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Abstract Let K be an imaginary quadratic field and p > 5 a rational prime inert in K. For a Q-curve FE
with complex multiplication by Ok and good reduction at p, K. Rubin introduced a p-adic L-function
%p which interpolates special values of L-functions of F twisted by anticyclotomic characters of K. In
this paper, we prove a formula which links certain values of £ outside its defining range of interpolation
with rational points on E. Arithmetic consequences include p-converse to the Gross—Zagier and Kolyvagin
theorem for FE.

A key tool of the proof is the recent resolution of Rubin’s conjecture on the structure of local units
in the anticyclotomic Zp-extension W, of the unramified quadratic extension of Qp. Along the way, we
present a theory of local points over W, of the Lubin—Tate formal group of height 2 for the uniformizing
parameter —p.

Contents

1 Introduction 1418
2 Local points 1423
3 Rubin p-adic L-function and global points 1429
4 Rubin p-adic L-function and rational points 1439

© The Author(s), 2023. Published by Cambridge University Press. This is an Open Access article,
distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.
org/licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the
original article is properly cited.

()

Check f
https://doi.org/10.1017/5147474802300021 Published online by Cambridge University Press Updaies.



1418 A. A. Burungale et al.
Appendix A p-adic height pairings and logarithms 1449

Appendix B Perrin-Riou conjecture 1454

1. Introduction

Since the seminal work of Coates and Wiles, Iwasawa theory of CM elliptic curves influ-
ences general Iwasawa theory. It continues to have applications to classical Diophantine
problems. The nature of prime p is inherent to Iwasawa theory. For primes split in the
CM field, CM Iwasawa theory is well-developed. In contrast, for non-split primes, new
phenomena abound and CM Iwasawa theory is still incipient.

Let K be an imaginary quadratic field and p > 5 a rational prime which is inert in
K. Let K,, be the n-th layer of the anticyclotomic Z,-extension Ko, of K. Let E be an
elliptic curve defined over Q with complex multiplication by Of. In the early 1980s, R.
Greenberg found the formula

W (px) = (=1)""'W(yp)

for root numbers, where ¢ denotes the Hecke character of £ and yx an anticyclotomic
finite character of K of order p™ > 1. It led him to the formula

rankz F(K,,) —rankz B(K, 1) =ec,p" ' (p—1) (1.1)

for all n sufficiently large (cf. [24], [26], see also Corollary 3.11). Here, €, is 0 or 2 and
en, =2 if and only if W () = (—1)". So, new points of infinite order occur in the alternate
anticyclotomic layers. This behavior of the Mordell-Weil rank is peculiar to the inert
case. For example, for a split prime p, we have rankz E(K) < +oo if W(p) =+1. In
the late 1980s K. Rubin envisioned an Iwasawa theory echoing such phenomena and
made a fundamental conjecture on the structure of anticyclotomic local units (cf. [47]).
Recently, we proved the conjecture [12]. The resolution has unexpectedly led us to new
developments in supersingular Iwasawa theory. This is the first of the series of papers of
our study.

In [47], Rubin constructed an anticyclotomic p-adic L-function £ interpolating special
values L(px,1) for finite anticyclotomic characters x of K with W(px) = +1. If one
expects a p-adic Birch and Swinnerton-Dyer conjecture for Zg, the function should
encode the rank behavior (1.1). The main result of this paper is a formula relating
the value of £ at a finite anticyclotomic character x of K with W(pyx) = —1 to the
formal group logarithm of a rational point on E(K,)X behind the phenomenon (1.1)
(see Theorems 1.1 and 1.2). It has an application for the Birch and Swinnerton-Dyer
(BSD) conjecture, namely a p-converse to the Gross—Zagier and Kolyvagin theorem (see
Theorem 1.5).

1.2. Main results. Let p>5 be a prime. Let Q be an algebraic closure of Q. Fix
embeddings too : Q = C and Lp Q— C,.
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p-Adic L-functions and rational points on CM elliptic curves at inert primes 1419

Let K be an imaginary quadratic field with p inert and Ok the integer ring. Let O
(resp. @) be the completion of O (resp. K) at p. In this introduction, we assume the
class number hg of K equals 1; however, the main text only assumes p{hg. Let Ko
be the anticyclotomic Z,-extension of K and I' = Gal(K,/K). Let = be the set of finite
characters of I'. Let

(1]

*t ={x €= cond"y is an even power of p},

(1]

={x € E | condx is an odd power of p}.

In particular, 1 € =% for 1 the trivial Hecke character of K. Let A be the anticyclotomic
Iwasawa algebra O[I].

Let E be an elliptic curve defined over Q with complex multiplication by Ok with good
reduction at p (note that E has supersingular reduction at p since p is inert). Let T" be the
p-adic Tate module of E, which is an O-module of rank 1, and put 7®~! = Home (T, 0).
Fix a minimal Weierstrass model of E over Z,) and let w be the associated Néron
differential form. Let 2 € C* be a CM period so that QOg is the period lattice. Let ¢
be the associated Hecke character of K. In particular,

L(E/qg;s) = L(#,5)-

Let W(¢) be the root number of the Hecke L-function L(ip,s).

1.2.1. Rubin p-adic L-function. Here, we introduce Rubin’s theory in terms of
Galois cohomology. The relation to Rubin’s original formulation is explained in Section 2.

Let ¥, be the anticyclotomic Z,-extension of ® and ¥, the n-th layer. We denote
the Iwasawa cohomology lim HY(V,,, T®~1(1)) by H!. For x € Z, which factors through
Gal(¥,,/®), the dual exponential map for y ® T®~1(1) normalized by w defines a map

8y 1 H' — U, (Tmy) (cf. (2.9)). Then, we put
HL :={veH' 5 (v)=0 forevery xy € ET}. (1.2)
Rubin showed H1 is a free A-module of rank one (cf. [47, Prop. 8.1] and (2.7)). Rubin’s
conjecture, which is proved in [12], posits
H' =H oH.. (1.3)

We fix a generator vy = (vt ,)n of the local A-module H1. Let € € {+,—} be the sign
of the root number W (yp) and let

L =L, Que) €A (1.4)
be the associated Rubin p-adic L-function [47, §10] (cf. §3.3.1). Let Zg(x) denote its

evaluation at an anticyclotomic character x.
For x € Z¢ (resp. x € 27°), the Hecke L-function L(py,s) is self-dual and W (px) = +1
(resp. W(¢px) = —1). The interpolation property of the Rubin p-adic L-function is given by

Zo()= = L @D ey (L5)
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1420 A. A. Burungale et al.

where the non-vanishing of é, -1 (v.) is a consequence of Rubin’s conjecture, and L,;(®X, s)
denotes the associated L-function whose Euler factors at the primes dividing pf are
removed.

For x € 27¢, note that L(®y,1) =0 by the functional equation and Zx(x) is not related
to L(pyx,1) directly. In light of the BSD conjecture, it is natural to seek:

links between Zg(x) for x € 27° and rational points in E(K)X. Q)
This question is due to Rubin [47, p. 421].

Theorem 1.1. Let E,q be a CM elliptic curve with root number —1 and K the CM field.
Let p>5 be a prime of good supersingular reduction for E,q and Zg the Rubin p-adic
L-function as in (1.4). Then, there exists a rational point P € E(Q) with the following
properties.

(a) We have

1Y\ log,(P)?

260)= (14) i o
forl some cp € QO

(b) P is non-torsion if and only if ords—1 L(E q,s) = 1.

(c) If ords=1 L(E/q,s) =1, then

_ L'(Ejpg,1)
Q(P,P) o

for (| Yoo the Néron—Tate height pairing.

cp

See also Theorem 4.8 in a more general setting.

The formula is the principal result of this paper. It gives a p-adic criterion for E to
have analytic rank one. For such curves, the p-adic L-value in turn leads to a p-adic
construction of a rational point of infinite order which is independent of the choice of v_
(cf. Corollary 4.9).

Our second result is an interpolation of the Rubin p-adic L-function at higher order
characters in =7¢.

Theorem 1.2. Let E/q be a CM elliptic curve and K the CM field. Let ¢ be the associated
Hecke character and € the sign of the root number of . Let p > 5 be a prime of good
supersingular reduction for E;g and Zg the Rubin p-adic L-function as in (1.]). Let
X € E7° be a Hecke character with conductor p"*'. Let z, € H'(K,,T,E)X be the image
of a system of elliptic units of E (cf. §3.1.2). Then,

2, € HH (K, T,E)X,

and it has the following properties.

INote that v_ o € E(®) since 1 € ZF and expl(v_,0) = 0, by definition; hence, log,,(v—,0) is
well-defined.
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p-Adic L-functions and rational points on CM elliptic curves at inert primes 1421

(a) We have

ZLp(x7") = dx(v—c) log, (2y).

(b) Ifords—1L(px~1,s) =1, then 2, € H} (K,,V,E)X is a generator of the Q,(x)-vector
space (E(K,)@Qpy(x))X.

See also Theorem 3.16 in a more general setting.

Note that ords—1L(px,s) =1 for all but finitely many x € =~¢ (cf. [45]). So, in view of
Theorem 1.2 (b), the Rubin p-adic L-function leads to a construction of new points of
infinite order in the alternate anticyclotomic layers (cf. (1.1)).

Remark 1.3. For y € Z7¢, one expects that if z, -1 is non-zero, then ord,—1 L(px,s) =1
and

ords=1L(¢X,s) = 1+ord, Zg.

An evidence appears in [12, Thm. 2.4]. It seems interesting to compare Theorems 1.1 and
1.2 with the exceptional zero conjecture of Mazur, Tate and Teitelbaum [39)].

As a corollary of the above theorems, we obtain a refined (non-asymptotic) version
of (1.1).

Corollary 1.4. Let E,q be a CM elliptic curve and K the CM field.
(i) If L(E/q,1)/Q is a p-adic unit, then for all n > 1, we have
corankz, Sely~ (E/k, ) — corankz, Sely~ (E/k,_,) = enp" tp—1),

where €, =0 (resp. 2) for n odd (resp. even).

(ii) Suppose that ords—1L(Eq,s) =1 and there exists a rational point P € E(Q) whose
image generates the free Z,-module E(Qp)/E(Qp)tor of rank 1. If

L'(Eg,1)/QP,P)
is a p-adic unit, then for all n > 1, we have
corankz, Sel,e (E/ ., ) — corankz, Selye (B, ) =enp™ ' (p—1),
where e, =0 (resp. 2) for n even (resp. odd).
In particular, if UI(E) g, ) is finite, then
ranky E(K,) —rankzE(K,,_1) = e,p" ' (p—1).

A key to the proof of main results is a theory of local points, similarly as [31, §8] underlies
the cyclotomic signed Iwasawa theory [31] (cf. Section 2.3.) In the case of cyclotomic
deformation, such a theory is the core of Perrin-Riou theory. However, Perrin-Riou theory
for the anticyclotomic Z,-extension is not yet developed sufliciently to be applicable to
our case. Instead, we use Rubin’s conjecture to construct local points. It may give some
insight towards a Perrin-Riou theory for the anticyclotomic Z,-extension.
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1422 A. A. Burungale et al.

1.2.3. p-converse to a theorem of Gross—Zagier and Kolyvagin.

Theorem 1.5. Let E/q be a CM elliptic curve with good supersingular reduction atp > 5.
If corankz, Sel, (E) =1 and HL(E)[p*>] is finite, then ords—1 L(E q,s) = 1.

See also Theorem 4.18 in a more general setting. Just as the Bertolini-Darmon—
Prasanna formula is employed in the proof of Skinner’s p-converse [52], our approach
is based on Theorem 1.1.

Remark 1.6.

(i) The first results towards the p-converse were due to Rubin [51], which treated CM
elliptic curves and ordinary primes p. The first general results for non-CM curves
were independently due to Skinner [52] and Zhang [56] a few years back.

(ii) One may seek a refined p-converse:
corankz, Sely(F) =1 = ord,=1 L(E/q,s) =1 (1.6)

(cf. [56], [18], [16],[10], [11]). While it may be possible to approach Theorem 1.5 via
the p-adic Gross—Zagier formula [32], with a view to (1.6), our approach instead
employs Theorem 1.1.

Background

An impetus to Theorems 1.1 and 1.2 is a formula of Rubin. For primes p split in an
imaginary quadratic field K, Rubin proved an influential formula [50] which links certain
values of the Katz p-adic L-function of K to the formal group logarithm of rational points
on elliptic curves with CM by K (cf. [42], [44]). The last decade has led to a revival
of Rubin’s formula. For an arbitrary elliptic curve E,g and K an imaginary quadratic
field satisfying Heegner hypothesis for E with p split, the Bertolini-Darmon—Prasanna
(BDP) formula relates certain values of a Rankin—Selberg p-adic L-function 25" of E,
with the formal group logarithm of Heegner points on E (cf. [6], [34]). Since its advent,
the BDP formula has influenced the arithmetic of elliptic curves and inspired progress
towards the BSD conjecture, with an instance being p-converse to the Gross—Zagier and
Kolyvagin theorem due to Skinner (cf. [52]), which is a p-adic criterion for E/q to have
both algebraic and analytic rank one. The p-converse is based on the BDP formula and an
Iwasawa theory of .Z5*. Subsequently, Liu-Zhang-Zhang interpreted the BDP formula
as a p-adic Waldspurger formula and generalised it to modular elliptic curves over totally
real fields (cf. [37]).

An emerging search is the analogue of the BDP formula? over imaginary quadratic fields
with p non-split, and a pertinent Iwasawa main conjecture (the conjectural backdrop of
Iwasawa theory excludes such a non-split setting; cf. [25], [44], [31]). The ensuing CM
case is perhaps the first instance, whose investigation we plan to continue (cf. [13], [14]).

2Based on recent developments in the p-adic geometry of modular curves, certain analogues
appear in [4], [36]. A salient feature of these works is that the p-adic L-functions, whose
growth behaviour is not yet well understood, are locally analytic. The formulation of a relevant
Iwasawa main conjecture is a fundamental open problem.
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1.3. Plan

Section 2 presents the local theory. In Section 3, certain global aspects appear, including
(1.1) and Theorem 1.2. Then Section 4 treats Theorems 1.1 and 1.5.

The proof of Theorem 1.1 is based on the appendices to which the reader may
refer prior to Section 4. Appendix A describes a variant of the p-adic Gross—Zagier
formula [32] in which the p-adic logarithm of Heegner points appears (see Theorem A.6).
Appendix B exhibits another consequence: the Perrin-Riou conjecture [42] for GLa-type
abelian varieties at primes of good non-ordinary reduction (see Theorem B.3).

2. Local points

2.1. The set-up

We introduce the module of anticyclotomic local units as well as its signed submodules
following [47], [12].

2.1.1. Notation. Let p>5 be a prime. Let ® be the unramified quadratic extension
of Q, and O the integer ring. We fix a Lubin-Tate formal group .# over O for the
uniformizing parameter 7 := —p. Let A denote the logarithm of .%.

For n >0, write ®,, = ®(Z[7""1]), the extension of ® in C, generated by the 7" !-
torsion points of .#, and put ®oc = Up>oPy. Let

kg Gal(Poo /D) — Aut(T.F) =2 O

be the natural isomorphism induced by the Galois action on the m-adic Tate module
T.7 =:T. Let ©,, be the subfield of ®, with [0, : ®] = p*" and O = U,>10,, the
Zf,—extension of ®. Let ¥, be the anticyclotomic Z,-extension of ® and ¥, the n-th
layer. We put G := Gal(Oo/®) =Z2, G~ := Gal(V o /®) = Z;, and A := Gal(Po /Ou) =
Gal(®y/®P) = (O/p)*. Fix a topological generator v of G™.

Let U,, be the group of principal units in ®,,, that is, the group of elements in (9;”
congruent to one modulo the maximal ideal. Let '

T®! =Homo(T.0), Uz = (lm(U, @z, T8-1))%,

n

where the superscript A means the A-invariants. Define the Iwasawa algebras
Ay =0O[G] and A=O0[G7].

It is known that UZ is a free Ag-module of rank 2 (cf. [54]). A primary object is the
anticyclotomic projection

Ve =UL @, A
Let 6, : U% — @, be the Coates—Wiles homomorphism as in [12, §2]. For a finite
character x of Gal(®.,/®) of conductor dividing p"*! and u € UZ%,, let
1 o
= Y X0 (2.1)
o€Gal(P, /D)

If x factors through G, then §, factors through V (cf. [47, Lem. 2.1 (ii)]).
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1424 A. A. Burungale et al.

2.1.2. Rubin’s conjecture. Let = be the set of finite characters of G~. Let
ZF = {x € Z | cond"y is an even power of p},
2 ={x €E | cond"x is an odd power of p}.
Define
Vit i={veV: |6,(v)=0 forevery x € ET}. (2.2)

Rubin showed that V3™ is a free A-module of rank one (cf. [47, Prop. 8.1]).
The following is central to the construction of local points.

Theorem 2.1. (Rubin’s conjecture) We have
VE=Vitevy .

This was proposed by Rubin as [47, Conj. 2.2] and recently proved [12, Thm. 2.1].

2.2. Local cohomology

2.2.1. Kummer theory. We recast the modules of anticyclotomic local units in terms
of the local Iwasawa cohomology.
Define a natural isomorphism of O[[Gal(®,/®)]-modules

; ®—1 s 1 ®—1
%n(Un@)O)@T = (@, T¥1(1)) (2.3)

as the composite

lim(U, ® O) QT® 1= @Hl(%oa)) QT®1

n

=lim H'(®,,0/7"(1) @ T%

=i

HY(®,,T®1(1)/7")

=

HY(®,,T®(1)).

R
<15 =1

Here, the first isomorphism is the Kummer map and the third is a consequence of the
Gal(®.,/®,)-action on O(1)@T®~1 /7" being trivial. The A-invariants of (2.3) give an
isomorphism

Ur ~2limHY(0,,7°71(1)) (2.4)

oo —
n

of Ay-modules.
For a finite extension L of ®, let
expy : HY(L,T® (1)) = L (2.5)

be the dual exponential map which arises from the identification of FilODdR(T®_1(1) ®
Q,) with ® so that the invariant differential dA corresponds to 1 (cf. [29, §1.2.4, Ch. II]).

By the explicit reciprocity law of Wiles (cf. [29, Thm. 2.1.7, Ch. II]), note that the
following diagram
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p-Adic L-functions and rational points on CM elliptic curves at inert primes 1425

Uz, —lim H'(0,,T7%7\(1)) (2.6)
o, = o,

commutes, where the upper horizontal map is (2.4). The anticyclotomic projection induces
an isomorphism

Vi =2lim HY(P,, 79 1(1)), (2.7)

as well as a commutative diagram

Vi ——=lim H'(¥,,T%1(1)) (2.8)
v, — U,

where 03¢ := Trg, /v, ©6,. Hence, for a character x of Gal(¥,/®) and v = (Vy)m>0 €
Vi =lim HY(V,,, T%71(1)) (cf. (2.7)), we have

S = > expy, (v9)x(0). (2.9)
sE€Gal(T,, /)

Therefore, we may naturally identify V¥ with the module H1 introduced in (1.2), and
Theorem 2.1 implies the decomposition (1.3) of Jm HY(V,,, T®71(1)).

Let H}(V,,T) and H}(¥,,T®"!(1)) denote the finite part of H!(¥,,T) and
H(¥,,T®~1(1)), respectively.

Lemma 2.2.

(1) The quotient by the ideal (v*" —1)A induces an isomorphism
Vi/(P -1 = H (D, T (1)) (2.10)
(2) The O-module H{ (¥,,,T®~1(1)) coincides with ker(62°) via (2.10).
Proof.

(1) By definition, VX /(y*" —1) is isomorphic to lim H'(0,, 797 (1)) /(y*" —1). In
light of the inflation-restriction sequence and [47, Prop. 4.5 (ii)], it follows that
Hm HY(V,,, T®1(1))/(v*" —1) is isomorphic to the Pontryagin dual of

H (U, HY (Voo F[r™])) = HY(T,,, F [7™]).
The local duality thus implies (2.10).

(2) Note that H}(¥,,,T) coincides with the Kummer image of % (m,,) in H'(¥,,,T), and
that H} (¥, 7% (1)) coincides with the kernel of expy, : H'(¥,, T®71(1)) = U,,.
Hence, by the commutative diagram (2.8), the proof concludes. O

In the following, (2.10) will be often treated as an identification.
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2.2.2. An optimal basis. We introduce a basis of the submodule of signed anticy-
clotomic local units and duality pairings, which will be used in the construction of local
points.

We fix a A-basis vy of V¥ and regard it as an element of Hm HY(¥,,T®"1(1))
via (2.7).

For n >0, put A, = O[Gal(¥,,/®)]. Let vy ,, denote the image of vy in H!(¥,,,T®71(1))
via (2.10). Let

() Vn:HY (9, T)x H (¥, T* (1)) = O

be the natural pairing.
Lemma 2.3.
(1) {v4,nyv—n} is a Ay-basis of H' (¥, T®~1(1)).
(2) (, )n is a perfect pairing.
(3) H}(V,,,T) and HH(Y,, T®1(1)) are orthogonal complements of each other under
the pairing.

Proof. The first assertion is a simple consequence of Theorem 2.1.

Note that T®71(1) 2 T as an O[Ge|-module, where T7 denotes conjugation of T
by the complex conjugate. Then, by [47, Prop. 4.5], H*(¥,,,T) and H*(V,, T®~1(1)) =
HY(¥,,T) are O-free, and we have natural identifications

H P, T)o®/0=H (¥, To®/0), H (¥, T '(1)2®/0=H (¥, T (1)@ /0).
Hence, the local duality induces
HY(¥,,,T) = Home (H'(V,, T? (1) 2 ®/0),®/0) = Homep (H'(¥,, T®1(1)),0),
where the isomorphism arises from the perfect pairing
HY(V,,T)x H' (V,, T 1 (1)@®/0) — /0.

It follows that the map H'(¥,,,T) — Homo(H(V,,T7¢~1(1)),0) induced by ( , ),
is an isomorphism. By replacing 7 with T®~!(1), the map H(V,,T®" (1)) —
Homp (HY(¥,,,T),0) induced by ( , ), is also an isomorphism, and hence, ( , ),
is perfect.

The assertion (3) then follows from the fact that H}(¥,,T)®Q, is the orthogonal
complement of H{ (¥,,,7%7!(1)) ®Q, under the base change of ( , ),, and vice versa. O

By Lemma 2.3, we have a perfect pairing
(o )a, HY (U D) x HY (U, T 1) = Ay (ab) s Y (ab)ao, (211
ceGal(¥,, /T)

which is sesquilinear with respect to the involution ¢ of A, induced by o+ 0! for
o€ Gal(¥,/®). Let {v{,,, vt} € H'(¥,,T) be the dual basis of {v_ ,,v,»} with respect
to ( , )a,, that is,
Z (vin,vi’n)na =0, Z (vi‘m,v;n)na =1. (2.12)
ceGal(¥,,/P) oceGal(¥,, /P)
Note that vi’n depends on the choice of v+ but is independent of v..
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2.3. Local points

We introduce an optimal system of local points, which generate the signed submodules
of the underlying Lubin—Tate group.
For n >0, let =& denote the set of x € =% factoring through Gal(¥,,/®). For x € =,

let
1 — o
MNo)=— > x o) .
P cGal(w, /o)
Define
F(mp)* = {2 € F(mn)| \(2) =0 for all x € =*}.
We put
whi=wf(y= ][ w0, wn=w,(M=00-1) [ @»0() ez

1<k<n, k:even 1<k<n, k:odd
for @, (X) the pF-th cyclotomic polynomial, and we also put w0+ =landw, =7y—-1.
Definition 2.4 (local points). For vy and v as above, let

o= cf(viﬁ) = wfvi’n c HY(¥,,T).

Lemma 2.5. Forn >0, ¢t lies in H} (9,,T).

Proof. It suffices to show that for a finite character y of Gal(¥,,/®), the image x(c ) of
¢ under the natural map H'(0,,,T) — H(®,V(x)) lies in the finite part H}(®,V (x)),

n

where V(x) :=T ®Q,(x) denotes the twist of T ®Q,, by x.
If x € =%, then x(w;) =0, and so x(c) € H}(®,V(x)). If x € EF, then d, (v4) = 0.
Now, by Lemma 2.2 and (2.8), the image of vy ,, under

HY (0, VO (1) = HY(,V()® (1))

lies in the finite part, and it gives rise to a generator of H} (®,V (x)®~1(1)) over ®(Im(x)).
Since H{ (®,V(x)) is the orthogonal complement of H} (®,V (x)®~1(1)) with respect to
the local duality, it thus follows that x(ct) lies in the finite part. O

By Lemma 2.5, we may naturally regard ¢ as an element in .#(m,). In particular,
cd=0(- 1)Ufﬁo =0, ¢, = vio € Z(D). (2.13)
Salient features of the local points are given by the following.
Lemma 2.6. Let n>1.
(1) If (=1)"+ =41, then
Trm_l/ncirl =ct |, ¢ =Respn ¢t |

for Tryy1/n  F(Mpy1) = F(my) the trace map and Res, pn_1 : HY (Y, 1,T) —
HY(V,,,T) the restriction.

(2) We have ¢ € F(m,,)*.
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Proof.

(1) First, note that an element z of H'(¥,,T) is determined by the two elements
(7,07 ), and (2,07 ,)A, € Ap.
By definition,
(Trnjtl/nCyiH_lv’Ui,n)An = (Cfavi,n)An = (ReS7L,7L—1C7iL_1an,n)An =0.
As (¢ vz, =w, it suffices to show that

(Trn+1/ncrﬂ;+lvv¥yn)/\n = (er;fl’v%n)l\n = w:f'

Since w;,; = w;, we have

(Tt 1/nCorg1s V) A = (Gt VFin) Mgy =i mod (77 1)

Since w;i =w,"_ P, (v) and {vs n}n is norm compatible,

+ _ + o —_  F 1 o
(Cr_1,V,n)A, = Z (Cnfthi,nfl)n*lo' =Wp_1 Z (v:t,nflvvq:,nfl)nflo'
oceGal(¥,, /®) ceGal(¥,, /)
SRS SR S )

UeGal(‘I’n/\Pn—l)
Therefore, the assertion follows.

(2) This is a simple consequence of (1). O

2.3.2. The £-subgroups.

Theorem 2.7. Let n > 0.
(a) As A,-modules, we have F(m,) = F(m,)" & .F(m,)"
(b) Z(m,)* is generated by ci.

Proof. By definition,

Z (Cfavi,n)nU = WTT €A, (2.14)
c€Gal(T, /2)

(a) Let z € #(m,,) and consider

Z (2,0 ,,)no,

c€Gal(L,, /D)

which lives® in wFA,,. Thus, by (2.14), there exists h(y) € A, such that

Z (x_hi(v)cfvvgp,n)no—zo'
oceGal(¥,, /P)

3This follows by considering evaluation at finite characters.

https://doi.org/10.1017/5147474802300021X Published online by Cambridge University Press



p-Adic L-functions and rational points on CM elliptic curves at inert primes 1429

Now, for y:=hy(y)e;l +h_(v)c, , we have
Z (x—y7ug)ng:()
cEGal(V,, /®)

for arbitrary u € H*(V,,,7971(1)). Hence, z = y.
(b) If 2 € #(m,,)*, then
Z (z,vL ,,)no = 0.
c€Gal(¥, /)

Thus, we may choose hx as above to be 0. ]

Remark 2.8. The local points are also elemental to Iwasawa theory of the Z,-
anticyclotomic deformation of a non-CM elliptic curve over imaginary quadratic fields
with p inert (cf. [9]).

3. Rubin p-adic L-function and global points
The main results are Theorems 3.9 and 3.16.

3.0.1. Notation
Let @ be an algebraic closure of Q. Fix (o : Q — C and ¢, : Q — C,.

For a number field L, let G, = Gal(Q/L). For a finite dimensional Q,-vector space V
endowed with a continuous Gp-action and v a prime of L, the Bloch-Kato subgroup is
given by
ker (H*(Ly,V) = H'(L,,V @ Barys)) (v p),

Hi )= {ker (H'(L,,V) = H' (L, V)) (v1p)-

If M denotes V or a Zjy-lattice in V, then the Bloch-Kato Selmer group is defined as

H}(L,M) = ker <H1(L,M) — 11 Hl(LM) .

For an extension N/L of number fields, let Ind® (-) denote the induction Indgf ().
For an abelian variety A, let T,(A) denote the p-adic Tate module and put V,(A) =
Tp(A) ©z, Qp.

3.1. Elements of Selmer groups

3.1.1. The set-up. Let K be an imaginary quadratic field of discriminant —Dg < 0
and H the Hilbert class field. Suppose

p is inert in K. (inr)

Let K, be the anticyclotomic Z,-extension of K and K, the n-th layer. Let G~ also
denote Gal(Ko/K).
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Let ¢ be a Hecke character over K of infinity type (1,0) such that the Hecke character
po Ny, is associated to a Q-curve E over H which has good reduction at each prime of
H above p. In particular, F satisfies the Shimura condition. Fix a minimal Weierstrass
model of E over Og,, NH = Og N H for p | p the prime of H arising via ¢, and let w be
the Néron differential. Pick a non-zero by € H'(E(C),Z,)) = Z,) ® Ok and define a CM
period 2 € C* by

perE/H(w) =Qbg

for perp 5 : coLie(E) — H'(E(C),Q) ®k C the period map.

In this section, let O denote the integer ring of a finite extension of ® which contains
the Hecke field K (p(K*)) for K := K®lim Z/mZ. Let f be the conductor of ¢. Let T
be the p-adic Galois representation of Gk associated to ¢, which is an O-module free of
rank one so that its restriction to Gy is T, £ ®p, O. Since

ExZF

as formal groups over Og, the results in §2 may be utilized by replacing .# with E and
identifying T, ' with T E via

(tn)n = ((_1)ntn)n'

We put T®~! = Home(T,0) and note that T®71(1) is identified with the complex
conjugation of T as follows. Let 7 be the complex conjugation. We have a natural
decomposition

T®zp O=T,E®o, (Os ®z, 0)=Tx (TpE R0p,r 0),

where ®¢,, . is the tensor product with respect to the map Ogp — O induced by 7 and
the natural inclusion. This decomposition and the base change of the Weil pairing over
O induce a perfect O-bilinear pairing

T x (T,E ®0,.» O) = O(1).

Thus, we may naturally identify 79~1(1) with T,F ®¢, , O. Since o(1(a)) = ¢(a) for
an integral ideal a of Ok relatively prime to § (cf. [27, Lem. 11.1.1 ]), T,E Qp,,» O
is naturally identified with the complex conjugation T7 of the G g-representation T.
Hence, we have a natural isomorphism of O[G k]-modules T®~1(1) & 77, which induces
an isomorphism H!(K,,,T®~1(1)) = H'(K,,T"). Since the complex conjugation gives rise
to an isomorphism H!(K,,T7) = H'(K,,T)" of A-modules, we often identify

HY(K,,T® (1)) = H'(K,,T)", (3.1)
where ¢ : A — A denotes the involution induced by g+~ ¢! for g € G~ and for a A-module

M, we put M* =M ®,,, A.

3.1.2. Construction of Selmer elements. Based on elliptic units, we associate a
Selmer element to a Hecke character.
The following existence is due to Coates and Wiles [20] (cf. [46], [30, Prop. 15.9]).
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Proposition 3.1. There exists an elliptic unit

2= (2n)n € Im H' (K, T97H(1)) (3.2)
associated to bg such that for a character x of Gal(K,,/K), we have

> x(e)expic, (logy(:5) = 2P, (33)
ceGal(K,/K)
Here,
expy, t H' (Kn®xk Kp, 7971 (1)) = Dois(VE (1)) @k Kn = (coLie(E)k,) ®k, O[1/p]) @k Kn
is the dual exponential map, K, = K®Q, = ®, and
loc, : H' (K, T®7 (1)) = H' (K ®x K, T (1)) = [[H' (¥, 7% (1))
wlp

is the localization as w varies over the places of K,, above p.

We put O, = O[Im(x)] and let O(x) denote the O[Gk]-module with the underlying
space O and the Gg-action being x. For an O[Gk]-module M, let M(x) = M ®0 O(x)
and

MX={meM®O, | gm=x(g)m forall g€ Gg}.

Definition 3.2 (Selmer element). For a character x of Gal(K,/K), let z, €
Hl(Kn,T®’1(1))X_1 denote the image of the elliptic unit z, under the composite

T (1) S H (K, T (1)(x) = H' (K, 727 (1) (x))
SHO(KH' (K, T (1) () = H' (K, T*7 ()X . (34)

HY (K

n?

Here, the second and third maps are corestriction and restriction, respectively.
Note that

n= >, x0)z. (3.5)

o€Gal(Kn /K)
Since (H*(K,,T)")X ' = H'(K,,T)X by (3.1), we regard
z, € HY(K,,,T)X.
Lemma 3.3. If L(px~',1) =0, then z, € H(K,,,T)X.
Proof. By definition and [30, Prop. 15.9], 2, lies in the image of
lim H (K (™), 79 (1)) — H' (K, T4 (1),

m
where K (fp™) denotes the ray class field of K of conductor fp™.
For a prime vt p of K, and a prime w | v of Uy,>1 K(fp™), note that the completion
of U K(fp™) at w contains the maximal pro-p unramified extension of K, ,, and so
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locy(2y) € HH (K, ,,T®71(1)). Since L(px~*',1) =0, by the explicit reciprocity law (3.3)
and (3.5),

expy, (locy(zy)) = 0.
1

As the Bloch-Kato subgroup @, H{ (Kp,,T71(1)) coincides with the kernel of expj; |
the proof concludes. O

3.2. Global points

3.2.1. Mordell-Weil groups over Q. In this subsection, for sufficiently large n
with (—1)"*! = —W(p) and x an anticyclotomic character of conductor p"*1, the Selmer
element z, is shown to arise from a rational point.

Let x be a finite character of Gal(K../K) and f, € S2(I'o(Dx Nk /g(fcy))) the theta
series attached to @x !, where ¢y denotes the conductor of x. In particular, L(fy,s) =
L(px~',s). Let F, denote the Hecke field. Fix an abelian variety A, over Q of dimension
[Fy : Q] with an OF, -action so that

L(Ays)= [ L9
J:FX<—>@

In this subsection, O is enlarged to also contain the image of y, and m denotes the
maximal ideal.
We begin with a preliminary.

Lemma 3.4. We have
Indg (T971(1)(x)) ®0 O/m = Indg (T(x ) ®0 O/m,
which is an irreducible Gg-representation.
Proof. Note that T971(1)(x) 2 T(x )" as an O[Gk]-module, and so the first assertion
follows.
As for the irreducibility, in light of the proof of [30, Lem. 15.20], it suffices to show that

for a finite character x of Gal(K/K), there exists an integral ideal b of K relatively
prime to pf such that

(ox " (b) —ox (b)) N /g (b) € OF. (3.6)

We put b = (1+ f\/—Dg)Ok for f = Ngq(f) € Z. As p is inert in K, note that p
is relatively prime to Ng ,q(b) = 1+ f?Dg, ie. Nk g(b) € O*. Since pf fDg and 1+
fv/—Dx =1mod f, we have ¢(b) — (b) = 2f/—Dx € O%, and so p(b)ys —@(b)vys € A,
from which (3.6) follows. (Here, 74 € G~ denotes the element which corresponds via the
Artin map to an integral ideal a of K relatively prime to pf.) O

Put V=T®Q,~0[1/p] and V,(A) =T,(4,) ®Q, = (F\, ®Q,)®%. We embed F, into
O[1/p] via ¢, and notice an abstract isomorphism

Ind§ (V(x 1)) 2 V,(Ay) ®r, a0, OlL/1],
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which follows from considering the action of Frobenius elements. By Lemma 3.4, there
exists an isomorphism Indg(T(x_l)) = T,(Ay) ®oy, w2, O of O[Gg|-modules, and so we
have an identification

H; (QT,(Ay) ® 0) = Hi (K,T(x71)). 3.7)

Proposition 3.5. Suppose that ord,—1 L(¢x~1,8) =7 € {0,1}. Then, ranko, A, (Q)=r
and the Tate-Shafarevich group (A, q) is finite. In particular, if r =1, we have

Ax(@) ®Zp = Hfl(Qan(Ax)) = OFX ®Zp-

Proof. Since ords—1L(fy,s) =, by the main result of [8], there exists an imaginary
quadratic field L such that

(i) ords=1L(fy/r,s) =1 and
(ii) the pair (fy,L) satisfies the Heegner hypothesis.

Then, the Gross—Zagier formula [28], [55] implies that the Heegner point y;, € A, (L) is
non-torsion, and so the assertion is due to Kolyvagin [35] (see also [40]). As for the “in
particular” part, note that A, (Q) is p-torsion-free by Lemma 3.4. O

Remark 3.6. The r =0 case is due to Coates—Wiles [20] and Rubin [46], [48].

Let 2, still denote the element of H*(K,T(x™')) = H'(K,T®!(1)(x)) which cor-
responds via (3.4) to the element 2, as in (3.5). Suppose L(¢x~*,1) = 0. Then, by
Lemma 3.3, we have z, € H} (K, T(x™1)). Let

Yx € Hf1 (QyTp(Ax) ®0)
denote the corresponding element via (3.7). An immediate consequence of Proposition
3.5 is the following.
Corollary 3.7. If ords—1 L(px~',s) =1, then y, arises from A, (Q) ®op, O.

If ords—1(L(px~',s)) =1, then y, will be shown to be non-torsion (cf. Corollary 3.18).
In our case, the latter is equivalent to being non-zero* by Lemma 3.4.

Remark 3.8. For any sufficiently large integer n with (—1)"™* = —W(p) and x a
character of Gal(K,,/K) of conductor p"*!, Rohrlich proved that ords—; L(px~1,s) =1
(cf. [45]).

3.2.2. Anticyclotomic Mordell-Weil groups. This independent subsection
presents an anticyclotomic variation of the Mordell-Weil groups.

For the identity Hecke character 1 =:1, we put A=A, f=f; and FF'=F}. Let x be a
finite character of Gal(K/K) and n denote the maximum max{0,ord,(¢,)—1}. If n =0,
put T (A ., ,) = {0}.

A given element, such as y,, may a priori be zero.
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Theorem 3.9. Suppose that ords—1 L(¢x~1,s) =r € {0,1}.
(a) We have
ranko, A(Kp)* =r[F:Q),
(A(Kp) ®Zp)* = Hi (K, Tp(A))X.
(b) In particular, the quotient
LI(A g, ) [p™]/Tm (I(A ., ) [p™] = TI(A)k, ) [p™])
18 finite.
Proof. Let B,, denote the Weil restriction Resg, /x(A/K, ) of A over K,,. By considering

the Galois action on valued points of B,,, note that the Galois group Gal(K,/K) embeds
into End B,,, which in turn implies

End B, = (End A)[Gal(K,,/K)]

as algebras (cf. [23, Thm. 3]).
In light of the decomposition Q[Gal(K,/K)] = Q[y]/(®p (7)) x Q[Gal(K,—1/K)] and
factorisation of the underlying L-functions, we have an isogeny

By~ Ap X By (3.8)

of abelian varieties over K. Here, A,, is the abelian variety defined as a product of copies of
A, with dim(A,,) = [F: Q](p" —p"~'). Note that the set of K-rational points is given by

Now, we consider Gal(K,,/K)-action which leads to

n—1

(P —1AK,)®Q=A,(K)®Q, (3.9)
and
(77" =) (T,(I(A ) x,) ©Qy) 2 T, (I (A, k) @ Qe (3.10)
In light of the Gross-Zagier formula [28], [55] and Proposition 3.5, we have
ranks(4,(Q)) = r(p" —p" " )[F: Q] 1(4,/0)" ®Q={0}, (3.11)
and so
rankz (4, (K)) = 2r(p" —p" " H)[F: Q], I(A,/x)’ ©Q = {0}. (3.12)

Hence, in conjunction with (3.10), it follows that

[T (704 1, ) @ Q@) 2 (37" = 1)T,(I(A k., ) @ Qp e ) = {0}, (3.13)

X1

where x; ranges over the conjugates of .
(a) Recall the short exact sequence

0— (A(K,) ®2,Z,)* — H{ (K, T, (A))X — T,(IL(A, ., ))X.
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Now, as T),(III(Ax, )) is p-torsion-free, (3.13) readily implies the second asserted
equality of part (a).

Since p is unramified in K, observe K[v]/®pn(y) is a field with dimg (K [y]/
D,n (7)) = p" — p"~L. Naturally, (17" —1)A(K,)®Q is a K[y]/®pn (y)-vector
space. So, in view of (3.9) and (3.12), it follows that

n

(7" = DAK,) @ Q= (K/ (@ (7)) O,
Hence, the evaluation at x yields the first asserted equality of part (a).
(b) In view of (3.13), we have
Tp(m(A/Kn)) ®Qp = (Tp(m(A/Kn)) ®Qp
= Im(Tp(HI(A/anl)) - Tp(m(A/Kn))) ®Qp7
i.e. part (b) holds. O

)Gal(Kn/K",l)

Remark 3.10. The above argument is a variation of Rubin’s argument for [3, Prop. A.8].

Corollary 3.11. Suppose E is defined over K. Then, for any sufficiently large n,

ranky E(K,) —rankzE(K, 1) =e,p" '(p—1).
Here, if W(p) =41, then €, =0 (resp. 2) for n odd (resp. even) and the reverse in the
case W(p) =—1.

Proof. This is a simple consequence of Theorem 3.9 (a) and Remark 3.8. O

The corollary implies that new points of infinite order appear in the alternate
anticyclotomic layers. As shown in Corollary 3.18 below, these points correspond to the
Selmer elements .

Remark 3.12.

(i) Corollary 3.11 is originally due to Greenberg (unpublished, cf. [26, (1.10)]).
(ii) An analogue of Corollary 3.11 for Selmer groups appears in [2, Thm. A].

3.3. Rubin p-adic L-function and global points

The section presents a Rubin type special value formula for the Rubin p-adic L-function,
which is a result towards the question (Q).
Assume that

pthk. (cp)

Then, the Galois group Gal(K,/K) is naturally identified with Gal(¥,/®). For n > 0,
let p denote the prime of K, above p.

3.3.1. Rubin p-adic L-function. Let ¢ be the sign of the root number W (y) of the
functional equation of the Hecke L-function L(y,s). In light of (2.8) and (3.3), the image
of locp(z) € lim | HY (K, T®71(1)) in VZ via (2.7) lives in V3©.
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Following [47, §10], we introduce the following.
Definition 3.13. A Rubin p-adic L-function . =%, ,. € A is defined by
Lyp,v. Ve =locy(2) € VI = Av,. (3.14)

For an anticyclotomic character x, let £(x) denote the evaluation at x. For x € =¢
(resp. x € 279), note that W(pyx) =+1 (resp. W(px) = —1, cf. [24, p. 247]).

Lemma 3.14. For x € =%, we have

200 =510y e

Proof. The non-vanishing of 6,-1(v.) is a consequence of Theorem 2.1 and [47,
Lem. 10.1]. Hence, the assertion follows by (2.8) and (3.3). O

3.3.2. A Rubin type formula. The subsection explores Z(x) for y € Z7°.
Let Ag: E(¥,) ®0, O = ¥, ® O denote the homomorphism induced by the logarithm
associated to E. For a character x of Gal(¥,,/¥) and ¢ € E(¥,,), let

Aeal@)=p" D XTHO)As().

c€Gal(¥, /P)

Recall that T'|,, is identified with T},,(E)® O.
As in (3.1), we identify

HY(V,,T) = H' (U, T%7(1)), @Hl(\ym,:ﬁy:@Hl(wm,:@*lu)), (3.15)

by which an element v of H(W,,,7%~1(1)) will be regarded as an element of H'(¥,,,T).
In view of the identifications the pairings ( , )a,, in (2.11) induce a perfect pairing

m

(o ) imHY (0, T) x Im HY (9, T) — A,

which is A-bilinear (as the pairing (2.11) is sesquilinear). In the following, we regard
(, )nand ( , )a, as pairings on H (¥, T) x H'(¥,,.T).

Lemma 3.15. We have
(ve,05)a € A and (v4,v4)p =0.
Proof. As for the first assertion, by Nakayama’s lemma, it suffices to show that

(U+,0,U_70)0 c O*.
In view of Theorem 2.1,

Vi/(v=1) =Vt /(v=1)@®Vs /(v=1)=Ovy 0®0v_, (3.16)
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where vy o is the image of v* in V% /(v —1). Note that H}(®,T) = .F (mg) = O, and so
by (3.16),
H{ (®,T)=Vy™/(v=1).

As p(v-) =0, observe v_ o € H}(®,T) by Lemma 2.2. Recall ( , )o is perfect and
H}(®,T) is a maximal isotropic subgroup. Hence, (3.16) implies that (v o,v_ 0)o € O%.

We now consider the second assertion. For any x € ZF, note that J,(v+) =0, i.e. the
image of v+ under lim HY(®,,,T) — H'(®,V(x 1)) lies in the finite part H (®,V (x1)).
Since H{ (®,V(x™')) is the orthogonal complement of itself under ( , ),, we have
X ((v4,v+)a) = 0. This implies (v4,v+)y =0 as ZF is an infinite set. O

From now, we fix v4,v_ so that

(U+,U_)A = 13

and then v, in (2.12) is identified with vy, via (3.15).
The main result of this subsection is the following.

Theorem 3.16. Let K be an imaginary quadratic field and p > 5 a prime satisfying (inr)
and (cp). Let E be a Q-curve with complex multiplication by O with good reduction at
p, @ the associated Hecke character of K and € the sign of the root number. Let £ be the
Rubin p-adic L-function as in (3.14).

(a) Let x € E7° be a Hecke character with conductor p"**. Let z,-1 € Hl(Kn,TpE)f1
be the image of a system of elliptic units of E (cf. §3.1.2). Then,

21 € HY (K, T,E)X

-
and we have®

I
>
Sl
—~
—
Q
<)
k=3
—
N
"
Z
~

L(x) =61 (v_2) Ap(locy(z-1)) %(X(V);

where T(X,a) = 3", cqal(k, /1) X (7).
(b) If e = —1, then
1
~ Ae(vo)
Proof. (a) By Definition 3.13, note that

Y. (WhnEeo=ZL(y7") mod (v ~ 1),
ceGal(K,, /K)

Z(1) -Ag(locy (20)).

where z,, also denotes locy(2y).

®Note that AE,x(cy) is non-zero by Theorem 2.7 (b).
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In view of the explicit reciprocity law of Wiles (cf. [53]) and [47, Lem. 5.5], we have

Z (’Uia,’mz’g)nx = 75 n’ZZJ _1
seGal(K,, /K)
= Try, (tm(x))/®(1m(x)) [QXP vZ, ) log (ZZ” (o) ﬂ

= Z exp*(ov _En o0),log <Zznx Yo )

oc€Gal(¥,/P)
= 6)(’1 (’U,E) . )\E(Zx—l)
(see also [47, p. 413]). Here,
[, ]:Dar(V)®e ¥y, x Dar(VO (1) @9 ¥, — O[1/p] ®a ¥y,

denotes the natural pairing, exp* is the dual exponential map, and the last equality
follows from (2.9) and the fact that ovt_,, corresponds to o ~!v_. , under (3.15).

Hence, &n
Z(x(7) =0y-1(v_) - Ap(2y-1) (3.17)
However,
Z (05,0 _cn)no =w;*(y) mod (47" —1),
o€Gal(K,, /K)
and so

Oyt (v—e) - P"Ap,x-1(en) = wp " (X (7))-

Hence, (3.17) concludes the proof.

(b) This just follows by letting n =0 and x = 1 in the above argument. -
Remark 3.17.
(i) In view of Theorem 3.16 (b), if e = —1, then
2(1) = p~ A (locy (z0)) (3.18)

up to an element in O*.

(ii) One may seek a Coleman integration approach to Theorem 3.16. The preliminary
study of a p-adic Eisenstein series in [5] maybe relevant.

(iii) A natural problem is to investigate a special value formula £ (x) for anticyclotomic
characters x of infinity type (j, —j) with 7 > 0. It will be investigated in a
forthcoming paper.

Corollary 3.18. Let x be a primitive character of Gal(K,/K) so that ords—;
L(px,s)=1. Then, y,—1 € A, -1(Q)®0Oy, as in Corollary 5.7, has the following properties.
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(i) yy-1 is nontorsion.

(ii) We have

LX) =dy-Aa i (Y1)

for a non-zero d,, € O, [1/p] and /\Axfl a formal group logarithm of the Néron model
of Ay—1 over Z).

Proof. The following is based on Iwasawa main conjectures [2], [12], to which we refer
for notation.

Let ¢ denote the sign of the root number W (p). By [2, Thm. 3.6], the Selmer group
ZZ has A-rank one. Let 2, be the Pontryagin dual of the strict Selmer group Sgiy :=
Selstr (Koo, V/T) (cf. [2, §2] or (4.1) below). Let 25 be defined analogously.

In light of Proposition 3.5 and [2, Thm. 5.2], the latter being the main conjecture’, the
X~ '-specialization of chary (2 ,,) is non-zero, where char, (-) denotes the characteristic
ideal. Observe that Proposition 3.5 also implies that the y ~!-specialization of chary (Z,)
is non-zero and then so is the x~!-specialization of chara(2ye,A—tor) (cf. [2, Thm. 4.1]).
Hence, in view of [2, (4.1), (4.4)], it follows that z,-1 is non-torsion, and the proof
concludes by Theorem 3.16 (b). O

Remark 3.19.
(i) By Lemma 3.4, A, (Q) ® O, is p-torsion-free.
(ii) If ords—1 L(¢,s) = 1, then
L) =p " Aalyr) (3.19)

up to an element in O*.

4. Rubin p-adic L-function and rational points

The main results are Theorems 4.8 and 4.18, and Proposition 4.14.

4.0.1. Notation

Let the setup be as in §3.3. In particular, f € So(T'y(IV)) denotes the theta series associated
to the Hecke character ¢. Let F' C C denote the Hecke field of f.
Let A, be a GLo-type abelian variety so that

L(As)= [] L(.9)

o:F—=C

(cf. §B.1). Let L denote the subfield of C generated by (K *) over K, a finite extension
of K containing F. As in §3, let O be the integer ring of the completion L, at the prime
p compatible with the embedding ¢,. Let Af: A(Q,) — F, be a formal group logarithm
arising from the differential attached to the newform f as in §A.3.

6This is an underlying Iwasawa main conjecture, whose proof relies on Rubin’s conjecture
(cf. Theorem 2.1).
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Put V(f) = V,(A) ®Frsq, Fp = FP? and Vi, (f) = V(f) ®F, L. Our normalisation
differs from [30]; namely, our Vi, (f) is isomorphic to Vi, (f)(1) of [30, §8.3] as a Gq-
representation.

Replacing A by an isogeny, we may assume that A has Op-multiplication. For W =
Alp®°] (resp. V/T') and a finite extension M of Q (resp. K), define

Selyi, (M, W) = ker Hl(M,W)HHHl(MU,W)me . (40)
f v

vlp vip

Put el (Koo, V/T) = lim Selyr (K, V/T).

4.1. p-adic Beilinson formula: a first form
4.1.1.

Theorem 4.1. Let A, be a GLa-type CM abelian variety. Let K be the corresponding
imaginary quadratic field and F the Hecke field. Suppose that the root mumber of the
associated CM newform is —1. Let p > 5 be a prime of good non-ordinary reduction for
Ajg with p{hg and £ the Rubin p-adic L-function as in (3.14). Then, there erists a
rational point P € A(Q) with the following properties.

(a) We have

for some ce L*.
(b) P is non-torsion if and only if ords—1L(A,s) = [F : Q.

4.1.2. Tools of the proof. We outline the strategy.

Elliptic units and Beilinson-Kato elements. The following link between zeta elements is
a key.

Theorem 4.2. Let z = (z,) € lim HY(K,,T) be the elliptic unit as in (3.2) under the
identification (5.1) and z; € H*(Q,V(f)) a Beilinson-Kato element associated to the
newform f. Then, under the identification (4.2), we have

20 =Zzf
up to an element in L*.

Proof. This is [30, (15.16.1)]. O

Beilinson-Kato elements and rational points. The following connects Beilinson-Kato
elements with Heegner points.

Theorem 4.3. If L(f,1) =0, then there exists a rational point P € A(Q) with the
following properties.
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(a) We have
Aﬂb%@ﬂyw@<1%ﬁﬂ+;>AﬂPﬁ

for some cp € F* and a,(f) the p-th Fourier coefficient of f.
(b) P is non-torsion if and only if ords—1 L(f,s) = 1.
(¢) If the equivalent conditions in (b)hold, then

L'(f,1)

P =0 (P, P

for (,)oo the Néron-Tate height pairing.

This is an evidence towards a conjecture of Perrin-Riou [42]. We refer to Appendix B
for details (cf. Theorem B.3).

p-adic Gross-Zagier formula. Theorem 4.3 is based on the following interrelation
between p-adic logarithm of a Heegner point and central derivative .7 . (f,1) of the
cyclotomic p-adic L-function %), ,(f,s) for v € {a, 3} a root of the Hecke polynomial
at p.

Theorem 4.4. Suppose that the root number of L(f,s) is —1. Then, there exists a point
P € A(Q) and a non-zero constant cp € Q such that

(1—i)zf;,a<f,1>— (1—1)2 a0 =er Doy

g wp,puwy]
Moreover, P is non-torsion if and only if ords—1 L(f,s) =1, and
L'(f1)
cp=——+"""—.
Q¢ (P,P)os

This is a variant of the p-adic Gross—Zagier formula [32] (cf. Appendix A). In
combination with Proposition B.4, it yields Theorem 4.3.

4.1.3. Proof of Theorem 4.1. The approach is based on Theorem 3.16 (b) and a
link between elliptic units and Heegner points (cf. Theorems 4.2 and 4.3).
Proof. Fix an isomorphism Indg (V)= Vi, (f) of Gg-representations and let
H'(K,V)=H'(QVL,(f)) (4.2)
be the induced identification. Let
2 € HH(QV(S))

be a Beilinson—Kato element as in [30, Thm. 12.5], which depends on a choice of an
element in H'(A(C),Q) = F (cf. §B.2).
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Since the root number of f is —1, L(f,1) =0, and so loc,(z¢) € H} (Qp, V(f)) by Kato’s
reciprocity law [30, Thm. 12.5 (1)]. Now in view of Theorems 3.16 and 4.2, it follows that

1
= m/\f(locp(zf)) (4.3)

Z(1)

up to an element in L*. Hence, Theorem 4.3 concludes the proof. O

Remark 4.5. Theorem 4.1 concerns an anticyclotomic p-adic L-value, yet its proof relies
on central derivative of cyclotomic p-adic L-functions.

4.2. p-adic Beilinson formula: a refined form

The main result is Theorem 4.8.

To consider a refinement of Theorem 4.1, we first specify an abelian variety A in
the associated isogeny class (cf. §4.2.1), leading to an explicit form of Theorem 4.2 (cf.
Proposition 4.12).

4.2.1. A CM abelian variety. We begin with a preliminary (cf. [27, §5.1]).

Lemma 4.6. Let E be a CM elliptic curve as in §3.1.1 and j € H denote its j-invariant.
Then the following holds.

(1) [H:Q()] =2,
(2) Q(j) has at least one real place and
(3) H=Q()K.

Suppose that
E is defined over Q(j). (rt)

This holds if j = j(Ok) or, equivalently, E(C) 2 C/Ok (cf. [27, (5.1.4) and Thm. 10.1.3)).
Fix a minimal Weierstrass model of £ at p over Oy, NQ(j) and let w be the Néron
differential.

Lemma 4.7. The Weil restriction
A= Resq(j) /o(E)
1s a GLa-type abelian variety associated to f.

Proof. By [27, Thm. 15.2.5], A is a CM abelian variety” defined over Q which is simple
over K. Since

L(Ajgs)= [] L(f°.9)

o:F—C
(cf. [27, Thm. 18.1.7]), the assertion follows. O

We now describe some structures on A arising from F.

"Note that A and Q(j) correspond to B and F of [27], respectively.
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The canonical identification

Hir(Aj) = Hig(E/q())

is compatible with the Hodge filtration, via which the Néron differential w of E gives an
element w, of coLie(A,g). Since H = Q(j) K, we have

coLie(4 /q) ®g L = coLie(E/q;)) ®g L = coLie(E, ) @k L.

So, the one-dimensional L-vector space coLie(4,g) ®r L leads to a one-dimensional
subspace S(p) of coLie(E, ) ®k L, namely its ¢-part. This induces an identification

Ind§V =Vy, (f), (4.4)

which is the same as the identification [30, (15.11.2)] (recall that our Vi, (f) is isomorphic
to the Ly-linear dual of that of [30]). In turn, A\g : H} (®,V) — L, is identified with the
logarithm map Ay : H} (Q,,Vy,(f)) — L, associated to wa, where wa € coLie(4q) is
regarded as an element of FilO(DdR(VLp (f))) = coLie(A,q) ®F Ly.

Fix ba € H'(A(C),Q) and define a period Q¢ € R* as in (B.3). Note that u:=Qy/
QelLx.

4.2.2. Main result and applications.

Theorem 4.8. Let A g be a GLa-type abelian variety associated to a CM newform f as
in §/.2.1. Let K be the CM field and F the Hecke field. Suppose that (rt) holds and the
root number of f equals —1. Let p>5 be a prime of good non-ordinary reduction for A g
with pthgx and £ the Rubin p-adic L-function as in (3.14). Then there exists a rational
point P € A(Q) with the following properties.

(a) We have

1\ As(P)?
21 ZD%EU,]I =Uu 1—|—)f - C
)= i) =14 ) S0
for some cp € F*.
(b) P is non-torsion if and only if ords—1 L(f,s) = 1.
(¢) If ords—1 L(f,s) =1, then

L'(f,1)

PP, P

Part (a) leads to the following p-adic construction of a rational point of infinite order.

Corollary 4.9. Let E/q be a CM elliptic curve with root number —1. Let p > 5 be a
prime of good supersingular reduction for E,q and £ the Rubin p-adic L-function as in
(3.14). Suppose that ords—1 L(E,s) =1, and the Birch—Swinnerton-Dyer formula is true
for E)q. Then,
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Ap(v—0) - Z(1)
(I+p~Hull,ce

18 a rational point of infinite order, where ¢y denotes the Tamagawa number at £.

CXPE,w <#E(Q)tors > € E(Q)

Remark 4.10.
(i) The BSD formula is known to be true up to an element in Z[

Cor. 1.4]).

(ii) The rational point is independent of the choices involved, besides that of the square
root.

w] x (Cf [32,

(iii) Rubin initiated p-adic construction of rational points of infinite order (cf. [50, Thm.
10.4].)

Another application is the following variant of Corollary 3.11.

Corollary 4.11. Let E/g be a CM elliptic curve and K the CM field. Let p > 5 be a
prime of good supersingular reduction for E,q and K, the nth-layer of the anticyclotomic
Z,-extension of K.

(i) If L(E/q,1)/S is a p-adic unit, then for alln>1,
corankz, Sely~ (E/, ) — corankz Sel,~(E g, ) = enp” ! (p—1),

where e, =0 (resp. 2) for n odd (resp. even).

(ii) Suppose that ords—1L(E q,s) =1 and there exists a rational point P € E(Q) whose
image generates the Zp-module E(Qp)/E(Qp)tor- If

L(Ejo,1)/Q(P.P)a
s a p-adic unit, then for alln>1,
coranky, Selye (E/f, ) — corankz, Selye (B, ) =enp™ '(p—1),
where e, =0 (resp. 2) for n even (resp. odd).
In particular, if UI(E) g, ) is finite, then
ranky, F(K,) —rank; B(K, 1) =ec,p" ' (p—1).

Proof. We first consider the case (i).
Since L(p,1)/82 is a p-adic unit, note that (¢) = +1 and

L e AN,

For x € 2, we then have L(yx,1) # 0 and so rankOXE(Kn)’(1 =0 by Theorem 3.9 (a)
where n denotes max{0,ord,(c,) —1}. Now, let x € 2. In view of Theorem 3.16,

locp(2zy-1) #0.

Hence, the image of z in Sye is a Ag-basis for Sielq up to tensoring with Qp,, where Siel
denotes the relaxed compact Selmer group and q the prime ideal of A corresponding
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to the y~!-specialization. In turn, Hstr,q 1s finite by [2, Prop. 3.3] and then so is
H2((’)K[%],T(X)). Hence, Tate’s Euler characteristic formula implies

E

ranko H'(Og p],T(X)) =1.

Since z,-1 € H} (K,T(x)) by Lemma 3.3, we conclude that rankoXHfl(OK[%],T(X)) =1
The assertion follows from this.
The case (ii) is similarly proven by using Theorem 4.8. O

4.2.3. Elliptic units and Beilinson—Kato elements.

Proposition 4.12. Let z = (z,) € lim HY(K,,T) be the elliptic unit as in (3.2) under
the identification (5.1) and zf,0 € H*(Q,V(f)) the Beilinson-Kato element associated to
the newform f as in (4.8). Then, under the identification (4.7), we have

20 =U-Z2f,0,
where u:=Q;/Q e L*.
Proof. By [30, Lem. 15.11 (2)], there is a unique isomorphism
Indg H'(E(C),Q)®x L= H' (A(C),Q)®r L (4.5)
of L[Gal(C/R)]-modules such that the following diagram

per,,

S(p) Indg (H'(E(C),Q) ®x C) (4.6)

L e

coLie(A4/Q)®r L H'(A(C),Q)®rC

commutes. Here, H!(A(C),Q) is regarded as a Gal(C/R)-module via the complex
conjugation on A(C), per,, is the period map induced by that of £ (cf. [30, §15.8]) and
the right vertical map is the base change of (4.5) via L C C.

Recall that z € lim HY(K,,T) is the image of an element z°!' € lim HY (K (fp"),T)
associated to bg as in [30, Prop. 15.9] under the corestriction map

%ﬂHl(K(fp"),T) - 1'%1191(1%1),

where § denotes the conductor of ¢ and K (fp™) the ray class field of K of conductor fp™
(cf. [30, p. 254]). Let Q,, be the n-th layer of the cyclotomic Z,-extension Qo of Q. Let

2= (z)) € lm HY(Qu. T (f)) ® Ly

ell

denote the image of z*" under

lim B (K ("), T) © Ly = lim H (K © Q,,, T) © Ly = lim H'(Q,,, T(f)) © Ly.

n n
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Here, the first map is induced by the corestriction maps with respect to K @ Q,, C K (fp"),
and the equality is a consequence of (4.4) and Shapiro’s lemma.

Note that by = Q™ 'per,,(w) maps to Q™ 'per(wa) under (4.5) and z°!! is associated to
bg. Thus, in light of (4.6) and [30, (15.16.1)], it follows that z°!! coincides with the system
of Beilinson—Kato elements associated to

Q 'per;(wa) € H'(A(C),Q) ®p L.

Since Qo is a totally real field, the last assertion in [30, Thm. 12.5 (1)] implies that 2!
also coincides with the system of Beilinson—Kato elements associated to

ell

Q271 +¢)perp(wa),
and that 3¢ coincides with the one associated to
bii=2" 1+1)ba = 9;12_1(1 +)per;(wa)

(cf. (B.3)), where ¢ denotes the involution induced by the complex conjugation on A(C).
Therefore, we have

2 =wuzp 0.

Since zg =z in HY(K,V) = H*(Q, Vi, (f)), the proposition follows. O

4.2.4. Proof of Theorem 4.8. 'We proceed as in the proof of Theorem 4.1 (cf. §4.1.3).
The additional ingredient is Proposition 4.12.

Proof. By (4.4) and Shapiro’s lemma, we have an identification
Hl(KaV):Hl(@7VLF(f))' (47)

Let T'(f) be a Galois stable O, -lattice of V(f).
Let

5= (2,0) € I HY(Q, T(f)) ©Qp (4.8)

be the Beilinson-Kato element associated to b4 as in [30, Thm. 12.5 (1)] (since our V7, (f)

is a Tate twist of that in [30], 37 is the corresponding twist of zl(f; )

35 satisfies the explicit reciprocity law (B.4).
Note that L(f,1) =0, and so by Proposition 4.12,

as in [30]). In particular,

20 =uzp0 € Hi (K,V®©Ly) = H{ (Q. V1, (f)). (4.9)
Hence, Theorem 4.8 is a consequence of Theorems 3.16 (b) and 4.3. O
Remark 4.13. For a given bg or w, note that Af(v_ )Q- 2 (1) is independent of the

choices of €2 and v_. Moreover, the right-hand side of Theorem 4.8 (a) is independent of
the choice of by.
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4.3. Towards a conjecture of Perrin-Riou: primes of bad reduction

The conjecture [42] intertwines Beilinson-Kato elements and global arithmetic (cf. §B.1).
For a weight two elliptic newform g and z, € H'(Q,V) an associated p-adic Beilinson—
Kato element, the conjecture predicts

locy(2g) #0 <= ords=1L(g,s) < 1.
(cf. (B.2)).
Proposition 4.14. Let ¢ be a self-dual Hecke character of an imaginary quadratic field
K of infinity type (1,0). Let p > 5 be a prime so that (inr) holds and pthk -cond"p. Let
K be the anticyclotomic Z,-extension of K. For a finite character x of Gal(K/K),

let g be the theta series associated to the Hecke character ox~'. Let z, be an associated
Beilinson—Kato element. Then,

ords=1L(g,8) =1 = locy(z4) #0.

Proof. By Corollary 3.18, the localisation of the Selmer element y, is non-torsion. This
element is defined using elliptic units as in (3.4). Hence, the assertion is a consequence®
of Theorem 4.2. O

Remark 4.15. For non-trivial x, an abelian variety A, associated to g does not
have semistable reduction at p. Accordingly, the proposition complements [7], [17] and
Theorem B.3. It is perhaps the first evidence towards Perrin-Riou’s conjecture at primes
of non-semistable reduction.

4.4. p-converse to a theorem of Gross—Zagier and Kolyvagin
Let the setting be as in §4.1.

4.4.1. Preliminary.

Proposition 4.16. Suppose that L(¢,1) =0. Then, the element loc,(z0) € H{ (K,,V) is
non-zero if and only if ords—1 L(p,s) = 1.

Proof. This is a consequence of Theorems 4.2 and 4.3. O

4.4.2. p-converse.

Theorem 4.17. Let A,g be a GLa-type CM abelian variety. Let K be the CM field and
F the Hecke field. Suppose that (rt) holds and Op < EndA. Let p > 5 be a prime of good
non-ordinary reduction for A g with pthg, and p a prime of F above p. If Sels (Q, A[p*°])
is finite, then

ords—1L(A,s) = [F : Q] - coranko,, , Selpe (A).

8The theorem is stated for CM elliptic newforms with good reduction at p, but it holds for any
prime p (cf. [30, (15.16.1)]).
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Proof. We have A(Q,) ®o,. F,/OF, = F,/OF,. So the exact sequence
0 — Sels:r (Q, A[p™]) — Sely~ (4) = A(Qp) ®o, Fy/OF, (4.10)
and the finiteness of Selg, (Q, A[p]) imply that
coranko,. ,Sely~(A4) < 1. (4.11)

Observe?

Selsir (Koo, V/T)Y @ Qp /(v —1) 22 Selgr (K, V/T)" @ Q,

= Selsir (Q Ap™])Y @0y, Ly (4.12)

={0}.
Thus, 29 € H'(K,T) is non-torsion by [2, Prop. 3.3 (ii)].

We now show
0 # locy(20) € H (K, V). (4.13)
To begin, Selg, (K,V/T) is finite by (4.12). Put
p* = |Selgw (K, V/T)|.

Since zg € H'(K,T) is non-torsion, pick an integer m such that p~™% %z, € H'(K,V) does
not lie in the image of H'(K,T). Suppose that locy(29) =0 € H'(K,,V). Then, as z is

unramified outside p, the image w,, of p~™z2 in H'(K,V/T) lies in Sely,(K,V/T) and
so does p*w,,. However,

p w, =0 HY(K,V/T).
This contradiction yields (4.13).

e The case W(yp) =+1. In view of (3.3) and (4.13), we have L(p,1) # 0. Hence, by
the theorem of Coates-Wiles [20] and Rubin [46],

ords=1L(A,s) = [F: Q] -corankp,. ,Sely(A) = 0.

e The case W(p) =—1. In view of (4.13) and Lemma 3.3, the image of p~™2¢ in

H'(K,V/T) gives a non-zero element of Sel(K,V/T) for a sufficiently large m. By
(4.11), it then follows that

coranko,. ,Sely (A) = 1.
Hence, the assertion is a consequence of Proposition 4.16. O

Finally, we have the following p-converse.

Theorem 4.18. Let A,g be a GLa-type CM abelian variety. Let K be the CM field and
F the Hecke field. Suppose that (rt) holds and Op — EndA. Let p > 5 be a prime of good
non-ordinary reduction for A,g with p{hg, and p a prime of F above p. Suppose either
of the following.

9Recall that Indf (V) = T, (A) ®o,0z, Lp-

https://doi.org/10.1017/5147474802300021X Published online by Cambridge University Press



p-Adic L-functions and rational points on CM elliptic curves at inert primes 1449

(a) coranko,. ,Selp(A) =1 and loc, : Sely<(A) = A(Q,) ®oy Fy/OF, is a non-zero

map.
(b) corankp,. ,Selyec (A) =1 and I(A)[p>] is finite.
Then,
ords—1L(A4,s) =[F: Q).
Proof.

(a) In view of the assumption and (4.10), Selst, (Q,A[p>°]) is finite. So, the assertion
directly follows from Theorem 4.17.

(b) Recall the exact sequence
0— A(Q) ®o, Fy/Or, — Selpe (A) — HI(A)[p>] — 0. (4.14)
So, by the assumption, we have A(Q)®o,. F},/OF, = F,/OF, . Hence,
locy : A(Q) ®op F/OF, = A(Qp) ®oy Fy/OF,

is a non-zero map. 0

Remark 4.19. The p-converse was initiated by Skinner and Zhang (cf. [52], [56]). The
above approach is a variant of [52], yet it does not rely on the parity conjecture.

Appendix A. p-adic height pairings and logarithms
A basic reference is [33, §3.2]. See also [32], [42] for elliptic curves.

A.1. p-adic height pairings on abelian varieties

We fix an embedding ¢, : Q < C,,. Let F' be a finite extension of Q. We choose a continuous
homomorphism (g : A% /F* — Q, and denote by {f , or ¢, the v-th component for a place
v of F (note that £, =0 if v is archimedean). The important example is the cyclotomic
logarithm. Let log, be the p-adic logarithm on Z; such that log,p = 0. We define the
cyclotomic logarithm ¢% , on F* at a non-archimedean place v by

. —log, |z|, = v(x)log,N(v) if wvip
F,v(x) = .
—log,Nr, /g, (2) if vl|p,

where N(v) is the number of elements of the residue field of F' at v and we normalize
as v(m) =1 for a uniformizer = at v of F. We define the cyclotomic logarithm ¢$. by
0% =3 0%, Then, (%.(x) =0 for € F* and it defines a homomorphism A% /F* — Q.

Let A be an abelian variety defined over F' with good reduction at all places over p
and let AV be its dual. For simplicity, we also assume that F' is unramified at all places
over p. Let L be a finite extension of Q,, which plays as the coefficient field. We choose a
splitting of the Hodge filtration of M,(A)®q, L for each place v over p. Here, M,(A) is
the weakly admissible filtered ¢-module of A over F, with Hodge-Tate weight {0,1} (the
Hodge-Tate weight of the cyclotomic character is normalized as —1). In other words, we
fix an L-vector subspace N, of M,(A)®q, L which is complementary to Fil' M, (A) ®q, L.
We put N := (Ny)y|p-
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Let a=),n;(P;) be a zero cycle on A of degree 0 defined over F, and let D be an
algebraically trivial divisor over F, prime to the support of a. Then, for a place v { p,
there is a canonical way to define the local height pairing (D,a),, € Q, characterized by
certain standard functorial properties (cf. [33, Proposition 9]. The pairing is independent
of the choice N). For a place v over p, depending on the choice of N,,, we can define the
local p-adic height pairing (D,a)e, n, € L. We recall the definition below.

The global p-adic height pairing is defined as the sum of local p-adic height pairings:

(, >€F,N : AV(F) XA(F) =L, (da)— Z<D7a>5v +Z<D»a>3v,]\’u'

vip vlp

Here, D is an algebraically trivial divisor that represents d, and a is a zero cycle Y n;[P;]
of degree zero with > n; P; = a. We choose D and a so that they have no point in common.
The global pairing does not depend on the choice of D, a.

A.1.1. The local p-adic height at v|p. We assume that v|p. As before, let a =
>-;ni(P;) be a zero cycle on A of degree 0 defined over F, and let D be an algebraically
trivial divisor over F, prime to the support of a. Let /O, be the smooth model of
A/F, and let &7V be the smooth model of AY. Then, the rational equivalence class of
D defines a point in AY(F,) = @ (Op,) = Ext},,(#,G,,). Hence, we have an exact
sequence as fppf sheaves

1 Gm 2 o 1, (A1)

where Zp is a smooth separated commutative group scheme over Op,. Over SpecF,,
this exact sequence is isomorphic to

1 Gom Xp A 1, (A.2)

where Xp is the line bundle associated to O (D) minus zero section which has a group
law since D is algebraically equivalent to zero. Hence, attached to D, there is a geometric
section sp : A\ |D| — Xp which is canonical up to a translation by an element of G,,.
We identify Zp ® F,, with Xp.

We define a local section

sp,N, : @ (OF,)®z,L — Zp(OF,)®z,L.
First, we identify
A (Op,)®L = Homp, o, (Fil' My 1, F, ® L) = Homy, (Fil' M, 1, L),

and so for Zp(Op,). Here, M 1 = M, (A)®q, L is the filtered p-module with coefficients
in F, ®q, L associated to &7 /OF, . Hence, it suffices to construct an L-linear map

Fil' Mg, 1 — Fil' My 1.
Since Mg, 1 and Mg, 1, have different Frobenius eigenvalues, the exact sequence

0—— My —— Mg, — Mg,,,, —0 (A.3)

ms
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splits as F,, ® L[p]-modules. Hence, we have a left splitting Mg,  — M 1. By composing
it to the projection Mg 1 — FillMQﬂL by N,, we obtain the map tp n, : Mo, 1 —
FillMdyL. By the restriction to FﬂlMggDyL, we obtain the desired map.

The local height pairing at v|p is defined as

(D,a)e, N, =Ly (H( (Pz‘)/SD,Nv(Pi))"i> €L

i
(we write the group law on Xp multiplicatively. Note that the image of sp/sp n, lives
in Gy,).

A.2. The dependence of the p-adic height on the splitting

Suppose that N’ = (N)),|, is another splitting. Then,

olp
<d,a>zF1N/ — d a gF N= Zf (H SD,N, (Pi)/sD,N{](Pi))ni> . (A4)
v|p i

Note that the image of sp, v, /sp, w7 lives in (’);U ®z, L C Zp(OF,)®z, L. We also remark
that sp n,/sp,n; does not depend on the choice of D for d (the geometric section sp
depends on the choice of the divisor D for d). The map sp n,/sp,n; is induced by the
map

Can, ny  Fil'Mg,, 1 = Fil' My 1, we,, = tp N, (WE,)—tp N (WE,,)-
Here, wf € Fil' My, 1 is a lift of wg,, under
0 — Fil'M, , —— Fil'Mg, , — Fil'Mg,, , —=0

(note that ty, is identity on Fil' M, ;). We note that the image of d by the logarithm
Aw,v for wav € Fil' M v is given by

[wAv,(wéin —wém)].

Here, wi € Mgy, 1, is the lift of wg,, compatible with the action of  under (A.3), and
[,] is the de Rham pairing on Mv and M. Let wy,...,w) be a basis of Fil' M v and
M,...,Ng a basis of a complementary subspace of Fil' M., such that [wy,n;] = d;; (the
Kronecker Delta). Then, we have

wgm =wg + Z ciw; + Z Ay (d)n;
i i
for some ¢; € F,,. Hence,

by N, N, (WG,,) Z)\ N, (M) =ty (mi)); (A.5)

where tn, : Mg — FillMg{ is a splitting by N,,.
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Suppose that wg,, is the canonical invariant differential of G,,. Then, the map
Ad,N, Ny i=1ogo(sp,n, [sp.ny) o A(Fy) — F,®q, L

is the logarithm map defined by the invariant differential ¢4 n, N/ (we,,) € Fil' M o L
Hence,

(d,aYep N —(d,@)ep N = Zﬁv (expoda,n,, 7 (a)). (A.6)

v|p

The difference between global p-adic height pairing is measured by logarithms on A.

Proposition A.1. Assume that N,N\ N, ={0}. Then, sp,n, = sp,n: if and only if D is
torsion in AV.

Proof. D is torsion if and only if (A.3) splits as filtered ¢-modules. In such a case,
tp,n, does not depend on the choice of N,. Assume that sp n, = sp n:. Then, £y N, N/
(wg,,) = 0. Then, we have

wgm —Cdém —tDva(w(gm) :w(gm —(:)Gm _tD,N{) (wé;m) S NWQNL,

Hence, by our assumption, we have
¢ _ H H 1
WG, =WG,, — tp,N, (me) € Fil Mo, 1

This means that (A.3) splits as filtered p-modules. O

A.3. Applications for modular abelian varieties

Let f be a normalized eigen newform of weight 2 for I'o(M) with p{ M. Let A; be
a modular abelian variety defined over Q associated to f. We fix a polarization of Ay
compatible with the Hecke action and identify objects on A; and A}/ by the pullback
after tensoring L if necessary (e.g. differential forms, rational points). Let K; be the
Hecke field of f. We apply our theory for A= Ay/F for a number field F' unramified over
p and L containing K; and roots of the Hecke eigen polynomial of f at p. Then, we have
the decomposition

MAZ{/FU,L = @ Mfa
ceGal(K;/Q)

as filtered ¢-modules by the Hecke action. Here, M- is a filtered ¢-module of dimension
2 as I, ®q, L-vector space and Fil'! M yo = F, ®q, Lwys-, where wyo is the differential form
on Xo(N) associated to f?. Let o and 8 be distinct roots of the Hecke eigen polynomial
of f at p in L. (cf. [21].) We consider a splitting N, (resp. Ng) of the Hodge filtration of
My generated by fwy —@wy (resp. aws —wy). Note that if F'=Q, N, is an a-eigenspace
of the Frobenius. We extend them (arbitrary) to splittings for M, /F,, L, Which are also
denoted by N, and Ng. Then, by (A.6), we have

(d,a)es. N, —(d,a)es, Ny = —Trp/QAa,N,, N, (a)
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for the cyclotomic height pairing (here, Trp/gAg N, N, (a) == ZU:F,_}(CP Ado Na,Ng (a7)).
We put A(F); for the f-part of A(F')® L be the Hecke action. Let Ay : A(F)f — C, be
the logarithm associated to wy.

Theorem A.2. Assume that [pwy,wr] # 0. Then, we have

(B—a)
(d,a)ee N, —(d,a)ee Ny = WTYF/Q(Af(d))\f(Q))
for da € A(F); (note that A is self-dual). In particular,
_ (B=a) 2
<a,a>g%,NQ (a,aﬂLF’NB = [wﬁwwf]”[‘rp/@)\f(a) )

Proof. Put ny := mwwf and extend wy, ny to a symplectic basis of M/, . Since

Bwy —pws € Ny, we have ty, (n) = o l;wf]wf. Hence, the assertion follows from (A.5)

and (A.6). O

Corollary A.3. Assume that [pwy,wys] # 0. The pairing (, e, N, or (, )eg,n, 15 non-
trivial. In particular, if the Hecke polynomial at p is irreducible over the p-adic completion
of Ky, the height pairing (, )¢, N,, is non-trivial.

Proof. This follows from Theorem A.2 since Ay is non-trivial. The pairings (, ) €5, Na and
(, >%Nﬁ are conjugate if o and 3 are. O

Corollary A.4. The p-adic Gross-Zagier formula of f holds for inert primes if f is non-
ordinary at p. (cf. [33, Theorem 3])

Proof. We first show that [pwy,wys] # 0. We have a strongly divisible lattice D in M
by the Fontaine-Laffaille theory. Suppose that [pwy,w] = 0. Then, Fil' D is stable by ¢.
Hence, ¢(Fil' D) C Fil' DNpD = pFil' D. This implies that one of the eigenvalues a, j3 is
divisible by p, which contradicts the non-ordinary assumption. By Corollary A.3, choose
o for which (, )ge v, is non-trivial. Then, see a remark after [33, Theorem 3]. O

@

Corollary A.5. Let p be a non-ordinary (good) prime for f. Suppose that ords—1 L(f,s) =
1 and the Iwasawa main conjecture for f is true for p. Then, the p-part of the full Birch and
Swinnerton-Dyer conjecture (Bloch-Kato’s tamagawa number conjecture) is true for f.

., is non-trivial. Then, the assertion follows from similar

Proof. Take a so that (, )¢ w,
arguments as [33, Corollary 1.3 (iii)]. O

Let

A= { L antr=1)" € Ly 1]ty =0},

n>0

where |- |, is the multiplicative valuation of L normalized by |p|, = 1/p. For |a|, > 1/p,
let L, o(f) € 1 be the cyclotomic p-adic L-function as in [30, Theorem 16.2]. Fixing a
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real period Q of f, we have the following interpolation property. For a finite character x
of Gal(Qu/Q) of conductor p™ > 1,

n L , _171
Lm(f)(x):anT(ffl,gpn)' (féf |

where (,» = €2™/P" and for the trivial character

L(f,1)
Q

Lypo(f)1) =(1-a™h)?

If | 3], > 1/p, then replacing o with 3, we see the interpolation property of L, g(f).
Define

(£ 1) = im Ly (D)) /(5 1),

where x®° : Gal(Qoo/Q) — 1+ pZ, is the cyclotomic character. We similarly define
!
p,[j(f? 1)

Theorem A.6. Let p be a non-ordinary (good) prime for f. Suppose that the root number
of L(f,s) is —1. Then, there exists a point P € A(Q); and a non-zero constant cp € Q
such that

(1- ;)_23,;&@,1) -(1- ;)_2%’,5@,1) —en b py

Moreover, P is non-torsion if and only if ords=1L(f,s) =1, and in such a case cp =

L'(f,1)

;PP where (,)oo is the Néron-Tate height pairing.

Proof. By [8], there exists an imaginary quadratic field K satisfying the Heegner
hypothesis and L(f ®¢,1) # 0 for the quadratic character e associated to K. Let z be a
Heegner point associated to K. Since L(f ®e,1) # 0, the Heegner point z lives in A(Q) @Q
up to a torsion element. Then, by Theorem A.2 for F'= K and by the p-adic Gross-Zagier
formula, we have

N e k- (1-8) gk =2 B e a

a pett i B A P A '
where %, _(f/K,s) is the p-adic L-function of f over K (cf. [32], [33]) and u = O /2.
By the classical Gross-Zagier formula, z is non-torsion if and only if ords—1 L(f,s) = 1.
Then, as in the proof of [32, Corollary 1.3], we have the desired formula from (A.7) by
using the complex and the p-adic Gross-Zagier formulae. O

Appendix B. Perrin-Riou conjecture

Rubin’s formula [50] inspired the eponymous conjecture [42, §3.3.2], which primarily
concerns the arithmetic of Beilinson-Kato elements.
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B.1. The conjecture

Let f € S3(T'g(IN)) be an elliptic newform and F C C the Hecke field. Let A be an
associated GLo-type abelian variety over Q; that is, A is a simple, [F' : Q]-dimensional
abelian variety equipped with a homomorphism F'— End(A) ® Q of Q-algebras such that

L(A,s) = H L(f7,s).
0:F—Q
Let p be a prime number and p the prime of the Hecke field F' over p arising from the
fixed embedding ¢, : Q — C,. Let V(f) = Fpﬂ92 denote the p-th component of the Galois
representation 7),(A) ®Q, =[], FP?. Let 2y € HY(Q,V(f)) be a Beilinson-Kato element
as in [30, Theorem 12.5]. By Kato’s reciprocity law [30, Theorem 12.5 (1)],

loc,(zf) € Hf (Q,,V(f)) <= L(f,1)=0. (B.1)

After Kato, if L(f,1) # 0, then 2y is inherent to the arithmetic of f (cf. [30, Theorem 14.5]).
If L(f,1) =0, then Perrin-Riou [42, §3.3.2] (for elliptic curves) conjectured the Beilinson-
Kato element z¢ to be still intertwined with the arithmetic as follows.

Conjecture B.1. Let f € S2(I'o(N)) be an elliptic newform and A,q an associated
GLy-type abelian variety. Suppose that L(f,1) =0. Let p be a prime. Then, there exists a
rational point P € A(Q) with the following properties.

(a) We have
Ap(locy(zf)) = Ay (P)?
for some ¢ € F* and Ay : H (Q,,V(f)) — F, the logarithm map associated to a

non-zero element wa € coLie(A).
(b) P is non-torsion if and only if ords—1 L(f,s) = 1.

The conjecture implies

loc,(zf) #0 <= ords—1 L(f,s) =1. (B.2)

B.2. The non-ordinary case

We prove Perrin-Riou’s Conjecture B.1 at the primes of good non-ordinary reduction.
The main result is Theorem B.3, which shows a refinement of the conjecture.

B.2.1. Backdrop. Let the setting be as in §B.1.

Fix an element by € H'(A(C),Q) such that b} :==271(1+41)bs # 0 for ¢ the involution
of H'(A(C),Q) induced by the complex conjugation ¢ on A(C). Fix a non-zero element
wa € coLie(A) = F. Define Q¢ € R by

1+

2
where per; : coLie(A) — H'(A(C),Q) ®r C denotes the F-linear map induced by the
period map of A. (Since wy is defined over Q, note that per;(wa4) lies in the (: ® c)-fixed

per (wa) = b3, (B.3)
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part of H*(A(C),Q)®r C, and so Q; € R.) Fix a polarization of A4 which is compatible
with the F-action. Let T'(f) be a Galois stable Op,-lattice of V'(f).
Let

3f = (Zf,n) S 1&1]{1(QmT(f)) ®Qp

be the Beilinson-Kato element associated to bs as in [30, Thm. 12.5 (1)]. The following
explicit reciprocity law is due to Kato [30, Thm. 12.5].

Proposition B.2. For a finite character x of Gal(Q,/Q), we have

* o L ’ 71
> xo)epillocy () = L, (B.4)
0€Gal(Qn/Q) !

Here,

expy, : H'(Qn 5, V(f)) = Fil'(Dar(V (f))) ®g, Q. = coLie(A) @ F, ®g, Qu,p

is the dual exponential map and p the prime of Q, over p.

B.2.2. The theorem.

Theorem B.3. Let f € So(I'g(N)) be an elliptic newform and p a prime of good non-
ordinary reduction. Then, an explicit form of Conjecture B.1 is true: if L(f,1) =0, then
there exists a rational point P € A(Q) with the following properties.

(a) We have

Aﬂb%@ﬂy=@<1—%*”+l>xﬂpf

p p
for some cp € F*, and z5 = zy,0, ap(f) the p-th Fourier coefficient of f, and Ay :
H}NQ,,V(f)) = Fy the logarithm map associated to wy.
(b) P is non-torsion if and only if ordge—1 L(f,s) = 1.
(c) If the equivalent conditions in (b)hold, then

L'(f,1)

PP, P

for (,)oo the Néron-Tate height pairing.

Our proof is based on the following link between the logarithm of loc,(zy) €
H!(Q,,V(f)) and the first derivatives of the p-adic L-functions.

Proposition B.4. Let a and 3 be the roots of the Hecke polynomial X?* —a,(f)X +p
of f. Then, we have

L—ap(f)+p
«

Af(locy(2f)) = 5

[wA7(pr]Dcris(V(f)) : ((1 - a_l)ngg,a(fvl) - (1 _ﬁ_l)zgpl,ﬁ(fvl))v

https://doi.org/10.1017/5147474802300021X Published online by Cambridge University Press



p-Adic L-functions and rational points on CM elliptic curves at inert primes 1457

where Z, . (f,1) and Z, 5(f,1) are the derivatives of the cyclotomic p-adic L-functions
as in §A.3, and

[ 1Dasv() : Dess(V(F)) % Deris(V (£))/ Dexis(V (f)) = Dexis (Qp(1)) @ Fy =2 Fy

is the natural pairing induced by the de Rham pairing. Here, under the last isomorphism,
the basis of Deis(Qp(1)) associated to ((pn)y = (€27/™),, corresponds to 1 € F,, and
DO (V(f)) denotes Fil’ Deyis(V (f)).

cris
Proof. Define wy,wp € D := Dais(V(f)) ®F, Fy(a) by
Wa = ﬂilwA —pwaA, W= ailwA —Pwa

for ¢ the Frobenius map of D. Then, w, and wg are non-zero elements such that pw, =
a lw, and pws = B~ ws. Here, we note that D coincides with M¢ ® Deis(Qp(1)) in
subsection A.3 with L = Fy(«).

Following [42, §3.1.3], define’’ L,(f) € #%, (a) ®F, (o) D by

p
Ly(f) = m ) (Lp,a(f)wa —Lp,ﬁ(f)wﬁ)

and Z)(f,1) = lim,1 L, (f)((x¥)*~1)/(s—1) € D.

Then, by [42, Proposition 2.2.2] and (B.4), we have

logy(locy(zf)) = (L—p ™) (1— ) L (f1)
p

Lyt a ) e 08 (s
= % ((1 — a_1)2$;7a(f,1) —(1-p71H2 ;yﬁ(ﬂl)) ows  mod Fil’D.

Here, log; : H} (Qp,V (f)) = Deris(V (f))/D2s(V(f)) denotes the Bloch-Kato logarithm

cris

of V(f). Counsidering the product with w4, the proposition follows. O

We now return to Theorem B.3.

Proof of Theorem B.3. Since  Deis(V(f)) = My ® Deais(Qp(1)), note  that
plwa,pwalp,...(v(f)) coincides with [wa,pw4] in Theorem A.6.
Hence, the assertion is a consequence of Theorem A.6 and Proposition B.4. O

Remark B.5.

(i) A recent progress towards Conjecture B.1 appears in [7], [17], [19]. The key tools
are (variants of) the Beilinson-Flach element and the BDP formula. In the non-
ordinary case, these results assume additional hypotheses such as p odd, while our
independent approach treats the general non-ordinary case.

(ii) Theorem B.3 is a tool in the proof of yet another CM p-converse (cf. [15]), and in
turn, a result towards the cube sum problem (cf. [1]).

"ONote that wa = 725 (wa —wp).
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