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Abstract Let K be an imaginary quadratic field and p ≥ 5 a rational prime inert in K. For a Q-curve E

with complex multiplication by OK and good reduction at p, K. Rubin introduced a p-adic L-function
LE which interpolates special values of L-functions of E twisted by anticyclotomic characters of K. In
this paper, we prove a formula which links certain values of LE outside its defining range of interpolation
with rational points on E. Arithmetic consequences include p-converse to the Gross–Zagier and Kolyvagin
theorem for E.

A key tool of the proof is the recent resolution of Rubin’s conjecture on the structure of local units
in the anticyclotomic Zp-extension Ψ∞ of the unramified quadratic extension of Qp. Along the way, we
present a theory of local points over Ψ∞ of the Lubin–Tate formal group of height 2 for the uniformizing
parameter −p.
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1. Introduction

Since the seminal work of Coates and Wiles, Iwasawa theory of CM elliptic curves influ-

ences general Iwasawa theory. It continues to have applications to classical Diophantine
problems. The nature of prime p is inherent to Iwasawa theory. For primes split in the

CM field, CM Iwasawa theory is well-developed. In contrast, for non-split primes, new

phenomena abound and CM Iwasawa theory is still incipient.

Let K be an imaginary quadratic field and p ≥ 5 a rational prime which is inert in
K. Let Kn be the n-th layer of the anticyclotomic Zp-extension K∞ of K. Let E be an

elliptic curve defined over Q with complex multiplication by OK . In the early 1980s, R.

Greenberg found the formula

W (ϕχ) = (−1)n+1W (ϕ)

for root numbers, where ϕ denotes the Hecke character of E and χ an anticyclotomic

finite character of K of order pn > 1. It led him to the formula

rankZE(Kn)− rankZE(Kn−1) = εnp
n−1(p−1) (1.1)

for all n sufficiently large (cf. [24], [26], see also Corollary 3.11). Here, εn is 0 or 2 and

εn = 2 if and only if W (ϕ) = (−1)n. So, new points of infinite order occur in the alternate
anticyclotomic layers. This behavior of the Mordell–Weil rank is peculiar to the inert

case. For example, for a split prime p, we have rankZE(K∞) < +∞ if W (ϕ) = +1. In

the late 1980s K. Rubin envisioned an Iwasawa theory echoing such phenomena and

made a fundamental conjecture on the structure of anticyclotomic local units (cf. [47]).
Recently, we proved the conjecture [12]. The resolution has unexpectedly led us to new

developments in supersingular Iwasawa theory. This is the first of the series of papers of

our study.
In [47], Rubin constructed an anticyclotomic p-adic L-function LE interpolating special

values L(ϕχ,1) for finite anticyclotomic characters χ of K with W (ϕχ) = +1. If one

expects a p-adic Birch and Swinnerton-Dyer conjecture for LE , the function should
encode the rank behavior (1.1). The main result of this paper is a formula relating

the value of LE at a finite anticyclotomic character χ of K with W (ϕχ) = −1 to the

formal group logarithm of a rational point on E(Kn)
χ behind the phenomenon (1.1)

(see Theorems 1.1 and 1.2). It has an application for the Birch and Swinnerton-Dyer
(BSD) conjecture, namely a p-converse to the Gross–Zagier and Kolyvagin theorem (see

Theorem 1.5).

1.2. Main results. Let p ≥ 5 be a prime. Let Q be an algebraic closure of Q. Fix

embeddings ι∞ :Q ↪→ C and ιp :Q ↪→ Cp.
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Let K be an imaginary quadratic field with p inert and OK the integer ring. Let O
(resp. Φ) be the completion of OK (resp. K ) at p. In this introduction, we assume the

class number hK of K equals 1; however, the main text only assumes p � hK . Let K∞

be the anticyclotomic Zp-extension of K and Γ = Gal(K∞/K). Let Ξ be the set of finite
characters of Γ. Let

Ξ+ = {χ ∈ Ξ | condrχ is an even power of p},
Ξ− = {χ ∈ Ξ | condrχ is an odd power of p}.

In particular, 1 ∈ Ξ+ for 1 the trivial Hecke character of K. Let Λ be the anticyclotomic

Iwasawa algebra O[[Γ]].

Let E be an elliptic curve defined over Q with complex multiplication by OK with good
reduction at p (note that E has supersingular reduction at p since p is inert). Let T be the

p-adic Tate module of E, which is an O-module of rank 1, and put T⊗−1 =HomO(T,O).

Fix a minimal Weierstrass model of E over Z(p) and let ω be the associated Néron

differential form. Let Ω ∈ C× be a CM period so that ΩOK is the period lattice. Let ϕ
be the associated Hecke character of K. In particular,

L(E/Q,s) = L(ϕ,s).

Let W (ϕ) be the root number of the Hecke L-function L(ϕ,s).

1.2.1. Rubin p-adic L-function. Here, we introduce Rubin’s theory in terms of
Galois cohomology. The relation to Rubin’s original formulation is explained in Section 2.

Let Ψ∞ be the anticyclotomic Zp-extension of Φ and Ψn the n-th layer. We denote

the Iwasawa cohomology lim←−n
H1(Ψn,T

⊗−1(1)) by H1. For χ ∈ Ξ, which factors through

Gal(Ψm/Φ), the dual exponential map for χ⊗T⊗−1(1) normalized by ω defines a map

δχ :H1 −→Ψm(Imχ) (cf. (2.9)). Then, we put

H1
± := {v ∈H1| δχ(v) = 0 for every χ ∈ Ξ∓}. (1.2)

Rubin showed H1
± is a free Λ-module of rank one (cf. [47, Prop. 8.1] and (2.7)). Rubin’s

conjecture, which is proved in [12], posits

H1 =H1
+⊕H1

−. (1.3)

We fix a generator v± = (v±,n)n of the local Λ-module H1
±. Let ε ∈ {+,−} be the sign

of the root number W (ϕ) and let

LE := Lp(ϕ,Ω,vε) ∈ Λ (1.4)

be the associated Rubin p-adic L-function [47, §10] (cf. §3.3.1). Let LE(χ) denote its
evaluation at an anticyclotomic character χ.

For χ ∈ Ξε (resp. χ ∈ Ξ−ε), the Hecke L-function L(ϕχ,s) is self-dual and W (ϕχ) = +1

(resp.W (ϕχ)=−1). The interpolation property of the Rubin p-adic L-function is given by

LE(χ) =
1

δχ−1(vε)
· Lpf(ϕχ,1)

Ω
(χ ∈ Ξε), (1.5)
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where the non-vanishing of δχ−1(vε) is a consequence of Rubin’s conjecture, and Lpf(ϕχ,s)

denotes the associated L-function whose Euler factors at the primes dividing pf are

removed.
For χ∈Ξ−ε, note that L(ϕχ,1) = 0 by the functional equation and LE(χ) is not related

to L(ϕχ,1) directly. In light of the BSD conjecture, it is natural to seek:

links between LE(χ) for χ ∈ Ξ−ε and rational points in E(K∞)χ. (Q)

This question is due to Rubin [47, p. 421].

Theorem 1.1. Let E/Q be a CM elliptic curve with root number −1 and K the CM field.

Let p ≥ 5 be a prime of good supersingular reduction for E/Q and LE the Rubin p-adic
L-function as in (1.4). Then, there exists a rational point P ∈ E(Q) with the following

properties.

(a) We have

LE(1) =

(
1+

1

p

)
logω(P )2

logω(v−,0)
· cP

for1 some cP ∈Q×O×
K .

(b) P is non-torsion if and only if ords=1L(E/Q,s) = 1.

(c) If ords=1L(E/Q,s) = 1, then

cP =
L′(E/Q,1)

Ω〈P,P 〉∞
for 〈 , 〉∞ the Néron–Tate height pairing.

See also Theorem 4.8 in a more general setting.
The formula is the principal result of this paper. It gives a p-adic criterion for E to

have analytic rank one. For such curves, the p-adic L-value in turn leads to a p-adic

construction of a rational point of infinite order which is independent of the choice of v−
(cf. Corollary 4.9).

Our second result is an interpolation of the Rubin p-adic L-function at higher order

characters in Ξ−ε.

Theorem 1.2. Let E/Q be a CM elliptic curve and K the CM field. Let ϕ be the associated

Hecke character and ε the sign of the root number of ϕ. Let p ≥ 5 be a prime of good
supersingular reduction for E/Q and LE the Rubin p-adic L-function as in (1.4). Let

χ ∈ Ξ−ε be a Hecke character with conductor pn+1. Let zχ ∈H1(Kn,TpE)χ be the image

of a system of elliptic units of E (cf. §3.1.2). Then,

zχ ∈H1
f (Kn,TpE)χ,

and it has the following properties.

1Note that v−,0 ∈ E(Φ) since 1 ∈ Ξ+ and exp∗

E(v−,0) = 0, by definition; hence, logω(v−,0) is
well-defined.
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(a) We have

LE(χ
−1) = δχ(v−ε) · logω(zχ).

(b) If ords=1L(ϕχ
−1,s) = 1, then zχ ∈H1

f (Kn,VpE)χ is a generator of the Qp(χ)-vector

space (E(Kn)⊗Qp(χ))
χ.

See also Theorem 3.16 in a more general setting.

Note that ords=1L(ϕχ,s) = 1 for all but finitely many χ ∈ Ξ−ε (cf. [45]). So, in view of
Theorem 1.2 (b), the Rubin p-adic L-function leads to a construction of new points of

infinite order in the alternate anticyclotomic layers (cf. (1.1)).

Remark 1.3. For χ ∈ Ξ−ε, one expects that if zχ−1 is non-zero, then ords=1L(ϕχ,s) = 1

and

ords=1L(ϕχ,s) = 1+ordχLE .

An evidence appears in [12, Thm. 2.4]. It seems interesting to compare Theorems 1.1 and
1.2 with the exceptional zero conjecture of Mazur, Tate and Teitelbaum [39].

As a corollary of the above theorems, we obtain a refined (non-asymptotic) version
of (1.1).

Corollary 1.4. Let E/Q be a CM elliptic curve and K the CM field.

(i) If L(E/Q,1)/Ω is a p-adic unit, then for all n≥ 1, we have

corankZp
Selp∞(E/Kn

)− corankZp
Selp∞(E/Kn−1

) = εnp
n−1(p−1),

where εn = 0 (resp. 2) for n odd (resp. even).

(ii) Suppose that ords=1L(E/Q,s) = 1 and there exists a rational point P ∈E(Q) whose

image generates the free Zp-module E(Qp)/E(Qp)tor of rank 1. If

L′(E/Q,1)/Ω〈P,P 〉∞
is a p-adic unit, then for all n≥ 1, we have

corankZp
Selp∞(E/Kn

)− corankZp
Selp∞(E/Kn−1

) = εnp
n−1(p−1),

where εn = 0 (resp. 2) for n even (resp. odd).

In particular, if X(E/Kn
) is finite, then

rankZE(Kn)− rankZE(Kn−1) = εnp
n−1(p−1).

A key to the proof of main results is a theory of local points, similarly as [31, §8] underlies

the cyclotomic signed Iwasawa theory [31] (cf. Section 2.3.) In the case of cyclotomic

deformation, such a theory is the core of Perrin-Riou theory. However, Perrin-Riou theory
for the anticyclotomic Zp-extension is not yet developed sufficiently to be applicable to

our case. Instead, we use Rubin’s conjecture to construct local points. It may give some

insight towards a Perrin-Riou theory for the anticyclotomic Zp-extension.
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1.2.3. p-converse to a theorem of Gross–Zagier and Kolyvagin.

Theorem 1.5. Let E/Q be a CM elliptic curve with good supersingular reduction at p≥ 5.

If corankZp
Selp∞(E) = 1 and X(E)[p∞] is finite, then ords=1L(E/Q,s) = 1.

See also Theorem 4.18 in a more general setting. Just as the Bertolini–Darmon–

Prasanna formula is employed in the proof of Skinner’s p-converse [52], our approach
is based on Theorem 1.1.

Remark 1.6.

(i) The first results towards the p-converse were due to Rubin [51], which treated CM

elliptic curves and ordinary primes p. The first general results for non-CM curves
were independently due to Skinner [52] and Zhang [56] a few years back.

(ii) One may seek a refined p-converse:

corankZp
Selp∞(E) = 1 =⇒ ords=1L(E/Q,s) = 1 (1.6)

(cf. [56], [18], [16],[10], [11]). While it may be possible to approach Theorem 1.5 via
the p-adic Gross–Zagier formula [32], with a view to (1.6), our approach instead

employs Theorem 1.1.

Background

An impetus to Theorems 1.1 and 1.2 is a formula of Rubin. For primes p split in an

imaginary quadratic field K, Rubin proved an influential formula [50] which links certain
values of the Katz p-adic L-function of K to the formal group logarithm of rational points

on elliptic curves with CM by K (cf. [42], [44]). The last decade has led to a revival

of Rubin’s formula. For an arbitrary elliptic curve E/Q and K an imaginary quadratic

field satisfying Heegner hypothesis for E with p split, the Bertolini–Darmon–Prasanna
(BDP) formula relates certain values of a Rankin–Selberg p-adic L-function L Gr

E of E/K

with the formal group logarithm of Heegner points on E (cf. [6], [34]). Since its advent,

the BDP formula has influenced the arithmetic of elliptic curves and inspired progress
towards the BSD conjecture, with an instance being p-converse to the Gross–Zagier and

Kolyvagin theorem due to Skinner (cf. [52]), which is a p-adic criterion for E/Q to have

both algebraic and analytic rank one. The p-converse is based on the BDP formula and an
Iwasawa theory of L Gr

E . Subsequently, Liu–Zhang–Zhang interpreted the BDP formula

as a p-adic Waldspurger formula and generalised it to modular elliptic curves over totally

real fields (cf. [37]).

An emerging search is the analogue of the BDP formula2 over imaginary quadratic fields
with p non-split, and a pertinent Iwasawa main conjecture (the conjectural backdrop of

Iwasawa theory excludes such a non-split setting; cf. [25], [44], [31]). The ensuing CM

case is perhaps the first instance, whose investigation we plan to continue (cf. [13], [14]).

2Based on recent developments in the p-adic geometry of modular curves, certain analogues
appear in [4], [36]. A salient feature of these works is that the p-adic L-functions, whose
growth behaviour is not yet well understood, are locally analytic. The formulation of a relevant
Iwasawa main conjecture is a fundamental open problem.
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1.3. Plan

Section 2 presents the local theory. In Section 3, certain global aspects appear, including

(1.1) and Theorem 1.2. Then Section 4 treats Theorems 1.1 and 1.5.

The proof of Theorem 1.1 is based on the appendices to which the reader may

refer prior to Section 4. Appendix A describes a variant of the p-adic Gross–Zagier
formula [32] in which the p-adic logarithm of Heegner points appears (see Theorem A.6).

Appendix B exhibits another consequence: the Perrin-Riou conjecture [42] for GL2-type

abelian varieties at primes of good non-ordinary reduction (see Theorem B.3).

2. Local points

2.1. The set-up

We introduce the module of anticyclotomic local units as well as its signed submodules

following [47], [12].

2.1.1. Notation. Let p≥ 5 be a prime. Let Φ be the unramified quadratic extension

of Qp and O the integer ring. We fix a Lubin–Tate formal group F over O for the

uniformizing parameter π :=−p. Let λ denote the logarithm of F .
For n ≥ 0, write Φn = Φ(F [πn+1]), the extension of Φ in Cp generated by the πn+1-

torsion points of F , and put Φ∞ = ∪n≥0Φn. Let

κF : Gal(Φ∞/Φ)→Aut(TπF )∼=O×

be the natural isomorphism induced by the Galois action on the π-adic Tate module
TπF =: T. Let Θn be the subfield of Φn with [Θn : Φ] = p2n and Θ∞ = ∪n≥1Θn the

Z2
p-extension of Φ. Let Ψ∞ be the anticyclotomic Zp-extension of Φ and Ψn the n-th

layer. We put G := Gal(Θ∞/Φ)∼= Z2
p, G

− := Gal(Ψ∞/Φ)∼= Zp and ∆ := Gal(Φ∞/Θ∞) =

Gal(Φ0/Φ)∼= (O/p)×. Fix a topological generator γ of G−.
Let Un be the group of principal units in Φn, that is, the group of elements in O×

Φn

congruent to one modulo the maximal ideal. Let

T⊗−1 =HomO(T,O), U∗
∞ =

(
lim←−
n

(Un⊗Zp
T⊗−1)

)∆
,

where the superscript ∆ means the ∆-invariants. Define the Iwasawa algebras

Λ2 =O[[G]] and Λ =O[[G−]].

It is known that U∗
∞ is a free Λ2-module of rank 2 (cf. [54]). A primary object is the

anticyclotomic projection

V ∗
∞ = U∗

∞⊗Λ2
Λ.

Let δn : U∗
∞ → Φn be the Coates–Wiles homomorphism as in [12, §2]. For a finite

character χ of Gal(Φ∞/Φ) of conductor dividing pn+1 and u ∈ U∗
∞, let

δχ(u) =
1

πn+1

∑

σ∈Gal(Φn/Φ)

χ(Ã)δn(u)
σ. (2.1)

If χ factors through G−, then δχ factors through V ∗
∞ (cf. [47, Lem. 2.1 (ii)]).
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2.1.2. Rubin’s conjecture. Let Ξ be the set of finite characters of G−. Let

Ξ+ = {χ ∈ Ξ | condrχ is an even power of p},
Ξ− = {χ ∈ Ξ | condrχ is an odd power of p}.

Define

V ∗,±
∞ := {v ∈ V ∗

∞ | δχ(v) = 0 for every χ ∈ Ξ∓}. (2.2)

Rubin showed that V ∗,±
∞ is a free Λ-module of rank one (cf. [47, Prop. 8.1]).

The following is central to the construction of local points.

Theorem 2.1. (Rubin’s conjecture) We have

V ∗
∞ = V ∗,+

∞ ⊕V ∗,−
∞ .

This was proposed by Rubin as [47, Conj. 2.2] and recently proved [12, Thm. 2.1].

2.2. Local cohomology

2.2.1. Kummer theory. We recast the modules of anticyclotomic local units in terms

of the local Iwasawa cohomology.
Define a natural isomorphism of O[[Gal(Φ∞/Φ)]]-modules

lim←−
n

(Un⊗O)⊗T⊗−1 ∼= lim←−
n

H1(Φn,T
⊗−1(1)) (2.3)

as the composite

lim←−
n

(Un⊗O)⊗T⊗−1 ∼= lim←−
n

H1(Φn,O(1))⊗T⊗−1

∼= lim←−
n

H1(Φn,O/πn(1))⊗T⊗−1

∼= lim←−
n

H1(Φn,T
⊗−1(1)/πn)

∼= lim←−
n

H1(Φn,T
⊗−1(1)).

Here, the first isomorphism is the Kummer map and the third is a consequence of the

Gal(Φ∞/Φn)-action on O(1)⊗T⊗−1/πn being trivial. The ∆-invariants of (2.3) give an
isomorphism

U∗
∞

∼= lim←−
n

H1(Θn,T
⊗−1(1)) (2.4)

of Λ2-modules.

For a finite extension L of Φ, let

exp∗L :H1(L,T⊗−1(1))→ L (2.5)

be the dual exponential map which arises from the identification of Fil0DdR(T
⊗−1(1)⊗

Qp) with Φ so that the invariant differential dλ corresponds to 1 (cf. [29, §1.2.4, Ch. II]).

By the explicit reciprocity law of Wiles (cf. [29, Thm. 2.1.7, Ch. II]), note that the
following diagram
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U∗
∞

��

π−n−1δn

��

lim←−n
H1(Θn,T

⊗−1(1))

exp∗

Θn

��

Φn
=

�� Φn

(2.6)

commutes, where the upper horizontal map is (2.4). The anticyclotomic projection induces

an isomorphism

V ∗
∞

∼= lim←−
n

H1(Ψn,T
⊗−1(1)), (2.7)

as well as a commutative diagram

V ∗
∞

��

π−n−1δacn

��

lim←−n
H1(Ψn,T

⊗−1(1))

exp∗

Ψn

��

Ψn
=

�� Ψn,

(2.8)

where δacn := TrΦn/Ψn
◦ δn. Hence, for a character χ of Gal(Ψn/Φ) and v = (vm)m≥0 ∈

V ∗
∞ = lim←−m

H1(Ψm,T⊗−1(1)) (cf. (2.7)), we have

δχ(v) =
∑

σ∈Gal(Ψn/Φ)

exp∗Ψn
(vσn)χ(Ã). (2.9)

Therefore, we may naturally identify V ∗,±
∞ with the module H1

± introduced in (1.2), and
Theorem 2.1 implies the decomposition (1.3) of lim←−m

H1(Ψm,T⊗−1(1)).

Let H1
f (Ψn,T ) and H1

f (Ψn,T
⊗−1(1)) denote the finite part of H1(Ψn,T ) and

H1(Ψn,T
⊗−1(1)), respectively.

Lemma 2.2.

(1) The quotient by the ideal (γpn −1)Λ induces an isomorphism

V ∗
∞/(γpn −1)∼=H1(Ψn,T

⊗−1(1)). (2.10)

(2) The O-module H1
f (Ψn,T

⊗−1(1)) coincides with ker(δacn ) via (2.10).

Proof.

(1) By definition, V ∗
∞/(γpn − 1) is isomorphic to lim←−m

H1(Ψm,T⊗−1(1))/(γpn − 1). In

light of the inflation-restriction sequence and [47, Prop. 4.5 (ii)], it follows that

lim←−m
H1(Ψm,T⊗−1(1))/(γpn −1) is isomorphic to the Pontryagin dual of

H0(Ψn,H
1(Ψ∞,F [π∞]))∼=H1(Ψn,F [π∞]).

The local duality thus implies (2.10).

(2) Note thatH1
f (Ψn,T ) coincides with the Kummer image of F (mn) inH1(Ψn,T ), and

that H1
f (Ψn,T

⊗−1(1)) coincides with the kernel of exp∗Ψn
:H1(Ψn,T

⊗−1(1))→Ψn.

Hence, by the commutative diagram (2.8), the proof concludes.

In the following, (2.10) will be often treated as an identification.
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2.2.2. An optimal basis. We introduce a basis of the submodule of signed anticy-
clotomic local units and duality pairings, which will be used in the construction of local

points.

We fix a Λ-basis v± of V ∗,±
∞ and regard it as an element of lim←−n

H1(Ψn,T
⊗−1(1))

via (2.7).

For n≥ 0, put Λn =O[Gal(Ψn/Φ)]. Let v±,n denote the image of v± inH1(Ψn,T
⊗−1(1))

via (2.10). Let

( , )n :H1(Ψn,T )×H1(Ψn,T
⊗−1(1))→O

be the natural pairing.

Lemma 2.3.

(1) {v+,n,v−,n} is a Λn-basis of H1(Ψn,T
⊗−1(1)).

(2) ( , )n is a perfect pairing.

(3) H1
f (Ψn,T ) and H1

f (Ψn,T
⊗−1(1)) are orthogonal complements of each other under

the pairing.

Proof. The first assertion is a simple consequence of Theorem 2.1.

Note that T⊗−1(1) ∼= T τ as an O[GΦ]-module, where T τ denotes conjugation of T

by the complex conjugate. Then, by [47, Prop. 4.5], H1(Ψn,T ) and H1(Ψn,T
⊗−1(1)) ∼=

H1(Ψn,T ) are O-free, and we have natural identifications

H1(Ψn,T )⊗Φ/O=H1(Ψn,T ⊗Φ/O), H1(Ψn,T
⊗−1(1))⊗Φ/O=H1(Ψn,T

⊗−1(1)⊗Φ/O).

Hence, the local duality induces

H1(Ψn,T )∼=HomO(H
1(Ψn,T

⊗−1(1)⊗Φ/O),Φ/O) = HomO(H
1(Ψn,T

⊗−1(1)),O),

where the isomorphism arises from the perfect pairing

H1(Ψn,T )×H1(Ψn,T
⊗−1(1)⊗Φ/O)→ Φ/O.

It follows that the map H1(Ψn,T ) → HomO(H
1(Ψn,T

⊗−1(1)),O) induced by ( , )n
is an isomorphism. By replacing T with T⊗−1(1), the map H1(Ψn,T

⊗−1(1)) →
HomO(H

1(Ψn,T ),O) induced by ( , )n is also an isomorphism, and hence, ( , )n
is perfect.
The assertion (3) then follows from the fact that H1

f (Ψn,T )⊗Qp is the orthogonal

complement of H1
f (Ψn,T

⊗−1(1))⊗Qp under the base change of ( , )n, and vice versa.

By Lemma 2.3, we have a perfect pairing

( , )Λn
:H1(Ψn,T )×H1(Ψn,T

⊗−1(1))→ Λn, (a,b) �→
∑

σ∈Gal(Ψn/Ψ)

(a,bσ)nÃ, (2.11)

which is sesquilinear with respect to the involution ι of Λn induced by Ã �→ Ã−1 for

Ã ∈Gal(Ψn/Φ). Let {v⊥+,n,v
⊥
−,n}⊆H1(Ψn,T ) be the dual basis of {v−,n,v+,n} with respect

to ( , )Λn
, that is,

∑

σ∈Gal(Ψn/Φ)

(v⊥±,n,v
σ
±,n)nÃ = 0,

∑

σ∈Gal(Ψn/Φ)

(v⊥±,n,v
σ
∓,n)nÃ = 1. (2.12)

Note that v⊥±,n depends on the choice of v∓ but is independent of v±.
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2.3. Local points

We introduce an optimal system of local points, which generate the signed submodules

of the underlying Lubin–Tate group.

For n≥ 0, let Ξ±
n denote the set of χ ∈ Ξ± factoring through Gal(Ψn/Φ). For χ ∈ Ξ±

n ,

let

λχ(x) =
1

pn

∑

σ∈Gal(Ψn/Φ)

χ−1(Ã)λ(x)σ.

Define

F (mn)
± = {x ∈ F (mn)| λχ(x) = 0 for all χ ∈ Ξ±

n }.
We put

ω+
n = ω+

n (γ) =
∏

1≤k≤n, k:even

Φpk(γ), ω−
n = ω−

n (γ) = (γ−1)
∏

1≤k≤n, k:odd

Φpk(γ) ∈ Z[γ]

for Φpk(X) the pk-th cyclotomic polynomial, and we also put ω+
0 = 1 and ω−

0 = γ−1.

Definition 2.4 (local points). For v± and γ as above, let

c±n := c±n (v±,γ) = ω∓
n v

⊥
±,n ∈H1(Ψn,T ).

Lemma 2.5. For n≥ 0, c±n lies in H1
f (Ψn,T ).

Proof. It suffices to show that for a finite character χ of Gal(Ψn/Φ), the image χ(c±n ) of

c±n under the natural map H1(Ψn,T )→H1(Φ,V (χ)) lies in the finite part H1
f (Φ,V (χ)),

where V (χ) := T ⊗Qp(χ) denotes the twist of T ⊗Qp by χ.
If χ ∈ Ξ±, then χ(ω∓

n ) = 0, and so χ(c±n ) ∈ H1
f (Φ,V (χ)). If χ ∈ Ξ∓, then δχ(v±) = 0.

Now, by Lemma 2.2 and (2.8), the image of v±,n under

H1(Ψn,V
⊗−1(1))→H1(Φ,V (χ)⊗−1(1))

lies in the finite part, and it gives rise to a generator of H1
f (Φ,V (χ)⊗−1(1)) over Φ(Im(χ)).

Since H1
f (Φ,V (χ)) is the orthogonal complement of H1

f (Φ,V (χ)⊗−1(1)) with respect to
the local duality, it thus follows that χ(c±n ) lies in the finite part.

By Lemma 2.5, we may naturally regard c±n as an element in F (mn). In particular,

c+0 = (γ−1)v⊥+,0 = 0, c−0 = v⊥−,0 ∈ F (Φ). (2.13)

Salient features of the local points are given by the following.

Lemma 2.6. Let n≥ 1.

(1) If (−1)n+1 =±1, then

Trn+1/nc
±
n+1 = c±n−1, c±n =Resn,n−1c

±
n−1

for Trn+1/n : F (mn+1) → F (mn) the trace map and Resn,n−1 : H1(Ψn−1,T ) →
H1(Ψn,T ) the restriction.

(2) We have c±n ∈ F (mn)
±.
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Proof.

(1) First, note that an element x of H1(Ψn,T ) is determined by the two elements
(x,vσ+,n)Λn

and (x,vσ−,n)Λn
∈ Λn.

By definition,

(Trn+1/nc
±
n+1,v±,n)Λn

= (c±n ,v±,n)Λn
= (Resn,n−1c

±
n−1,v±,n)Λn

= 0.

As (c±n ,v∓,n)Λn
= ω∓

n , it suffices to show that

(Trn+1/nc
±
n+1,v∓,n)Λn

= (c±n−1,v∓,n)Λn
= ω∓

n .

Since ω∓
n+1 = ω∓

n , we have

(Trn+1/nc
±
n+1,v∓,n)Λn

≡ (c±n+1,v∓,n)Λn+1
≡ ω∓

n mod (γpn −1).

Since ω∓
n = ω∓

n−1Φn(γ) and {v∓,n}n is norm compatible,

(c±n−1,v∓,n)Λn
≡

∑

σ∈Gal(Ψn/Φ)

(c±n−1,v
σ
∓,n−1)n−1Ã ≡ ω∓

n−1

∑

σ∈Gal(Ψn/Φ)

(v⊥±,n−1,v
σ
∓,n−1)n−1Ã

≡ ω∓
n−1

∑

σ∈Gal(Ψn/Ψn−1)

Ã ≡ ω∓
n−1Φn−1(γ) = ω∓

n .

Therefore, the assertion follows.

(2) This is a simple consequence of (1).

2.3.2. The ±-subgroups.

Theorem 2.7. Let n≥ 0.

(a) As Λn-modules, we have F (mn) = F (mn)
+⊕F (mn)

−.

(b) F (mn)
± is generated by c±n .

Proof. By definition,
∑

σ∈Gal(Ψn/Φ)

(c±n ,v
σ
∓,n)nÃ = ω∓

n ∈ Λn. (2.14)

(a) Let x ∈ F (mn) and consider
∑

σ∈Gal(Ψn/Φ)

(x,vσ∓,n)nÃ,

which lives3 in ω∓
n Λn. Thus, by (2.14), there exists h±(γ) ∈ Λn such that

∑

σ∈Gal(Ψn/Φ)

(x−h±(γ)c
±
n ,v

σ
∓,n)nÃ = 0.

3This follows by considering evaluation at finite characters.
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Now, for y := h+(γ)c
+
n +h−(γ)c

−
n , we have
∑

σ∈Gal(Ψn/Φ)

(x−y,uσ)nÃ = 0

for arbitrary u ∈H1(Ψn,T
⊗−1(1)). Hence, x= y.

(b) If x ∈ F (mn)
±, then

∑

σ∈Gal(Ψn/Φ)

(x,vσ±,n)nÃ = 0.

Thus, we may choose h∓ as above to be 0.

Remark 2.8. The local points are also elemental to Iwasawa theory of the Zp-
anticyclotomic deformation of a non-CM elliptic curve over imaginary quadratic fields

with p inert (cf. [9]).

3. Rubin p-adic L-function and global points

The main results are Theorems 3.9 and 3.16.

3.0.1. Notation

Let Q be an algebraic closure of Q. Fix ι∞ :Q ↪→ C and ιp :Q ↪→ Cp.
For a number field L, let GL = Gal(Q/L). For a finite dimensional Qp-vector space V

endowed with a continuous GL-action and v a prime of L, the Bloch–Kato subgroup is

given by

H1
f (Lv,V ) =

{
ker

(
H1(Lv,V )→H1(Lv,V ⊗Bcrys)

)
(v | p),

ker
(
H1(Lv,V )→H1(Lur

v ,V )
)

(v � p).

If M denotes V or a Zp-lattice in V, then the Bloch–Kato Selmer group is defined as

H1
f (L,M) = ker

(
H1(L,M)→

∏

v

H1(Lv,V )

H1
f (Lv,V )

)
.

For an extension N/L of number fields, let IndNL (·) denote the induction IndGN

GL
(·).

For an abelian variety A, let Tp(A) denote the p-adic Tate module and put Vp(A) =

Tp(A)⊗Zp
Qp.

3.1. Elements of Selmer groups

3.1.1. The set-up. Let K be an imaginary quadratic field of discriminant −DK < 0

and H the Hilbert class field. Suppose

p is inert in K. (inr)

Let K∞ be the anticyclotomic Zp-extension of K and Kn the n-th layer. Let G− also

denote Gal(K∞/K).
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Let ϕ be a Hecke character over K of infinity type (1,0) such that the Hecke character

ϕ◦NH/K is associated to a Q-curve E over H which has good reduction at each prime of

H above p. In particular, E satisfies the Shimura condition. Fix a minimal Weierstrass
model of E over OH,p∩H =OΦ∩H for p | p the prime of H arising via ιp and let ω be

the Néron differential. Pick a non-zero bE ∈H1(E(C),Z(p))∼= Z(p)⊗OK and define a CM

period Ω ∈ C× by

perE/H(ω) = ΩbE

for perE/H : coLie(E)→H1(E(C),Q)⊗K C the period map.

In this section, let O denote the integer ring of a finite extension of Φ which contains

the Hecke field K(ϕ(K̂×)) for K̂ :=K⊗ lim←−m
Z/mZ. Let f be the conductor of ϕ. Let T

be the p-adic Galois representation of GK associated to ϕ, which is an O-module free of

rank one so that its restriction to GH is TpE⊗OΦ
O. Since

Ê ∼= F

as formal groups over OΦ, the results in §2 may be utilized by replacing F with Ê and

identifying TpE with TπE via

(tn)n �→ ((−1)ntn)n.

We put T⊗−1 = HomO(T,O) and note that T⊗−1(1) is identified with the complex

conjugation of T as follows. Let Ä be the complex conjugation. We have a natural

decomposition

T ⊗Zp
O = TpE⊗OΦ

(OΦ⊗Zp
O) = T × (TpE⊗OΦ,τ O),

where ⊗OΦ,τ is the tensor product with respect to the map OΦ →O induced by Ä and

the natural inclusion. This decomposition and the base change of the Weil pairing over
O induce a perfect O-bilinear pairing

T × (TpE⊗OΦ,τ O)→O(1).

Thus, we may naturally identify T⊗−1(1) with TpE⊗OΦ,τ O. Since ϕ(Ä(a)) = ϕ(a) for
an integral ideal a of OK relatively prime to f (cf. [27, Lem. 11.1.1 ]), TpE ⊗OΦ,τ O
is naturally identified with the complex conjugation T τ of the GK -representation T.

Hence, we have a natural isomorphism of O[GK ]-modules T⊗−1(1)∼= T τ , which induces
an isomorphism H1(Kn,T

⊗−1(1))∼=H1(Kn,T
τ ). Since the complex conjugation gives rise

to an isomorphism H1(Kn,T
τ )∼=H1(Kn,T )

ι of Λ-modules, we often identify

H1(Kn,T
⊗−1(1)) =H1(Kn,T )

ι, (3.1)

where ι : Λ→Λ denotes the involution induced by g �→ g−1 for g ∈G− and for a Λ-module
M, we put M ι =M ⊗Λ,ιΛ.

3.1.2. Construction of Selmer elements. Based on elliptic units, we associate a

Selmer element to a Hecke character.

The following existence is due to Coates and Wiles [20] (cf. [46], [30, Prop. 15.9]).

https://doi.org/10.1017/S147474802300021X Published online by Cambridge University Press



p-Adic L-functions and rational points on CM elliptic curves at inert primes 1431

Proposition 3.1. There exists an elliptic unit

z = (zn)n ∈ lim←−
n

H1(Kn,T
⊗−1(1)) (3.2)

associated to bE such that for a character χ of Gal(Kn/K), we have

∑

σ∈Gal(Kn/K)

χ(Ã)exp∗Kn
(locp(z

σ
n)) =

Lpf(ϕχ,1)

Ω
ω. (3.3)

Here,

exp∗

Kn
:H1(Kn⊗K Kp,T

⊗−1(1))→D0

cris(V
⊗−1(1))⊗K Kn = (coLie(E/Kp

)⊗Kp O[1/p])⊗K Kn

is the dual exponential map, Kp =K⊗Qp =Φ, and

locp :H
1(Kn,T

⊗−1(1))→H1(Kn⊗K Kp,T
⊗−1(1)) =

∏

w|p

H1(Ψn,T
⊗−1(1))

is the localization as w varies over the places of Kn above p.

We put Oχ = O[Im(χ)] and let O(χ) denote the O[GK ]-module with the underlying

space Oχ and the GK -action being χ. For an O[GK ]-module M, let M(χ) =M ⊗OO(χ)
and

Mχ = {m ∈M ⊗Oχ | gm= χ(g)m for all g ∈GK}.

Definition 3.2 (Selmer element). For a character χ of Gal(Kn/K), let zχ ∈
H1(Kn,T

⊗−1(1))χ
−1

denote the image of the elliptic unit zn under the composite

H1(Kn,T
⊗−1(1))

∼=−→H1(Kn,T
⊗−1(1)(χ))→H1(K,T⊗−1(1)(χ))

∼=−→H0(K,H1(Kn,T
⊗−1(1)(χ))) =H1(Kn,T

⊗−1(1))χ
−1

. (3.4)

Here, the second and third maps are corestriction and restriction, respectively.

Note that

zχ =
∑

σ∈Gal(Kn/K)

χ(Ã)zσn . (3.5)

Since (H1(Kn,T )
ι)χ

−1

=H1(Kn,T )
χ by (3.1), we regard

zχ ∈H1(Kn,T )
χ.

Lemma 3.3. If L(ϕχ−1,1) = 0, then zχ ∈H1
f (Kn,T )

χ.

Proof. By definition and [30, Prop. 15.9], zχ lies in the image of

lim←−
m

H1(K(fpm),T⊗−1(1))→H1(Kn,T
⊗−1(1)),

where K(fpm) denotes the ray class field of K of conductor fpm.

For a prime v � p of Kn and a prime w | v of ∪m≥1K(fpm), note that the completion

of ∪mK(fpm) at w contains the maximal pro-p unramified extension of Kn,v, and so
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locv(zχ) ∈H1
f (Kn,v,T

⊗−1(1)). Since L(ϕχ−1,1) = 0, by the explicit reciprocity law (3.3)

and (3.5),

exp∗Kn
(locp(zχ)) = 0.

As the Bloch–Kato subgroup ⊕v|pH
1
f (Kn,v,T

⊗−1(1)) coincides with the kernel of exp∗Kn
,

the proof concludes.

3.2. Global points

3.2.1. Mordell–Weil groups over Q. In this subsection, for sufficiently large n

with (−1)n+1 =−W (ϕ) and χ an anticyclotomic character of conductor pn+1, the Selmer
element zχ is shown to arise from a rational point.

Let χ be a finite character of Gal(K∞/K) and fχ ∈ S2(Γ0(DKNK/Q(fcχ))) the theta

series attached to ϕχ−1, where cχ denotes the conductor of χ. In particular, L(fχ,s) =

L(ϕχ−1,s). Let Fχ denote the Hecke field. Fix an abelian variety Aχ over Q of dimension
[Fχ :Q] with an OFχ

-action so that

L(Aχ,s) =
∏

σ:Fχ↪→Q

L(fσ
χ ,s).

In this subsection, O is enlarged to also contain the image of χ, and m denotes the

maximal ideal.
We begin with a preliminary.

Lemma 3.4. We have

IndKQ (T⊗−1(1)(χ))⊗O O/m∼= IndKQ (T (χ−1))⊗OO/m,

which is an irreducible GQ-representation.

Proof. Note that T⊗−1(1)(χ)∼= T (χ−1)τ as an O[GK ]-module, and so the first assertion

follows.
As for the irreducibility, in light of the proof of [30, Lem. 15.20], it suffices to show that

for a finite character χ of Gal(K∞/K), there exists an integral ideal b of K relatively

prime to pf such that

(ϕχ−1(b)−ϕχ−1(b̄))NK/Q(b) ∈ O×. (3.6)

We put b = (1+ f
√
−DK)OK for f = NK/Q(f) ∈ Z. As p is inert in K, note that p

is relatively prime to NK/Q(b) = 1+ f2DK , i.e. NK/Q(b) ∈ O×. Since p � fDK and 1+
f
√
−DK ≡ 1 mod f, we have ϕ(b)−ϕ(b̄) = 2f

√
−DK ∈O×, and so ϕ(b)γb−ϕ(b̄)γb̄ ∈Λ×,

from which (3.6) follows. (Here, γa ∈G− denotes the element which corresponds via the

Artin map to an integral ideal a of K relatively prime to pf.)

Put V = T ⊗Qp
∼=O[1/p] and Vp(A) = Tp(Aχ)⊗Qp

∼= (Fχ⊗Qp)
⊕2. We embed Fχ into

O[1/p] via ιp and notice an abstract isomorphism

IndKQ (V (χ−1))∼= Vp(Aχ)⊗Fχ⊗Qp
O[1/p],
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which follows from considering the action of Frobenius elements. By Lemma 3.4, there
exists an isomorphism IndKQ (T (χ−1))∼= Tp(Aχ)⊗OFχ⊗Zp

O of O[GQ]-modules, and so we

have an identification

H1
f (Q,Tp(Aχ)⊗O)∼=H1

f (K,T (χ−1)). (3.7)

Proposition 3.5. Suppose that ords=1L(ϕχ
−1,s) = r ∈ {0,1}. Then, rankOFχ

Aχ(Q) = r

and the Tate–Shafarevich group X(Aχ/Q) is finite. In particular, if r = 1, we have

Aχ(Q)⊗Zp =H1
f (Q,Tp(Aχ))∼=OFχ

⊗Zp.

Proof. Since ords=1L(fχ,s) = r, by the main result of [8], there exists an imaginary

quadratic field L such that

(i) ords=1L(fχ/L,s) = 1 and

(ii) the pair (fχ,L) satisfies the Heegner hypothesis.

Then, the Gross–Zagier formula [28], [55] implies that the Heegner point yL ∈Aχ(L) is

non-torsion, and so the assertion is due to Kolyvagin [35] (see also [40]). As for the “in

particular” part, note that Aχ(Q) is p-torsion-free by Lemma 3.4.

Remark 3.6. The r = 0 case is due to Coates–Wiles [20] and Rubin [46], [48].

Let zχ still denote the element of H1(K,T (χ−1)) = H1(K,T⊗−1(1)(χ)) which cor-

responds via (3.4) to the element zχ as in (3.5). Suppose L(ϕχ−1,1) = 0. Then, by

Lemma 3.3, we have zχ ∈H1
f (K,T (χ−1)). Let

yχ ∈H1
f (Q,Tp(Aχ)⊗O)

denote the corresponding element via (3.7). An immediate consequence of Proposition

3.5 is the following.

Corollary 3.7. If ords=1L(ϕχ
−1,s) = 1, then yχ arises from Aχ(Q)⊗OFχ

O.

If ords=1(L(ϕχ
−1,s)) = 1, then yχ will be shown to be non-torsion (cf. Corollary 3.18).

In our case, the latter is equivalent to being non-zero4 by Lemma 3.4.

Remark 3.8. For any sufficiently large integer n with (−1)n+1 = −W (ϕ) and χ a

character of Gal(Kn/K) of conductor pn+1, Rohrlich proved that ords=1L(ϕχ
−1,s) = 1

(cf. [45]).

3.2.2. Anticyclotomic Mordell–Weil groups. This independent subsection
presents an anticyclotomic variation of the Mordell–Weil groups.

For the identity Hecke character 1=: 1, we put A=A1, f = f1 and F = F1. Let χ be a

finite character of Gal(K∞/K) and n denote the maximum max{0,ordp(cχ)−1}. If n=0,

put X(A/Kn−1
) = {0}.

4A given element, such as yχ, may a priori be zero.
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Theorem 3.9. Suppose that ords=1L(ϕχ
−1,s) = r ∈ {0,1}.

(a) We have

rankOχ
A(Kn)

χ = r[F :Q],

(A(Kn)⊗Zp)
χ =H1

f (Kn,Tp(A))
χ.

(b) In particular, the quotient

X(A/Kn
)[p∞]/Im

(
X(A/Kn−1

)[p∞]→X(A/Kn
)[p∞]

)

is finite.

Proof. Let Bn denote the Weil restriction ResKn/K(A/Kn
) of A over Kn. By considering

the Galois action on valued points of Bn, note that the Galois group Gal(Kn/K) embeds

into EndBn, which in turn implies

EndBn = (EndA)[Gal(Kn/K)]

as algebras (cf. [23, Thm. 3]).

In light of the decomposition Q[Gal(Kn/K)] ∼= Q[γ]/(Φpn(γ))×Q[Gal(Kn−1/K)] and
factorisation of the underlying L-functions, we have an isogeny

Bn ∼An×Bn−1 (3.8)

of abelian varieties over K. Here, An is the abelian variety defined as a product of copies of

Aχ with dim(An) = [F :Q](pn−pn−1). Note that the set of K -rational points is given by

A(Kn)⊗Q∼= (An(K)⊗Q)⊕ (A(Kn−1)⊗Q) .

Now, we consider Gal(Kn/K)-action which leads to

(γpn−1 −1)A(Kn)⊗Q∼=An(K)⊗Q, (3.9)

and

(γpn−1 −1)
(
Tp(X(A/Kn

))⊗Qp

)∼= Tp(X(An/K))⊗Qp. (3.10)

In light of the Gross–Zagier formula [28], [55] and Proposition 3.5, we have

rankZ(An(Q)) = r(pn−pn−1)[F :Q], X(An/Q)
∨⊗Q= {0}, (3.11)

and so

rankZ(An(K)) = 2r(pn−pn−1)[F :Q], X(An/K)∨⊗Q= {0}. (3.12)

Hence, in conjunction with (3.10), it follows that
∏

χ1

(
Tp(X(A/Kn

))⊗Qp

)χ1 ∼= (γpn−1 −1)Tp(X(A/Kn
))⊗Qp(μpn) = {0}, (3.13)

where χ1 ranges over the conjugates of χ.

(a) Recall the short exact sequence

0→ (A(Kn)⊗ZZp)
χ →H1

f (Kn,Tp(A))
χ → Tp(X(A/Kn

))χ.
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Now, as Tp(X(A/Kn
)) is p-torsion-free, (3.13) readily implies the second asserted

equality of part (a).

Since p is unramified in K, observe K[γ]/Φpn(γ) is a field with dimK(K[γ]/

Φpn(γ)) = pn − pn−1. Naturally, (γpn−1 − 1)A(Kn)⊗Q is a K[γ]/Φpn(γ)-vector
space. So, in view of (3.9) and (3.12), it follows that

(γpn−1 −1)A(Kn)⊗Q∼= (K[γ]/(Φpn(γ)))⊕[F :Q].

Hence, the evaluation at χ yields the first asserted equality of part (a).

(b) In view of (3.13), we have

Tp(X(A/Kn
))⊗Qp =

(
Tp(X(A/Kn

))⊗Qp

)Gal(Kn/Kn−1)

= Im(Tp(X(A/Kn−1
))→ Tp(X(A/Kn

)))⊗Qp,

i.e. part (b) holds.

Remark 3.10. The above argument is a variation of Rubin’s argument for [3, Prop. A.8].

Corollary 3.11. Suppose E is defined over K. Then, for any sufficiently large n,

rankZE(Kn)− rankZE(Kn−1) = εnp
n−1(p−1).

Here, if W (ϕ) = +1, then εn = 0 (resp. 2) for n odd (resp. even) and the reverse in the

case W (ϕ) =−1.

Proof. This is a simple consequence of Theorem 3.9 (a) and Remark 3.8.

The corollary implies that new points of infinite order appear in the alternate
anticyclotomic layers. As shown in Corollary 3.18 below, these points correspond to the

Selmer elements yχ.

Remark 3.12.

(i) Corollary 3.11 is originally due to Greenberg (unpublished, cf. [26, (1.10)]).

(ii) An analogue of Corollary 3.11 for Selmer groups appears in [2, Thm. A].

3.3. Rubin p-adic L-function and global points

The section presents a Rubin type special value formula for the Rubin p-adic L-function,

which is a result towards the question (Q).

Assume that

p � hK . (cp)

Then, the Galois group Gal(K∞/K) is naturally identified with Gal(Ψ∞/Φ). For n≥ 0,

let p denote the prime of Kn above p.

3.3.1. Rubin p-adic L-function. Let ε be the sign of the root number W (ϕ) of the

functional equation of the Hecke L-function L(ϕ,s). In light of (2.8) and (3.3), the image

of locp(z) ∈ lim←−n
H1(Kn,p,T

⊗−1(1)) in V ∗
∞ via (2.7) lives in V ∗,ε

∞ .
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Following [47, §10], we introduce the following.

Definition 3.13. A Rubin p-adic L-function L := LbE,vε
∈ Λ is defined by

LbE,vε
·vε = locp(z) ∈ V ∗,ε = Λvε. (3.14)

For an anticyclotomic character χ, let L (χ) denote the evaluation at χ. For χ ∈ Ξε

(resp. χ ∈ Ξ−ε), note that W (ϕχ) = +1 (resp. W (ϕχ) =−1, cf. [24, p. 247]).

Lemma 3.14. For χ ∈ Ξε, we have

L (χ) =
1

δχ−1(vε)
· Lpf(ϕχ,1)

Ω
.

Proof. The non-vanishing of δχ−1(vε) is a consequence of Theorem 2.1 and [47,

Lem. 10.1]. Hence, the assertion follows by (2.8) and (3.3).

3.3.2. A Rubin type formula. The subsection explores L (χ) for χ ∈ Ξ−ε.

Let λE : Ê(Ψn)⊗OΦ
O→Ψn⊗O denote the homomorphism induced by the logarithm

associated to Ê. For a character χ of Gal(Ψn/Ψ) and c ∈ Ê(Ψn), let

λE,χ(c) = p−n
∑

σ∈Gal(Ψn/Φ)

χ−1(Ã)λE(c
σ).

Recall that T |GKp
is identified with Tp(E)⊗O.

As in (3.1), we identify

H1(Ψn,T )
ι =H1(Ψn,T

⊗−1(1)), lim←−
m

H1(Ψm,T )ι = lim←−
m

H1(Ψm,T⊗−1(1)), (3.15)

by which an element v of H1(Ψn,T
⊗−1(1)) will be regarded as an element of H1(Ψn,T ).

In view of the identifications the pairings ( , )Λm
in (2.11) induce a perfect pairing

( , )Λ : lim←−
m

H1(Ψm,T )× lim←−
m

H1(Ψm,T )→ Λ,

which is Λ-bilinear (as the pairing (2.11) is sesquilinear). In the following, we regard

( , )n and ( , )Λn
as pairings on H1(Ψn,T )×H1(Ψn,T ).

Lemma 3.15. We have

(v±,v∓)Λ ∈ Λ× and (v±,v±)Λ = 0.

Proof. As for the first assertion, by Nakayama’s lemma, it suffices to show that

(v+,0,v−,0)0 ∈ O×.
In view of Theorem 2.1,

V ∗
∞/(γ−1) = V ∗,+

∞ /(γ−1)⊕V ∗,−
∞ /(γ−1) =Ov+,0⊕Ov−,0, (3.16)
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where v±,0 is the image of v± in V ∗
∞/(γ−1). Note that H1

f (Φ,T )
∼= F (m0) ∼=O, and so

by (3.16),

H1
f (Φ,T ) = V ∗,−

∞ /(γ−1).

As δ0(v−) = 0, observe v−,0 ∈ H1
f (Φ,T ) by Lemma 2.2. Recall ( , )0 is perfect and

H1
f (Φ,T ) is a maximal isotropic subgroup. Hence, (3.16) implies that (v+,0,v−,0)0 ∈ O×.

We now consider the second assertion. For any χ ∈ Ξ∓, note that δχ(v±) = 0, i.e. the

image of v± under lim←−m
H1(Φm,T )→H1(Φ,V (χ−1)) lies in the finite partH1

f (Φ,V (χ−1)).

Since H1
f (Φ,V (χ−1)) is the orthogonal complement of itself under ( , )n, we have

χ((v±,v±)Λ) = 0. This implies (v±,v±)Λ = 0 as Ξ∓ is an infinite set.

From now, we fix v+,v− so that

(v+,v−)Λ = 1,

and then v⊥±,n in (2.12) is identified with v±,n via (3.15).

The main result of this subsection is the following.

Theorem 3.16. Let K be an imaginary quadratic field and p≥ 5 a prime satisfying (inr)

and (cp). Let E be a Q-curve with complex multiplication by OK with good reduction at
p, ϕ the associated Hecke character of K and ε the sign of the root number. Let L be the

Rubin p-adic L-function as in (3.14).

(a) Let χ ∈ Ξ−ε be a Hecke character with conductor pn+1. Let zχ−1 ∈H1(Kn,TpE)χ
−1

be the image of a system of elliptic units of E (cf. §3.1.2). Then,

zχ−1 ∈H1
f (Kn,TpE)χ

−1

and we have5

L (χ) = δχ−1(v−ε) ·λE(locp(zχ−1)) =
ω−ε
n (χ(γ))

Ä(χ,λE(cεn))
·λE(locp(zχ−1)),

where Ä(χ,³) :=
∑

σ∈Gal(Kn/K)χ(Ã)³
σ.

(b) If ε=−1, then

L (1) =
1

λE(v−,0)
·λE(locp(z0)).

Proof. (a) By Definition 3.13, note that
∑

σ∈Gal(Kn/K)

(v⊥−ε,n,z
σ
n)nÃ = L (γ−1) mod (γpn −1),

where zn also denotes locp(zn).

5Note that λE,χ(c
ε
n) is non-zero by Theorem 2.7 (b).

https://doi.org/10.1017/S147474802300021X Published online by Cambridge University Press



1438 A. A. Burungale et al.

In view of the explicit reciprocity law of Wiles (cf. [53]) and [47, Lem. 5.5], we have
∑

σ∈Gal(Kn/K)

(v⊥−ε,n,z
σ
n)nχ

−1(Ã) = (v⊥−ε,n,
∑

σ

zσnχ
−1(Ã))n

=TrΨn(Im(χ))/Φ(Im(χ))

[
exp∗(v⊥−ε,n), log

(
∑

σ

zσnχ
−1(Ã)

)]

=

⎡
£ ∑

σ∈Gal(Ψn/Φ)

exp∗(Ãv⊥−ε,n)χ(Ã), log

(
∑

σ

zσnχ
−1(Ã)

)¤
⎦

= δχ−1(v−ε) ·λE(zχ−1)

(see also [47, p. 413]). Here,

[ , ] :DdR(V )⊗ΦΨn×DdR(V
⊗−1(1))⊗ΦΨn →O[1/p]⊗ΦΨn

denotes the natural pairing, exp∗ is the dual exponential map, and the last equality
follows from (2.9) and the fact that Ãv⊥−ε,n corresponds to Ã−1v−ε,n under (3.15).

Hence,

L (χ(γ)) = δχ−1(v−ε) ·λE(zχ−1) (3.17)

However,
∑

σ∈Gal(Kn/K)

(Ãcεn,v−ε,n)nÃ = ω−ε
n (γ) mod (γpn −1),

and so

δχ−1(v−ε) ·pnλE,χ−1(cεn) = ω−ε
n (χ(γ)).

Hence, (3.17) concludes the proof.

(b) This just follows by letting n= 0 and χ= 1 in the above argument.

Remark 3.17.

(i) In view of Theorem 3.16 (b), if ε=−1, then

L (1) = p−1λE(locp(z0)) (3.18)

up to an element in O×.

(ii) One may seek a Coleman integration approach to Theorem 3.16. The preliminary

study of a p-adic Eisenstein series in [5] maybe relevant.

(iii) A natural problem is to investigate a special value formula L (χ) for anticyclotomic
characters χ of infinity type (j, − j) with j > 0. It will be investigated in a

forthcoming paper.

Corollary 3.18. Let χ be a primitive character of Gal(Kn/K) so that ords=1

L(ϕχ,s)= 1. Then, yχ−1 ∈Aχ−1(Q)⊗Oχ, as in Corollary 3.7, has the following properties.
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(i) yχ−1 is nontorsion.

(ii) We have

L (χ) = dχ ·λA
χ−1

(yχ−1)

for a non-zero dχ ∈Oχ[1/p] and λA
χ−1

a formal group logarithm of the Néron model
of Aχ−1 over Z(p).

Proof. The following is based on Iwasawa main conjectures [2], [12], to which we refer
for notation.

Let ε denote the sign of the root number W (ϕ). By [2, Thm. 3.6], the Selmer group

X ε
∞ has Λ-rank one. Let Xstr be the Pontryagin dual of the strict Selmer group Sstr :=

Selstr(K∞,V/T ) (cf. [2, §2] or (4.1) below). Let Xrel be defined analogously.

In light of Proposition 3.5 and [2, Thm. 5.2], the latter being the main conjecture6, the

χ−1-specialization of charΛ(X
ε
∞,tor) is non-zero, where charΛ(·) denotes the characteristic

ideal. Observe that Proposition 3.5 also implies that the χ−1-specialization of charΛ(Xstr)
is non-zero and then so is the χ−1-specialization of charΛ(Xrel,Λ−tor) (cf. [2, Thm. 4.1]).

Hence, in view of [2, (4.1), (4.4)], it follows that zχ−1 is non-torsion, and the proof

concludes by Theorem 3.16 (b).

Remark 3.19.

(i) By Lemma 3.4, Aχ(Q)⊗Oχ is p-torsion-free.

(ii) If ords=1L(ϕ,s) = 1, then

L (1) = p−1λA(y1) (3.19)

up to an element in O×.

4. Rubin p-adic L-function and rational points

The main results are Theorems 4.8 and 4.18, and Proposition 4.14.

4.0.1. Notation

Let the setup be as in §3.3. In particular, f ∈S2(Γ0(N)) denotes the theta series associated

to the Hecke character ϕ. Let F ⊂ C denote the Hecke field of f.

Let A/Q be a GL2-type abelian variety so that

L(A,s) =
∏

σ:F↪→C

L(fσ,s)

(cf. §B.1). Let L denote the subfield of C generated by ϕ(K̂×) over K, a finite extension

of K containing F. As in §3, let O be the integer ring of the completion Lp at the prime

p compatible with the embedding ιp. Let λf : A(Qp)→ Fp be a formal group logarithm
arising from the differential attached to the newform f as in §A.3.

6This is an underlying Iwasawa main conjecture, whose proof relies on Rubin’s conjecture
(cf. Theorem 2.1).
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Put V (f) = Vp(A)⊗F⊗Qp
Fp

∼= F⊕2
p and VLp

(f) = V (f)⊗Fp
Lp. Our normalisation

differs from [30]; namely, our VLp
(f) is isomorphic to VLp

(f)(1) of [30, §8.3] as a GQ-
representation.

Replacing A by an isogeny, we may assume that A has OF -multiplication. For W =

A[p∞] (resp. V/T ) and a finite extension M of Q (resp. K ), define

Selstr(M,W ) = ker

⎛
¿H1(M,W )→

∏

v|p

H1(Mv,W )×
∏

v�p

H1(Mv,W )

H1
f (Mv,W )

À
⎠ . (4.1)

Put Selstr(K∞,V/T ) = lim−→n
Selstr(Kn,V/T ).

4.1. p-adic Beilinson formula: a first form

4.1.1.

Theorem 4.1. Let A/Q be a GL2-type CM abelian variety. Let K be the corresponding

imaginary quadratic field and F the Hecke field. Suppose that the root number of the

associated CM newform is −1. Let p ≥ 5 be a prime of good non-ordinary reduction for

A/Q with p � hK and L the Rubin p-adic L-function as in (3.14). Then, there exists a
rational point P ∈A(Q) with the following properties.

(a) We have

L (1) =
c

λE(v−,0)
·λf (P )2

for some c ∈ L×.

(b) P is non-torsion if and only if ords=1L(A,s) = [F :Q].

4.1.2. Tools of the proof. We outline the strategy.

Elliptic units and Beilinson–Kato elements. The following link between zeta elements is

a key.

Theorem 4.2. Let z = (zn) ∈ lim←−n
H1(Kn,T ) be the elliptic unit as in (3.2) under the

identification (3.1) and zf ∈ H1(Q,V (f)) a Beilinson–Kato element associated to the

newform f. Then, under the identification (4.2), we have

z0 = zf

up to an element in L×.

Proof. This is [30, (15.16.1)].

Beilinson-Kato elements and rational points. The following connects Beilinson-Kato
elements with Heegner points.

Theorem 4.3. If L(f,1) = 0, then there exists a rational point P ∈ A(Q) with the

following properties.
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(a) We have

λf (locp(zf )) = cP

(
1− ap(f)

p
+

1

p

)
λf (P )2

for some cP ∈ F× and ap(f) the p-th Fourier coefficient of f.

(b) P is non-torsion if and only if ords=1L(f,s) = 1.

(c) If the equivalent conditions in (b)hold, then

cP =
L′(f,1)

Ωf 〈P,P 〉∞
for 〈, 〉∞ the Néron-Tate height pairing.

This is an evidence towards a conjecture of Perrin-Riou [42]. We refer to Appendix B

for details (cf. Theorem B.3).

p-adic Gross-Zagier formula. Theorem 4.3 is based on the following interrelation

between p-adic logarithm of a Heegner point and central derivative L ′
p,γ(f,1) of the

cyclotomic p-adic L-function Lp,γ(f,s) for γ ∈ {³,´} a root of the Hecke polynomial

at p.

Theorem 4.4. Suppose that the root number of L(f,s) is −1. Then, there exists a point
P ∈A(Q) and a non-zero constant cP ∈Q such that

(
1− 1

³

)−2

L
′
p,³(f,1)−

(
1− 1

´

)−2

L
′
p,´(f,1) = cP

(´−³)

[ωf,ϕωf ]
λf (P )2.

Moreover, P is non-torsion if and only if ords=1L(f,s) = 1, and

cP =
L′(f,1)

Ωf 〈P,P 〉∞
.

This is a variant of the p-adic Gross–Zagier formula [32] (cf. Appendix A). In

combination with Proposition B.4, it yields Theorem 4.3.

4.1.3. Proof of Theorem 4.1. The approach is based on Theorem 3.16 (b) and a

link between elliptic units and Heegner points (cf. Theorems 4.2 and 4.3).

Proof. Fix an isomorphism IndKQ (V )∼= VLp
(f) of GQ-representations and let

H1(K,V )∼=H1(Q,VLp
(f)) (4.2)

be the induced identification. Let

zf ∈H1(Q,V (f))

be a Beilinson–Kato element as in [30, Thm. 12.5], which depends on a choice of an

element in H1(A(C),Q)∼= F (cf. §B.2).
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Since the root number of f is −1, L(f,1) = 0, and so locp(zf ) ∈H1
f (Qp,V (f)) by Kato’s

reciprocity law [30, Thm. 12.5 (1)]. Now in view of Theorems 3.16 and 4.2, it follows that

L (1) =
1

λE(v−,0)
λf (locp(zf )) (4.3)

up to an element in L×. Hence, Theorem 4.3 concludes the proof.

Remark 4.5. Theorem 4.1 concerns an anticyclotomic p-adic L-value, yet its proof relies

on central derivative of cyclotomic p-adic L-functions.

4.2. p-adic Beilinson formula: a refined form

The main result is Theorem 4.8.

To consider a refinement of Theorem 4.1, we first specify an abelian variety A in
the associated isogeny class (cf. §4.2.1), leading to an explicit form of Theorem 4.2 (cf.

Proposition 4.12).

4.2.1. A CM abelian variety. We begin with a preliminary (cf. [27, §5.1]).

Lemma 4.6. Let E be a CM elliptic curve as in §3.1.1 and j ∈H denote its j-invariant.

Then the following holds.

(1) [H :Q(j)] = 2,

(2) Q(j) has at least one real place and

(3) H =Q(j)K.

Suppose that

E is defined over Q(j). (rt)

This holds if j = j(OK) or, equivalently, E(C)∼=C/OK (cf. [27, (5.1.4) and Thm. 10.1.3]).

Fix a minimal Weierstrass model of E at p over OHp
∩Q(j) and let ω be the Néron

differential.

Lemma 4.7. The Weil restriction

A := ResQ(j)/Q(E)

is a GL2-type abelian variety associated to f.

Proof. By [27, Thm. 15.2.5], A is a CM abelian variety7 defined over Q which is simple

over K. Since

L(A/Q,s) =
∏

σ:F↪→C

L(fσ,s)

(cf. [27, Thm. 18.1.7]), the assertion follows.

We now describe some structures on A arising from E.

7Note that A and Q(j) correspond to B and F of [27], respectively.
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The canonical identification

H1
dR(A/Q) =H1

dR(E/Q(j))

is compatible with the Hodge filtration, via which the Néron differential ω of E gives an

element ωA of coLie(A/Q). Since H =Q(j)K, we have

coLie(A/Q)⊗QL= coLie(E/Q(j))⊗QL= coLie(E/H)⊗K L.

So, the one-dimensional L-vector space coLie(A/Q)⊗F L leads to a one-dimensional

subspace S(ϕ) of coLie(E/H)⊗K L, namely its ϕ-part. This induces an identification

IndKQ V = VLp
(f), (4.4)

which is the same as the identification [30, (15.11.2)] (recall that our VLp
(f) is isomorphic

to the Lp-linear dual of that of [30]). In turn, λE :H1
f (Φ,V )→ Lp is identified with the

logarithm map λf : H1
f (Qp,VLp

(f)) → Lp associated to ωA, where ωA ∈ coLie(A/Q) is

regarded as an element of Fil0(DdR(VLp
(f))) = coLie(A/Q)⊗F Lp.

Fix bA ∈ H1(A(C),Q) and define a period Ωf ∈ R× as in (B.3). Note that u := Ωf/
Ω ∈ L×.

4.2.2. Main result and applications.

Theorem 4.8. Let A/Q be a GL2-type abelian variety associated to a CM newform f as

in §4.2.1. Let K be the CM field and F the Hecke field. Suppose that (rt) holds and the
root number of f equals −1. Let p≥ 5 be a prime of good non-ordinary reduction for A/Q

with p � hK and L the Rubin p-adic L-function as in (3.14). Then there exists a rational

point P ∈A(Q) with the following properties.

(a) We have

L(1) = LbE,v−
(1) = u

(
1+

1

p

)
λf (P )2

λf (v−,0)
· cP

for some cP ∈ F×.

(b) P is non-torsion if and only if ords=1L(f,s) = 1.

(c) If ords=1L(f,s) = 1, then

cP =
L′(f,1)

Ωf 〈P,P 〉∞
.

Part (a) leads to the following p-adic construction of a rational point of infinite order.

Corollary 4.9. Let E/Q be a CM elliptic curve with root number −1. Let p ≥ 5 be a
prime of good supersingular reduction for E/Q and LE the Rubin p-adic L-function as in

(3.14). Suppose that ords=1L(E,s) = 1, and the Birch–Swinnerton-Dyer formula is true

for E/Q. Then,
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expE,ω

(
#E(Q)tors

√
λE(v−,0) ·L (1)

(1+p−1)u
∏

� c�

)
∈ E(Q)

is a rational point of infinite order, where c� denotes the Tamagawa number at �.

Remark 4.10.

(i) The BSD formula is known to be true up to an element in Z[ 1
#O×

K
·N

]× (cf. [32,

Cor. 1.4]).

(ii) The rational point is independent of the choices involved, besides that of the square

root.

(iii) Rubin initiated p-adic construction of rational points of infinite order (cf. [50, Thm.

10.4].)

Another application is the following variant of Corollary 3.11.

Corollary 4.11. Let E/Q be a CM elliptic curve and K the CM field. Let p ≥ 5 be a

prime of good supersingular reduction for E/Q and Kn the nth-layer of the anticyclotomic

Zp-extension of K.

(i) If L(E/Q,1)/Ω is a p-adic unit, then for all n≥ 1,

corankZp
Selp∞(E/Kn

)− corankZp
Selp∞(E/Kn−1

) = εnp
n−1(p−1),

where εn = 0 (resp. 2) for n odd (resp. even).

(ii) Suppose that ords=1L(E/Q,s) = 1 and there exists a rational point P ∈E(Q) whose

image generates the Zp-module E(Qp)/E(Qp)tor. If

L′(E/Q,1)/Ω〈P,P 〉∞
is a p-adic unit, then for all n≥ 1,

corankZp
Selp∞(E/Kn

)− corankZp
Selp∞(E/Kn−1

) = εnp
n−1(p−1),

where εn = 0 (resp. 2) for n even (resp. odd).

In particular, if X(E/Kn
) is finite, then

rankZE(Kn)− rankZE(Kn−1) = εnp
n−1(p−1).

Proof. We first consider the case (i).

Since L(ϕ̄,1)/Ω is a p-adic unit, note that ε(ϕ) = +1 and

L ∈ Λ×.

For χ ∈ Ξ+, we then have L(ϕχ,1) �= 0 and so rankOχ
E(Kn)

χ−1

= 0 by Theorem 3.9 (a)
where n denotes max{0,ordp(cχ)−1}. Now, let χ ∈ Ξ−. In view of Theorem 3.16,

locp(zχ−1) �= 0.

Hence, the image of z in Srel is a Λq-basis for Srel,q up to tensoring with Qp, where Srel

denotes the relaxed compact Selmer group and q the prime ideal of Λ corresponding
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to the χ−1-specialization. In turn, Xstr,q is finite by [2, Prop. 3.3] and then so is

H2(OK [ 1p ],T (χ)). Hence, Tate’s Euler characteristic formula implies

rankOχ
H1(OK [

1

p
],T (χ)) = 1.

Since zχ−1 ∈H1
f (K,T (χ)) by Lemma 3.3, we conclude that rankOχ

H1
f (OK [ 1p ],T (χ)) = 1.

The assertion follows from this.
The case (ii) is similarly proven by using Theorem 4.8.

4.2.3. Elliptic units and Beilinson–Kato elements.

Proposition 4.12. Let z = (zn) ∈ lim←−n
H1(Kn,T ) be the elliptic unit as in (3.2) under

the identification (3.1) and zf,0 ∈H1(Q,V (f)) the Beilinson–Kato element associated to
the newform f as in (4.8). Then, under the identification (4.7), we have

z0 = u · zf,0,

where u := Ωf/Ω ∈ L×.

Proof. By [30, Lem. 15.11 (2)], there is a unique isomorphism

IndCRH
1(E(C),Q)⊗K L∼=H1(A(C),Q)⊗F L (4.5)

of L[Gal(C/R)]-modules such that the following diagram

S(ϕ)

=

��

perϕ
�� IndCR(H

1(E(C),Q)⊗K C)

(4.5)

��

coLie(A/Q)⊗F L
perf

�� H1(A(C),Q)⊗F C

(4.6)

commutes. Here, H1(A(C),Q) is regarded as a Gal(C/R)-module via the complex

conjugation on A(C), perϕ is the period map induced by that of E (cf. [30, §15.8]) and

the right vertical map is the base change of (4.5) via L⊆ C.
Recall that z ∈ lim←−n

H1(Kn,T ) is the image of an element zell ∈ lim←−n
H1(K(fpn),T )

associated to bE as in [30, Prop. 15.9] under the corestriction map

lim←−
n

H1(K(fpn),T )→ lim←−
n

H1(Kn,T ),

where f denotes the conductor of ϕ and K(fpn) the ray class field of K of conductor fpn

(cf. [30, p. 254]). Let Qn be the n-th layer of the cyclotomic Zp-extension Q∞ of Q. Let

zell = (zelln ) ∈ lim←−
n

H1(Qn,T (f))⊗Lp

denote the image of zell under

lim←−
n

H1(K(fpn),T )⊗Lp → lim←−
n

H1(K⊗Qn,T )⊗Lp = lim←−
n

H1(Qn,T (f))⊗Lp.
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Here, the first map is induced by the corestriction maps with respect to K⊗Qn ⊆K(fpn),

and the equality is a consequence of (4.4) and Shapiro’s lemma.

Note that bE =Ω−1perϕ(ω) maps to Ω−1perf (ωA) under (4.5) and zell is associated to
bE . Thus, in light of (4.6) and [30, (15.16.1)], it follows that zell coincides with the system

of Beilinson–Kato elements associated to

Ω−1perf (ωA) ∈H1(A(C),Q)⊗F L.

Since Q∞ is a totally real field, the last assertion in [30, Thm. 12.5 (1)] implies that zell

also coincides with the system of Beilinson–Kato elements associated to

Ω−12−1(1+ ι)perf (ωA),

and that zf coincides with the one associated to

b+A := 2−1(1+ ι)bA =Ω−1
f 2−1(1+ ι)perf (ωA)

(cf. (B.3)), where ι denotes the involution induced by the complex conjugation on A(C).

Therefore, we have

zell0 = uzf,0.

Since z0 = zell0 in H1(K,V ) =H1(Q,VLp
(f)), the proposition follows.

4.2.4. Proof of Theorem 4.8. We proceed as in the proof of Theorem 4.1 (cf. §4.1.3).

The additional ingredient is Proposition 4.12.

Proof. By (4.4) and Shapiro’s lemma, we have an identification

H1(K,V ) =H1(Q,VLp
(f)). (4.7)

Let T (f) be a Galois stable OFp
-lattice of V (f).

Let

zf = (zf,n) ∈ lim←−
n

H1(Qn,T (f))⊗Qp (4.8)

be the Beilinson–Kato element associated to bA as in [30, Thm. 12.5 (1)] (since our VLp
(f)

is a Tate twist of that in [30], zf is the corresponding twist of z
(p)
bA

as in [30]). In particular,
zf satisfies the explicit reciprocity law (B.4).

Note that L(f,1) = 0, and so by Proposition 4.12,

z0 = uzf,0 ∈H1
f (K,V ⊗Lp) =H1

f (Q,VLp
(f)). (4.9)

Hence, Theorem 4.8 is a consequence of Theorems 3.16 (b) and 4.3.

Remark 4.13. For a given bE or ω, note that λf (v−,0)Ω ·L (1) is independent of the

choices of Ω and v−. Moreover, the right-hand side of Theorem 4.8 (a) is independent of

the choice of bA.
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4.3. Towards a conjecture of Perrin-Riou: primes of bad reduction

The conjecture [42] intertwines Beilinson–Kato elements and global arithmetic (cf. §B.1).

For a weight two elliptic newform g and zg ∈H1(Q,V ) an associated p-adic Beilinson–

Kato element, the conjecture predicts

locp(zg) �= 0 ⇐⇒ ords=1L(g,s)≤ 1.

(cf. (B.2)).

Proposition 4.14. Let ϕ be a self-dual Hecke character of an imaginary quadratic field

K of infinity type (1,0). Let p≥ 5 be a prime so that (inr) holds and p � hK · condrϕ. Let
K∞ be the anticyclotomic Zp-extension of K. For a finite character χ of Gal(K∞/K),

let g be the theta series associated to the Hecke character ϕχ−1. Let zg be an associated

Beilinson–Kato element. Then,

ords=1L(g,s) = 1 =⇒ locp(zg) �= 0.

Proof. By Corollary 3.18, the localisation of the Selmer element yχ is non-torsion. This

element is defined using elliptic units as in (3.4). Hence, the assertion is a consequence8

of Theorem 4.2.

Remark 4.15. For non-trivial χ, an abelian variety Aχ associated to g does not

have semistable reduction at p. Accordingly, the proposition complements [7], [17] and

Theorem B.3. It is perhaps the first evidence towards Perrin-Riou’s conjecture at primes

of non-semistable reduction.

4.4. p-converse to a theorem of Gross–Zagier and Kolyvagin

Let the setting be as in §4.1.

4.4.1. Preliminary.

Proposition 4.16. Suppose that L(ϕ,1) = 0. Then, the element locp(z0) ∈H1
f (Kp,V ) is

non-zero if and only if ords=1L(ϕ,s) = 1.

Proof. This is a consequence of Theorems 4.2 and 4.3.

4.4.2. p-converse.

Theorem 4.17. Let A/Q be a GL2-type CM abelian variety. Let K be the CM field and

F the Hecke field. Suppose that (rt) holds and OF ↪→ EndA. Let p≥ 5 be a prime of good
non-ordinary reduction for A/Q with p � hK , and p a prime of F above p. If Selstr(Q,A[p

∞])

is finite, then

ords=1L(A,s) = [F :Q] · corankOF,p
Selp∞(A).

8The theorem is stated for CM elliptic newforms with good reduction at p, but it holds for any
prime p (cf. [30, (15.16.1)]).

https://doi.org/10.1017/S147474802300021X Published online by Cambridge University Press



1448 A. A. Burungale et al.

Proof. We have A(Qp)⊗OF
Fp/OFp

∼= Fp/OFp
. So the exact sequence

0→ Selstr(Q,A[p
∞])→ Selp∞(A)→A(Qp)⊗OF

Fp/OFp
(4.10)

and the finiteness of Selstr(Q,A[p
∞]) imply that

corankOF,p
Selp∞(A)≤ 1. (4.11)

Observe9

Selstr(K∞,V/T )∨⊗Qp/(γ−1)∼= Selstr(K,V/T )∨⊗Qp

∼= Selstr(Q,A[p
∞])∨⊗OFp

Lp

= {0}.
(4.12)

Thus, z0 ∈H1(K,T ) is non-torsion by [2, Prop. 3.3 (ii)].
We now show

0 �= locp(z0) ∈H1(Kp,V ). (4.13)

To begin, Selstr(K,V/T ) is finite by (4.12). Put

pa = |Selstr(K,V/T )|.
Since z0 ∈H1(K,T ) is non-torsion, pick an integer m such that p−m+az0 ∈H1(K,V ) does

not lie in the image of H1(K,T ). Suppose that locp(z0) = 0 ∈H1(Kp,V ). Then, as z0 is
unramified outside p, the image wm of p−mz0 in H1(K,V/T ) lies in Selstr(K,V/T ) and

so does pawm. However,

pawm = 0 ∈H1(K,V/T ).

This contradiction yields (4.13).

• The case W (ϕ) = +1. In view of (3.3) and (4.13), we have L(ϕ,1) �= 0. Hence, by
the theorem of Coates-Wiles [20] and Rubin [46],

ords=1L(A,s) = [F :Q] · corankOF,p
Selp∞(A) = 0.

• The case W (ϕ) =−1. In view of (4.13) and Lemma 3.3, the image of p−mz0 in

H1(K,V/T ) gives a non-zero element of Sel(K,V/T ) for a sufficiently large m. By
(4.11), it then follows that

corankOF,p
Selp∞(A) = 1.

Hence, the assertion is a consequence of Proposition 4.16.

Finally, we have the following p-converse.

Theorem 4.18. Let A/Q be a GL2-type CM abelian variety. Let K be the CM field and

F the Hecke field. Suppose that (rt) holds and OF ↪→ EndA. Let p≥ 5 be a prime of good
non-ordinary reduction for A/Q with p � hK , and p a prime of F above p. Suppose either

of the following.

9Recall that IndK
Q (V )∼= Tp(A)⊗OF⊗Zp

Lp.
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(a) corankOF,p
Selp∞(A) = 1 and locp : Selp∞(A) → A(Qp)⊗OF

Fp/OFp
is a non-zero

map.

(b) corankOF,p
Selp∞(A) = 1 and X(A)[p∞] is finite.

Then,
ords=1L(A,s) = [F :Q].

Proof.

(a) In view of the assumption and (4.10), Selstr(Q,A[p
∞]) is finite. So, the assertion

directly follows from Theorem 4.17.

(b) Recall the exact sequence

0→A(Q)⊗OF
Fp/OFp

→ Selp∞(A)→X(A)[p∞]→ 0. (4.14)

So, by the assumption, we have A(Q)⊗OF
Fp/OFp

∼= Fp/OFp
. Hence,

locp :A(Q)⊗OF
Fp/OFp

→A(Qp)⊗OF
Fp/OFp

is a non-zero map.

Remark 4.19. The p-converse was initiated by Skinner and Zhang (cf. [52], [56]). The

above approach is a variant of [52], yet it does not rely on the parity conjecture.

Appendix A. p-adic height pairings and logarithms

A basic reference is [33, §3.2]. See also [32], [42] for elliptic curves.

A.1. p-adic height pairings on abelian varieties

We fix an embedding ιp :Q ↪→Cp. Let F be a finite extension of Q. We choose a continuous
homomorphism �F :A×

F /F
× →Qp and denote by �F,v or �v the v -th component for a place

v of F (note that �v = 0 if v is archimedean). The important example is the cyclotomic

logarithm. Let logp be the p-adic logarithm on Z×
p such that logp p = 0. We define the

cyclotomic logarithm �cF,v on F×
v at a non-archimedean place v by

�cF,v(x) =

{
− logp |x|v = v(x) logpN(v) if v � p

− logpNFv/Qp
(x) if v | p,

where N(v) is the number of elements of the residue field of F at v and we normalize

as v(π) = 1 for a uniformizer π at v of F. We define the cyclotomic logarithm �cF by
�cF :=

∑
v �

c
F,v. Then, �

c
F (x) = 0 for x∈ F× and it defines a homomorphism A×

F /F
× →Qp.

Let A be an abelian variety defined over F with good reduction at all places over p

and let A∨ be its dual. For simplicity, we also assume that F is unramified at all places
over p. Let L be a finite extension of Qp, which plays as the coefficient field. We choose a

splitting of the Hodge filtration of Mv(A)⊗Qp
L for each place v over p. Here, Mv(A) is

the weakly admissible filtered ϕ-module of A over Fv with Hodge-Tate weight {0,1} (the
Hodge-Tate weight of the cyclotomic character is normalized as −1). In other words, we

fix an L-vector subspace Nv of Mv(A)⊗Qp
L which is complementary to Fil1Mv(A)⊗Qp

L.

We put N := (Nv)v|p.
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Let a =
∑

ini(Pi) be a zero cycle on A of degree 0 defined over Fv and let D be an

algebraically trivial divisor over Fv prime to the support of a. Then, for a place v � p,

there is a canonical way to define the local height pairing 〈D,a〉�v ∈Qp characterized by
certain standard functorial properties (cf. [33, Proposition 9]. The pairing is independent

of the choice N ). For a place v over p, depending on the choice of Nv, we can define the

local p-adic height pairing 〈D,a〉�v,Nv
∈ L. We recall the definition below.

The global p-adic height pairing is defined as the sum of local p-adic height pairings:

〈 , 〉�F ,N :A∨(F )×A(F )→ L, (d,a) �→
∑

v�p

〈D,a〉�v +
∑

v|p

〈D,a〉�v,Nv
.

Here, D is an algebraically trivial divisor that represents d, and a is a zero cycle
∑

ni[Pi]
of degree zero with

∑
niPi = a. We choose D and a so that they have no point in common.

The global pairing does not depend on the choice of D, a.

A.1.1. The local p-adic height at v|p. We assume that v|p. As before, let a =∑
ini(Pi) be a zero cycle on A of degree 0 defined over Fv and let D be an algebraically

trivial divisor over Fv prime to the support of a. Let A /OFv
be the smooth model of

A/Fv and let A ∨ be the smooth model of A∨. Then, the rational equivalence class of

D defines a point in A∨(Fv) = A ∨(OFv
) = Ext1fppf (A ,Gm). Hence, we have an exact

sequence as fppf sheaves

1 �� Gm
�� XD

�� A �� 1, (A.1)

where XD is a smooth separated commutative group scheme over OFv
. Over SpecFv,

this exact sequence is isomorphic to

1 �� Gm
�� XD

�� A �� 1, (A.2)

where XD is the line bundle associated to OA(D) minus zero section which has a group

law since D is algebraically equivalent to zero. Hence, attached to D, there is a geometric

section sD : A \ |D| → XD which is canonical up to a translation by an element of Gm.
We identify XD⊗Fv with XD.

We define a local section

sD,Nv
: A (OFv

)⊗Zp
L −→ XD(OFv

)⊗Zp
L.

First, we identify

A (OFv
)⊗̂L=HomFv⊗L(Fil

1MA ,L,Fv ⊗L) = HomL(Fil
1MA ,L,L),

and so for XD(OFv
). Here, MA ,L =Mv(A)⊗Qp

L is the filtered ϕ-module with coefficients

in Fv ⊗Qp
L associated to A /OFv

. Hence, it suffices to construct an L-linear map

Fil1MXD,L → Fil1MA ,L.

Since MA ,L and MGm,L have different Frobenius eigenvalues, the exact sequence

0 �� MA ,L
�� MXD,L

�� MGm,L
�� 0 (A.3)
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splits as Fv⊗L[ϕ]-modules. Hence, we have a left splittingMXD,L →MA ,L. By composing

it to the projection MA ,L → Fil1MA ,L by Nv, we obtain the map tD,Nv
: MXD,L →

Fil1MA ,L. By the restriction to Fil1MXD,L, we obtain the desired map.
The local height pairing at v|p is defined as

〈D,a〉�v,Nv
:= �v

(
∏

i

(sD(Pi)/sD,Nv
(Pi))

ni

)
∈ L

(we write the group law on XD multiplicatively. Note that the image of sD/sD,Nv
lives

in Gm).

A.2. The dependence of the p-adic height on the splitting

Suppose that N ′ = (N ′
v)v|p is another splitting. Then,

〈d,a〉�F ,N ′ −〈d,a〉�F ,N =
∑

v|p

�v

(
∏

i

(sD,Nv
(Pi)/sD,N ′

v
(Pi))

ni

)
. (A.4)

Note that the image of sD,Nv
/sD,N ′

v
lives in O×

Fv
⊗Zp

L⊂XD(OFv
)⊗Zp

L. We also remark

that sD,Nv
/sD,N ′

v
does not depend on the choice of D for d (the geometric section sD

depends on the choice of the divisor D for d). The map sD,Nv
/sD,N ′

v
is induced by the

map

�d,Nv.N ′
v
: Fil1MGm,L → Fil1MA ,L, ωGm

�→ tD,Nv
(ωH

Gm
)− tD,N ′

v
(ωH

Gm
).

Here, ωH
Gm

∈ Fil1MXD,L is a lift of ωGm
under

0 �� Fil1MA ,L
�� Fil1MXD,L

�� Fil1MGm,L
�� 0

(note that tNv
is identity on Fil1MA ,L). We note that the image of d by the logarithm

λωA∨
for ωA∨ ∈ Fil1MA ∨ is given by

[ωA∨,(ωH
Gm

−ωϕ
Gm

)].

Here, ωϕ
Gm

∈MXD,L is the lift of ωGm
compatible with the action of ϕ under (A.3), and

[ , ] is the de Rham pairing on MA ∨ and MA . Let ω∨
1 , . . . ,ω

∨
g be a basis of Fil1MA ∨ and

η1, . . . ,ηg a basis of a complementary subspace of Fil1MA such that [ω∨
i ,ηj ] = δij (the

Kronecker Delta). Then, we have

ωH
Gm

= ωϕ
Gm

+
∑

i

ciωi+
∑

i

λω∨

i
(d)ηi

for some ci ∈ Fv. Hence,

�d,Nv.N ′
v
(ωGm

) =
∑

i

λω∨

i
(d)(tNv

(ηi)− tN ′
v
(ηi)), (A.5)

where tNv
:MA → Fil1MA is a splitting by Nv.
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Suppose that ωGm
is the canonical invariant differential of Gm. Then, the map

λd,Nv,N ′
v
:= log◦(sD,Nv

/sD,N ′
v
) : A(Fv) −→ Fv ⊗Qp

L

is the logarithm map defined by the invariant differential �d,Nv.N ′
v
(ωGm

) ∈ Fil1MA ,L.
Hence,

〈d,a〉�F ,N ′ −〈d,a〉�F ,N =
∑

v|p

�v
(
exp◦λd,Nv,N ′

v
(a)

)
. (A.6)

The difference between global p-adic height pairing is measured by logarithms on A.

Proposition A.1. Assume that Nv ∩N ′
v = {0}. Then, sD,Nv

= sD,N ′
v
if and only if D is

torsion in A∨.

Proof. D is torsion if and only if (A.3) splits as filtered ϕ-modules. In such a case,

tD,Nv
does not depend on the choice of Nv. Assume that sD,Nv

= sD,N ′
v
. Then, �d,Nv,N ′

v

(ωGm
) = 0. Then, we have

ωH
Gm

−ωϕ
Gm

− tD,Nv
(ωH

Gm
) = ωH

Gm
− ω̃Gm

− tD,N ′
v
(ω′

Gm
) ∈Nv ∩N ′

v.

Hence, by our assumption, we have

ωϕ
Gm

= ωH
Gm

− tD,Nv
(ωH

Gm
) ∈ Fil1MXD,L.

This means that (A.3) splits as filtered ϕ-modules.

A.3. Applications for modular abelian varieties

Let f be a normalized eigen newform of weight 2 for Γ0(M) with p � M . Let Af be
a modular abelian variety defined over Q associated to f. We fix a polarization of Af

compatible with the Hecke action and identify objects on Af and A∨
f by the pullback

after tensoring L if necessary (e.g. differential forms, rational points). Let Kf be the
Hecke field of f. We apply our theory for A=Af/F for a number field F unramified over

p and L containing Kf and roots of the Hecke eigen polynomial of f at p. Then, we have

the decomposition

MA /Fv,L =
⊕

σ∈Gal(Kf/Q)

Mfσ

as filtered ϕ-modules by the Hecke action. Here, Mfσ is a filtered ϕ-module of dimension

2 as Fv⊗Qp
L-vector space and Fil1Mfσ = Fv⊗Qp

Lωfσ , where ωfσ is the differential form
on X0(N) associated to fσ. Let ³ and ´ be distinct roots of the Hecke eigen polynomial

of f at p in L. (cf. [21].) We consider a splitting N³ (resp. N´) of the Hodge filtration of

Mf generated by ´ωf −ϕωf (resp. ³ωf −ϕωf ). Note that if F =Q, N³ is an ³-eigenspace

of the Frobenius. We extend them (arbitrary) to splittings for MA /Fv,L, which are also
denoted by N³ and N´ . Then, by (A.6), we have

〈d,a〉�c
F
,Nα

−〈d,a〉�c
F
,Nβ

=−TrF/Qλd,Nα,Nβ
(a)
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for the cyclotomic height pairing (here, TrF/Qλd,Nα,Nβ
(a) :=

∑
σ:F↪→Cp

λdσ,Nα,Nβ
(aσ)).

We put A(F )f for the f -part of A(F )⊗L be the Hecke action. Let λf : A(F )f → Cp be

the logarithm associated to ωf .

Theorem A.2. Assume that [ϕωf,ωf ] �= 0. Then, we have

〈d,a〉�c
F
,Nα

−〈d,a〉�c
F
,Nβ

=
(´−³)

[ωf,ϕωf ]
TrF/Q(λf (d)λf (a))

for d,a ∈A(F )f (note that A is self-dual). In particular,

〈a,a〉�c
F
,Nα

−〈a,a〉�c
F
,Nβ

=
(´−³)

[ωf,ϕωf ]
TrF/Qλf (a)

2.

Proof. Put ηf := 1
[ωf,ϕωf ]

ϕωf and extend ωf , ηf to a symplectic basis of MA /Fv
. Since

´ωf −ϕωf ∈ N³, we have tNα
(η) = ´

[ωf,ϕωf ]
ωf . Hence, the assertion follows from (A.5)

and (A.6).

Corollary A.3. Assume that [ϕωf,ωf ] �= 0. The pairing 〈 , 〉�c
Q
,Nα

or 〈 , 〉�c
Q
,Nβ

is non-

trivial. In particular, if the Hecke polynomial at p is irreducible over the p-adic completion

of Kf , the height pairing 〈 , 〉�c
Q
,Nα

is non-trivial.

Proof. This follows from Theorem A.2 since λf is non-trivial. The pairings 〈 , 〉�c
Q
,Nα

and
〈 , 〉�c

Q
,Nβ

are conjugate if ³ and ´ are.

Corollary A.4. The p-adic Gross-Zagier formula of f holds for inert primes if f is non-

ordinary at p. (cf. [33, Theorem 3])

Proof. We first show that [ϕωf,ωf ] �= 0. We have a strongly divisible lattice D in Mf

by the Fontaine-Laffaille theory. Suppose that [ϕωf,ωf ] = 0. Then, Fil1D is stable by ϕ.
Hence, ϕ(Fil1D)⊂ Fil1D∩pD = pFil1D. This implies that one of the eigenvalues ³, ´ is

divisible by p, which contradicts the non-ordinary assumption. By Corollary A.3, choose

³ for which 〈 , 〉�c
Q
,Nα

is non-trivial. Then, see a remark after [33, Theorem 3].

Corollary A.5. Let p be a non-ordinary (good) prime for f. Suppose that ords=1L(f,s) =

1 and the Iwasawa main conjecture for f is true for p. Then, the p-part of the full Birch and
Swinnerton-Dyer conjecture (Bloch-Kato’s tamagawa number conjecture) is true for f.

Proof. Take ³ so that 〈 , 〉�c
Q
,Nα

is non-trivial. Then, the assertion follows from similar

arguments as [33, Corollary 1.3 (iii)].

Let

HL =

{∑

n≥0

an(γ−1)n ∈ L[[γ−1]]
∣∣ lim

n
|an|pn−1 = 0

}
,

where | · |p is the multiplicative valuation of L normalized by |p|p = 1/p. For |³|p > 1/p,

let Lp,³(f) ∈ HL be the cyclotomic p-adic L-function as in [30, Theorem 16.2]. Fixing a
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real period Ωf of f, we have the following interpolation property. For a finite character χ
of Gal(Q∞/Q) of conductor pn > 1,

Lp,³(f)(χ) =
pn

³nÄ(χ−1,ζpn)
· L(f,χ

−1,1)

Ωf
,

where ζpn = e2πi/p
n

, and for the trivial character

Lp,³(f)(1) = (1−³−1)2 · L(f,1)
Ωf

.

If |´|p > 1/p, then replacing ³ with ´, we see the interpolation property of Lp,´(f).

Define

L
′
p,³(f,1) = lim

s→1
Lp,³(f)((χ

cyc)s−1)/(s−1),

where χcyc : Gal(Q∞/Q) → 1 + pZp is the cyclotomic character. We similarly define
L ′

p,´(f,1).

Theorem A.6. Let p be a non-ordinary (good) prime for f. Suppose that the root number

of L(f,s) is −1. Then, there exists a point P ∈ A(Q)f and a non-zero constant cP ∈ Q

such that
(
1− 1

³

)−2

L
′
p,³(f,1)−

(
1− 1

´

)−2

L
′
p,´(f,1) = cP

(´−³)

[ωf,ϕωf ]
λf (P )2.

Moreover, P is non-torsion if and only if ords=1L(f,s) = 1, and in such a case cP =
L′(f,1)

Ωf 〈P,P 〉∞
, where 〈, 〉∞ is the Néron-Tate height pairing.

Proof. By [8], there exists an imaginary quadratic field K satisfying the Heegner
hypothesis and L(f ⊗ ε,1) �= 0 for the quadratic character ε associated to K. Let z be a

Heegner point associated to K. Since L(f⊗ε,1) �=0, the Heegner point z lives in A(Q)⊗Q

up to a torsion element. Then, by Theorem A.2 for F =K and by the p-adic Gross-Zagier
formula, we have

(
1− 1

³

)−4

L
′
p,³(f/K,1)−

(
1− 1

´

)−4

L
′
p,´(f/K,1) = 2u−2 (´−³)

[ωf,ϕωf ]
λf (z)

2, (A.7)

where Lp,−(f/K,s) is the p-adic L-function of f over K (cf. [32], [33]) and u = �O×
K/2.

By the classical Gross-Zagier formula, z is non-torsion if and only if ords=1L(f,s) = 1.
Then, as in the proof of [32, Corollary 1.3], we have the desired formula from (A.7) by

using the complex and the p-adic Gross-Zagier formulae.

Appendix B. Perrin-Riou conjecture

Rubin’s formula [50] inspired the eponymous conjecture [42, §3.3.2], which primarily

concerns the arithmetic of Beilinson-Kato elements.
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B.1. The conjecture

Let f ∈ S2(Γ0(N)) be an elliptic newform and F ⊆ C the Hecke field. Let A be an

associated GL2-type abelian variety over Q; that is, A is a simple, [F : Q]-dimensional

abelian variety equipped with a homomorphism F →End(A)⊗Q of Q-algebras such that

L(A,s) =
∏

σ:F↪→Q

L(fσ,s).

Let p be a prime number and p the prime of the Hecke field F over p arising from the
fixed embedding ιp : Q ↪→ Cp. Let V (f) ∼= F⊕2

p denote the p-th component of the Galois

representation Tp(A)⊗Qp
∼=
∏

v|pF
⊕2
v . Let zf ∈H1(Q,V (f)) be a Beilinson-Kato element

as in [30, Theorem 12.5]. By Kato’s reciprocity law [30, Theorem 12.5 (1)],

locp(zf ) ∈H1
f (Qp,V (f)) ⇐⇒ L(f,1) = 0. (B.1)

After Kato, if L(f,1) �=0, then zf is inherent to the arithmetic of f (cf. [30, Theorem 14.5]).

If L(f,1) = 0, then Perrin-Riou [42, §3.3.2] (for elliptic curves) conjectured the Beilinson-

Kato element zf to be still intertwined with the arithmetic as follows.

Conjecture B.1. Let f ∈ S2(Γ0(N)) be an elliptic newform and A/Q an associated

GL2-type abelian variety. Suppose that L(f,1) = 0. Let p be a prime. Then, there exists a
rational point P ∈A(Q) with the following properties.

(a) We have

λf (locp(zf )) = cλf (P )2

for some c ∈ F× and λf : H1
f (Qp,V (f)) → Fp the logarithm map associated to a

non-zero element ωA ∈ coLie(A).

(b) P is non-torsion if and only if ords=1L(f,s) = 1.

The conjecture implies

locp(zf ) �= 0 ⇐⇒ ords=1L(f,s) = 1. (B.2)

B.2. The non-ordinary case

We prove Perrin-Riou’s Conjecture B.1 at the primes of good non-ordinary reduction.
The main result is Theorem B.3, which shows a refinement of the conjecture.

B.2.1. Backdrop. Let the setting be as in §B.1.

Fix an element bA ∈H1(A(C),Q) such that b+A := 2−1(1+ ι)bA �= 0 for ι the involution
of H1(A(C),Q) induced by the complex conjugation c on A(C). Fix a non-zero element

ωA ∈ coLie(A)∼= F . Define Ωf ∈ R by

1+ ι

2
perf (ωA) = Ωf b

+
A, (B.3)

where perf : coLie(A) → H1(A(C),Q)⊗F C denotes the F -linear map induced by the

period map of A. (Since ωA is defined over Q, note that perf (ωA) lies in the (ι⊗ c)-fixed
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part of H1(A(C),Q)⊗F C, and so Ωf ∈ R.) Fix a polarization of A which is compatible

with the F -action. Let T (f) be a Galois stable OFp
-lattice of V (f).

Let

zf = (zf,n) ∈ lim←−
n

H1(Qn,T (f))⊗Qp

be the Beilinson-Kato element associated to bA as in [30, Thm. 12.5 (1)]. The following

explicit reciprocity law is due to Kato [30, Thm. 12.5].

Proposition B.2. For a finite character χ of Gal(Qn/Q), we have

∑

σ∈Gal(Qn/Q)

χ(Ã)exp∗n(locp̃(z
σ
f,n)) =

L(f,χ,1)

Ωf
ωA. (B.4)

Here,

exp∗n :H1(Qn,p̃,V (f))→ Fil0(DdR(V (f)))⊗Qp
Qn,p̃ = coLie(A)⊗F Fp⊗Qp

Qn,p̃

is the dual exponential map and p̃ the prime of Qn over p.

B.2.2. The theorem.

Theorem B.3. Let f ∈ S2(Γ0(N)) be an elliptic newform and p a prime of good non-

ordinary reduction. Then, an explicit form of Conjecture B.1 is true: if L(f,1) = 0, then

there exists a rational point P ∈A(Q) with the following properties.

(a) We have

λf (locp(zf )) = cP

(
1− ap(f)

p
+

1

p

)
λf (P )2

for some cP ∈ F×, and zf := zf,0, ap(f) the p-th Fourier coefficient of f, and λf :

H1
f (Qp,V (f))→ Fp the logarithm map associated to ωA.

(b) P is non-torsion if and only if ords=1L(f,s) = 1.

(c) If the equivalent conditions in (b)hold, then

cP =
L′(f,1)

Ωf 〈P,P 〉∞
for 〈, 〉∞ the Néron-Tate height pairing.

Our proof is based on the following link between the logarithm of locp(zf ) ∈
H1

f (Qp,V (f)) and the first derivatives of the p-adic L-functions.

Proposition B.4. Let ³ and ´ be the roots of the Hecke polynomial X2− ap(f)X + p
of f. Then, we have

λf (locp(zf )) =
1−ap(f)+p

β−α
[ωA,ϕωA]Dcris(V (f)) ·

(

(1−α−1)2L ′
p,α(f,1)− (1−β−1)2L ′

p,β(f,1)
)

,

https://doi.org/10.1017/S147474802300021X Published online by Cambridge University Press



p-Adic L-functions and rational points on CM elliptic curves at inert primes 1457

where L ′
p,³(f,1) and L ′

p,´(f,1) are the derivatives of the cyclotomic p-adic L-functions

as in §A.3, and

[ , ]Dcris(V (f)) :D
0
cris(V (f))×Dcris(V (f))/D0

cris(V (f))→Dcris(Qp(1))⊗Fp
∼= Fp

is the natural pairing induced by the de Rham pairing. Here, under the last isomorphism,
the basis of Dcris(Qp(1)) associated to (ζpn)n = (e2πi/n)n corresponds to 1 ∈ Fp, and

D0
cris(V (f)) denotes Fil0Dcris(V (f)).

Proof. Define ω³,ω´ ∈D :=Dcris(V (f))⊗Fp
Fp(³) by

ω³ = ´−1ωA−ϕωA, ω´ = ³−1ωA−ϕωA

for ϕ the Frobenius map of D. Then, ω³ and ω´ are non-zero elements such that ϕω³ =
³−1ω³ and ϕω´ = ´−1ω´ . Here, we note that D coincides with Mf ⊗Dcris(Qp(1)) in

subsection A.3 with L= Fp(³).

Following [42, §3.1.3], define10 Lp(f) ∈ HFp(³)⊗Fp(³)D by

Lp(f) =
p

³−´
·
(
Lp,³(f)ω³−Lp,´(f)ω´

)

and L ′
p(f,1) = lims→1Lp(f)((χ

cyc)s−1)/(s−1) ∈D.

Then, by [42, Proposition 2.2.2] and (B.4), we have

logf (locp(zf ))≡ (1−p−1ϕ−1)(1−ϕ)−1
L

′
p(f,1)

≡ p

³−´
(1−p−1³)(1−³−1)−1

L
′
p,³(f,1)ω³−

p

³−´
(1−p−1´)(1−´−1)−1

L
′
p,´(f,1)ω´

≡ 1−ap(f)+p

´−³

(
(1−³−1)2L ′

p,³(f,1)− (1−´−1)2L ′
p,´(f,1)

)
ϕωA mod Fil0D.

Here, logf :H1
f (Qp,V (f))→Dcris(V (f))/D0

cris(V (f)) denotes the Bloch-Kato logarithm
of V (f). Considering the product with ωA, the proposition follows.

We now return to Theorem B.3.

Proof of Theorem B.3. Since Dcris(V (f)) ∼= Mf ⊗ Dcris(Qp(1)), note that
p[ωA,ϕωA]Dcris(V (f)) coincides with [ωA,ϕωA] in Theorem A.6.

Hence, the assertion is a consequence of Theorem A.6 and Proposition B.4.

Remark B.5.

(i) A recent progress towards Conjecture B.1 appears in [7], [17], [19]. The key tools

are (variants of) the Beilinson-Flach element and the BDP formula. In the non-
ordinary case, these results assume additional hypotheses such as p odd, while our

independent approach treats the general non-ordinary case.

(ii) Theorem B.3 is a tool in the proof of yet another CM p-converse (cf. [15]), and in

turn, a result towards the cube sum problem (cf. [1]).

10Note that ωA = p
α−β

(ωα−ωβ).
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