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1. Introduction

The nature of Iwasawa theory of an elliptic curve E/Q along the anticyclotomic Z,,-
extension of an imaginary quadratic field K is intertwined with the root number of F
over K, the splitting of p in K as well as the type of reduction of E at p. The aim of
this article is to investigate the anticyclotomic Iwasawa theory at primes of non-ordinary
reduction in the root number 41 case, allowing p to either split or remain inert in K.

Let E/Q be an elliptic curve of conductor Ny and let K be an imaginary quadratic field
of discriminant prime to Ny. Write Ng = NTN~, where N (resp. N7) is divisible only
by primes which are split (resp. inert) in K. Let p > 5 be a prime of good supersingular
reduction for E and so a,(E) = 0. Assume that

(cp) p does not divide the class number of K.
Let K, denote the anticyclotomic Z,-extension of K. Under the assumption that
(def) N~ is a square-free product of odd number of primes.

and that p is split in K, Darmon-Iovita [21] studied the Iwasawa theory of E along K.
This is a generalization of the seminal work of Bertolini-Darmon [7] in the ordinary case,
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where p is allowed to be split or inert in K (see also [6]). Darmon—Tovita formulated and
proved one inclusion of the plus and minus Iwasawa main conjectures: an upper bound
for plus and minus Selmer groups in terms of the associated p-adic L-functions. This is
an anticyclotomic counterpart of Kobayashi’s supersingular Iwasawa theory [30] along
the cyclotomic Z,-extension of Q. A few years later, Pollack—Weston [44] refined the
work of Bertolini-Darmon and Darmon—Iovita.

In the current article, we generalize the results of Darmon-Tovita [21] and Pollack—
Weston [44] to two new settings. We first study the anticyclotomic Iwasawa theory of
abelian varieties of GLa-type at non-ordinary primes when p is split in K. Secondly, we
study similar questions for elliptic curves E/Q when p is inert in K.

Let f be a weight two elliptic newform of level Ny. Let p > 5 be a prime of good
non-ordinary reduction for f. Let Q be an algebraic closure of Q and Qp that of Q.
For an extension F of Q in Q, put Gr = Gal(Q/F). Fix an embedding ¢ : Q — Q,.
Let py : Gg — GLo (@p) be the corresponding Galois representation associated to the
newform f and py the residual representation. Let K be an imaginary quadratic field
satisfying (Dg,pNo) = 1, (cp) and (def).

As a first step of our work, we construct bounded sharp/flat p-adic L-functions
Ly(f,K)* and L,(f, K)” using a Sprung-type matrix, which converts unbounded dis-
tributions attached to p non-ordinary modular forms on definite quaternion algebras to
bounded measures. The unbounded distributions were also studied in [28] and they en-
code p-adic variation of algebraic part of the central L-values L(fx ® x,1) as x varies
over finite order characters of Gal(K/K), where fx denotes the base change of f to K.
The details of this construction are given in §3. As in the cyclotomic setting, at least one
of the two p-adic L-functions is readily seen to be non-zero, while both are if a,(f) =0
(cf. Corollary 3.10).

Consider the following hypotheses:

(Im) If p = 5, then ps(Gq(u,~)) contains a conjugate of SLy(FFy). If p > 5, the Go-
representation py is irreducible.
(ram) py is ramified at £ in the following cases:
o /| N~ with /2 =1 mod p,
o l|NT.

The main result of this article is the following.

Theorem 1.1 (Theorem 10.1). Let f € So(To(No)) be an elliptic newform and p 1 6Ny
a prime such that a,(f) has positive p-adic valuation. Let K be an imaginary quadratic
field such that (Dg,pNg) = 1 and that the hypotheses (cp), (def), (Im) and (ram) hold.
Assume in addition:

o If p is split in K/Q and ap(f) # 0, then the newform f is p-isolated (cf. Defini-
tion 3.2).
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o If p remains inert in K/Q, then a,(f) =0 and the Hecke field of f is Q.
Then we have
L,(f,K)* € char (Sele (Koo, Af)Y) , o c {fb}.

Here, char(—) denotes the characteristic ideal of a A-module for A the anticyclotomic
Iwasawa algebra and the Selmer group Sels(K o, Af) is as in Definition 7.2. A simple
consequence of Theorem 1.1 and Corollary 3.10 is the following.

Corollary 1.2. The Selmer group Sele(Koo, Af) is A-cotorsion for some o € {f,b} if
ap(f) #0, and for both e € {#,b} if a,(f) = 0.

The hypotheses (Im) and (ram) are precisely the ones required in [44] (see also [32,
Remark 1.4]). It may be possible to relax the latter as in [32] (cf. Remark 7.11). One
may be tempted to eliminate the p-isolated condition in Theorem 1.1 (i.e. when p splits
and a,(f) # 0), following the strategy in [32]. At present, we are unable to do so since
the calculations in §9.2 in the scenario when a,(f) # 0 require the existence of a lift of
a relevant mod p™ modular form to characteristic zero.

The following corollary of Theorem 1.1 is a generalization of main results of [21,44]:

Corollary 1.3. Let E)q be an elliptic curve of conductor Ng and pt 6Ng a prime of good
supersingular reduction. Let K be an imaginary quadratic field such that (Dg,pNg) =1
and that the hypothesis (cp) and (def) hold. Assume in addition:

o FEither p =15 and the mod 5 Galois representation Gg — Auty, (E[5]) is surjective,
or p > 5 and the mod p Galois representation Go — Aut, (E([p]) is irreducible.

o For any prime ¢|Ng with (> =1 mod p, the inertia subgroup I, C Gg, acts non-
trivially on E[p].

Put L,(E,K)* = L,(fg, K)* for fp € S2(To(Ng)) the newform associated to E.
Then,

Ly(E, K)* € char (Sely (Ko, E[p™])Y) .

Remark 1.4. In view of the assumption (Dg, Ng) = 1 the above results exclude the case
that E has CM by an order of K. For p split in K, such an F has ordinary reduction
at p. The pertinent anticyclotomic CM Iwasawa theory has been studied by Rubin [46]
and Agboola—Howard [2] (see also [17]). For p inert in K, F has supersingular reduc-
tion and new Iwasawa-theoretic phenomena abound. Rubin [45] initiated the study of
anticyclotomic CM Iwasawa theory at inert primes and made a basic conjecture on the
structure of local units in the anticyclotomic Z,-extension of the unramified quadratic
extension of Q,. This conjecture was recently resolved in [10]. It led to a proof of the
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anticyclotomic CM main conjecture of Agboola—Howard [1] and is also a key to the inert
setting in this article.

We now describe the strategy.

In §4, we introduce the concept of @-systems, which are sequences of local cohomology
classes satisfying certain norm relation, similar to the ones studied in [29,33] (see also
[41]). We then go on to construct explicit Q-systems in the two settings studied in this
article and describe how these systems lead to construction of sharp/flat Coleman maps.
This generalizes earlier works of Kobayashi [30] and Sprung [48] in the cyclotomic setting
as well as that of Tovita—Pollack [24] on elliptic curves in the anticyclotomic setting when
p is split in K. Our study in the inert setting is based on the recent work of the first
named author’ with Kobayashi and Ota [10,12].

As a preparation for a proof of one sided inclusion of the sharp/flat Iwasawa main
conjectures, in §5, we study an alternate definition of the Coleman maps in the split case
using the Perrin-Riou big logarithm constructed by Loeffler—Zerbes [37] and show that
the two approaches agree up to units. We then move on to study how Coleman maps
behave under congruences of modular forms in §6. These results may be of independent
interest. We remark that, even though Theorem 10.1 concerns an elliptic modular form
f, our proof dwells on congruences between modular forms on more general Shimura
curves, and we proceed in §6 (and onward) in this required level of generality.

Using the Coleman maps, we define the sharp/flat Selmer groups over K, as well as
certain auxiliary Selmer groups in §7. We then move on to construct sharp/flat bipartite
Euler systems” in §8 which are built out of Heegner points associated to certain weight
two newforms that are congruent to f. In this section, it is also shown that the Euler
systems satisfy the reciprocity laws, as needed in our Euler system argument for the one
sided inclusion.

As a final preparation for the proof of the main result, we show that the aforemen-
tioned Euler systems satisfy the suitable local conditions in §9. The final section is then
dedicated to the proof of the main result.

Anticyclotomic Iwasawa theory at primes which are non-ordinary and non-split in the
imaginary quadratic field is outside the conjectural framework of Iwasawa theory. Besides
the CM case initiated by Rubin [45,10,12,13,11,14] and the present article, Andreatta—
Tovita [3] recently constructed a locally analytic p-adic L-function in the non-CM case, for
which formulation of an Iwasawa main conjecture is a basic open problem. The setting in
[3] assumes the Heegner hypothesis, complementing the assumption (def) that our main
result relies on. In the sequel [4] we study Iwasawa theory of pertinent Heegner points.

! He is grateful to Shinichi Kobayashi and Kazuto Ota for inspiring discussions.
2 These are not Euler systems in the traditional sense and one may prefer to refer to them as Bertolini—
Darmon Kolyvagin systems.
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2. Set-up and notation

Throughout this article, K is an imaginary quadratic field and p > 5 a prime unram-
ified in K.

We fix a weight two newform f of level Ny and trivial nebentypus so that p 1 Ny and
(No, Di) = 1. Let F be the Hecke field generated by the Fourier coefficients of f. Let
Ay be an associated GLa-type abelian variety over Q so that Op — End(Ay) and

L(f,s) = L(Ay, 5).

As in the introduction, write Ng = NTN~, where NT (resp. N7) is only divisible by
primes which are split (resp. inert) in K. We assume throughout that N~ is a square-free
product of an odd number of primes; cf. (def).

Assume that p does not divide the class number of K; cf. (cp). Let Ko, denote the
anticyclotomic Z,-extension of K. (Note that any prime above p is totally ramified in
K.) The Galois group of K., over K is denoted by I'. For an integer m > 0, we
write K, for the unique subextension of K, such that [K,, : K| = p™. Further, write
Iy = Gal(Kw/Ky,) and Gy, = Gal(K,, /K).

Fix a prime v of F' lying above p and let L be the completion of F' at v. Fix a
uniformizer w of L. We assume that

ord(ap(f)) > 0.

Write Ty for the v-adic Tate module of Ay. In particular, it is a free Op-module of
rank two equipped with a continuous Gg-action. Write Vy = Ty ®p, L and Ay = V;/T.
Given an integer n > 0, write T, for Ty /@w"T; = As[w"].
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Throughout this article, we shall work with weight two quaternionic Hecke eigenforms
that are congruent to our fixed newform f and so their attached Galois representations
are also congruent. Let X = Xj 4+ pr- be the Shimura curve attached to a quaternion
algebra of discriminant M~ together with a I'g(M™)-level structure (see for example [5,
§1.3]) and h an Op-valued weight two Hecke eigenform on X. Write T}, for the Op-linear
Go-representation associated to h and define V}, and T}, ,, just as above.

For a field k, an extension k’/k and a Gg-representation W, we shall write

COI‘k//k : Hl(k/,W) — Hl(/f7W) and resk//k : Hl(k, W) — Hl(/f/, W)

for the corestriction and restriction maps respectively. For a p-adic Lie extension K/k,
write

Hi (K, W) = lim H'(K', W),

where the inverse limit is over the finite extensions k' of k contained in K and the
connecting maps are corestrictions.

3. p-Adic L-functions
3.1. Preliminaries

As discussed in the introduction, even though our main results concern elliptic mod-
ular forms, we will work with modular forms on more general Shimura curves. Let M be
a positive integer that is coprime to p. We factor M as MM ~, where M (resp. M)
is a positive integer divisible by primes which are split (resp. inert) in K. We assume
throughout this section that M~ is square-free and has an odd number of prime factors.

Let B be the definite quaternion algebra ramified at precisely the primes dividing
M~. Let R be an Eichler Z[1/p]-order of level Mt in B and B, = B ® Q,. Fix an
isomorphism

L Bp — MQ(QP)

—

Denote by 7 the Bruhat-Tits tree of B)/Q.). Write V(T) and £(T) for the sets of
vertices and ordered edges of T respectively. Let T' = R* /Z[1/p]*. Let Z be a ring. We
recall that a Z-valued weight two modular form on 7 /I is a Z-valued function h on
E(T) such that

h(ye) = h(e)

for all v € . The set of such modular forms will be denoted by So(7 /T, Z). Similarly, let
So(V/I', Z) denote the space of I'-invariant non-constant Z-valued functions on V(7).

The following is a simple consequence of the Jacquet—Langlands correspondence (for
example, see [7, Proposition 1.3] and [21, Theorem 2.2, Proposition 2.3]).
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Proposition 3.1. Let ¢ be a newform in So(To(M),C). Then there exists h € So(T /T, C)
such that it shares the same eigenvalues as h for the Hecke operators Ty, L4 M. Such an
h is unique up to multiplication by a non-zero complex number.

Applying Proposition 3.1 to M = Ny and f = ¢, we may identify f with an element
of So(7/I', O), which is not divisible by w.

For the rest of this section, fix a Hecke eigenform h € So(7/I",O) that is w-
indivisible. Assume that the Hecke eigenvalue at p, denoted by a,(h), is divisible by
w.

The following notion will be crucial to some of our later arguments (cf. [7, Definition
1.2)).

Definition 3.2. A Hecke eigenform h € So(7 /T, OL) is said to be p-isolated if h is not
congruent modulo w to any other Hecke eigenform in Sy(7 /T, Op).

Fix an embedding ¥ : K — B so that W(K) N R = V(Ok[1/p]). Let Il = K1 /Q,.
It acts on 7 by

g*x=1¥(g)(x),

—

where z € V(T) or £(T).

Let u, be a fundamental p-unit of K, meaning that it is a generator of the group
of elements of Ok[1/p]* of norm one modulo torsion. Put G = Hoo/u%. There is a
natural decreasing filtration

CcU,C---CcU CcUyClly

given as in [21, (2.2) and (2.3)]. Let Gy, = Goo/Up. For any given h € So(T/T',0y),
there exists a sequence of functions

hK,m : ém — OL

a = h(axvp),

where v, € T is chosen as in Figures 1 and 2 in [21]. We can then define, for our chosen
h, the following elements:

Eh,m = Z hK)m(O')O'_l S (’)L[ém].

O'Gé-m

Let Tmit1,m - OL[éynJ,_l] — (’)L[ém] be the projection map and gm 2 OL[Gn] —

Op|Gm+1] the norm map. The proof of Lemma 2.6 of [21] gives

7Tm+1,m(Eh,m+l) = ap(h)zh,m - gm—lzh,m—l- (31)
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Recall that CNT'mH ~ A X G,,, where A is a finite group independent of m. Write Ly, ,,
for the image of Ly, y+1 under the natural projection Op[Gp41] = OL[Gp]. We also
denote the latter by 7,41, and the norm map Op[G,] = OL[Gr+1] by &m- Then (3.1)

implies
7Tm+1,m(£h,m+1) = ap(h)ﬁh’m — gmflﬁh’mfl. (32)
3.2. Construction of Sprung-type matrices

In this section, we outline the construction of Sprung-type matrices based on [48,49]
and recall their basic properties.
Let

A = lim OL[Gr]
be the Iwasawa algebra of I' over Oy, and let us fix a topological generator v of I' >~ Z,,.
We can identify A with the power series ring Or[[X]], sending v — 1 to X. For an integer
m > 0, write w,, = v*" — 1 € A. Note that Or[G,,] maybe identified with A/(wy,).

m

We denote this ring by A,,. For m > 1, write ®,, := for the p™-th cyclotomic

Wm—1
polynomial in the variable ~.

Definition 3.3. Let B;, = (ap_(g) é) For an integer m > 1, we write C},,, for the

matrix (Cipgzz é) and define

Mpm =B, ™ Chm -+ Chi.
We write Hp, p, for the A-morphism

A2 — A2,

() ().

The matrix C}, ;41 is congruent to Bj, modulo w,, and this allows us to show that
M, converges to a matrix Mp 1o € Maxo(H(I')). Furthermore, there is a natural
isomorphism

A? =5 lim A2,/ ker(Hp, m) (3.3)

—
m

induced by the natural projections A — A,,,, where the inverse limits are with respect
to the maps A2,/ ker(Hp m1) — A2,/ ker(H}, ) induced from the obvious surjections
Apmt1 — Ay, (see [15, Proposition 2.5 and Lemma 2.12]).
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In what follows, R denotes either A or A/w™ for some integer n > 1. We let R,,
denote R/(w,,), which is the group ring of G,, with coefficients in O, or O/w". By a
slight abuse of notation, we write 7,1, for the natural project map R,,+1 — R,, and
&m for the norm map R,,—1 — R,,. The map Hj, ,,, (composed with modulo w™ in the
case of R = A/w") defines an R-morphism on R2, — R2,. As in (3.3),

(3.4)

Theorem 3.4. Let R be either A or A/@w™ for some integer n > 1. Let F,;, € Ry, m >0
be a sequence of elements satisfying the relation

7Tm+1,m(Fm+1) = (lp(h)Fm — §m_1Fm_1,m Z 1. (35)

Then there exist unique F¥, F* € R such that

Fﬁ Fm
Hh,m (Fb> - (é-m—lFm—l) mod W

Proof. Let F,, € A be a lift of F,, under the natural projection map. We show that
there exist Ff , F € A such that

F? F,
We prove (3.6) by induction. When m = 1, just take ﬁ'lﬁ = Fyand F? = F, —ap(h)ﬁlﬁ.

Let C, ,, = (CI)?n a,?(%z)) be the adjugate matrix of Cp , so that Cp,Cj , =

C;L,mC’th = ®,,15, where I is the 2 x 2 identity matrix. The existence of ﬁ'}in and an
in (3.6) is equivalent

ChaChm (_(I):}%ml) =0 mod @ ---P,,. (3.7)

Let m > 2 and suppose that (3.7) holds on replacing m by m — 1. A direct calculation
shows that

e 4 F"l —C! ... ~(I)mFm71~
Ch,l C'hm% <_(I)mFm1) - Ch,l Ch,mfl (q)m(Fm _ ap(h)le)) )

which is divisible by ®,,,. Furthermore, thanks to (3.5),

F, = ap(h)l*:‘m,l —®,, 1F,_ 5 mod wy,_1.

Therefore,



A. Burungale et al. / Advances in Mathematics 439 (2024) 109465 11

E,, Fp
C}IL,l o C;L;m (_q) FN! 1) EpC}/171 ' "C;L,m—l (_(b 71}%1 2) =0 mod ®;-- Py

by our inductive hypothesis. Therefore, (3.7) holds, which implies (3.6). In particular,
there exist F¥,, F, € R,, such that

Applying (3.5) once again, we deduce that

Pt ap(h)Epy — Em—1Fm_1 F,
H m-+1 — P m m m =B m .
Tm+1,m ( h,m+1 (Frbn+1>> ( me h _gm—lFm—l

#

But the left-hand is also equal to By, - Hp m <7Tm+17m (?TH)) Therefore, we deduce
m—+1

that

¢ f
Tm+1,m <§T:1> = <§T) mod kethym

and that the elements F,ﬁn, F,bn result in a unique pair of elements in R via the inverse
limit (3.4). O

Theorem 3.5. There exist unique Ei, E?L € A such that for allm > 1

Ei — Eh,m
Hh,n (LZ) = <§m_1(£h,m_1) mOd W -

Proof. This is an immediate consequence of Theorem 3.4 and (3.1). O

Definition 3.6. We define the following p-adic L-functions
Ly(h K)t =L} (cg) and L,(h,K)’ = L} (c;) :

where ¢ denotes the involution map on A arising from the inversion on T'.
When h arises from our fixed weight two newform f, we shall write By, Hy 1, Cy m,
Lfm, Egc, L’?c, L,(f, K)¥ and L,(f, K)” for the corresponding elements.

3.2.1. p-Adic L-functions attached to modular forms modulo w™

In the notation §3.1, choose a Hecke eigenform h € So(7 /T", O /(w™)) such that the
Up-operator acts with the eigenvalue a,(h) =0 mod w.

Then the discussion in §3.1 carries over verbatim leading to elements

Lhm € A=Ay, /(@™).
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Furthermore, Theorem 3.4 implies that there exist unique elements Ei,ﬁ% € A/(w")
verifying

Egl = L:h’m
Hym (£|;1> = <—§m1£h,m1) mod wy, . (3.8)

(Strictly speaking, we have introduced Hy, ,,, only when h is defined over Oy, in Defini-
tion 3.3. One may define the matrices C}, ,,, and carry out the subsequent calculations
in a similar manner when the matrices are defined over O, /(w™).)
Lemma 3.7. Let 1 < n < n/ < oco. Suppose that h € Sa(T/I',O0r/(w™)) and h' €
Sy(T/T, O/ (w™)) (where we have taken the convention that Or, /(w™) means Or,) are
Hecke eigenforms such that ap(h) = ap(h') =0 mod w and that h = h' mod w™. Then
for e € {#,b}, we have

5 =L;, mod w"A.
Proof. It is apparent from their construction that

— n
Lgm =Ly m mod (@, wy)

for all m > 0. It then follows from (3.8) that

c c
Hy ) =Hpm p’ " Wm) -
() = (k) mod "

The result now follows from the uniqueness of E?L and ﬂ;r m]
3.83. Non-vanishing of p-adic L-functions

Let o and 8 be the roots of the Hecke polynomial of f at p.
Fix A € {a, f} and consider the p-stabilized elements

1 1
= W (Ef,m - Xgml(cf,m1)> .

L)\
Then it follows from (3.2) that
Tm+1,m (‘C?,erl) = ‘CA,m'

Thus, by [43, Lemme 1.2.1], the sequence (£>‘ m) converges to an element
’ m2>0

L} € H()
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where H(I') denotes the set of power series in L[[X]] that converge in the open unit disk.
In fact, since ord,(\) < 1, this element is of growth rate o(log).

Lemma 3.8. For A € {«, 8}, E}‘ #0.

Proof. As discussed towards the end of [7, §1], if x is a finite order character of T, then

B /Disc(K)Q;’

where Q is the Peterson inner product of f with itself and = signifies an equality up to

LYY (X)

a non-zero algebraic fudge factor. The main result of [50] shows that L(fx ® x,1) # 0
for all but finitely many x. O

Theorem 3.9. At least one of the two elements Egp and Ebf is non-zero. If a,(f) = 0, then
both are non-zero.

Proof. Let Qf = a—iﬁ (_ap _p/8> Then,

Bm+1Q _ Lm =Ctp--Crq LQ‘ mod wWyy,.
! f 7€m—1£f,m—1 Jm £ Ef "

Letting m — oo gives

LY _ c
(Ljé) — Q' My (é) . (3.9)

By Lemma 3.8, both [,‘J%‘ and [,? are non-zero and so it cannot happen that £h=r0 = 0,
proving the first assertion of the theorem.

When a,(f) = 0, we may proceed just as in [42, proof of Corollary 5.11] to show that
both Lﬁf and E?c are non-zero. [

Corollary 3.10. At least one of the two elements L,(f, K)* and L,(f, K)® is non-zero. If
ap(f) =0, then both are non-zero.

Proof. This follows immediately from the previous theorem and the definition of
Ly(f, K}, o

Remark 3.11. Let x be a finite character of I'. As in the cyclotomic setting (cf. [30,
(3.4)—(3.6)] and [48, Corollary 6.6]), an explicit linear combination® of L, (f, K)*(x) and

3 It is obtained by evaluating (3.9) at the character x.
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Ly(f, K)"(x) is related to the L-value L(fx ® x,1). For instance, if a,(f) = 0, then
L,(f, K)#°(x) is an explicit non-zero multiple of L(fx ® x,1) for x of conductor a
power of p with exponent of a certain parity. See [4, proofs of Lemmas 5.12 and 7.2] for
an explicit description when x is the trivial character.

4. Q-systems and Coleman maps

Throughout this section, let p be a fixed prime of K above p. We also denote the
unique prime of K, above p by the same notation. The completion of K,, at p will be
denoted by k,,. Our goal is to discuss the construction of Coleman maps over ko /ko
using the concept of @-systems, which can be regarded as a generalization of Kobayashi’s
construction of plus and minus Coleman maps over the p-adic cyclotomic extension of
Q, for elliptic curves E with a,(E) = 0 in [30] (which has also been generalized by
Sprung to the case a,(E) # 0 in [48]).

4.1. Definition of Coleman maps

As in §3.1, we fix a w-indivisible Hecke eigenform h € So(7/I",Or) with a,(h) =0
mod w. Furthermore, when p is inert in K, we assume that T}, is the p-adic Tate module
of an elliptic curve Ej,/Q.

Given a finite extension L/K,, let H} (L, T,) C H'(L,T}) denote the Bloch-Kato
subgroup. For an integer n > 1, the image of H{ (L, T}) in H*(L, T}, ,,) will be denoted
by HY(L, T.n)-

Definition 4.1. Let 1 < n < co. We say that (dp,)m>0 is a primitive Q-system for the
representation T, ,, (where T}, o means T},) if

(1) dn, € Hfl(k:m,Thm) for all m > 0;

(2) do ¢ wHi (ko, Th,n);

(3) cory, i, (d1) & wHy (Ko, Thon);

(4) COI‘k7”+1/k7” (dm+1) = ap(h)dm — I‘eSk7n71/km (dm—l) for all m > 1.

Definition 4.2. Let 1 < n < co and m > 0. We write Ay, ,, = A/(wi, w") where the
convention for n = oo is that @™ = 0. For ¢ € H'(ky, Th ), define the Perrin-Riou
pairing

P.: H (ky, Th.n) — Ok, ®z, Am.n
Z — Z <2071ac>m,n 0,

oeGp,

where (—, =), is defined as follows. If p is split in K, (—, =), is given by the cup-
product pairing
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H (ks Thon) X H (kpy, Tho) ~ H (K, O /(w@™)(1)) = O /(w™),
whereas if p is inert in K, it is given by
H (ks Thon) X H (K, Tho) —> H (K, Ok, /(@) (1)) =5 O, /(™) .

(The latter relies on the fact that T}, ,, is equipped with an Oy ,-module structure inher-
ited from the height two Lubin—Tate formal group attached to Ej at p, which leads to
identification of the GY,,-representation T}, , with Homo, (Thn, Ok,/(w@"))(1).)

Note that the map P, is a A-morphism.

For notational simplicity, we shall write A7, , for the tensor product Ok, @z, Am.n
from now on. Similarly, write A" = Oy, ®z, A, L' = ko ®z, L and O} = Or ®z, O,.
Note that when p splits in K, then A}, ,, = Ay, A" = A, L' = L and O} = Or. In the
inert case, we have A}, ,, = Ok, /(@")[Gm], A" = O, [[I']], L' = ko and O, = Ok,

Definition 4.3. Let R (resp. R,,) to be either A/(w") or A'/(w™) (resp. Ay n or A7, )
depending on whether p is split or inert in K.

Suppose that d = (dm)m>0 is a primitive Q-system for T}, ,,. We define a family of
R-morphisms

COldLm : Hllw(kooyTh,n) — Rm

by sending z = (2, )m>0 to Py,, (2m)-

For the rest of this section, fix 0 < n < oo and a primitive Q-system d for T} ;.
Lemma 4.4. For all z = (zp)m>0 € Hllw(koo,Thyn), we have

7Tm+1,m(COId1,m+1(Z)) = ap(h)COIdl,m(Z) - gmfICOLdl,mfl(Z)

Proof. This follows from condition (4) in Definition 4.1 and standard properties of the
cup product. O

Corollary 4.5. There exist unique R-morphisms
Col’y, Colyy : HY (Koo, Thn) — R

such that

Coly(z)\ _ Colg m(2)
Bh.m (Col%(z)) - (‘fmlCOIdl,m1(Z)> mod wpn.

Proof. This follows immediately from Theorem 3.4 and Lemma 4.4. O
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Lemma 4.6. Let 1 < n < n' < oo. Suppose that d and d’' are primitive Q-systems
for Ty, and Ty s respectively such that d!. is sent to d,, under the natural morphism
HY(ky, Thonr) = H (K, Thon) for all m. Then for e € {f,b},

Colg, = Colg o pr,/
where pr,, ,, is the natural map H} (koo, Thon) = Hi (Koo, Thon)-
Proof. This follows from the uniqueness of the Coleman maps given by Corollary 4.5. O

Proposition 4.7. The R-morphisms Colgl and Col'fdl are surjective onto R.

Proof. By Nakayama’s lemma, it is enough to show that Tm(Col®)r = Ry for e € {#,b}.
Let z € H}, (Koo, Th,n)- By definition, we have

Colly(z)\ _ Colg 1(z)
Hha (Col%(z)) - (—50021;170(2)) mod wi F.

Therefore,

( Cola.q(z) ) mod XR.

(3 ) (Gan) = (e

In particular,

Colﬁﬂ(z) = Colg o(z) mod XR,
Coly(z) = Colg,1(z) — ap(h)Colp(z) mod XR.

Let zy be the image of z in H'(kg, T}, ). The right-hand sides of the congruences above
are given by

(z0,do)o,n and (2o, cory, /i, (d1) — ap(h)do)o,n

respectively. Therefore, the conditions (2) and (3) in Definition 4.1 imply that both maps
modulo X are surjective onto Ry as required. O

Definition 4.8. For m > 0 and e € {#,b}, define H"*(ky,, Th.n) C H'(km,Th.n) to be the
image of ker Coly under the natural projection Hi, (Koo, Th n) — HY(ky, Thon)-

Let Ay, denote Ap[w™]. Define HL (km, Ann) C H(km, Ap.n) to be the orthogonal
complement of H*(ky,, T}, ) under the local Tate pairing

H (ks Thon) X H (K, Ap ) — H(kp, L' JO}, (1)) =5 L' ) O},
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Notice that when n = oo, Ay, ,, is simply Ajp,. Otherwise, Ay, ,, = T}, . In the definition
above, we have suppressed the dependency on d from our notation for simplicity. In
subsequent sections, we shall fix a choice of d and work with the resulting subgroups.

Remark 4.9. The local conditions H{ (K, T; hn) for m > 0 defined above are different
from their counterparts in [21, §3.2] even when T}, is the p-adic Tate module of an
elliptic curve Ep/Q. We start with local conditions for the extension k., then descent
to kpm, whereas the local conditions in [21] are defined directly from points on an elliptic
curve over k,,. Note that our definition of local conditions is similar to the ones studied
in [25, §3.3], [26, §2] and [27, §2]; see also [44, Remark A.1]. This divergence will be
crucial in our proof of Theorem 1.1, see also Remark 4.13 below for a further discussion.

Lemma 4.10. For integers m,n > 0, there are natural A-isomorphisms
Tm

HY (K, Apon) = H koo, Ap)' ("] 2 (H (Koo, Ap)[@"])

Proof. In view of the assumption a,(h) = 0 mod @, we have H(koo, As) = 0. Thus,
the inflation-restriction exact sequence gives

H (K, Ap) ~ H (Koo, Ap)Tm.
Furthermore, on taking Galois cohomology of the tautological exact sequence
O%Th,n—)Ah X—W;Ahﬁo,

we have H'(ky,, Ap)[@"] =~ H'(km, Th.n), giving the first isomorphism. The second iso-
morphism can be proved similarly. O

Corollary 4.11. Let o € {f,b} and 0 <m < co. We have:

i) The image of H:(koo, Ap)t ™ [@"] in HY(ky,, An.n) under the isomorphism given by
Lemma /.10 coincides with HE (ky,, Ap.n).
ii) We have lirng}(km,Ah7n) = Hl(kn, Ap).
iii) The R,,-module H}(ky,, Ap. ) is free of rank one.

Proof. The first two assertions follow from Lemma 4.6, whereas the third is a consequence
of Proposition 4.7 and duality. O

We have the following analogous statement of Corollary 4.11 iii) for H*(ky,, Th.n):
Lemma 4.12. The R,,-module Hl"(km,Thm) is free of rank one.

Proof. It follows from [43, Proposition 3.2.1] that H} (Koo, Th.n) is free of rank 2 over
R. Proposition 4.7 says that H{ (keo,Th n)/ker Coly is free of rank 1 over R. Thus,
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ker Coly itself is free of rank 1 over R. Consequently, it follows from Lemma 4.6 that
HY* (kyy, Th ) = (ker Colg)p, s free of rank 1 over R,,. O

Remark 4.13. Note that Lemma 4.12 may be regarded as a more general version of [21,
Lemma 3.9] which concerns the case ap(f) = 0 and p split in K. It is asserted in the
proof of [21] that the plus and minus local conditions at the finite level, denoted by
Hi (L, T,E), are free of rank one over Z,[G,,]. However, it is not clear to us how
it follows from [24, Proposition 4.16]. The inverse limits of H} (L,,,T,E), denoted by
H! (T) in [24], are free of rank one over A. But H} (L,,,T,E) # H.(T)r,, unless m = 0.
In fact, by definition, the Z,-ranks of the plus and minus subgroups E* (L) are strictly
less than p™ when m > 0. Consequently, their orthogonal complements Hi (L,,,T,(E))
have Z,-ranks strictly greater than p™. In particular, they cannot be free of rank one
over Z,[Gp,). As already observed in [44, Appendix A], the alternative approach to define
local conditions by replacing Hi (L, T,E) with HY (T)r,, resolves this issue.

m

4.2. Constructing local points on abelian varieties: the split case

Throughout §4.2, we assume that p splits in K. Our goal is to construct a primitive
Q-system for Tj,.

4.2.1. Review on the Perrin-Riou map

Throughout, we identify K, with Q,. Furthermore, we fix 7 to be a Lubin-Tate
formal group of height one such that the extension of Q, generated by F[p>] contains
koo. For simplicity, write T'= T and V = V},.

Definition 4.14.

i) For an integer m > 0, we write k,, for Q,(F[p™]).

)
if) Write ¢ and ¢ r for the operators on Z,[[X]] given as in [20, §3.1].
iii) Let T' = Gal(F[p>°]/Q,) and A = Z,[[T]].
iv) Let Q5| : Zp[[X]]*" =" @Deyis (V) = H(T)®@ HY, (koo, T) denote the Perrin-Riou map
defined by Kobayashi [31, Appendix]| (see also [20, Theorem 3.2]). Here € = (£,,)m>0
denotes a choice of generator of T),F.

Definition 4.15. We define
Srm : Zp[[X]]P7 70 @ Deyis (T) = Hi (km, V)
g — exp (G(em)),

where G is a solution to (1 — )G = g and exp is the Bloch—Kato exponential map.

Remark 4.16. The map Y7, is used in the construction of €. Indeed the image of
Q71(9) in H(kp,, V) is given by
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Yrm((p®e) "g).
Lemma 4.17. The image of X1, lands inside Hi (K, T).

Proof. By [31, Theorem 10.8], there exists a constant p¢ such that
P°S1.m (9) € Hf (ki T)

for all m and g. The constant p° is given by Proposition 10.3 in [31]. In particular, this
is the same constant as the one considered in [33, Corollary 3.2]. In particular,

c=r—-bm—-1+r+s,

where b is the largest Hodge—Tate weight of T" and the constants r and s are given by
(3.1) and (3.2) in [33]. In our current setting, b = r = 1. The constant s is 0 as given by
Lemma 6.3, bis. Thus, p¢ = 1 and the lemma follows. O

4.2.2. Construction of classes and norm relations

Let p : Gm — F be a fixed isomorphism of formal groups. Let #  denote the ring
of integers of the completion of the maximal unramified extension of Q,. We have an
isomorphism 5 : #[[X]] — #[[X]] given by F +— F o p~!. Note that both ¢4 and
Yz extend to #[[X]] by acting on # as the arithmetic and the geometric Frobenius,
respectively. We shall denote the arithmetic Frobenius on # by o. In particular, the
action of @& on #[[X]] is given by

> b X" Y b1+ X)P 1),

Recall that

n

em=p" " (Cm — 1), (4.1)
where (,m is a primitive p™-th root of unity satisfying (5 i1 = Cpm.
Definition 4.18. We extend X7, to
W[ X]]Y"° @ Devis(T) — # ®z, Hi (ky,, T)
by sending g to exp(G° " (em)), where G is a solution to (1 — pz)G = g.
Denote the map # @ H} (km+1,T) — # ® H{ (ky,T) obtained from extending the
corestriction map # -linearly also by COTf

Remark 4.19. By Local Class Field Theory, we have the identification

V@O0, =W i)
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The trace map # ® (9,~€m+1 — W @ Oy, sends (pm+1 to 0 or —1 depending on whether
m>1orm=0.

Proposition 4.20. Suppose that g = p(1 + X) @ v, where v = p(w) € Deyis(T) for some
w € Fil’ Deyio(T). Then,

oG, f © 2Tm+1(9) — ap(h) - Ern(g) +resy g 0 X1 m-1(g9) =0
for allm > 1.

Proof. Following the calculations carried out in [33, proof of Lemma 5.6], combined with
Remark 4.16 and (4.1), we deduce that

Er,m(g) = exp (Z Cp @™ () + (1 — w)_lgom(v))> )

i=1

In view of Remark 4.19, we have

COTE /iy © 2T,m41(9)

m—+1
=expoTrg i (Z Cpi @ ™ (v) + (1 - w)‘lwm“(vD)
=1

=p-expo (Z G ® @M w) + (1 - Wlwmwv)))

= exp (Z G @ (ap(h)e™ ™ (v) = @™ T HV) + (1 = 9) " ap(h)e™ (v) — som_l(v))>

= ap(h) - exp <Z (i @™ (0) + (1 - w)1¢m(v)>

i=1

— exp <z_: G @™ T (0) + (1 30)190’”1(11)> —exp (Gmr @ ¢~ (v))

i=1

=ay(h) - Erm(g) —resp g °X1m-1(9),
since 91 (v) = w € Fil® Deyis(T). This concludes the proof. O
Corollary 4.21. Let e be a A-basis of Z,[[X]]¥7=C. For m >0, let
em = S7.m (e @v) € H} (b, T),
where v = p(w) for some O-basis of Fil° Deys(T). Then

OTf .\ /o (cma1) —ap(h) - cm + TS s (em_1) = 0.
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Proof. Since popg =1ropand (1+X)isa #[[T])-basis of #[[X]]¥ém =", there exists
z. € #|[[[]]* such that

e=z. p(l+ X).

The maps X7, are # [[[']]-linear and are compatible with the corestriction maps. Thus,
the affirmed norm relation follows from Proposition 4.20. 0O

In particular, the classes ¢,, will allow us to define classes in H!(k,,,T) satisfying
conditions (1) and (4) in Definition 4.1.

4.2.3. Primitivity of classes
The goal of this subsection is that the classes built out of (¢,)n>0 from Corollary 4.21
satisfying conditions (2) and (3) in Definition 4.1.

Lemma 4.22. We have
exp (pDeris(T)/ Fil® Deyis (7)) = Hf (Qy, T).
Proof. By [9, Lemma 4.5(b)], it is enough to show that
(1= ) (PDeris (T)/ Fil® Deris(T)) = Deris(T)/(1 = @) Fil” Deris (T)-

Since our representation satisfies the Fontaine-Laffaille condition, if w is an O-basis
of Fil° Deris(T), then Dg,is(T) is generated by w,p(w) as an O-module. Consequently,
]D)Cris(T)/Fil0 Deis(T) and Deyis(T) /(1 — ) Fil° Deris(T) are generated by p(w) and w
over O respectively. Therefore, the lemma follows from the fact that

(1= @)pew)) = (0 = ap(fpw) +w= (1 +p—ap(f))w mod (1 - @) Fil’ Deris(T).

Remark 4.23. The reader may refer to [47, Proposition 3.5.1] for a dual version of
Lemma 4.22 for elliptic curves.

Proposition 4.24. Let ¢, be the classes defined as in Corollary 4.21. Then Corg qQ, (cm)
is an O-basis of H} (Q,,T) for n € {1,2}.

Proof. Since e ® v and j(1 + X) ® v differ by a unit of #[[T], it is enough to consider

the classes built out of g = p(1 4+ X) ® v given by the statement of Proposition 4.20.
Note that

corg, g, © Srm(9) =" exp (=™ () + (0 — 1)1 — )™ (v) -

Recall that the action of ¢ on D.s(V') satisfies
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h 1
@2,M.@+_:0_
p D

Thus by [34, proof of Lemma 5.6],

(1— )1 =P ap(h)

1+p—ap(h)
and so
P2
cory, o Yralg) = 14+p—ay(h) p(p(w)) 1,
/@ pA=p=2ap(h) o)) m=2
1—|—p_ap(h) ply = 2.

Since p(w) is an O-basis of Deyis(T)/ Fil® Deyis(T), Lemma 4.22 implies that for m =
1,2, corj, g, © Y7.m(g) is an O-basis of H}(Q,,T). This concludes the proof of the
proposition. O

Combined this with Corollary 4.21, we deduce the following:

Theorem 4.25. For m > 0, define d,,, to be the image of cp1 under the corestriction
map Ccory . . Then (d,,) is a primitive Q-system for Ty,. Furthermore, if we denote

by d,, the image of dp, in H} (K, Thp), then (dw) is a primitive Q-system for Thn-
4.3. Local points on elliptic curves: the inert case

In this section, we assume that p is inert in K.

Let f be the elliptic newform corresponding to our fixed elliptic curve E. Since p > 5,
we have necessarily a,(f) = 0 by the Weil bound. We recall the following result of
Burungale-Kobayashi-Ota.

Theorem 4.26. There ezists a system of local points d,, € E‘(mkm) such that:

(1) Try,, ks Am = —dm—2 for all m > 2;
(2) Try, i dy = —do;
(3) do € E(my,) \ pE(my,).

Proof. This is [10, Theorem 5.5]. O

Remark 4.27. The construction of local points in Theorem 4.26 is semi-local. It is based
on Gross’ theory of quasi-canonical lifts, leading to points on modular curves defined
over anticyclotomic local fields, and modular parameterisation of an elliptic curve E/Q
supersingular at p. The key p-indivisibility property (3) relies on the fact that formal
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completion of the modular parametrization of E at a well-chosen closed point is an
isomorphism (cf. [10], §5.0.1). The latter no longer holds for higher dimensional abelian
varieties of GLo-type over Q, and so we assume that the corresponding Hecke field is Q.

Theorem 4.26 immediately implies:
Corollary 4.28. A primitive Q-system exists for Ty (and thus for Ty, for all n).
Let us define

m

g = {dm if m is even, {dml if m > 2 is even,
+ =

d_ =
dm—1 if m is odd, dm, if m is odd.

Let E’f(/{m) be the A’-modules generated by df. These modules can be described in
terms of the trace maps, as in [30, Definition 8.16].

We may regard E=(k,,) as subgroups of Hf (km, Tf) via the Kummer map. Similarly,
E*(k,,)/p"™ may be regarded as subgroups of Hy (km, Tf.n).

Definition 4.29. We define (B (k,,)/p™)" D H} (km, Tsn) to be the orthogonal comple-
ment of E£(k,,)/p" under the pairing (—, —Vmn-

Proposition 4.30. Let d = (d,,)m>0 be the primitive Q-system for Ty, given by Theo-
rem 4.20. Let Colfﬂ/b be the resulting Coleman maps given by Corollary /.5. Then the
kernels of Colfﬂ/b are equal to lian(Ei(km)/p")l.

Proof. This follows from the same proof as [30, Proposition 8.18]. O
For notational simplicity, we shall employ the indices & and #/b interchangeably.
Corollary 4.31. For e € {t,b} = {+, —}, we have the inclusion
HY (ko Afn) > B* ) 9"

Proof. Evidently,
Im
(i) " = i
Thus, on combining Corollary 4.11 and Proposition 4.30, we deduce that

. L
(ker Colg)p, =: H"*(kp, Ty n) C (E.(km)/pn) :

Hence, the affirmed inclusion follows by duality. O
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5. Coleman maps via the two-variable Perrin-Riou map

In this section, we concentrate on the case where p is split in K. We give an alternative
approach to define Coleman maps via the two-variable Perrin-Riou map of Loeffler—
Zerbes from [37]. Throughout, fix a prime p above p and let the notation be as in §4.2.

Let L1y : Hi, (Koo, T) = Deyis(T) @ Hy (T) be the Perrin-Riou map, which is defined
as the specialization of the two-variable Perrin-Riou map in [37] (see [19, Theorem 5.1]).
Here, Hy (T') = H(T') @z, #'.

Let o and 8 be the roots of the Hecke polynomial of h at p. Let vy o and vy g be
p-eigenvectors in Deyis(V) (so that ¢(vhn) = A" vp,»). We normalize these elements so
that

Vha = —vpp mod Fil” D (V). (5.1)
Let {v,";’a,v,’fb’ﬁ} be basis of Deyis(V) dual to {vp,q,vn s} In what follows, write
(= =) 1 Deris(T') X Deris(T') = Deris(O(1)) = O
for the natural pairing.
Definition 5.1.
i) We extend the pairing (—, —) on D¢s(T") to

<_7 _> : %(F) ® DcriS(T) X H(F) ® DcriS(T) — H(P)
(M @01, A2 @ 12) = (AM1A3) ® (11, 72)-

ii) We define the pairing

[_7 _] : Hllw(kOCHT) X Hllw(kOOaT) — A

((@n); (yn)) = <Z <Tlxn,yn>7) :

TG,

iii) Let 6, denote the unique element of Gal(Q3"/Q,) that acts as the arithmetic Frobe-
nius on Q)" and acts trivially on all p-power roots of unity.

Lemma 5.2. Given a A-basis e of Z,[[X]]|*7=°, there exists a A-morphism
N%,e : Hllw(];OCnT) — H(f) & Dcris(v)

such that
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<’C§‘,e (Z)7 77> = [zv Q%/,l(e ® 77)]
for all z € H} (koo, T) and n € Deyis(V).

Proof. See [20, (3.7)], where the map EET’E is denoted by ColS and the field F in [20] is
taken to be Q, here. O

Proposition 5.3. Let L5, : H{, (koo, T) = H(T') ® Deyis (V) denote the A-morphism in-
duced by E%P after taking projection from T to T'. There exists a unit u, € #[[I']]* such
that

€
T,e = Ue - ‘CT;P'

Proof. By [19, Theorem 5.1], for a finite character 6 of conductor p”, we have

—1

Lrp(2)(0) = (0" )" exp™(z” ),

where €(6~!) denotes the epsilon factor defined as in [37, §2.8].
Let y. € #[|[T']]* be such that p(1+ X) = y. - e (cf. [20, p. 15], our y, corresponds to
he in [20]). If € is as above, it follows from Theorem 3.4 of [20] that

YeOp - L%‘,e(z)(e) =70 ")e" exp” (G - Za_l) = T(@fl)ﬁ(ﬁp)"ga” exp*(ze_l)7

where 7(671) is the Gauss sum of §~1 (we follow the convention of [37, §2.8] here, rather
than the one in [20]). Recall that

e(071) = p"0(5,)" /7(0) = 0(G,)"T(07").
Hence the result follows. O
Corollary 5.4. We have
LrpoQy = u;lebﬂo,
where Ly =log~y/log k() and k is the Lubin—Tate character on T' induced from F.
Proof. Recall the explicit reciprocity law
(F,G) = [0,0(F), 2%, (G)]
for all F,G € H(I') @ Deris(Ty) (see [31, Theorem 10.11]; notice that there is an element
d_1 € I' in [31], which is sent to the identity in I'; the action of ¢ in [31] also does not

appear here since we have defined our pairings under a different convention). It follows
from Lemma 5.2 that
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(L (2 (F) 1) = 195:4(F). 51 (e @ )]
= [l Q?/0( ), Qv (e ®n)]
= (loF,e®@mn)

= (e"boF,n)

Since this holds for all F' and 7, and the pairing [—, —] is non-degenerate, the result
follows from Proposition 5.3. O

We set

This matrix diagonalizes Bj,:

-1 a 0
Qi BiQn = (0 B) .
We normalize the choice of p-eigenvectors so that

. 1
Up\ = ¢(vo) — XUO’

where vg is an O-basis of Fil’ Deris(V). Note that Vo = Vj 5 mod Fil° Deris(V) and
thus (5.1) holds. The calculations in [16, §2.3] show that we have a decomposition

<LT’ (_)7U*,a> _ -1 Col?
<<£T,E(_),U%’a>> - Qh ]\410g7 (C 1;::) (53)

e

for certain Coleman maps Co We compare these maps with the ones given by Corol-

lary 4.5 using the primitive Q- system constructed in §4.2. We first recast the latter in
terms of L.

Proposition 5.5. Let d = (dy,)m>0 be the primitive Q-system defined as in Theorem 4.25,
where e is chosen as in Lemma 5.2 and write Colg ,, for the maps on HY(k,,,T) given
by Definition /.3. Let z € H'(ky, T) and pick a lifting z € Hi, (koo,T) of z. Then,

Colgm(z) = pm+1ue<£T,p(z), <pm+1(v)> mod w,,
for some v = p(vy), where vy is an O-basis of Fil° Deris(T), which is independent of m.
Proof. It follows from Remark 4.16 that

Colg,m(2) = [z, Q@)l(pmﬂe ® <pm+1(v))] mod wy,.
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By Lemma 5.2 and Proposition 5.3, the right-hand side is given by
PTHLE (2), 9" (0) = P (ue L p(2), 9 (0)),
which concludes the proof of the proposition. 0O

Corollary 5.6. For e € {#,b}, we have Colg = u.Coly,. In particular, Colg and Coly,
have the same kernel.

Proof. A direct calculation shows that

i (Lo mas { (Lr(=)s 0™ (00)
B Qn <<£T,§<—>,v’i,ﬁ>> = <—<z:TT'fp<—>,som+l<30>>> '

It follows from (5.3) that

Coll )\ _ ot ((Lrp(=) ™ (0))
Hm (méz) _ et (—&;,p(—),wm(v») mod wn. (5.4)

Combined with Proposition 5.5 and Corollary 4.5, we deduce that

Col} Col*
ueHh,m < E:P> = Hh,m (COI% mod W -

Hence the result follows after letting m — co. O
6. Coleman maps and congruences

Let hy; and hy be weight two Op-valued p-non-ordinary Hecke eigenforms on two
Shimura curves X; = X MM and Xo = X Mg My which are not necessarily of the
same level, such that

Thl,n = Thg,n

as G,-representations for some integer n > 1. Our goal is to study the compatibility
of Coleman maps modulo @w™. We remark that, even though the main result of the
present article (cf. Theorem 10.1) concerns an eigenform f on the classical modular
curve Xo(Np), the methods to prove this result dwells on congruences between modular
forms on more general Shimura curves.

6.1. The split case

We assume that p splits in K and fix a prime p above p.
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For h € {h1,hs}, let N(T,) denote the Wach module attached to Th|gg, (see for
example [8, §II.1]). Note that N(T}) is a free Op, ®A6P—module of rank 2, equipped with
an action by I'V¢ := Gal(Q,(up~)/Qp). Here, Aap = Z,|[n]], on which ¢ € I'Y® and
¢ act Zy-linearly via 7 — (1 + W)XCYC(U)*I, where Xy is the cyclotomic character and
7+ (1+7)P — 1 respectively. Furthermore, there is an action of ¢ on N(7})[¢~}], where
q = p(m)/m, and a filtration

Fil' N(T3,) = {z € N(T},) : p(z) € ¢'N(T})}.
We recall that there is an isomorphism of filtered modules
Deris (Th) ~ N(Th) /7N (Th).
Furthermore, [8, Théoréme IV.1.1] tells us that
N(Th,)/(@") ~ N(Th,)/(@"). (6.1)
In particular, this gives an isomorphism of filtered modules
Deris(Thy )/ (@") 2 Deris(Thy )/ (w™). (6.2)

Let Fx be the unramified Z,-extension of QQ, and write F;, for the sub-extension of
degree p™ over Q. Let Foo = Foo(fp). We write

Np, (Th) = (lim Op, ) ON(Tj).
Recall from [37, Proposition 4.5] that there is an isomorphism
Hyy (Soo, Tn) = N (1)~
This gives the isomorphism
Hiy (o0, Tn/(@")) =~ Ny (Tn)"~/(@"). (6.3)

Note that liLnOFn is isomorphic to the Yager module, which is free of rank-one
over Zp[[U]] and can be identified with a submodule of Ay (U) = #[[U]], where
U = Gal(Fs /Qy).

Let G = Gal(§oo/Qp) ~ I'¥® x U. We write Ay (G) = #[[G]]. Recall from [37,
Definition 4.6] that the two-variable Perrin-Riou map is the A(G)-morphism defined by

Ly« Hby(Foos Th) = Ny (Th) V=" =5 Ay (U)&p* N(T3,) V="
= Ay (U)EHTY) @ Deris (Th).
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Fix a topological generator ey, of I'V¢ and write wyy® = 75; — 1. Let Ay (G)mm, =
Ay (G) [
Lemma 6.1. The map (1 ® ¢~™ 1) o Ly, mod wD® induces a Ay (G)-morphism
L1y m  Hiv(Foo (ppm+1), Tn) = Ay (G)n, @ Deyis (Th).
Proof. This follows from [35, Lemma 3.8]. O

Lemma 6.2. The map Lr, m induces a Ay (G)-morphism

ﬁTh,m,n : HIIW(Som Th,n) = Ay () @ Deais (Th) /(™).

Proof. It follows from (6.3) that H} (§eo,Th)/(w@") ~ Hiy(Foos Th.n). Therefore, the
lemma just follows from Lemma 6.1. O

Proposition 6.3. We have the following commutative diagram

Ly, m,n

Hllw(Foo (Up’"“)v Thhn) —— Ay (G)m ® DcriS(Thl)/(wn)

Lhy,m,n \L

Hllw(Foo (Hpm+1), Thyn) —— Ay (G)m @ Dexis(Th,) /(w™),
where the vertical maps are induced from (6.1), (6.2) and (6.3).

Proof. As can be seen in [35, proof of Lemma 3.8], the morphism (1® ¢~™ 1) o (1 —¢)
mod wS° is represented by a matrix defined over Ay (G) with respect to bases of A(G)-
bases of Nz__ (73,)¥=! and Deis (T}, ). Therefore, the maps Ly, m,n are compatible with the
vertical maps in the commutative diagram. O

Recall the maps Colgﬂ/}ip from (5.3). We write Col#/’

Ty.p.n fOr the induced maps

Col?/’

Topm Hiy(koo, Thon) — A/ (™). (6.4)

Corollary 6.4. Let o € {§,b}. The maps Coly, ., and Coly, .. agree up to a unit under
the identification H} (Koo, Thymn) =~ Hi (Koo, Thyn)-

Proof. By duality,

PN Ly @ (0n)) = (@7 0 Ly, vn)

where vy, is given as in Proposition 5.5. By construction, vy, and vy, agree up to a
unit under the isomorphism (6.2). Thus, the corollary follows from (5.4) and Proposi-
tion 6.3. O
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As a consequence, the subgroups H®(ky,, Th.n) and H}(k,,, Ap.n) in Definition 4.8
are preserved under congruences.

6.2. The inert case

Suppose in this section that p is inert in K. In §4.3, we have only considered primitive
Q-systems for Ty ,. We discuss how to extend this construction to more general cases.
To do so, we first establish a result on the compatibility of the Bloch—-Kato subgroups
H{} under congruences, which has been proved in [21, Theorem 3.10] (see also [23] where
a similar question has been studied). We present an alternative proof.*

Proposition 6.5. Suppose that hy and hy are elliptic newforms of weight 2 (on any one
of the Shimura curves considered in this paper) with Hecke eigenvalues in Op,, such that

Thl,n L> Thg,n (6.5)

as Gq, -representations for some positive integer n that is a multiple of orde(p). If H
is a finite extension of Q,, then the natural isomorphism H (¢, Ty, ») ~ H (H , Th, 1)
induces an isomorphism

Hf1(<%/7Th1,n) = Hfl(faThz,n)'

Proof. Recall that H}! (¢, Ty, ) (for i = 1,2) is defined as the natural image of
H} A, Ty,) /@™ H{ (H,Ty,). We therefore need to establish a natural isomorphism

Hfl(%aThl)/wanl(%aThl) —= Hfl(vahz)/wanl(fvThz)'

It suffices to do so for quotients by powers p in place of powers of w. As noted in [23,
Remark 1.1.4, Item 1.c], this follows from [40, A.2.6].

We briefly outline the argument for the convenience of the reader. We shall use the
notation from [40, Appendix A] until the end of this proof without any additional warn-
ing.

We begin by noting that the Galois representations T}, arise as the Tate module of a
Barsotti-Tate group (associated to the corresponding abelian schemes). Let H; = (H; ,,)

denote the corresponding Barsotti-Tate groups, so that Ty, = T),(H;) := lim H; ,(Q,)

and Th, n = H; n(Q,). The isomorphism (6.5) is equivalent to an isomorphism

Hn(@,) <5 Han(TQ,). (6.6)

It follows from [40, A.1.2] (since H;,, are defined over Z, and p > 2) that we have an
isomorphism

4 This proof is based on a suggestion of Jan NekovaF from his MathSciNet review on the aforementioned
article.
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Hin — Hay, (6.7)

of finite flat group schemes, which is uniquely determined by the isomorphism (6.6).

Let us put X(H;) := lim HY (O, H;,) as the inverse limit of the indicated flat
cohomology groups. The proof of the proposition follows from the following chain of
natural isomorphisms:

~

X(Hy)/p" X (Hy) o Ao HY (A Ty,)/p" HE (K, Th,)

(40, A.2.6.2]
+
(40, A.2.6.3]

Hﬂl (0%7 Hl,n)

67 | ~

Hi(Ox, Ha ) X(Ha)/p" X (Ha)

(40, A.2.6.2] [40, A.2.6.5]
+
[40, A.2.6.3]

H{ (A, Thy)/p"Hi (K, Ty ).

We shall henceforth adopt the following convention.

Convention 6.6. If we denote a positive integer by n, then it will be assumed to be
divisible by ord (p). Strictly speaking, this is relevant only when we rely on Proposi-
tion 6.5, but since this restriction on the choices of n is harmless as regards to our proof
of Theorem 1.1, the convention will be in place from now on.

Corollary 6.7. Let h € So(T/I',Z,) be a p-indivisible Hecke eigenform such that T, , ~
Ttn as Gg,-representations for some integer n > 1. Then there exists a primitive Q-
system for the representation T, ,,.

Proof. Since p > 5, we have a,(f) = 0. Consequently, a,(h) = 0 mod p". The images
of the elements d,,, € Hy (K, Ty) given by Theorem 4.26 in H{ (kp, Tf,) then give rise

to a primitive Q)-system for T}, ,, via the isomorphism afforded by Proposition 6.5. O

As a consequence, the resulting subgroups H®(ky,, Thn) and Hl(km, Apn) as in
Definition 4.8 are preserved under congruences.

7. Selmer groups

Recall that K, is the anticyclotomic Z,-extension of K. For an integer m > 0, let
K,, C K denote the unique subextension such that [K,, : K] = p™.
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7.1. Let h € So(T/I',OL) be a w-indivisible Hecke eigenform. Assume that
Thn = Trn, ( hence Ay, ~ Ay )

as Go-representations for some integer n > 1.
For a rational prime £ and X = A, T, let

Km,@ = Km®QQZa Hl( m@ath . @H m)\aXh,n)v
Al

where the direct sum runs over all primes of K,,, above £. We have the natural restriction
map

resy : H' (K, Xnpn) — H (Koo, Xnon)-

Write H} (Koo, Xpn) C Hl(Kmx,Xh,n) for the Bloch—-Kato subgroup. The singular
quotient is given by

Hl (K’m,év Xh,n)

1 R Ml
H i (Km,Z;Xh,n> T Hfl(ijth,n)

sing

Definition 7.1. The Bloch-Kato Selmer group of Ay, ,, (vesp. Ty.,,) over K,, is defined to
be

Sel(K’rru Ah,n) := ker <H (Kma A}L n — H bmg m,[a Ah,n)) )

H{ (Ko, Th.p) = ker (Hl(Km, Thn) — H H g (K e, T,m)) .
4

We set

Sel(Koo, Th,n) = lim Sel(Ky, Thn)

315 =lE

ﬁl(Koo,Th’n) = Hfl(Km»Th,n)~

Furthermore, define Sel; and H; (? = 0,0) by replacing H, (K p, Xnn) with
HY (K, p, Xn.n) and 0 respectively (X =T, A).

Definition 7.2. Let F, (resp. F*) be the Selmer structure’ on the G, -representation
Ap p (rvesp. Ty, ) arising from the Bloch-Kato local condition at primes away from p and

® In the sense of [38], Definition 2.1.1.
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HY(Kpmp, Apn) (vesp. HY®* (K p, Th 5)) at primes p of K,,, above p. The Selmer groups
associated with these Selmer structures (cf. [38], §2.1) are denoted by

(Kim.ps Ann
Sele (Ko, Apn) = ket | H* (Ko Apn) = [ [ Hong(Komots Ann) XHWPAZ,; ’
o plp 1 ey A

H1<Km,p7 Th,n)
Hl’.(K’m,pa Th,n)

H) (K, Thop) = ker | H'(Kpn, Thn) = [ [ Hbng(Km.e: Tnn) x ||
Up plp

We further define

Sele (Koo, Apn) = lim Sel(Ky,, Ap.n) , Sele (Koo, Ap) :=

lim
i s s
m n

Sel (K007Ah n)

ﬁol(KoovTh,n) @H (KmvTh n)
For 0 < m < oo, we similarly define the Selmer groups Sely(Kp,, Af), Selg (K., Ay),
Sely (K, Ay) and Sel, (K, Ay).
Note that the local conditions Hy (K p, Ay) and H) (Ko p, Ay) can be identified with
lim Hﬁl(KW|O7 Ayn) and lim H} (K p, Af,n) respectively, thanks to Corollary 4.11 ii).
We can now state the flat/sharp Iwasawa main conjectures in our current setting.

Conjecture 7.3. For e € {f,b}, the A-module Sele(K, Af)Y is A-torsion. Furthermore,
char(Sela (Koo, Ap)Y) = (Ly(f, K)°).

7.2. Our main goal in this subsection is to introduce a useful set of primes (relative to
the eigenform f) and study the p-local properties of the associated Galois representation
at these primes.

Definition 7.4. A rational prime £ is said to be n-admissible relative to f if it satisfies
the following conditions:

i) £1pNo;
ii) £ is inert in K

iii) pt 02 —1;

iv) p™ divides £+ 1 — a(f) or £+ 1+ a(f).

As noted in [7, §2.2], it follows from the requirement i) that T, is unramified at
an n-admissible prime ¢ and from the requirements iii) and iv) that the action of the
Frobenius element over Q on this module is semisimple with distinct eigenvalues +¢ and
+1.
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We describe some useful properties of n-admissible primes (see [7, Lemma 2.6]), which
one may verify based on the previous paragraph.

Lemma 7.5. Suppose that { is an n-admissible prime relative to f.

i) We have canonical isomorphisms

HE (Ko, Ty n) =5 Ty (Fry — DTy,
H (Kéa Tf n) —> Homcts(IKe,Tﬁ )Fr(e)_

sing

where Ix, C Gk, is the inertia subgroup, I}Q is the tame inertia, Fr( € Gg,/Ik,
is the Frobenius element over K at the prime ().
ii) The choice of a topological generator t of I;Q determines an isomorphism

HL (K, Th,) =5 TF”“‘Z

sing

and in turn an isomorphism

sing

Hgy o (Ko, Ty ) —>Hf (Ko, Tn)
e

of free Or /(w™)-modules of rank one.

Proof. i) The asserted first isomorphism is nothing but the composite
Hi (Ko, Tyn) = H ((Fro)), Trn) = Tron/ (Frey = )T,

where the last isomorphism arises from the evaluation at Fr(,). The asserted second
isomorphism follows from the inflation-restriction sequence, combined with the fact
that Ik, acts trivially on T% , and that any continuous homomorphism from I, into
T't., necessarily factors through the tame quotient I}Q.

ii) Since Fr(y acts on I}, (by conjugation) as multiplication by 02, the asserted first
isomorphism is nothing but the composite

o= ~ Frp =02
H g (Ko, T ) — Homegs (T, , Tr ) O™ = Tj 1"

sing
where ev; denotes the evaluation at ¢ map. The asserted second isomorphism is given
by the composite

=2
Hbmg(Kg,Tf n) —) T (l) —> Tf n/(FI‘(g — 1)Tfn —) Hf (Kg, Tf n) s
where the second isomorphism is the natural projection. The fact that T “’ =t is a
free Op/(w™)-module of rank one follows from the fact that Fr(, acts on Tf,n with
eigenvalues 2 and 1, which are distinct modulo . This concludes the proof. O
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Corollary 7.6. Let ¢ be an n-admissible prime relative to f. We then have the isomor-

phisms
ag : l_iLanlillg(Km/?van) = ﬁsling(Koove’Tfan) ; An’ (71)
m
Ve - LiElel(Km,éanm) =: ﬁfl(Koo,&Tf,n) —= A, (7.2)

of A, -modules determined by the choice of a topological generator t of I}Q and an

__p2
O /(w™)-module basis ofT;;('Z)_e . Any other choice changes 9; and vy by multiplication
by a unit in the ring Or/(w™).

Proof. This is an immediate consequence of Lemma 7.5 combined with [7, Lemma
2.5]. O

Note that for an n-admissible prime ¢, [7, Lemma 2.5] equips us with natural isomor-
phisms

Hjg (Koo, Tpn) = Hig (Ko, Tr) @ A (7.3)
H{ (Koo, Af ) ~ Homo, (Hipg(Koot: Trn) ® A, L/OL)

= Homo,, (Hn(Ke, Tyn) @ A, Op/(w"))

= Homy (Hpg (Ko, Tyn) @ A, Ay) (7.4)

~ Ho(Ke, Trn)" © AL

~ H} (K¢, Afn) @ AL,

where the equality on the second line in (7.4) just follows from the fact that T, is
K, Ty n)
being a free Op/(w™)-module of rank one, and the last isomorphism that of the local
Tate duality.

annihilated by @™, the isomorphism on the fourth line is a consequence of Hsling(

Definition 7.7. Let S be a square-free integer prime to pNy. We define for 7 €
{0,{},,p,0} the generalized Selmer group Selg ?(K, An.n) by

Sels.? (K, Ann) := ker | Selo(Kpm, Apn) — @) H' (K¢, Ann)
28

Similarly, define H};y?(Km, Thn) by

Hé,?(Km7 Th,n)

HY(K oy, Thon) H' (Koo, Ty.n)
—Yer | HY(K,,. T} 2 \Bmpy Fhin) 2 \BAmb L fn)
er ( s L h, ) — @ H?l(Km,p,Th,n) @ @ Hfl(Km,Z7Tfﬂl) ’

plp 2%
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where H} (K p, Th,n) denotes H (K p, Thn), Hf (Kmp, Thn), 0 for 2 = 0,{},0, re-
spectively. Likewise, put

Hé,o(Kma Th,n)

H' (Kpp, Thon) K, Ty.n)
= ker Hl(KmaTh,TL) — @ Hl ° . @ Hl f

ol *(Km,p, Th,n) pred ¢ (Ko, Ttn)

o c {tb}.

7.8.  The aim of this subsection is to introduce the notion of an n-admissible set, which
will be useful for the Euler system machinery employed in our proof of Theorem 1.1.
Given a non-empty set of rational primes S, we will denote the set of square-free products
of primes in S also by S, and vice versa.

Definition 7.8. A set S of rational primes is said to be n-admissible if Selg o (X, T.,) = 0.
The following proposition shows that n-admissible sets exist.

Proposition 7.9. Let n be a positive integer and suppose that {1, --- , £y are n-admissible
primes. There exists an n-admissible set S that contains £y, --- , l.

Proof. This is a direct consequence of [7, Theorem 3.2], cf. the discussion just before
Proposition 3.3 in [7]; see also [38, Corollary 4.1.9]. Note that neither the choice of
local conditions at p nor the splitting behaviour of p in K/Q plays any role in the
argument. 0O

A key utility of the notion of n-admissible sets is the following:

Proposition 7.10. If S is an n-admissible set and o € {#,b}, then Hg ,(Km,Tf.n) is a
free Ay, ,-module.

Proof. The following argument is essentially identical to the proof of [21, Proposition
3.21].

It follows from [21, Proposition 3.20] that Hg (K, Ty,n) is a free Ay, ,-module of
rank #S — 2, and from Proposition 3.19 bis. That

#Hg 0 (Km, Tyn) = #Hgo(Km, Tyn) + #H' (Kimp, Tyn)

where HY (K, Tn) i= @plpH (K, Trn). The proofs of these properties in [21]
do not rely on the splitting behaviour of p in K/Q, but crucially rely on the NT-
minimality condition in (ram), i.e. 5, is ramified at primes dividing N* (cf. the discussion
in the paragraph following Assumption 1.7 in [32, §1.2]). Consequently, we have an exact
sequence
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0 — Hg o (K, Tn) — Hs (K, Trn) — H (Kmp, Trn) — 0. (7.5)

Since

HY (K, Ttn)
HY (Ko, Ty p) i=ker | Hg5(Kom, Tyn) — @ m )

plp

o =1,

it follows from (7.5) that the sequence

0 — H (K, Trn) — HE (K, Ty ) — @ HY Ky, T.n) — 0 (7.6)
plp

is exact. By Lemma 4.12, the semi-local term

@ Hol (K7n,p7 Tf,n)
plp

is a free A, p-module of rank 1 and so the proof concludes. O

Remark 7.11. We are grateful to the referee for indicating that Proposition 7.10 requires
the N*-minimality condition in (ram). If a,(f) = 0, then one may relax the condition
based on the strategy in [32] as follows. The strategy proceeds via level-lowering of f
modulo p to a newform ¢ for which the N*-minimality holds, and utilizing vanishing of
the p-invariant of the plus/minus anticylotomic Selmer group associated to g. The latter
in turn relies on vanishing of the p-invariant of the plus/minus anticyclotomic p-adic
L-function associated to g due to Pollack and Weston [44, Theorem 1.1(2)] if p splits in
K. The inert case is an ongoing work of the first-named author with Kobayashi and Ota.

Let 0y also denote the composite map

lim HY (Ko, Tpn) =2 HE 0(Koo, Tron) = H' (Koo, Trin) — Hing (Koo, Trn)
m

for any set of primes S and prime £ as above.
8. Heegner point “bipartite” Euler systems

The aim of this section is to introduce the #/b-Heegner point “bipartite” Euler systems.
The initial geometric input is provided by the work of Bertolini-Darmon [7] and our
discussion parallels that in Darmon-lovita’s work [21, §4], with the key difference that
we no longer assume that the prime p is split in K/Q or a,(f) = 0. The verification of
the p-local properties of these classes is significantly different from that in [21] (where
ap(f) = 0), which will be described in §9.
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8.1. Let the notation be as in the previous sections and fix an n-admissible prime
number £ relative to f. We let

K(O)m € Hyo(Km, Ty.n)

denote the element given as in [7, §5-§8] and [21, §4] (see also [44, §4], especially Propo-
sition 4.4 in [44], to handle the scenario when Oj # Z,), which is obtained via the
Jacquet-Langlands correspondence from a Heegner point of conductor p™*!

propriately chosen Shimura curve (denoted by Xy+ n-¢ in [44]). Note that this class

on an ap-

depends on the choice of an auxiliary rational prime ¢ coprime to p/N¢, which we fix
throughout.

8.2.  The cohomology classes {x (), } satisfy the following fundamental trace relation:

COTK, 1 /Km () my1 = ap(f) K(€)m —resk,, /K, 1K) m—1 (8.1)

for any integer m > 1. The reader is invited to compare (8.1) with the relation (4) in
the definition of a primitive @-system (cf. Definition 4.1).

8.3. As part of Theorem 8.1 below, we introduce and outline the main properties
of the f/b-Heegner points. We will make use of these properties in §10 as one of the
key global inputs to prove Theorem 1.1. Theorem 8.1 is a generalization of the material
covered in §4, up until the statement of Proposition 4.4 in [21].

Theorem 8.1. Fiz a positive integer n and an n-admissible prime £ relative to f. Let S

be any n-admissible set that contains £. For any positive integer m, we have a unique
pair of cohomology classes

K(£)E
(H( >7bn> < Hé,D(KmvTf,n)GBQ/ker(Hf,m) : Hé,D(Kman,n)GBQ

that are independent of the choice of S, where Hy y, is the 2 X 2-matriz given as in
Definition 3.3, satisfying the following properties:

i) We have

i (3405) = (v L0

where the equality takes place in Hé (K, Trn)®2.
ii) We have the containment

# i
Coer+1/Km (H(g)gn—i_l) - <Z(€)gn) S ker(Hﬁm) . Héy[,(K,n,Tf’n)@Q .
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The proof of Theorem 8.1 will be given after the following preparatory result.

Proposition 8.2. Let n be a positive integer and S an n-admissible set of rational primes.
For any positive integer m, the corestriction map

CorKnL+1/K7n : Hé,D(Km“l‘l’ van) — I—I‘é,tl(}—("n7 van)
1S surjective.

Proof. For a pair of positive integers m and n, let A,Tn,n denote the free A, p-module of
rank one on which Gi acts via the canonical morphism

GK—»F‘—)AX —>A7>:1,n
Shapiro’s lemma gives rise to a natural identification

5 Hy (K, Trn) = Hs (K, Tt @0, Af

m,n)

i=ker | H' (G5, Trn ®0, A, ) — [ HHKY. T, @0, AL |
vtpS

where ¥ is the set of primes of K that lie above those dividing pN S; Gk » = Gal(Kyx/K)
and Ky is the maximal extension of K unramified outside X. Moreover, we have a
commutative diagram

H;‘,D(Km-&-hTf,n) %’ Hé‘,l:l(Kv Ty ®o, Ain—&-l,n)

COTKppt1/KEm \L \L

HéD(Kma Tf,n) f- Hé,D(Kv Tf,n ®(9L Ajn,n)
where the vertical arrow on the right is induced from the canonical projection A,y , —
Ay, . Hence, to conclude the proof, we need to prove that the natural map

Hy (K, Ty ®0, Alyy1 ) — Hyp (K. Tpn ®0, Al )

is surjective.
Note that HY (K, Trn ®o, Af

)
m,n
Greenberg-Selmer complex R (G k5 A8, Trn ®0, AL, ) (cf. [39]) in degree 1, which
is given by the Greenberg (unramified) local conditions at all primes v € ¥ with v { pS

and for v | pS, by the conditions

can be identified with the cohomology of a

i CNGy, T @0, Al ) 5 C Gy, Trn @0, Al ),

m,n
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where G, = Gal(K,/K,). The fundamental base change property of Selmer complexes
(cf. the proof of Proposition 8.4.8.1 in [39]) yields the exact sequence

H§ (K, Trn ®0, Ayiy,) — Hyo(K, Trn ®0, Al, )
— H}(Gr s, A5 Tr.n ®0, Al )y — 1,

where
HY (Grs,As, Trn ®0, Al iy ,) = HY(BT:(Gr.x, As, Trn @0, Al )
denotes the cohomology and we have used the natural identification
H{Grx,As,Tn ®0, Al,) > H (K, Trn ®0, AL,),  j=mm+1
arising from [39, 6.1.3.2]. It thus suffices to show that
HE(Gks,As, Ty @0, Al iy ,) = {0},
which by Nakayama’s lemma is equivalent to showing that
HE (G2, A8, Trp @0, Ay iy )/ (v = DHE (G s, As, T ®0, Al ,) = {0}
The base change property of Selmer complexes combined with the fact that
H*(RT¢(Gr 5, As, Ty 0, Alyiy ) = {0}
(which follows from the irreducibility of the residual G k-representation and the Matlis

duality for Selmer complexes; cf. [39, Theorem 6.3.4]) shows that the desired vanishing
is equivalent to the vanishing of

HE (G5, As, Ty @0, Ay /(v = 1)) = HY (Gie s, As, Trn) -
By Matlis duality for Selmer complexes, we have a natural isomorphism
H} (G p,As, Tf,p) ~ Hom (Sels (K, Ayn), Qp/Zy) -
Since S is as an n-admissible set, we have
Selgq (K, Ayn) = {0},

and so the proof concludes. O
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Proof of Theorem 8.1. For any positive integer m, choose a A, ,-module basis {e; m, };
of H (K, Tf,y) such that

Coer1+1/Km, (ei7m+1) = eiym . (8»2)

This is possible thanks to Proposition 7.10 and Proposition 8.2.
For a rational prime £ as in Theorem 8.1, write

"{(g)m = Zri,m *€im Ti,m € Am,n .
By (8.1) and (8.2),

Tm+1,m (ri,m-i-l) = ap(f)ri,m - gm—l (Ti,m—l) . (83)

The argument in the proof of Theorem 3.5 shows that

H r?,m — Ti,m c A@Q
fm ngm — *gm—l(ri,m—l) m,n

for some (rﬁ I ) € Ay X Ay, such that

i,m’ " i,m
o o4
Tmatm | 2™ = 0™ mod ker(Hy ) .
T m+1 Tim

KO8 = i Cim, e =HD.

Set

i
Then (ZEQ?) evidently verifies the required properties and its uniqueness modulo
ker(Hy,,) is clear by part i) of Theorem 8.1. O

Put ﬁé‘?D(Koo, Ttp):=lim Hé_D(Km, Tt ,») and similarly define ﬁé.(Koo, Ty ) for
o c{b}.

Lemma 8.3. The natural map

R HE (K, T ) %2
HL (K. T, )®2 li 50 —
50(Koo, Ty )™ — %%1 ker(Hy, ) - H_%‘,D(Km’ Tyn)®?

is an isomorphism of A/(w™)-modules.



42 A. Burungale et al. / Advances in Mathematics 439 (2024) 109465

Proof. Since Héﬂ(](m,Tf,n)@2 is a free (Am,n X A, )-module of finite rank, we have
the following chain of natural isomorphisms:

L (T
e ker(Hf,m) . Hé’D(Km, Tf’n)eaz

~ lim (Hg o(Km, Tr.n)®* @axa) (A x A)/(ker(Hym)))

m

~

ja—

im (Hg o (Km, Trn)® @axa) (A x A)/(ker(Hy 1))

~ limlim Hg 5 (K, Tr.n)®? ©axa) (A x A)/(ker(Hy 1))
~ Wm HE o(Km, Tr0)®? . O
Definition 8.4. Let
(08 Byt 1
denote the unique element that maps to

K‘(E)En € lim Hé‘,D(Km’Tf-,n)GBQ
k(0)° o ker(Hp ) - HL (Ko, Tpn)®2

under the isomorphism (8.4).
8.4. Reciprocity laws

In this subsection, we prove a pair of reciprocity laws that relate the classes x(£)* and
x(£)° to the respective /b p-adic L-functions. These results, which dwell crucially on [7,
§8-§9] and are extensions of those proved in [21, §4], will play a central role in the proof
of our main results in §10.

In what follows, let 0y also denote the morphism

ﬁé’D(Kooa Tf,n) % f—-\[l(Koo,Eu Tf,n) (7N_l)> Ana

and likewise, for an n-admissible prime ¢ { pN.S, the morphism

B (Ko Tyn) 5 (Ko, Ty) =5 A,
’ 7.2

by Vyr .
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8.4.1. First §/b reciprocity law
The following is the generalization of [21, Proposition 4.4] to the present setting.

Proposition 8.5. Let ¢ be an n-admissible prime. We then have

() (5) e

where “=" means equality up to multiplication by an element of (A/(w™))™.

Proof. Let m be a positive integer. As utilized in the proof of [21, Proposition 4.4], the
proof of [7, Theorem 4.1] in §8 of [7] can be adapted to the non-ordinary setting (we note
that there is no assumption in [7] on the splitting behaviour of the prime p in K/Q) and
gives

Ii(f)m _ L ,m n
% (TeSKm/K,,L1 (M@m—l)) - (fm—1 {Ef,m—l)) mod @ (85)

up to multiplication by units of A, ,, X Ay, (Where the ambiguous correction factors
are compatible as m varies). Combining (8.5) with the conclusions of Theorem 3.5 and
Theorem 8.1, we have

k(0)¢ ;
Hy - Oy <KE2§1> =Hypm - (ﬁg) mod (", wy,)

m !

up to multiplication by a unit of Ay, », X Ay, . So

(05 _ (£ .
s (m(ﬂ)?n = E%: mod (", ker(Hy m)) (8.6)
up to multiplication by a unit of (A, » X Ay, )/ ker(Hy, ). The asserted equality follows
by passing to limit in (8.6) with respect to m. O

8.4.2. Rigid pairs (in the sense of Bertolini—-Darmon)

Before describing the second /b reciprocity law, we review [7, §3.3] to introduce
the notion of rigid pairs of n-admissible primes {¢1, ¢2}. This notion is relevant for our
arguments only when a, # 0, where f is assumed to be p-isolated.

Let Wy := adO(Tfyl) denote the trace-zero adjoint of the residual Galois representation
Ty.1. For any set® of rational primes S that does not contain any prime that divides pN,
let us denote by Selg(Q, Wy) the Selmer group whose local conditions are given by the

6 Recall our convention that S also denotes the square-free product of primes in S, except for the scenario
when S = ), in which case the corresponding product is set to be 1.
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ones described in [7, Definition 3.5] (for the primes away from p) and the Bloch—Kato
local condition (at p) (cf. [21], p. 322).
The relevance of the Selmer group Sel; (Q, W) is due to the following:

Proposition 8.6. The newform f is p-isolated if and only if Sel;(Q, Wy) = {0}.

Proof. This is [7, Proposition 3.6]. As noted in [21, p. 322], the argument in [7] still
applies when f is non-ordinary at p. 0O

Definition 8.7. A pair {¢1,¢>} of admissible primes is said to be a rigid pair if
Selg, ¢, (Q, Wy) = {0} (cf. [7, Definition 3.9]).

Lemma 8.8. If the newform f is p-isolated, then there exist primes {1,0s € 11 such that
{41,42} is a rigid pair.

Proof. As remarked in the proof of [21, Lemma 5.7], the proof of [7, Lemma 4.9] does
not rely on the p-local properties of the underlying Galois representations. O

8.4.8. Second 4 /b reciprocity law

This subsection closely follows the discussion in [21, pp. 318-319], adapting it to the
present set-up.

Let ¢1 and £5 be distinct n-admissible primes relative to f such that p™ divides ¢; +
1+e€;a0,(f) where €; € {+1,—1} (i = 1,2). Let B’ denote the definite quaternion algebra
of discriminant Disc(B)¢1f2. Let R’ be an Eichler Z[1/p]-order of level Nt in B’ (recall
that Nt | N is the largest integer only divisible by primes that are split in K/Q). Put
I = (R)*/Z[1/p]*.

The following key proposition, which is a consequence of Thara’s lemma for Shimura
curves, is a slight extension of [7, Theorem 9.3] (to allow more general coefficients than
Z/p™Z), that follows by the same argument as in [7].

Proposition 8.9 (Bertolini—-Darmon). Suppose that €1 and {5 are distinct n-admissible
primes relative to [ such that p™ divides ¢; + 1 + €;ap,(f) where ¢; € {+1,—-1} (i =
1,2). For T as above, there exists an eigenform h € So(T /T, 0L /(w™)) such that the
following congruences modulo w™ hold true:

Th=a(Dh (@t NGb),  Uh=a(Hh (q|N),

(8.7)
U@lhzqh, Uthzegh.
If further f is p-isolated and the pair of primes {{1,02} is rigid in the sense of Defini-
tion 8.7, then h lifts to an eigenform with Op-coefficients that satisfies the congruences
(8.7). In this case, the eigenform h is p-isolated.
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We are now ready to formulate and prove the second £ /b reciprocity law, which should
be compared to [21, Proposition 4.6].

Proposition 8.10. Suppose that {1 and ¢s are distinct n-admissible primes relative to f
such that p" divides €; + 1 + e;ap,(f) where ¢; € {+1,—1} (i =1,2). For T as above, let
h € So(T/T,0r/(w™)) be an eigenform satisfying (8.7) for T as above. Let Sy be an
n-admissible set of primes containing {1 but not £2, and define So exchanging the roles
of {1 and l5. Let the elements

Y R
(ZE%") € Hy,g(Koo, Tyn)®*,  i=1,2

be as in Definition §./.
We then have

(i) = () == (i) 6

‘e

in the ring A/(w™), where “=" denotes equality up to multiplication by elements of OF
and T.

Proof. By symmetry, it suffices to prove the first equality in (8.8).

Let m be a positive integer. As indicated in the proof of [21, Proposition 4.6], the
proof of [7, Theorem 4.2] in §9 of [7] can be adapted to the non-ordinary setting (recall
the arguments of [7] allow p to be split or inert in K/Q) and yields

vt (res e temn)) = (et o)) (89)

up to multiplication by units of A, ,, X Ay, (Where the ambiguous correction factors are
compatible as m varies). Combining (8.9) with Theorem 3.5 and Theorem 8.1, it follows
that

o [(FE)R) (L
Hh7m Ve, <"i(€1)?n = Hh,m E?L mod wy,

up to multiplication by a unit of A, », X Ay, . So
Ve (n(€1)§n> _ (52) mod (wp,, ker(Hp.m)) (8.10)
2 H(el)m Eh ’

up to multiplication by a unit of (A, n X Ay, )/ ker(Hy, ). The asserted equality follows
by passing to limit in (8.10) with respect to m. O
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Remark 8.11. Assume that f is p-isolated and let h € So(7 /I, Or) be as in the Propo-
sition 8.9. We may start off with the eigenform h instead of f (but still rely on the
isomorphism T}, , =~ Ty ,) and introduce f/p-Coleman maps and Selmer groups associ-
ated to 1}, ,, just by propagating the ones for f via the isomorphism T}, ~ T} ,. We
may also construct Heegner classes k(¢)® (where o € {,b}) associated to h, by choosing
an eigenform ¢’ modulo @™ on the Shimura curve Xn+ Nee (where N~ := N~ {143) that
is congruent to h. Moreover, [7, Lemma 4.9] shows that there exists a rigid pair (¢}, £5)
for h and eigenform h’ on the Shimura curve X N+ N[ SO that Proposition 8.9 holds
with {f, h} replaced by {h,h'}.

Hence, the proofs of Proposition 8.5 and 8.10 also apply for the pair {h,h'}. When p
splits in K/Q, one may proceed directly, without relying on the isomorphism T}, ,, =~ T ,,.
This is carried out in §5 and §9.2; see also §6.1 where the constructions are shown to be
compatible with congruences.

One may reiterate the above by replacing h with 2’ and so on. We will crucially rely
on these constructions in the inductive argument to prove the main result (cf. Theo-
rem 10.1).

9. The local properties of Heegner classes

The aim of this section is to describe the local properties of the #/b Heegner classes
constructed in §8. We treat the split and inert cases separately: the latter appears in
§9.1 (in which case we continue to assume that a,(f) = 0 and that the Hecke field of
f is Q), while the former in §9.2. The underlying reason for this segregation is that the
construction of ()-systems in the inert case is not presently available for eigenforms on
a general Shimura curve.”

9.1. The inert case

In this subsection, the setting is as in §4.3. That is, we assume that p > 5 is inert in
K/Q, and the Hecke field of the p-isolated newform f is Q and so a,(f) = 0.

Our study is not directly built on the discussion in [21, §4] because of the issue noted
in Remark 4.13. However, we will still rely on the notation therein, and let w,,, w,jfl and
Wt € A be as in §2 of [21]. Let x(£),, € HZID(Km, Tt n) be the Heegner class introduced
in §8.1, where ¢ is an n-admissible prime. Since a,(f) = 0,

CorK77L+1/K7VL H(e)m"rl = 7reSK7n/K7n71ﬁ(£)m_1

(cf. (8.1)) and so Theorem 8.1 may be explicitly restated (cf. [21, Proposition 4.3]):

7 We hope to consider this question in the near future.



A. Burungale et al. / Advances in Mathematics 439 (2024) 109465 47

Proposition 9.1. Fix a positive integer n and an n-admissible prime ¢ relative to f. Let S
be any n-admissible set that contains £. For any positive integer m, there exists a unique
pair of cohomology classes

k() € Hy o (Kom, Trn) Jwr Hy 0 (Km, Th.n)
K(0) -1 € Hé,D(Km—lvTf,n)/w;LHé,D(Km—lan,n)

that are independent of the choice of S, and that have the following properties.

i) For any even positive integer m, we have

(5 a2) () = oz (4fm,)

n Hé’D(Km,Tf’n) @ Hé,D(Km,l,Tf’n).
il) For any even positive integer m,

corseen (0252) = (i)

wh 0
e (4 ) K T) & (o i)

W
Thanks to Proposition 9.1 ii), we can define the elements
A(0)* € Hy (Ko, Tyn)
by passing to limit.
Lemma 9.2.

i) res,(k(0)) € HY* (Koo p, Thon).
ii) For any prime q of K that does not divide pl, we have resy(k(£)*) € H} (Koo,qs Ty.n)/
(Win)-

Proof. i) We prove the assertion for £(¢)* by an argument which also applies to x(¢) .
Note that

”(E)Jr = {K(Z);} € LILH Hé‘,D(Kman,n)/(w;;) = ﬁé,D(KOOva,n)-

m:even

The assertion therefore amounts to

resy (“(6)1—;) € HLi(Km,pv Tfﬂl)/(wjr_z) (9.1)
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for any positive even integer m. To see this, observe that

m
2

wyresy (K(0)1) =resy (0,6(0)1) = (—1)

m m

resy(K(O)m) € Hy (Kpnp Tf.n)

by Proposition 6.5 and the construction of Heegner classes as the Kummer images (cf. [7,
§7]). Moreover, since H} (Kyp, T.n) C HY T (K p, Tt.n) by definition, we deduce that

wpresy (K(0))) € HY (Kpp, Tn) - (9.2)
Consider the following exact sequence of A, ,-modules:
0 — H" (K p, Tpn) — H' (K p, Trn) — H) (Kpp, Tr.n) — 0, (9.3)

where the right-most module is just defined by the exactness. Applying the functor
(=) ®@ A/(w) to (9.3), we obtain the exact sequence

H'" (K p, Tyn) [ (wi) — H (Kop, Trn) /(@) — H )y (K, Trn) /(wif) — 0.
(9.4)
Furthermore, we have the following commutative diagram with exact rows:

f1 f2
H1’+(Km,pan,n)/(er;rq) - Hl(Km,vaf,n)/(erﬁ) - H/1+(Km,p7Tf,n)/(W;Lz) —0
I

X w,, | V1 X w,, | V2 | v
Y

H}, (Kpp, T.n) — 0.

(9.5)
Note that the vertical maps in the middle and on the left are given by multiplication by
@, and they are injective since the A/, , -modules H"" (K., , Tf,) and H* (K, », Tf.n)

m,n

0 —— H""(Kpp, Ttn)

Hl(Km,pan,n)

g1 g2

are both free by Lemma 4.12. The dotted vertical arrow v is induced from the exactness
of the first row and the commutativity of the square on the left.
We would like to prove (9.1), which is equivalent to the assertion that

res,(k(0))}) € im(f1) = ker(fa),

relying on the containment (9.2). Chasing the diagram (9.5), this is equivalent to checking
that the vertical map v in this diagram is injective, which in turn is equivalent to, thanks
to the snake lemma, that the induced map

HY" (Ko p, Trn)/ (@5) = coker(vy) — coker(ve) = H (K p, T n)/ (@)
is injective. This follows from the following commutative diagram, where the vertical

maps are injective since the A}, -modules H"" (K, ,,Tfrn) and H' (K, p, Tn) are
both free:
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H1’+(Km7vaf,n)/(°~U_) - Hl(Km,vaf,n)/(a’_) (9.6)

><wj,',y Xw:—n
H1’+(Km,P’ Ttn) C—— Hl(Km,;Dv Ttn)-

ii) There is nothing to prove unless ¢ € S. In that case, this just follows by the argument
for i), relying on the freeness of the g-local cohomology as in Corollary 7.6. O

Remark 9.3. Let h € S2(T/T’,Or) be an eigenform as in Remark 8.11 so that T}, ~
Tt.r. The discussion in §9.1 works equally well if f is replaced with h. Note that the
definition of signed Selmer local conditions relies on the input from f only via the
isomorphism T} 5, ~ Tt p.

9.2. The split case

Our strategy in the split case follows closely the one employed in [16, Corollary 3.15].
Concretely, it consists of the following steps:

(1) Show that the sharp/flat Heegner classes attached to a Hecke eigenform g satisfying
the generalized Heegner hypothesis are related to p-stabilized Heegner classes via

Zga ) _ »H-1 Zgt ).
(205 ) = @3 (2

(2) Study the images of the p-stabilized Heegner classes under the projections of the

the equation

Perrin-Riou map to the ¢-eigenspaces;
(3) Combine these with the decomposition given in (5.3) to calculate the image of the
sharp/flat classes under the Coleman maps.

We note in particular that we have to work with a modular form with coefficients in a
ring of characteristic zero in order for the p-stabilized classes and the projections of the
Perrin-Riou map to exist. This is where the p-isolated hypothesis is utilized in the case

where a,(f) # 0.

9.2.1. p-Stabilized generalized Heegner classes

Fix a weight two Hecke eigenform g of level coprime to p on a Shimura curve X+ pr-,
where M~ is the square-free product of an even number of primes. Let o and 3 be the
roots of the Hecke polynomial of g at p.

For m > 1, write

Zg,m € Hl(Kmv T,)
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for the Heegner class defined as in [7, §6]. They satisfy the norm relation

CorK7n+1/Km (Zgym“l‘l) - ap(g)z.%m + reSKm/Knlfl (zgvm_l) = O' (9'7)

For A € {a, 8}, write

1 1
Zg,m,\ = Nl (Zg,m - XresKm/Km1(ngm—1)> € Hl(Kma Vy)

for the p-stabilized class. These classes are compatible with respect to the corestriction
map as m varies and so one obtains

29\ € Hiy (Koo, Ty) @ H(D).

9.2.2. Local properties of p-stabilized Heegner classes
Now fix a prime p of K above p. We employ the same notation as in §4.2. Write 34 1 p
for the image of z,4 ) at p.

Proposition 9.4. There exists an element A € A ®z, Q) such that

V.1 (A® U;,,\) = 3g.\p-

Proof. Let .Z; be the Bertolini-Darmon-Prasanna type p-adic L-function associated to
g due to Hunter Brooks [22] (see also [18]). Then, by taking A to be an appropriate
multiple of %}, we follow the same proof as in [31, Lemma 9.3]. O

Proposition 9.5. For X € {a, 8}, we have
<£Tg,p(397>\,p)77);,,\> =0.
If X is the unique element of {«, B} \ {\}, then

<£Tg,p(3g,k,p)a U;,x> = —<£Tg,p(3g,/\’,p)a U;,Q-

Proof. It follows from Proposition 9.4 and Corollary 5.4 that

Lr, (7, 1 (A®v;5)),v5)

<£T9’p(3g«\’p>7 U;,,\> (
(u;leLﬁoAv;)/\, Vg \)
0

The localization of the classes z,4 ., are crystalline. In particular, the interpolation
formulae of the Perrin-Riou map given by [37, Theorem 4.15] imply that Lz, ,(34,x,p)
is divisible by the p-adic logarithm. Similar to [16, proof of Proposition 3.14], we may



A. Burungale et al. / Advances in Mathematics 439 (2024) 109465 51

compute the derivative of L1, ,(34,1,p) at a non-trivial finite character 6 of I' using [36,
Theorem 3.1.3]. Note that if 6 is a character of conductor p™, then

m m
a™eg 3g.ap =B"€ 39,8

where ey is the idempotent corresponding to the character 6. For £x = L1, (34,1,p), We
deduce that

£,(0) = £3(0) mod Fil’ Deyis (V) ® Qp(Im(0)).
Since this holds for infinitely many 6,
£,=L5 mod H(T) @ Fil Deyis (V).
Furthermore, in light of the first assertion of the proposition, we have

L= <£Tf,p (3gap)s ”;,A’Wg,)\"

The last assertion of the proposition then follows from (5.1). O

9.2.3. Decomposition of Heegner classes
Let By and Cj ,, be the matrices attached to g given as in Definition 3.3. Let Q4 be
the matrix defined in (5.2). Recall that

. —m—1
Mog,g = W}I_Igo Bg Cym - Cg.

Proposition 9.6. There exist zyy,2,, € Hi\, (K, T,) such that

Zga ) _ »-1 Zg.t
(zgﬁ> = Qg Miozg <zg,b> ’

Furthermore, if g is a Hecke eigenform on Xy+ n-¢ such that Ty, ~ Ty, as Gg-
representations, then for e € {#,b}, the image of z4 e in HéD(KOO,Tfyn) coincides with
k(£)® (after identifying Tt and Ty, via this fired isomorphism,).

Proof. By definition,

Bm+1Qg Zg,m,a — Zg,m .
g Zg,m,B —TeSK,, /K, 1 (2g,m—1)

Let n > 1 be an integer. As in the proof of Theorem 8.1, by picking an auxiliary set of
admissible primes S, the relation (9.7) implies that there exist classes 2y m n.¢, 2g,mn,» €
HY(K,,,T, ) such that
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z z
g.m =Cym--Cyy | Z0mm? mod w".
—IeSK,, /Km-1 (Zg,m—l) 2g,m,n,b

Furthermore, these classes are unique modulo (ker Hy ,,,, ™) and so they are compatible
as n varies in the sense that if n’ > n > 1 are integers,

PTy//n <Zg’m’nl’ﬁ) = (Zg’m’”’ﬁ> mod (ker Hy ,, @"),

Zg,m,n’.b Zg,mn,b

where pr,, /, is the natural reduction map H'(K,Tyn') — H'(Km,Tyn). Hence,
this gives rise to elements zg m 4, 2g.mp € Hl(Km,Tg)7 which are unique up to mod-
ulo ker Hy ,,, such that

Bmt1 Zgm,a | _ Zg,m —C.. ...C Zgmift |
g Qg Zg,m”B _reSKm/Kmfl (Zg>m71) gm 91 Zg,m,b
Thus, the proposition follows by letting m — oco. O

9.2.4. Vanishing of signed classes under Coleman maps

Lemma 9.7. For e € {f,b}, let 344, denote the localization of z5e at p. Then
Colf, 4 (3ap) = 0.

Proof. This just follows from Propositions 9.5 and 9.6 in combination with (5.3). See
[16, Corollary 3.15] for a similar calculation. O

Theorem 9.8. For e € {#,b}, we have

Colg (3,0.p) = 0.
Proof. This follows immediately from Lemma 9.7 and Corollary 5.6. O

We will apply Theorem 9.8 in the following scenario. Let h be a weight two cuspidal
Hecke eigenform of level coprime to p on a Shimura curve X MM where M is a
square-free product of an even number of primes. Let £ be an n-admissible prime for
h and put M+ = MS' and M~ := My {. Let g denote a weight two cuspidal Hecke
eigenform of level coprime to p on the Shimura curve X,,+ /- such that Ty, ~ T}, ,.
Let

5(O)m € Hipy (K, Thon)
denote the class that is image of the Heegner class zg y.n := 24, mod @™ under the

isomorphism induced from Ty, =~ T}, ,. The construction in §8 gives rise to the #/b
Heegner classes for h. These classes enjoy the following local properties.
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Corollary 9.9. In the setting above:

i) res,(k(0)*) € HY* (Koo p, Thon)-
ii) For any prime q{pl of Ok, we have resy(k(£)*) € H (Keo,q Thn)-

Proof. Let us denote by zg e € fll(KOO,Tg)n) the image of z, , modulo w".

In view of Corollary 5.6 and the definition of H"*(Koo p,Th ) as in §4.1, the con-
tainment in i) asserts for p | p that res,(#(¢)®) belongs to the kernel of Col7, , , as in
(6.4). By Corollary 6.4 and the constructions, this is equivalent to checking the same
for the map Col'Tg}p’n (after identifying T}, , and Ty, via our fixed isomorphism). This
follows from Theorem 9.8, as the classes «(¢)® and z4 . ,, coincide (after identifying T, ,,
and T}, via our fixed isomorphism) by Proposition 9.6.

The local property at ¢ { pl is clear unless ¢ € S. When ¢ € S, the assertion follows
from the local property of x(¢) (which is clear since x(¢) belongs to the Kummer image
by definition), the freeness results in Corollary 7.6 and Theorem 8.1 i). O

10. Proof of the main result

We are now in a position to prove the main result of this article (Theorem 1.1 stated
in the introduction):

Theorem 10.1. Let f € S2(T'o(Ng)) be an elliptic newform and p 1 6Ny a prime such
that ay(f) has positive p-adic valuation. Let K be an imaginary quadratic field such that
(Dk,pNo) = 1 and that the hypotheses (cp), (def), (Im) and (ram) hold. Assume in
addition:

o If p is split in K/Q and ay(f) # 0, then the newform f is p-isolated (cf. Defini-
tion 3.2).
o If p remains inert in K/Q, then a,(f) = 0 and the Hecke field of f is Q.

Then we have

L3(L5)" € char(Sels (Koo, Ar)Y), oc {fb}.

Granted the input from earlier sections, the proof of Theorem 10.1 is essentially iden-
tical to [21, §5] and [44, §4.4], where the authors proved an analogous containment in
anticyclotomic Iwasawa main conjecture for a newform f of weight 2 when p is split in
K/Q and ap(f) = 0. The latter in turn dwells on the strategy in the groundbreaking
work of Bertolini and Darmon [7, §4.2], where the authors considered the case of a new-
form f of weight 2 when a,(f) is a p-adic unit and O, = Z,. We provide a brief overview
of the argument following [21, §5] and [44, §4.4].



54 A. Burungale et al. / Advances in Mathematics 439 (2024) 109465

We remark that, even though the cases a,(f) # 0 and a,(f) = 0 are treated separately
(especially in §9 where the p-local properties of the signed Euler system are verified),
the same Euler system argument applies to both the cases.

The proof of Theorem 10.1 can be reduced, thanks to [7, Proposition 3.1], to the
following:

Theorem 10.2. For [ as in Theorem 10.1, suppose that h € So(V/I', Oy) is an eigenform
such that

Th,n >~ Tf,n . (10.1)

Then for any ring homomorphism ¢ : A — O, where O is a discrete valuation ring, we
have

(L3)? € Fitt?(Sele (Koo, Apn)¥ @, 0), o c {#b}. (10.2)

Here Fitt" denotes the zeroth Fitting ideal of an O-module.
In fact, by [7, Proposition 3.1}, Theorem 10.1 follows if

©(L$)? € Fitt"(Sels (Koo, Agn)¥ ®, 0) ec{f,b}, ¢ecHom(AO), (10.3)

which is a weaker version of (10.2). However, the proof of Theorem 10.2 proceeds by
induction, which requires the passage to eigenforms on suitably chosen quaternion alge-
bras. So we consider the more general version of (10.3) in Theorem 10.2.

We will prove Theorem 10.2 in §10.1 below, adapting with minor modifications the
arguments in [21, §5] (that were utilized checking the validity of (15) in [21]).

Before proceeding with the proof of Theorem 10.2, we remark that, as the arguments
in §10.1 will show, the assumption in Theorem 10.2 that 7}, ,, is isomorphic to T, can
be dropped when p is split in K/Q. Indeed, p-local constructions in §4 and §5 above do
apply® for a general p non-ordinary eigenform h on quaternion algebras when p splits.

In light of this observation, one can prove the following generalization of [21, Theorem
5.2] and [44, Theorem 4.1]:

Theorem 10.3. Let h € So(T /I, OL) be a p-isolated newform such that a,(h) has positive
p-adic valuation. Let K be an imaginary quadratic field with p split such that (Dg, No) =
1 and that the hypotheses (cp), (def), (Im) and (ram) hold. We then have

LyLy" € char(Sels (Koo, Anoo)”), o c {,b}.

8 For clarity, we further note that they do not apply in the inert case (even when ap(f) = 0), since we
currently do not have a construction of primitive Q-systems (recorded in §4.3) in this level of generality.
Once this construction becomes available, Theorem 10.3 can be proved also when p is inert in K/Q, but
still assuming a,(h) = 0 and that h is Z-valued.
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10.1. Proof of Theorem 10.2

Let us fix O, ¢, and the positive integer n, and write 7 for a uniformizer of 0. We
enlarge O if necessary to ensure that it contains an isomorphic copy of Op and will
henceforth treat Op, as a subring of O.

Also fix e € {f,b} and put

ty == ordx (p(L})) -
We may assume without loss of generality that

i) t5 < oo, since otherwise p(L}) = 0.
ii) Sele(Koo, Afpn)Y @, O is non-trivial, as otherwise its initial Fitting ideal equals O.

We shall prove (10.3) by induction on tp,.

10.1.1. Let £ be any (n+tp)-admissible prime for f, and let S be an (n+t;,)-admissible
set containing ¢. We explain how to use the classes

K(0)* € HI}Z},.(KomTf,n-i-th) - Hé’,.(KOO’Tfan+th)
as in Definition 8.4, whose local properties were verified in §9, to bound Sels (Koo, Ap )
®, 0.
Let k,(€)® denote the image of x(¢)® inside
M= ﬁé,o(Kooa Tf,n+th,) ®<p 0.
Note that M is free as an O/(w" 1" )-module by Proposition 7.10. Put
ord, (K, (0)®) := max{d € N : k,(£)® € M} .
Observe that

ordn (k(6)*) < ordn(Dpry(£)*) = orda((L3)) = th |

where the inequality is a consequence of the fact that 0y is a homomorphism and the
equality follows from Proposition 8.5. Hence,

t:=ord(ky,(£)*) <ty .
Since M is a free O/(w" ' )-module, we may choose an element &, (¢)* € M so that

TE ()" = k()"
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Observe that k., (¢)® is well-defined modulo the w'-torsion subgroup M(r‘] C M.
Notice also that

proj,,

M[ﬂ't] C ker (ﬁé (KOOan n+th) ®y O — HS (Ko, Tf,n) R O)
since t < t;, and as a result, the element

Ko (0)" := proj, (Rp(0)®) € HY o(Koo, Ttn) @ O = Hy o(Koo, Thin) ®p O

is well-defined. The key properties of /{:0(6)' that we will rely upon are recorded in
Lemma 10.4 below, which one may compare to Lemmas 5.3 and 5.4 in [21].

Lemma 10.4. We have r,(¢)* € Hp (Koo, Th,n) ®p O. Moreover:

ag!
{€},e
i) ordy(ki,(£)*) := max{d € N : x],({)* € WdH{e} (Koo, Thn) ®, O} = 0.

ii) ordy(0ekl,(£)®) =t —t.

iii) The element Ok, (£)* belongs to the kernel of the natural homomorphism

e : ﬁl (Koo,ﬂan,n) Ry 0 — Sel.(Koo, Ahm)v Qyp (@)

sing

induced by global duality.

Proof. Put S’ := S\ {¢} and define the map ds/ := @ .5 0,. We first note that

qgeSs’

aS’ HSD @ qlng OO Q> Tf,n-i-th,) ® (@)
qeS’

is annihilated by 7', as 9g/(kx(€)®) = 0 since k,(£)® € ﬁ%z}ﬁ.(Koo,Tf’th) ®y O
(cf. Lemma 9.2 and Corollary 9.9). This shows that

s/ (K, (0)*) = proj, o Os (K, (€)°) = 0,

since t < t), and the 7'-torsion submodule of @, 5/ ffsling(Koo,q, Tf 1, )QO is contained
in the kernel of

pr OJn
@ bmg Ko a4 Tf,n"rth @ bmg Koo 4 Tfan) ® 0.
qeSs’ qes’

The assertion that «{,(£)® € H{[} (Koo, Th,n) @, O thus follows from the prior discussion
and the fact that proj, maps H} (Koo,p, Tfn+t,,) into ﬁ,l(Koo,p, T,) for any prime p of
K above p.

Property i) follows from the construction of the element ,(¢)®, whereas ii) is a direct
consequence of Proposition 8.5. Note that even though £} is not defined for a general h as
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in Theorem 10.2 (when p is inert), we may still define £; mod @™ via the isomorphism
Thn >~ Ty p (cf. §3.2.1) and prove the desired equality in Proposition 8.5.

The proof of the final property is the same as that of [7, Lemma 4.6], where the ar-
gument does not rely on the p-local properties of the underlying Galois representations.
Indeed, the asserted containment is an immediate consequence of the following commu-
tative diagram (together with the fact that x/,(¢)® € I?I%Z}’.(Km, Thn) ®, O as verified
above), where the exactness of the first row is due to global reciprocity:

sing(Koo,Ea Th,n) — > SGI.(KOO, Ah,n)v

crecot| l

H}py (Koo, Thn) @p O —— HY (Koo 0, Thin) ®p O —— Sela(Koo, Apn)¥ @4 O.

sing

ﬁé%e},.(KomTh,n) —— I}

Note that to construct /{20 (£)* and to verify its key properties, we have relied on the
isomorphism T}, , ~ T%, in the general case. When p is split in K, one may construct
ki,(£)* and verify these properties directly (cf. Remark 8.11).

10.1.2.  We shall prove the base case of the induction to prove Theorem 10.2: it will
be shown that (10.2) holds if ¢, = 0.

Proposition 10.5. If t;, = 0, then Sele(Koo, Ann) = {0}.

Proof. This is proved in a manner identical to [7, Proposition 4.7]. As noted in [21], the
p-ordinary hypothesis in [7] plays no role in [7] and moreover, p is allowed to be inert in
K/Q in [7].

We briefly summarize the argument, following the proof of [7, Proposition 4.7]. Ob-
serve that when ¢, = 0, we have t = 0 as well (as 0 <t < t5,) and [,(¢) = £, (£). Note that
the assumption ¢, = 0 is equivalent to £} being a unit. In this case, it follows from the
(f(oo)g7 Tf,’ﬂ)®<ﬂ’ which
is the source of the map 7,. Moreover, Lemma 10.4 iii) tells us that 0k, (£) € ker(n),

first reciprocity law (Proposition 8.5) that Ok, (¢) generates HL

sing

and so 7y is the zero map. An argument relying on Nakayama’s lemma and Theorem
3.2 of [7] shows that this is enough to conclude Sels(Ko, An,n) = {0}. Note that [7,
Theorem 3.2] is a purely ¢-local statement and applies to our setting. O

10.1.3. Having verified the base case of inductive argument to prove Theorem 10.2,
we move on to establish the induction step. Fix an integer to > tp,.

Definition 10.6. Let II denote the set of rational primes ¢ with the following properties:

1) ¢is (n+ to)-admissible.
2) The quantity ord, (k,(£)) is minimal as ¢ varies among (n + to)-admissible primes.
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Note that the set II is non-empty by Proposition 7.9. Let ¢t denote the common value
of ord, (k,(¢)) for £ € II. As noted in §10.1.1, we have ¢ < t3.

Lemma 10.7. ¢t < t5,.

Proof. The proof of this assertion is identical to that of [7, Proposition 4.8], which dwells
on a careful choice of an admissible prime relying on Theorem 3.2 in [7], in a manner
similar to its use in the proof of Proposition 10.5. As remarked in the said proof, this
theorem in [7] is an ¢-local statement and applies to our setting. O

We will choose a pair {¢1,43} of (n + tp)-admissible primes as follows, depending on
whether a,(f) = 0 or not:

o When a,(f) # 0 (in which case we assume that f is p-isolated): fix a rigid pair
{l1,€2} C II (in the sense of Definition 8.7; Lemma 8.8 guarantees the existence of
such pairs).

o When a,(f) = 0: fix £, € IT and choose, using [7, Theorem 3.2] (see also [44], §4.4),
an (n + tg)-admissible prime ¢5 so that vy, (s) # 0, where s € H'(K,Tj1) is the

image of x,(£)*.

Let h' € So(T /T, 01) denote an eigenform which satisfies the conclusions of Proposi-
tion 8.9 applied with A in the role of f. Note that i’ is p-isolated if f is.
We then have

(10.4)

where the second and third equality, in the situation when a,(f) # 0 (so that {¢1, (>} is a
rigid pair), can be verified as in the proof of [7, Lemma 4.9] (see Equation (42) in [7], note
that the proof of the equalities therein does not make any reference to p-local properties
of the form h, which we use in the role of f in [7]); and in the scenario when a,(f) =0
arguing as in [44, §4.4]; whereas the fourth and fifth equalities are Proposition 8.5 applied
with the eigenform A’ in place of f (cf. Remark 8.11). In particular, when a,(f) = 0, we
have /5 € II as well.

10.1.4. For {¢1,¢5} C II as in the previous paragraph, let CZZQ denote the cokernel
of the inclusion

Selflfg,o(Koov Ah,n) C Sel.(KOO7 Ah,n)

of Selmer groups, where we recall that the Selmer group Sels, s, o (Koo, Ap,n) consists of
classes in Sele (K, Ap p) that are locally trivial at primes dividing ¢1¢5. Note that there
is a natural injection
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Clpy = HY (Koo 0y, Anin) ® Hf (Koo 45, Ap.n) (10.5)

by definitions. On passing to Pontryagin duals and setting SZZZ := Homgz,, (CZL’? ,Q,/Z,),
we have a natural exact sequence

0— Spy, — Sele(Koo, Apn)¥ — Selot0 (Koo, Ann)” — 0 (10.6)
of A-modules, as well as a surjection
Mh - ﬁsling(KOO’elﬁTh,n) & ﬁsling(KOO,@wTh,n) — SZZQ (107)

induced from (10.5) and local Tate duality.

Note that the domain of 7y, is isomorphic to (A/w™A)®? by (7.1). We henceforth
identify ﬁsling(Koqgl Thn) ® ﬁsling(Kooijh,n) with (A/w™A)%? via this isomorphism.
Let 7 denote the map induced from 7, on applying the functor — ®, O. The domain
of nf is isomorphic to (O/w@w"O)®2. From Lemma 10.4 iii), it follows that the vectors

(90,4, (02)%,0), (0, Dbl (12)*) € (Hug (K s Thin) @ By (Koot Thin) ) @, O
~ (0/"0)®?
fall within ker(n;). Since
ty, — typ = ord, (agln;(ﬁl)') = ord, (352/£;(€2)')
by Lemma 10.4 ii) and (10.4), we have a surjection
O/ (" 7 ~4) & Of (", 7w ~) — Sy, ©, O,
and hence
2t =t) € Figt?(S),. @, O). (10.8)

10.1.5. We shall apply arguments similar to those in §10.1.4 also with the form »’ in
place of h.
Consider the long exact sequence

0 — H (Koo, T )
— ﬁEZIZQ},o<KOOaTh',N) & fIsling<KOO,£17Th',n) ® Ersling(KOO,€27Th’7n)

— Sel.(Koo, Ah/,n)v — Selglg27.(Koo, Ah/,n)v — 0

induced from Poitou-Tate global duality. Let SZ& denote the image of resy,y,, so that
we have an exact sequence
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0 — Sy — Sela(Koo, Aprn)” — Selpyry 0 (Koos Aprn)Y — 0 (10.9)

as well as an injection

R’ 5
S¢ e, = H,

sing

(Koo,fl ) Th’,n) S5 ﬁl

sing

(Kootys Thin) - (10.10)
On passing to Pontryagin duals in (10.9) and (10.10), and setting
Cly, = Homo, (SLy,, L/Or) = Homo, (S).,,.OL/(=")),
we have the exact sequence
0 — Sel, .0 (Koo, A ) — Sele(Koo, Apr o) — Oy, — 0 (10.11)
and a natural surjection

(Hf (Key, Apr o) @ Hy (Ko, Apr ) @ AL 10.12)
= I/;[sling(KOO,Zl y Th’,n)v S2) ﬁsling(KOO,fszh’,n)v — CZ,ZQ )

where the isomorphism in (10.12) is the one given in (7.4) that one deduces from local
Tate duality. Let 7,/ denote the map (10.12) and 75}, the map induced from 7, on
applying the functor — ®, O. Recall that the source of 1}, is isomorphic to (O/ =" 0)®?
by (7.4) and the isomorphisms

ve, + Hy (Ky,, Aprn) — Or/(w™), i€ {1,2}

which are determined by the choices of topological generators of the tame inertia sub-
groups I; and Ij , respectively. We shall henceforth identify the source of 7y, with
(0/w"0)*? via these isomorphisms.

For each i = 1,2, the element vy, r,(¢;) € ﬁfl(Kgi,m,Th/’n) ®, O can be regarded,
thanks to the proof of [7, Lemma 2.5] (which allows us to identify ﬁfl (K¢, 00 Th ) with
H} (Ko, Ty ) ® A) and the self-duality isomorphism T}, ~ Ap/ , as an element of the
module H} (Ky,, Ap n) ®0, O. It follows from global duality that the vectors

(U€1mip(£2).70)a (07’042/’{:0(£1).)
€ (H Kooty Thn) @ H (Koo.ty, Thin)) @0 O
(B et Ta) @ B Bt T ) (10.13)
= (H{ (K¢, Ap ) © Hf (Ko, Aprn)) ®0, O ~ (0/@"0)®?

belong to the kernel of 1, .

Moreover, since

ord, (ve, n;(ﬁg)') = ord, (v@/f;,(fl)') =ty —t=0,
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where the second and third equality holds by (10.4) and the definition of [,(¢2)®. In
other words,

{(ve, ki, (£2)°,0), (0,ve,k55,(£1)°)}

spans the source of n;,. This fact together with (10.13) implies that 7}, is the zero map.
By the definition of the surjection 7}, we infer that CZ/Zz ®e O = 0, and in turn also
that SZZZ ®, O = 0. In view of the exact sequence (10.9), we conclude that the natural
surjection

Sele(Koos An n)Y ®p O — Sely,ty.0(Kooy Anrn)” ®y O is an isomorphism. — (10.14)
10.1.6. Recall that
th <1p

by (10.4) and Lemma 10.7. Moreover, the eigenform h’ satisfies the hypotheses of The-
orem 10.2. By the induction hypothesis, we have

o(L3)? € Fitt® (Sele (Koo, Apr )Y @, O) . (10.15)
It follows from the general properties of Fitting ideals that

7T2th — 7T2(th_th’)ﬂ-2th’

€ Fitt” (S}, ®, O) Fitt® (Sele (Koo, A )Y ®, ©) by (10.8) and (10.15)

= Fitt? (S, ®p O) Fitt” (Selr, 1,0 (Koo, Aprn)” ®, O) by (10.14)

=TFitt? (57 5, ®p O) Fitt? (Selr, 1,0 (Koo, Ann)” @y O)

= Fitt" (Sels (Koo, Ann)’ @, O) by (10.6), (10.16)

where the penultimate equality holds because Sely, 7, o (Koo, An/n) = Sele, vy ,0(Koos Ann)
by definition, based on the fact that the Galois modules Ay, , and Ay, ,, are isomorphic,
and that the local conditions that determine the Selmer groups Sels, ¢, o (Koo, An/ n) and
Sels, r,.0 (Koo, Ap,n) coincide away from ¢4 and £s.

We have now completed the proof of Theorem 10.2. As noted just before the statement
of Theorem 10.2, the proof of Theorem 10.1 also follows from Theorem 10.2 (applied with
h = f and allowing ¢ to vary).
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