 27, No. 3, pp. 405–422, June 2023 004

ORDINARY DEFORMATIONS ARE UNOBSTRUCTED IN THE

CYCLOTOMIC LIMIT∗

ASHAY BURUNGALE† AND LAURENT CLOZEL‡

Abstract. The deformation theory of ordinary representations of the absolute Galois groups of
totally real number fields (over a finite field k) has been studied for a long time, starting with the work
of Hida, Mazur and Tilouine, and continued by Wiles and others. Hida has studied the behaviour
of these deformations when one considers the p-cyclotomic tower of extensions of the field. In the
limit, one obtains a deformation ring R∞ classifying the ordinary deformations of the (Galois group
of) the p-cyclotomic extension. We show that if R∞ is Noetherian and certain adjoint μ-invariants
vanish (as is often expected), then R∞ is free over the ring of Witt vectors of k.
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1. Introduction.

1.1. Setup. Let p be an odd prime. Let F be a totally real field of degree d over
Q, unramified at p. All extensions of F are contained in a fixed algebraic closure. Let
F∞ be the cyclotomic Zp-extension of F , and Fn ⊂ F∞ the subextension of degree
pn. Thus F0 = F . Note that F (and therefore Fn) does not contain the p-th roots of
unity.

We write p for a prime of F dividing p. Since F is unramified at p, we have
(ram) Fn/F0 is totally ramified at p.

Let S be a finite set of places of F , containing the infinite and p-adic places, and
let FS be the maximal extension of F unramified outside S; ditto Fn,S . We define
Γ0 = Gal(FS/F ) and similarly Γn = Gal(Fn,S/Fn).

In this setting, given an ordinary residual representation ρ̄ : Γ0 → GL2(k) for k
a finite field of characteristic p (cf. §1.3) one has the ordinary deformation ring Rn

of ρ̄|Γn
, classifying weight two ordinary deformations of ρ̄|Γn

unramified outside S. It
has been first studied by Hida [15]. One expects the size of Rn to grow as n → ∞.
We can form the inverse limit R∞ = lim

←−
Rn. Suitably interpreted (below), it is the

ordinary deformation ring of ρ̄|F∞
. Our goal is to show that, under certain natural

assumptions, such ordinary deformations are unobstructed:

R∞
∼= W (k)[[X1, . . . , Xs]]

for W (k) the Witt ring and s ≥ 1 an integer. Theorem 1.6 is our main result. The
assumptions are R∞ is Noetherian, and certain adjoint μ-invariants vanish (see §4.2).

In general, the obstructions are measured by the second adjoint Galois cohomol-
ogy. Note that the p-cohomological dimension of F∞ is 1, cf. Serre [23, Ch.2, Prop.
9]. (Recall that primes of F over p are totally ramified in F∞, and that primes not di-
viding p are inert, at least after a finite extension Fn of F .) So, without the ‘ordinary’
condition, the deformations are unobstructed over F∞. The corresponding deforma-
tion ring is however non-Noetherian. In contrast the ordinary deformation ring R∞ is
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expected to be often Noetherian and well-controlled (cf. Hida’s non-abelian Leopoldt
conjecture [13]). To investigate whether it is smooth, one needs appropriately to ac-
count for the ordinary condition, which could yield obstructions. Much of our work
will consist in proving the vanishing of the relevant H2’s over F∞. There will be
two main steps: a calculation of tangent spaces for infinite level local deformation
problems (cf. section 2) and a weak Leopoldt-type result (cf. section 4). The latter
relies on the finiteness of the adjoint Bloch-Kato Selmer groups over Fn (due to Allen
[1]), and is also closely related to the adjoint μ-invariants.

1.2. Context. Following Hida’s discovery of p-adic families of modular forms
(cf. [10], [11]), Mazur [17] introduced Galois deformation theory in the mid 80’s.
It has a rich history (cf. [27]), and continues to be fundamental to the study of
Galois representations and their arithmetic. Iwasawa theory of deformation rings was
initiated by Hida in the late 90’s (cf. [14], [15]). It arose in the context of Iwasawa
theory of the adjoint of a p-adic family of modular forms.

The problem of the growth of deformation rings in the cyclotomic tower has
been posed by Hida [15, pp. 354–357]. He proved that the vanishing of an adjoint
μ-invariant implies R∞ is Noetherian (cf. [15, Cor. 5.11]). The mysterious invariant
s ≥ 1 encodes the growth. In [3] we will provide examples with s > 1 for ρ̄ verifying
suitable conditions, and for a large set of ramification S. One may seek arithmetic
significance of the invariant s, such as its link with the adjoint Iwasawa theory. It is
especially instructive to consider the residually CM case, which may lead to link with
CM Iwasawa theory (cf. [19], [16]). Another basic problem is to explore connections
with infinite level modular forms introduced in [5], [6].

As for the assumptions in our main theorem, it is expected that the μ-invariant
typically vanishes if the underlying Galois representation is residually irreducible
(cf. [24]). We are not aware of any general result towards it. Nevertheless, Remark
1.7 (2) presents some examples which illustrate the main theorem. The vanishing of
the μ-invariant seems critical (following Perrin-Riou) for Proposition 4.5.

We may ask1 if the main result can be proved for LG-valued deformations of
a LG-valued mod p Galois representation with G a reductive group. To follow the
current approach, it seems essential to impose adequacy for the image of the mod p
Galois representation and suppose the vanishing of certain adjoint μ-invariants. We
remark that a key input in the current approach due to Allen [1] is already available
for G = GLd.

Acknowledgements. This work was begun by one of us (LC) in 2015, in collab-
oration with Akshay Venkatesh. Although he contributed a large part of its content,
Venkatesh has declined to sign the final version. We wish to thank him for the impetus
to this work.

We are grateful to the referee for valuable comments and suggestions. We also
thank Patrick Allen, Gebhard Boeckle, Haruzo Hida, Chandrashekhar Khare, Barry
Mazur, Richard Taylor and Jacques Tilouine for helpful exchanges.

Notations. Let Fn,p be the localisation of Fn at the unique prime above p.
When p is understood we will write Kn := Fn,p. Thus [Kn : K0] = pn.

We set ∆n = Gal(Fn/F ) ∼= Z/pnZ and ∆∞ = lim
←−

∆n
∼= Zp. Also put

Ω = lim
←−

k[∆n] ∼= k[[T ]]

1Tilouine and Urban have recently announced such a generalisation.
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for the (modular) Iwasawa algebra, where k is a finite field of characteristic p, and

Λ = lim
←−

Zp[∆n] ∼= Zp[[T ]].

If V is a k-vector space we write V ∗ for its linear dual.
If L is a perfect field, we write GL for its absolute Galois group (for a choice of

an algebraic closure).

1.3. Ordinarity. Let K be a p-adic field, k its residue field, and A a local W (k)-
algebra. A representation ρ : GK → GL2(A) is called ordinary of weight two if it has
the form

(
ωε ∗
0 ε−1

)
(1.1)

where ε : GK → A× is unramified, ε̄2 	= 1 for ε := ε mod mA, and

ω : GK → Z×
p → A×

is the cyclotomic character. (Actually, ε̄2 	= 1 is an additional hypothesis, often
referred to as the p-distinguished hypothesis.)

We will write A[χ] for the free A-module of rank 1 on which GK acts by the char-
acter χ. The coefficient ∗ defines a class e ∈ Ext1K(A[ε−1], A[ωε]) = H1(K,A[ωε2]).

For a global field F , a representation ρ of the Galois group into GL2(A) is called
ordinary of weight two if its restriction to Fv (for any prime v above p) is ordinary of
weight two. We also assume that the determinant of ρ is the cyclotomic character.

We will consider representations of Γn, thus unramified outside S. For the places
in S away from p, we impose no conditions (‘unrestricted deformations’.) (We could
impose local conditions, given by compatible deformation data (Dn,q) for the primes q
dividing S\{p|p}, the conditions being compatible with respect to the field extensions.
However it seems delicate to check the arguments of §4 in this more general situation.)

Let k be a finite field of characteristic p. Let ρ̄ : Γ0 → GL2(k) be an absolutely
irreducible representation satisfying the following.
(ord) ρ̄ is ordinary of weight 2.

(irrF (ζp)) ρ̄|GF (ζp)
is irreducible.

(NS) The restriction of ρ̄ to Fp is absolutely indecomposable2 for all p.
(det) The determinant is the cyclotomic character.

In particular ρ̄ is totally odd (the image of each complex conjugation has deter-
minant −1).

Note that these conditions remain satisfied when ρ̄ is restricted to Fn: ε
2 remains

non-trivial as Fn,p/Fp is totally ramified, and then inflation-restriction implies that
H1(K, k[ωε2]) → H1(Kn, k[ωε

2]) is injective (K = Fp ⊂ Kn = Fn,p). In particular,
for all n, ρ̄|GKn

is indecomposable. The same argument applies to the restriction
to GKn(ζp).Thus ρ̄, restricted to GKn(ζp), is semi-simple by Clifford theory ([7, Thm.
1.1]) and indecomposable, and therefore irreducible. In this paragraph and henceforth,
we let ε = εp, the latter as in (1.1) for ρ and ω also denotes the mod p cyclotomic
character of GFp

.

2See Remark 1.7 (3) for the general case.
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Write ĈW for the category of complete local W -rings (W = W (k)) with residue

field k; write CW for the subcategory of Artinian objects in ĈW . (Cf. [18, p. 267].

Note however that we do not assume rings in ĈW to be Noetherian.) We simply

write Hom(−,−) for the continuous homomorphisms in ĈW . For the representability
properties it suffices to consider liftings of ρ̄ to elements of CW .

For any non-negative integer n, there exists a universal deformation ring Rn over
W (k), the ordinary deformation ring for Fn parametrising ordinary liftings (of weight
2) of ρ̄ over algebras in CW . By results which are now well-known, we have

Theorem 1.1. Rn is a complete Noetherian algebra in ĈW for finite n.

1.4. Deformation rings over F∞. By construction, for A ∈ ĈW , there exists
a natural bijection

Hom(Rn, A) ↔ ρnA = {ordinary deformations of ρ|Γn
over A}

(the representations on the right taken modulo conjugation by 1 +mAM2(A)).
By restriction ρnA yields an ordinary representation for Γn+1. Taking A = Rn we

see that there exists a natural homomorphism Rn+1 → Rn.

Lemma 1.2. The homomorphism Rn+1 → Rn is surjective.

Proof. We have the tangent spaces

(mR/(p,m
2
R))

∗ = H1
ord(Γ,Ad0ρ̄)

where Ad0ρ̄ is the representation of Γ on the traceless endomorphisms of the space
of ρ̄ (see §2) for Γ = Γn,Γn+1, and R = Rn, Rn+1 (cf. [4]). The definition of H1

ord is
recalled in §3.1.

Note that Fn+1,S = Fn,S . Consider the exact sequence

1 → Γn+1 → Γn → ∆n,n+1 → 1

where ∆n,n+1 = Gal(Fn+1/Fn). This yields the exact sequence

0 → H1(∆, H0(Γn+1,W )) → H1(Γn,W ) → H0(∆, H1(Γn+1,W )).

Since the representation of Γn+1 on V is indecomposable, H0(Γn+1,W ) = 0,
whence an exact sequence

0 → H1(Γn,Ad0ρ̄) → H1(Γn+1,Ad0ρ̄) (1.2)

Now the definition of ordinary cohomology (see §3.1) yields a commutative dia-
gram

H1
ord(Γn,W ) H1

ord(Γn+1,W )

0 H1(Γn,W ) H1(Γn+1,W )
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(the local conditions defining H1
ord being compatible), with injective vertical maps,

whence

0 → H1
ord(Γn,Ad0ρ̄) → H1

ord(Γn+1,Ad0ρ̄) (1.3)

This yields first Rn+1 ⊗ k � Rn ⊗ k since these algebras are Noetherian and
complete, and then Rn+1 � Rn as both algebras are p-complete.

Now we define

R∞ = lim
←−

Rn.

It belongs to ĈW . It is not known to be Noetherian. (Compare [15, pp. 354-357].)
We now want to consider ordinary deformations of ρ̄|F∞

. First note that
ρ̄|Gal(F∞,S/F∞) remains ordinary of weight 2 (with the previous definition); in par-
ticular ε2 	= 1 on this subgroup. The exact sequence

1 → Gal(K̄/K∞) → Gal(K̄/K) → ∆ → 1

where ∆ ∼= Zp, yields again

0 → H1(∆, H0(K̄/K∞, k)) → H1(K̄/K, k) → H0(∆, H1(K̄/K∞, k))

where k is endowed with the representation ωε2, so the class of e in H1(K̄/K∞, k) is
non-zero as the first term vanishes (ωε2 being equal to ε2 on the subgroup).

However standard deformation theory does not seem to apply here. Indeed:
(i) The group Π = Gal(FS/F∞) does not satisfy the usual finiteness condition,

viz., Hom(Π,Z/pZ) being finite. In fact all we seem to know is that Πab is
finitely generated over the Zp-Iwasawa algebra Λ (Cf. [20, p. 735]).

(ii) Even with a proper definition of H1
ord(Π,Ad0(ρ̄)), this may not be finite

without further conditions.
Nevertheless we will see that R∞ still represents the natural deformation problem.

(See also Dickinson’s appendix to [9].) We first have:

Lemma 1.3. For A ∈ CW ,

Hom(R∞, A) = lim
−→

Hom(Rn, A).

Proof. This is clear since A is finite and R∞ is the projective limit of compact
rings. Note that Hom(Rn, A) ⊂ Hom(Rn+1, A).

Proposition 1.4. Let (A, ρA) be an ordinary deformation of ρ̄|Π to A ∈ CW .
Then there exists n < ∞ such that ρA extends to Gal(FS/Fn).

(By ‘ordinary’ we mean henceforth verifying the condition (1.1).)

Proof. As before we have an exact sequence

1 → Π → Gal(FS/F ) → ∆ → 1

with ∆ ∼= Zp. The choice of a lifting of a topological generator of ∆ gives a splitting;
we identify ∆ with its image by this section.
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Now ∆ acts continuously on Π by conjugation. Let Π1 ⊂ Π be the kernel of ρA,
an invariant subgroup of finite index. There exists a subgroup of finite index ∆1 ⊂ ∆
such that

δgδ−1 ≡ g mod Π1

for δ ∈ ∆1.
We can then set ρA(gδ) = ρA(g) for g ∈ Π, δ ∈ ∆1; ∆1 corresponds to a finite

extension Fn and ρA extends to Gal(FS/Fn) (cf. [6, §3.3]).
This yields a representation of Γn, but it is not yet ordinary. However the lower

left coefficient of the matrix is a continuous function with values in A, vanishing on
Π. Thus it vanishes on Γn′ for some n′ ≥ n. Likewise, the diagonal will be given
by (ωε, ε−1) upon restriction to Γn′′ , since A is finite. Similarly, one checks that the
deformation of this extension (rather than the lifting) is well-defined.

Corollary 1.5. R∞ represents the ordinary deformations of ρ̄|Π.

Note in particular that there is a natural universal deformation of ρ̄|Π, over R∞,
defined by lim

←−
ρn.

1.5. Main result. The purpose of this paper is the following theorem.

Theorem 1.6. Let ρ̄ : GF → GL2(k) be an absolutely irreducible representation
as in §1.3. Let (ρ, V ) be a deformation of ρ̄ over the integer ring of a p-adic field, V
the underlying vector space and let T ⊂ Ad0V be a GF -stable lattice. Assume R∞ is
Noetherian. Assume further that
(Aut) ρ is automorphic,

(adF (ζp)) ρ̄|GF (ζp)
is adequate and

(μ) μ(X1(F, T ∗(1))tor) = 0 = μ(X1(F, T )tor)
Then it is formally smooth, i.e.

R∞ � W (k)[[X1, ..., Xs]]

for some s ≥ 1.

(Refer to §4 for the definition of the Iwasawa modules X1 and the corresponding
μ-invariants, and the notion of ‘adequate’.)

Remark 1.7.

(1) For conditions on the data ensuring that R∞ is Noetherian, see [15, Cor.
5.11].

(2) Let F be Q and

p ∈ {11, 17, 19, 23, 29, 31, 37, 41, 43, 47, 59, 61, 67}.

Then there exists a p-ordinary f ∈ S2(Γ0(p)) such that R∞ � W (k)[[X]] (cf.
[15, Ex. 1.68]). Here we consider deformations of the associated mod p Galois
representation.

(3) The hypothesis (NS) is inessential. It is currently used for arguments in
section 2, specifically Lemma 2.7, which is key for the proof of Theorem 1.6.
However, even otherwise, the lemma remains true. (Basically, various exact
sequences in section 2 are split otherwise and can be analysed directly.) The
details will appear in [3].
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Remark 1.8. In light of Hida theory, one has dim(R∞) ≥ 2. An outline:
First, assume F = Q and F∞ = Q∞ the Zp-extension of Q. In this case the

Rn’s are finite over Zp but R∞ has Krull dimension at least two: let f be a weight
2 eigenform, ordinary. Then there is a Hida family F through f (cf. [10, Cor. 3.2]),
whence

ρ̃ : GQ,S → GL2(I)

for I finite over Zp[[X]] (cf. [11, Thm. II]). In Hida’s construction, ρ̃ parametrises a
family of representations of varying weights. However:

Lemma 1.9. ρ̃|Gal(Q∞,S/Q∞) is of weight 2.

Proof. For example, suppose that the Hida family F corresponds to (fk) where
fk has weight k, and f2 = f . Set

nr = 2 + (p− 1)pr.

Then the base change of fnr
to Fr, reduced modulo pr, has weight 2.

Thus the surjection R∞ → I yields dim(R∞) ≥ 2 without the hypotheses in
Theorem 1.6. (The surjectivity just follows by considering the traces of Frobenii for
the universal representation.) A similar argument applies to the general case (cf. [12,
Thm. II]).

2. Local cohomology. In this section K = Fn,p is local and ρ̄ is an ordinary
representation of GK (verifying the conditions of §1). In particular the extension class
arising from ρ̄ is non-split (cf. (NS)). For simplicity we write d for dp = [Fp : Qp].

Let V = k2 be the space of ρ̄, and W = End0(V ) be the space of traceless
endomorphisms of V . It is endowed with the natural representation Ad0(ρ̄). Let
Ad0ρ̄(1) be the Tate twist, the tensor product Ad0(ρ̄) ⊗ k[ω] with the cyclotomic
character. (Recall that k[χ] is the module associated to a character χ; V (1) = V ⊗
k[ω].) The main result is Lemma 2.7.

2.1. Local cohomology of the adjoint. Let W0 ⊂ W1 ⊂ W2 = W be the
filtration of W :

W0 =

{(
0 ∗
0 0

) }
, W1 =

{(
∗ ∗
0 ∗

) }
(2.1)

preserved by GK . Then as GK-modules,

W0
∼= k[ε2ω], W1/W0

∼= k[1], W2/W1
∼= k[ω−1ε−2]

for 1 being the trivial character.
The exact sequence

0 → W0 → W1 → W1/W0 → 0

induces

H0(K,W1) → H0(K,W1/W0) → H1(K,W0) → H1(K,W1) →
H1(K,W1/W0) → H2(K,W0) → H2(K,W1) → H2(K,W1/W0) → 0.

Write hi(K,−) = dimk H
i(K,−).
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Lemma 2.1.

(i) h0(K,W1/W0) = 1 and the map H0(K,W1/W0) → H1(K,W0) is injective.
(ii) h1(K,W0) = pnd.
(iii) h1(K,W1) = 2pnd.
(iv) h1(K,W1/W0) = pnd+ 1.
(v) h2(K,W1) = 0.

Proof. Write V ′ = V ∗(1). Then

W ′
0
∼= k[ε−2], (W1/W0)

′ ∼= k[ω].

By Tate duality we see that h2(K,W0) = h2(K,W1/W0) = 0. This implies (v).
The first part of (i) is obvious; we have h0(K,W1) = 0 since the extension is non-

split, so the map is injective. The map H1(K,W1) → H1(K,W1/W0) is surjective
since H2(K,W0) = 0. Now the formulas (ii)-(iii) follow from Tate’s Euler-Poincaré
formula and (iv) from the exact sequence.

Now recall that for X a representation of GK on a k-vector space,

H1
nr(K,X) = ker{H1(GK , X) → H1(IK , X)}

where IK is the inertia. We define the unramified classes H1
ur(K,W1) to be the inverse

image of H1
nr(K,W1/W0).

At this point we have the exact sequence

0 → H0(K,W1/W0) → H1(K,W0) → H1(K,W1) → H1(K,W1/W0) → 0 (2.2)

where the corresponding dimensions are (1, pnd, 2pnd, pnd+1). Since W1/W0 is with
trivial GK-action, H1

nr(K,W1/W0) ∼= k. Thus

dimk H
1
ur(K,W1) = pnd.

Now the exact sequence

0 → W1 → W → W/W1 → 0

induces

0 → H1(K,W1) → H1(K,W ) → H1(K,W/W1) → 0 (2.3)

by Lemma 2.1.
We define H1

ord(K,Ad0ρ̄) as the image of H1
ur(K,W1) in H1(K,W ). We also note

the vanishing of H2(K,Ad0ρ̄) by the analogue of (2.3) for H2, and Tate duality for
W/W1.

We summarise the results obtained so far:

Lemma 2.2.

(i) H0(K,Ad0ρ̄) = H2(K,Ad0ρ̄) = 0.
(ii) dimk H

1
ord(K,Ad0ρ̄) = pnd.

(iii) dimk H
1(K,Ad0ρ̄) = 3pnd.

(The third equality coming from (i) and the Euler-Poincaré formula applied to
W .)

Now consider the extension K = Fn,p = Kn of K0 = Fp, whence an action of
∆n = Gal(Kn/K0) on the cohomology groups H∗(Kn,−).
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Lemma 2.3. H1(Kn,Ad0ρ̄(1)) is free over k[∆n] of rank 3d .

Proof. Write Mn = H1(Kn,Ad0ρ̄(1)). Note that W is self-dual, so dimk Mn =
3pnd by Lemma 2.2 and Tate duality.

We show that the space of coinvariantsH0(∆n,Mn) has dimension 3d: this implies
by Nakayama’s lemma that there is a surjective map k[∆n]

3d → Mn, and we conclude
by counting dimensions.

However, the dual of H0(∆n,Mn) is H0(∆n, H
1(Kn,Ad0ρ̄)); this is isomorphic

to H1(K0,Ad
0ρ̄) by inflation-restriction as H0(Kn,Ad0ρ̄) = 0. By Lemma 2.2, the

dimension of this space is 3d.

We now consider the subspace H1
ord(Kn,Ad0ρ̄), of dimension pnd. Note that the

filtration Wi of W gives rise to cohomology spaces on which ∆n acts.

Lemma 2.4. H1
nr(Kn,W1/W0), H

1
ur(Kn,W1) and H1

ord(Kn,Ad0ρ̄) are invariant
by the action of ∆n.

Proof. It suffices to check this for the first space, and this is obvious as the inertia
In is invariant by ∆n.

In k[∆n], the space of ∆n-invariants is

{
f = x ·

∑

∆n

δ
∣∣x ∈ k

}
.

The space H0(∆n, k[∆n]
d) is the sum of these lines. If j1, j2 are two injections of

the trivial ∆n-module into H0(∆n, k[∆n]
d), it follows that there is a ∆n-equivariant

isomorphism of k[∆n]
d conjugating them. We write k[∆n]

d/k for the quotient, inde-
pendent of the map up to isomorphism as a k[∆n]-module.

Lemma 2.5. H1
ord(Kn,Ad0ρ̄) is isomorphic, as a k[∆n]-module, to

(k[∆n]
d/k)⊕ k

with k being the trivial k[∆n]-module.

Proof. Indeed the exact sequence (2.2) yields first

0 → H1(Kn,W0)/ImH0(Kn,W1/W0) → H1
ur(Kn,W1) → H1

nr(Kn,W1/W0) → 0 (2.4)

with H1
ur(Kn,W1) ∼= H1

ord(Kn,Ad0ρ̄) and the dimensions being (pnd−1, pnd, 1). The
argument given for Lemma 2.3 shows that H1(Kn,W0) is free of rank d over k[∆n].

Recall that W1/W0 is the trivial module (for GK0
). It follows that

H1
nr(Kn,W1/W0) = Hom(U,W1/W0),

where U = Gal(Knr
n /Kn) = Gal(Knr

0 /K0), is the trivial module for k[∆n]. Similarly,
the image of H0(Kn,W1/W0) ∼= k is trivial.

Finally, the exact sequence is split: by the previous argument computing
H1

nr(Kn,W1/W0) we can fix an element ³ ∈ H1
nr(K0,W1/W0) that is a basis of

H1
nr(Kn,W1/W0). We then lift it to ´ ∈ H1

ur(K0,W1): its restriction to Kn is an
element ´n ∈ H1

ur(Kn,W1) that is ∆n-invariant.

Consider now π : ∆n+1 � ∆n. This induces a natural map k[∆n] ↪→ k[∆n+1],
f(δ) �→ f(πδ), dual to the projection of Iwasawa theory. It is equivariant under the
action of ∆n+1, acting on k[∆n] via the quotient map.
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Lemma 2.6. The restriction H1
ord(Kn,Ad

0ρ̄) → H1
ord(Kn+1,Ad0ρ̄) is injective.

It is compatible with the splitting of Lemma 2.5, and equivariant for the action of
∆n+1.

Proof. Write 0 → H ′
n → Hn → Ln → 0 for the exact sequence (2.4), with

Hn = H1
ur(Kn,W1) ∼= H1

ord(Kn,Ad0ρ̄). We get natural maps

0 → H ′
n → Hn → Ln → 0
⏐
 ⏐
 ⏐


0 → H ′
n+1 → Hn+1 → Ln+1 → 0

As shown in the proof of Lemma 2.5, Ln = Hom(U,W1/W0) = Ln+1 since
Gal(Knr

n /Kn) = Gal(Knr
n+1/Kn+1). We are reduced to looking at the map Res :

H1(Kn,W0) → H1(Kn+1,W0). Both spaces contain the line k = Im(H0), on which
restriction is an isomorphism. Finally,

H1(Kn,W0) ∼= k[∆n]
d, H1(Kn+1,W0) ∼= k[∆n+1]

d

by the exact analogue of Lemma 2.2. The two isomorphisms are respectively as
modules over ∆n and ∆n+1. As W0 = k[ε2ω], H1(Kn,W0) → H1(Kn+1,W0) is
injective. This proves the first part of the lemma.

In fact we can be more precise. As in the proof of Lemma 2.2, H1(Kn,W0) ∼=
k[∆n]

d was deduced, through Nakayama’s lemma, from

H0(∆n, H
1(Kn,W

∗
0 (1)))

∼= H1(K0,W
∗
0 (1))

∼= kd,

dual to H1(K0,W0) ∼= kd. The last isomorphism is independent of n. As a con-
sequence, the restriction H1

ord(Kn,Ad0(ρ̄)) → H1
ord(Kn+1,Ad0(ρ̄)) is given (on the

spaces H ′
n), in a suitable basis of the free modules, by taking the natural map

k[∆n]
d ↪→ k[∆n+1]

d

and quotienting through a line
∑d

1 xi

∑
∆n

δ, sent to
∑d

1 xi

∑
∆n+1

δ (xi ∈ k).
The other assertions of the lemma are now clear.

2.2. Local cohomology, dualised. We now use the Tate pairing

H1(Kn,Ad0ρ̄)×H1(Kn,Ad0ρ̄(1)) → k.

Let H1
ord,⊥ ⊂ H1(Kn,Ad0ρ̄(1)) be the orthogonal space of H1

ord. We set

H1
ord,∗(Kn,Ad0ρ̄(1)) = H1(Kn,Ad0ρ̄(1))/H1

ord,⊥.

So this is naturally dual to H1
ord. When Kn is concerned, we write H1

ord,n etc. We
can take the limit of these spaces under corestriction. In fact we obtain naturally a
diagram

H1
ord,∗,n+1

∼=(H1
ord,n+1)

∗

⏐
 ⏐


H1
ord,∗,n

∼= (H1
ord,n)

∗
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where the surjection on the right comes from the previous injection (Lemma 2.6) and
the surjection on the left completes the diagram. We must however check that this is
given by corestriction on the left: i.e., that for ´ ∈ H1

ord,∗,n+1 and ³ ∈ H1
ord,n,

(Cor ´, ³) = (´,Res ³) ∈ (1/p)Z/Z = Fp.

(We assume k = Fp; in general an easy argument of restriction of scalars reduces to
this case.)

The duality is given by the cup-product, with values in H2(K,μp∞)[p] =
(1/p)Z/Z = Fp. The general formula is Cor(´ ∪Res³) = Cor´ ∪ ³. For the canonical
identification of Br(K) with Q/Z, the restriction Br(Kn) → Br(Kn+1) is given by
³ �→ p³ (cf. [22, XIII, §3]); on the other hand Cor ◦ Res : Br(Kn) → Br(Kn) is also
³ �→ p³. Thus Cor(p³) = p³ for ³ ∈ Br(Kn+1) and Cor : H2(Kn+1, μp∞)[p] →
H2(Kn, μp∞)[p] is bijective3.

We now dualise the expression of H1
ord(Kn,Ad0ρ̄) obtained in Lemma 2.5. As in

the proof of Lemma 2.3, write Mn for H1(Kn,Ad0ρ̄(1)) and M0
n for Mn/k. Thus

H1
ord(Kn,Ad0ρ̄)∗ ∼= (M0

n ⊕ k)∗ ∼= (M0
n)

∗ ⊕ k,

and

0 → En → k[∆n]
d → M0

n → 0

where En
∼= k.

If we restrict to Kn+1, the corresponding map k → k is an isomorphism as was
seen in the proof of Lemma 2.5. We can now choose the line En equal to (en, 0, ..., 0) ∈
k[∆n]

d with en =
∑

δ∈∆n
δ. Then (k[∆n]/En)

∗ = In is the augmentation ideal of
k[∆n]. We obtain

lim
←−

H1
ord,∗,n = Ωd−1 ⊕ lim

←−
In ⊕ k.

The limit of the augmentation ideals is nothing but the augmentation ideal in Ω:

I = T · k[[T ]] ⊂ k[[T ]] = Ω.

Thus we have proved:

Lemma 2.7. As an Ω-module,

lim
←−

H1
ord,∗,n(Kn,Ad0ρ̄(1)) ∼= Ωd ⊕ k.

3. Ordinary global Galois cohomology. In this section we return to the
global setup of ordinary deformation rings in §1.

3.1. Tangent and obstruction space. We will now compute, first for fixed n,
the tangent and obstruction space of the ordinary deformation space for ρ̄|Fn

.
Note that we are looking at deformations with fixed determinant. The tangent

and obstruction space are then H1
ord(Γn,Ad0(ρ̄)) and H2

ord(Γn,Ad0(ρ̄)), which are

3This is certainly well-known but we could not find a reference.
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given by the following exact sequence (see [4, §2.2]; recall that we are considering
unrestricted deformations at the places in S away from p):

0 → H1
ord(Γn,Ad0ρ̄) → H1(Γn,Ad0ρ̄) →

⊕

p

H1(Fn,p,Ad0ρ̄)/H1
ord(Fn,p,Ad0ρ̄) →

H2
ord(Γn,Ad

0ρ̄) → H2(Γn,Ad0ρ̄) →
⊕

p

H2(Fn,p,Ad0ρ̄) → H3
ord(Γn,Ad0ρ̄) →

H3(Γn,Ad
0ρ̄) → 0. (3.1)

For the definition of H2
ord and H3

ord see [4, Def.2.2.7]. Note that restriction yields
natural morphisms between these exact sequences relative to Fn and Fn+1.

In particular, we obtain for the direct limits:

0 → lim
−→

H1
ord(Γn) → lim

−→
H1(Γn) →

⊕
lim
−→

H1(Fn,p)/H
1
ord(Fn,p) → lim

−→
H2

ord(Γn) → ... (3.2)

where the coefficients are in Ad0ρ̄.
The full cohomology spaces Hi(Γn,Ad0ρ̄) can be fitted together by means of

Shapiro’s lemma:

Hi(Γn,Ad0ρ̄) = Hi(Γ0, Ind
Γ0

Γn
Ad0ρ̄) = Hi(Γ0,Ad0ρ̄⊗ k[∆n])

since Ad0ρ̄ extends to Γ0. The group Γ0 acts diagonally.
For m ≥ n, the restriction map is then given by k[∆n] ↪→ k[∆m] (cf. before

Lemma 2.6). Dually, the corestriction map : Hi(Γm,Ad0ρ̄) → Hi(Γn,Ad0ρ̄) is then
given by

Hi(Γ0,Ad0ρ̄⊗ k[∆m]) → Hi(Γ0,Ad0ρ̄⊗ k[∆n]) (3.3)

(Cf. [26, §6.3]4) where k[∆m] → k[∆n] is the surjection defining the Iwasawa algebra.

3.2. Continuous Galois cohomology. Before passing to the limit in (3.3), we
must make some remarks on Galois cohomology. So far our Galois modules were dis-
crete, and we were using the corresponding version of cohomology (cf. [23]). However
(3.3) leads us to the limit

lim
←−

k[∆n] := lim
←−

Ωn = Ω,

seen as a Γ0-module via Γ → ∆. It is easy to see that this Γ0-module is not discrete.
On the other hand, if we endow Ω with its compact topology, ∆ acts continuously.
We therefore consider the continuous cohomology Hi

ct(Γ0,−) (cf. [20, II.7]).
We now have, with Ωn = k[∆n]:

Lemma 3.1. For all i ≥ 0, there exists an exact sequence

0 → lim
←−

1 Hi−1(Γ0,Ad0ρ̄⊗ Ωn) → Hi
ct(Γ0,Ad

0ρ̄⊗ Ω) → lim
←−

Hi(Γ0,Ad0ρ̄⊗ Ωn) → 0.

(Cf. [20, 2.7.5 Theorem] 5)

In our case, the groups of continuous cohomology are limits of finite-dimensional
vector spaces, so the Mittag-Leffler condition is satisfied and lim

←−
1 vanishes [26, Ex.

3.5.2]. In particular,

lim
←−

H1(Γ0,Ad0ρ̄⊗ Ωn) = H1
ct(Γ0,Ad0ρ̄⊗ Ω). (3.4)

4Note that there the induced module is called coinduced.
5This is a general result, cf [26, p. 84].
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4. Weak Leopoldt for adjoint. In this section we consider the vanishing of
the second global Galois cohomology for adjoint over the cyclotomic tower.

4.1. Weak Leopoldt I. In this subsection we consider the vanishing of the sec-
ond global Galois cohomology for adjoint with rational coefficients over the cyclotomic
tower.

Let the notation and hypotheses be as in §1-§3. Let ρ be a deformation of ρ̄
over the ring of integers A of a p-adic field; we also denote by ρ the corresponding
rational representation, on a space V . Let W denote Ad0ρ(1) or Ad0ρ and T ⊂ W a
Galois-stable lattice.

Proposition 4.1. Suppose that
(i) H0(Fp,W

∗(1)) = 0 for p|p and
(ii) the localisation H1

f (F,W
∗(1)) →

⊕
p|p H

1
f (Fp,W

∗(1)) is injective.
Then,

lim
−→
n

H2(Γn,W/T ) = 0

(See Perrin-Riou [21, Prop. B.5]).

Remark 4.2. The above criteria for weak Leopoldt holds rather generally
(cf. [21]).

In view of Allen’s result [1, Thm. B], we deduce the following.

Corollary 4.3. Suppose that W = Ad0ρ or Ad0ρ(1) and
(Aut) ρ is automorphic and

(adF (ζp)) ρ̄|GF (ζp)
is adequate ([1, Def. 3.1.1]).

Then,

lim
−→
n

H2(Γn,W/T ) = 0.

Proof. The first hypothesis in Proposition 4.1 follows from our assumptions on ρ̄
(§1.5).

From [1, Thm. B], we have

H1
f (F,Ad0ρ∗(1)) = 0.

We thus conclude

lim
−→
n

H2(Γn,Ad0ρ/T ) = 0.

As weak Leopoldt (i.e., the conclusion of Proposition 4.1) for a p-adic Galois rep-
resentation W implies the same for W (j) with j ∈ Z ([21, 1.3.3]), this finishes the
proof.

Remark 4.4.

(1) For p > 5, adequacy is equivalent to absolute irreducibility ([25, Thm. A.9]).
(2) The automorphy hypothesis (Aut) can be replaced with an analogous one

involving potential automorphy ([1, Thm.B]). Such a potential automorphy
is indeed available under mild hypotheses ([2, Thm. 4.5.2]).
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4.2. Weak Leopoldt II. In this subsection we consider the vanishing of the sec-
ond global Galois cohomology for adjoint with mod p coefficients over the cyclotomic
tower.

Let the notation and hypotheses be as in §4.1. Let

X1(F, T ) = (lim
−→
n

H1(Γn,W
∗(1)/T ∗(1)))∗,

cf. [21, 1.3.1]. Recall that these groups are Λ-modules of finite type ([21], ibid.)

Proposition 4.5. The following are equivalent.
(i) lim

−→n
H2(Γn, p

−1T/T ) = 0

(ii) lim
−→n

H2(Γn,W/T ) = 0 and μ(X1(F, T ∗(1))tor) = 0 for μ(·) the Iwasawa μ-

invariant6.
([21, p. 126]).

Corollary 4.6. Suppose that W = Ad0ρ or Ad0ρ(1) for an automorphic lift ρ
and T ⊂ W is a stable lattice. Assume

(irrF (ζp)) ρ̄|GF (ζp)
is irreducible and

(μ′) μ(X1(F, T ∗(1))tor) = 0
Then, the dimensions

dimk H
2(Γn, p

−1T/T )

are bounded as n → ∞.

Proof. It suffices to show that the dimensions

dimk H
1(Γn,W/T )/p, dimk H

2(Γn,W/T )[p]

are bounded as n → ∞.
• From [21, (1.2) p. 10] and (irrF (ζp)),

H1(Γn,W/T ) �
(
lim
−→

H1(Γm,W/T )
)Gal(F∞/Fn)

. (4.1)

Note that the Pontryagin dual of
(
lim
−→

H1(Γm,W/T )
)Gal(F∞/Fn)

/p is the Zp-

submodule of X1(F, T ∗(1))Gal(F∞/Fn) annihilated by p ([21, p. 126]).
In view of structure theorem for finitely generated Λ-modules,

X1(F, T ∗(1))[p]Gal(F∞/Fn) ∼ X1(F, T ∗(1))Gal(F∞/Fn)[p].

Here ‘∼’ denotes up to bounded kernel and cokernel.
From hypothesis (μ′), the Λ-module X1(F, T ∗(1))[p] is trivial ([21, p. 126]).
Thus, the k-modules X1(F, T ∗(1))Gal(F∞/Fn)[p] are bounded (for example, [8,
Prop. 2.3.1]).
We conclude that the dimensions dimk H

1(Γn,W/T )/p are bounded.
• From Corollary 4.3,

lim
−→
n

H2(Γn,W/T ) = 0, (4.2)

6See for example [24, §2]
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Thus, from [21, (1.3) p. 10]

H1(Γn, lim−→
H1(Γm,W/T )) � H2(Γn,W/T ). (4.3)

Note that the Pontryagin dual of H1(Γn, lim−→
H1(Γm,W/T ))[p] is

X1(F, T ∗(1))Gal(F∞/Fn)/p. (Use the exact sequences (1.3) and (1.5)
p.10,11 in [21]). As X1(F, T ∗(1)) is a finitely generated Λ-module, the
Zp-modules X1(F, T ∗(1))Gal(F∞/Fn) have bounded rank ([21, p. 11]).
We conclude that the dimensions dimk H

2(Γn,W/T )[p] are bounded.

5. Main result. In this section we consider the vanishing of the second ordinary
global Galois cohomology for adjoint over the cyclotomic tower.

Let the notation and hypothesis be as in §1-§3.

Proposition 5.1. Suppose that
(Aut) ρ̄ is automorphic,

(adF (ζp)) ρ̄|GF (ζp)
is adequate ([1, Def. 3.1.1]) and

(μ) μ(X1(F, T ∗(1))tor) = 0 = μ(X1(F, T )tor) for T corresponding to Ad0(ρ) with
ρ arising from an automorphic lift.

Then, H1
ct(Γ0,Ad0ρ̄(1)⊗ Ω) is free over Ω of rank [F : Q].

Proof. We first show that H1
ct(Γ0,Ad0ρ̄(1)⊗Ω) is free as a Ω-module. It’s enough

to show that it’s a Ω-submodule of a free Ω-module, since Ω is a PID. However, the
map

H1
ct(Γ0,Ad0ρ̄(1)⊗ Ω) →

⊕

p|p

H1
ct(Fp,Ad0ρ̄(1)⊗ Ω)︸ ︷︷ ︸

free by Lemma 2.3 and §3.2

is injective: Tate duality and Corollary 4.6 imply that

lim
←−

⎛
¿ker

⎛
¿H1(Γn,Ad0ρ̄(1)) →

⊕

p|p

H1(Fn,p,Ad0ρ̄(1))

À
⎠
À
⎠ = 0.

Indeed, the left hand side is dual to lim
−→

X
2(Γn,Ad0ρ̄), which by Corollary 4.6 vanishes

as Γ∞ has cohomological dimension 1.
At this point we know that H1(Γ0,Ad0ρ̄(1)⊗ Ω) is free of rank r, and must just

show r = [F : Q].
Note that, in view of the oddness of ρ̄, the eigenvalues of complex conjugation

on Ad0ρ̄ are −1,−1,+1, and therefore the eigenvalues of complex conjugation on
Ad0ρ̄(1) are +1,+1,−1. By Tate’s global Euler-Poincaré formula,

− dimk H
0(Γn,Ad0ρ̄(1))+dimk H

1(Γn,Ad0ρ̄(1))−dimk H
2(Γn,Ad0ρ̄(1)) = pn[F : Q].

The first term is vanishing, and dimk H
2(Γn,Ad0ρ̄(1)) remains bounded by Corollary

4.6. We conclude that there exists a constant C such that

∣∣dimk H
1(Γn,Ad0ρ̄(1))− pn[F : Q]

∣∣ ≤ C (5.1)

As before we can identify Ω � k[[T ]] in such a way that the quotient k[[T ]]/(T pn

)
is identified with the natural map Ω → k[∆n]. Then from the sequence 0 → (T pn

) →
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k[[T ]] → k[[T ]]/(T pn

) → 0 we get

H1
ct(Γ0,Ad

0ρ̄(1)⊗ Ω)/T pn

︸ ︷︷ ︸
rpn

↪→ H1
ct(Γ0,Ad0ρ̄(1)⊗ k[∆n])︸ ︷︷ ︸

≈[F :Q]pn

� H2
ct(Γ0,Ad0ρ̄(1)⊗Ω)[T pn

]

The final term is lim
←−

H2(Γm,Ad0ρ̄(1))[T pn

], and we saw in Corollary 4.6 that each
term of the projective limit has dimension bounded above by C, thus the projective
limit does too.

We conclude by comparing dimensions that r = [F : Q].

Remark 5.2. The freeness of H1
ct(Γ0,Ad0ρ̄(1)⊗Ω) as an Ω-module may be seen

more directly: it’s Ω-torsion submodule is (Ad0ρ(1) ⊗ Ω)Γ∞ (cf. [21, p. 12]), which
vanishes since (Ad0ρ(1))Γ0 = 0 by our hypotheses.

We are ready for the main theorem:

Theorem 5.3. Suppose that
(Aut) ρ̄ is automorphic,

(adF (ζp)) ρ̄|GF (ζp)
is adequate ([1, Def. 3.1.1]) and

(μ) μ(X1(F, T ∗(1))tor) = 0 = μ(X1(F, T )tor) for T arising from an automorphic
lift.

Moreover, suppose that R∞ is Noetherian. Then lim
−→

H2
ord(Γn,Ad0ρ̄) = 0; in particular

R∞ � W (k)[[X1, . . . , Xs]].

Proof. To verify smoothness it is enough to check that a map Rn → A lifts to an
infinitesimal extension Ã → A possibly after pullback via Rm → Rn for some m > n.
Equivalently, it is enough to verify the vanishing of

lim
−→

H2
ord(Γn,Ad0ρ̄)

By a duality argument, we have

H2
ord,n is dual to ker(H1(Γn,Ad0ρ̄(1)) →

⊕

p|p

H1(Fn,p,Ad0ρ̄(1))/H1
ord,∗,n).

Moreover, restriction maps for H2
ord,n are identified with corestriction maps under the

duality.
It remains to check that

lim
←−
n

ker(H1(Γn,Ad0ρ̄(1)) →
⊕

p|p

H1(Fn,p,Ad0ρ̄(1))/H1
ord,∗,n)

(projective limit with respect to corestriction maps) vanishes. Applying Shapiro’s
lemma as before (§3.2), and noting that all the involved modules are finite and we can
therefore commute cohomology and inverse limits (Mittag–Leffler) this is equivalent
to checking the injectivity of

H1
ct(Γ0,Ad0(ρ̄)(1)⊗ Ω)︸ ︷︷ ︸

	Ω[F :Q]

ϕ
→

⊕

p|p

H1
ct(Fp,Ad0ρ̄(1)⊗ Λ)/H1

ord,∗︸ ︷︷ ︸
k⊕Ω[Fp:Qp]

(5.2)

where we used the results of Proposition 5.1, Lemma 2.7.
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We will show that

R∞ Noetherian =⇒ dimk coker(ϕ) < ∞

which implies ϕ is injective.
Now the cokernel of ϕ is

lim
←−
n

coker(H1(Γn,Ad0ρ̄(1)) →
⊕

p|p

H1(Fn,p,Ad0ρ̄(1))/H1
ord,∗,n)

and thus we deduce

coker(ϕ) ↪→ lim
←−

H2
ord,∗,n

where the group H2
ord,∗,n is defined as in §3.1.

From Tate global duality H2
ord,∗,n � (H1

ord,n)
∗. Recall that

lim
−→

H1
ord(Γn,Ad0ρ̄)

is isomorphic to the tangent space of R∞ : indeed, H1
ord(Γn,Ad0ρ̄) = Hom(Rn, k[ε])

and the tangent space of R∞, Hom(R∞, k[ε]) is then the injective limit. In particular,
it is finite-dimensional if R∞ is Noetherian.

We thus obtain

dimk coker(ϕ) ≤ dimk lim−→
H1

ord(Γn,Ad0ρ̄)∗.

This concludes our argument.

REFERENCES

[1] P. Allen, Deformations of polarized automorphic Galois representations and adjoint Selmer

groups, Duke Math. J., 165:13 (2016), pp. 407–2460.
[2] T. Barnet-Lamb, T. Gee, D. Geraghty and R. Taylor, Potential automorphy and change

of weight, Ann. of Math. (2), 179:2 (2014), pp. 501–609.
[3] A. Burungale, L. Clozel and B. Mazur, Dimension of the deformation space of ordinary

representations in the cyclotomic limit, in preparation.
[4] L. Clozel, M. Harris and R. Taylor, Automorphy for some �-adic lifts of automorphic mod

� Galois representations, Publ. Math. Inst. Hautes Etudes Sci., 108 (2008), pp. 1–181.
[5] L. Clozel, Formes modulaires sur la Zp-extension cyclotomique de Q, Pacific J. Math., 268:2

(2014), pp. 259–274.
[6] L. Clozel, Formes modulaires modulo p, changement de base et théorie d’Iwasawa., Rend.
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