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Abstract

Advances in nanosatellite technology and low launch costs
have led to more Earth-observation satellites in low-Earth
orbit. Prior work shows that satellite images are useful for
geospatial analysis applications (e.g., ship detection, lake
monitoring, and oil tank volume estimation). To maximize
its value, a satellite constellation should achieve high cover-
age and provide high-resolution images of the targets. Exist-
ing homogeneous constellation designs cannot meet both
requirements: a constellation with low-resolution cameras
provides high coverage but only delivers low-resolution im-
ages; a constellation with high-resolution cameras images
smaller geographic areas. We develop EAGLEEYE, a novel
mixed-resolution, leader-follower constellation design. The
leader satellite has a low-resolution, high-coverage camera
to detect targets with onboard image processing. The fol-
lower satellite(s), equipped with a high-resolution camera,
receive commands from the leader and take high-resolution
images of the targets. The leader must consider actuation
time constraints when scheduling follower target acquisi-
tions. Additionally, the leader must complete both target
detection and follower scheduling in a limited time. We pro-
pose an ILP-based algorithm to schedule follower satellite
target acquisition, based on positions identified by a leader
satellite. We evaluate on four datasets and show that EAGLE-
EYE achieves 11-194% more coverage compared to existing
solutions.
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1 Introduction

The emergence of small, cheap nanosatellites — e.g., chipsats,
pocketqubes, and cubesats [31, 46, 54, 64] — and the matu-
ration of commercial space launch services [34] bring space
within reach for a wide range of valuable, new space-based
cyberphysical systems applications. These applications lever-
age the unique vantage point of a low-Earth orbit (LEO) satel-
lite to capture spectral (i.e., visual, infrared) sensor data that
are inaccessible on Earth. Low-cost, high-cadence launches
allow the deployment of constellations: groups of satellites
that work together to implement an application. Applica-
tions transform this data into valuable insights, such as op-
timizing transport [20, 26], enhancing agriculture [59], and
supporting disaster relief efforts [36]. Applications typically
sense a target area on Earth and process the sensor data us-
ing machine learning. Historically, all computation happens
on Earth. Data centers process information downlinked by
satellites that were individually and manually tasked with
capturing and downlinking particular observations. This
outdated operational model is a fundamental barrier to in-
creasing the capability of future satellite systems, posing
physical limitations and limiting operational autonomy.

LEO nanosatellites are limited by physical and operational
constraints. Satellites are physically limited by the low com-
munication bandwidth to the ground and the limited energy.
LEO satellites are also constrained in their acquisition of
sensor data. Applications want sensor coverage in large ge-
ographic areas to maximize the reach of their applications.
Applications also want high-resolution data to maximize the
quality of data delivered to analysts. Satellite cameras meet
only one of these constraints: wide-area sensors capture low-
resolution data (e.g., 100km per pixel) and high-resolution
sensors capture data with a narrow-area view (e.g., a few
square kilometers per image). These constraints present an
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(a) An EAGLEEYE mixed-resolution leader-follower constellation.
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(b) Across four applications, existing solutions fail to achieve either
high coverage (90% coverage) or high resolution at a reasonable con-
stellation size, while EAGLEEYE achieves all. Note that a “Low-Res
Only” constellation does not deliver high-resolution data.

Figure 1. The EAGLEEYE system model and its benefits.

unsatisfying design choice for satellite application develop-
ers, forcing them to choose coverage or resolution, but not
both. Today’s satellite constellations are also limited by a lack
of autonomy and are relying on manual tasking. A human
operator identifies the targets and sends pointing commands.
The inability to detect and prioritize tasks precludes dynamic
and reactive applications.

Getting the human out of the loop and autonomously, dynam-
ically identifying sensing targets from orbit is challenging.
An autonomous constellation of satellites must detect targets
using orbital edge computing [28-30]. Onboard computing
requires careful system design balancing energy consump-
tion with computational capability to avoid being bottle-
necked by compute or energy collection time. Second, satel-
lites in the constellation must collectively identify events
of sufficient interest with low time and energy overhead.
Today’s constellations operate with little or no autonomy
making collective decision-making about points of interest
infeasible. Third, after identifying interesting events, satel-
lites in the constellation must plan actuation actions to point
their sensors at targets.

We develop EAGLEEYE, a new nanosatellite constellation oper-
ating model that enables capturing high-resolution data with
high spatial coverage and a high degree of autonomy. The goal
of EAGLEEYE is to identify points of interest with high cover-
age and to sense those points of interest with high resolution.
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EAGLEEYE organizes a constellation of satellites into a mixed-
resolution, leader-follower as Fig. 1a illustrates. In the leader-
follower model, a low-resolution, high-coverage leader satel-
lite identifies points of interest by continuously processing
each image using orbital edge computing [28, 30]. A co-
orbital follower satellite trails the leader by a small distance
and points its high-resolution (but low-coverage) sensor at
the identified points of interest and captures them. EAGLEEYE
resolves the tension between sensor coverage and image res-
olution: instead of choosing between high coverage and high-
resolution, the leader-follower model provides both with lit-
tle increase in cost. Fig. 1b shows the impact of EAGLEEYE’s
design, with both high coverage and high-resolution with
far fewer satellites than existing high-resolution solutions.

The design of EAGLEEYE requires solving two main problems
in computational nanosatellite constellation design. The first
problem is designing a leader satellite that uses orbital edge
computing to identify targets in low-resolution data without
introducing a new time or energy bottleneck compared to
existing low-resolution systems. Moreover, the leader must
perform inference on low-resolution data with high precision
to avoid sending false sensing cues to followers. The second
problem is designing a constellation in which leaders and
followers collectively perform actuation-aware scheduling
to point and capture targets. Actuation-aware scheduling
is challenging because the leader must calculate a feasible
actuation plan for followers that covers targets on a pointing
trajectory. The scheduler must have a low overhead and
account for followers’ time and energy.

We develop and evaluate a prototype of a EAGLEEYE constel-
lation design. The system identifies targets using several ML
object detection models. The leader runs actuation-aware
scheduling for followers using a low-cost integer linear pro-
gramming (ILP) formulation that models pointing time. We
evaluate EAGLEEYE for several applications — airplane track-
ing, ship tracking, and lake algal bloom detection — using an
orbital edge computing simulator from prior work [30], and
four publicly available datasets. Our evaluation shows that
EAGLEEYE achieves high-coverage and high-resolution with
as much as 4.3X reduction in required constellations size.

To summarize, the main contributions of this work are:

o FEAGLEEYE, a new leader-follower mixed-resolution con-
tellation organization and operating model for compu-
tational nanosatellite constellations.

e Actuation-aware scheduling and target clustering, which
leverage onboard computing on low-resolution data to
coordinate satellites to point at targets autonomously to
capture high-resolution target data.

e An EAGLEEYE prototype implementation including an
ILP formulation of scheduling and several ML target
detectors.
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e A comprehensive evaluation showing that for four real-
world Earth observation tasks, EAGLEEYE improves cov-
erage and image resolution, while reducing constellation
cost and complexity.

2

We provide background on tasking in nanosatellite constel-
lations and highlight key shortcomings of today’s systems
in dynamically capturing geo-distributed targets with high
coverage and high resolution. We then quantitatively mo-
tivate EAGLEEYE by showing the promise of autonomous,
mixed-resolution, leader-follower constellations.

Background and Motivation

2.1 Achieving high-coverage, high-resolution
sensing with a satellite constellation

More launches to low Earth orbit and the decreasing costs
of nanosatellites foster a “new space race:” many satellite
constellations monitor the planet for a multitude of Earth-
observation tasks. Satellites collect Earth images for geospa-
tial analysis, such as environmental and ecological moni-
toring, meteorology, and agriculture. Use cases for Earth
observation abound. For example, images containing ships
could be used to detect illegal fishing [8, 16], oil spills and
bilge dumping [42, 50]. High-resolution images containing
lakes could help detect algae blooms [20, 52]. Images con-
taining oil storage tanks could be used to estimate total oil
reserve volumes [10].

A constellation is a collection of satellites that work to-
gether to support an application. The scope of this work
is nanosatellite constellations that have development and
launch costs that are orders of magnitude lower than larger,
“exquisite” [45] satellite designs. Designing a constellation
to support an Earth-observation application requires defin-
ing an organization and operating model. A constellation
organization entails defining the hardware and software
composition of each satellite, the number of satellites in the
constellation, and the mix of capabilities across a heteroge-
neous constellation. The operating model involves when and
how satellites sense and process Earth-observation signals,
and how satellites communicate with one another and with
internet-connected receivers in the “ground segment” The
organization also involves defining the orbit altitude and
inclination into which satellites deploy.

Constellation Organization. Nanosatellite constellations
provide a low-cost, low-complexity option for deploying
large numbers of satellites. A cubesat uses commercial, off-
the-shelf (e.g., Planet [23, 32], NASA [4]) components for
electronics and structure and has a small size (e.g., 10 cm
X 10cm X 10 cm for a “1U” cubesat) with masses around
1 — 10 kg. Cubesats often deploy to LEO. Several commercial
operators have deployed numerous LEO cubesat constella-
tions [12, 15]. LEO spans an altitude less than 2,000 km and
often around 400 — 700 km. Building and launching a cubesat
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Figure 2. A satellite’s ground track, swath width (meters), and
ground sample distance or GSD (meters/pixel).
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is relatively inexpensive, with a cost of tens of thousands
dollars [6]. The low cost of nanosatellites enables launching
constellations of tens or hundreds with a similar capability
while costing far less than monolithic satellites [45].

Satellite hardware includes several components. Satellites in-
clude an attitude determination and control system (ADACS)
with actuators (e.g., reaction wheels) to enable precise point-
ing at rates between 1 and 10 degrees per second. Onboard
imagers capture electromagnetic spectral data inclusive of
the visual domain and possibly other spectra, such as RF,
near-infrared (NIR), and short-wave infrared (SWIR). In this
work, we primarily assume visual spectrum data sensing,
the sensors for which are common and have low cost; Ea-
GLEEYE applies generally to arbitrary spectrum data. The
ground coverage area and ground sample distance or “GSD”
(meters per pixel) of an image produced by a sensor are
intrinsically defined by the camera system and the orbital
altitude. A fundamental tension between coverage and GSD
makes a key trade-off in constellation design at the heart
of EAGLEEYE. Existing LEO satellites with COTS imagers
capture images of Earth with GSD of tens of centimeters to
tens of kilometers per pixel. Fig. 2 illustrates the relationship
between a nanosatellite’s ground track, its camera’s swath
width, and its camera’s GSD. A GPS/GNSS receiver [40] pro-
vides Earth-relative position information, allowing a satellite
to perform precise geo-registration of captured sensor data.
Recent work [30] showed that it is possible to deploy com-
modity computing devices (such as the NVidia Jetson/Orin
mobile GPU) in a cubesat. High-performance computing
hardware equips a nanosatellite to run sophisticated com-
putations, such as image classification, object detection, and
pixel segmentation.

Operating Model. Today, a vast majority of satellites op-
erate with no autonomy. In this operating model, a human
operator sends commands to each satellite in the constel-
lation from a ground terminal. On receiving a command, a
satellite senses based on GPS coordinates, may process data
using orbital edge computing, and may transmit interesting
data to Earth.

Recent constellation research proposes on-orbit computing
to improve autonomy [28, 30]. In these operating models, a
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Figure 3. Oil Tank Volume Estimation Task

constellation aims to cover its complete ground track. Cover-
ing the ground track is challenging with high-resolution data
because an individual satellite may be unable to process an
entire high-resolution frame before observing the next frame.
Nanosatellite pipelining [30] covers the ground track by stat-
ically distributing the work among satellites and processing
frame data in parallel. Kodan [28] uses ML model specializa-
tion, frame tiling, and tile processing elision to reduce the
number of satellites required to cover a ground track (often
to one satellite). These operating models improve over the
command-oriented, human-in-the-loop model, but they do
not address heterogeneous camera constellations.

2.2 Requirements

A satellite constellation design needs to meet several require-
ments: high image resolution (i.e., low GSD), high revisit
rate (i.e., a small time interval between consecutive views of
the same location), high coverage (i.e., a constellation covers
a high fraction of earth area), and low cost (i.e., the total
satellite count and orbit count is reasonable). Many of these
design factors are coupled, and some are naturally negatively
correlated. They all influence the cost and feasibility of a
constellation deployment.

Data analytics have image resolution thresholds. Some
applications require high-resolution images to produce accu-
rate results. We characterize the impact of image resolution
with a visual oil volume estimation task [11, 61]. The task
consists of two stages: (1) detecting the oil tanks from the
images; (2) estimating oil volumes based on the shadow size
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Figure 4. Geospatial coverage and data quality are determined by
a satellite’s camera’s swath width and image resolution. Left: GSD
vs. Swath for nine real nanosatellite cameras. Right: Existing systems
cannot provide high coverage with high-resolution data.

on the tank lids. Fig. 3 shows the result of running the task
on image data at different GSD levels ranging from 0.7 to
11.5 m/px. The results show that the low-resolution image
is sufficient to correctly detect the oil tank, but does not
contain enough detail to accurately estimate the volume of
the oil tank. The key point is that higher resolution images
are needed for some applications.

Geo-distributed targets require high geospatial cov-
erage. An application’s sensing targets may be highly ge-
ographically distributed, and in motion (e.g., airplanes or
ships). To detect such targets, a fixed-size constellation’s
satellites’ sensors must capture images of large geographic
regions. With a fixed image sensor size (i.e., total sensed
pixel count) a larger area per image entails a larger geo-
graphic area per pixel, and higher resolution images cover a
smaller geographic area. Camera focal length and orbit alti-
tude largely determine these parameters and cameras that
can feasibly be deployed to space at low cost are restricted
to a single operating point. An operator must then choose:
high-resolution data or high-coverage?

We characterized this unsatisfying tradeoff between data
quality and coverage. Fig. 2 shows image GSD versus swath
(i.e., ground track width). A large swath operating point uses
a short focal length or high altitude to cover a larger area,
but at low resolution. A high resolution operating point uses
a long focal length or low altitude that captures low-GSD
(high-resolution) images, but only at a narrow swath. Fig. 4
(Left) contrasts several existing cubesat cameras (Planet [12],
Dragonfly [3], Simera Sense [13]). Fig. 4 (Right) shows the
fraction of targets that a constellation captures over a one-
day period using different camera swath-widths (we describe
our experimental setup in detail in §5.2). Using a large 100
km swath requires only 20 satellites to capture all targets,
although only at an unacceptably low resolution. Using a
small 10 km swath provides acceptably high-resolution im-
ages, but unfortunately, even 40 satellites capture only 41%
of the targets.

Constellation size defines total cost. The material cost
of a computational nanosatellite constellation scales directly
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with the satellite count. Satellite cost has several components.
Material cost for a nanosatellite is low, especially if equipped
with only COTS components (e.g., a COTS GPU is around
$2k). Launch costs are by far the largest cost associated with
a nanosatellite (e.g., around $50-100k for a 3U cubesat) and
must be amortized across many satellites. Moreover, launch
costs manifest as a non-linearity as cost varies with constel-
lation size: if the addition of a satellite requires an additional
launch, the cost of the second launch amortizes poorly unless
still more satellites are added. Operations costs are moderate
and scale with satellite count. The primary operation cost is
the ground station receiver operation cost, which is being
commoditized [1, 21], but still scales with constellation size
and data payload.

2.3 Existing Solutions

Tip and Cue. One existing solution uses a “tip and cue”
operating model [7, 18, 58], where satellites from different
missions with different cameras are used. This approach
utilizes a low-resolution camera satellite for target detection
and a high-resolution camera satellite for capturing high-
resolution images of the targets.

However, this solution has several limitations. First, it re-
quires operators from different missions (entities) to share
compute, communication, and sensing resources, posing
practical challenges with respect to economics and regu-
lations. Second, the satellites fly in different orbits, leading
to long delays (around 12 hours for one deployment [18])
between target identification and high-resolution imaging,
which prevents imaging moving targets (e.g., airplanes and
ships). Third, in our best reading of the somewhat scant de-
tails of these systems, they lack operational autonomy: the
target detection satellite sends images to Earth for process-
ing, and the ground segment relays imaging commands to
the high-resolution satellite.

AB&B [27] solves the limitations by proposing a bi-satellite
cluster where two satellites (a low-resolution camera leader
satellite and a high-resolution camera follower satellite) fly
in the same orbit, with a separation of 100 s. This addresses
the challenges related to resource sharing and image cap-
ture delays. To achieve autonomous operation, it runs the
target identification and the high-resolution image capture
schedule on the leader satellite.

However, AB&B still has several limitations. First, they use
a custom branch-and-bound algorithm to schedule high-
resolution image capture, which exhibits a high runtime. As
shown in §6, AB&B takes more than 15 s to schedule just 19
targets. This leads to difficulties in meeting frame deadlines
and result in lower coverage. Second, they neglect satellite
energy constraints, whereas cubesats have very limited en-
ergy. Their scheduler’s extended runtime exacerbates the
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energy insufficiency concerns. Third, they only design a bi-
satellite cluster and evaluate the coverage over a 500 km X
2000 km area, without considering how the constellation size
affects the coverage in a larger area (e.g., the entire Earth
area is around 510 million km?). Fourth, they only consider a
single follower satellite. Although this suffices for some tar-
get densities, we show in §6 that multiple followers provide
higher coverage for a high target density.

3 Design Overview

EAGLEEYE is a new constellation organization and operat-
ing model that leverages orbital edge computing and con-
stellation design to provide high-coverage, high-resolution
data. The viability of EAGLEEYE hinges on the recent mat-
uration of orbital edge computing, effective crosslinking
between LEO nanosatellites, and robotics advances that sup-
port agile pointing. The key ideas in EAGLEEYE are (i) a
mixed-resolution leader-follower constellation organization,
(ii) actuation-aware scheduling for follower pointing, and
(iii) target clustering to increase coverage.

3.1 Mixed-Resolution Leader-Follower
Constellations

EAGLEEYE leverages a heterogeneous, mixed-resolution, leader-
follower constellation organization. Leader and follower satel-
lites contain different compute and sensing hardware. Fig. 1a
illustrates the EAGLEEYE constellation organization. A leader
satellite has a low-resolution imager and compute hardware
that enables processing low-resolution frames with high per-
formance. A follower satellite has a high-resolution imager
and may or may not include high-performance, computa-
tional hardware. Fig. 5 shows how EAGLEEYE constellations
differ from existing work, allocating satellites in a constella-
tion into heterogeneous leader-follower groups instead of
tasking them homogeneously. Leaders and followers have
radio equipment for cross-link [65, 66] and downlink com-
munication. All satellites have ADACS and GPS/GNSS for
precise pointing and attitude/orbit determination.

EAGLEEYE defines an operating model for a leader-follower
constellation. Operationally, a leader satellite images its en-
tire ground track, geo-registering each image with GPS coor-
dinates. The leader processes each image using a pretrained
ML model that identifies the targets in the image. A constel-
lation has one or more followers that collectively capture
high-resolution images of all targets identified by the leader.
The leader distributes the target imaging tasks to the follow-
ers. The leader first uses a crosslink to query the position
and attitude of each follower. The leader then computes an
actuation-aware schedule of image captures. The schedule is a
series of pointing and capture actions that a follower should
perform to image targets at high-resolution. The actuation-
aware schedule involves all followers and, when feasible,
covers all targets. The leader distributes to each follower its
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Figure 5. Configuration comparison of a 4-satellite constellation.

schedule of pointing and capture actions and each follower
executes the schedule, capturing and storing the data. Even-
tually, follower satellites may perform additional onboard
processing of the frames or may transmit the captured, high-
resolution frames to Earth for consumption by a downstream
application. The primary benefit of the EAGLEEYE operating
model is higher coverage at high resolution, because the
high-resolution followers focus their sensing on areas with
targets identified by the leader using low-resolution, high-
coverage data.

3.2 Challenges of Target Detection & Sensor
Scheduling

The goal of the constellation is to efficiently identify targets
without exceeding time or energy limits on the leader, and at
the same time maximize the number of targets captured by
followers. At a high level, the scheduling algorithm achieves
this goal by assigning a priority score to each target, based
on the confidence with which it was detected, as reported
in the output of the target identification ML model. The
scheduling’s optimization function is to maximize the sum of
priority scores of targets captured by followers in a schedule.
As for target detection by the leader, the targets must be large
enough for the leader’s low-resolution camera to observe.

Challenge 1: Actuation-aware scheduling. The point-
ing and imaging schedule that the leader produces for each
follower must take into account the follower’s position, atti-
tude, and actuation constraints. For each target assigned to a
follower, there is a window of time during which that target
is available for imaging. The window is defined by the max-
imum “off-nadir” pointing angle, as shown in Fig. 6 (Left).
Once the satellite’s pointing angle exceeds this maximum
threshold, the captured images become excessively distorted,
rendering them unusable. Also, the schedule should consider
the pointing actuation time as shown in Fig. 6 (Right), which
limits the number of targets a follower can capture.

Challenge 2: Limited target detection and scheduling
time. Time and energy are the primary limiting factors in a
computational nanosatellite [30]. For full ground track cov-
erage, the leader must capture each completely new frame
that it observes, which implies a capture cadence of e.g., 15s
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Figure 6. Actuation-aware scheduling needs to consider: 1. (Left)
each target’s imaging time window, depending on each satellite’s
maximum off-nadir imaging angle Omax; 2. (Right) the actuation

time required to point between targets.

at 500km with a 100km swath. The leader has 15s to com-
plete target object detection and scheduling. Amplifying the
challenge, cubesats usually have limited computing power
in embedded CPUs and GPUs. Besides, cubesats get limited
energy through solar panel and a single solar panel could
only support the satellite computer to run for a portion of
its orbit.

While high-accuracy object detection within these time and
energy constraints is challenging, recent work [28] pro-
vides software solutions to reduce ML execution time in
an accuracy-aware manner. These advances make it possible
for EAGLEEYE to support actuation scheduling based on ML
detection results.

3.3 Problem Formulation

This section describes our optimization problem formulation
in more detail.

We consider that a leader identifies M targets in a low-
resolution image and schedules N follower satellites to cap-
ture the targets. The input contains all follower satellites’
initial locations, the camera pointing direction, and all tar-
gets’ locations.

Input : (sloc;(t = 0),sp;(t =0)) Vie{L2,...,N}

(tlocj, tvaly) Vje{12,...,M}
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Variable Description

NeN number of follower satellites

MeN number of targets

sloc;(t) € R3 | location of follower satellite i at time t

spi(t) € R3 pointing direction of follower satellite i at time t
tlocj € R? location of target j on Earth surface

tvalj € R value of target j

qi €N number of targets captured by follower satellite i
(e(ik)> t(ik)) | index & time of kth target capture of ith follower

Table 1. Variables used in Problem Formulation

The output is the schedule for all follower satellites

Output = S; = {(c(i1) 1)) - - - (C(ig)s Hign)) }

where each tuple is the target index (c(; 1) € {1,2,...,M}, Vk €
{1,2,...,¢;}) and the corresponding capture time.

The goal is to maximize the sum value of all captured targets

Goal : max Z tval,

ceHit

where Hit = UX,{c(i1).---,C(ign} is the index set of all
captured targets. The union operation is used to remove
duplicate targets.

There are three constraints. The first is the actuation con-
straint: for each follower satellite, the difference in the point-
ing angle between two consecutive captures should be less
than the maximum rotation angle in the time interval

C1: ||spi(tik-1)) = spi(tii)|l < MaxAng(t(x) — t(ik-1))

where ||sp;(t1) — spi(t2)]| calculates the difference between
two pointing angles, MaxAng(t) calculates the maximum
angle that a satellite can rotate in time interval t.

The second is the off-nadir angle (time window) constraint:
the off-nadir angle for each capture should be less than the
maximum off-nadir angle

C2 : OffNadir(sloc;(t(ix)), spi(t(ik))) < Omax

where OffNadir(sloc;(t), spi(t)) calculates the off-nadir an-
gle based on the satellite’s location and pointing direction.

The third is to ensure that the target is in the captured images
C3 : tloce,,, € Image(sloci(t(ik)), spi(t(ik)))

where Image(sloc;(t),sp;(t)) calculates the region of the
Earth’s surface covered by the satellite image based on the
satellite’s location and pointing direction.
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4 System Design

EAGLEEYE improves the number of high-resolution targets
downlinked with a mixed-resolution, leader-follower constel-
lation. The target identification module finds targets by pro-
cessing low-resolution imagery. The actuation-aware sched-
uler first analyzes targets, leverages actuation constraints,
and produces a schedule for each follower to capture a se-
quence of targets. Each follower then adheres to its actuation
schedule to capture the sequence of targets it is assigned.

4.1 Target Identification

The leader’s target identification module leverages onboard
ML inference. The input to the inference model is a low-
resolution frame. For EAGLEEYE, we assume that an object
detection ML model identifies targets of interest. Thus, the
model must be trained for the target application using previ-
ously collected and labeled orbital imagery. The targets of
interest must be of appropriate size in the input tiles, and the
total number of tiles per frame must not exceed to energy or
time budget of the leader. The output of the model is a set
of target bounding boxes associated with latitude/longitude
GPS coordinates.

Frame tiling and scaling. As with prior work on orbital
edge computing [28, 30], the target identification module
first decomposes a (large) frame into tiles that fit the input
dimension of the ML model, and then processes each tile. To
identify small objects in low-resolution data with high ac-
curacy, EAGLEEYE decomposes a frame into the appropriate
tile size (that may be smaller than the ML model’s input),
and then scaling the tile to the ML input size [28, 29]. The
tile size with optimal accuracy is application- and system-
dependent [29, 30] and recent work shows execution time
benefits to operating away from the empirically-optimal
tiling for accuracy [28]. Tile size is an important parameter
because a decrease in tile size increases tile count, which in-
creases the number of invocations of the ML model required
to process a frame, ultimately increasing frame processing
time. Changes to tile size also change the size (in pixel count)
of the features of interest when input into the ML network.
To avoid missing some data, a leader must finish processing
each frame before it sees an entirely new frame, which im-
poses a hard deadline on frame processing. The number of
tiles per frame must also avoid exhausting the leader’s energy
store. To validate EAGLEEYE’s use of frame tiling, §6 shows
that across a wide range of tile sizes, frame processing time re-
mains below the energy constraint and processing deadline.

Target clustering After identifying targets, the leader opti-
mizes the set of targets by clustering targets that are close
together, enabling them to be captured in a single, high-
resolution image instead of requiring multiple captures. Fig. 7
shows the clustering problem schematically, with the center
points of identified targets enclosed by a single box repre-
senting a high-resolution image capture.
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(a) w/o clustering (b) W/ clustering

Figure 7. Target clustering: Cover multiple targets with one high-
resolution image. (Camera swath is changed for illustration purposes.)

We formulate target clustering as a planar point cover prob-
lem: given several points on a 2D surface, find the minimal
set of rectangles that cover all points, searching across all
rectangle positions and dimensions. We simplify the problem
by assuming that the sides of high-resolution images are in
parallel with the sides of low-resolution images. Note that
allowing off-parallel, high-resolution images may further
reduce the total number of high-resolution images, but we
leave this extension for future work.

We use Integer Linear Programming to solve the problem and
the solution is a set of boxes enclosing clustered targets that
can be imaged together in a single high-resolution image. We
find that the solver could find the optimal rectangle cover
solution in 1ms for 500 targets (figure not shown). After
clustering, the scheduler treats the priority score of a cluster’s
high-resolution frame to be the sum of the priority scores of
the targets enclosed by the frame.

4.2 Computing Actuation Time and Target Time
Window

EAGLEEYE’s actuation-aware scheduler computes an actu-
ation plan for each follower to point at and capture each
target. The plan must consider the time to point from one
target to the next, and must consider the optimal path along
which to capture all targets. The scheduler computes the
plan as the solution to an Integer Linear Programming (ILP),
which includes constraints corresponding to the physics of
pointing and orbital motion, as well as the cost of visting
targets in a particular order.

Computing Actuation Time As shown in Fig. 8 (Left),
assume that the satellite points at P; when T = t;, we want
to compute the minimum time T = t;, when the satellite
points at P,. A satellite’s pointing speed is defined by its
ADACS and actuators, limiting the angle that a satellite may
rotate in a fixed time interval ¢ to some number of degrees,
MaxAng(t). The motion planner finds the minimum ¢, that
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Figure 8. Left: Calculate Actuation Time Between Targets; Right:
Calculate Time Window.

satisfies the following constraint:

_ Bl _ 1P - (Pr+Fly(t — 1))
Altitude Altitude (1)

<= MaxAng(t2 — t1)

where Fly(t; — t1) is the motion vector of the satellite pro-
jected onto the ground. A solution gives a value to ¢;, defining
ty — t, which is the time over which to rotate by « to point
at the target.

Setting time window constraints. As shown in Fig. 8
(Right), we want to find the interval of t that satisfies

. DI _[P=N®I| __ @)
Altitude Altitude max

—
where N(t) is the position of the satellite projected onto the
ground at time ¢ and 0,4y is the maximum off-nadir angle.

4.3 Actuation scheduling

The scheduler solves the actuation scheduling problem to
produce a sequence of pointing actuations for each follower.
The leader adds constraints and optimization goals to the ILP
formulation, framing it as a generalized traveling salesman
problem that plans routes for multiple salesmen to cover
multiple cities optimally. One set of ILP constraints define
the actuation time as distance between targets. Another set
of constraints relate these actuation times to the time win-
dow for each target, for each follower. The ILP optimization
goal is to maximize the value of the sum of priority scores
of captured targets. The solution to the ILP is a set of point-
ing actuations (i.e., rotations) for each follower satellite to
perform to cover its assigned set of targets.

Alternative formulations As a point of comparison, we
construct another solution that uses a greedy algorithm to
choose the nearest unimaged target. The greedy algorithm
does not achieve an optimal result, with 4.3-14.4% less cov-
erage compared to our ILP-based solution, as shown in §6.
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Figure 9. Computation delay does not affect leader-follower, but
affect mix-camera.

We also consider the AB&B approach used in prior work [27].
This approach exhibits high runtime, which limits its appli-
cability (§6).

4.4 Number of followers

One configuration for EAGLEEYE is the number of followers
in a group. Fig. 5 shows several configurations of a constel-
lation with 4 satellites. We can choose to have (i) 2 groups
with one leader and one follower in each group (Fig. 5c)
or (ii) 1 group with one leader and three followers in each
group (Fig. 5d). With more groups, the total area covered
by all leaders increases, detecting more targets. With more
followers in a group, more targets in each low-resolution
image would be captured by the followers.

An extreme configuration is to have both a high- and a low-
resolution camera in the same satellite group (Fig. 5e¢). For
a fixed number of satellites, this configuration would have
the maximum number of groups. However, it has two lim-
itations. First, the satellite might miss some targets due to
computation delay. The satellite has only about 15 seconds
to capture, process, point to take high-resolution images
of targets, and point back to take another low-resolution
image of the ground track. As shown in Fig. 9 bottom, the
mix-camera satellite might already fly away from the target
when the computation is completed. We show how the com-
pute time would affect the coverage in §6. On the other hand,
the computation delay does not affect the leader-follower
configuration (Fig. 9 top), as long as the computation is fin-
ished before the next low-resolution image comes in, because
the follower satellites are behind the leader satellite. Second,
a cubesat is highly volume constrained [29], mostly due to
the high-resolution camera’s need for long focal length. It
is likely infeasible to add a second high-coverage camera
without increasing volume (and hence launch cost).

4.5 ML accuracy

We consider how the accuracy (precision, recall) of the object
detection model running in the leader would affect coverage.
A false positive increases the complexity of scheduling and
potentially wastes time and energy of followers that could be
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Figure 10. Maximum look ahead distance for different target speeds.

used to image real targets. A false negative target is omitted
from the scheduling and remains unimaged by any followers,
thereby resulting in reduced coverage.

4.6 Scheduling for Moving Targets.

For a moving target (e.g., a ship or a plane), EAGLEEYE needs
that the target does not move out of the targeted image
during the time interval between the leader and the fol-
lower taking the images. Consider that the satellite ground
speed is V4, the target speed is V;4rges, the high-resolution
image swath is swath, and the distance along the ground
track between when the leader captures an image and when
the follower does is D (which we call the “lookahead dis-
tance”). y is a slack parameter indicating the fraction of a
high-resolution image swath over which a target may move
and still be considered in the frame. We relate the lookahead
distance to target and satellite velocity, considering the slack:
Voo * Viarger <y * swath. Fig. 10 shows the maximum look
ahead distance D for different target speeds, assuming a satel-
lite at 500 km altitude with Vi, = 7.5 km/s, swath = 10 km,
Y = 0.1. We show that the maximum lookahead distance is
500km for a ship with ground speed 14 m/s (50 km/h) and 28
km for a plane with ground speed 250 m/s (900 km/h). The
data shows that a reasonable lookahead distance accommo-
dates reasonable target speeds. Note that we assume V;gyge;
represents the maximum target speed. EAGLEEYE will have
more time slack if the target moves slower than the expected
target speed.

4.7 Discuss

Heterogeneous configurations overhead There is a non-
recurring engineering (NRE) cost associated with supporting
two camera types. Integrating different cameras does not
require substantial changes to highly-coupled subsystems,
like communications hardware or ADACS, and we expect
the time cost to be surmountable.

Reliability There could be satellite failure or network par-
tition between satellites. If a leader fails, the followers in
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the group could fall back and simply capture nadir high-
resolution images. Alternatively, the followers might be reas-
signed to another group under a new leader. If a follower fails,
the leader can adjust by scheduling only with operational
followers.

Recapture One future work is to explore target recapture
(re-identification) between satellites. If the leader satellite
identifies a target that has already been imaged by another
follower previously, the leader can deprioritize the target
and schedule the follower to capture other targets first. Al-
ternatively, if the leader satellite identifies a target that has
changed over time (e.g., a ship has moved), the leader can
prioritize the target when scheduling.

Orbit Design As the constellation grows in size, there will
be more overlapping regions captured by different satellites
in a short period. To further improve coverage, we need
to strategically distribute the constellation to reduce these
overlapping areas. This requires adjustments to the constel-
lation’s orbital parameters, such as orbit inclination and the
number of orbital planes. We consider this to be future work.

5 Implementation and Methodology
5.1 Prototype

We implement a prototype of EAGLEEYE using state-of-the-
art orbital edge computing modeling tools (cote [30]) to
model orbital dynamics, image capture, and ADACS pointing.
We use Google-ORTools [53] to define our ILP formulations
for target clustering and follower scheduling and find the
solution. We use our prototype to evaluate EAGLEEYE for a
range of real-world use cases, taking advantage of publicly
available Earth imagery and remote sensing datasets.

5.2 Use Cases

We study four real-world, remote-sensing applications. La-
beled datasets for Earth observation are challenging to obtain.
In some cases we are unable to obtain location data and us-
able imagery. When one type of data was unavailable, we
evaluated EAGLEEYE using the data to the degree possible,
given availability; we call out such cases explicitly below.

Ship Detection We evaluate an application that identifies
ships to detect illegal fishing and oil spills. We obtain the
ship locations from prior work [5], which maps 19,119 ships
around the world. The dataset does not model ship move-
ment, so we evaluate on a snapshot. We use ship imagery
from prior work [26], which has 3,896 images containing
3,219 ships, with 16m GSD, from the GaoFen-1 and GaoFen-6
satellites. We downsample the images to get a GSD of 30m.
We train Yolov8 [41] on these images for object detection,
achieving a mAP@50 (mean average precision calculated at
IOU threshold 0.5) of 77.6%.

Airplane Tracking We evaluate an application that tracks
airplanes for airspace safety. We use plane location data from
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Spire [15] that tracks the location of 55,196 planes across the
world over 24 hours. The dataset models the plane movement
with time. We are unable to obtain a usable corresponding
imagery dataset, but the location dataset suffices to evaluate
EAGLEEYE’s scheduler.

Lake Monitoring We evaluate an application that captures
images of small lakes to detect emergent algae blooms. We
use an existing lake location dataset [47]. We consider two
scenarios that omit some lakes based on size: (1) 166,588
lakes with a size between 1 — 10 km?; (2) 1,410,999 lakes
with a size between 0.1 — 10 km?. The lake dataset lacks a
usable imagery companion, and we omit evaluation of ML
inference on these data.

Oil Tank Volume Estimation We evaluate an application
that estimates oil tank contents by measuring the size of
shadows on their covers that vary with level. We get oil tank
image data from [10], which has 10,000 images from Google
Earth, with GSD (0.72 m/pixel). We train Yolov8 to detect
the location of the oil tank and run the code from [11] on
the images to estimate the oil volume. The dataset does not
provide ground truth data for the fill-level estimation, so
we assume that volume estimates based on high-resolution
images are 100% accurate, which is consistent with other
prior work [61] that used a similar method to achieve 97.2%
accuracy. The dataset does not include the geographic distri-
bution of oil tanks in each image. We thus use the oil tank
dataset to evaluate the accuracy of ML inference for tank
detection and fill level estimation, but we are unable to use
this dataset for scheduling evaluation.

5.3 Satellite Parameters

We use low-cost nanosatellites for both the leader and the
follower. The high-resolution camera has a 10 km swath
at 3m GSD, and the low-resolution camera has a 100 km
swath at 30m GSD. We consider a 11° maximum “off-nadir”
pointing angle (0;,4x). The ADACS can rotate the satellite 3
deg/s [14, 17, 35, 55]. We add a pointing acceleration/decel-
eration of 9 deg/s? [35], modeled by adding 0.67 s overhead
to each point action i.e.,, MaxAng(t) = 3 * (t — 0.67) deg/s.
We also model a high-end reaction wheel [19] with a rotation
rate of 10 deg/s (see §6). We use satellite “two-line elements”
(TLEs) from Celestrak [2] to model a polar orbit, with an
inclination of 97.2°, altitude of 475 km, and an orbit period of
94 minutes. All satellites fly in the same orbit; deploying to
multiple orbits incurs additional launch costs. We model the
energy consumption of a 3U CubeSat using the same param-
eters as in prior work [30]. We assume that all cubesat data
processing occurs using a NVidia Jetson AGX Orin [9] run-
ning in its low-power (15W) operating mode. Each satellite
can transmit to ground stations for six minutes each period
to downlink data. For cross-links, the leader sends schedule
data to each follower, conveying time and pointing direction
for each high-resolution image capture. Each schedule result
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is under 2KB and the leader sends around 400 schedule results
every period; cross-link data volume is negligible, totaling
under 1MB / orbit, which is easily accommodated by an S-
Band radio’s 0.4 MB/s. The distance between a leader and its
followers is 100km, which is the low-resolution swath width,
and we assume that leader-follower groups are evenly spaced
in an orbit. For all experiments, we model 24h of activity.

5.4 Baseline Systems

We consider two baselines that represent the state-of-the-art
in orbital edge computing constellation organizations: Low-
Res ONLY and HiGH-REs ONLy. These constellations consist
of satellites that capture data at a single resolution only.

6 Results

We evaluate EAGLEEYE to show several key results:

1. With the same number of satellites, EAGLEEYE produces
high-resolution data while achieving 11-194% more cov-
erage than a HiIGH-REs ONLY constellation.

2. EAGLEEYE’s target clustering and follower scheduling is
fast, finishing in 10 ms on an embedded CPU.

3. EAGLEEYE achieves higher coverage with a faster slew
rate or with more followers.

4. EAGLEEYE has better energy consumption than either
Low-Res ONLY or HiGH-REs ONLy, avoiding the intro-
duction of any new energy limitation on the system.

6.1 End-to-end results

The main end-to-end results in our evaluation are that EAGLE-
EYE improves coverage substantially and EAGLEEYE imposes
a low run time overhead.

Coverage We consider coverage as the percentage of targets
captured in high-resolution images. EAGLEEYE substantially
improves coverage (11-194%) for all applications compared
to HicH-RES ONLY as shown in Fig. 11a. ILP-based scheduling
achieves 4.3-14.4% higher coverage than greedy scheduling
algorithm. We also include the results of Low-REs ONLY to
show the maximum potential coverage (physical limits) of us-
ing low-resolution cameras. Note that for Airplane Tracking,
Low-REs ONLY converges to 80% coverage. This is because
the targets are moving and some targets only appear in the
later period of the simulation, making them impossible to
capture.

Across four use cases, EAGLEEYE’s improvement over HiGH-
Res ONLyY is higher in applications with a lower target density
(i.e., Ship Detection, Airplane Tracking) than in applications
with a higher target density (i.e., Lake Monitoring (1.4M)).
The trend exists because the single follower used in these
experiments is unable to capture all detected targets.

Runtime Fig. 12a shows that ILP based scheduling has neg-
ligible runtime overhead and is scalable, while prior solution
(AB&B) is not. Finding a solution for the ILP scheduler takes
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about 1ms even with a high target count. On the other hand,
the runtime of the AB&B based scheduling fails to meet
the frame capture deadline with more than 19 targets in a
low-resolution images. Fig. 12b shows that up to 32% images
contain more than 19 targets, so AB&B is infeasible for a
real-world deployment. We also measure the runtime of tar-
get clustering and find that the 90th percentile runtime is
less than 1ms (figure not shown).

6.2 Sensitivity and Characterization

We study EAGLEEYE’s sensitivity to key design parameters.

Slew rate Fig. 11b shows that a faster slew rate improves
coverage. With low target density (Ship Detection, Airplane
Tracking), increasing the slew rate from 3 deg/s to 10 deg/s
only marginally improves coverage. The small change in-
dicates that a constellation designed for low target density
may safely use a lower-cost ADACS with a lower slew rate.
For Lake Monitoring (1.4M), EAGLEEYE with slew rate = 1
deg/s achieves lower coverage than HIGH-REs ONLY because
the density of the targets is such that nadir pointing a high-
resolution imager effectively captures the targets, and off-
nadir pointing imposes a time cost that reduces the number
of targets captured.

Number of Followers Fig. 11c shows how EAGLEEYE’ cov-
erage varies with different numbers of followers. With low
target density (i.e., Ship Detection, Airplane Tracking), Ea-
GLEEYE with 1 follower achieves higher coverage than EAGLE-
EYE with 3 follower. This apparent inversion is because one
follower covers all targets detected by each group’s leader.
Given a fixed number of satellites in the constellation, it
would be more beneficial to increase the number of groups
than to increase the number of followers per group. For
targets with high density (i.e., Lake Monitoring (1.4M)), cov-
ering all targets requires more followers.

Fig. 13 shows that mix camera configuration achieves a lower
coverage compared to the leader follower configuration due
to the compute time delay. The coverage becomes lower as
the compute time increases (with larger model) because there
is less time left for target pointing and capture. Mix Camera
with Yolo_x achieves 0% coverage because all targets are no
longer in the time window when compute is finished.

Target Miss Ratio We examine how many targets in a
low-resolution image can be covered by one follower. As
shown in Fig. 14a, when there are fewer than 10 targets in a
low-resolution image, one follower could cover all of them.
This also explains why EAGLEEYE (#follower=1) has highest
coverage on low target density applications, while more
followers are required for high target density applications.
Note that there would be at most 100 targets in one low-
resolution image after target clustering, because the ratio of
low-resolution and high-resolution camera swath is 10.
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(c) Adding followers improves coverage with high target density. (Lake Monitoring (1.4M)). For applications with low target density
(Ship Detection, Airplane Tracking), using one follower is the most efficient way to improve coverage.

Figure 11. EAGLEEYE improves coverage compared to several baseline systems across all applications. System improvements to

slewing and follower count increase EAGLEEYE’s benefits.
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Figure 12. (a) EAGLEEYE’s runtime is low and insensitive to target
count. (b) # Targets per image.

Frame processing time Fig. 14b shows that in a wide range
of tile sizes, frame processing time remains below the pro-
cessing deadline. Low-resolution data in our orbit nets a
longer frame deadline than prior work [29, 30]. We assume
that fewer tiles per frame suffice to produce accurate targets
for the followers.

ML Accuracy We investigate the impact of the object detec-
tion model’s recall rate on coverage. Depending on the recall
rate, a subset of targets are randomly chosen and labeled
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Figure 13. Mix camera configuration achieves a lower coverage
compared to the leader follower configuration due to the compute time
delay. The numbers in parentheses are the compute time.

as False Negative. We do not analyze the effect of precision
on coverage, as determining the location of False Positivein-
stances requires running the model on the images at different
locations, which we leave for future work.

Fig. 15 shows that coverage decreases in a slower rate when
recall decreases, e.g.,, coverage is more than 0.5 when the
recall rate decreases to 0.2, which means that some targets
are not detected by the leader but are still captured by the
follower. This is because the follower image swath is large
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and might contain multiple targets. When a follower takes
a high-resolution image, the image may contain some false
negative targets.

Target clustering improves coverage Fig. 14c shows that
by using target clustering, EAGLEEYE achieves a higher
(1.5-31.7%) coverage. Target clustering provides more gains
with high target density (e.g.,, Lake Monitoring).
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Energy Analysis Fig. 16 shows the energy usage of EAGLE-
EYE and the baselines. For different applications, Leader and
baselines would consume the same amount of energy, be-
cause they take images along the ground track and process
all images, no matter the target density. Followers would
consume different amounts of energy for different applica-
tions, depending on how many targets they are scheduled
to capture.

The total harvestable energy per orbit supports around 2x
tiling for EAGLEEYE. For 4X tiling, the leader has the same
problem as the baselines: the excess compute energy require-
ment precludes full ground track coverage. The leader uses
a slightly less energy than the baselines use, because it does
not send images to Earth, offloading the energy cost onto
the followers, which are less energy constrained. The figure
also shows that for all tiling factors and applications, en-
ergy is not a bottleneck for followers. Combining the energy
and slew rate results, we provide guidance for constellation
designers: add solar panels to the leader, providing more
compute energy and improve the follower’s ADACS slew
rate to cover more targets.

7 Related Work

Satellites Scheduling: Many works [27, 38, 39, 49, 62, 63]
consider scheduling satellites to point their sensors and max-
imize the number or value of targets observed. However,
these works assume that the target locations are known
beforehand and focus on offline scheduling. AB&B [27] con-
siders online scheduling but has several limitations as men-
tioned in §2.3. Other work [24, 25, 57] focus on a simplified
problem, excluding the modeling of actuation time between
targets due to their assumption that the sensor is a radar
with instantaneous electronic movement capabilities.

Heterogeneous Satellite Constellations: Existing leader-
follower designs [7, 18, 58] require offline scheduling and
cannot be applied to moving targets, as mentioned in §2.3.
Another work [56] aims at a different problem: decreasing
the image capture latency for rapid response to disasters.
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This work uses two constellations in two different orbit
planes: one for imaging and the other as a communication
relay between the imaging satellites and Earth.

Superresolution. Superresolution techniques [33, 44] offer
a promising means of enhancing image resolution through
statistical refinement and data synthesis. However, applying
them directly to low-resolution satellite images may not align
with our objectives, as it could introduce misleading artifacts
for analysts requiring high-fidelity data. On the other hand,
super-resolution running on leaders (if made cheap enough)
may improve target identification accuracy.

Scheduling in other domains: Recent work has studied
architectural and system design techniques for robots [22, 48,
51] and autonomous drones [37, 43]. This work is related to
EAGLEEYE because we also consider physical and operational
constraints in our system design. However, these efforts
are distinct in purpose and mechanism because they aim
to optimize hardware architecture for better performance
and energy efficiency. Also, satellites differ from robots and
drones because they have less freedom of movement: a satel-
lite trajectory is fixed (along the orbit) after launching, and
the only thing that can be changed is the satellite orientation.

Other aspects of satellite research: Kodan [28] solves
the in-orbit computation bottleneck for image processing
by training specialized ML models for different geospatial
contexts. L2D2 [60] reduces satellite-ground communication
latency by adding more low-cost commodity hardware-based
ground stations to increase the density of ground stations.

8 Conclusion

EAGLEEYE introduces the leader-follower, mixed-resolution
constellation organization and operating model for computa-
tional nanosatellite constellations. Leveraging heterogeneity
enables an EAGLEEYE constellation to provide coverage sim-
ilar to a wide-angle, low-resolution imaging constellation,
while providing high-resolution images. The novel target
clustering technique and scheduling algorithm make it pos-
sible for a leader satellite to task followers with a set of
actuations, providing an increase in constellation autonomy
and eliminating the need for human tasking interventions.
Overall, EAGLEEYE provides a reduction of up to 4.3X in the
constellation size required to provide high-resolution images,
with gains that translate across several application domains.
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