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• A comprehensive evaluation showing that for four real-
world Earth observation tasks, EagleEye improves cov-
erage and image resolution, while reducing constellation
cost and complexity.

2 Background and Motivation

We provide background on tasking in nanosatellite constel-
lations and highlight key shortcomings of today’s systems
in dynamically capturing geo-distributed targets with high
coverage and high resolution. We then quantitatively mo-
tivate EagleEye by showing the promise of autonomous,
mixed-resolution, leader-follower constellations.

2.1 Achieving high-coverage, high-resolution

sensing with a satellite constellation

More launches to low Earth orbit and the decreasing costs
of nanosatellites foster a “new space race:” many satellite
constellations monitor the planet for a multitude of Earth-
observation tasks. Satellites collect Earth images for geospa-
tial analysis, such as environmental and ecological moni-
toring, meteorology, and agriculture. Use cases for Earth
observation abound. For example, images containing ships
could be used to detect illegal �shing [8, 16], oil spills and
bilge dumping [42, 50]. High-resolution images containing
lakes could help detect algae blooms [20, 52]. Images con-
taining oil storage tanks could be used to estimate total oil
reserve volumes [10].

A constellation is a collection of satellites that work to-
gether to support an application. The scope of this work
is nanosatellite constellations that have development and
launch costs that are orders of magnitude lower than larger,
“exquisite” [45] satellite designs. Designing a constellation
to support an Earth-observation application requires de�n-
ing an organization and operating model. A constellation
organization entails de�ning the hardware and software
composition of each satellite, the number of satellites in the
constellation, and the mix of capabilities across a heteroge-
neous constellation. The operating model involves when and
how satellites sense and process Earth-observation signals,
and how satellites communicate with one another and with
internet-connected receivers in the “ground segment.” The
organization also involves de�ning the orbit altitude and
inclination into which satellites deploy.

Constellation Organization. Nanosatellite constellations
provide a low-cost, low-complexity option for deploying
large numbers of satellites. A cubesat uses commercial, o�-
the-shelf (e.g., Planet [23, 32], NASA [4]) components for
electronics and structure and has a small size (e.g., 10 cm
× 10 cm × 10 cm for a “1U” cubesat) with masses around
1− 10 kg. Cubesats often deploy to LEO. Several commercial
operators have deployed numerous LEO cubesat constella-
tions [12, 15]. LEO spans an altitude less than 2,000 km and
often around 400−700 km. Building and launching a cubesat
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Figure 2. A satellite’s ground track, swath width (meters), and

ground sample distance or GSD (meters/pixel).

is relatively inexpensive, with a cost of tens of thousands
dollars [6]. The low cost of nanosatellites enables launching
constellations of tens or hundreds with a similar capability
while costing far less than monolithic satellites [45].

Satellite hardware includes several components. Satellites in-
clude an attitude determination and control system (ADACS)
with actuators (e.g., reaction wheels) to enable precise point-
ing at rates between 1 and 10 degrees per second. Onboard
imagers capture electromagnetic spectral data inclusive of
the visual domain and possibly other spectra, such as RF,
near-infrared (NIR), and short-wave infrared (SWIR). In this
work, we primarily assume visual spectrum data sensing,
the sensors for which are common and have low cost; Ea-
gleEye applies generally to arbitrary spectrum data. The
ground coverage area and ground sample distance or “GSD”
(meters per pixel) of an image produced by a sensor are
intrinsically de�ned by the camera system and the orbital
altitude. A fundamental tension between coverage and GSD
makes a key trade-o� in constellation design at the heart
of EagleEye. Existing LEO satellites with COTS imagers
capture images of Earth with GSD of tens of centimeters to
tens of kilometers per pixel. Fig. 2 illustrates the relationship
between a nanosatellite’s ground track, its camera’s swath
width, and its camera’s GSD. A GPS/GNSS receiver [40] pro-
vides Earth-relative position information, allowing a satellite
to perform precise geo-registration of captured sensor data.
Recent work [30] showed that it is possible to deploy com-
modity computing devices (such as the NVidia Jetson/Orin
mobile GPU) in a cubesat. High-performance computing
hardware equips a nanosatellite to run sophisticated com-
putations, such as image classi�cation, object detection, and
pixel segmentation.

Operating Model. Today, a vast majority of satellites op-
erate with no autonomy. In this operating model, a human
operator sends commands to each satellite in the constel-
lation from a ground terminal. On receiving a command, a
satellite senses based on GPS coordinates, may process data
using orbital edge computing, and may transmit interesting
data to Earth.

Recent constellation research proposes on-orbit computing
to improve autonomy [28, 30]. In these operating models, a
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with the satellite count. Satellite cost has several components.
Material cost for a nanosatellite is low, especially if equipped
with only COTS components (e.g., a COTS GPU is around
$2k). Launch costs are by far the largest cost associated with
a nanosatellite (e.g., around $50-100k for a 3U cubesat) and
must be amortized across many satellites. Moreover, launch
costs manifest as a non-linearity as cost varies with constel-
lation size: if the addition of a satellite requires an additional
launch, the cost of the second launch amortizes poorly unless
still more satellites are added. Operations costs are moderate
and scale with satellite count. The primary operation cost is
the ground station receiver operation cost, which is being
commoditized [1, 21], but still scales with constellation size
and data payload.

2.3 Existing Solutions

Tip and Cue. One existing solution uses a “tip and cue”
operating model [7, 18, 58], where satellites from di�erent
missions with di�erent cameras are used. This approach
utilizes a low-resolution camera satellite for target detection
and a high-resolution camera satellite for capturing high-
resolution images of the targets.

However, this solution has several limitations. First, it re-
quires operators from di�erent missions (entities) to share
compute, communication, and sensing resources, posing
practical challenges with respect to economics and regu-
lations. Second, the satellites �y in di�erent orbits, leading
to long delays (around 12 hours for one deployment [18])
between target identi�cation and high-resolution imaging,
which prevents imaging moving targets (e.g., airplanes and
ships). Third, in our best reading of the somewhat scant de-
tails of these systems, they lack operational autonomy: the
target detection satellite sends images to Earth for process-
ing, and the ground segment relays imaging commands to
the high-resolution satellite.

AB&B [27] solves the limitations by proposing a bi-satellite
cluster where two satellites (a low-resolution camera leader
satellite and a high-resolution camera follower satellite) �y
in the same orbit, with a separation of 100 s. This addresses
the challenges related to resource sharing and image cap-
ture delays. To achieve autonomous operation, it runs the
target identi�cation and the high-resolution image capture
schedule on the leader satellite.

However, AB&B still has several limitations. First, they use
a custom branch-and-bound algorithm to schedule high-
resolution image capture, which exhibits a high runtime. As
shown in §6, AB&B takes more than 15 s to schedule just 19
targets. This leads to di�culties in meeting frame deadlines
and result in lower coverage. Second, they neglect satellite
energy constraints, whereas cubesats have very limited en-
ergy. Their scheduler’s extended runtime exacerbates the

energy insu�ciency concerns. Third, they only design a bi-
satellite cluster and evaluate the coverage over a 500 km ×

2000 km area, without considering how the constellation size
a�ects the coverage in a larger area (e.g., the entire Earth
area is around 510 million km2). Fourth, they only consider a
single follower satellite. Although this su�ces for some tar-
get densities, we show in §6 that multiple followers provide
higher coverage for a high target density.

3 Design Overview

EagleEye is a new constellation organization and operat-
ing model that leverages orbital edge computing and con-
stellation design to provide high-coverage, high-resolution
data. The viability of EagleEye hinges on the recent mat-
uration of orbital edge computing, e�ective crosslinking
between LEO nanosatellites, and robotics advances that sup-
port agile pointing. The key ideas in EagleEye are (i) a
mixed-resolution leader-follower constellation organization,
(ii) actuation-aware scheduling for follower pointing, and
(iii) target clustering to increase coverage.

3.1 Mixed-Resolution Leader-Follower

Constellations

EagleEye leverages a heterogeneous,mixed-resolution, leader-

follower constellation organization. Leader and follower satel-
lites contain di�erent compute and sensing hardware. Fig. 1a
illustrates the EagleEye constellation organization. A leader
satellite has a low-resolution imager and compute hardware
that enables processing low-resolution frames with high per-
formance. A follower satellite has a high-resolution imager
and may or may not include high-performance, computa-
tional hardware. Fig. 5 shows how EagleEye constellations
di�er from existing work, allocating satellites in a constella-
tion into heterogeneous leader-follower groups instead of
tasking them homogeneously. Leaders and followers have
radio equipment for cross-link [65, 66] and downlink com-
munication. All satellites have ADACS and GPS/GNSS for
precise pointing and attitude/orbit determination.

EagleEye de�nes an operating model for a leader-follower
constellation. Operationally, a leader satellite images its en-
tire ground track, geo-registering each image with GPS coor-
dinates. The leader processes each image using a pretrained
ML model that identi�es the targets in the image. A constel-
lation has one or more followers that collectively capture
high-resolution images of all targets identi�ed by the leader.
The leader distributes the target imaging tasks to the follow-
ers. The leader �rst uses a crosslink to query the position
and attitude of each follower. The leader then computes an
actuation-aware schedule of image captures. The schedule is a
series of pointing and capture actions that a follower should
perform to image targets at high-resolution. The actuation-
aware schedule involves all followers and, when feasible,
covers all targets. The leader distributes to each follower its
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Figure 5. Con�guration comparison of a 4-satellite constellation.

schedule of pointing and capture actions and each follower
executes the schedule, capturing and storing the data. Even-
tually, follower satellites may perform additional onboard
processing of the frames or may transmit the captured, high-
resolution frames to Earth for consumption by a downstream
application. The primary bene�t of the EagleEye operating
model is higher coverage at high resolution, because the
high-resolution followers focus their sensing on areas with
targets identi�ed by the leader using low-resolution, high-
coverage data.

3.2 Challenges of Target Detection & Sensor

Scheduling

The goal of the constellation is to e�ciently identify targets
without exceeding time or energy limits on the leader, and at
the same time maximize the number of targets captured by
followers. At a high level, the scheduling algorithm achieves
this goal by assigning a priority score to each target, based
on the con�dence with which it was detected, as reported
in the output of the target identi�cation ML model. The
scheduling’s optimization function is to maximize the sum of
priority scores of targets captured by followers in a schedule.
As for target detection by the leader, the targets must be large
enough for the leader’s low-resolution camera to observe.

Challenge 1: Actuation-aware scheduling. The point-
ing and imaging schedule that the leader produces for each
follower must take into account the follower’s position, atti-
tude, and actuation constraints. For each target assigned to a
follower, there is a window of time during which that target
is available for imaging. The window is de�ned by the max-
imum “o�-nadir” pointing angle, as shown in Fig. 6 (Left).
Once the satellite’s pointing angle exceeds this maximum
threshold, the captured images become excessively distorted,
rendering them unusable. Also, the schedule should consider
the pointing actuation time as shown in Fig. 6 (Right), which
limits the number of targets a follower can capture.

Challenge 2: Limited target detection and scheduling

time. Time and energy are the primary limiting factors in a
computational nanosatellite [30]. For full ground track cov-
erage, the leader must capture each completely new frame
that it observes, which implies a capture cadence of e.g., 15s

Low	Res	Image

t=1s

t=2s

t=3s
Followers

Figure 6. Actuation-aware scheduling needs to consider: 1. (Left)
each target’s imaging time window, depending on each satellite’s

maximum o�-nadir imaging angle \<0G ; 2. (Right) the actuation

time required to point between targets.

at 500km with a 100km swath. The leader has 15s to com-
plete target object detection and scheduling. Amplifying the
challenge, cubesats usually have limited computing power
in embedded CPUs and GPUs. Besides, cubesats get limited
energy through solar panel and a single solar panel could
only support the satellite computer to run for a portion of
its orbit.

While high-accuracy object detection within these time and
energy constraints is challenging, recent work [28] pro-
vides software solutions to reduce ML execution time in
an accuracy-aware manner. These advances make it possible
for EagleEye to support actuation scheduling based on ML
detection results.

3.3 Problem Formulation

This section describes our optimization problem formulation
in more detail.

We consider that a leader identi�es M targets in a low-
resolution image and schedules N follower satellites to cap-
ture the targets. The input contains all follower satellites’
initial locations, the camera pointing direction, and all tar-
gets’ locations.

�=?DC : (B;>28 (C = 0), B?8 (C = 0)) ∀8 ∈ {1, 2, . . . , # }

(C;>2 9 , CE0; 9 ) ∀9 ∈ {1, 2, . . . , "}
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Variable Description

# ∈ N number of follower satellites

" ∈ N number of targets

B;>28 (C) ∈ R
3 location of follower satellite i at time t

B?8 (C) ∈ R
3 pointing direction of follower satellite i at time t

C;>2 9 ∈ R
2 location of target j on Earth surface

CE0; 9 ∈ R value of target j

@8 ∈ N number of targets captured by follower satellite i

(2 (8,: ) , C (8,: ) ) index & time of :Cℎ target capture of 8Cℎ follower

Table 1. Variables used in Problem Formulation

The output is the schedule for all follower satellites

$DC?DC : S8 = {(2 (8,1) , C (8,1) ), . . . , (2 (8,@8 ) , C (8,@8 ) )}

where each tuple is the target index (2 (8,: ) ∈ {1, 2, . . . , "}, ∀: ∈

{1, 2, . . . , @8 }) and the corresponding capture time.

The goal is to maximize the sum value of all captured targets

�>0; : max
∑

2∈Hit

CE0;2

where Hit =

⋃#
8=1{2 (8,1) , . . . , 2 (8,@8 ) } is the index set of all

captured targets. The union operation is used to remove
duplicate targets.

There are three constraints. The �rst is the actuation con-
straint: for each follower satellite, the di�erence in the point-
ing angle between two consecutive captures should be less
than the maximum rotation angle in the time interval

�1 : | |B?8 (C (8,:−1) ) − B?8 (C (8,: ) ) | | ≤ "0G�=6(C (8,: ) − C (8,:−1) )

where | |B?8 (C1) − B?8 (C2) | | calculates the di�erence between
two pointing angles, "0G�=6(C) calculates the maximum
angle that a satellite can rotate in time interval t.

The second is the o�-nadir angle (time window) constraint:
the o�-nadir angle for each capture should be less than the
maximum o�-nadir angle

�2 : O�Nadir (B;>28 (C (8,: ) ), B?8 (C (8,: ) )) ≤ \<0G

where O�Nadir (B;>28 (C), B?8 (C)) calculates the o�-nadir an-
gle based on the satellite’s location and pointing direction.

The third is to ensure that the target is in the captured images

�3 : C;>22 (8,: ) ∈ Image(B;>28 (C (8,: ) ), B?8 (C (8,: ) ))

where Image(B;>28 (C), B?8 (C)) calculates the region of the
Earth’s surface covered by the satellite image based on the
satellite’s location and pointing direction.

4 System Design

EagleEye improves the number of high-resolution targets
downlinked with amixed-resolution, leader-follower constel-
lation. The target identi�cation module �nds targets by pro-
cessing low-resolution imagery. The actuation-aware sched-
uler �rst analyzes targets, leverages actuation constraints,
and produces a schedule for each follower to capture a se-
quence of targets. Each follower then adheres to its actuation
schedule to capture the sequence of targets it is assigned.

4.1 Target Identi�cation

The leader’s target identi�cation module leverages onboard
ML inference. The input to the inference model is a low-
resolution frame. For EagleEye, we assume that an object
detection ML model identi�es targets of interest. Thus, the
model must be trained for the target application using previ-
ously collected and labeled orbital imagery. The targets of
interest must be of appropriate size in the input tiles, and the
total number of tiles per frame must not exceed to energy or
time budget of the leader. The output of the model is a set
of target bounding boxes associated with latitude/longitude
GPS coordinates.

Frame tiling and scaling. As with prior work on orbital
edge computing [28, 30], the target identi�cation module
�rst decomposes a (large) frame into tiles that �t the input
dimension of the ML model, and then processes each tile. To
identify small objects in low-resolution data with high ac-
curacy, EagleEye decomposes a frame into the appropriate
tile size (that may be smaller than the ML model’s input),
and then scaling the tile to the ML input size [28, 29]. The
tile size with optimal accuracy is application- and system-
dependent [29, 30] and recent work shows execution time
bene�ts to operating away from the empirically-optimal
tiling for accuracy [28]. Tile size is an important parameter
because a decrease in tile size increases tile count, which in-
creases the number of invocations of the ML model required
to process a frame, ultimately increasing frame processing
time. Changes to tile size also change the size (in pixel count)
of the features of interest when input into the ML network.
To avoid missing some data, a leader must �nish processing
each frame before it sees an entirely new frame, which im-
poses a hard deadline on frame processing. The number of
tiles per framemust also avoid exhausting the leader’s energy
store. To validate EagleEye’s use of frame tiling, §6 shows
that across awide range of tile sizes, frame processing time re-
mains below the energy constraint and processing deadline.

Target clustering After identifying targets, the leader opti-
mizes the set of targets by clustering targets that are close
together, enabling them to be captured in a single, high-
resolution image instead of requiringmultiple captures. Fig. 7
shows the clustering problem schematically, with the center
points of identi�ed targets enclosed by a single box repre-
senting a high-resolution image capture.
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the group could fall back and simply capture nadir high-
resolution images. Alternatively, the followers might be reas-
signed to another group under a new leader. If a follower fails,
the leader can adjust by scheduling only with operational
followers.

Recapture One future work is to explore target recapture
(re-identi�cation) between satellites. If the leader satellite
identi�es a target that has already been imaged by another
follower previously, the leader can deprioritize the target
and schedule the follower to capture other targets �rst. Al-
ternatively, if the leader satellite identi�es a target that has
changed over time (e.g., a ship has moved), the leader can
prioritize the target when scheduling.

Orbit Design As the constellation grows in size, there will
be more overlapping regions captured by di�erent satellites
in a short period. To further improve coverage, we need
to strategically distribute the constellation to reduce these
overlapping areas. This requires adjustments to the constel-
lation’s orbital parameters, such as orbit inclination and the
number of orbital planes.We consider this to be future work.

5 Implementation and Methodology

5.1 Prototype

We implement a prototype of EagleEye using state-of-the-
art orbital edge computing modeling tools (cote [30]) to
model orbital dynamics, image capture, and ADACS pointing.
We use Google-ORTools [53] to de�ne our ILP formulations
for target clustering and follower scheduling and �nd the
solution. We use our prototype to evaluate EagleEye for a
range of real-world use cases, taking advantage of publicly
available Earth imagery and remote sensing datasets.

5.2 Use Cases

We study four real-world, remote-sensing applications. La-
beled datasets for Earth observation are challenging to obtain.
In some cases we are unable to obtain location data and us-
able imagery. When one type of data was unavailable, we
evaluated EagleEye using the data to the degree possible,
given availability; we call out such cases explicitly below.

Ship DetectionWe evaluate an application that identi�es
ships to detect illegal �shing and oil spills. We obtain the
ship locations from prior work [5], which maps 19,119 ships
around the world. The dataset does not model ship move-
ment, so we evaluate on a snapshot. We use ship imagery
from prior work [26], which has 3,896 images containing
3,219 ships, with 16m GSD, from the GaoFen-1 and GaoFen-6
satellites. We downsample the images to get a GSD of 30m.
We train Yolov8 [41] on these images for object detection,
achieving a mAP@50 (mean average precision calculated at
IOU threshold 0.5) of 77.6%.

Airplane Tracking We evaluate an application that tracks
airplanes for airspace safety. We use plane location data from

Spire [15] that tracks the location of 55,196 planes across the
world over 24 hours. The dataset models the plane movement
with time. We are unable to obtain a usable corresponding
imagery dataset, but the location dataset su�ces to evaluate
EagleEye’s scheduler.

Lake Monitoring We evaluate an application that captures
images of small lakes to detect emergent algae blooms. We
use an existing lake location dataset [47]. We consider two
scenarios that omit some lakes based on size: (1) 166,588
lakes with a size between 1 − 10 km2; (2) 1,410,999 lakes
with a size between 0.1 − 10 km2. The lake dataset lacks a
usable imagery companion, and we omit evaluation of ML
inference on these data.

Oil Tank Volume Estimation We evaluate an application
that estimates oil tank contents by measuring the size of
shadows on their covers that vary with level. We get oil tank
image data from [10], which has 10,000 images from Google
Earth, with GSD (0.72 m/pixel). We train Yolov8 to detect
the location of the oil tank and run the code from [11] on
the images to estimate the oil volume. The dataset does not
provide ground truth data for the �ll-level estimation, so
we assume that volume estimates based on high-resolution
images are 100% accurate, which is consistent with other
prior work [61] that used a similar method to achieve 97.2%
accuracy. The dataset does not include the geographic distri-
bution of oil tanks in each image. We thus use the oil tank
dataset to evaluate the accuracy of ML inference for tank
detection and �ll level estimation, but we are unable to use
this dataset for scheduling evaluation.

5.3 Satellite Parameters

We use low-cost nanosatellites for both the leader and the
follower. The high-resolution camera has a 10 km swath
at 3m GSD, and the low-resolution camera has a 100 km
swath at 30m GSD. We consider a 11◦ maximum “o�-nadir”
pointing angle (\<0G ). The ADACS can rotate the satellite 3
deg/s [14, 17, 35, 55]. We add a pointing acceleration/decel-
eration of 9 deg/s2 [35], modeled by adding 0.67 s overhead
to each point action i.e.,,"0G�=6(C) = 3 ∗ (C − 0.67) deg/s.
We also model a high-end reaction wheel [19] with a rotation
rate of 10 deg/s (see §6). We use satellite “two-line elements”
(TLEs) from Celestrak [2] to model a polar orbit, with an
inclination of 97.2◦, altitude of 475 km, and an orbit period of
94 minutes. All satellites �y in the same orbit; deploying to
multiple orbits incurs additional launch costs. We model the
energy consumption of a 3U CubeSat using the same param-
eters as in prior work [30]. We assume that all cubesat data
processing occurs using a NVidia Jetson AGX Orin [9] run-
ning in its low-power (15W) operating mode. Each satellite
can transmit to ground stations for six minutes each period
to downlink data. For cross-links, the leader sends schedule
data to each follower, conveying time and pointing direction
for each high-resolution image capture. Each schedule result
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is under 2KB and the leader sends around 400 schedule results
every period; cross-link data volume is negligible, totaling
under 1MB / orbit, which is easily accommodated by an S-
Band radio’s 0.4MB/s. The distance between a leader and its
followers is 100km, which is the low-resolution swath width,
and we assume that leader-follower groups are evenly spaced
in an orbit. For all experiments, we model 24h of activity.

5.4 Baseline Systems

We consider two baselines that represent the state-of-the-art
in orbital edge computing constellation organizations: Low-

Res Only and High-Res Only. These constellations consist
of satellites that capture data at a single resolution only.

6 Results

We evaluate EagleEye to show several key results:

1. With the same number of satellites, EagleEye produces
high-resolution data while achieving 11–194%more cov-
erage than a High-Res Only constellation.

2. EagleEye’s target clustering and follower scheduling is
fast, �nishing in 10 ms on an embedded CPU.

3. EagleEye achieves higher coverage with a faster slew
rate or with more followers.

4. EagleEye has better energy consumption than either
Low-Res Only or High-Res Only, avoiding the intro-
duction of any new energy limitation on the system.

6.1 End-to-end results

Themain end-to-end results in our evaluation are that Eagle-
Eye improves coverage substantially and EagleEye imposes
a low run time overhead.

CoverageWe consider coverage as the percentage of targets
captured in high-resolution images. EagleEye substantially
improves coverage (11–194%) for all applications compared
toHigh-Res Only as shown in Fig. 11a. ILP-based scheduling
achieves 4.3–14.4% higher coverage than greedy scheduling
algorithm. We also include the results of Low-Res Only to
show the maximum potential coverage (physical limits) of us-
ing low-resolution cameras. Note that for Airplane Tracking,
Low-Res Only converges to 80% coverage. This is because
the targets are moving and some targets only appear in the
later period of the simulation, making them impossible to
capture.

Across four use cases, EagleEye’s improvement over High-
Res Only is higher in applications with a lower target density
(i.e., Ship Detection, Airplane Tracking) than in applications
with a higher target density (i.e., Lake Monitoring (1.4M)).
The trend exists because the single follower used in these
experiments is unable to capture all detected targets.

Runtime Fig. 12a shows that ILP based scheduling has neg-
ligible runtime overhead and is scalable, while prior solution
(AB&B) is not. Finding a solution for the ILP scheduler takes

about 1<B even with a high target count. On the other hand,
the runtime of the AB&B based scheduling fails to meet
the frame capture deadline with more than 19 targets in a
low-resolution images. Fig. 12b shows that up to 32% images
contain more than 19 targets, so AB&B is infeasible for a
real-world deployment. We also measure the runtime of tar-
get clustering and �nd that the 90th percentile runtime is
less than 1<B (�gure not shown).

6.2 Sensitivity and Characterization

We study EagleEye’s sensitivity to key design parameters.

Slew rate Fig. 11b shows that a faster slew rate improves
coverage. With low target density (Ship Detection, Airplane
Tracking), increasing the slew rate from 3 deg/s to 10 deg/s

only marginally improves coverage. The small change in-
dicates that a constellation designed for low target density
may safely use a lower-cost ADACS with a lower slew rate.
For Lake Monitoring (1.4M), EagleEye with slew rate = 1

deg/s achieves lower coverage than High-Res Only because
the density of the targets is such that nadir pointing a high-
resolution imager e�ectively captures the targets, and o�-
nadir pointing imposes a time cost that reduces the number
of targets captured.

Number of Followers Fig. 11c shows how EagleEye’ cov-
erage varies with di�erent numbers of followers. With low
target density (i.e., Ship Detection, Airplane Tracking), Ea-
gleEyewith 1 follower achieves higher coverage than Eagle-
Eye with 3 follower. This apparent inversion is because one
follower covers all targets detected by each group’s leader.
Given a �xed number of satellites in the constellation, it
would be more bene�cial to increase the number of groups
than to increase the number of followers per group. For
targets with high density (i.e., Lake Monitoring (1.4M)), cov-
ering all targets requires more followers.

Fig. 13 shows that mix camera con�guration achieves a lower
coverage compared to the leader follower con�guration due
to the compute time delay. The coverage becomes lower as
the compute time increases (with larger model) because there
is less time left for target pointing and capture. Mix Camera
with Yolo_x achieves 0% coverage because all targets are no
longer in the time window when compute is �nished.

Target Miss Ratio We examine how many targets in a
low-resolution image can be covered by one follower. As
shown in Fig. 14a, when there are fewer than 10 targets in a
low-resolution image, one follower could cover all of them.
This also explains why EagleEye (#follower=1) has highest
coverage on low target density applications, while more
followers are required for high target density applications.
Note that there would be at most 100 targets in one low-
resolution image after target clustering, because the ratio of
low-resolution and high-resolution camera swath is 10.
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This work uses two constellations in two di�erent orbit
planes: one for imaging and the other as a communication
relay between the imaging satellites and Earth.

Superresolution. Superresolution techniques [33, 44] o�er
a promising means of enhancing image resolution through
statistical re�nement and data synthesis. However, applying
them directly to low-resolution satellite imagesmay not align
with our objectives, as it could introduce misleading artifacts
for analysts requiring high-�delity data. On the other hand,
super-resolution running on leaders (if made cheap enough)
may improve target identi�cation accuracy.

Scheduling in other domains: Recent work has studied
architectural and system design techniques for robots [22, 48,
51] and autonomous drones [37, 43]. This work is related to
EagleEye because we also consider physical and operational
constraints in our system design. However, these e�orts
are distinct in purpose and mechanism because they aim
to optimize hardware architecture for better performance
and energy e�ciency. Also, satellites di�er from robots and
drones because they have less freedom of movement: a satel-
lite trajectory is �xed (along the orbit) after launching, and
the only thing that can be changed is the satellite orientation.

Other aspects of satellite research: Kodan [28] solves
the in-orbit computation bottleneck for image processing
by training specialized ML models for di�erent geospatial
contexts. L2D2 [60] reduces satellite-ground communication
latency by addingmore low-cost commodity hardware-based
ground stations to increase the density of ground stations.

8 Conclusion

EagleEye introduces the leader-follower, mixed-resolution
constellation organization and operating model for computa-
tional nanosatellite constellations. Leveraging heterogeneity
enables an EagleEye constellation to provide coverage sim-
ilar to a wide-angle, low-resolution imaging constellation,
while providing high-resolution images. The novel target
clustering technique and scheduling algorithm make it pos-
sible for a leader satellite to task followers with a set of
actuations, providing an increase in constellation autonomy
and eliminating the need for human tasking interventions.
Overall, EagleEye provides a reduction of up to 4.3× in the
constellation size required to provide high-resolution images,
with gains that translate across several application domains.
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