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In silico property prediction based on density functional theory (DFT) is increasingly performed for crystalline materi-
als. Whether quantitative agreement with experiment can be achieved with current methods is often an unresolved ques-
tion, and may require detailed examination of physical effects such as electron correlation, reciprocal space sampling,
phonon anharmonicity, and nuclear quantum effects (NQE), among others. In this work, we attempt first-principles
equation of state prediction for the crystalline materials ScF3 and CaZrFg which are known to exhibit negative ther-
mal expansion (NTE) over a broad temperature range. We develop neural network (NN) potentials for both ScF3 and
CaZrFg trained to extensive DFT data, and conduct direct molecular dynamics (MD) prediction of the equation(s) of
state over a broad temperature/pressure range. The NN potentials serve as surrogates of the DFT Hamiltonian with
enhanced computational efficiency allowing for simulations with larger supercells and inclusion of nuclear quantum
effects utilizing path integral approaches. The conclusion of the study is mixed: while some equation of state behavior
is predicted in semiquantitative agreement with experiment, the pressure-induced softening phenomenon observed for
ScF3 is not captured in our simulations. We show that NQE have a moderate effect on NTE at low temperature, but
do not significantly contribute to equation of state predictions at increasing temperature. Overall, while the NN poten-
tials are valuable for property prediction of these NTE (and related) materials, we infer that a higher level of electron
correlation, beyond the GGA density functional employed here, is necessary for achieving quantitative agreement with

experiment.

I. INTRODUCTION:

In silico prediction of the stability and properties of in-
organic materials has become possible on a broad scale due
largely to density functional theory (DFT) and associated ad-
vancements in algorithms, software, and computer hardware. !
With exception, the majority of such efforts focus on crys-
talline materials, for which the lattice structure is either known
or postulated, and entropic contributions to the free energy
may be approximated or sometimes neglected. Example ef-
forts include structure prediction,? prediction of mechani-
cal properties,® discovery of battery, photovoltaic, or ther-
moelectric materials,* stability prediction of alloy structures
or polymorphs,® or screening for stable, ternary inorganic
materials,® In this work, we attempt first-principles equa-
tion of state prediction for ScF3 and CaZrF¢ inorganic crys-
tals, which fall under the class of negative thermal expansion
(NTE) materials.

Negative thermal expansion (NTE) materials are of signifi-
cant interest due to both their unusual physics and their po-
tential applications. Numerous applications require match-
ing coefficients of thermal expansion between two or more
materials, and the discovery of new NTE materials and elu-
cidation of their behavior provides greater tunability in this
design space. Examples of possible uses for NTE materials
include fuel cells, mirrors in space telescopes, optics, ther-
moelectric materials and more.”” The discovery of new NTE
materials as well as better fundamental understanding of doc-
umented NTE behavior are both important goals. Regarding
the latter, predicting/rationalizing NTE behavior from first-

principles is often challenging and may serve as a stringent
test of solid-state theories, particularly those focused on in-
corporating phonon anharmonicity.

A variety of mechanisms can cause NTE, and thus it is
observed in several classes of compounds, such as ferroelec-
tric materials,10 MOFs,!! Prussian Blue analogues12 and other
open-framework materials.”-'> The work of Mary ef al. '* on
ZrW;0g documenting NTE over a wide temperature range,
launched interest into framework-type materials.!> Due to
their simpler structure in comparison to ZrW,0Og, ReOs3-
type materials are of interest for fundamental understanding
of NTE behavior in open framework structures.!®~!® While
ReO3 itself only shows small NTE at low temperatures, Greve
et al. " found that ScF3, which possesses a ReOs-type struc-
ture, displays strong NTE from 10 K up to ~ 1100 K with a
coefficient of thermal expansion (CTE) of oy ~ —14 ppm/K
at 100 K. In most metal trifluorides, the rhombohedral (R3¢)
phase is more stable than the cubic (Pm3m) phase at low tem-
peratures and elevated pressures, which leads to positive ther-
mal expansion; in contrast, for ScFs, the cubic phase is more
stable than the rhombohedral at low temperature and ambient
pressure, which leads to NTE.!®-2! The discovery of strong
NTE in ScF3 has led to further research into its other prop-
erties, such as pressure-induced softening,22 which causes a
material to become more compressible with increasing pres-
sure, and methods for controlling its thermal expansion. Yang
et al. ?* observed a reduction of NTE upon formation of ScF3
crystals with grain sizes of 80 nm. Similarly, Hu ef al. >* syn-
thesized ~ 6 nm ScF; crystals for which only positive thermal
expansion was observed. Further strategies for tuning ther-
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mal expansion with ScF3 include the formation of solid solu-
tions through isovalent cation substitution,2>% redox interca-
lation of cations into the ScF3 A-sites® and the introduction
of excess fluoride through aliovalent cation substitution.!-32
CaZrFg is another open-framework material with ReOs-type
structure that displays NTE, and exhibits a more negative CTE
(0, ~ —18 ppm/K at 100 K) than ScF3.>* The NTE behavior
of CaZrFg can be modulated in various ways; for example, in-
corporation of helium under high-pressure gas has been shown
to create a defect perovskite (He,_,[1,)(CaZrFg)** and a stoi-
chiometric hybrid perovskite [Hez][CaZrF(,],35 with different
equations of state.

Computational and theoretical work on NTE materials may
be categorized based on goals: The first category consists of
theoretical work that seeks to rationalize and develop phys-
ical understanding of NTE phenomenon, often through sim-
plified models. The second category is computational work
which targets quantitative, in silico property prediction, uti-
lizing e.g. DFT or higher accuracy electronic structure meth-
ods. The present work falls into the latter category, as we
target (although do not fully achieve) quantitative, equation
of state prediction for ScF3 and CaZrFg NTE materials uti-
lizing first-principles, computational methods. There is of
course synergy between these categories of efforts. In com-
putational predictions, necessary choices about what “physics
to include” should be made based on the insight gleaned from
simplified models. On the other hand, state-of-the-art com-
putational predictions are important for testing and validating
the approximations made in simplified models, and providing
benchmarks when experimental data is unavailable.

We first discuss theoretical efforts and simplified models
which have largely provided the physical understanding and
insight into NTE behavior.'®36-40 The rigid unit vibrational
mode (RUM) model is a representative approach belonging
to this category and has provided mechanistic analysis into
framework NTE materials.'®3741-43 In the context of these
materials, RUMs are low-frequency modes that engage in co-
operative rotations of octahedral units; the motions associated
with these modes involve minimal distortion of these octa-
hedral geometries. The RUM model was initially applied
to understand phase transitions in silicates and first applied
to framework NTE materials with studies of ZrW,Qg.42:44:43
In ScF3, the RUMs (along with quasi-RUMS, modes with
wavevectors close to the RUMSs) have been demonstrated in
the literature to be the key modes for NTE in ScF3.*47 Anal-
ysis of the phonon spectrum of CaZrFg indicates that the RUM
model is applicable for this system as well.*3

Ab initio methods have been used for both mechanistic
analysis and attempted quantitative prediction, and we sum-
marize those studies focusing on ScF3 or CaZrFg. Several
works have investigated NTE in ScF; with DFT-based ap-
proaches, utilizing either vibrational free energy predictions
or ab initio molecular dynamics (AIMD) simulations. Oba
et al.* evaluated quasiharmonic approximation (QHA) free
energy expressions for ScF3, and found that QHA predicts
qualitatively incorrect behavior. This is likely due to the
fundamental importance of anharmonicity in NTE systems,
requiring extensions beyond harmonic treatments.’! Meth-

ods that go beyond the QHA have been used to study ScFj3,
such as the self-consistent phonon theory (SCP), which in-
cludes quartic anharmonicity,’>>® and the improved self-
consistent phonon theory (ISC), which additionally treats
cubic anharmonicity.>* These procedures require parameter-
ization of high-order force constants from first-principles
calculations.>>° In contrast, AIMD is straightforward and
naturally takes into account anharmonicity. AIMD simula-
tions have been conducted for ScF3;, providing insight into
its NTE behavior.> 5759 Utilizing AIMD, Lazar, Bucko, and
Hafner>’ were able to reproduce the NTE effect over a tem-
perature range of 200K - 800K using a 2 x 2 x 2 supercell of
the cubic phase. They demonstrated the pressure dependence
of NTE in ScF; and related this to the stability of the R3C
phase. Bocharov er al. > investigated the CTE and dynamics
of ScFj3 at different supercell sizes. They found that at least a
4 x 4 x 4 supercell for ScF3 is needed to converge AIMD pre-
dictions with system size, due to the long wavelength phonons
with negative Griineisen parameters accounting primarily for
NTE behavior.>*>8 As CaZrFg is a more complicated material,
there are fewer ab initio studies in the literature.%%%! Gupta
et al. % used the QHA to study CaZrFy and related systems,
and again demonstrated the importance of anharmonicity for
modeling thermal expansion effects.

While AIMD is a powerful technique, its high computa-
tional cost makes it of limited use for equation of state predic-
tion on a general scale. As discussed, larger supercells are of-
ten necessary to avoid finite size effects associated with long-
wavelength/low frequency phonons that make important con-
tributions to NTE, and the computational expense of AIMD
makes simulation of such supercells challenging.’* Addition-
ally, nuclear quantum effects (NQE) may be important, re-
quiring computationally expensive path integral simulations.
As an example, consider the phonon spectra of CaZrF¢ dis-
cussed by Hancock ez al. 33. The high frequency phonons typ-
ically have positive Griineisen parameters (y), whereas low
frequency modes exhibit negative ¥, the latter contributing to
NTE. While a classical treatment is expected to work well for
low frequency (e.g. < 200 — 300 cm~!) modes, quantization
will be important for high frequency modes; a classical treat-
ment will incorrectly assign energy equipartition to these high
frequency modes and thus tend to underestimate NTE effects
at lower temperatures.*® Combining path integral approaches
with AIMD may often be computationally intractable for sys-
tems of interest. Alternatives include fitting molecular me-
chanics force fields to quantum mechanical data.?? For materi-
als of increasing complexity, developing sufficiently accurate
force fields is both a challenging and time consuming task.

Because of the discussed limitations, obtaining quantita-
tively accurate, in silico equation of state predictions may
often require methods other than direct DFT-based AIMD.
An emerging strategy is to use artificial neural networks or
other machine learning methods to act as surrogate Hamiltoni-
ans that exhibit DFT-level (or higher) accuracy with substan-
tially enhanced computational efficiency®>%3 Machine learn-
ing (ML) methods have been increasingly adopted in the
chemistry and materials science community to simulate ma-
terials with ab initio accuracy at orders of magnitude lower
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computational cost as compared to AIMD.*+%¢ As long as a
training set of high-quality reference data is available, usually
consisting of ab initio energies/forces for the system of in-
terest, ML techniques such as neural networks, kernel meth-
ods or other tools can be used to construct ML potentials.®’
These ML potentials can then be used to run molecular dy-
namics (MD) or Monte Carlo simulations to predict physical
properties of interest. In particular, ML models have been
used to study a large variety of materials, such as silicon,®8°
various metal systems,’%7? zeolites,”> MOFs’# and more.®*”>
ML techniques have also been used to screen materials such as
MOFs, zeolites and perovskites for selected applications.”®78
In this work, we develop similar ML potentials for the NTE
materials ScF3 and CaZrFg to predict equations of state from
direct MD simulations. These ML potentials allow for ef-
ficient MD simulations of large supercells, and additionally
enable path integral molecular dynamics (PIMD) simulations
that explicitly incorporate NQE.

In this work, we train NN potentials to a training set of
DFT energy, force, and stress tensor calculations for ScF3
and CaZrFg to enable direct MD prediction of the equations
of state. We compare predictions for CTE, atomic displace-
ment parameters, the bulk modulus, and additional equation
of state data against both experiment and prior theoretical pre-
dictions. Utilizing PIMD simulations, we additionally quan-
tify the contribution of NQE to the equations of state of these
materials over a wide temperature range. Overall, the pre-
dictions from our NN-driven, MD simulations are generally
in qualitative to semiquantitative agreement with experimen-
tal equation of state data. Our predictions underestimate the
extent of negative thermal expansion, even when NQE are
fully incorporated, and we speculate that this is likely due
to deficiencies in the underlying density functional (training
data). We find that NQE modulate the CTE by 30-60% at low
temperature (100 K) for both materials, which is qualitatively
consistent with findings from previous studies.*” A particu-
larly apparent discrepancy of our simulations is the missing
pressure-induced softening effect for cubic ScF3 which is ob-
served experimentally.>> Overall our study demonstrates both
the utility and limitations of MD simulations utilizing NNs
with underlying DFT-accuracy for equation of state predic-
tions of NTE materials.

II. METHODS:

A. Training Set Generation and Model Training

We first describe our procedure for constructing a training
dataset of DFT energies, forces and stress tensors for ScF3
and CaZrF¢. The training sets for both crystals were gener-
ated from ab initio geometry optimizations and AIMD sim-
ulations using the Quantum ESPRESSO package.” We used
the Atomic Simulation Environment (ASE) package®® to gen-
erate a 4 x 4 x 4 supercell for ScF3 and a 2 x 2 x 2 supercell
for CaZrF¢ from the cubic (primitive) unit cells obtained from
the Materials Project.! The PBE density functional and PAW
pseudopotentials were used for all calculations,!8 with I'-

point sampling of the band structure in all cases. Suitable val-
ues for the plane wave cutoffs (kinetic energy/density) were
determined from convergence tests of the stress tensor (which
is typically harder to converge than energy/forces). These
convergence tests are shown in Figures S1 and S2, and the
final cutoff values employed were 180 Ry/ 1152 Ry for the
kinetic energy/density for ScF3z and 200 Ry/1200 Ry for the
kinetic energy/density for CaZrFg.

AIMD simulations were conducted for both materials over
a range of temperatures and pressures to generate training
data. For ScFs3, we ran numerous ~1 ps NPT simulations
of the 4 x 4 x 4 supercell over a temperature range of 300
to 1600K and a pressure range of 0 to 800 MPa.®® The
timestep was set to 20 atomic units (approximately 1 fs). The
Parrinello-Rahman method was used for pressure-coupling,
with the fictitious mass set to the default value in Quantum
ESPRESSO, and velocity rescaling was used for the thermo-
stat. The velocities were rescaled every 5 timesteps. This
resulted in a training set of energies, forces, and stress ten-
sors for approximately 8500 ScF3 cubic-phase structures of
different coordinates and lattice parameters. We additionally
generated training data for the rhombohedral phase of ScF3
to explore how the inclusion of this training data altered the
NN predictions (vide infra). We thus ran additional AIMD
simulations for a 2 x 2 x 2 supercell of the rhombohedral con-
ventional unit cell structure at 300 K and pressures ranging
between 0-1000 MPa (the unit cell was obtained from the Ma-
terials Project!). This added training data for approximately
1200 ScF; rhombohedral structures of different coordinates
and lattice parameters. For CaZrFg, training data was gener-
ated for the cubic phase only. AIMD simulations of 2 x 2 x 2
CaZrFg supercells were run over a temperature range of 300 -
1400 K and a pressure range of 0 - 500 MPa. This resulted in a
training set of energies, forces, and stress tensors for approxi-
mately 6000 CaZrF¢ cubic structures of different coordinates
and lattice parameters.

The DeepMD architecture was utilized for the NN
potentials,g‘*’85 and was trained to the energies, forces, and
stress tensors comprising the training data for each mate-
rial. Within the DeepMD architecture, an initial descriptor
network converts the local environment of each atom into
a set of embeddings that obey translational, rotational and
permutational invariance, and a second network utilizes this
embedding to predict the energy, forces, and virial of the
system.3* DeepMD’s ‘se_2_a’ descriptor was used for the em-
bedding network, which incorporates both radial and angular
information.%¢ Separate neural networks were trained for both
ScF3 and CaZrF¢. The descriptor deep neural network was
made up of three hidden layers using 25, 50 and 100 neurons.
Neighbors within 8 A were included in the local environment
for each atom. For ScFj3, the fitting net consisted of three hid-
den layers with 240 neurons each; for CaZrFg, the fitting net
was reduced to 40 neurons each in order to balance accuracy
and computational cost. A multi-target loss function balanc-
ing energy, force and stress loss between the reference data
and the neural network was used in order to fit all three proper-
ties (see Wang er al. 3% and the Supplementary Material). We
benchmarked the choice in weights used for each term in the
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loss function to ensure our results were relatively insensitive;
this is also included in the Supplementary Material. The initial
learning rate for both neural networks was set to 1 x 1073 and
ended at 3.5 x 1078, with 5000 decay steps. A 80:20 split was
used to construct a training and validation set from the total
dataset; the test set was assembled from classical MD simu-
lations using the final neural networks (the settings used for
the simulations are described in the next section). Each model
was trained for 10° steps for training and validation. The in-
put files with all hyperparameters used to build the DeepMD
models are included in the Supplementary Material.

Neural network potentials may become unstable during
simulations, since spurious forces will be predicted if the sys-
tem drifts far outside of the configuration space included in
the training set.%” Our initial AIMD simulations were of only
1 ps in length, which does not allow for sufficiently exploring
all regions of phase space of interest in this work. We ob-
served that the initially trained neural networks for both ma-
terials were unstable for high temperature (>1000 K) classi-
cal MD simulations after ~ 10 ps. To fix this initial insta-
bility, we added additional training data consisting of Quan-
tum ESPRESSO computed energies, forces, and stress tensors
for structures taken from the NN simulation snapshots. The
DeepMD NN potential was then re-trained to the expanded
training set. This procedure was done iteratively until there
were no observed instabilities while running MD with the NN
potentials. In total, additional training data for approximately
1000 structures was added to the original training set for both
materials within this iterative procedure. The NN simulation
procedure is described in the next section (see the classical
simulation details).

The final NN potentials were then tested as follows. MD
simulations using these NN potentials were performed over
a temperature range of 300 - 1000K and a pressure range of
0 to 300 MPa. A 4 x 4 x 4 supercell was used for the ScF3
simulations and a 2 x 2 x 2 supercell was used for the CaZrF¢
simulations. Quantum ESPRESSO was used to compute the
DFT energy, forces, and stress tensor for approximately 300
snapshots from these simulations. A comparison of the pre-
dicted neural network energy vs. DFT energy and forces on
the test set for both materials is shown in Figures S4 and S5 of
the Supplementary Material. For ScF3, the energy mean abso-
lute error (MAE) is 0.042 eV (0.1 meV/atom) and the forces
MAE is 0.02 eV/A; to test the accuracy of the stress tensor,
we computed the internal pressure from the stress tensor from
both DFT and the neural network. The MAE is 6.6 x 1073
eV/A3 (approximately 10 MPa). For CaZrFg, the energy MAE
is slightly worse at 0.18 eV (0.7 meV/atom); however, as can
be seen in Figure S4, there is little scatter in the predicted en-
ergies. The forces MAE is 0.033 eV/A and the pressure MAE
is 7.2 x 107 eV/A3 (approximately 11 MPa).

B. Neural Network-Driven, Molecular Dynamics Simulations

We perform MD simulations with the final NN potentials
to predict equations of state for the ScF3; and CaZrFg ma-
terials. Both classical MD and path integral PIMD simula-

tions were run in order to examine the impact of NQE; we
explicitly denote which predictions correspond to each simu-
lation type when discussing the results. All simulations were
conducted using ASE with the DeepMD calculator.3%-84 The
DeepMD architecture allows for simulations of supercells of
arbitrary size, since the total energy of the system is repre-
sented as a sum of atomic energies. The majority of our cal-
culations were performed on 5 x 5 x 5 supercells of ScF3 and
3 x 3 x 3 supercells of CaZrFg (both in the cubic phase). As
noted by Dove and Fang*?, simulations of ScF3 with an odd
number of unit cells will not entirely capture phonons asso-
ciated with tilt modes along the M-R branch, which may be
important to include. However, we have verified that predic-
tions from our chosen supercells are largely converged with
respect to system size, and choice of odd/even number of unit
cells. In Figure S8, simulation predictions of larger supercells
6 x 6 x6and 7 x 7 x 7 for ScF; indicate that predictions from
the smaller/odd numbered 5 x 5 x 5 ScF3 supercell are largely
converged. Similarly, in Figure S15, simulation predictions
of the larger (and even numbered) 4 x 4 x 4 CaZrFg super-
cell are very close to the predictions from the smaller (and
odd numbered) 3 x 3 x 3 CaZrF¢ supercell. Another factor
for our specific choice of supercells (5 x 5 x 5 supercell for
ScF3 and 3 x 3 x 3 supercell for CaZrFg ) is based on pre-
liminary simulations that employed a neural network trained
to a dispersion-corrected density function; these preliminary
predictions are shown in Figure S17, and show dramatic in-
stabilities for systems of even numbered unit cells. This is
discussed in more detail in Section III.

For computing the coefficient of thermal expansion (o), a
series of simulations were run in the NPT ensemble using the
isotropic Berendsen barostat.®® A Berendsen thermostat was
used for the temperature coupling. The simulations were run
for ~ 4 - 5 ns at a pressure of 0 MPa and temperatures rang-
ing from 100 - 1200 K. We benchmark a different thermo-
stat/barostat choice in the Supplementary Material Figure S6
using the i-Pi package (Langevin thermostat/Bussi-Zykova-
Parrinello barostat);89 we observe converged results with our
predictions. A time step of 1.0 femtosecond was used with
a barostat time constant of 1.0 ps and a thermostat coupling
constant of 1.0 ps. NPT simulations were conducted to com-
pute pressure vs. volume curves for ScF3, starting from the
5 x5 x 5 cubic supercell geometry. These simulations were
run in the i-Pi package interfaced with ASE. Each simulation
was run for 1 - 2 ns and performed over a pressure range of 0
to 500 MPa and temperature range of 55 to 240 K. A Langevin
thermostat was used along with the MTK barostat.”® A time
constant of 1 ps was used for both the thermostat and barostat,
and the time step was set to 1.0 fs.

Similar NPT simulations were run for CaZrFg. Three main
sets of properties were calculated for CaZrFg. Thermal expan-
sion was investigated between 100 and 1000 K at 0 MPa, sim-
ilar to the ScF3 simulations. Then, volume vs. pressure curves
were obtained from a set of simulations run at a temperature
of 290 K and pressures from O to 300 MPa. Finally, the bulk
modulus of CaZrFg was computed over a temperature range
of 300 to 500 K. A set of three simulations from 0 to 200 MPa
was performed for each temperature. A linear fit to the aver-
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age volume vs. pressure data from these simulations was used
to compute the bulk modulus at each temperature. All CaZrFq
simulations were run for ~ 1-2 ns. The Berendsen barostat
with a 1.0 ps time constant was used for all simulations.

The i-Pi software package interfaced with ASE was utilized
to run the path integral MD simulations.”? Isotropic path
integral NPT simulations were run for both systems. Simula-
tions were run over a temperature range of 100 - 1200 K for
cubic ScF3 and a temperature range of 100 - 1000 K for cubic
CaZrFg, and the pressure was fixed to 0 MPa. A smaller time
step of 0.5 fs was used here. The barostat implementation de-
tails can be found in Bussi, Zykova-Timan, and Parrinello %
and Ceriotti, More, and Manolopoulos91 A time constant of
0.2 ps was used for the barostat. A standard Langevin thermo-
stat was used for temperature coupling, with a time constant
of 0.2 ps. Depending on temperature, between 5 to 15 beads
were utilized for the path integral simulations of both ScF3
and CaZrFg(with greater number of beads used for lower tem-
peratures). Convergence tests of the lattice parameter with
respect to number of beads are shown in Figure S9 and S16.
Each PIMD simulation was run for 300-500 ps.

We briefly comment on the computational cost of our neural
network vs. Born-Oppenheimer MD simulations performed
with Quantum ESPRESSO. For example, 10 time steps of
NPT simulation of the 4 x 4 x 4 ScF3 supercell with Quantum
ESPRESSO on 96 cores (4 Dual Intel Xeon Gold 6226 pro-
cessors) took 14,667 seconds (4 hours 4 minutes 27 seconds).
With the neural network on a NVIDIA Tesla v100 GPU, a 10
time step simulation takes 1.86 seconds, which is about a 4 or-
ders of magnitude difference in simulation time, demonstrat-
ing the utility of the approach for simulating larger crystals.

Ill. RESULTS:

Our initial target is to investigate the extent to which the
NN-driven MD simulations accurately predict the CTE for
both ScF3 and CaZrFg. Because the NN potentials exhibit es-
sentially DFT-level accuracy (Section IT A), our results should
be interpreted as the accuracy to which the underlying density
functional (PBE) describes the material properties.. In Figure
1, we plot the predicted thermal expansion behavior for ScF3
and CaZrFg as computed from both classical MD (labeled as
“NN”) and PIMD simulations (labeled as “PI NN”) utilizing
the NN potentials. We plot both the temperature-dependent
reduced lattice constant (a/ag) and linear coefficient of ther-
mal expansion: CTE = %3—;; these are plotted in Figure 1a and
1b for ScF; and Figure 1c and 1d for CaZrFg. In all cases,
we plot corresponding experimental data and prior theoret-
ical/computational predictions for comparison, where avail-
able. The curves are third order polynomials fit to the data
points, with ag taken as the extrapolated OK value for a from
the fitted polynomial for each set of data.

Inspection of Figure 1 indicates that the NN simulations
indeed predict NTE for both systems, in qualitative agree-
ment with experiment. Furthermore, the simulations correctly
predict the experimental trend that the CTE is more nega-
tive for CaZrFg than ScF3. Experimentally, the CTE values

are ook, = —18 ppm/K for CaZrFg and oqoox,, = —14
ppm/K for ScF3 at 100 K. For comparison, the classical MD
(“NN”) simulations predict a CTE of ook, = —9.8 ppm/K
for CaZrFe and ook, = —4.3 ppm/K for ScF3 at 100 K. In-
corporation of NQE within the PIMD simulations (“PI NN”)
brings the CTE values into closer agreement with experiment,
with these simulations predicting ojooxz = —14.3 ppm/K
for CaZrFg¢ and aioox,. = —8.7 ppm/K for ScF; at 100 K.
Thus NQE lower the CTE by ~ 30-60% at 100 K, while
the influence of NQE diminishes at higher temperatures and
largely disappears by temperatures of 700 K to 800 K. Over-
all, these results indicate that the MD simulations driven by
DFT-trained NNs predict NTE behavior of ScF3 and CaZrFq
in semiquantitative to qualitative agreement with experiment.

Our CTE predictions for CaZrFg are comparatively better
than for ScF3 in that there is closer quantitative agreement
with experiment. For CaZrFg the predicted CTE at 100 K is
within a factor of 1.3 of the experimental value when incor-
porating NQE with the PIMD simulations (and a factor of 1.8
without NQE). There is no obvious reason for why the pre-
dictions for CaZrFg agree somewhat better with experiment
compared to the predictions for ScF; (although as discussed
later, the pressure-induced softening effect for ScFj; is also not
reproduced by our simulations). The influence of NQE on the
CTE is consistent with the trend expected from analysis of the
phonon spectrum. For both CaZrFg and ScF3 materials, low
frequency phonon modes exhibit negative Griineisen param-
eters associated with NTE, while higher frequency phonons
exhibit positive Griineisen parameters.’>%3 A classical treat-
ment will incorrectly assign energy equipartition to these high
frequency modes and overpredict their contribution to (posi-
tive) thermal expansion at low temperatures.** Further incon-
sistencies of our simulation predictions with the experimental
NTE behavior are predicted transitions from negative to posi-
tive thermal expansion at lower temperatures than those exper-
imentally measured. As seen in Figure 1, our simulations for
ScF3 predict positive thermal expansion above temperatures
of 600 K/700 K for MD/PIMD respectively, while the exper-
imental crossover temperature is near 1100 K. For CaZrFg,
a similar effect is observed, with the transition occurring at
900 K in both the classical MD and PIMD predictions, while
solely NTE is experimentally observed over the full charac-
terized temperature range.

We discuss possible reasons for the quantitative discrepan-
cies between our thermal expansion predictions and the exper-
imental data. Important considerations for ab initio equation
of state prediction for these materials include: 1) phonon an-
harmonicity; 2) NQE; 3) finite-size effects; and 4) accuracy of
the underlying density functional. Regarding 1), predictions
from MD simulations explicitly incorporate full anharmonic-
ity of phonon modes, in contrast to theoretical free energy
models (vide infra). For 2), we have explicitly evaluated the
influence of NQE, and NQE do not account for the remain-
ing discrepancy with experiment; Figures S9 and S16 show
that NQE are largely converged with respect to the number
of beads used in the PIMD simulations. Regarding 3) finite-
size effects, we have tested convergence of our predictions
with respect to simulated supercell size. Figures S8 and S15
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show that CTE predictions for ScF; and CaZrFg with our sim-
ulation systems are converged with respect to supercell size.
The remaining consideration is the accuracy of the underly-
ing density functional, which is PBE in this study. In this
regard, our predictions for ScF3 thermal expansion are sim-
ilar to the AIMD results from Bocharov et al.*® that utilize
the PBEsol functional (Figure S10), although predictions with
PBEsol show a higher temperature for transition from negative
to positive thermal expansion, in better agreement with exper-
iment. Dispersion corrected functionals would potentially be
expected to yield better physical predictions. In fact, these
were the initial functionals chosen for this study, but our ini-
tial NN models trained to dispersion corrected functionals all
proved to exhibit dramatic instabilities when utilized in MD
simulations (see Supplementary Material); similar issues have

been noted before.®* An interesting direction for future work
would be to examine an improved treatment of electron corre-
lation through methods such as the random-phase approxima-
tion (RPA),”*%® which may be achieved by either completely
rebuilding the neural network/training set or possibly through
a transfer learning procedure.”’

Despite the quantitative errors, our NN-driven MD simu-
lations represent the “state-of-the-art” in ab initio, equation
of state predictions for ScF3 and CaZrFg. Figure 1b com-
pares alternative theoretical predictions for the CTE of ScF;.
Specifically, we compare to predictions from the SCP and ISC
phonon theories from Oba er al.**. The SCP theory goes
beyond the quasiharmonic approximation (QHA) by incorpo-
rating quartic anharmonicity, and the ISC incorporates cubic
anharmonicity. The predictions of SCP and ISC theories are
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based on quantum mechanical free energy functions, and thus
explicitly take into account NQEs.** Furthermore classical
limits can be derived within the SCP framework, and we label
such results from Oba et al.* as “Classical SCP” in Figure
1b. As indicated in Figure 1b, the shape of the classical SCP
CTE curve looks similar to our classical MD and PIMD re-
sults; however the predictions exhibit significant quantitative
deviation from experiment as they display essentially no NTE
over the reported temperature range. Comparing the classical
and quantum SCP results indicates a very similar contribution
of NQEs as predicted by our classical MD/PIMD simulations.
Of the theoretical models, the ISC predictions exhibit the best
quantitative agreement with experiment, and show a similar
temperature-dependent trend for CTE as compared to experi-
ment. Overall, the ISC predictions and our “PI NN predic-
tions for CTE exhibit similar quantitative accuracy as com-
pared to experiment. This indicates that including cubic and
quartic anharmonicity within the ISC theory provides similar
predictive accuracy as PIMD simulations for ScF; and similar
materials. The methods should be viewed as complementary;
PIMD provides a straightforward approach for property pre-
dictions utilizing standard DFT machinery (energy, forces and
stress tensor), while the ISC phonon theory provides enhanced
physical understanding of anharmonicity contributions to the
equation of state behavior.*

We next compare atomic displacement parameters (ADPs),
which measure the mean-square displacement of an atom
from its crystal lattice position.”® There are six unique com-
ponents to the anisotropic atomic displacement tensor (three
diagonal and three off-diagonal).”® The mean-square displace-
ment of each atom is straightforward to compute from simu-
lations, e.g. Uy, = (u2 ), where u is an instantaneous atomic
displacement from its mean position and x is a Cartesian co-
ordinate. These can be compared to corresponding experi-
mental values as measured by neutron or X-ray diffraction.”®
Within the ScF3 crystal lattice, the Sc atoms undergo isotropic
displacement, U, = Uj; = Usy = Usz;?? for F atoms, the
displacement parameters corresponding to transverse motion
(Uy1 = Uyy) are different from the displacement parameter
corresponding to longitudinal motion (Uz3). In Figure 2, we
compare the atomic displacement parameters for ScF; as pre-
dicted by our simulations to experimental values.'® We first
focus on the scandium atoms (Figure 2a). At low temper-
atures, the agreement between simulation and experiment is
quite good. At higher temperatures, the simulations predict
somewhat larger atomic displacement parameters for Sc than
what is observed in experiment. For the fluorine atoms (Fig-
ure 2b) there is very good agreement between the predicted
and experimental ADPs over the full temperature range. The
transverse Uj parameter for fluorine is much larger, with a
stronger temperature dependence compared to the longitudal
Us3 parameter. As discussed previously,?? this is the expected
behavior for the cubic crystal structure. We note that there
is no significant difference between the “NN” and “PI NN”
results for all predicted ADP values, indicating a negligible
influence of NQE.

The ADPs for CaZrFg, shown in Figure 3, display similarly
good agreement with experiment.? In this case, U, = Uy =

U,y = Uss for both Ca and Zr. The fluorine ADPs are similar
to those in ScF3, with two ADPs corresponding to transverse
motion and one ADP corresponding to longitudinal motion.
The fluorine ADPs within CaZrFg (Figure 3c) are somewhat
larger than the corresponding ADPs in ScFz(note the differ-
ent temperature scales of Figure 2 and Figure 3); this corre-
lates with the more substantial NTE in CaZrFg as compared to
ScF3. The agreement between the Ca and Zr ADPs in Figure
3a and b between simulation and experiment is good, although
there is some slight disagreement at 100 K for Ca (Figure 3a).
Analagous to ScF3 there is no significant difference between
the classical and path integral ADP predictions for CaZrFg,
indicating negligible influence of NQE.

We next discuss pressure-volume equation of state predic-
tions, as compared with experiment. ScFj is reported to un-
dergo pressure-induced softening, which is an anomalous phe-
nomenon that has been hypothesized to be driven by similar
phonon mechanisms as NTE.??> The Birch-Murnaghan equa-
tion of state provides information about the extent of pressure-
induced softening observed over a given region of the phase
diagram. The third-order Birch-Murnagahn equation of state
is given by:

_3Bo Yoy1s_ Voysys 38 —ay oy
PV) =2 = (7 (145 (B = 4)[(5)) (11})}

There are three fitted quantities in Equation 1: By is the
value of the bulk modulus at zero pressure, Vj is the value of
the volume at zero pressure and B’ is the first derivative of
the bulk modulus with respect to pressure. A negative value
of B’ indicates pressure-induced softening. Figure 4a shows
the pressure-volume curves from experiment,?? and Figure 4b
shows our simulation predictions for the cubic phase of ScFs.
Each data set was subsequently fit to Equation 1, with the fits
corresponding to solid lines in Figure 4 and the fitted parame-
ters By and B’ plotted in Figure 5. Note that here we only show
predictions from classical MD, as we observed little change in
the results with PIMD.

We first discuss the predictions from our simulations of
the ScF; cubic phase. As seen in Figure 4b, the Birch-
Murnaghan equation of state fits our simulation data well;
we show the same results plotted with the 0 K DFT result
in Figure S14. The fitted By values from the equation of
state, shown in Figure 5, fall within the range of those fit
to the experimental data. The simulation predicted volumes
are approximately 3% smaller than the corresponding exper-
imental volumes, which is largely due to errors in DFT pre-
dicted bond lengths. However, there are other non-trivial dif-
ferences between our simulation curves and the experimental
curves. The experimental P-V curves (Figure 4a) display a
significant curvature at higher pressure, corresponding to the
reported pressure-induced softening effect.?> The pressure-
induced softening observed experimentally is most apparent
for the low temperature data. In contrast, there are no sig-
natures of pressure-induced softening in our simulations of
cubic phase ScF3. As shown in Figure 4b, the simulated P-V
curves all exhibit a close to linear relationship between pres-
sure and volume, even at lower temperatures. This is reflected
in the value of B’ plotted in Figure 5b, in which simulation
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values are all close to 0, reflecting no pressure-induced soft-
ening; in contrast, the experimental values are all significantly
negative. The high pressure bound of the experimental P-V
data in Figure 4a corresponds to a phase transition of ScF3
from the cubic to rhombohedral phase.'. It has thus been hy-
pothesized that the pressure-induced softening effect is related
to the proximity to this phase transition, and/or local fluctua-
tions involving ScFg octahedral rotations that resemble mo-
tifs of the rhombohedral phase.”> We thus speculated that the
reason simulated P-V curves do not display pressure-induced
softening was because the NN was trained solely to ScF3 cu-
bic phase data, and does not “extrapolate” to such structural
motifs. We hypothesized that by adding rhombohedral phase
structures to the NN training set, the NN would “learn” about
such rhombohedral-like, local ScF¢ octahedral rotations, pos-
sibly improving agreement with experiment. However, this
hypothesis turned out to be false (at least in terms of im-
proving agreement with experiment). Upon adding significant

training data encompassing rhombohedral structures, and re-
training the neural network, the simulation predictions were
essentially unchanged (Figure S12 and S13).

At this point, we can only speculate on the discrepancy
with experiment. The simulations of the ScF; cubic phase
may not be capturing local fluctuations involving ScFg oc-
tahedral rotations that resemble motifs of the rhombohedral
phase, and are an important mechanism for pressure induced
softening. Of course, the (unknown) phase diagram of the
DFT Hamiltonian is likely quantitatively different than the
physical/experimental phase diagram of ScFs. If indeed the
pressure-induced softening is related to close proximity to
the phase-transition, then any discrepancy between DFT and
experimental phase behavior would affect predictions of this
phenomena. For example, if the cubic to rhombohedral tran-
sition occurred at much higher pressures on the DFT phase
diagram, then the simulated pressures in Figure 4b may be rel-
atively far from the phase-transition, possibly explaining the
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lack of pressure-induced softening. This is entirely specula-
tive, and would require characterization of the DFT-predicted
phase behavior; however, such free energy calculations are be-
yond the scope of the present work. We note that previous MD
simulations utilizing simple bond/angle potentials have pre-
dicted pressure-induced softening, in good qualitative agree-
ment with experiment.”? However, the CTE predicted by these
simulations were in large quantitative error, in contrast to our
present ab initio predictions.

We next discuss equation of state and bulk modulus predic-
tions for CaZrFg. In Figure 6, we show experimental volume
vs. pressure data for CaZrFg at 290 K from Hester ef al. 34
as well as our corresponding predictions from the NN-driven

MD simulations (only classical MD results are shown, as
NQE are minor here). There is very good agreement in the
P-V trend as predicted by simulation compared to experiment.
The absolute unitcell volumes from the NN simulations differ
from the experimental values by about 3%, again due to corre-
sponding error in DFT predicted bond lengths. Additionally, it
is seen that there is essentially no pressure-induced softening
for CaZrFg over this temperature/pressure range. In Figure
7, we compare simulation predictions of CaZrFg bulk modu-
lus to experimental data over a wide temperature range.>> At
STP, the predicted bulk modulus is 39 GPa, which is in ex-
cellent agreement with the experimental value of ~ 37 GPa.
The experimental bulk modulus indicates some thermal soft-
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ening at higher temperatures, and our NN predictions follow a
similar trend. Overall, the simulation predictions are in good
agreement with experiment over the full temperature range.

IV. CONCLUSION

We have demonstrated the accuracy attainable with DFT-
trained NN for predicting equation of state properties of the
materials ScF; and CaZrFg. Our benchmarks have covered
a representative set of properties for these systems, includ-
ing the coefficient of thermal expansion, atomic displace-
ment parameters, equations of state and the bulk modulus.
Our NN-driven, MD simulation predictions largely follow the
experimentally-observed trends. The advantage of the NN po-

tentials is that their development/parameterization is straight-
forward utilizing modern software libraries,$*%> and sufficient
training data is generated from relatively short AIMD simu-
lations. The enhanced computational efficiency of the NNs
enable longer simulations of larger supercells compared to
AIMD, and additionally allow application of path integral ap-
proaches for incorporating NQE.

Despite the state-of-the-art computational approach, we do
not achieve the goal of quantitative accuracy in the equation of
state predictions across the full temperature/pressure regime.
In general, the NN-driven MD predictions agree better with
experiment for pressure-volume properties such as the bulk
modulus in comparison to CTE, although we are unable to
reproduce the pressure-induced softening effect in ScF;. We
have quantified the significant contribution of NQE to NTE at
low temperatures; in general, classical simulations underpre-
dict NQE in ScF3; and CaZrFg at low temperature due to un-
physical equipartition in high-frequency phonon modes with
positive Griineisen parameters. The NN potentials correctly
predict that CaZrF¢ undergoes NTE to a greater extent than
ScF3, and overall the predictions exhibit semiquantitative to
qualitative agreement with experiment. However, even with
PIMD, the CTE is underestimated in magnitude in compar-
ison to the experimental values, showing that there is other
missing physics. In addition, the predicted turnover from neg-
ative to positive thermal expansion occurs at too low a tem-
perature for both materials. To improve the predictions, it
is likely necessary to go beyond the GGA density functional
description of electron correlation, e.g. utilizing more accu-
rate RPA or many-body methods.” An interesting direction
for future work would be to compare predictions from a NN
potential trained to a database generated from a higher-level
of ab initio theory, such as RPA, to investigate whether bet-
ter agreement with experiment could be attained. This may be
most easily achieved through “transfer learning” of the present
NN potentials to higher accuracy training data.”’ A similar
procedure has been shown to work well for material property
prediction. 100101

Our approach has utility for further study of NTE materials,
despite the noted deficiencies in quantitative predictions. Con-
cerning future outlook, our workflow based on NN potentials
provides the opportunity to investigate new materials for pro-
nounced NTE. The results here show that trends in NTE be-
tween different compounds are correctly predicted, although
this will require further testing and validation. A database of
the results and structures from these NN simulations would
help identify and analyze the important features necessary for
strong NTE, which could also guide experiment. Additionally,
it is possible to extend our simulations in order to incorpo-
rate defects or impurities into the framework, which has been
done experimentally in order to tune NTE behavior.?>27-35-38
Through these efforts, we anticipate that NN-driven, MD sim-
ulations will continue to play an increasingly important role
in “first-principles” materials property predictions.
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V. SUPPLEMENTARY MATERIAL

See the Supplementary Material for benchmarks for the ki-
netic energy cutoff used in the DFT calculations vs. inter-
nal pressure, a description of the loss function used, bench-
marks for the neural network predicted energies and forces
vs. DFT, benchmarks for the barostat used in this paper vs.
other barostats, the ScF; NTE curves calculated with differ-
ent supercell sizes, a comparison of the ScF3 NTE curve vs.
AIMD results, ScFj3 lattice constant values for classical vs
path integral MD, ScF3 pressure-volume equations of state,
CaZrFg NTE curves from simulations of different supercell
sizes, CaZrFg lattice constant values for classical vs. path in-
tegral MD and ScF3; NN results for various properties when
trained with various dispersion corrections. The input files
with all hyperparameters used to build the DeepMD models
are included as download “deepmd_train_files.zip”. Addi-
tionally, all numerical data for manuscript figures are included
as download “figures_data.zip”.
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