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Let p ≥ 5 be a prime number, E/Q an elliptic curve with good 
supersingular reduction at p and K an imaginary quadratic 
field such that the root number of E over K is +1. When 
p is split in K, Darmon and Iovita formulated the plus and 
minus Iwasawa main conjectures for E over the anticyclotomic 
Zp-extension of K, and proved one-sided inclusion: an upper 
bound for plus and minus Selmer groups in terms of the 
associated p-adic L-functions. We generalize their results to 
two new settings:

1. Under the assumption that p is split in K but without 
assuming ap(E) = 0, we study Sprung-type Iwasawa main 
conjectures for abelian varieties of GL2-type, and prove 
an analogous inclusion.

2. We formulate, relying on the recent work of the first 
named author with Kobayashi and Ota, plus and minus 
Iwasawa main conjectures for elliptic curves when p is 
inert in K, and prove an analogous inclusion.
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1. Introduction

The nature of Iwasawa theory of an elliptic curve E/Q along the anticyclotomic Zp-
extension of an imaginary quadratic field K is intertwined with the root number of E
over K, the splitting of p in K as well as the type of reduction of E at p. The aim of 
this article is to investigate the anticyclotomic Iwasawa theory at primes of non-ordinary 
reduction in the root number +1 case, allowing p to either split or remain inert in K.

Let E/Q be an elliptic curve of conductor N0 and let K be an imaginary quadratic field 
of discriminant prime to N0. Write N0 = N+N−, where N+ (resp. N−) is divisible only 
by primes which are split (resp. inert) in K. Let p ≥ 5 be a prime of good supersingular 
reduction for E and so ap(E) = 0. Assume that

(cp) p does not divide the class number of K.

Let K∞ denote the anticyclotomic Zp-extension of K. Under the assumption that

(def ) N− is a square-free product of odd number of primes.

and that p is split in K, Darmon–Iovita [21] studied the Iwasawa theory of E along K∞. 
This is a generalization of the seminal work of Bertolini–Darmon [7] in the ordinary case, 
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where p is allowed to be split or inert in K (see also [6]). Darmon–Iovita formulated and 
proved one inclusion of the plus and minus Iwasawa main conjectures: an upper bound 
for plus and minus Selmer groups in terms of the associated p-adic L-functions. This is 
an anticyclotomic counterpart of Kobayashi’s supersingular Iwasawa theory [30] along 
the cyclotomic Zp-extension of Q. A few years later, Pollack–Weston [44] refined the 
work of Bertolini–Darmon and Darmon–Iovita.

In the current article, we generalize the results of Darmon–Iovita [21] and Pollack–
Weston [44] to two new settings. We first study the anticyclotomic Iwasawa theory of 
abelian varieties of GL2-type at non-ordinary primes when p is split in K. Secondly, we 
study similar questions for elliptic curves E/Q when p is inert in K.

Let f be a weight two elliptic newform of level N0. Let p ≥ 5 be a prime of good 
non-ordinary reduction for f . Let Q̄ be an algebraic closure of Q and Q̄p that of Qp. 
For an extension F of Q in Q̄, put GF = Gal(Q̄/F ). Fix an embedding ι : Q̄ ↪→ Q̄p. 
Let ρf : GQ → GL2(Q̄p) be the corresponding Galois representation associated to the 
newform f and ρ̄f the residual representation. Let K be an imaginary quadratic field 
satisfying (DK , pN0) = 1, (cp) and (def ).

As a first step of our work, we construct bounded sharp/flat p-adic L-functions 
Lp(f, K)� and Lp(f, K)� using a Sprung-type matrix, which converts unbounded dis-
tributions attached to p non-ordinary modular forms on definite quaternion algebras to 
bounded measures. The unbounded distributions were also studied in [28] and they en-
code p-adic variation of algebraic part of the central L-values L(fK ⊗ χ, 1) as χ varies 
over finite order characters of Gal(K∞/K), where fK denotes the base change of f to K. 
The details of this construction are given in §3. As in the cyclotomic setting, at least one 
of the two p-adic L-functions is readily seen to be non-zero, while both are if ap(f) = 0
(cf. Corollary 3.10).

Consider the following hypotheses:

(Im) If p = 5, then ρ̄f (GQ(μp∞ )) contains a conjugate of SL2(Fp). If p > 5, the GQ-
representation ρ̄f is irreducible.

(ram) ρ̄f is ramified at � in the following cases:
◦ � | N− with �2 ≡ 1 mod p,
◦ � | N+.

The main result of this article is the following.

Theorem 1.1 (Theorem 10.1). Let f ∈ S2(Γ0(N0)) be an elliptic newform and p � 6N0
a prime such that ap(f) has positive p-adic valuation. Let K be an imaginary quadratic 
field such that (DK , pN0) = 1 and that the hypotheses (cp), (def), (Im) and (ram) hold. 
Assume in addition:

◦ If p is split in K/Q and ap(f) �= 0, then the newform f is p-isolated (cf. Defini-
tion 3.2).



4 A. Burungale et al. / Advances in Mathematics 439 (2024) 109465
◦ If p remains inert in K/Q, then ap(f) = 0 and the Hecke field of f is Q.

Then we have

Lp(f,K)• ∈ char (Sel•(K∞, Af )∨) , • ∈ {�, �} .

Here, char(−) denotes the characteristic ideal of a Λ-module for Λ the anticyclotomic 
Iwasawa algebra and the Selmer group Sel•(K∞, Af ) is as in Definition 7.2. A simple 
consequence of Theorem 1.1 and Corollary 3.10 is the following.

Corollary 1.2. The Selmer group Sel•(K∞, Af ) is Λ-cotorsion for some • ∈ {�, �} if 
ap(f) �= 0, and for both • ∈ {�, �} if ap(f) = 0.

The hypotheses (Im) and (ram) are precisely the ones required in [44] (see also [32, 
Remark 1.4]). It may be possible to relax the latter as in [32] (cf. Remark 7.11). One 
may be tempted to eliminate the p-isolated condition in Theorem 1.1 (i.e. when p splits 
and ap(f) �= 0), following the strategy in [32]. At present, we are unable to do so since 
the calculations in §9.2 in the scenario when ap(f) �= 0 require the existence of a lift of 
a relevant mod pn modular form to characteristic zero.

The following corollary of Theorem 1.1 is a generalization of main results of [21,44]:

Corollary 1.3. Let E/Q be an elliptic curve of conductor NE and p � 6NE a prime of good 
supersingular reduction. Let K be an imaginary quadratic field such that (DK , pNE) = 1
and that the hypothesis (cp) and (def) hold. Assume in addition:

◦ Either p = 5 and the mod 5 Galois representation GQ → AutF5(E[5]) is surjective, 
or p > 5 and the mod p Galois representation GQ → AutFp

(E[p]) is irreducible.
◦ For any prime �|N−

E with �2 ≡ 1 mod p, the inertia subgroup I� ⊂ GQ�
acts non-

trivially on E[p].

Put Lp(E, K)± = Lp(fE , K)± for fE ∈ S2(Γ0(NE)) the newform associated to E. 
Then,

Lp(E,K)± ∈ char (Sel±(K∞, E[p∞])∨) .

Remark 1.4. In view of the assumption (DK , NE) = 1 the above results exclude the case 
that E has CM by an order of K. For p split in K, such an E has ordinary reduction 
at p. The pertinent anticyclotomic CM Iwasawa theory has been studied by Rubin [46]
and Agboola–Howard [2] (see also [17]). For p inert in K, E has supersingular reduc-
tion and new Iwasawa-theoretic phenomena abound. Rubin [45] initiated the study of 
anticyclotomic CM Iwasawa theory at inert primes and made a basic conjecture on the 
structure of local units in the anticyclotomic Zp-extension of the unramified quadratic 
extension of Qp. This conjecture was recently resolved in [10]. It led to a proof of the 
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anticyclotomic CM main conjecture of Agboola–Howard [1] and is also a key to the inert 
setting in this article.

We now describe the strategy.
In §4, we introduce the concept of Q-systems, which are sequences of local cohomology 

classes satisfying certain norm relation, similar to the ones studied in [29,33] (see also 
[41]). We then go on to construct explicit Q-systems in the two settings studied in this 
article and describe how these systems lead to construction of sharp/flat Coleman maps. 
This generalizes earlier works of Kobayashi [30] and Sprung [48] in the cyclotomic setting 
as well as that of Iovita–Pollack [24] on elliptic curves in the anticyclotomic setting when 
p is split in K. Our study in the inert setting is based on the recent work of the first 
named author1 with Kobayashi and Ota [10,12].

As a preparation for a proof of one sided inclusion of the sharp/flat Iwasawa main 
conjectures, in §5, we study an alternate definition of the Coleman maps in the split case 
using the Perrin-Riou big logarithm constructed by Loeffler–Zerbes [37] and show that 
the two approaches agree up to units. We then move on to study how Coleman maps 
behave under congruences of modular forms in §6. These results may be of independent 
interest. We remark that, even though Theorem 10.1 concerns an elliptic modular form 
f , our proof dwells on congruences between modular forms on more general Shimura 
curves, and we proceed in §6 (and onward) in this required level of generality.

Using the Coleman maps, we define the sharp/flat Selmer groups over K∞ as well as 
certain auxiliary Selmer groups in §7. We then move on to construct sharp/flat bipartite 
Euler systems2 in §8 which are built out of Heegner points associated to certain weight 
two newforms that are congruent to f . In this section, it is also shown that the Euler 
systems satisfy the reciprocity laws, as needed in our Euler system argument for the one 
sided inclusion.

As a final preparation for the proof of the main result, we show that the aforemen-
tioned Euler systems satisfy the suitable local conditions in §9. The final section is then 
dedicated to the proof of the main result.

Anticyclotomic Iwasawa theory at primes which are non-ordinary and non-split in the 
imaginary quadratic field is outside the conjectural framework of Iwasawa theory. Besides 
the CM case initiated by Rubin [45,10,12,13,11,14] and the present article, Andreatta–
Iovita [3] recently constructed a locally analytic p-adic L-function in the non-CM case, for 
which formulation of an Iwasawa main conjecture is a basic open problem. The setting in 
[3] assumes the Heegner hypothesis, complementing the assumption (def ) that our main 
result relies on. In the sequel [4] we study Iwasawa theory of pertinent Heegner points.

1 He is grateful to Shinichi Kobayashi and Kazuto Ota for inspiring discussions.
2 These are not Euler systems in the traditional sense and one may prefer to refer to them as Bertolini–

Darmon Kolyvagin systems.
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2. Set-up and notation

Throughout this article, K is an imaginary quadratic field and p ≥ 5 a prime unram-
ified in K.

We fix a weight two newform f of level N0 and trivial nebentypus so that p � N0 and 
(N0, DK) = 1. Let F be the Hecke field generated by the Fourier coefficients of f . Let 
Af be an associated GL2-type abelian variety over Q so that OF ↪→ End(Af ) and

L(f, s) = L(Af , s).

As in the introduction, write N0 = N+N−, where N+ (resp. N−) is only divisible by 
primes which are split (resp. inert) in K. We assume throughout that N− is a square-free 
product of an odd number of primes; cf. (def ).

Assume that p does not divide the class number of K; cf. (cp). Let K∞ denote the 
anticyclotomic Zp-extension of K. (Note that any prime above p is totally ramified in 
K∞.) The Galois group of K∞ over K is denoted by Γ. For an integer m ≥ 0, we 
write Km for the unique subextension of K∞ such that [Km : K] = pm. Further, write 
Γm = Gal(K∞/Km) and Gm = Gal(Km/K).

Fix a prime v of F lying above p and let L be the completion of F at v. Fix a 
uniformizer 	 of L. We assume that

ord�(ap(f)) > 0.

Write Tf for the v-adic Tate module of Af . In particular, it is a free OL-module of 
rank two equipped with a continuous GQ-action. Write Vf = Tf ⊗OL

L and Af = Vf/Tf . 
Given an integer n ≥ 0, write Tf,n for Tf/	

nTf = Af [	n].
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Throughout this article, we shall work with weight two quaternionic Hecke eigenforms 
that are congruent to our fixed newform f and so their attached Galois representations 
are also congruent. Let X = XM+,M− be the Shimura curve attached to a quaternion 
algebra of discriminant M− together with a Γ0(M+)-level structure (see for example [5, 
§1.3]) and h an OL-valued weight two Hecke eigenform on X. Write Th for the OL-linear 
GQ-representation associated to h and define Vh and Th,n just as above.

For a field k, an extension k′/k and a Gk-representation W , we shall write

cork′/k : H1(k′,W ) → H1(k,W ) and resk′/k : H1(k,W ) → H1(k′,W )

for the corestriction and restriction maps respectively. For a p-adic Lie extension K/k, 
write

Hi
Iw(K,W ) = lim←−−Hi(k′,W ),

where the inverse limit is over the finite extensions k′ of k contained in K and the 
connecting maps are corestrictions.

3. p-Adic L-functions

3.1. Preliminaries

As discussed in the introduction, even though our main results concern elliptic mod-
ular forms, we will work with modular forms on more general Shimura curves. Let M be 
a positive integer that is coprime to p. We factor M as M+M−, where M+ (resp. M−) 
is a positive integer divisible by primes which are split (resp. inert) in K. We assume 
throughout this section that M− is square-free and has an odd number of prime factors.

Let B be the definite quaternion algebra ramified at precisely the primes dividing 
M−. Let R be an Eichler Z[1/p]-order of level M+ in B and Bp = B ⊗ Qp. Fix an 
isomorphism

ι : Bp → M2(Qp).

Denote by T the Bruhat–Tits tree of B×
p /Q×

p . Write V(T ) and 
E(T ) for the sets of 
vertices and ordered edges of T respectively. Let L = R×/Z[1/p]×. Let Z be a ring. We 
recall that a Z-valued weight two modular form on T /

L is a Z-valued function h on 

E(T ) such that

h(γe) = h(e)

for all γ ∈ L. The set of such modular forms will be denoted by S2(T /
L
, Z). Similarly, let 

S2(V/
L
, Z) denote the space of L-invariant non-constant Z-valued functions on V(T ).

The following is a simple consequence of the Jacquet–Langlands correspondence (for 
example, see [7, Proposition 1.3] and [21, Theorem 2.2, Proposition 2.3]).
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Proposition 3.1. Let φ be a newform in S2(Γ0(M), C). Then there exists h ∈ S2(T /
L
, C)

such that it shares the same eigenvalues as h for the Hecke operators T�, � � M . Such an 
h is unique up to multiplication by a non-zero complex number.

Applying Proposition 3.1 to M = N0 and f = φ, we may identify f with an element 
of S2(T /

L
, OL), which is not divisible by 	.

For the rest of this section, fix a Hecke eigenform h ∈ S2(T /
L
, OL) that is 	-

indivisible. Assume that the Hecke eigenvalue at p, denoted by ap(h), is divisible by 
	.

The following notion will be crucial to some of our later arguments (cf. [7, Definition 
1.2]).

Definition 3.2. A Hecke eigenform h ∈ S2(T /
L
, OL) is said to be p-isolated if h is not 

congruent modulo 	 to any other Hecke eigenform in S2(T /
L
, OL).

Fix an embedding Ψ : K → B so that Ψ(K) ∩R = Ψ(OK [1/p]). Let Π∞ = K×
p /Q×

p . 
It acts on T by

g 
 x = ιΨ(g)(x),

where x ∈ V(T ) or 
E(T ).
Let up be a fundamental p-unit of K, meaning that it is a generator of the group 

of elements of OK [1/p]× of norm one modulo torsion. Put G̃∞ = Π∞/uZp . There is a 
natural decreasing filtration

· · · ⊂ Un ⊂ · · · ⊂ U1 ⊂ U0 ⊂ Π∞

given as in [21, (2.2) and (2.3)]. Let G̃m = G̃∞/Um. For any given h ∈ S2(T /
L
, OL), 

there exists a sequence of functions

hK,m : G̃m → OL

α �→ h(α 
 vm),

where vm ∈ T is chosen as in Figures 1 and 2 in [21]. We can then define, for our chosen 
h, the following elements:

L̃h,m :=
∑

σ∈G̃m

hK,m(σ)σ−1 ∈ OL[G̃m].

Let πm+1,m : OL[G̃m+1] → OL[G̃m] be the projection map and ξ̃m : OL[G̃m] →
OL[G̃m+1] the norm map. The proof of Lemma 2.6 of [21] gives

πm+1,m(L̃h,m+1) = ap(h)L̃h,m − ξ̃m−1L̃h,m−1. (3.1)
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Recall that G̃m+1 � Δ ×Gm, where Δ is a finite group independent of m. Write Lh,m

for the image of L̃h,m+1 under the natural projection OL[G̃m+1] → OL[Gm]. We also 
denote the latter by πm+1,m and the norm map OL[Gm] → OL[Gm+1] by ξm. Then (3.1)
implies

πm+1,m(Lh,m+1) = ap(h)Lh,m − ξm−1Lh,m−1. (3.2)

3.2. Construction of Sprung-type matrices

In this section, we outline the construction of Sprung-type matrices based on [48,49]
and recall their basic properties.

Let

Λ = lim←−−
m

OL[Gm]

be the Iwasawa algebra of Γ over OL, and let us fix a topological generator γ of Γ � Zp. 
We can identify Λ with the power series ring OL[[X]], sending γ−1 to X. For an integer 
m ≥ 0, write ωm = γpm − 1 ∈ Λ. Note that OL[Gm] maybe identified with Λ/(ωm). 
We denote this ring by Λm. For m ≥ 1, write Φm := ωm

ωm−1
for the pm-th cyclotomic 

polynomial in the variable γ.

Definition 3.3. Let Bh =
(
ap(h) 1
−p 0

)
. For an integer m ≥ 1, we write Ch,m for the 

matrix 
(
ap(h) 1
−Φm 0

)
and define

Mh,m = B−m−1
h Ch,m · · ·Ch,1.

We write Hh,m for the Λ-morphism

Λ2
m −→ Λ2

m(
x
y

)
�−→ Ch,m · · ·Ch,1

(
x
y

)
.

The matrix Ch,m+1 is congruent to Bh modulo ωm and this allows us to show that 
Mh,m converges to a matrix Mh,log ∈ M2×2(H(Γ)). Furthermore, there is a natural 
isomorphism

Λ2 ∼−→ lim←−−
m

Λ2
m/ ker(Hh,m) (3.3)

induced by the natural projections Λ → Λm, where the inverse limits are with respect 
to the maps Λ2

m+1/ ker(Hh,m+1) → Λ2
m/ ker(Hh,m) induced from the obvious surjections 

Λm+1 → Λm (see [15, Proposition 2.5 and Lemma 2.12]).
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In what follows, R denotes either Λ or Λ/	n for some integer n ≥ 1. We let Rm

denote R/(ωm), which is the group ring of Gm with coefficients in OL or O/	n. By a 
slight abuse of notation, we write πm+1,m for the natural project map Rm+1 → Rm and 
ξm for the norm map Rm−1 → Rm. The map Hh,m (composed with modulo 	n in the 
case of R = Λ/	n) defines an R-morphism on R2

m → R2
m. As in (3.3),

R2 ∼−→ lim←−−
m

R2
m/ ker(Hh,m). (3.4)

Theorem 3.4. Let R be either Λ or Λ/	n for some integer n ≥ 1. Let Fm ∈ Rm, m ≥ 0
be a sequence of elements satisfying the relation

πm+1,m(Fm+1) = ap(h)Fm − ξm−1Fm−1,m ≥ 1. (3.5)

Then there exist unique F �, F � ∈ R such that

Hh,m

(
F �

F �

)
≡

(
Fm

−ξm−1Fm−1

)
mod ωm.

Proof. Let F̃m ∈ Λ be a lift of Fm under the natural projection map. We show that 
there exist F̃ �

m, F̃ �
m ∈ Λ such that

Ch,m · · ·Ch,1

(
F̃ �
m

F̃ �
m

)
=

(
F̃m

−ΦmF̃m−1

)
(3.6)

We prove (3.6) by induction. When m = 1, just take F̃ �
1 = F̃0 and F̃ �

1 = F̃1−ap(h)F̃ �
1 .

Let C ′
h,m =

(
0 −1

Φm ap(h)

)
be the adjugate matrix of Ch,m, so that Ch,mC ′

h,m =

C ′
h,mCh,m = ΦmI2, where I2 is the 2 × 2 identity matrix. The existence of F̃ �

m and F̃ �
m

in (3.6) is equivalent

C ′
h,1 · · ·C ′

h,m

(
F̃m

−ΦmF̃m−1

)
≡ 0 mod Φ1 · · ·Φm. (3.7)

Let m ≥ 2 and suppose that (3.7) holds on replacing m by m −1. A direct calculation 
shows that

C ′
h,1 · · ·C ′

h,m

(
F̃m

−ΦmF̃m−1

)
= C ′

h,1 · · ·C ′
h,m−1

(
ΦmF̃m−1

Φm(F̃m − ap(h)F̃m−1)

)
,

which is divisible by Φm. Furthermore, thanks to (3.5),

F̃m ≡ ap(h)F̃m−1 − Φm−1F̃m−2 mod ωm−1.

Therefore,
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C ′
h,1 · · ·C ′

h,m

(
F̃m

−ΦmF̃m−1

)
≡ pC ′

h,1 · · ·C ′
h,m−1

(
F̃m−1

−Φm−1F̃m−2

)
≡ 0 mod Φ1 · · ·Φm−1

by our inductive hypothesis. Therefore, (3.7) holds, which implies (3.6). In particular, 
there exist F �

m, F �
m ∈ Rm such that

Hh,m

(
F �
m

F �
m

)
=

(
Fm

−ξm−1Fm−1

)
.

Applying (3.5) once again, we deduce that

πm+1,m

(
Hh,m+1

(
F �
m+1

F �
m+1

))
=

(
ap(h)Fm − ξm−1Fm−1

pFm

)
= Bh

(
Fm

−ξm−1Fm−1

)
.

But the left-hand is also equal to Bh ·Hh,m

(
πm+1,m

(
F �
m+1

F �
m+1

))
. Therefore, we deduce 

that

πm+1,m

(
F �
m+1

F �
m+1

)
≡

(
F �
m

F �
m

)
mod kerHh,m

and that the elements F �
m, F �

m result in a unique pair of elements in R via the inverse 
limit (3.4). �
Theorem 3.5. There exist unique L�

h, L�
h ∈ Λ such that for all m ≥ 1

Hh,n

(
L�
h

L�
h

)
≡

(
Lh,m

−ξm−1(Lh,m−1)

)
mod ωm.

Proof. This is an immediate consequence of Theorem 3.4 and (3.1). �
Definition 3.6. We define the following p-adic L-functions

Lp(h,K)� = L�
h

(
L�
h

)ι

and Lp(h,K)� = L�
h

(
L�
h

)ι

,

where ι denotes the involution map on Λ arising from the inversion on Γ.
When h arises from our fixed weight two newform f , we shall write Bf , Hf,m, Cf,m, 

Lf,m, L�
f , L�

f , Lp(f, K)� and Lp(f, K)� for the corresponding elements.

3.2.1. p-Adic L-functions attached to modular forms modulo 	n

In the notation §3.1, choose a Hecke eigenform h ∈ S2(T /
L
, OL/(	n)) such that the 

Up-operator acts with the eigenvalue ap(h) ≡ 0 mod 	.
Then the discussion in §3.1 carries over verbatim leading to elements

Lh,m ∈ Λm,n := Λm/(	n).
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Furthermore, Theorem 3.4 implies that there exist unique elements L�
h, L�

h ∈ Λ/(	n)
verifying

Hh,m

(
L�
h

L�
h

)
≡

(
Lh,m

−ξm−1Lh,m−1

)
mod ωm . (3.8)

(Strictly speaking, we have introduced Hh,m only when h is defined over OL in Defini-
tion 3.3. One may define the matrices Ch,m and carry out the subsequent calculations 
in a similar manner when the matrices are defined over OL/(	n).)

Lemma 3.7. Let 1 ≤ n ≤ n′ ≤ ∞. Suppose that h ∈ S2(T /
L
, OL/(	n)) and h′ ∈

S2(T /
L
, OL/(	n′)) (where we have taken the convention that OL/(	∞) means OL) are 

Hecke eigenforms such that ap(h) ≡ ap(h′) ≡ 0 mod 	 and that h ≡ h′ mod 	n. Then 
for • ∈ {�, �}, we have

L•
h ≡ L•

h′ mod 	nΛ.

Proof. It is apparent from their construction that

Lg,m ≡ Lg′,m mod (	n, ωm)

for all m ≥ 0. It then follows from (3.8) that

Hh,m

(
L�
h

L�
h

)
≡ Hh,m

(
L�
h′

L�
h′

)
mod (	n, ωm) .

The result now follows from the uniqueness of L�
h and L�

h. �
3.3. Non-vanishing of p-adic L-functions

Let α and β be the roots of the Hecke polynomial of f at p.
Fix λ ∈ {α, β} and consider the p-stabilized elements

Lλ
f,m := 1

λm+1

(
Lf,m − 1

λ
ξm−1(Lf,m−1)

)
.

Then it follows from (3.2) that

πm+1,m
(
Lλ
f,m+1

)
= Lλ

f,m.

Thus, by [43, Lemme 1.2.1], the sequence 
(
Lλ
f,m

)
m≥0

converges to an element

Lλ
f ∈ H(Γ)
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where H(Γ) denotes the set of power series in L[[X]] that converge in the open unit disk. 
In fact, since ordp(λ) < 1, this element is of growth rate o(log).

Lemma 3.8. For λ ∈ {α, β}, Lλ
f �= 0.

Proof. As discussed towards the end of [7, §1], if χ is a finite order character of Γ, then

Lλ
fLλ,ι

f (χ) ·= L(fK ⊗ χ, 1)√
Disc(K)Ωf

,

where Ωf is the Peterson inner product of f with itself and 
·= signifies an equality up to 

a non-zero algebraic fudge factor. The main result of [50] shows that L(fK ⊗ χ, 1) �= 0
for all but finitely many χ. �
Theorem 3.9. At least one of the two elements L�

f and L�
f is non-zero. If ap(f) = 0, then 

both are non-zero.

Proof. Let Qf = 1
α−β

(
α −β
−p p

)
. Then,

Bm+1
f Qf =

(
Lf,m

−ξm−1Lf,m−1

)
≡ Cf,m · · ·Cf,1

(
L�
f

L�
f

)
mod ωm.

Letting m → ∞ gives

(Lα
f

Lβ
f

)
= Q−1

f Mf,log

(
L�
f

L�
f

)
. (3.9)

By Lemma 3.8, both Lα
f and Lβ

f are non-zero and so it cannot happen that L�
f = L�

f = 0, 
proving the first assertion of the theorem.

When ap(f) = 0, we may proceed just as in [42, proof of Corollary 5.11] to show that 
both L�

f and L�
f are non-zero. �

Corollary 3.10. At least one of the two elements Lp(f, K)� and Lp(f, K)� is non-zero. If 
ap(f) = 0, then both are non-zero.

Proof. This follows immediately from the previous theorem and the definition of 
Lp(f, K)�/�. �
Remark 3.11. Let χ be a finite character of Γ. As in the cyclotomic setting (cf. [30, 
(3.4)–(3.6)] and [48, Corollary 6.6]), an explicit linear combination3 of Lp(f, K)�(χ) and 

3 It is obtained by evaluating (3.9) at the character χ.
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Lp(f, K)�(χ) is related to the L-value L(fK ⊗ χ, 1). For instance, if ap(f) = 0, then 
Lp(f, K)�/�(χ) is an explicit non-zero multiple of L(fK ⊗ χ, 1) for χ of conductor a 
power of p with exponent of a certain parity. See [4, proofs of Lemmas 5.12 and 7.2] for 
an explicit description when χ is the trivial character.

4. Q-systems and Coleman maps

Throughout this section, let p be a fixed prime of K above p. We also denote the 
unique prime of Km above p by the same notation. The completion of Km at p will be 
denoted by km. Our goal is to discuss the construction of Coleman maps over k∞/k0
using the concept of Q-systems, which can be regarded as a generalization of Kobayashi’s 
construction of plus and minus Coleman maps over the p-adic cyclotomic extension of 
Qp for elliptic curves E with ap(E) = 0 in [30] (which has also been generalized by 
Sprung to the case ap(E) �= 0 in [48]).

4.1. Definition of Coleman maps

As in §3.1, we fix a 	-indivisible Hecke eigenform h ∈ S2(T /
L
, OL) with ap(h) ≡ 0

mod 	. Furthermore, when p is inert in K, we assume that Th is the p-adic Tate module 
of an elliptic curve Eh/Q.

Given a finite extension L/Kp, let H1
f (L, Th) ⊂ H1(L, Th) denote the Bloch–Kato 

subgroup. For an integer n ≥ 1, the image of H1
f (L, Th) in H1(L, Th,n) will be denoted 

by H1
f (L, Th,n).

Definition 4.1. Let 1 ≤ n ≤ ∞. We say that (dm)m≥0 is a primitive Q-system for the 
representation Th,n (where Th,∞ means Th) if

(1) dm ∈ H1
f (km, Th,n) for all m ≥ 0;

(2) d0 /∈ 	H1
f (k0, Th,n);

(3) cork1/k0(d1) /∈ 	H1
f (k0, Th,n);

(4) corkm+1/km
(dm+1) = ap(h)dm − reskm−1/km

(dm−1) for all m ≥ 1.

Definition 4.2. Let 1 ≤ n ≤ ∞ and m ≥ 0. We write Λm,n = Λ/(ωm, 	n) where the 
convention for n = ∞ is that 	n = 0. For c ∈ H1(km, Th,n), define the Perrin-Riou 
pairing

Pc : H1(km, Th,n) −→ Ok0 ⊗Zp
Λm,n

z �−→
∑

σ∈Gm

〈zσ−1
, c〉m,n · σ,

where 〈−, −〉m,n is defined as follows. If p is split in K, 〈−, −〉m,n is given by the cup-
product pairing
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H1(km, Th,n) ×H1(km, Th,n) ∪−→ H2(km,OL/(	n)(1)) ∼−→ OL/(	n) ,

whereas if p is inert in K, it is given by

H1(km, Th,n) ×H1(km, Th,n) ∪−→ H2(km,Ok0/(	n)(1)) ∼−→ Ok0/(	n) .

(The latter relies on the fact that Th,n is equipped with an Ok0-module structure inher-
ited from the height two Lubin–Tate formal group attached to Eh at p, which leads to 
identification of the Gkm

-representation Th,n with HomOk0
(Th,n, Ok0/(	n))(1).)

Note that the map Pc is a Λ-morphism.
For notational simplicity, we shall write Λ′

m,n for the tensor product Ok0 ⊗Zp
Λm,n

from now on. Similarly, write Λ′ = Ok0 ⊗Zp
Λ, L′ = k0 ⊗Zp

L and O′
L = OL ⊗Zp

Ok0 . 
Note that when p splits in K, then Λ′

m,n = Λm,n, Λ′ = Λ, L′ = L and O′
L = OL. In the 

inert case, we have Λ′
m,n = Ok0/(	n)[Gm], Λ′ = Ok0 [[Γ]], L′ = k0 and OL = Ok0 .

Definition 4.3. Let R (resp. Rm) to be either Λ/(	n) or Λ′/(	n) (resp. Λm,n or Λ′
m,n) 

depending on whether p is split or inert in K.
Suppose that d = (dm)m≥0 is a primitive Q-system for Th,n. We define a family of 

R-morphisms

Cold,m : H1
Iw(k∞, Th,n) → Rm

by sending z = (zm)m≥0 to Pdm
(zm).

For the rest of this section, fix 0 ≤ n ≤ ∞ and a primitive Q-system d for Th,n.

Lemma 4.4. For all z = (zm)m≥0 ∈ H1
Iw(k∞, Th,n), we have

πm+1,m(Cold,m+1(z)) = ap(h)Cold,m(z) − ξm−1Cold,m−1(z).

Proof. This follows from condition (4) in Definition 4.1 and standard properties of the 
cup product. �
Corollary 4.5. There exist unique R-morphisms

Col�d,Col�d : H1
Iw(k∞, Th,n) −→ R

such that

Hh,m

(
Col�d(z)
Col�d(z)

)
≡

(
Cold,m(z)

−ξm−1Cold,m−1(z)

)
mod ωm.

Proof. This follows immediately from Theorem 3.4 and Lemma 4.4. �
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Lemma 4.6. Let 1 ≤ n ≤ n′ ≤ ∞. Suppose that d and d′ are primitive Q-systems 
for Th,n and Th,n′ respectively such that d′m is sent to dm under the natural morphism 
H1(km, Th,n′) → H1(km, Th,n) for all m. Then for • ∈ {�, �},

Col•d′ = Col•d ◦ prn′/n,

where prn′/n is the natural map H1
Iw(k∞, Th,n′) → H1

Iw(k∞, Th,n).

Proof. This follows from the uniqueness of the Coleman maps given by Corollary 4.5. �
Proposition 4.7. The R-morphisms Col�d and Col�d are surjective onto R.

Proof. By Nakayama’s lemma, it is enough to show that Im(Col•)Γ = R0 for • ∈ {�, �}. 
Let z ∈ H1

Iw(k∞, Th,n). By definition, we have

Hh,1

(
Col�d(z)
Col�d(z)

)
≡

(
Cold,1(z)

−ξ0Cold,0(z)

)
mod ω1R.

Therefore,

(
ap(h) 1
−p 0

)(
Col�d(z)
Col�d(z)

)
≡

(
Cold,1(z)

−pCold,0(z)

)
mod XR.

In particular,

Col�d(z) ≡ Cold,0(z) mod XR,

Col�d(z) ≡ Cold,1(z) − ap(h)Col0(z) mod XR.

Let z0 be the image of z in H1(k0, Th,n). The right-hand sides of the congruences above 
are given by

〈z0, d0〉0,n and 〈z0, cork1/k0(d1) − ap(h)d0〉0,n

respectively. Therefore, the conditions (2) and (3) in Definition 4.1 imply that both maps 
modulo X are surjective onto R0 as required. �
Definition 4.8. For m ≥ 0 and • ∈ {�, �}, define H1,•(km, Th,n) ⊂ H1(km, Th,n) to be the 
image of ker Col•d under the natural projection H1

Iw(k∞, Th,n) → H1(km, Th,n).
Let Ah,n denote Ah[	n]. Define H1

• (km, Ah,n) ⊂ H1(km, Ah,n) to be the orthogonal 
complement of H1,•(km, Th,n) under the local Tate pairing

H1(km, Th,n) ×H1(km, Ah,n) ∪−→ H2(km, L′/O′
L(1)) ∼−→ L′/O′

L.
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Notice that when n = ∞, Ah,n is simply Ah. Otherwise, Ah,n = Th,n. In the definition 
above, we have suppressed the dependency on d from our notation for simplicity. In 
subsequent sections, we shall fix a choice of d and work with the resulting subgroups.

Remark 4.9. The local conditions H1
• (km, Th,n) for m > 0 defined above are different 

from their counterparts in [21, §3.2] even when Th is the p-adic Tate module of an 
elliptic curve Eh/Q. We start with local conditions for the extension k∞, then descent 
to km, whereas the local conditions in [21] are defined directly from points on an elliptic 
curve over km. Note that our definition of local conditions is similar to the ones studied 
in [25, §3.3], [26, §2] and [27, §2]; see also [44, Remark A.1]. This divergence will be 
crucial in our proof of Theorem 1.1, see also Remark 4.13 below for a further discussion.

Lemma 4.10. For integers m, n ≥ 0, there are natural Λ-isomorphisms

H1(km, Ah,n) � H1(k∞, Ah)Γm [	n] �
(
H1(k∞, Ah)[	n]

)Γm
.

Proof. In view of the assumption ap(h) ≡ 0 mod 	, we have H0(k∞, Ah) = 0. Thus, 
the inflation-restriction exact sequence gives

H1(km, Ah) � H1(k∞, Ah)Γm .

Furthermore, on taking Galois cohomology of the tautological exact sequence

0 → Th,n −→ Ah
×�n

−→ Ah → 0,

we have H1(km, Ah)[	n] � H1(km, Th,n), giving the first isomorphism. The second iso-
morphism can be proved similarly. �
Corollary 4.11. Let • ∈ {�, �} and 0 ≤ m ≤ ∞. We have:

i) The image of H1
•(k∞, Ah)Γm [	n] in H1(km, Ah,n) under the isomorphism given by 

Lemma 4.10 coincides with H1
• (km, Ah,n).

ii) We have lim−−→H1
• (km, Ah,n) = H1

• (km, Ah).
iii) The Rm-module H1

• (km, Ah,n) is free of rank one.

Proof. The first two assertions follow from Lemma 4.6, whereas the third is a consequence 
of Proposition 4.7 and duality. �

We have the following analogous statement of Corollary 4.11 iii) for H1,•(km, Th,n):

Lemma 4.12. The Rm-module H1,•(km, Th,n) is free of rank one.

Proof. It follows from [43, Proposition 3.2.1] that H1
Iw(k∞, Th,n) is free of rank 2 over 

R. Proposition 4.7 says that H1
Iw(k∞, Th,n)/ kerCol•d is free of rank 1 over R. Thus, 
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ker Col•d itself is free of rank 1 over R. Consequently, it follows from Lemma 4.6 that 
H1,•(km, Th,n) = (ker Col•d)Γm

is free of rank 1 over Rm. �
Remark 4.13. Note that Lemma 4.12 may be regarded as a more general version of [21, 
Lemma 3.9] which concerns the case ap(f) = 0 and p split in K. It is asserted in the 
proof of [21] that the plus and minus local conditions at the finite level, denoted by 
H1

±(Lm, TpE), are free of rank one over Zp[Gm]. However, it is not clear to us how 
it follows from [24, Proposition 4.16]. The inverse limits of H1

±(Lm, TpE), denoted by 
H1

±(T ) in [24], are free of rank one over Λ. But H1
±(Lm, TpE) �= H1

±(T )Γm
unless m = 0. 

In fact, by definition, the Zp-ranks of the plus and minus subgroups Ê±(Lm) are strictly 
less than pm when m > 0. Consequently, their orthogonal complements H1

±(Lm, Tp(E))
have Zp-ranks strictly greater than pm. In particular, they cannot be free of rank one 
over Zp[Gm]. As already observed in [44, Appendix A], the alternative approach to define 
local conditions by replacing H1

±(Lm, TpE) with H1
±(T )Γm

resolves this issue.

4.2. Constructing local points on abelian varieties: the split case

Throughout §4.2, we assume that p splits in K. Our goal is to construct a primitive 
Q-system for Th.

4.2.1. Review on the Perrin-Riou map
Throughout, we identify Kp with Qp. Furthermore, we fix F to be a Lubin–Tate 

formal group of height one such that the extension of Qp generated by F [p∞] contains 
k∞. For simplicity, write T = Th and V = Vh.

Definition 4.14.

i) For an integer m ≥ 0, we write k̃m for Qp(F [pm]).
ii) Write ϕF and ψF for the operators on Zp[[X]] given as in [20, §3.1].
iii) Let Γ̃ = Gal(F [p∞]/Qp) and Λ̃ = Zp[[Γ̃]].
iv) Let Ωε

V,1 : Zp[[X]]ψF=0⊗Dcris(V ) → H(Γ̃) ⊗H1
Iw(k̃∞, T ) denote the Perrin-Riou map 

defined by Kobayashi [31, Appendix] (see also [20, Theorem 3.2]). Here ε = (εm)m≥0
denotes a choice of generator of TpF .

Definition 4.15. We define

ΣT,m : Zp[[X]]ψF=0 ⊗Dcris(T ) → H1
f (k̃m, V )

g �→ exp (G(εm)) ,

where G is a solution to (1 − ϕF )G = g and exp is the Bloch–Kato exponential map.

Remark 4.16. The map ΣT,m is used in the construction of Ωε
V,1. Indeed the image of 

Ωε
V,1(g) in H1(k̃m, V ) is given by
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ΣT,m((p⊗ ϕ)−mg).

Lemma 4.17. The image of ΣT,m lands inside H1
f (k̃m, T ).

Proof. By [31, Theorem 10.8], there exists a constant pc such that

pcΣT,m (g) ∈ H1
f (k̃m, T )

for all m and g. The constant pc is given by Proposition 10.3 in [31]. In particular, this 
is the same constant as the one considered in [33, Corollary 3.2]. In particular,

c = (r − b)m− 1 + r + s,

where b is the largest Hodge–Tate weight of T and the constants r and s are given by 
(3.1) and (3.2) in [33]. In our current setting, b = r = 1. The constant s is 0 as given by 
Lemma 6.3, bis. Thus, pc = 1 and the lemma follows. �
4.2.2. Construction of classes and norm relations

Let ρ : Ĝm → F be a fixed isomorphism of formal groups. Let W denote the ring 
of integers of the completion of the maximal unramified extension of Qp. We have an 
isomorphism ρ̃ : W [[X]] → W [[X]] given by F �→ F ◦ ρ−1. Note that both ϕF and 
ψF extend to W [[X]] by acting on W as the arithmetic and the geometric Frobenius, 
respectively. We shall denote the arithmetic Frobenius on W by σ. In particular, the 
action of ϕF on W [[X]] is given by∑

bnX
n �→

∑
bσn((1 + X)p − 1).

Recall that

εm = ρσ
−n

(ζpm − 1), (4.1)

where ζpm is a primitive pm-th root of unity satisfying ζppm+1 = ζpm .

Definition 4.18. We extend ΣT,m to

W [[X]]ψF=0 ⊗Dcris(T ) → W ⊗Zp
H1

f (k̃m, T )

by sending g to exp(Gσ−m(εm)), where G is a solution to (1 − ϕF )G = g.
Denote the map W ⊗ H1

f (k̃m+1, T ) → W ⊗ H1
f (k̃m, T ) obtained from extending the 

corestriction map W -linearly also by cork̃m+1/k̃m
.

Remark 4.19. By Local Class Field Theory, we have the identification

W ⊗Ok̃ = W [ζpm ].

m
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The trace map W ⊗Ok̃m+1
→ W ⊗Ok̃m

sends ζpm+1 to 0 or −1 depending on whether 
m ≥ 1 or m = 0.

Proposition 4.20. Suppose that g = ρ̃(1 + X) ⊗ v, where v = ϕ(ω) ∈ Dcris(T ) for some 
ω ∈ Fil0 Dcris(T ). Then,

cork̃m+1/k̃m
◦ ΣT,m+1(g) − ap(h) · ΣT,m(g) + resk̃m/k̃m−1

◦ ΣT,m−1(g) = 0

for all m ≥ 1.

Proof. Following the calculations carried out in [33, proof of Lemma 5.6], combined with 
Remark 4.16 and (4.1), we deduce that

ΣT,m(g) = exp
(

m∑
i=1

ζpi ⊗ ϕm−i(v) + (1 − ϕ)−1ϕm(v))
)
.

In view of Remark 4.19, we have

cork̃m+1/k̃m
◦ ΣT,m+1(g)

= exp ◦Trk̃m+1/k̃n

(
m+1∑
i=1

ζpi ⊗ ϕm+1−i(v) + (1 − ϕ)−1ϕm+1(v))
)

= p · exp ◦
(

m∑
i=1

ζpi ⊗ ϕm+1−i(v) + (1 − ϕ)−1ϕm+1(v))
)

= exp
(

m∑
i=1

ζpi ⊗ (ap(h)ϕm−i(v) − ϕm−i−1(v)) + (1 − ϕ)−1(ap(h)ϕm(v) − ϕm−1(v))
)

= ap(h) · exp
(

m∑
i=1

ζpi ⊗ ϕm−i(v) + (1 − ϕ)−1ϕm(v)
)

− exp
(

m−1∑
i=1

ζpi ⊗ ϕm−1−i(v) + (1 − ϕ)−1ϕm−1(v)
)

− exp
(
ζpm−1 ⊗ ϕ−1(v)

)
= ap(h) · ΣT,m(g) − resk̃m/k̃m−1

◦ ΣT,m−1(g),

since ϕ−1(v) = ω ∈ Fil0 Dcris(T ). This concludes the proof. �
Corollary 4.21. Let e be a Λ̃-basis of Zp[[X]]ψF=0. For m ≥ 0, let

cm = ΣT,m (e⊗ v) ∈ H1
f (k̃m, T ),

where v = ϕ(ω) for some O-basis of Fil0 Dcris(T ). Then

cork̃ /k̃ (cm+1) − ap(h) · cm + resk̃ /k̃ (cm−1) = 0.

m+1 m m m−1
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�

Proof. Since ρ̃◦ψĜm
= ψF ◦ ρ̃ and (1 +X) is a W [[Γ̃]]-basis of W [[X]]ψĜm

=0, there exists 
xe ∈ W [[Γ̃]]× such that

e = xe · ρ̃(1 + X).

The maps ΣT,m are W [[Γ̃]]-linear and are compatible with the corestriction maps. Thus, 
the affirmed norm relation follows from Proposition 4.20. �

In particular, the classes cm will allow us to define classes in H1(km, T ) satisfying 
conditions (1) and (4) in Definition 4.1.

4.2.3. Primitivity of classes
The goal of this subsection is that the classes built out of (cn)n≥0 from Corollary 4.21

satisfying conditions (2) and (3) in Definition 4.1.

Lemma 4.22. We have

exp
(
pDcris(T )/Fil0 Dcris(T )

)
= H1

f (Qp, T ).

Proof. By [9, Lemma 4.5(b)], it is enough to show that

(1 − ϕ)
(
pDcris(T )/Fil0 Dcris(T )

)
= Dcris(T )/(1 − ϕ) Fil0 Dcris(T ).

Since our representation satisfies the Fontaine–Laffaille condition, if ω is an O-basis 
of Fil0 Dcris(T ), then Dcris(T ) is generated by ω, ϕ(ω) as an O-module. Consequently, 
Dcris(T )/ Fil0 Dcris(T ) and Dcris(T )/(1 − ϕ) Fil0 Dcris(T ) are generated by ϕ(ω) and ω
over O respectively. Therefore, the lemma follows from the fact that

(1 − ϕ)(pϕ(ω)) = (p− ap(f))ϕ(ω) + ω ≡ (1 + p− ap(f))ω mod (1 − ϕ) Fil0 Dcris(T ).

Remark 4.23. The reader may refer to [47, Proposition 3.5.1] for a dual version of 
Lemma 4.22 for elliptic curves.

Proposition 4.24. Let cn be the classes defined as in Corollary 4.21. Then cork̃n/Qp
(cm)

is an O-basis of H1
f (Qp, T ) for n ∈ {1, 2}.

Proof. Since e ⊗ v and ρ̃(1 + X) ⊗ v differ by a unit of W [[Γ̃]], it is enough to consider 
the classes built out of g = ρ̃(1 + X) ⊗ v given by the statement of Proposition 4.20. 
Note that

cork̃m/Qp
◦ ΣT,m(g) = pm−1 exp

(
−ϕm−1(v) + (p− 1)(1 − ϕ)−1ϕm(v)

)
.

Recall that the action of ϕ on Dcris(V ) satisfies
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ϕ2 − ap(h)
p

· ϕ + 1
p

= 0.

Thus by [34, proof of Lemma 5.6],

(1 − ϕ)−1 = pϕ + p− ap(h)
1 + p− ap(h)

and so

cork̃m/Qp
◦ ΣT,n(g) =

⎧⎪⎪⎨⎪⎪⎩
p(ap(h) − 2)
1 + p− ap(h) exp(ϕ(ω)) m = 1,

p(1 − p− 2ap(h))
1 + p− ap(h) exp(ϕ(ω)) m = 2.

Since ϕ(ω) is an O-basis of Dcris(T )/ Fil0 Dcris(T ), Lemma 4.22 implies that for m =
1, 2, cork̃n/Qp

◦ ΣT,m(g) is an O-basis of H1
f (Qp, T ). This concludes the proof of the 

proposition. �
Combined this with Corollary 4.21, we deduce the following:

Theorem 4.25. For m ≥ 0, define dm to be the image of cm+1 under the corestriction 
map cork̃m+1/km

. Then (dm) is a primitive Q-system for Th. Furthermore, if we denote 

by d̄m the image of dm in H1
f (km, Th,n), then (d̄m) is a primitive Q-system for Th,n.

4.3. Local points on elliptic curves: the inert case

In this section, we assume that p is inert in K.
Let f be the elliptic newform corresponding to our fixed elliptic curve E. Since p ≥ 5, 

we have necessarily ap(f) = 0 by the Weil bound. We recall the following result of 
Burungale–Kobayashi–Ota.

Theorem 4.26. There exists a system of local points dm ∈ Ê(mkm
) such that:

(1) Trkm/km−1 dm = −dm−2 for all m ≥ 2;
(2) Trk1/k0 d1 = −d0;
(3) d0 ∈ Ê(mk0) \ pÊ(mk0).

Proof. This is [10, Theorem 5.5]. �
Remark 4.27. The construction of local points in Theorem 4.26 is semi-local. It is based 
on Gross’ theory of quasi-canonical lifts, leading to points on modular curves defined 
over anticyclotomic local fields, and modular parameterisation of an elliptic curve E/Q

supersingular at p. The key p-indivisibility property (3) relies on the fact that formal 
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completion of the modular parametrization of E at a well-chosen closed point is an 
isomorphism (cf. [10], §5.0.1). The latter no longer holds for higher dimensional abelian 
varieties of GL2-type over Q, and so we assume that the corresponding Hecke field is Q.

Theorem 4.26 immediately implies:

Corollary 4.28. A primitive Q-system exists for Tf (and thus for Tf,n for all n).

Let us define

d+
m =

{
dm if m is even,
dm−1 if m is odd,

d−m =
{
dm−1 if m ≥ 2 is even,
dm if m is odd.

Let Ê±
h (km) be the Λ′-modules generated by d±m. These modules can be described in 

terms of the trace maps, as in [30, Definition 8.16].
We may regard Ê±(km) as subgroups of H1

f (km, Tf ) via the Kummer map. Similarly, 
Ê±(km)/pn may be regarded as subgroups of H1

f (km, Tf,n).

Definition 4.29. We define (Ê±(km)/pn)⊥ ⊃ H1
f (km, Tf,n) to be the orthogonal comple-

ment of Ê±(km)/pn under the pairing 〈−, −〉m,n.

Proposition 4.30. Let d = (dm)m≥0 be the primitive Q-system for Tf,n given by Theo-
rem 4.26. Let Col�/�d be the resulting Coleman maps given by Corollary 4.5. Then the 

kernels of Col�/�d are equal to lim←−−m
(Ê±(km)/pn)⊥.

Proof. This follows from the same proof as [30, Proposition 8.18]. �
For notational simplicity, we shall employ the indices ± and �/� interchangeably.

Corollary 4.31. For • ∈ {�, �} = {+, −}, we have the inclusion

H1
• (km, Af,n) ⊃ Ê•(km)/pn.

Proof. Evidently, (⋃
i

Ê•(ki)/pn
)Γm

⊃ Ê•(km)/pn.

Thus, on combining Corollary 4.11 and Proposition 4.30, we deduce that

(ker Col•d)Γm
=: H1,•(km, Tf,n) ⊂

(
Ê•(km)/pn

)⊥
.

Hence, the affirmed inclusion follows by duality. �
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5. Coleman maps via the two-variable Perrin-Riou map

In this section, we concentrate on the case where p is split in K. We give an alternative 
approach to define Coleman maps via the two-variable Perrin-Riou map of Loeffler–
Zerbes from [37]. Throughout, fix a prime p above p and let the notation be as in §4.2.

Let LT,p : H1
Iw(k∞, T ) → Dcris(T ) ⊗HW (Γ) be the Perrin-Riou map, which is defined 

as the specialization of the two-variable Perrin-Riou map in [37] (see [19, Theorem 5.1]). 
Here, HW (Γ) = H(Γ) ⊗Zp

W .
Let α and β be the roots of the Hecke polynomial of h at p. Let vh,α and vh,β be 

ϕ-eigenvectors in Dcris(V ) (so that ϕ(vh,λ) = λ−1vh,λ). We normalize these elements so 
that

vh,α ≡ −vh,β mod Fil0 Dcris(V ). (5.1)

Let {v∗h,α, v∗h,β} be basis of Dcris(V ) dual to {vh,α, vh,β}. In what follows, write

〈−,−〉 : Dcris(T ) ×Dcris(T ) → Dcris(O(1)) � O

for the natural pairing.

Definition 5.1.

i) We extend the pairing 〈−, −〉 on Dcris(T ) to

〈−,−〉 : H(Γ) ⊗Dcris(T ) ×H(Γ) ⊗Dcris(T ) → H(Γ)

(λ1 ⊗ η1, λ2 ⊗ η2) �→ (λ1λ
ι
2) ⊗ 〈η1, η2〉.

ii) We define the pairing

[−,−] : H1
Iw(k∞, T ) ×H1

Iw(k∞, T ) → Λ

((xn), (yn)) �→
( ∑

τ∈Gn

〈τ−1xn, yn〉τ
)
.

iii) Let σ̃p denote the unique element of Gal(Qab
p /Qp) that acts as the arithmetic Frobe-

nius on Qnr
p and acts trivially on all p-power roots of unity.

Lemma 5.2. Given a Λ̃-basis e of Zp[[X]]ψF=0, there exists a Λ̃-morphism

L̃ε
T,e : H1

Iw(k̃∞, T ) → H(Γ̃) ⊗Dcris(V )

such that
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〈L̃ε
T,e(z), η〉 = [z,Ωε

V,1(e⊗ η)]

for all z ∈ H1
Iw(k∞, T ) and η ∈ Dcris(V ).

Proof. See [20, (3.7)], where the map L̃ε
T,e is denoted by Colεe and the field F in [20] is 

taken to be Qp here. �
Proposition 5.3. Let Lε

T,e : H1
Iw(k∞, T ) → H(Γ) ⊗ Dcris(V ) denote the Λ-morphism in-

duced by L̃ε
T,e after taking projection from Γ̃ to Γ. There exists a unit ue ∈ W [[Γ]]× such 

that

Lε
T,e = ue · LT,p.

Proof. By [19, Theorem 5.1], for a finite character θ of conductor pn, we have

LT,p(z)(θ) = ε(θ−1)ϕn exp∗(zθ
−1

),

where ε(θ−1) denotes the epsilon factor defined as in [37, §2.8].
Let ye ∈ W [[Γ]]× be such that ρ̃(1 +X) = ye · e (cf. [20, p. 15], our ye corresponds to 

he in [20]). If θ is as above, it follows from Theorem 3.4 of [20] that

yeσ̃p · Lε
T,e(z)(θ) = τ(θ−1)ϕn exp∗(σ̃p · zθ

−1
) = τ(θ−1)θ(σ̃p)nϕn exp∗(zθ

−1
),

where τ(θ−1) is the Gauss sum of θ−1 (we follow the convention of [37, §2.8] here, rather 
than the one in [20]). Recall that

ε(θ−1) = pnθ(σ̃p)n/τ(θ) = θ(σ̃p)nτ(θ−1).

Hence the result follows. �
Corollary 5.4. We have

LT,p ◦ ΩV,1 = u−1
e eι�0,

where �0 = log γ/ log κ(γ) and κ is the Lubin–Tate character on Γ induced from F .

Proof. Recall the explicit reciprocity law

〈F,G〉 = [Ωε
V,0(F ),Ωε

V,1(G)]

for all F, G ∈ H(Γ) ⊗Dcris(Tg) (see [31, Theorem 10.11]; notice that there is an element 
δ−1 ∈ Γ̃ in [31], which is sent to the identity in Γ; the action of ι in [31] also does not 
appear here since we have defined our pairings under a different convention). It follows 
from Lemma 5.2 that
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〈Lε
T,e

(
Ωε

V,1(F )
)
, η〉 = [Ωε

V,1(F ),Ωε
V,1(e⊗ η)]

= [�0Ωε
V,0(F ),Ωε

V,1(e⊗ η)]

= 〈�0F, e⊗ η〉
= 〈eι�0F, η〉

Since this holds for all F and η, and the pairing [−, −] is non-degenerate, the result 
follows from Proposition 5.3. �

We set

Qh = 1
α− β

(
α −β
−p p

)
. (5.2)

This matrix diagonalizes Bh:

Q−1
h BhQh =

(
α 0
0 β

)
.

We normalize the choice of ϕ-eigenvectors so that

v∗h,λ = ϕ(v0) −
1
λ
v0,

where v0 is an O-basis of Fil0 Dcris(V ). Note that v∗h,α ≡ v∗h,β mod Fil0 Dcris(V ) and 
thus (5.1) holds. The calculations in [16, §2.3] show that we have a decomposition

(
〈LT,p(−), v∗h,α〉
〈LT,p(−), v∗h,α〉

)
= Q−1

h Mlog,h

(
Col�T,p

Col�T,p

)
(5.3)

for certain Coleman maps Col�/�T,p. We compare these maps with the ones given by Corol-
lary 4.5 using the primitive Q-system constructed in §4.2. We first recast the latter in 
terms of LT,p.

Proposition 5.5. Let d = (dm)m≥0 be the primitive Q-system defined as in Theorem 4.25, 
where e is chosen as in Lemma 5.2 and write Cold,m for the maps on H1(km, T ) given 
by Definition 4.3. Let z ∈ H1(km, T ) and pick a lifting z ∈ H1

Iw(k∞, T ) of z. Then,

Cold,m(z) ≡ pm+1ue〈LT,p(z), ϕm+1(v)〉 mod ωm

for some v = ϕ(v0), where v0 is an O-basis of Fil0 Dcris(T ), which is independent of m.

Proof. It follows from Remark 4.16 that

Cold,m(z) ≡ [z,Ωε
V,1(pm+1e⊗ ϕm+1(v))] mod ωm.
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By Lemma 5.2 and Proposition 5.3, the right-hand side is given by

pm+1〈Lε
T,e(z), ϕm+1(v)〉 = pm+1〈ueLT,p(z), ϕm+1(v)〉,

which concludes the proof of the proposition. �
Corollary 5.6. For • ∈ {�, �}, we have Col•d = ueCol•T,p. In particular, Col•d and Col•T,p

have the same kernel.

Proof. A direct calculation shows that

Bm+1
h Qh

(
〈LT,p(−), v∗h,α〉
〈LT,p(−), v∗h,β〉

)
= pm+1

(
〈LT,p(−), ϕm+2(v0)〉
−〈LT,p(−), ϕm+1(v0)〉

)
.

It follows from (5.3) that

Hh,m

(
Col�T,p

Col�T,p

)
≡ pm+1

(
〈LT,p(−), ϕm+1(v)〉
−〈LT,p(−), ϕm(v)〉

)
mod ωm. (5.4)

Combined with Proposition 5.5 and Corollary 4.5, we deduce that

ueHh,m

(
Col�T,p

Col�T,p

)
≡ Hh,m

(
Col�d
Col�d

)
mod ωm.

Hence the result follows after letting m → ∞. �
6. Coleman maps and congruences

Let h1 and h2 be weight two OL-valued p-non-ordinary Hecke eigenforms on two 
Shimura curves X1 = XM+

1 ,M−
1

and X2 = XM+
2 ,M−

2
, which are not necessarily of the 

same level, such that

Th1,n � Th2,n

as GQp
-representations for some integer n ≥ 1. Our goal is to study the compatibility 

of Coleman maps modulo 	n. We remark that, even though the main result of the 
present article (cf. Theorem 10.1) concerns an eigenform f on the classical modular 
curve X0(N0), the methods to prove this result dwells on congruences between modular 
forms on more general Shimura curves.

6.1. The split case

We assume that p splits in K and fix a prime p above p.
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For h ∈ {h1, h2}, let N(Th) denote the Wach module attached to Th|GQp
(see for 

example [8, §II.1]). Note that N(Th) is a free OL⊗A+
Qp

-module of rank 2, equipped with 

an action by Γcyc := Gal(Qp(μp∞)/Qp). Here, A+
Qp

= Zp[[π]], on which σ ∈ Γcyc and 

ϕ act Zp-linearly via π �→ (1 + π)χcyc(σ)−1, where χcyc is the cyclotomic character and 
π �→ (1 +π)p−1 respectively. Furthermore, there is an action of ϕ on N(Th)[q−1], where 
q = ϕ(π)/π, and a filtration

Fili N(Th) = {x ∈ N(Th) : ϕ(x) ∈ qiN(Th)}.

We recall that there is an isomorphism of filtered modules

Dcris(Th) � N(Th)/πN(Th).

Furthermore, [8, Théorème IV.1.1] tells us that

N(Th1)/(	n) � N(Th2)/(	n). (6.1)

In particular, this gives an isomorphism of filtered modules

Dcris(Th1)/(	n) � Dcris(Th2)/(	n). (6.2)

Let F∞ be the unramified Zp-extension of Qp and write Fn for the sub-extension of 
degree pn over Qp. Let F∞ = F∞(μp∞). We write

NF∞(Th) =
(
lim←−−OFn

)
⊗̂N(Th).

Recall from [37, Proposition 4.5] that there is an isomorphism

H1
Iw(F∞, Th) � NF∞(Th)ψ=1.

This gives the isomorphism

H1
Iw(F∞, Th/(	n)) � NF∞(Th)ψ=1/(	n). (6.3)

Note that lim←−−OFn
is isomorphic to the Yager module, which is free of rank-one 

over Zp[[U ]] and can be identified with a submodule of ΛW (U) = W [[U ]], where 
U = Gal(F∞/Qp).

Let G = Gal(F∞/Qp) � Γcyc × U . We write ΛW (G) = W [[G]]. Recall from [37, 
Definition 4.6] that the two-variable Perrin-Riou map is the Λ(G)-morphism defined by

LTh
: H1

Iw(F∞, Th) � NF∞(Th)ψ=1 1−ϕ−→ ΛW (U)⊗̂ϕ∗N(Th)ψ=0

↪→ ΛW (U)⊗̂H(Γcyc) ⊗Dcris(Th).
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Fix a topological generator γcyc of Γcyc and write ωcyc
m = γpm

cyc − 1. Let ΛW (G)m =
ΛW (G)/ωcyc

m .

Lemma 6.1. The map (1 ⊗ ϕ−m−1) ◦ LTh
mod ωcyc

m induces a ΛW (G)-morphism

LTh,m : H1
Iw(F∞(μpm+1), Th) → ΛW (G)m ⊗Dcris(Th).

Proof. This follows from [35, Lemma 3.8]. �
Lemma 6.2. The map LTh,m induces a ΛW (G)-morphism

LTh,m,n : H1
Iw(F∞, Th,n) → ΛW (G)m ⊗Dcris(Th)/(	n).

Proof. It follows from (6.3) that H1
Iw(F∞, Th)/(	n) � H1

Iw(F∞, Th,n). Therefore, the 
lemma just follows from Lemma 6.1. �
Proposition 6.3. We have the following commutative diagram

H1
Iw(F∞(μpm+1), Th1,n)

Lh1,m,n

ΛW (G)m ⊗Dcris(Th1)/(	n)

H1
Iw(F∞(μpm+1), Th2,n)

Lh2,m,n

ΛW (G)m ⊗Dcris(Th2)/(	n),

where the vertical maps are induced from (6.1), (6.2) and (6.3).

Proof. As can be seen in [35, proof of Lemma 3.8], the morphism (1 ⊗ϕ−m−1) ◦ (1 −ϕ)
mod ωcyc

m is represented by a matrix defined over ΛW (G) with respect to bases of Λ(G)-
bases of NF∞(Th)ψ=1 and Dcris(Th). Therefore, the maps Lh,m,n are compatible with the 
vertical maps in the commutative diagram. �

Recall the maps Col�/�Th,p
from (5.3). We write Col�/�Th,p,n

for the induced maps

Col�/�Th,p,n
: H1

Iw(k∞, Th,n) −→ Λ/(	n). (6.4)

Corollary 6.4. Let • ∈ {�, �}. The maps Col•Th1 ,p,n
and Col•Th2 ,p,n

agree up to a unit under 
the identification H1

Iw(k∞, Th1,n) � H1
Iw(k∞, Th2,n).

Proof. By duality,

pm+1〈Lh,p, ϕ
m+1(vh)〉 = 〈ϕ−m−1 ◦ Lh,p, vh〉

where vh is given as in Proposition 5.5. By construction, vh1 and vh2 agree up to a 
unit under the isomorphism (6.2). Thus, the corollary follows from (5.4) and Proposi-
tion 6.3. �
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As a consequence, the subgroups H1,•(km, Th,n) and H1
•(km, Ah,n) in Definition 4.8

are preserved under congruences.

6.2. The inert case

Suppose in this section that p is inert in K. In §4.3, we have only considered primitive 
Q-systems for Tf,n. We discuss how to extend this construction to more general cases. 
To do so, we first establish a result on the compatibility of the Bloch–Kato subgroups 
H1

f under congruences, which has been proved in [21, Theorem 3.10] (see also [23] where 
a similar question has been studied). We present an alternative proof.4

Proposition 6.5. Suppose that h1 and h2 are elliptic newforms of weight 2 (on any one 
of the Shimura curves considered in this paper) with Hecke eigenvalues in OL, such that

Th1,n
∼−→ Th2,n (6.5)

as GQp
-representations for some positive integer n that is a multiple of ord�(p). If K

is a finite extension of Qp, then the natural isomorphism H1(K , Th1,n) � H1(K , Th2,n)
induces an isomorphism

H1
f (K , Th1,n) � H1

f (K , Th2,n).

Proof. Recall that H1
f (K , Thi,n) (for i = 1, 2) is defined as the natural image of 

H1
f (K , Thi

)/	nH1
f (K , Thi

). We therefore need to establish a natural isomorphism

H1
f (K , Th1)/	nH1

f (K , Th1)
∼−→ H1

f (K , Th2)/	nH1
f (K , Th2) .

It suffices to do so for quotients by powers p in place of powers of 	. As noted in [23, 
Remark 1.1.4, Item 1.c], this follows from [40, A.2.6].

We briefly outline the argument for the convenience of the reader. We shall use the 
notation from [40, Appendix A] until the end of this proof without any additional warn-
ing.

We begin by noting that the Galois representations Thi
arise as the Tate module of a 

Barsotti–Tate group (associated to the corresponding abelian schemes). Let Hi = (Hi,n)
denote the corresponding Barsotti–Tate groups, so that Thi

= Tp(Hi) := lim←−−n
Hi,n(Qp)

and Thi,n = Hi,n(Qp). The isomorphism (6.5) is equivalent to an isomorphism

H1,n(Qp)
∼−→ H2,n(Qp) . (6.6)

It follows from [40, A.1.2] (since Hi,n are defined over Zp and p > 2) that we have an 
isomorphism

4 This proof is based on a suggestion of Jan Nekovář from his MathSciNet review on the aforementioned 
article.

https://mathscinet.ams.org/mathscinet/article?mr=2400724
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H1,n
∼−→ H2,n (6.7)

of finite flat group schemes, which is uniquely determined by the isomorphism (6.6).
Let us put X(Hi) := lim←−−n

H1
fl(OK , Hi,n) as the inverse limit of the indicated flat 

cohomology groups. The proof of the proposition follows from the following chain of 
natural isomorphisms:

X(H1)/pnX(H1)

∼
[40, A.2.6.2]

+
[40, A.2.6.3]

∼

[40, A.2.6.5]
H1

f (K , Th1)/pnH1
f (K , Th1)

H1
fl(OK , H1,n)

∼(6.7)

H1
fl(OK , H2,n) ∼

[40, A.2.6.2]
+

[40, A.2.6.3]

X(H2)/pnX(H2)
∼

[40, A.2.6.5]
H1

f (K , Th2)/pnH1
f (K , Th2).

�
We shall henceforth adopt the following convention.

Convention 6.6. If we denote a positive integer by n, then it will be assumed to be 
divisible by ord�(p). Strictly speaking, this is relevant only when we rely on Proposi-
tion 6.5, but since this restriction on the choices of n is harmless as regards to our proof 
of Theorem 1.1, the convention will be in place from now on.

Corollary 6.7. Let h ∈ S2(T /
L
, Zp) be a p-indivisible Hecke eigenform such that Th,n �

Tf,n as GQp
-representations for some integer n ≥ 1. Then there exists a primitive Q-

system for the representation Th,n.

Proof. Since p ≥ 5, we have ap(f) = 0. Consequently, ap(h) ≡ 0 mod pn. The images 
of the elements dm ∈ H1

f (km, Tf ) given by Theorem 4.26 in H1
f (km, Tf,n) then give rise 

to a primitive Q-system for Th,n via the isomorphism afforded by Proposition 6.5. �
As a consequence, the resulting subgroups H1,•(km, Th,n) and H1

• (km, Ah,n) as in 
Definition 4.8 are preserved under congruences.

7. Selmer groups

Recall that K∞ is the anticyclotomic Zp-extension of K. For an integer m ≥ 0, let 
Km ⊂ K∞ denote the unique subextension such that [Km : K] = pm.
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7.1. Let h ∈ S2(T /
L
, OL) be a 	-indivisible Hecke eigenform. Assume that

Th,n � Tf,n, ( hence Ah,n � Af,n)

as GQ-representations for some integer n ≥ 1.
For a rational prime � and X = A, T , let

Km,� := Km ⊗Q Q�, H1(Km,�, Xh,n) :=
⊕
λ|�

H1(Km,λ, Xh,n),

where the direct sum runs over all primes of Km above �. We have the natural restriction 
map

res� : H1(Km, Xh,n) → H1(Km,�, Xh,n).

Write H1
f (Km,�, Xh,n) ⊂ H1(Km,�, Xh,n) for the Bloch–Kato subgroup. The singular 

quotient is given by

H1
sing(Km,�, Xh,n) := H1(Km,�, Xh,n)

H1
f (Km,�, Xh,n)

Definition 7.1. The Bloch–Kato Selmer group of Ah,n (resp. Tf,n) over Km is defined to 
be

Sel(Km, Ah,n) := ker
(
H1(Km, Ah,n) →

∏
�

H1
sing(Km,�, Ah,n)

)
,

H1
f (Km, Th,n) := ker

(
H1(Km, Th,n) →

∏
�

H1
sing(Km,�, Th,n)

)
.

We set

Sel(K∞, Th,n) := lim−−→
m

Sel(Km, Th,n) ,

Ĥ1(K∞, Th,n) := lim←−−
m

H1
f (Km, Th,n).

Furthermore, define Sel? and H1
? (? = 0, ∅) by replacing H1

sing(Km,p, Xh,n) with 
H1(Km,p, Xh,n) and 0 respectively (X = T, A).

Definition 7.2. Let F• (resp. F•) be the Selmer structure5 on the GKm
-representation 

Ah,n (resp. Th,n) arising from the Bloch–Kato local condition at primes away from p and 

5 In the sense of [38], Definition 2.1.1.



A. Burungale et al. / Advances in Mathematics 439 (2024) 109465 33
H1
• (Km,p, Ah,n) (resp. H1,•(Km,p, Th,n)) at primes p of Km above p. The Selmer groups 

associated with these Selmer structures (cf. [38], §2.1) are denoted by

Sel•(Km, Ah,n) := ker

⎛⎝H1(Km, Ah,n) →
∏
��p

H1
sing(Km,�, Ah,n) ×

∏
p|p

H1(Km,p, Ah,n)
H1

• (Km,p, Ah,n)

⎞⎠ ,

H1
• (Km, Th,n) := ker

⎛⎝H1(Km, Th,n) →
∏
��p

H1
sing(Km,�, Th,n) ×

∏
p|p

H1(Km,p, Th,n)
H1,•(Km,p, Th,n)

⎞⎠ .

We further define

Sel•(K∞, Ah,n) := lim−−→
m

Sel(Km, Ah,n) , Sel•(K∞, Ah) := lim−−→
n

Sel•(K∞, Ah,n).

Ĥ1
• (K∞, Th,n) := lim←−−

m

H1
• (Km, Th,n) .

For 0 ≤ m ≤ ∞, we similarly define the Selmer groups Sel0(Km, Af ), Sel�(Km, Af ), 
Sel�(Km, Af ) and Sel�(Km, Af ).

Note that the local conditions H1
� (Km,p, Af ) and H1

� (Km,p, Af ) can be identified with 
lim−−→n

H1
� (Km,p, Af,n) and lim−−→n

H1
� (Km,p, Af,n) respectively, thanks to Corollary 4.11 ii).

We can now state the flat/sharp Iwasawa main conjectures in our current setting.

Conjecture 7.3. For • ∈ {�, �}, the Λ-module Sel•(K∞, Af )∨ is Λ-torsion. Furthermore,

char(Sel•(K∞, Af )∨) = (Lp(f,K)•).

7.2. Our main goal in this subsection is to introduce a useful set of primes (relative to 
the eigenform f) and study the p-local properties of the associated Galois representation 
at these primes.

Definition 7.4. A rational prime � is said to be n-admissible relative to f if it satisfies 
the following conditions:

i) � � pN0;
ii) � is inert in K;
iii) p � �2 − 1;
iv) pn divides � + 1 − a�(f) or � + 1 + a�(f).

As noted in [7, §2.2], it follows from the requirement i) that Tf,n is unramified at 
an n-admissible prime � and from the requirements iii) and iv) that the action of the 
Frobenius element over Q on this module is semisimple with distinct eigenvalues ±� and 
±1.
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We describe some useful properties of n-admissible primes (see [7, Lemma 2.6]), which 
one may verify based on the previous paragraph.

Lemma 7.5. Suppose that � is an n-admissible prime relative to f .

i) We have canonical isomorphisms

H1
f (K�, Tf,n) ∼−→ Tf,n/(Fr(�) − 1)Tf,n,

H1
sing(K�, Tf,n) ∼−→ Homcts(It

K�
, Tf,n)Fr(�)=1,

where IK�
⊂ GK�

is the inertia subgroup, It
K�

is the tame inertia, Fr(�) ∈ GK�
/IK�

is the Frobenius element over K at the prime (�).
ii) The choice of a topological generator t of It

K�
determines an isomorphism

H1
sing(K�, Tf,n) ∼−→ T

Fr(�)=�2

f,n

and in turn an isomorphism

H1
sing(K�, Tf,n) ∼−−→

φ
(�)
t

H1
f (K�, Tf,n)

of free OL/(	n)-modules of rank one.

Proof. i) The asserted first isomorphism is nothing but the composite

H1
f (K�, Tf,n) � H1(〈Fr(�)〉, Tf,n) ∼−→ Tf,n/(Fr(�) − 1)Tf,n,

where the last isomorphism arises from the evaluation at Fr(�). The asserted second 
isomorphism follows from the inflation-restriction sequence, combined with the fact 
that IK�

acts trivially on Tf,n and that any continuous homomorphism from IK�
into 

Tf,n necessarily factors through the tame quotient It
K�

.
ii) Since Fr(�) acts on It

K�
(by conjugation) as multiplication by �2, the asserted first 

isomorphism is nothing but the composite

H1
sing(K�, Tf,n) ∼−→ Homcts(It

K�
, Tf,n)Fr(�)=1 ∼−−→

evt

T
Fr(�)=�2

f,n ,

where evt denotes the evaluation at t map. The asserted second isomorphism is given 
by the composite

H1
sing(K�, Tf,n) ∼−→ T

Fr(�)=�2

f,n
∼−→ Tf,n/(Fr(�) − 1)Tf,n

∼−→ H1
f (K�, Tf,n) ,

where the second isomorphism is the natural projection. The fact that TFr(�)=�2

f,n is a 
free OL/(	n)-module of rank one follows from the fact that Fr(�) acts on Tf,n with 
eigenvalues �2 and 1, which are distinct modulo 	. This concludes the proof. �
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Corollary 7.6. Let � be an n-admissible prime relative to f . We then have the isomor-
phisms

∂� : lim←−−
m

H1
sing(Km,�, Tf,n) =: Ĥ1

sing(K∞,�, Tf,n) ∼−→ Λn , (7.1)

v� : lim←−−
m

H1
f (Km,�, Tf,n) =: Ĥ1

f (K∞,�, Tf,n) ∼−→ Λn , (7.2)

of Λn-modules determined by the choice of a topological generator t of It
K�

and an 

OL/(	n)-module basis of TFr(�)=�2

f,n . Any other choice changes ∂� and v� by multiplication 
by a unit in the ring OL/(	n).

Proof. This is an immediate consequence of Lemma 7.5 combined with [7, Lemma 
2.5]. �

Note that for an n-admissible prime �, [7, Lemma 2.5] equips us with natural isomor-
phisms

Ĥ1
sing(K∞,�, Tf,n) � H1

sing(K�, Tf,n) ⊗ Λ (7.3)

H1
f (K∞,�, Af,n) � HomOL

(
H1

sing(K∞,�, Tf,n) ⊗ Λ, L/OL

)
= HomOL

(
H1

sing(K�, Tf,n) ⊗ Λ,OL/(	n)
)

= HomΛ
(
H1

sing(K�, Tf,n) ⊗ Λ,Λn

)
� H1

sing(K�, Tf,n)∨ ⊗ Λι
n

� H1
f (K�, Af,n) ⊗ Λι

n ,

(7.4)

where the equality on the second line in (7.4) just follows from the fact that Tf,n is 
annihilated by 	n, the isomorphism on the fourth line is a consequence of H1

sing(K�, Tf,n)
being a free OL/(	n)-module of rank one, and the last isomorphism that of the local 
Tate duality.

Definition 7.7. Let S be a square-free integer prime to pN0. We define for ? ∈
{0, {}, �, �, �} the generalized Selmer group SelS,?(Km, Ah,n) by

SelS,?(Km, Ah,n) := ker

⎛⎝Sel?(Km, Ah,n) −→
⊕
�|S

H1(Km,�, Ah,n)

⎞⎠ .

Similarly, define H1
S,?(Km, Th,n) by

H1
S,?(Km, Th,n)

:= ker

⎛⎝H1(Km, Th,n) −→
⊕
p|p

H1(Km,p, Th,n)
H1

? (Km,p, Th,n) ⊕
⊕
��S

H1(Km,�, Tf,n)
H1

f (Km,�, Tf,n)

⎞⎠ ,



36 A. Burungale et al. / Advances in Mathematics 439 (2024) 109465
where H1
? (Km,p, Th,n) denotes H1(Km,p, Th,n), H1

f (Km,p, Th,n), 0 for ? = 0, {}, �, re-
spectively. Likewise, put

H1
S,•(Km, Th,n)

:= ker

⎛⎝H1(Km, Th,n) −→
⊕
p|p

H1(Km,p, Th,n)
H1,•(Km,p, Th,n) ⊕

⊕
��S

H1(Km,�, Tf,n)
H1

f (Km,�, Tf,n)

⎞⎠ ,

• ∈ {�, �} .

7.3. The aim of this subsection is to introduce the notion of an n-admissible set, which 
will be useful for the Euler system machinery employed in our proof of Theorem 1.1. 
Given a non-empty set of rational primes S, we will denote the set of square-free products 
of primes in S also by S, and vice versa.

Definition 7.8. A set S of rational primes is said to be n-admissible if SelS,�(K, Tf,n) = 0.

The following proposition shows that n-admissible sets exist.

Proposition 7.9. Let n be a positive integer and suppose that �1, · · · , �k are n-admissible 
primes. There exists an n-admissible set S that contains �1, · · · , �k.

Proof. This is a direct consequence of [7, Theorem 3.2], cf. the discussion just before 
Proposition 3.3 in [7]; see also [38, Corollary 4.1.9]. Note that neither the choice of 
local conditions at p nor the splitting behaviour of p in K/Q plays any role in the 
argument. �

A key utility of the notion of n-admissible sets is the following:

Proposition 7.10. If S is an n-admissible set and • ∈ {�, �}, then H1
S,•(Km, Tf,n) is a 

free Λm,n-module.

Proof. The following argument is essentially identical to the proof of [21, Proposition 
3.21].

It follows from [21, Proposition 3.20] that H1
S,0(Km, Tf,n) is a free Λm,n-module of 

rank #S − 2, and from Proposition 3.19 bis. That

#H1
S,�(Km, Tf,n) = #H1

S,0(Km, Tf,n) · #H1(Km,p, Tf,n) ,

where H1(Km,p, Tf,n) := ⊕p|pH
1(Km,p, Tf,n). The proofs of these properties in [21]

do not rely on the splitting behaviour of p in K/Q, but crucially rely on the N+-
minimality condition in (ram), i.e. ρf is ramified at primes dividing N+ (cf. the discussion 
in the paragraph following Assumption 1.7 in [32, §1.2]). Consequently, we have an exact 
sequence
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0 −→ H1
S,0(Km, Tf,n) −→ H1

S,�(Km, Tf,n) −→ H1(Km,p, Tf,n) −→ 0 . (7.5)

Since

H1
S,•(Km, Tf,n) := ker

⎛⎝H1
S,�(Km, Tf,n) −→

⊕
p|p

H1(Km,p, Tf,n)
H1

• (Km,p, Tf,n)

⎞⎠ , • = �, � ,

it follows from (7.5) that the sequence

0 −→ H1
S,0(Km, Tf,n) −→ H1

S,•(Km, Tf,n) −→
⊕
p|p

H1
• (Km,p, Tf,n) −→ 0 (7.6)

is exact. By Lemma 4.12, the semi-local term⊕
p|p

H1
• (Km,p, Tf,n)

is a free Λm,n-module of rank 1 and so the proof concludes. �
Remark 7.11. We are grateful to the referee for indicating that Proposition 7.10 requires 
the N+-minimality condition in (ram). If ap(f) = 0, then one may relax the condition 
based on the strategy in [32] as follows. The strategy proceeds via level-lowering of f
modulo p to a newform g for which the N+-minimality holds, and utilizing vanishing of 
the μ-invariant of the plus/minus anticylotomic Selmer group associated to g. The latter 
in turn relies on vanishing of the μ-invariant of the plus/minus anticyclotomic p-adic 
L-function associated to g due to Pollack and Weston [44, Theorem 1.1(2)] if p splits in 
K. The inert case is an ongoing work of the first-named author with Kobayashi and Ota.

Let ∂� also denote the composite map

lim←−−
m

H1
S,�(Km, Tf,n) =: Ĥ1

S,�(K∞, Tf,n) res�−−→ Ĥ1(K∞,�, Tf,n) −→ Ĥ1
sing(K∞,�, Tf,n)

for any set of primes S and prime � as above.

8. Heegner point “bipartite” Euler systems

The aim of this section is to introduce the �/�-Heegner point “bipartite” Euler systems. 
The initial geometric input is provided by the work of Bertolini–Darmon [7] and our 
discussion parallels that in Darmon–Iovita’s work [21, §4], with the key difference that 
we no longer assume that the prime p is split in K/Q or ap(f) = 0. The verification of 
the p-local properties of these classes is significantly different from that in [21] (where 
ap(f) = 0), which will be described in §9.
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8.1. Let the notation be as in the previous sections and fix an n-admissible prime 
number � relative to f . We let

κ(�)m ∈ H1
�,�(Km, Tf,n)

denote the element given as in [7, §5–§8] and [21, §4] (see also [44, §4], especially Propo-
sition 4.4 in [44], to handle the scenario when OL �= Zp), which is obtained via the 
Jacquet–Langlands correspondence from a Heegner point of conductor pm+1 on an ap-
propriately chosen Shimura curve (denoted by XN+,N−� in [44]). Note that this class 
depends on the choice of an auxiliary rational prime q coprime to pN�, which we fix 
throughout.

8.2. The cohomology classes {κ(�)m} satisfy the following fundamental trace relation:

corKm+1/Km
κ(�)m+1 = ap(f)κ(�)m − resKm/Km−1κ(�)m−1 (8.1)

for any integer m ≥ 1. The reader is invited to compare (8.1) with the relation (4) in 
the definition of a primitive Q-system (cf. Definition 4.1).

8.3. As part of Theorem 8.1 below, we introduce and outline the main properties 
of the �/�-Heegner points. We will make use of these properties in §10 as one of the 
key global inputs to prove Theorem 1.1. Theorem 8.1 is a generalization of the material 
covered in §4, up until the statement of Proposition 4.4 in [21].

Theorem 8.1. Fix a positive integer n and an n-admissible prime � relative to f . Let S
be any n-admissible set that contains �. For any positive integer m, we have a unique 
pair of cohomology classes(

κ(�)�m
κ(�)�m

)
∈ H1

S,�(Km, Tf,n)⊕2/ ker(Hf,m) ·H1
S,�(Km, Tf,n)⊕2

that are independent of the choice of S, where Hf,m is the 2 × 2-matrix given as in 
Definition 3.3, satisfying the following properties:

i) We have

Hf,m

(
κ(�)�m
κ(�)�m

)
=

(
κ(�)m

−resKm/Km−1 (κ(�)m−1)

)
,

where the equality takes place in H1
S,�(Km, Tf,n)⊕2.

ii) We have the containment

corKm+1/Km

(
κ(�)�m+1

�

)
−
(
κ(�)�m
κ(�)�

)
∈ ker(Hf,m) ·H1

S,�(Km, Tf,n)⊕2 .

κ(�)m+1 m
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The proof of Theorem 8.1 will be given after the following preparatory result.

Proposition 8.2. Let n be a positive integer and S an n-admissible set of rational primes. 
For any positive integer m, the corestriction map

corKm+1/Km
: H1

S,�(Km+1, Tf,n) −→ H1
S,�(Km, Tf,n)

is surjective.

Proof. For a pair of positive integers m and n, let Λ†
m,n denote the free Λm,n-module of 

rank one on which GK acts via the canonical morphism

GK � Γ ↪→ Λ× −→ Λ×
m,n .

Shapiro’s lemma gives rise to a natural identification

s : H1
S,�(Km, Tf,n) ∼−→ H1

S,�(K,Tf,n ⊗OL
Λ†
m,n)

:= ker

⎛⎝H1(GK,Σ, Tf,n ⊗OL
Λ†
m,n) −→

∏
v�pS

H1(Kur
v , T Iv

f,n ⊗OL
Λ†
m,n)

⎞⎠ ,

where Σ is the set of primes of K that lie above those dividing pNS; GK,Σ = Gal(KΣ/K)
and KΣ is the maximal extension of K unramified outside Σ. Moreover, we have a 
commutative diagram

H1
S,�(Km+1, Tf,n) s

∼

corKm+1/Km

H1
S,�(K,Tf,n ⊗OL

Λ†
m+1,n)

H1
S,�(Km, Tf,n)

s

∼
H1

S,�(K,Tf,n ⊗OL
Λ†
m,n)

where the vertical arrow on the right is induced from the canonical projection Λm+1,n →
Λm,n. Hence, to conclude the proof, we need to prove that the natural map

H1
S,�(K,Tf,n ⊗OL

Λ†
m+1,n) −→ H1

S,�(K,Tf,n ⊗OL
Λ†
m,n)

is surjective.
Note that H1

S,�(K, Tf,n ⊗OL
Λ†
m,n) can be identified with the cohomology of a 

Greenberg–Selmer complex R̃Γf(GK,Σ, ΔS , Tf,n ⊗OL
Λ†
m,n) (cf. [39]) in degree 1, which 

is given by the Greenberg (unramified) local conditions at all primes v ∈ Σ with v � pS

and for v | pS, by the conditions

ι+v : C•(Gv, Tf,n ⊗OL
Λ†
m,n) id−→ C•(Gv, Tf,n ⊗OL

Λ†
m,n) ,
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where Gv = Gal(Kv/Kv). The fundamental base change property of Selmer complexes 
(cf. the proof of Proposition 8.4.8.1 in [39]) yields the exact sequence

H1
S,�(K,Tf,n ⊗OL

Λ†
m+1,n) −→ H1

S,�(K,Tf,n ⊗OL
Λ†
m,n)

−→ H̃2
f (GK,Σ,ΔS , Tf,n ⊗OL

Λ†
m+1,n)[γ − 1],

where

H̃•
f (GK,Σ,ΔS , Tf,n ⊗OL

Λ†
m+1,n) = H•(R̃Γf(GK,Σ,ΔS , Tf,n ⊗OL

Λ†
m+1,n))

denotes the cohomology and we have used the natural identification

H̃1
f (GK,Σ,ΔS , Tf,n ⊗OL

Λ†
j,n) ∼−→ H1

S,�(K,Tf,n ⊗OL
Λ†
j,n) , j = m,m + 1

arising from [39, 6.1.3.2]. It thus suffices to show that

H̃2
f (GK,Σ,ΔS , Tf,n ⊗OL

Λ†
m+1,n) = {0},

which by Nakayama’s lemma is equivalent to showing that

H̃2
f (GK,Σ,ΔS , Tf,n ⊗OL

Λ†
m+1,n)/(γ − 1)H̃2

f (GK,Σ,ΔS , Tf,n ⊗OL
Λ†
m+1,n) = {0} .

The base change property of Selmer complexes combined with the fact that

H3(R̃Γf(GK,Σ,ΔS , Tf,n ⊗OL
Λ†
m+1,n)) = {0}

(which follows from the irreducibility of the residual GK-representation and the Matlis 
duality for Selmer complexes; cf. [39, Theorem 6.3.4]) shows that the desired vanishing 
is equivalent to the vanishing of

H̃2
f (GK,Σ,ΔS , Tf,n ⊗OL

Λ†
m+1,n/(γ − 1)) = H̃2

f (GK,Σ,ΔS , Tf,n) .

By Matlis duality for Selmer complexes, we have a natural isomorphism

H̃2
f (GK,Σ,ΔS , Tf,n) � Hom

(
SelS,�(K,Af,n),Qp/Zp

)
.

Since S is as an n-admissible set, we have

SelS,�(K,Af,n) = {0} ,

and so the proof concludes. �
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Proof of Theorem 8.1. For any positive integer m, choose a Λm,n-module basis {ei,m}i
of H1

S,�(Km, Tf,n) such that

corKm+1/Km
(ei,m+1) = ei,m . (8.2)

This is possible thanks to Proposition 7.10 and Proposition 8.2.
For a rational prime � as in Theorem 8.1, write

κ(�)m =
∑
i

ri,m · ei,m , ri,m ∈ Λm,n .

By (8.1) and (8.2),

πm+1,m (ri,m+1) = ap(f)ri,m − ξm−1 (ri,m−1) . (8.3)

The argument in the proof of Theorem 3.5 shows that

Hf,m

(
r�i,m
r�i,m

)
≡

(
ri,m

−ξm−1(ri,m−1)

)
∈ Λ⊕2

m,n

for some 
(
r�i,m, r�i,m

)
∈ Λm,n × Λm,n such that

πm+1,m

(
r�i,m+1
r�i,m+1

)
≡

(
r�i,m
r�i,m

)
mod ker(Hf,m) .

Set

κ(�)•m :=
∑
i

r•i,m · ei,m , • = �, � .

Then 
(
κ(�)�m
κ(�)�m

)
evidently verifies the required properties and its uniqueness modulo 

ker(Hf,m) is clear by part i) of Theorem 8.1. �
Put Ĥ1

S,�(K∞, Tf,n) := lim←−−m
H1

S,�(Km, Tf,n) and similarly define Ĥ1
S,•(K∞, Tf,n) for 

• ∈ {�, �}.

Lemma 8.3. The natural map

Ĥ1
S,�(K∞, Tf,n)⊕2 −→ lim←−−

m

H1
S,�(Km, Tf,n)⊕2

ker(Hf,m) ·H1
S,�(Km, Tf,n)⊕2 (8.4)

is an isomorphism of Λ/(	n)-modules.
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Proof. Since H1
S,�(Km, Tf,n)⊕2 is a free (Λm,n × Λm,n)-module of finite rank, we have 

the following chain of natural isomorphisms:

lim←−−
m

H1
S,�(Km, Tf,n)⊕2

ker(Hf,m) ·H1
S,�(Km, Tf,n)⊕2

� lim←−−
m

(
H1

S,�(Km, Tf,n)⊕2 ⊗(Λ×Λ) (Λ × Λ)/(ker(Hf,m))
)

� lim←−−
m,k

(
H1

S,�(Km, Tf,n)⊕2 ⊗(Λ×Λ) (Λ × Λ)/(ker(Hf,k))
)

� lim←−−
m

lim←−−
k

H1
S,�(Km, Tf,n)⊕2 ⊗(Λ×Λ) (Λ × Λ)/(ker(Hf,k))

(3.3)
� lim←−−

m

H1
S,�(Km, Tf,n)⊕2 . �

Definition 8.4. Let (
κ(�)�
κ(�)�

)
∈ Ĥ1

S,�(K∞, Tf,n)⊕2

denote the unique element that maps to

{(
κ(�)�m
κ(�)�m

)}
∈ lim←−−

m

H1
S,�(Km, Tf,n)⊕2

ker(Hf,m) ·H1
S,�(Km, Tf,n)⊕2

under the isomorphism (8.4).

8.4. Reciprocity laws

In this subsection, we prove a pair of reciprocity laws that relate the classes κ(�)� and 
κ(�)� to the respective �/� p-adic L-functions. These results, which dwell crucially on [7, 
§8–§9] and are extensions of those proved in [21, §4], will play a central role in the proof 
of our main results in §10.

In what follows, let ∂� also denote the morphism

Ĥ1
S,�(K∞, Tf,n) res�−−→ Ĥ1(K∞,�, Tf,n) ∼−−−→

(7.1)
Λn ,

and likewise, for an n-admissible prime �′ � pNS, the morphism

Ĥ1
S,�(K∞, Tf,n) res�′−−−→ Ĥ1(K∞,�′ , Tf,n) ∼−−−→

(7.2)
Λn

by v�′ .
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8.4.1. First �/� reciprocity law
The following is the generalization of [21, Proposition 4.4] to the present setting.

Proposition 8.5. Let � be an n-admissible prime. We then have

∂�

(
κ(�)�
κ(�)�

)
=̇

(
L�
f

L�
f

)
mod 	n ,

where “=̇” means equality up to multiplication by an element of (Λ/(	n))×.

Proof. Let m be a positive integer. As utilized in the proof of [21, Proposition 4.4], the 
proof of [7, Theorem 4.1] in §8 of [7] can be adapted to the non-ordinary setting (we note 
that there is no assumption in [7] on the splitting behaviour of the prime p in K/Q) and 
gives

∂�

(
κ(�)m

resKm/Km−1 (κ(�)m−1)

)
≡

(
Lf,m

−ξm−1 (Lf,m−1)

)
mod 	n (8.5)

up to multiplication by units of Λm,n × Λm,n (where the ambiguous correction factors 
are compatible as m varies). Combining (8.5) with the conclusions of Theorem 3.5 and 
Theorem 8.1, we have

Hf,m · ∂�
(
κ(�)�m
κ(�)�m

)
≡ Hf,m ·

(
L�
f

L�
f

)
mod (	n, ωm)

up to multiplication by a unit of Λm,n × Λm,n. So

∂�

(
κ(�)�m
κ(�)�m

)
≡

(
L�
f

L�
f

)
mod (	n, ker(Hf,m)) (8.6)

up to multiplication by a unit of (Λm,n×Λm,n)/ ker(Hf,m). The asserted equality follows 
by passing to limit in (8.6) with respect to m. �
8.4.2. Rigid pairs (in the sense of Bertolini–Darmon)

Before describing the second �/� reciprocity law, we review [7, §3.3] to introduce 
the notion of rigid pairs of n-admissible primes {�1, �2}. This notion is relevant for our 
arguments only when ap �= 0, where f is assumed to be p-isolated.

Let Wf := ad0(Tf,1) denote the trace-zero adjoint of the residual Galois representation 
Tf,1. For any set6 of rational primes S that does not contain any prime that divides pN , 
let us denote by SelS(Q, Wf ) the Selmer group whose local conditions are given by the 

6 Recall our convention that S also denotes the square-free product of primes in S, except for the scenario 
when S = ∅, in which case the corresponding product is set to be 1.
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ones described in [7, Definition 3.5] (for the primes away from p) and the Bloch–Kato 
local condition (at p) (cf. [21], p. 322).

The relevance of the Selmer group Sel1(Q, Wf ) is due to the following:

Proposition 8.6. The newform f is p-isolated if and only if Sel1(Q,Wf ) = {0}.

Proof. This is [7, Proposition 3.6]. As noted in [21, p. 322], the argument in [7] still 
applies when f is non-ordinary at p. �
Definition 8.7. A pair {�1, �2} of admissible primes is said to be a rigid pair if 
Sel�1�2(Q, Wf ) = {0} (cf. [7, Definition 3.9]).

Lemma 8.8. If the newform f is p-isolated, then there exist primes �1, �2 ∈ Π such that 
{�1, �2} is a rigid pair.

Proof. As remarked in the proof of [21, Lemma 5.7], the proof of [7, Lemma 4.9] does 
not rely on the p-local properties of the underlying Galois representations. �
8.4.3. Second �/� reciprocity law

This subsection closely follows the discussion in [21, pp. 318–319], adapting it to the 
present set-up.

Let �1 and �2 be distinct n-admissible primes relative to f such that pn divides �i +
1 +εia�i(f) where εi ∈ {+1, −1} (i = 1, 2). Let B′ denote the definite quaternion algebra 
of discriminant Disc(B)�1�2. Let R′ be an Eichler Z[1/p]-order of level N+ in B′ (recall 
that N+ | N is the largest integer only divisible by primes that are split in K/Q). Put 
L′ := (R′)×

/
Z[1/p]×.

The following key proposition, which is a consequence of Ihara’s lemma for Shimura 
curves, is a slight extension of [7, Theorem 9.3] (to allow more general coefficients than 
Z/pnZ), that follows by the same argument as in [7].

Proposition 8.9 (Bertolini–Darmon). Suppose that �1 and �2 are distinct n-admissible 
primes relative to f such that pn divides �i + 1 + εia�i(f) where εi ∈ {+1, −1} (i =
1, 2). For L′ as above, there exists an eigenform h ∈ S2(T /

L′, OL/(	n)) such that the 
following congruences modulo 	n hold true:

Tqh ≡ aq(f)h (q � N�1�2), Uqh ≡ aq(f)h (q | N) ,

U�1h = ε1h, U�2h = ε2h .
(8.7)

If further f is p-isolated and the pair of primes {�1, �2} is rigid in the sense of Defini-
tion 8.7, then h lifts to an eigenform with OL-coefficients that satisfies the congruences 
(8.7). In this case, the eigenform h is p-isolated.
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We are now ready to formulate and prove the second �/� reciprocity law, which should 
be compared to [21, Proposition 4.6].

Proposition 8.10. Suppose that �1 and �2 are distinct n-admissible primes relative to f
such that pn divides �i + 1 + εia�i(f) where εi ∈ {+1, −1} (i = 1, 2). For L′ as above, let 
h ∈ S2(T /

L′, OL/(	n)) be an eigenform satisfying (8.7) for L′ as above. Let S1 be an 
n-admissible set of primes containing �1 but not �2, and define S2 exchanging the roles 
of �1 and �2. Let the elements

(
κ(�i)�
κ(�i)�

)
∈ Ĥ1

Si,�(K∞, Tf,n)⊕2 , i = 1, 2

be as in Definition 8.4.
We then have

v�2

(
κ(�1)�
κ(�1)�

)
=̇
(
L�
h

L�
h

)
=̇ v�1

(
κ(�2)�
κ(�2)�

)
(8.8)

in the ring Λ/(	n), where “=̇” denotes equality up to multiplication by elements of O×
L

and Γ.

Proof. By symmetry, it suffices to prove the first equality in (8.8).
Let m be a positive integer. As indicated in the proof of [21, Proposition 4.6], the 

proof of [7, Theorem 4.2] in §9 of [7] can be adapted to the non-ordinary setting (recall 
the arguments of [7] allow p to be split or inert in K/Q) and yields

v�2

(
κ(�1)m

resKm/Km−1 (κ(�1)m−1)

)
=

(
Lh,m

−ξm−1 (Lh,m−1)

)
(8.9)

up to multiplication by units of Λm,n×Λm,n (where the ambiguous correction factors are 
compatible as m varies). Combining (8.9) with Theorem 3.5 and Theorem 8.1, it follows 
that

Hh,m · v�2
(
κ(�1)�m
κ(�1)�m

)
≡ Hh,m ·

(
L�
h

L�
h

)
mod ωm

up to multiplication by a unit of Λm,n × Λm,n. So

v�2

(
κ(�1)�m
κ(�1)�m

)
=

(
L�
h

L�
h

)
mod (ωm, ker(Hh,m)) (8.10)

up to multiplication by a unit of (Λm,n×Λm,n)/ ker(Hf,m). The asserted equality follows 
by passing to limit in (8.10) with respect to m. �
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Remark 8.11. Assume that f is p-isolated and let h ∈ S2(T /Γ′, OL) be as in the Propo-
sition 8.9. We may start off with the eigenform h instead of f (but still rely on the 
isomorphism Th,n � Tf,n) and introduce �/�-Coleman maps and Selmer groups associ-
ated to Th,n, just by propagating the ones for f via the isomorphism Th,n � Tf,n. We 
may also construct Heegner classes κ(�)• (where • ∈ {�, �}) associated to h, by choosing 
an eigenform g′ modulo 	n on the Shimura curve XN+,N−

! � (where N−
! := N−�1�2) that 

is congruent to h. Moreover, [7, Lemma 4.9] shows that there exists a rigid pair (�′1, �′2)
for h and eigenform h′ on the Shimura curve XN+,N−

! �′1�
′
2

so that Proposition 8.9 holds 
with {f, h} replaced by {h, h′}.

Hence, the proofs of Proposition 8.5 and 8.10 also apply for the pair {h, h′}. When p
splits in K/Q, one may proceed directly, without relying on the isomorphism Th,n � Tf,n. 
This is carried out in §5 and §9.2; see also §6.1 where the constructions are shown to be 
compatible with congruences.

One may reiterate the above by replacing h with h′ and so on. We will crucially rely 
on these constructions in the inductive argument to prove the main result (cf. Theo-
rem 10.1).

9. The local properties of Heegner classes

The aim of this section is to describe the local properties of the �/� Heegner classes 
constructed in §8. We treat the split and inert cases separately: the latter appears in 
§9.1 (in which case we continue to assume that ap(f) = 0 and that the Hecke field of 
f is Q), while the former in §9.2. The underlying reason for this segregation is that the 
construction of Q-systems in the inert case is not presently available for eigenforms on 
a general Shimura curve.7

9.1. The inert case

In this subsection, the setting is as in §4.3. That is, we assume that p ≥ 5 is inert in 
K/Q, and the Hecke field of the p-isolated newform f is Q and so ap(f) = 0.

Our study is not directly built on the discussion in [21, §4] because of the issue noted 
in Remark 4.13. However, we will still rely on the notation therein, and let ωm, ω±

m and 
ω̃±
m ∈ Λ be as in §2 of [21]. Let κ(�)m ∈ H1

�,�(Km, Tf,n) be the Heegner class introduced 
in §8.1, where � is an n-admissible prime. Since ap(f) = 0,

corKm+1/Km
κ(�)m+1 = −resKm/Km−1κ(�)m−1

(cf. (8.1)) and so Theorem 8.1 may be explicitly restated (cf. [21, Proposition 4.3]):

7 We hope to consider this question in the near future.
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Proposition 9.1. Fix a positive integer n and an n-admissible prime � relative to f . Let S
be any n-admissible set that contains �. For any positive integer m, there exists a unique 
pair of cohomology classes

κ(�)+m ∈ H1
S,�(Km, Tf,n)/ω+

mH1
S,�(Km, Tf,n) ,

κ(�)−m−1 ∈ H1
S,�(Km−1, Tf,n)/ω−

mH1
S,�(Km−1, Tf,n)

that are independent of the choice of S, and that have the following properties.

i) For any even positive integer m, we have(
ω̃−
m 0
0 ω̃+

m−1

)(
κ(�)+m

κ(�)−m−1

)
= (−1)m

2

(
κ(�)m

κ(�)m−1

)
in H1

S,�(Km, Tf,n) ⊕ H1
S,�(Km−1, Tf,n).

ii) For any even positive integer m,

corKm+2/Km

(
κ(�)+m+2
κ(�)−m+1

)
−
(

κ(�)+m
κ(�)−m−1

)
∈
(
ω+
m 0
0 ω−

m

)
·
(
H1

S,�(Km, Tf,n) ⊕H1
S,�(Km−1, Tf,n)

)
.

Thanks to Proposition 9.1 ii), we can define the elements

κ(�)± ∈ Ĥ1
S,�(K∞, Tf,n)

by passing to limit.

Lemma 9.2.

i) resp(κ(�)±) ∈ Ĥ1,±(K∞,p, Tf,n).
ii) For any prime q of K that does not divide p�, we have resq(κ(�)±) ∈ Ĥ1

f (K∞,q, Tf,n)/
(ω+

m).

Proof. i) We prove the assertion for κ(�)+ by an argument which also applies to κ(�)−.
Note that

κ(�)+ = {κ(�)+m} ∈ lim←−−
m: even

H1
S,�(Km, Tf,n)/(ω+

m) = Ĥ1
S,�(K∞, Tf,n) .

The assertion therefore amounts to

resp
(
κ(�)+m

)
∈ H1,±(Km,p, Tf,n)/(ω+

m) (9.1)
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for any positive even integer m. To see this, observe that

ω̃−
n resp

(
κ(�)+m

)
= resp

(
ω̃−
mκ(�)+m

)
= (−1)m

2 resp(κ(�)m) ∈ H1
f (Km,p, Tf,n)

by Proposition 6.5 and the construction of Heegner classes as the Kummer images (cf. [7, 
§7]). Moreover, since H1

f (Km,p, Tf,n) ⊂ H1,+(Km,p, Tf,n) by definition, we deduce that

ω̃−
mresp

(
κ(�)+m

)
∈ H1,+(Km,p, Tf,n) . (9.2)

Consider the following exact sequence of Λm,n-modules:

0 −→ H1,+(Km,p, Tf,n) −→ H1(Km,p, Tf,n) −→ H1
/+(Km,p, Tf,n) −→ 0 , (9.3)

where the right-most module is just defined by the exactness. Applying the functor 
(−) ⊗ Λ/(ω+

m) to (9.3), we obtain the exact sequence

H1,+(Km,p, Tf,n)/(ω+
m) −→ H1(Km,p, Tf,n)/(ω+

m) −→ H1
/+(Km,p, Tf,n)/(ω+

m) −→ 0 .
(9.4)

Furthermore, we have the following commutative diagram with exact rows:

H1,+(Km,p, Tf,n)/(ω+
m)

f1

× ω̃−
m

v1

H1(Km,p, Tf,n)/(ω+
m)

f2

× ω̃−
m

v2

H1
/+(Km,p, Tf,n)/(ω+

m)

v

0

0 H1,+(Km,p, Tf,n)
g1

H1(Km,p, Tf,n)
g2

H1
/+(Km,p, Tf,n) 0 .

(9.5)
Note that the vertical maps in the middle and on the left are given by multiplication by 
ω̃−
n and they are injective since the Λ′

m,n-modules H1,+(Km,p, Tf,n) and H1(Km,p, Tf,n)
are both free by Lemma 4.12. The dotted vertical arrow v is induced from the exactness 
of the first row and the commutativity of the square on the left.

We would like to prove (9.1), which is equivalent to the assertion that

resp(κ(�)+m) ∈ im(f1) = ker(f2),

relying on the containment (9.2). Chasing the diagram (9.5), this is equivalent to checking 
that the vertical map v in this diagram is injective, which in turn is equivalent to, thanks 
to the snake lemma, that the induced map

H1,+(Km,p, Tf,n)/(ω̃−
n ) = coker(v1) −→ coker(v2) = H1(Km,p, Tf,n)/(ω̃−

n )

is injective. This follows from the following commutative diagram, where the vertical 
maps are injective since the Λ′

m,n-modules H1,+(Km,p, Tf,n) and H1(Km,p, Tf,n) are 
both free:
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H1,+(Km,p, Tf,n)/(ω̃−
m)

×ω+
m

H1(Km,p, Tf,n)/(ω̃−
m)

×ω+
m

H1,+(Km,p, Tf,n) H1(Km,p, Tf,n) .

(9.6)

ii) There is nothing to prove unless q ∈ S. In that case, this just follows by the argument 
for i), relying on the freeness of the q-local cohomology as in Corollary 7.6. �

Remark 9.3. Let h ∈ S2(T /
L′, OL) be an eigenform as in Remark 8.11 so that Th,n �

Tf,n. The discussion in §9.1 works equally well if f is replaced with h. Note that the 
definition of signed Selmer local conditions relies on the input from f only via the 
isomorphism Th,n � Tf,n.

9.2. The split case

Our strategy in the split case follows closely the one employed in [16, Corollary 3.15]. 
Concretely, it consists of the following steps:

(1) Show that the sharp/flat Heegner classes attached to a Hecke eigenform g satisfying 
the generalized Heegner hypothesis are related to p-stabilized Heegner classes via 
the equation (

zg,α
zg,β

)
= Q−1

g Mlog,g

(
zg,�
zg,�

)
;

(2) Study the images of the p-stabilized Heegner classes under the projections of the 
Perrin-Riou map to the ϕ-eigenspaces;

(3) Combine these with the decomposition given in (5.3) to calculate the image of the 
sharp/flat classes under the Coleman maps.

We note in particular that we have to work with a modular form with coefficients in a 
ring of characteristic zero in order for the p-stabilized classes and the projections of the 
Perrin-Riou map to exist. This is where the p-isolated hypothesis is utilized in the case 
where ap(f) �= 0.

9.2.1. p-Stabilized generalized Heegner classes
Fix a weight two Hecke eigenform g of level coprime to p on a Shimura curve XM+,M− , 

where M− is the square-free product of an even number of primes. Let α and β be the 
roots of the Hecke polynomial of g at p.

For m ≥ 1, write

zg,m ∈ H1(Km, Tg)
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for the Heegner class defined as in [7, §6]. They satisfy the norm relation

corKm+1/Km
(zg,m+1) − ap(g)zg,m + resKm/Km−1(zg,m−1) = 0. (9.7)

For λ ∈ {α, β}, write

zg,m,λ = 1
λm+1

(
zg,m − 1

λ
resKm/Km−1(zg,m−1)

)
∈ H1(Km, Vg)

for the p-stabilized class. These classes are compatible with respect to the corestriction 
map as m varies and so one obtains

zg,λ ∈ H1
Iw(K∞, Tg) ⊗H(Γ).

9.2.2. Local properties of p-stabilized Heegner classes
Now fix a prime p of K above p. We employ the same notation as in §4.2. Write zg,λ,p

for the image of zg,λ at p.

Proposition 9.4. There exists an element A ∈ Λ ⊗Zp
Qp such that

Ωε
Vg,1

(
A⊗ v∗g,λ

)
= zg,λ,p.

Proof. Let Lg be the Bertolini–Darmon–Prasanna type p-adic L-function associated to 
g due to Hunter Brooks [22] (see also [18]). Then, by taking A to be an appropriate 
multiple of Lg, we follow the same proof as in [31, Lemma 9.3]. �
Proposition 9.5. For λ ∈ {α, β}, we have

〈LTg,p(zg,λ,p), v∗g,λ〉 = 0.

If λ′ is the unique element of {α, β} \ {λ}, then

〈LTg,p(zg,λ,p), v∗g,λ′〉 = −〈LTg,p(zg,λ′,p), v∗g,λ〉.

Proof. It follows from Proposition 9.4 and Corollary 5.4 that

〈LTg,p(zg,λ,p), v∗g,λ〉 = 〈LTg,p(Ωε
Vg,1

(
A⊗ v∗g,λ

)
), v∗g,λ〉

= 〈u−1
e eι�0Av∗g,λ, v

∗
g,λ〉

= 0.

The localization of the classes zg,m are crystalline. In particular, the interpolation 
formulae of the Perrin-Riou map given by [37, Theorem 4.15] imply that LTg,p(zg,λ,p)
is divisible by the p-adic logarithm. Similar to [16, proof of Proposition 3.14], we may 
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compute the derivative of LTg,p(zg,λ,p) at a non-trivial finite character θ of Γ using [36, 
Theorem 3.1.3]. Note that if θ is a character of conductor pm, then

αmeθ · zg,α,p = βmeθ · zg,β,p,

where eθ is the idempotent corresponding to the character θ. For Lλ = LTg,p(zg,λ,p), we 
deduce that

L′
α(θ) ≡ L′

β(θ) mod Fil0 Dcris(Vg) ⊗Qp(Im(θ)).

Since this holds for infinitely many θ,

Lα ≡ Lβ mod H(Γ) ⊗ Fil0 Dcris(Vg).

Furthermore, in light of the first assertion of the proposition, we have

Lλ = 〈LTf ,p(zg,λ,p), v∗g,λ′〉vg,λ′ .

The last assertion of the proposition then follows from (5.1). �
9.2.3. Decomposition of Heegner classes

Let Bg and Cg,m be the matrices attached to g given as in Definition 3.3. Let Qg be 
the matrix defined in (5.2). Recall that

Mlog,g = lim
m→∞

B−m−1
g Cg,m · · ·Cg,1.

Proposition 9.6. There exist zg,�, zg,� ∈ H1
Iw(K∞, Tg) such that(

zg,α
zg,β

)
= Q−1

g Mlog,g

(
zg,�
zg,�

)
.

Furthermore, if g is a Hecke eigenform on XN+,N−� such that Tf,n � Tg,n as GQ-
representations, then for • ∈ {�, �}, the image of zg,• in Ĥ1

S,�(K∞, Tf,n) coincides with 
κ(�)• (after identifying Tf,n and Tg,n via this fixed isomorphism).

Proof. By definition,

Bm+1
g Qg

(
zg,m,α

zg,m,β

)
=

(
zg,m

−resKm/Km−1(zg,m−1)

)
.

Let n ≥ 1 be an integer. As in the proof of Theorem 8.1, by picking an auxiliary set of 
admissible primes S, the relation (9.7) implies that there exist classes zg,m,n,�, zg,m,n,� ∈
H1(Km, Tg,n) such that
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(
zg,m

−resKm/Km−1(zg,m−1)

)
≡ Cg,m · · ·Cg,1

(
zg,m,n,�

zg,m,n,�

)
mod 	n.

Furthermore, these classes are unique modulo (kerHg,m, 	n) and so they are compatible 
as n varies in the sense that if n′ ≥ n ≥ 1 are integers,

prn′/n

(
zg,m,n′,�

zg,m,n′,�

)
≡

(
zg,m,n,�

zg,m,n,�

)
mod (kerHg,m, 	n),

where prn′/n is the natural reduction map H1(Km, Tg,n′) → H1(Km, Tg,n). Hence, 
this gives rise to elements zg,m,�, zg,m,� ∈ H1(Km, Tg), which are unique up to mod-
ulo kerHg,m such that

Bm+1
g Qg

(
zg,m,α

zg,m,β

)
=

(
zg,m

−resKm/Km−1(zg,m−1)

)
= Cg,m · · ·Cg,1

(
zg,m,�

zg,m,�

)
.

Thus, the proposition follows by letting m → ∞. �
9.2.4. Vanishing of signed classes under Coleman maps

Lemma 9.7. For • ∈ {�, �}, let zg,•,p denote the localization of zg,• at p. Then 
Col•Tg,p(zg,•,p) = 0.

Proof. This just follows from Propositions 9.5 and 9.6 in combination with (5.3). See 
[16, Corollary 3.15] for a similar calculation. �
Theorem 9.8. For • ∈ {�, �}, we have

Col•d(zg,•,p) = 0.

Proof. This follows immediately from Lemma 9.7 and Corollary 5.6. �
We will apply Theorem 9.8 in the following scenario. Let h be a weight two cuspidal 

Hecke eigenform of level coprime to p on a Shimura curve XM+
0 ,M−

0
where M−

0 is a 
square-free product of an even number of primes. Let � be an n-admissible prime for 
h and put M+ := M+

0 and M− := M−
0 �. Let g denote a weight two cuspidal Hecke 

eigenform of level coprime to p on the Shimura curve XM+,M− such that Tg,n � Th,n. 
Let

κ(�)m ∈ H1
{�}(Km, Th,n)

denote the class that is image of the Heegner class zg,m,n := zg,m mod 	n under the 
isomorphism induced from Tg,n � Th,n. The construction in §8 gives rise to the �/�
Heegner classes for h. These classes enjoy the following local properties.
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Corollary 9.9. In the setting above:

i) resp(κ(�)•) ∈ Ĥ1,•(K∞,p, Th,n).
ii) For any prime q � p� of OK , we have resq(κ(�)•) ∈ Ĥ1

f (K∞,q, Th,n).

Proof. Let us denote by zg,•,n ∈ Ĥ1(K∞, Tg,n) the image of zg,• modulo 	n.
In view of Corollary 5.6 and the definition of H1,•(K∞,p, Th,n) as in §4.1, the con-

tainment in i) asserts for p | p that resp(κ(�)•) belongs to the kernel of Col•Th,p,n
as in 

(6.4). By Corollary 6.4 and the constructions, this is equivalent to checking the same 
for the map Col•Tg,p,n (after identifying Th,n and Tg,n via our fixed isomorphism). This 
follows from Theorem 9.8, as the classes κ(�)• and zg,•,n coincide (after identifying Th,n

and Tg,n via our fixed isomorphism) by Proposition 9.6.
The local property at q � p� is clear unless q ∈ S. When q ∈ S, the assertion follows 

from the local property of κ(�) (which is clear since κ(�) belongs to the Kummer image 
by definition), the freeness results in Corollary 7.6 and Theorem 8.1 i). �
10. Proof of the main result

We are now in a position to prove the main result of this article (Theorem 1.1 stated 
in the introduction):

Theorem 10.1. Let f ∈ S2(Γ0(N0)) be an elliptic newform and p � 6N0 a prime such 
that ap(f) has positive p-adic valuation. Let K be an imaginary quadratic field such that 
(DK , pN0) = 1 and that the hypotheses (cp), (def), (Im) and (ram) hold. Assume in 
addition:

◦ If p is split in K/Q and ap(f) �= 0, then the newform f is p-isolated (cf. Defini-
tion 3.2).

◦ If p remains inert in K/Q, then ap(f) = 0 and the Hecke field of f is Q.

Then we have

L•
f (L•

f )ι ∈ char(Sel•(K∞, Af,∞)∨) , • ∈ {�, �} .

Granted the input from earlier sections, the proof of Theorem 10.1 is essentially iden-
tical to [21, §5] and [44, §4.4], where the authors proved an analogous containment in 
anticyclotomic Iwasawa main conjecture for a newform f of weight 2 when p is split in 
K/Q and ap(f) = 0. The latter in turn dwells on the strategy in the groundbreaking 
work of Bertolini and Darmon [7, §4.2], where the authors considered the case of a new-
form f of weight 2 when ap(f) is a p-adic unit and OL = Zp. We provide a brief overview 
of the argument following [21, §5] and [44, §4.4].
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We remark that, even though the cases ap(f) �= 0 and ap(f) = 0 are treated separately 
(especially in §9 where the p-local properties of the signed Euler system are verified), 
the same Euler system argument applies to both the cases.

The proof of Theorem 10.1 can be reduced, thanks to [7, Proposition 3.1], to the 
following:

Theorem 10.2. For f as in Theorem 10.1, suppose that h ∈ S2(V/
L
, OL) is an eigenform 

such that

Th,n � Tf,n . (10.1)

Then for any ring homomorphism ϕ : Λ → O, where O is a discrete valuation ring, we 
have

ϕ(L•
h)2 ∈ Fitt0(Sel•(K∞, Ah,n)∨ ⊗ϕ O) , • ∈ {�, �}. (10.2)

Here Fitt0 denotes the zeroth Fitting ideal of an O-module.
In fact, by [7, Proposition 3.1], Theorem 10.1 follows if

ϕ(L•
f )2 ∈ Fitt0(Sel•(K∞, Af,n)∨ ⊗ϕ O) , • ∈ {�, �} , ϕ ∈ Hom(Λ,O) , (10.3)

which is a weaker version of (10.2). However, the proof of Theorem 10.2 proceeds by 
induction, which requires the passage to eigenforms on suitably chosen quaternion alge-
bras. So we consider the more general version of (10.3) in Theorem 10.2.

We will prove Theorem 10.2 in §10.1 below, adapting with minor modifications the 
arguments in [21, §5] (that were utilized checking the validity of (15) in [21]).

Before proceeding with the proof of Theorem 10.2, we remark that, as the arguments 
in §10.1 will show, the assumption in Theorem 10.2 that Th,n is isomorphic to Tf,n can 
be dropped when p is split in K/Q. Indeed, p-local constructions in §4 and §5 above do 
apply8 for a general p non-ordinary eigenform h on quaternion algebras when p splits.

In light of this observation, one can prove the following generalization of [21, Theorem 
5.2] and [44, Theorem 4.1]:

Theorem 10.3. Let h ∈ S2(T /
L
, OL) be a p-isolated newform such that ap(h) has positive 

p-adic valuation. Let K be an imaginary quadratic field with p split such that (DK , N0) =
1 and that the hypotheses (cp), (def), (Im) and (ram) hold. We then have

L•
hL•,ι

h ∈ char(Sel•(K∞, Ah,∞)∨) , • ∈ {�, �} .

8 For clarity, we further note that they do not apply in the inert case (even when ap(f) = 0), since we 
currently do not have a construction of primitive Q-systems (recorded in §4.3) in this level of generality. 
Once this construction becomes available, Theorem 10.3 can be proved also when p is inert in K/Q, but 
still assuming ap(h) = 0 and that h is Z-valued.
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10.1. Proof of Theorem 10.2

Let us fix O, ϕ, and the positive integer n, and write π for a uniformizer of O. We 
enlarge O if necessary to ensure that it contains an isomorphic copy of OL and will 
henceforth treat OL as a subring of O.

Also fix • ∈ {�, �} and put

th := ordπ (ϕ(L•
h)) .

We may assume without loss of generality that

i) th < ∞, since otherwise ϕ(L•
h) = 0.

ii) Sel•(K∞, Af,n)∨ ⊗ϕ O is non-trivial, as otherwise its initial Fitting ideal equals O.

We shall prove (10.3) by induction on th.

10.1.1. Let � be any (n +th)-admissible prime for f , and let S be an (n +th)-admissible 
set containing �. We explain how to use the classes

κ(�)• ∈ Ĥ1
{�},•(K∞, Tf,n+th) ⊂ Ĥ1

S,•(K∞, Tf,n+th)

as in Definition 8.4, whose local properties were verified in §9, to bound Sel•(K∞, Ah,n)∨
⊗ϕ O.

Let κϕ(�)• denote the image of κ(�)• inside

M := Ĥ1
S,•(K∞, Tf,n+th) ⊗ϕ O .

Note that M is free as an O/(	n+th)-module by Proposition 7.10. Put

ordπ(κϕ(�)•) := max{d ∈ N : κϕ(�)• ∈ πdM} .

Observe that

ordπ(κϕ(�)•) ≤ ordπ(∂�κϕ(�)•) = ordπ(ϕ(L•
h)) = th ,

where the inequality is a consequence of the fact that ∂� is a homomorphism and the 
equality follows from Proposition 8.5. Hence,

t := ordπ(κϕ(�)•) ≤ th .

Since M is a free O/(	n+th)-module, we may choose an element κ̃ϕ(�)• ∈ M so that

πtκ̃ϕ(�)• = κϕ(�)• .
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Observe that κ̃ϕ(�)• is well-defined modulo the πt-torsion subgroup M[πt] ⊂ M. 
Notice also that

M[πt] ⊂ ker
(
Ĥ1

S,•(K∞, Tf,n+th) ⊗ϕ O projn−−−→ Ĥ1
S,•(K∞, Tf,n) ⊗ϕ O

)
since t ≤ th, and as a result, the element

κ′
ϕ(�)• := projn(κ̃ϕ(�)•) ∈ Ĥ1

S,•(K∞, Tf,n) ⊗ϕ O � Ĥ1
S,•(K∞, Th,n) ⊗ϕ O

is well-defined. The key properties of κ′
ϕ(�)• that we will rely upon are recorded in 

Lemma 10.4 below, which one may compare to Lemmas 5.3 and 5.4 in [21].

Lemma 10.4. We have κ′
ϕ(�)• ∈ Ĥ1

{�},•(K∞, Th,n) ⊗ϕ O. Moreover:

i) ordπ(κ′
ϕ(�)•) := max{d ∈ N : κ′

ϕ(�)• ∈ πdĤ1
{�},•(K∞, Th,n) ⊗ϕ O} = 0.

ii) ordπ(∂�κ′
ϕ(�)•) = th − t.

iii) The element ∂�κ′
ϕ(�)• belongs to the kernel of the natural homomorphism

η� : Ĥ1
sing(K∞,�, Tf,n) ⊗ϕ O −→ Sel•(K∞, Ah,n)∨ ⊗ϕ O

induced by global duality.

Proof. Put S′ := S \ {�} and define the map ∂S′ :=
⊕

q∈S′ ∂q. We first note that

∂S′(κ̃ϕ(�)•) ∈
⊕
q∈S′

Ĥ1
sing(K∞,q, Tf,n+th) ⊗O

is annihilated by πt, as ∂S′(κϕ(�)•) = 0 since κϕ(�)• ∈ Ĥ1
{�},•(K∞, Tf,n+th) ⊗ϕ O

(cf. Lemma 9.2 and Corollary 9.9). This shows that

∂S′(κ′
ϕ(�)•) = projn ◦ ∂S′(κ̃ϕ(�)•) = 0 ,

since t ≤ th and the πt-torsion submodule of 
⊕

q∈S′ Ĥ1
sing(K∞,q, Tf,n+th) ⊗O is contained 

in the kernel of⊕
q∈S′

Ĥ1
sing(K∞,q, Tf,n+th) ⊗O projn−−−→

⊕
q∈S′

Ĥ1
sing(K∞,q, Tf,n) ⊗O .

The assertion that κ′
ϕ(�)• ∈ Ĥ1

{�},•(K∞, Th,n) ⊗ϕO thus follows from the prior discussion 

and the fact that projn maps Ĥ1
• (K∞,p, Tf,n+th) into Ĥ1

• (K∞,p, Tf,n) for any prime p of 
K above p.

Property i) follows from the construction of the element κ′
ϕ(�)•, whereas ii) is a direct 

consequence of Proposition 8.5. Note that even though L•
h is not defined for a general h as 
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�

in Theorem 10.2 (when p is inert), we may still define L•
h mod 	n via the isomorphism 

Th,n � Tf,n (cf. §3.2.1) and prove the desired equality in Proposition 8.5.
The proof of the final property is the same as that of [7, Lemma 4.6], where the ar-

gument does not rely on the p-local properties of the underlying Galois representations. 
Indeed, the asserted containment is an immediate consequence of the following commu-
tative diagram (together with the fact that κ′

ϕ(�)• ∈ Ĥ1
{�},•(K∞, Th,n) ⊗ϕ O as verified 

above), where the exactness of the first row is due to global reciprocity:

Ĥ1
{�},•(K∞, Th,n)

c �→ c⊗1

Ĥ1
sing(K∞,�, Th,n) Sel•(K∞, Ah,n)∨

Ĥ1
{�},•(K∞, Th,n) ⊗ϕ O Ĥ1

sing(K∞,�, Th,n) ⊗ϕ O Sel•(K∞, Ah,n)∨ ⊗ϕ O .

Note that to construct κ′
ϕ(�)• and to verify its key properties, we have relied on the 

isomorphism Th,n � Tf,n in the general case. When p is split in K, one may construct 
κ′
ϕ(�)• and verify these properties directly (cf. Remark 8.11).

10.1.2. We shall prove the base case of the induction to prove Theorem 10.2: it will 
be shown that (10.2) holds if th = 0.

Proposition 10.5. If th = 0, then Sel•(K∞, Ah,n) = {0}.

Proof. This is proved in a manner identical to [7, Proposition 4.7]. As noted in [21], the 
p-ordinary hypothesis in [7] plays no role in [7] and moreover, p is allowed to be inert in 
K/Q in [7].

We briefly summarize the argument, following the proof of [7, Proposition 4.7]. Ob-
serve that when th = 0, we have t = 0 as well (as 0 ≤ t ≤ th) and κ′

ϕ(�) = κϕ(�). Note that 
the assumption th = 0 is equivalent to L•

h being a unit. In this case, it follows from the 
first reciprocity law (Proposition 8.5) that ∂�κϕ(�) generates Ĥ1

sing(K∞,�, Tf,n)⊗ϕ, which 
is the source of the map η�. Moreover, Lemma 10.4 iii) tells us that ∂�κϕ(�) ∈ ker(η�), 
and so η� is the zero map. An argument relying on Nakayama’s lemma and Theorem 
3.2 of [7] shows that this is enough to conclude Sel•(K∞, Ah,n) = {0}. Note that [7, 
Theorem 3.2] is a purely �-local statement and applies to our setting. �

10.1.3. Having verified the base case of inductive argument to prove Theorem 10.2, 
we move on to establish the induction step. Fix an integer t0 > th.

Definition 10.6. Let Π denote the set of rational primes � with the following properties:

1) � is (n + t0)-admissible.
2) The quantity ordπ (κϕ(�)) is minimal as � varies among (n + t0)-admissible primes.



58 A. Burungale et al. / Advances in Mathematics 439 (2024) 109465
Note that the set Π is non-empty by Proposition 7.9. Let t denote the common value 
of ordπ (κϕ(�)) for � ∈ Π. As noted in §10.1.1, we have t ≤ th.

Lemma 10.7. t < th.

Proof. The proof of this assertion is identical to that of [7, Proposition 4.8], which dwells 
on a careful choice of an admissible prime relying on Theorem 3.2 in [7], in a manner 
similar to its use in the proof of Proposition 10.5. As remarked in the said proof, this 
theorem in [7] is an �-local statement and applies to our setting. �

We will choose a pair {�1, �2} of (n + t0)-admissible primes as follows, depending on 
whether ap(f) = 0 or not:

• When ap(f) �= 0 (in which case we assume that f is p-isolated): fix a rigid pair 
{�1, �2} ⊂ Π (in the sense of Definition 8.7; Lemma 8.8 guarantees the existence of 
such pairs).

• When ap(f) = 0: fix �1 ∈ Π and choose, using [7, Theorem 3.2] (see also [44], §4.4), 
an (n + t0)-admissible prime �2 so that v�2(s) �= 0, where s ∈ H1(K, Th,1) is the 
image of κ′

ϕ(�)•.

Let h′ ∈ S2(T /
L′, OL) denote an eigenform which satisfies the conclusions of Proposi-

tion 8.9 applied with h in the role of f . Note that h′ is p-isolated if f is.
We then have

t := ordπ(κϕ(�1)•) = ordπ(κϕ(�2)•) = v�1(κϕ(�2)•) = v�2(κϕ(�1)•) = th′

:= ordπ (ϕ(L•
h′)) ,

(10.4)

where the second and third equality, in the situation when ap(f) �= 0 (so that {�1, �2} is a 
rigid pair), can be verified as in the proof of [7, Lemma 4.9] (see Equation (42) in [7], note 
that the proof of the equalities therein does not make any reference to p-local properties 
of the form h, which we use in the role of f in [7]); and in the scenario when ap(f) = 0
arguing as in [44, §4.4]; whereas the fourth and fifth equalities are Proposition 8.5 applied 
with the eigenform h′ in place of f (cf. Remark 8.11). In particular, when ap(f) = 0, we 
have �2 ∈ Π as well.

10.1.4. For {�1, �2} ⊂ Π as in the previous paragraph, let Ch
�1�2

denote the cokernel 
of the inclusion

Sel�1�2,•(K∞, Ah,n) ⊂ Sel•(K∞, Ah,n)

of Selmer groups, where we recall that the Selmer group Sel�1�2,•(K∞, Ah,n) consists of 
classes in Sel•(K∞, Ah,n) that are locally trivial at primes dividing �1�2. Note that there 
is a natural injection
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Ch
�1�2 ↪→ H1

f (K∞,�1 , Ah,n) ⊕H1
f (K∞,�2 , Ah,n) (10.5)

by definitions. On passing to Pontryagin duals and setting Sh
�1�2

:= HomZp
(Ch

�1�2
, Qp/Zp), 

we have a natural exact sequence

0 −→ Sh
�1�2 −→ Sel•(K∞, Ah,n)∨ −→ Sel�1�2,•(K∞, Ah,n)∨ −→ 0 (10.6)

of Λ-modules, as well as a surjection

ηh : Ĥ1
sing(K∞,�1 , Th,n) ⊕ Ĥ1

sing(K∞,�2 , Th,n) −→ Sh
�1�2 (10.7)

induced from (10.5) and local Tate duality.
Note that the domain of ηh is isomorphic to (Λ/	nΛ)⊕2 by (7.1). We henceforth 

identify Ĥ1
sing(K∞,�1 , Th,n) ⊕ Ĥ1

sing(K∞,�2 , Th,n) with (Λ/	nΛ)⊕2 via this isomorphism. 
Let ηϕh denote the map induced from ηh on applying the functor − ⊗ϕ O. The domain 
of ηϕh is isomorphic to (O/	nO)⊕2. From Lemma 10.4 iii), it follows that the vectors

(∂�1κ′
ϕ(�1)•, 0) , (0, ∂�2κ′

ϕ(�2)•) ∈
(
Ĥ1

sing(K∞,�1 , Th,n) ⊕ Ĥ1
sing(K∞,�2 , Th,n)

)
⊗ϕ O

� (O/	nO)⊕2

fall within ker(ηϕh ). Since

th − th′ = ordπ

(
∂�1κ

′
ϕ(�1)•

)
= ordπ

(
∂�2κ

′
ϕ(�2)•

)
by Lemma 10.4 ii) and (10.4), we have a surjection

O/(	n, πth−th′ ) ⊕O/(	n, πth−th′ ) −→ Sh
�1�2 ⊗ϕ O,

and hence

π2(th−th′ ) ∈ Fitt0(Sh
�1�2 ⊗ϕ O) . (10.8)

10.1.5. We shall apply arguments similar to those in §10.1.4 also with the form h′ in 
place of h.

Consider the long exact sequence

0 −→ Ĥ1
• (K∞, Th′,n)

−→ Ĥ1
{�1�2},•(K∞, Th′,n)

res�1�2−−−−→ Ĥ1
sing(K∞,�1 , Th′,n) ⊕ Ĥ1

sing(K∞,�2 , Th′,n)

−→ Sel•(K∞, Ah′,n)∨ −→ Sel�1�2,•(K∞, Ah′,n)∨ −→ 0

induced from Poitou–Tate global duality. Let Sh′

�1�2
denote the image of res�1�2 , so that 

we have an exact sequence
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0 −→ Sh′

�1�2 −→ Sel•(K∞, Ah′,n)∨ −→ Sel�1�2,•(K∞, Ah′,n)∨ −→ 0 (10.9)

as well as an injection

Sh′

�1�2 ↪→ Ĥ1
sing(K∞,�1 , Th′,n) ⊕ Ĥ1

sing(K∞,�2 , Th′,n) . (10.10)

On passing to Pontryagin duals in (10.9) and (10.10), and setting

Ch′

�1�2 := HomOL
(Sh′

�1�2 , L/OL) = HomOL
(Sh′

�1�2 ,OL/(	n)),

we have the exact sequence

0 −→ Sel�1�2,•(K∞, Ah′,n) −→ Sel•(K∞, Ah′,n) −→ Ch′

�1�2 −→ 0 (10.11)

and a natural surjection(
H1

f (K�1 , Ah′,n) ⊕H1
f (K�2 , Ah′,n)

)
⊗ Λι

n

� Ĥ1
sing(K∞,�1 , Th′,n)∨ ⊕ Ĥ1

sing(K∞,�2 , Th′,n)∨ −→ Ch′

�1�2 ,
(10.12)

where the isomorphism in (10.12) is the one given in (7.4) that one deduces from local 
Tate duality. Let ηh′ denote the map (10.12) and ηϕh′ the map induced from ηh′ on 
applying the functor − ⊗ϕO. Recall that the source of ηϕh′ is isomorphic to (O/	nO)⊕2

by (7.4) and the isomorphisms

v�i : H1
f (K�i , Ah′,n) −→ OL/(	n) , i ∈ {1, 2}

which are determined by the choices of topological generators of the tame inertia sub-
groups It

�1
and It

�2
, respectively. We shall henceforth identify the source of ηϕh′ with 

(O/	nO)⊕2 via these isomorphisms.
For each i = 1, 2, the element v�iκ′

ϕ(�i) ∈ Ĥ1
f (K�i,∞, Th′,n) ⊗ϕ O can be regarded, 

thanks to the proof of [7, Lemma 2.5] (which allows us to identify Ĥ1
f (K�i,∞, Th′,n) with 

H1
f (K�i , Th′,n) ⊗Λ) and the self-duality isomorphism Th′,n � Ah′,n, as an element of the 

module H1
f (K�i , Ah′,n) ⊗OL

O. It follows from global duality that the vectors

(v�1κ′
ϕ(�2)•, 0) , (0, v�2κ′

ϕ(�1)•)

∈
(
Ĥ1

f (K∞,�1 , Th,n) ⊕ Ĥ1
f (K∞,�2 , Th,n)

)
⊗ϕ O

=
(
H1

f (K�1 , Ah′,n) ⊕H1
f (K�2 , Ah′,n)

)
⊗OL

O � (O/	nO)⊕2

belong to the kernel of ηϕh′ .

(10.13)

Moreover, since

ordπ

(
v�1κ

′
ϕ(�2)•

)
= ordπ

(
v�2κ

′
ϕ(�1)•

)
= th′ − t = 0 ,
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where the second and third equality holds by (10.4) and the definition of κ′
ϕ(�2)•. In 

other words,

{(v�1κ′
ϕ(�2)•, 0) , (0, v�2κ′

ϕ(�1)•)}

spans the source of ηϕh′ . This fact together with (10.13) implies that ηϕh′ is the zero map. 
By the definition of the surjection ηϕh′ , we infer that Ch′

�1�2
⊗ϕ O = 0, and in turn also 

that Sh′

�1�2
⊗ϕ O = 0. In view of the exact sequence (10.9), we conclude that the natural 

surjection

Sel•(K∞, Ah′,n)∨ ⊗ϕ O −→ Sel�1�2,•(K∞, Ah′,n)∨ ⊗ϕ O is an isomorphism. (10.14)

10.1.6. Recall that

th′ < th

by (10.4) and Lemma 10.7. Moreover, the eigenform h′ satisfies the hypotheses of The-
orem 10.2. By the induction hypothesis, we have

ϕ(L•
h′)2 ∈ Fitt0 (Sel•(K∞, Ah′,n)∨ ⊗ϕ O) . (10.15)

It follows from the general properties of Fitting ideals that

π2th = π2(th−th′ )π2th′

∈ Fitt0
(
Sh
�1�2 ⊗ϕ O

)
Fitt0 (Sel•(K∞, Ah′,n)∨ ⊗ϕ O) by (10.8) and (10.15)

= Fitt0
(
Sh
�1�2 ⊗ϕ O

)
Fitt0 (Sel�1�2,•(K∞, Ah′,n)∨ ⊗ϕ O) by (10.14)

= Fitt0
(
Sh
�1�2 ⊗ϕ O

)
Fitt0 (Sel�1�2,•(K∞, Ah,n)∨ ⊗ϕ O)

= Fitt0 (Sel•(K∞, Ah,n)∨ ⊗ϕ O) by (10.6) , (10.16)

where the penultimate equality holds because Sel�1�2,•(K∞, Ah′,n) = Sel�1�2,•(K∞, Ah,n)
by definition, based on the fact that the Galois modules Ah′,n and Ah,n are isomorphic, 
and that the local conditions that determine the Selmer groups Sel�1�2,•(K∞, Ah′,n) and 
Sel�1�2,•(K∞, Ah,n) coincide away from �1 and �2.

We have now completed the proof of Theorem 10.2. As noted just before the statement 
of Theorem 10.2, the proof of Theorem 10.1 also follows from Theorem 10.2 (applied with 
h = f and allowing ϕ to vary).
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