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Abstract 

 

Position-specific intrusions of items from prior lists are rare but important phenomena that 

distinguish broad classes of theory in serial memory.  They are uniquely predicted by position 

coding theories, which assume items on all lists are associated with the same set of codes 

representing their positions.  Activating a position code activates items associated with it in 

current and prior lists in proportion to their distance from the activated position.  Thus, prior list 

intrusions are most likely to come from the coded position.  Alternative “item dependent” 

theories based on associations between items and contexts built from items have difficulty 

accounting for the position specificity of prior list intrusions.  We tested the position coding 

account with a position-cued recognition task designed to produce prior list interference.  Cuing 

a position should activate a position code, which should activate items in nearby positions in the 

current and prior lists.  We presented lures from the prior list to test for position-specific 

activation in response time and error rate; lures from nearby positions should interfere more.  We 

found no evidence for such interference in 10 experiments, falsifying the position coding 

prediction.  We ran two serial recall experiments with the same materials and found position-

specific prior list intrusions.  These results challenge all theories of serial memory:  Position 

coding theories can explain the prior list intrusions in serial recall and but not the absence of 

prior list interference in cued recognition.  Item dependent theories can explain the absence of 

prior list interference in cued recognition but cannot explain the occurrence of prior list 

intrusions in serial recall. 
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Introduction 

The problem of serial order has been a central topic in psychology and neuroscience for 

nearly 150 years (Ebbinghaus, 1885; Ladd & Woodworth, 1911; Lashley, 1951).  It is important 

practically because it is ubiquitous in daily life, addressing how we perceive structure in the 

world, how we structure our actions in time and space, and how we structure our memories of 

those percepts and actions.  It is challenging theoretically.  The 150 years were filled with 

controversy, pitting item-dependent theories that explain serial order in terms of associations 

between the elements of the structure (Ebbinghaus, 1885; Ebenholtz, 1963; Hull, 1932, 1934) 

against item-independent theories that explain order in terms of associations between the 

elements and a separate set of codes that represent temporal or spatial positions. (Ladd & 

Woodworth, 1911; Tolman, 1948; Young, 1961).  For the last 25 years, item-independent 

position coding theories have dominated research on serial memory, following an influential 

paper by Henson et al. (1996), who showed that item-dependent theories based on simple chains 

of associations between adjacent elements could not explain how people recover from errors, 

respond to manipulations of phonological similarity, produce transpositions to earlier list 

positions, or produce position-specific intrusions from previous lists.  Their findings inspired 

many researchers to develop theories that implement position coding in various ways (Anderson 

& Matessa, 1997; Brown et al., 2000, 2007; Burgess & Hitch, 1999; Farrell, 2012; Hartley et al., 

2016; Henson, 1998; Lewandowsky & Farrell, 2008; Oberauer et al., 2012).  Only a few 

developed item-dependent theories (Botvinick & Plaut, 2006; Dennis, 2009; Logan, 2021; 

Solway et al., 2012; also see Lewandowsky & Murdock, 1989; Murdock, 1995). 

Recent investigations have shown that item-dependent theories can account for three of 

the four phenomena that are incompatible with simple chaining theories, by assuming compound 

retrieval cues and remote associations (Lewandowsky & Li, 1994; Murdock, 1995; Solway et al., 

2012) or associations between items and contexts made of fading traces of past items (Logan, 

2021).  These more elaborate theories can explain recovery from errors (Lewandowsky & Li, 

1994; Logan, 2018, 2021), phonological confusability effects (Osth & Hurlstone, 2023; also see 

Logan, 2018), and transitions to earlier list positions (Logan, 2021; Logan & Cox, 2023; Solway 

et al., 2012), but cannot explain position-specific intrusions from prior lists (Osth & Hurlstone, 

2023; but see Caplan et al., 2022; Dennis, 2009).  Thus, position coding theories uniquely 
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explain position-specific prior list intrusions (Conrad, 1959; Henson, 1998; Melton & Von 

Lackum, 1941; Osth & Dennis, 2015). 

This article reports a critical test of the position coding explanation of position-specific 

prior list intrusions, using a cued recognition task to elicit position-specific prior list 

interference.  Subjects were given lists of six random letters to remember followed by a probe 

display containing a letter and a position cue.  They were asked to decide whether the probe 

letter occurred in the cued position in the memory list (Logan et al., 2021), and lures (probe 

letters that required a “no” response) were sampled from the prior list and from uncued positions 

within the current list.  For example, given list ABCDEF and prior list QRSTUV, ##C### is a 

matching probe that requires a “yes” response, ##S### is a prior-list lure that requires a “no” 

response, and ##B### is a within-list lure that requires a “no” response.  We show that position 

coding theories predict longer response time (RT) and higher error rates for prior list lures the 

closer they are to the cued position—position-specific prior list interference. 

This prediction follows directly from the fundamental assumptions of the position coding 

account of position-specific prior list intrusions:  Items in the current list and the prior list are 

associated with the same position codes.  The associations with items in the prior list are weaker.  

Items are retrieved by activating position codes and reporting what is associated with them.  A 

position code activates the items on both lists in proportion to their strength of association.  Items 

from the current list are activated more than items from the prior list.  Under these conditions, 

retrieving and reporting an item from the prior list is a prior list intrusion.  If it is in the right 

position in the wrong list, it is position-specific (e.g., Henson, 1998). 

The cued recognition task establishes the conditions necessary to produce position-

specific prior list intrusions and tests their ability to produce position-specific prior list 

interference.  Cued recognition requires focusing on the cued position, which should activate a 

position code.  The position code should activate items associated with it on the current and prior 

lists in proportion to their distance from the cued position. (in the example above, C and S would 

be activated more than B and Q).  Under these conditions, prior-list lures should match the 

activated memory items, providing evidence for a “yes” response instead of the required “no” 

response, which should increase RT and error rate in proportion to the proximity of the lure to 

the cued position (Logan et al., 2021)—position-specific prior-list interference. 
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The cued recognition task provides more information about prior list activation than 

recall tasks.  In recall tasks, prior list activation is apparent as prior-list intrusion errors, which 

occur only when a prior list item wins the competition with the correct item and the within-list 

items.  These errors are rare because prior list items have less activation, so they usually lose the 

competition.  Recall tasks provide no information about prior list activation when the correct 

item or a within-list item wins the competition.  On those trials, the prior list items could be 

activated less than current list items or not activated at all.  Like recall tasks, the cued recognition 

task provides information about prior list activation on error trials, when subjects respond “yes” 

to prior list lures, analogous to prior list intrusion errors.  The cued recognition task also provides 

information about prior list activation on correct trials, when subjects respond “no.”  The prior 

list lure will match the prior list item and activate the “yes” response on all trials, and this will 

increase RTs for correct “no” responses, as we show below.  Thus, cued recognition provides 

information about prior list activation in both false alarm rate and correct-rejection RT. 

The cued recognition task allows stronger conclusions than recall tasks. Position-specific 

prior list interference is elicited by an experimental manipulation (the presentation of a prior-list 

lure) that allows us to assess prior list activation in RT and error rate on any trial.  Observing 

such interference would support position coding predictions and failing to observe it would 

falsify them.  Position-specific prior list intrusions are emitted occasionally by subjects.  

Observing such intrusions supports position coding predictions but failing to observe them does 

not falsify them.  The prior list item could be activated, as the theory predicts, but not strongly 

enough to produce an error.  The cued recognition task allows us to measure the activation of 

prior list items when the activation is not strong enough to produce an error. 

 

Position Coding Model 

We used a simple generic position coding model, depicted in Figure 1, to formalize 

predictions and test hypotheses.  It embodies the core assumptions of established position coding 

theories that predict position-specific prior list intrusions, so its predictions generalize to all those 

theories.  Like all position coding theories, the generic model assumes that items on each list are 

associated with an ordered set of position codes (Anderson & Matessa, 1997; Brown et al., 2000, 

2007; Burgess & Hitch, 1999; Farrell, 2012; Henson, 1998; Lewandowsky & Farrell, 2008; 

Oberauer et al., 2012).  Like all position coding theories of prior-list intrusions, the strength of 
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associations between position codes and items is weaker for the prior list than for the current list 

because of decay or reduced contextual similarity (Brown et al., 2007; Burgess & Hitch, 1999; 

Henson, 1998).  We assume association strength s equals 1 for the current list and 0 ≤ sprior ≤ 1 

for the prior list.  This is illustrated by the lighter dashed lines in the top left panel of Figure 1.  

Like all position coding theories, the generic model assumes that items are retrieved by 

activating position codes.  Activation spreads from the position codes to the associated items in 

proportion to their associative strength.  Current list items have stronger associations than prior 

list items, and so are more likely to be retrieved.  Prior list intrusions occur when an item is 

retrieved from the prior list instead of the current one.   

Like all position coding theories, the model assumes that cuing a list position activates 

position codes in proportion to their distance from the cued position.  The activation of the item 

in position i given a cue in position j is: 

𝑎(𝑖|𝑗) =  𝑠𝜌|𝑖−𝑗|         (1) 

where 0      1 is the rate at which activation decreases with distance.  For the current list, s = 

1; for the prior list, s = sprior.  Equation 1 is a common expression for contextual drift (Estes, 

1955; Murdock, 1997) that is used explicitly to model within-list distance effects in models of 

serial recall (Farrell, 2012; Lewandowsky & Farrell, 2008; Logan, 2021; Logan & Cox, 2021).  

Equation 1 is responsible for order errors (transpositions) that dominate serial recall.  It is also 

responsible for the position specificity of prior list intrusions (and interference).  Activation is 

higher for the cued position than for its neighbors on both the current and prior lists, so items 

retrieved from both lists are more likely to come from the cued position than its neighbors.  The 

activation across positions in both lists is illustrated in the top right panel of Figure 1.  In the 

generic model, the activation produced by a cue is represented as a vector m whose elements 

correspond to the set of possible items, which is shown in the top row of Table 1.  The values for 

items on the current and prior list are given by Equation 1.  The values for items that were not on 

either list are set to 0.  Importantly, we assume that the activation values in m – the results of 

cuing a position -- are the same whether the retrieval task is recall or cued recognition. 

 These assumptions are common to all position coding theories of serial recall (Anderson 

& Matessa, 1997; Brown et al., 2000, 2007; Burgess & Hitch, 1999; Farrell, 2012; Henson, 

1998; Lewandowsky & Farrell, 2008; Oberauer et al., 2012) and all position coding accounts of 

prior list intrusions (Brown et al., 2007; Burgess & Hitch, 1999; Henson, 1998).  The theories 
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share these assumptions but differ in ancillary assumptions like response suppression, primacy 

gradients, etc. that are designed to address specific effects in serial recall (Lewandowsky & 

Farrell, 2008).  The core assumptions are at issue here.  We believe that the predictions of the 

generic model represent the predictions of the general class of position coding theories and the 

subclass of position coding theories that address position specific prior list intrusions.  

Confirmation of the predictions would support position coding theories of position specific prior 

list intrusions.  Failure to confirm the predictions would falsify some of the assumptions 

(depending on the nature of the failure), challenge position coding accounts of position specific 

prior list intrusions, and more generally, challenge the dominance of position coding theories of 

serial memory. 

 We apply the generic model to recall and cued recognition tasks by assuming that they 

access the same memory representations in different ways (i.e., m is the same but the decision 

process applied to it is different).  This assumption has a long history in computational models of 

memory.  Models that relate recognition and recall generally assume that the representations are 

the same in the two tasks but the decision processes are different (Anderson et al., 1998; Gillund 

& Shiffrin, 1981; Hintzman, 1984, 1988; Humphreys et al., 1989; Murdock, 1982, 1983; 

Raiijmakers & Shiffrin, 1984).  We view memory retrieval as attention turned inward (Logan et 

al., 2021) and decision processes as mechanisms of attention (Logan et al., 2023a), so we think 

of recognition and recall as requiring attention to different aspects of memory representations.  It 

is possible that recognition and recall rely on different representations as well as decision 

processes.  Our assumption of a common representation is simpler and consistent with existing 

computational models. 

Serial Recall.  In serial recall, m represents the strengths with which the items on the 

current and prior lists compete with each other for retrieval.  We model the competition as a 

limited-capacity racing diffusion decision process, which accounts for response time (RT) and 

response probability (accuracy; Logan et al., 2021; Tillman et al., 2020).  There is one runner for 

each possible response, and the first runner to finish is retrieved.  The finishing time for each 

runner depends on its drift rate (v) and its threshold ().  The drift rate is Equation 1 normalized 

by 1 plus the length of m, which represents the activity produced by the retrieval cue (Carandini 

& Heeger, 2012; Lo & Wang, 2006), multiplied by a constant , which represents capacity 

limitations: 
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𝑣𝑖,𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑎(𝑖|𝑗)

1+𝜅‖𝒎‖
       (2) 

If  = 0, capacity is unlimited; if  > 0, capacity is limited.  

The finishing time distribution for each runner is Wald (Inverse Gaussian) with a drift 

given by Equation 1 and a common threshold.  The density and distribution functions are: 

𝑓(𝑡|𝑣, 𝜃) =
𝜃

√2𝜋𝑡3
𝑒𝑥𝑝 [−

(𝑣𝑡−𝜃)2

2𝑡
]        (3) 

and 

𝐹(𝑡|𝑣, 𝜃) = Φ (
𝑣𝑡−𝜃

√𝑡
) + exp (2𝜃𝑣)Φ (−

𝑣𝑡+𝜃

√𝑡
)    (4) 

where (.) is the standard normal cumulative distribution function.  The finishing time 

distribution for item i in a race between N items is: 

 𝑓(𝑡, 𝑖) = 𝑓𝑖(𝑡) ∏ [1 − 𝐹𝑗(𝑡)]𝑁
𝑗≠𝑖       (5). 

The probability that i finishes first is given by the integral of Equation 5.  The decision process is 

illustrated in the second row of Figure 1. 

Cued Recognition.  Our model of the cued recognition task makes the same assumptions 

about representation and activation (Figure 1, top) and uses the same vector m to represent the 

activation from the position cue, but it makes different assumptions about the decision process 

applied to m.  In serial recall, the decision is based on the activation of individual items, each of 

which requires a separate response.  In cued recognition, we adopted the decision model Logan 

et al. (2021) applied to the task.  In this model, the decision is based only on the activation of the 

item in the probed position.  High activation is evidence for a “yes” response; low activation is 

evidence for a “no” response.  Lures from nearby positions in either list will have greater 

activation than lures from more distant positions, and so provide evidence for a “yes” response, 

which increases RT and error rate for the required “no” response.  This is illustrated in the 

bottom panels of Figure 1. 

We assume that the activated items on both lists are represented in vector m with one 

element for each possible item, whose value is specified by Equation 1, as in serial recall.  The 

probe item is represented as a vector q with the same dimensionality as m, with 1 in the element 

representing the probe item and 0 in all other elements.  Table 1 presents q vectors for matching 

probes, within-list probes, and prior-list probes.  The probe is matched to the activated items by 

taking the dot product of the vectors (m q).  As illustrated in Table 1, this amounts to 

multiplying the memory list item corresponding to the probe by 1 and multiplying all other items 
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by 0, so the match value depends only on the activation of the probe item in the probed position 

whether the activation comes from the current or prior memory list.  Consequently, the dot 

product m q is given by Equation 1 times 1.  The process is illustrated in the bottom panel of 

Figure 1.  The lines represent the activation of m and the red box represents the nonzero element 

in q and the contribution of m to the dot product.  Table 1 contains numerical examples. 

The decision process uses the limited-capacity racing diffusion model as serial recall but 

configures it differently.  There are only two runners, one for a “yes” response and one for a “no” 

response.  Equation 1 provides positive evidence for a “yes” response.  The larger the value of 

a(i,j), the more likely the response should be “yes.”  The drift rate for the “yes” response is 

simply Equation 1 normalized by 1 plus the length of m multiplied by a constant  to implement 

capacity limitations and an additional scaling constant  to balance “yes” and “no” evidence: 

𝑣𝑦𝑒𝑠 =
𝑎(𝑖|𝑗)

1+𝜅𝜆‖𝒎‖
        (6) 

Equation 1 provides negative evidence for a “no” response.  The higher the value of a(i,j), the 

less likely the response should be “no.”  The racing diffusion model (and neurons) require 

positive evidence (because the diffusion has a single upper bound and neurons can only have 

positive firing rates).  We create positive evidence by defining the drift rate for the “no” response 

is the length of the vector m, which represents the largest possible dot product of the probe and 

the activated memory items (Logan et al., 2021), multiplied by  to balance “yes” and “no” 

evidence, and divided by 1 plus the evidence for a “yes” response multiplied by  to implement 

capacity limitations: 

𝑣𝑛𝑜 =
𝜆‖𝒎‖

1+𝜅𝑎(𝑖|𝑗)
         (7)   

In Equation 7, “no” drift rate decreases as the evidence for a “yes” response increases.  “No” 

drift rate is highest when there is no evidence for a “yes” response (i.e., a(i,j) = 0) and lowest on 

match trials when the evidence for a “yes” response is strongest ((i.e., a(i,j) = 1). 

The denominators that normalize the drift rates are different in recall (Equation 2) and 

cued recognition (Equations 6-7).  In recall, each response is normalized by the total activity 

produced by the retrieval cue (i.e., the length of m), while in cued recognition, each response is 

normalized by the activity supporting the other response.  Normalization can be viewed as 

inhibition (Caradini & Heeger, 2012; Lo & Wang, 2006).  In recall, each possible response 
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inhibits every other possible response.  In recognition, the two responses inhibit each other, as in 

lateral inhibition. 

The finishing time distributions for “yes” and “no” runners are Wald with drift rates vyes, 

vno, and thresholds yes and no.  The finishing time distributions for “yes” and “no” responses are 

𝑓(𝑡, "yes"|𝑣𝑦𝑒𝑠 , 𝑣𝑛𝑜 , 𝜃𝑦𝑒𝑠, 𝜃𝑛𝑜) = 𝑓(𝑡|𝑣𝑦𝑒𝑠, 𝜃𝑦𝑒𝑠)[1 − 𝐹(𝑡|𝑣𝑛𝑜 , 𝜃𝑛𝑜]  (8) 

and 

𝑓(𝑡,"no"|𝑣𝑦𝑒𝑠, 𝑣𝑛𝑜 , 𝜃𝑦𝑒𝑠, 𝜃𝑛𝑜) = 𝑓(𝑡|𝑣𝑛𝑜 , 𝜃𝑛𝑜)[1 − 𝐹(𝑡|𝑣𝑦𝑒𝑠 , 𝜃𝑦𝑒𝑠]  (9). 

The accuracy of “yes” and “no” responses is given by the integrals of Equations 8 and 9, 

respectively. 

Again, it is important to emphasize that that the cued recognition model makes the same 

assumptions about representation and activation as the serial and recall model.  It differs only in 

the configuration of the decision process, as if subjects are attending to the same information in 

different ways (Logan et al., 2021, 2023a). 

 

Four Core Predictions 

The generic position coding model assumes that memory performance is the result of the 

activation of position codes, which depends on the distance from the cued position (|i-j|), and the 

strength of association (s) between the position codes and the items (Equation 1).  We derived 

four core predictions from the model about performance in memory tasks that require serial 

retrieval (serial recall, cued recognition). 

Prediction 1: Within-list transposition errors should decrease with distance from the 

intended (cued) position (distances -2 -1 1 2).  Performance should be worse for positions ±1 

away from the cued position than for positions ±2 away.  This follows from the distance 

component of Equation 1.  This is a core prediction of position coding theories but it is not 

unique to them.  Alternatives to position coding make the same prediction (Logan, 2021; Solway 

et al., 2012).  Nevertheless, it is important to test.  Failing to confirm it would challenge position-

coding and non-position-coding theories alike. 

Prediction 2: Prior-list intrusion errors should show the same distance effect (-2 -1 1 

2).  This follows from the distance component of Equation 1 and from the assumption that prior-

list and current-list items are associated with the same position codes.  This is a core prediction 
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that is unique to the position coding account of position-specific prior list intrusions in recall and 

interference in cued recognition.  It is not predicted by alternatives to position coding theories.  

Prediction 3: The prior-list distance effect should be smaller than the within-list 

distance effect at corresponding distances (-2 -1 1 2).  This follows from the multiplication of 

s and |i-j| in Equation 1.  For the current list, s = 1, so the distance effect is simply |i-j|.  For the 

prior list, s = sprior < 1 so the distance effect is sprior  |i-j|, which is smaller.  This is a core 

prediction of the position coding account of position-specific prior list intrusions and interference 

but it is not unique.  Theories that assume no such intrusions or interference also predict a 

smaller (i.e., null) effect of prior list distance. 

Prediction 4: Prior list errors should peak at distance = 0 (distances -1 0 1).  This 

follows from the distance component of Equation 1.  This is the strongest prediction of the 

position coding model.  It predicts position-specific prior list intrusions in serial recall, and it 

predicts position-specific prior list interference in cued recognition.  It is unique to the position 

coding account.  Failure to confirm this prediction would seriously challenge the position coding 

account of position-specific prior list intrusions. 

Simulations.  We ran simulations of the position coding model to illustrate the four 

predictions in recall and cued recognition and to assess the effects of varying prior list strength 

(sprior) on the predictions.  We assumed five-item lists that were cued in the third (middle) 

position and used Equation 1 to specify activation for distances of -2, -1, 1, and 2 for within list 

errors and distances of -2, -1, 0, 1, and 2 for prior list errors.  We used Equation 2 to simulate 

recall and Equations 6-7 to simulate cued recognition.  In all simulations,  = .5 and  = .2 for 

both tasks,  recall = 10.0 for recall, and  yes = 2.8,  no = 3.0, and  = .8 for cued recognition.  

Further details of the simulations are presented in Appendix A.  MATLAB code for the 

simulations is posted on OSF. 

Figure 2 shows the effect of prior list strength (sprior = .1, .2, .3, .5, .7) on predicted 

distance effects.  The top panel shows predicted within-list transposition errors and prior list 

intrusions in recall.  There are strong within-list distance effects (-2 -1 1 2) at all values of sprior, 

confirming Prediction 1.  There are prior-list distance effects (-2 -1 1 2), confirming Prediction 2. 

Within-list distance effects were stronger than prior-list distance effects at all values of sprior, 

confirming Prediction 3.  Prior-list distance effects peaked at the cued position (-1 01), 

confirming Prediction 4 for values of sprior  .2.  Thus, the position coding model predicts prior 
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list intrusions in recall.  The middle panel shows predicted error rates for within-list and prior-list 

lures in cued recognition, which also confirm the four predictions.  There are strong within-list 

distance effects and weaker position-specific prior list interference effects with a peak at the cued 

position at all values or sprior.  The bottom panel shows predicted RTs for correct responses to 

matching probes, within-list lures, and prior-list lures in cued recognition (i.e., the additional 

information that cued recognition provides about prior list activation).  The RTs show within-list 

distance effects and weaker position-specific prior list interference that peaks at the cued position 

at all values of sprior, confirming the four predictions.  Prior list interference is greater the 

stronger the associations of position codes prior list items.  Thus, the position coding model 

predicts position-specific prior list interference in cued recognition over a broad range of prior 

list association strengths. 

The effects of the prior list appear stronger in cued recognition than in recall.  This 

follows from the model.  Prior list items may be activated to the same extent in recall and cued 

recognition, but prior list intrusions only occur if the prior-list item happens to finish first in the 

decision process, before the correct item or another item from the current list.  Cued recognition 

probes the activation of prior list items directly on every trial, showing prior list interference in 

both accuracy and RT. 

 

The Experiments 

We conducted 12 experiments to test for the prior list intrusions and interference 

predicted by the position coding model.  Experiments 1 and 2 tested serial recall to ensure that 

position-specific prior list intrusions would occur with our materials (consonants), list length (6 

items), exposure duration (1000 ms), and retention interval (1000 ms).  The remaining 

experiments tested cued recognition to determine whether the same study conditions would 

produce the predicted position-specific prior list interference.  Experiments 3-10 manipulated 

factors intended to increase the likelihood that position codes would be activated.  We presented 

the position component of the probe 500 ms before the probe letter appeared so subjects could 

begin to focus on the cued position in the list.  We cued position with a number or a spatial 

display depicting its position.  Experiments 11-12 tested cued recognition with sequential 

presentation of the lists instead of simultaneous presentation.  Most studies of serial recall, 
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including those that address position-specific prior list intrusions, use sequential presentation.  

The goal was to generalize our results and strengthen connections to that literature.  

 

Experiments 1-2: Serial Recall 

The first two experiments used serial recall to determine whether it is possible to get 

position-specific prior list intrusions with the simultaneously presented six-item lists used later in 

the cued recognition experiments.  The purpose was to establish that items on the current list and 

prior list could be associated with position codes under these conditions.  Subjects were given 

lists of six consonants to remember, presented in a row on the computer screen for 1000 ms.  The 

screen went blank for 1000 ms and then a screen containing “RECALL” appeared, cuing 

subjects to type the list into their computer keyboards in correct order.  Their recall errors were 

scored as within-list transpositions or prior-list intrusions, which were analyzed as a function of 

their distance in the list from the correct letter.  In theory, these errors reflect the same activation 

measured by within-list lures and prior-list lures, respectively, in cued recognition. 

The experiments were the same except for the way the lists were constructed.  

Experiment 1 used lists that were constrained so that no letters repeated from one list to the next.  

Experiment 2 used lists that were unconstrained, so letters could repeat from one list to the next.  

The difference in the lists addresses an alternative interpretation of the cued recognition results 

and will be addressed in the General Discussion. 

Each experiment tested the four predictions for error rate derived from the position 

coding model: (1) Within-list transposition errors should show a distance effect, with more errors 

from ±1 position away from the correct position than from ±2 positions away.  (2) Prior-list 

intrusion errors should show the same distance effect for positions ±1 and ±2 away from the 

correct position.  (3) The prior list distance effect should be smaller than the within-list distance 

effect at corresponding positions, reflecting the reduced strength of prior-list associations 

(sprior).  (4)  Prior list intrusion errors should show position-specific interference, manifest as 

more errors from the correct position in the prior list (distance = 0) than for lures from adjacent 

positions (distance = ±1). 

 

Method 

Subjects 
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Each experiment tested 32 subjects recruited online through Prolific 

(https://www.prolific.co/).  We included only subjects 18-40 years of age, located in the USA, 

with English as first language, with an approval rating of at least 95%, who typed at least 40 

words per minute (WPM) on the typing test.  Subjects who participated in one experiment were 

excluded from the others.  Experiments 1-2 involved a single 1.5-hour session.  Subjects were 

paid USD $12 per hour.  The study was approved by the Vanderbilt University Institutional 

Review Board. 

Subjects reported their age and gender.  The mean age (standard deviation in brackets) of 

the subjects was 30.97 (6.01) and 31.94 (5.60). for Experiments 1-2 respectively.  The gender 

distribution (male:female:prefer-not-to-say) was 15:17:0 and 26:6:0 for Experiments 1-2 

respectively.  Mean speed on the typing test was 60.80 (17.70) and 64.73 (15.10) for 

Experiments 1-2, respectively.  Mean accuracy was 0.9173 (0.0430) and  0.9272 (0.0427) for 

Experiments 1-2, respectively. 

 

Apparatus and Stimuli 

The experiments were conducted online on subjects’ personal computers.  Subjects were 

instructed to use Google Chrome or Mozilla Firefox to complete the experiment. Phone and 

tablet users were excluded in the Prolific intake, and the experiment would not run on their 

browsers.  The trials for each session were generated individually and sent to subjects’ computers 

using a custom Python backend.  The experiment was controlled by Javascript in the web 

browser using a custom function written to operate in jsPsych (de Leeuw, 2015).  When the 

experiment started, subjects’ web browsers were instructed to enter fullscreen mode to reduce 

distraction. 

  The memory lists consisted of six uppercase letters selected at random from the set of 20 

consonants (excluding vowels and Y), displayed in a row.  Experiment 1 used constrained lists, 

in which no letters were repeated from one trial to the next.  Experiment 2 used unconstrained 

lists, in which letters were allowed to repeat from one trial to the next.  Characters were 

presented in a monospaced typeface (Courier New or Courier, displayed in white, 45 pixels high. 

The background of the display was set to mid-gray ([127, 127, 127] in 24-bit RGB values). 

 

Procedure 

https://www.prolific.co/
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In both experiments, each trial began with a fixation cross presented in the center of the 

screen for 1000 ms.  Then the memory list was presented for 1000 ms, followed by a blank 

screen for 1000 ms, and then a probe display containing the word RECALL appeared.  Subjects 

were required to type the letters in the list in response to the probe, and the letters they typed 

were echoed on the screen in left to right order, as in typing text.  They were told to type six 

letters on each trial and hit “return” when they were finished.  Then the screen went blank for a 

1000 ms intertrial interval.  Space and backspace keys were disabled.  There were 480 trials in 

each experiment.  Breaks were given every 80 trials. 

The instructions were written and presented using a self-paced series of manually 

controlled slides.  Subjects were allowed to review the instructions if they wished.  Each subject 

completed a typing test to ensure they had enough skill to execute keystrokes automatically, 

without hunting and pecking on the keyboard, which might limit performance.  The typing test 

involved typing a paragraph about the many merits of border collies (Logan & Zbrodoff, 1998).  

The paragraph was presented on the top of the screen and subjects’ keystrokes were echoed in a 

panel below the paragraph. 

  At the end of each block, a screen was presented indicating the overall accuracy for the 

preceding block, and subjects were allowed to take a self-timed break.  Every 5 minutes, the 

experiment checked whether accuracy was greater than 60%.  If subjects fell below this criterion, 

they were warned to improve performance and given an opportunity to review the instructions.  

On the third warning, subjects were excluded from the experiment but paid nevertheless. 

 

Data Analysis 

Experiments 1 and 2 were designed to measure within-list transposition errors and 

position-specific prior list intrusions in serial recall.  We identified within-list errors as items 

from the list that were recalled in the wrong position.  Distance was defined as the signed 

difference between the position in the recall sequence and the position in the memory list.  We 

included distances (-2 -1 1 2) to parallel the distance manipulation in the cued recognition 

experiments.  We identified prior-list errors as recalled items that were in the prior list and not in 

the current list.  We defined distance as the signed difference between the position in the prior 

list and the position that was reported in the current list.  For example, if the current list is 

ABCDEF and the prior list is GHIJKL, then recalling K (in error) after recalling A and B is a 
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prior list intrusion with distance = 2.  We did not normalize within-list transpositions or prior-list 

intrusions for availability. 

We tested the four predictions with contrasts.  We tested Predictions 1 and 2 (within- and 

prior-list distance effects) using contrast weights (-1 1 1 -1) for distances (-2 -1 1 2) to compare 

distances ±1 and ±2.  We tested Prediction 3 by comparing the (-2 -1 1 2) distance contrast for 

the current list with the (-2 -1 1 2) distance contrast for the prior list, using weights (-1 1 1 -1) for 

the current list and (1 -1 -1 1) for the prior lists.  We tested Prediction 4 (position specific prior 

list intrusions) using weights (-1 2 -1) for distances (-1 0 1) in the prior list.  This is the critical 

contrast that tests for position-specific prior list intrusions.   

For each contrast, we divided the data for each subject into the relevant cells (4 distances 

for within-list lures; 5 distances for prior list lures) and calculated the proportion of errors.  Then 

we calculated the contrast values for each subject, multiplying the error rates by the contrast 

weights and summing them.  Then, we did a t test asking whether the mean contrast was 

significantly greater than zero.  The error term was the standard error of the mean contrast value.  

We also counted the number of subjects who showed an effect in the expected direction and 

reported JZS Bayes Factors (BF) to quantify support for null (BF01) and alternative (BF10) 

hypotheses. 

Our contrasts provide inferential statistical tests of specific hypotheses derived from 

theory.  They evaluate relations between conditions, and the error variability depends on those 

relations, which cannot be expressed as error bars around individual means.  Because of this, we 

do not present error bars in any of our figures. 

Data and programs for presenting the task and analyzing the data for all experiments in 

this article are available on the Open Science Framework at https://osf.io/j4z7a/. 

 

Results 

Mean within-list and prior-list error rates for Experiments 1 and 2 are plotted as a 

function of distance in the left and middle panels of Figure 3, respectively.  Table 2 contains 

contrasts evaluating distance effects.  The right panel of Figure 3 contains within-list and prior-

list error rates from position-cued recall experiments that used the same (unconstrained) lists and 

probed recall of a single item with a spatial cue (e.g., ###?##, where the underline represents a 

caret ^ pointing at the cued position; Logan et al., 2023a). 

https://osf.io/j4z7a/
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The data from Experiments 1 and 2 confirmed the four core predictions of position 

coding theory.  There were significant distance effects (-2 -1 1 2) in each experiment for both 

within- and prior-list errors, confirming Predictions 1 and 2.  Within-list distance effects were 

significantly stronger than prior-list distance effects in each experiment, confirming Prediction 3.  

There were significant position-specific prior list intrusions in each experiment.  Intrusions were 

more frequent at lag 0 than at lags ± 1 in 30 out of 32 subjects in Experiment 1 and in 31 out of 

32 subjects in Experiment 2.  The contrast assessing position specific prior list intrusions (-1 0 1) 

was significant in each experiment. 

Experiment 2 replicated the results of Experiment 1 very closely.  The patterns in Figure 

3 are very similar.  Table 2 contains t tests comparing prior list contrasts (-1 0 1) and (-2 -1 1 2), 

within list contrasts (-2 -1 1 2), and contrasts comparing (-2 -1 1 2) in prior versus current lists 

between experiments.  None of the t tests were significant.  

The cued recall data in Figure 3 build a bridge between serial recall and cued recognition.  

Cued recall requires subjects to recall items, like serial recall, while focusing on a single item in 

the memory list in response to a cue, like cued recognition.  The cued recall data were obtained 

in dual task experiments in which subjects were given 6-item lists to remember and then were 

given two spatial cues in succession indicating the two items to be reported (e.g., ###### 

followed by ###### cues the report of the second and the fifth item in the list).  The interval 

between the two cues varied to produce dual-task interference (100, 300, or 900 ms).  The data in 

Figure 3 collapse over four experiments, the interval between cues, and responses to the first and 

second cue to obtain sufficient observations.  The contrast testing position-specific prior list 

intrusions was significant in each of the four experiments.  Figure 3 also shows that within-list 

distance effects (-2 -1 1 2) were stronger than prior list distance effects (-2 -1 1 2), as in serial 

recall.  In theory, this means that the cue in cued recall activated position codes, the position 

codes activated items on both lists, and the activation was greater for items on the current list.  

Thus, the position cue in cued recognition should also activate a position code and the items 

associated with it on both lists. 

 

Discussion 

Experiments 1 and 2 confirmed the four predictions of position coding theory in serial 

recall and set the stage for the cued recognition experiments to follow.  They show that position-



 18 

specific prior list intrusions can be observed under our list presentation conditions if the retrieval 

task is serial recall.  In theory, this means that position codes were activated in serial recall, and 

they activated associated items on the current and prior lists.  The data from Logan et al. (2023a) 

in Figure 4 show that position-specific prior list intrusions can also be observed in cued recall.  

In theory, this means that the position cues activated position codes, which activated items in the 

current and prior list.  It means that the position cues in the cued recognition experiments should 

also activate position codes, which should activate items on the current and prior list.  Cued 

recognition allows us to test that activation directly, using lures from uncued positions in the 

current list and lures from all positions in the prior list. 

 

Experiments 3-10: Cued Recognition 

The simulations established that position coding theories predict position-specific prior 

list interference when cued recognition is tested with prior list lures.  Experiments 1 and 2 

established that position-specific prior list intrusions occur under our presentation conditions in 

serial recall.  Now, we report the cued recognition experiments that test for position-specific 

prior list interference under the same conditions.  We ran a series of eight experiments with 

manipulations intended to enhance the activation of position codes.  We began with probes that 

cued position spatially, following our previous experiments on cued recognition (Logan et al., 

2021; Logan et al., 2023b).  The probe consisted of five # symbols and a letter with a caret (^) 

underneath it to indicate the cued position (e.g., ###D##, where the underline represents the 

caret).  Then we tried cuing spatial position numerically (e.g., 4D cues the fourth position), 

thinking that numeric cues might cue position more directly.  Then we tried pre-cuing position so 

subjects could begin to focus on the cued position in the memory list before the letter probe was 

presented (Logan et al., 2023b).  We first ran the series with constrained lists (items could not 

repeat in consecutive lists) and then replicated it with another four experiments that used 

unconstrained lists (items could repeat in consecutive lists) to address alternative interpretations 

(see General Discussion).  Altogether, we ran eight experiments in a 2 (probe type) x 2 (pre-cue) 

x 2 (list type) design.  

Each experiment had the same basic design to test the predictions of position coding 

theory.  Half of the probes contained targets that matched the item in the cued position in the 

memory list.  The other half of the probes contained lures that did not match the item in the cued 
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position in the memory list.  Half of the lures (within-list lures) were sampled from the current 

list -2, -1, 1, or 2 positions away from the cued position to ensure that subjects focused on the 

cued position.  The other half of the lures (prior-list lures) were sampled from the prior list -2, -

1, 0, 1, or 2 positions away from the cued position to test for position-specific prior list 

interference. 

Each experiment tested the four predictions for RT and error rate derived from the 

position coding model: (1) Within-list lures should show a distance effect, with worse 

performance for lures ±1 position away from the cued position than for lures ±2 positions away.  

(2) Prior-list lures should show the same distance effect for lures ±1 and ±2 positions away from 

the cued position.  (3) The prior list distance effect should be smaller than the within-list distance 

effect at corresponding positions, reflecting the reduced strength of prior-list associations 

(sprior).  (4)  Prior list lures should show position-specific interference, manifest as worse 

performance for lures from the cued position in the prior list (distance = 0) than for lures from 

adjacent positions (distance = ±1).  This is the strongest prediction of the position coding model.  

The same activation of prior list items predicts position specific interference in cued recognition 

and position specific intrusions in serial recall.  Failure to confirm this prediction would 

seriously challenge the position coding account of position-specific prior list intrusions. 

 

Method 

Subjects 

Each experiment recruited 32 subjects from Prolific using the same selection criteria as 

Experiments 1 and 2.  The mean age (standard deviation in brackets) of the subjects was 28.63 

(6.96), 30.16 (5.73), 30.53 (5.86), 29.91 (6.79), 29.22 (5.53), 29.06 (5.54), 31.69 (4.43), and 

28.66 (6.39) for Experiments 3-10 respectively.  The gender distribution (male:female:prefer-

not-to-say) was 15:17:0, 18:14:0, 16:15:1, 16:16:0, 18:14:0, 14:17:1, 16:16:0, and 16:16:0 for 

Experiments 3-10 respectively.  No typing test was required because subjects only pressed one of 

two keys. 

 

Apparatus and Stimuli 

The apparatus was the same as in Experiments 1 and 2 (subjects’ home computers), and 

the memory lists were the same: six consonants randomly selected from a set of 20 with the 
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constraint that no items repeat on consecutive lists (Experiments 3-6) or with no constraint (items 

could repeat on consecutive lists; Experiments 7-10).  The presentation duration of the memory 

lists (1000 ms), the retention interval between the memory list and the complete probe (1000 

ms), and the intertrial interval (1000 ms) were the same as in Experiments 1 and 2, but the probe 

differed.  Experiments 3, 4, 7, and 8 used spatial probes, which displayed an array of five # 

symbols plus a probe letter with a caret (^) underneath it in the cued position (e.g., ##C###, 

where the underline represents the caret).  Experiments 5, 6, 9, and 10 used numeric probes, 

which displayed a single number and a probe letter presented in the center of the screen (e.g., 

2C).  Experiments 3, 5, 7, and 9 had blank 1000 ms retention intervals followed by complete 

probes (##C### or 2C).  Experiments 4, 6, 8, and 10 pre-cued the probed position 500 ms after 

the memory list.  The position component of the probe was presented with a blank instead of the 

probe letter for 500 ms (e.g., ##_### or 2), followed by the complete probe (##C### or 2C), in 

which the blank position in the precue was replaced by the probe letter. 

 

Procedure 

Each trial began with a fixation cross presented in the center of the screen for 1000 ms.  

Then the memory list was presented for 1000 ms.  In Experiments 3, 5, 7, and 9, the memory list 

was followed by a blank screen for 1000 ms, and then the complete probe display (containing the 

position cue and the probe letter) appeared.  In Experiments 4, 6, 8, and 10, the position cue 

appeared 500 ms after the memory list for 500 ms, when the probe letter was added to complete 

the probe display.  In all experiments, the probe display remained onscreen until subjects 

responded, and then the screen went blank for a 1000 ms intertrial interval. 

There were 480 trials per session, constructed by randomly interleaving 240 trials of 120 

targets and 120 within-list lures with 240 trials of 120 targets and 120 prior list lures.  The targets 

were no different in the two sets of trials but the lures differed.  The design for targets and 

within-list lures involved 6 probe positions and 4 distances (-2 -1 1 2), creating 24 “no” trials, 

plus 24 “yes” trials (6 probe positions replicated 4 times), for a total of 48 trials for one 

replication.  The 240 target and within-lure trials replicated this design 5 times.  The design for 

targets and prior-list lures involved 6 probe positions and 5 distances (-2 -1 0 1 2), creating 30 

“no” trials and 30 “yes” trials (6 probe positions replicated 5 times), for a total of 60 trials for 

one replication.  The 240 target and prior-list trials replicated this design 4 times.  For each 
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subject, the 240 trials for within- and prior-list lures were randomized separately and then 

combined randomly to produce the final set of 480 trials. 

Subjects were told to indicate whether the cued letter in the probe was presented in the 

same position in the memory list, pressing the M (or Z) key on the keyboard to indicate a “yes” 

response and the Z (or M) key to indicate a “no” response.  Mapping of response categories to 

keys was counterbalanced between subjects.  The instructions were written and presented using a 

self-paced series of manually controlled slides.  Subjects were allowed to review the instructions 

if they wished. 

  Subjects had to respond within 3000 ms of the presentation of the probe or the trial was 

terminated with the message “TOO SLOW” presented centrally in red font for 3000 ms.  These 

trials were excluded from analysis and treated as errors in calculating feedback during the task.  

At the end of each block, a screen was presented indicating the overall accuracy for the 

preceding block, and subjects were allowed to take a self-timed break.  Every five minutes, the 

experiment checked whether accuracy was greater than 60%.  If subjects fell below this criterion, 

they were warned to improve performance and given an opportunity to review the instructions.  

On the third warning, subjects were excluded from the experiment. 

 

Data Analysis 

We tested the four predictions of position coding theory with four contrasts on the mean 

RTs and error rates.  The within-list distance effects in Prediction (1) were tested with a contrast 

using weights (-1 1 1 -1) for distances (-2 -1 1 2).  The corresponding prior-list distance effects 

in Prediction (2) were tested using the same contrast weights for the same distances in the prior 

list.  The attenuation of distance effects in prior lists relative to current list effects in Prediction 

(3) was tested with contrast weights (-1 1 1 -1) for within-list distances (-2 -1 1 2) and contrast 

weights (1 -1 -1 1) for prior-list distances (-2 -1 1 2).  The position-specific prior list interference 

in Prediction (4) was tested with contrast weights (-1 2 -1) for prior-list distances (-1 0 1).  The 

confidence intervals around contrast values cannot be expressed as error bars around the 

component RTs and error rates.  Confidence intervals around mean RTs and error rates cannot 

support inferences about the significance of the contrasts.  Consequently, we present no error 

bars in the figures. 
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Results 

Mean RT for correct responses (top) and error rate (bottom) for matches (“yes” 

response), within-list lures (“no” response), and prior-list lures (“no” response) are plotted as a 

function of distance from the cued position in Figure 4 for Experiments 3-6 and Figure 5 for 

Experiments 7-10.  The pattern of the data was very similar across experiments.  It shifted 

downward but remained the same when probe position was pre-cued (Experiments 4, 6, 8, and 

10 vs. Experiments 3, 5, 7, and 9), following previous research (Logan et al., 2023b).  RTs were 

longer with numeric position cues (Experiments 5, 6, 9, 10 vs. Experiments 3, 4, 7, 8) but the 

pattern of the data was very similar.  The pattern was the same whether lists were constrained to 

exclude letter repetitions in consecutive lists (Experiments 3-6) or unconstrained to allow 

repetitions (Experiments 7-10).  Serial position data are presented in Appendix C in Figure C1. 

 

Position Coding Model Predictions  

We assessed the four predictions of the position coding model separately for each 

experiment.  Contrasts evaluating the predictions are presented in Table 3 for Experiments 3-6 

and Table 4 for Experiments 7-10. 

Prediction 1: Distance Effects for Within-List Lures (-2 -1 1 2).  In each experiment, 

subjects were able to focus on the cued item and ignore the other items in the list: d’s, calculated 

from hit rates from “yes” trials and false alarm rates from within-list lures, averaged (SEM in 

brackets) 2.0942 (.1504), 2.5683 (.1527), 1.9732 (.1575), and 2.2042 (.1435) in Experiments 3-6, 

respectively, and 2.1247 (0.1262), 2.3239 (.1187), 1.9038 (0.1379), and 2.1344 (0.1630) for 

Experiments 7-10, respectively.  In theory, this means position codes for the cued positions were 

activated.  Current list items are associated with position codes with strength (sprior) = 1, so 

within-list lures should be activated in proportion to their distance from the cued position 

(Equation 1).  In each experiment, RT and error rate for within-list lures decreased substantially 

as the distance between the probed position and the lure’s position increased.  The within-list 

distance contrasts were highly significant for both RT and error rate in each experiment.  In 

theory, this means position codes activated neighboring items in proportion to their distance from 

the cued position. 

Prediction 2: Distance Effects for Prior-List Lures (-2 -1 1 2).  Having established the 

conditions necessary to produce prior list intrusions (activation of position codes, activation of 
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neighboring within-list items), the question is whether lures from prior lists produced the 

predicted distance effects at the same distances as within-list lures.  In each experiment, the 

answer was clearly negative.  RTs and error rates for prior list lures showed no effect of distance 

in any experiment.  The contrast was significant only for RT in Experiment 10, where RTs were 

shorter for distances of ±1 than for distances of ±2 (Tables 3 and 4).  These results fail to 

confirm the prediction, but the prediction for distances (-2 -1 1 2) is not strong.  The simulations 

in Figures 2 and 3 show weak effects at these distances. 

Prediction 3: Distance Effects are Stronger Within-List than Between-List.  Position 

coding theories assume that items in the current list are more strongly associated with position 

codes than items in the prior list.  This implies that within-list distance effects should be stronger 

than prior-list distance effects at the same distances (-2 -1 1 2).  Contrasts comparing within- and 

prior-list distance effects supported this prediction.  They were highly significant for error rate in 

every experiment and highly significant for RT in every experiment but Experiment 5 (Tables 3 

and 4).  On the balance, the data confirm the prediction. 

Prediction 4: Distance Effects with Prior List Lures (-1 0 1).  The results supporting 

the first and third predictions establish the conditions necessary to produce position-specific prior 

list interference.  The probe activates the position code in the cued position, which activates 

items associated with it and its nearby neighbors on the current list and, to a lesser extent, on the 

prior list.  Prior list activation should be strongest at the cued position, so interference should 

peak at distance = 0.  The prior list contrast comparing distance = 0 with distance = ±1 tests this 

prediction directly.  The contrast for RT was not significant in any experiment (Tables 3 and 4).  

The contrast for error rate was significant only in Experiment 7 (i.e., 1 out of 16 contrasts), but 

the difference may be due to the negative (-2 -1  1  2) prior list distance contrast, in which error 

rate was lower for distances ± 1 than for ± 2.  A contrast comparing error rates at distances ± 2 

with distance 0 found no significant difference, t(31) = 0.000003, SEM = 0.0215, p = .9999, BF10 

= 0.1888.  On the balance, the data disconfirm the prediction.  They challenge the position 

coding account of position-specific prior list intrusions in serial and cued recall. 

 

Between-Experiment Comparisons 

Experiments 3-10 manipulated list type (constrained or unconstrained), probe type 

(spatial or numerical), and pre-cue delay (0 or 500 ms) between experiments, attempting to 
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increase the likelihood of activating position codes and to address alternative interpretations.  

Each experiment involved a single combination of these variables, so their effects were not 

assessed with the inferential statistics reported so far.  Here, we take advantage of the factorial 

structure of the between-experiment manipulations and evaluate their effects in 2x2x2 between-

subject analyses of variance (ANOVAs).  We performed one set of ANOVAs on mean RTs and 

error rates to assess the effects of the manipulations on cued recognition performance.  We 

performed four sets of ANOVAs on the contrasts evaluating the four predictions of the position 

coding theory, asking whether the effects assessed with the contrasts interact with the between-

experiment manipulations.  Summary tables for the ANOVAs are presented in Appendix B. 

Mean RT and Error Rate.  We focused on RTs for “yes” (match) responses.  They 

appeared to change in the same way across experiments as “no” responses to within- and prior-

list lures.  They were based on more observations than “no” responses (240 vs. 120 for each type 

of lure) and had not been tested in any of the previous analyses.  Averaged across experiments, 

“yes” RT was 315 ms shorter with a 500 ms pre-cue than without, suggesting that the pre-cue 

allowed time to focus on the cued position (Logan et al., 2023b), which should increase the 

activation of position codes.  “Yes” RT was 170 ms longer with numeric probes than spatial 

probes, and not affected by list type (difference = 27 ms).  These results were confirmed by 

significant main effects of pre-cue delay and probe type in the ANOVA on mean RTs.  No other 

effects were significant.  Averaged across experiments, error rate on “yes” trials was 0.0281 

smaller with a pre-cue than without, 0.0122 smaller with spatial probes than with numeric 

probes, and 0.0023 smaller with unconstrained lists than with constrained lists.  The pre-cue 

effect was the only significant effect in the analyses.  The summary tables for the ANOVAs are 

presented in Table B1 in Appendix B. 

Prediction 1: Within Distance (-2 -1 1 2).  There were no significant effects in the 

ANOVA on the RT contrasts.  The effects were consistent across experiments.  The null effect of 

probe delay is consistent with the null interaction between probe delay and distance in Logan et 

al. (2023b). The only significant effects in the ANOVA on the P(Error) contrasts were the main 

effects of probe type and probe delay.  The contrasts were larger for spatial probes and larger for 

the 500 ms delay.  Summary tables for the ANOVAs are presented in Table B2 in Appendix B. 
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Prediction 2: Prior Distance (-2 -1 1 2).  There were no significant main effects or 

interactions in the ANOVAs on RT and P(Error).  The null prior distance effects were consistent 

across experiments.  Summary tables for the ANOVAs are presented in Table B3 in Appendix B. 

Prediction 3: Within vs. Prior Distance (-2 -1 1 2).  There were no significant effects in 

the ANOVA on RT, indicating that within-list distance effects were stronger than prior-list 

distance effects in each experiment.  The effect of probe delay was significant in the ANOVA on 

P(Error), indicating smaller differences between within and prior distance effects with the 500 

ms delay, which may be a floor effect.  Summary tables for the ANOVAs are presented in Table 

B4 in Appendix B. 

Prediction 4: Prior Distance (-1 0 1).  A sharp peak in interference at distance = 0 is the 

strongest prediction of the position coding model (Figure 2).  There were no significant effects in 

the ANOVA on this contrast in RT, indicating that the null distance effect replicated consistently 

across experiments.  List type was the only significant effect in the ANOVA on the contrast in 

P(Error), indicating a smaller contrast value with unconstrained lists.  These results disconfirm 

the prediction and thereby challenge the position coding account of position-specific prior list 

intrusions.  Summary tables for the ANOVAs are presented in Table B5 in Appendix B. 

Summary.  The ANOVAs provided statistical support for the differences in overall RT 

and error rate between experiments.  There were few differences in the distance contrasts across 

experiments, suggesting that the contrasts replicated well. 

 

Discussion 

Across experiments, overall performance varied with pre-cue delay and probe type but 

the pattern of distance effects remained the same.  Distance had strong effects on within-list lures 

but null effects on prior-list lures, measured either at (-2 -1 1 2) or (-1 0 1).  This pattern of 

effects confirms Predictions 1 and 3 about within-list lures but disconfirms Predictions 2 and 4 

about prior list lures.  The results have strong implications for position coding theories of serial 

order.  The experiments established the conditions necessary (in theory) to produce position-

specific prior list interference.  The large d’ values comparing “yes” and within-list “no” 

responses suggest that the position code for the cued position was activated more than the others.  

The within-list distance contrast (-2 -1 1 2) suggests that position codes for nearby items were 

activated in proportion to their distance from the cued position.  Within-list distance effects were 
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stronger than prior-list distance effects, suggesting that position codes activated items in the 

current list more strongly than items in the prior list.  In theory, the activated position codes 

should activate items from the prior list in proportion to their distance from the cued position.  

This activation should reduce the drift rate for “no” responses (Equation 7), slowing RT and 

increasing error rate in (inverse) proportion to their distance from the cued position, but across 

experiments, distance had no effect on either measure.  This key prediction was not confirmed in 

any of the eight experiments.  This challenges the position coding account of position-specific 

prior list intrusions and position coding theories more broadly.  We discuss alternative 

interpretations and implications in the General Discussion, after reporting the last two 

experiments. 

 

Experiments 11-12: Cued Recognition with Sequential List Presentation 

In all the experiments so far, the memory lists have been presented simultaneously for 

1000 ms.  In the literature, experiments on position-specific prior list intrusions and serial 

memory in general usually present the memory list sequentially, one item at a time.  Experiments 

1 and 2 show that position-specific prior list intrusions can be found with simultaneously 

presented lists, but the effects may be more robust with sequentially presented lists.  Experiments 

11 and 12 replicated the cued recognition results with sequentially presented lists to determine 

whether position-specific prior list interference would occur with those lists. 

Experiments 11 and 12 were replications of Experiments 5 and 9 with sequential lists.  In 

both experiments, the position cues were numeric and position and item cues were presented 

simultaneously (e.g., 5R).  Experiment 11 used constrained lists.  Experiment 12 used 

unconstrained lists.  Each experiment tested the four predictions of position coding theory. 

 

Method 

Subjects 

Each experiment recruited 32 subjects from Prolific, using the same selection criteria as 

the previous experiments.  The mean age (standard deviation in brackets) of the subjects was 

30.19 (5.29) and 29.09 (5.96) for Experiments 11 and 12, respectively.  The gender distribution 

(male:female:prefer-not-to-say) was 22:10:0 and 18:13:1, respectively. 
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Apparatus and Stimuli 

These were the same as in Experiments 5 and 9 (numeric cues, no pre-cue delay), except 

that the lists were presented sequentially.  Each item appeared in the center of the screen for 500 

ms, whereupon it was replaced by the next item.  The retention interval, which began after the 

last item was erased from the screen, was 1000 ms, as in the previous experiments. 

 

Procedure 

The procedure was the same as in Experiments 3-10. 

 

Results 

Mean RT for correct responses (top) and error rate (bottom) for matches (“yes” 

response), within-list lures (“no” response), and prior-list lures (“no” response) for each 

experiment are plotted as a function of distance from the cued position in Figure 5.  The results 

replicated Experiments 5 and 9 closely.  There were strong distance effects for within-list lures 

and null distance effects with prior list lures. 

As before, d’ comparing hit rates from “yes” trials with false alarm rates from within-list 

“no” trials showed that subjects were able to focus sharply on the cued position, activating a 

position code in theory.  The d’s (SEM in brackets) were 2.0872 (0.1459) and 2.0642 (0.1549) 

for Experiments 11 and 12, respectively.  We tested the four predictions of position coding 

theory in each experiment using contrasts presented in Table 6.  The contrasts evaluating within-

list distance effects (-2 -1 1 2) and the contrasts comparing within-list and prior-list distance 

effects were highly significant for RT and error rate in each experiment, confirming Predictions 

1 and 3.  The contrasts evaluating prior list distances did not show evidence of interference, 

disconfirming Predictions 2 and 4.  The contrast for distances (-2 -1 1 2) was not significant for 

RT or error rate in either experiment, nor was the critical contrast for distances (-1 0 1). 

 

Discussion 

The results show that the main findings in cued recognition can be replicated with 

sequentially presented lists.  Thus, the findings generalize to conditions more typical of the 

literature on position-specific prior list intrusions and the broader literature on serial memory.  

As in the previous cued recognition experiments, these experiments established the conditions 
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necessary (in theory) to produce position-specific prior list interference (activating position 

codes, activating nearby position codes more strongly than remote ones, activating the current 

list more than the prior list), but none was observed in either experiment.  The results confirmed 

Predictions 1 and 3 but disconfirmed Predictions 2 and 4.  Now there are 10 experiments 

showing that result. 

 

General Discussion 

The experiments were designed to test predictions derived from the position coding 

account of position-specific prior list intrusions.  We showed that a position coding model that 

produces prior list intrusions must also produce position-specific prior list interference in a cued 

recognition task (when coupled with an appropriate decision process; Figures 1-2).  We failed to 

find such interference in 10 experiments.  Figure 7 plots the mean observed RTs and error rates 

(solid lines) across all 320 subjects in Experiments 3-12 for match responses, within-list lures, 

and prior-list lures as a function of distance from the cued position.  The pattern of the observed 

data does not resemble the position coding predictions in Figure 2 very closely.  The observed 

pattern is most similar to the predictions with the lowest prior list strength (sprior = 0.1).  

However, these strengths and probabilities are too low to account for the position-specific prior 

list intrusions we observed in serial recall in Experiments 1 and 2 (cf. predictions in the top left 

panels of Figure 2).  Thus, the results challenge the position coding account of prior list 

intrusions.  They challenge position coding theories more generally because their account of 

position-specific prior list intrusions is a unique prediction that distinguishes them from other 

theories of serial memory (Henson et al., 1996; Osth & Hurlstone, 2022). 

Each experiment tested four predictions derived from the core assumptions of position 

coding theory.  The theory assumes that position codes are activated in proportion to their 

distance from the cued location, the position codes activate items associated with them on the 

current list and the prior list in proportion to their activation, and associations to the current list 

are stronger than associations to the prior list.  This leads to the four predictions, which we tested 

on the data from all 320 subjects in Experiments 3-12.  

Prediction 1. For within-list probes, RT and error rate should both decrease with 

distance, assessed with contrasts comparing positions (-2 -1 1 2).  Prediction 1 was confirmed.  

The within-list distance effects (-2 -1 1 2) were strong and highly significant.  For RT, t(319) = 
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8.9228, SEM = 8.9228, p < 0.0001, N > 0 = 269, BF10 > 1000; for P(Error), t(319) = 9.4483, 

SEM = 0.0097, p < 0.0001, N > 0 = 248, BF10 >1000. 

 Prediction 2. For prior-list probes, RT and error rate should also decrease with distance 

over the same set of distances (-2 -1 1 2).  Prediction 2 was disconfirmed. The prior-list distance 

effects (-2 -1 1 2) were null.  For RT, t(319) = 0.1882, SEM = 6.7750, p = 0.8508, N > 0 = 156, 

BF10 = 0.0638; for P(Error), t(319) = 2.1014, SEM = 0.0056, p = 0.0364, N > 0 = 150, BF10 = 

0.5508. 

Prediction 3. The (-2 -1 1 2) distance effect should be stronger for within-list lures than 

for prior-list lures.  Prediction 3 was confirmed. Within-list distance effects (-2 -1 1 2) were 

much stronger than prior-list distance effects (-2 -1 1 2).  For RT, t(319) = 12.7175, SEM = 

11.1316, p < 0.0001, N > 0 = 248, BF10 > 1000; for P(Error), t(319) = 7.0079, SEM = 0.0114, p < 

0.0001 N > 0 = 236, BF10 > 1000.  

Prediction 4. For prior-list probes, RT and error rate should peak at distance = 0, 

assessed with contrasts comparing positions (-1 0 1).  Prediction 4 was disconfirmed.  There was 

no peak at distance = 0 for prior list lures.  For RT, t(319) = 1.0564, SEM = 10.0030, p = 0.2916, 

N > 0 = 152, BF10 = 0.1089; for P(Error), t(319) = 0.0177, SEM = 0.0072, p = 0.2810, N > 0 = 

118, BF10 = 0.0627. 

The data confirm Predictions 1 and 3 but disconfirm the critical Predictions 2 and 4, 

which are the most diagnostic.  These results challenge the position coding account of position-

specific prior list interference and, by extension, position-specific prior list intrusions. 

 

Model Fits 

We sought converging evidence on the four predictions by fitting versions of the position 

coding model that simulated the predictions in Figure 2 to the data from Experiments 3-12 to test 

hypotheses about prior list strength and the distance effects.  The contrasts in the previous 

analyses are operational definitions of the strength (sprior) and distance () components of 

Equation 1.  The fits measure these components directly as best-fitting model parameters and 

confirm the contrast results.  The contrast analyses suggested that prior list strength equaled zero 

in Experiments 3-12.  Position coding theory predicts strength greater than zero.  We test this 

hypothesis by comparing the fits of models that fix sprior to 0 with models that allow it to vary 

freely.  Position coding theory predicts models with sprior free to vary will fit better than models 
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with sprior fixed at 0.  The fits with sprior free to vary provide estimates of prior list strength.  

Position coding theory predicts the estimates will be greater than 0.  The fitting procedure is 

described in Appendix D. 

We used Equation 1 to generate activation strengths for targets, within-list lures, and 

prior-list lures, and Equations 6 and 7 to generate drift rates for “yes” and “no” responses.  The 

position similarity gradient , prior list strength sprior, and capacity  were each estimated as 

free parameters for each subject in each experiment.  In addition, we estimated the thresholds for 

the two accumulators, a residual time parameter, and two scaling parameters for converting 

activations into drift rates.  For each trial experienced by a subject, we used Equations 8 and 9 to 

compute the likelihood of making the response observed on that trial at the time observed on that 

trial.  We found parameters for each subject in each experiment that maximized the total 

likelihood of the observed responses and RTs across all trials.  As a result, models were fit to the 

complete joint distributions of correct and error responses and RTs in all conditions.   

We fit two models.  The first was a nonzero prior list strength model, representing the 

position coding model in Figure 1, which allowed sprior to vary between 0 and 1.  The second 

was a zero prior list strength baseline model, which fixed sprior at 0 to eliminate prior list items 

from the model.  A complete description of the models, their best-fitting parameter values, and 

their predictions for mean correct RT and error rate in each experiment are presented in 

Appendix D.  The results of a parameter recovery analysis of the models are presented in 

Appendix E.  

The model predictions across all 320 subjects are shown in the left (zero prior list 

strength) and right (nonzero prior list strength) panels of Figure 7 (dashed lines).  The quality of 

the fits was about the same for the two models (see below) but the nonzero prior list strength 

model predicted a peak in RT and error rate at distance = 0 for prior-list lures that was not 

observed in the data (Figure 7).  The zero prior strength model correctly predicted the observed 

flat function. 

The four predictions (contrasts) of position coding theory are determined by the 

combination of prior list strength and distance parameters in Equation 1.  Prediction 1 (-2 -1 1 2 

distance effect in within-list lures) depends only on the distance parameter 𝜌 in Equation 1.  It 

was greater than zero in every subject, averaging 0.2508 in the zero prior list strength model fits 
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and 0.2826 in the nonzero prior list strength model fits (Table D1), confirming Prediction 1 in 

both models. 

Predictions 2 and 4 (-2 -1 1 2 and -1 0 1 distance effects in prior list lures) depend on the 

product of distance and the prior list strength parameter sprior in Equation 1.  Estimates of sprior 

were greater than zero on average (0.0938; Table D1), as predicted, but they were equal to zero 

in 169 of the 320 subjects, disconfirming the prediction for those subjects.  The low sprior values 

reduce the activation of prior list lures, eliminating the distance effect and disconfirming 

Predictions 2 and 4. 

Prediction 3 compares within-list distance effects, which depend only on the distance 

parameter, with prior-list distance effects, which depend on the product of the distance parameter 

and the prior list strength parameter.  The relatively high value of the distance parameter 

accounts for the strong distance effects in within-list lures, but its effect in prior-list lures is 

diminished by the low value of the prior list strength parameter, predicting the difference in 

distance effects and confirming Prediction 3. 

We tested the importance of the prior list strength parameter underlying predictions 2-4 

by comparing the fit of the nonzero prior strength model, which includes the sprior parameter, 

with the fit of the zero prior strength model, which excludes it.  The position coding model 

predicts the nonzero prior strength model will fit better because it allows values of sprior > 0.  

We compared the fit of the two models within each experiment and over all 320 subjects with 

paired sample t tests on four fit measures.  AIC and BIC measure the likelihood of the data given 

the parameters, using different penalty terms for models with greater complexity (t tests for each 

experiment are in Table 6; mean goodness of fit values are in Table C2).  Overall, AIC preferred 

the nonzero prior strength model (565.85) over the zero prior strength model (569.19), t(319) = -

2.3900, SEM = 1.3985, p = 0.0174, BF10 = 1.0366, but the difference was significant only in 

Experiments 5, 8, and 9.  Overall, BIC preferred the zero prior strength model (597.18) to the 

nonzero prior strength model (599.16), t(319) = 2.4997, SEM = 0.7938, p = 0.0129, BF10 = 

1.3457.  The preference for the zero prior strength model was significant in Experiments 4, 7, 8, 

10, 11, and 12. 

  We calculated the squared correlation r2 between observed and predicted RTs and error 

rates for each subject in each experiment.  It measures the fit of the model to the pattern of the 

data and uses the same scale for RT and error rate (Table 6).  Averaged over subjects and 
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experiments, the correlation between observed and predicted RTs was larger for the zero prior 

strength model (0.6758) than for the nonzero prior strength model (0.6696) but the difference 

was not significant overall, t(319) = 1.5701, SEM = 0.0039, p = 0.1174, BF10 = 0.2117, or in any 

experiment.  The mean correlation between observed and predicted error rates was larger for the 

nonzero prior strength model (0.6916) than for the zero prior strength model (0.6797) overall, 

t(254) = 3.2518, SEM = 0.0116, p = 0.0013, BF10 = 19.1846, but it was significant only in 

Experiment 7. 

Altogether, the model fits lead to the same conclusions as the contrast analyses of the 

mean RTs and error rates.  They provide little support for the position coding predictions.  

Estimates of prior list strength were low overall and equal to zero for more than half the subjects.  

The position coding model with nonzero prior strength did not fit better than the baseline model 

with zero prior strength.  The correlation analyses showed that the baseline model predicted the 

observed RTs and error rates as well as the more complex model. 

The 53% of subjects with best-fitting prior strength values of zero falsify the position 

coding predictions, but the 47% with values greater than zero may provide some support.  We 

separated the data for the two groups of subjects and plotted them in Figure 8.  The sprior = 0 

group showed no prior list distance effect.  The (-1 0 1) distance contrast was not significant for 

RT, t(168) = -1.4707, SEM = 11.6264, p = 0.1432, BF10 = 0.2469, or for P(Error), t(168) = -

0.1561, SEM = 0.0079, p = 0.8762, BF10 = 0.0868.  However, the  sprior > 0 group showed a 

little peak in prior list performance at distance = 0.  The (-1 0 1) contrast was significant for RT, 

t(150) = 2.4889, SEM = 16.4102, p = 0.0139, BF10 = 1.7855, and for P(Error), t(150) = 3.1028, 

SEM = 0.0116, p = 0.0023, BF10 = 8.8611.  We compared the magnitude of the (-1 0 1) contrast 

between groups and found it was significantly larger in the sprior > 0 group for both RT, t(318) 

= 2.8811, SEM = 20.1114, p = 0.0042, BF10 = 6.3267, and for P(Error), t(318) = 2.6484, SEM = 

0.0140, p = 0.0085, BF10 = 3.4546.  The sprior > 0 group provides some hope that the position 

coding account may explain position specific prior list interference, at least in some subjects.  

Position coding may be an individual difference or a strategy choice.  Other approaches may be 

used by other subjects, either as an individual difference or a choice. 
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Summary 

The cued recognition results (contrasts and model fits in Experiments 3-12) disconfirm 

Predictions 2 and 4 of the position coding account of position specific prior list interference.  

Predictions 1 and 3 were confirmed, but they are also consistent with theories of serial memory 

that do not assume position codes (e.g., item-dependent context theories).  By extension, the 

cued recognition results challenge the position coding account of position specific prior list 

intrusions in recall tasks, which played a central role in the dominance of position coding 

theories of serial memory (Henson, 1998; Henson et al., 1996; Lewandowsky & Farrell, 2008).  

However, the serial recall results (contrasts in Experiments 1-2) confirm Predictions 1-4 of the 

position coding account of position specific prior list intrusions.  Together, the cued recognition 

and serial recall results present a bigger challenge to position coding theories:  They must change 

somehow to account for both the presence of position specific prior list intrusions in serial recall 

and the absence of position specific prior list interference in cued recognition. 

Alternatives to position coding theories are challenged just as much by our results.  Item-

dependent theories do not assume position codes and so would predict the null effects of prior 

list distance we observed in cued recognition but they would also predict no position specific 

prior list intrusions in serial recall (Logan & Cox, 2023; Osth & Hurlstone, 2022), contrary to the 

results of Experiments 1 and 2.  They too must change somehow to account the whole set of 

results. 

We consider two ways to accommodate our results.  First, we consider alternatives to our 

model of cued recognition that do not require focusing on a position to process prior list lures 

and so should not activate position codes that cause prior list interference.  Then we consider 

ways to modify item-dependent context theories to produce prior list intrusions in serial recall. 

 

Can Cued Recognition Be Done Without Focusing on Position? 

The conclusions about position coding theory rest on the assumption that subjects 

evaluate prior list lures by using the position cue to retrieve the list item in the cued position and 

then comparing the retrieved item to the item in the probe (Logan et al., 2021, 2023b).  The 

assumption implies that probing with the cue activates the position code for the cued position, 

which should produce position-specific prior list interference.  The assumption may not be valid.  
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Subjects may use the item to retrieve position or to make recognition judgments without 

accessing position. 

Using the Item to Retrieve a Position Code. Subjects could perform the cued 

recognition task with an “item-first” strategy that uses the item to retrieve a position code and 

then compares the retrieved position code to the one in the probe.  This would make exactly the 

same predictions as our assumed “position-first” strategy that uses the position cue to retrieve an 

item because both strategies depend on the similarity between the probed position and the 

position of the item in the list.  In the position-first strategy, positional similarity determines the 

activation of items at different distances from the cued position (Equation 1), and this determines 

RT and error rate produced by the decision process that compares the items (Equations 6 and 7).  

In the item-first strategy, positional similarity determines the comparison between the retrieved 

position and the cued position at different distances (Equation 1), and this determines RT and 

error rate produced by the decision process (Equations 6 and 7).  Consequently, the item-first 

strategy makes the same predictions as the position-first strategy. 

A more challenging possibility is that subjects may use the probe item in an item 

recognition process that compares the probe to all the items in the memory list without focusing 

on the cued position.  The probe could be compared with each item in the memory list in parallel 

(Ratcliff, 1978) or with a composite representation formed by collapsing the memory list (e.g., 

by summing item vectors; Anderson, 1973).  Neither case involves position information, so RT 

and error rate would not depend on activating position codes.  Prior list distance effects would be 

null, as observed.  Item recognition is a serious alternative that challenges the validity of using 

prior list lures to measure activation of position codes.  We addressed it in five ways. 

List Discrimination Strategy.  First, we realized that the constrained lists in 

Experiments 3-6 and 11 allow a list discrimination strategy, in which subjects determine whether 

the probe came from the prior list and say “no” if it did.  Items could not repeat from one trial to 

the next, so this strategy would produce correct “no” responses to prior list lures and predict RTs 

and error rates that were unaffected by distance.  To address this strategy, we ran Experiments 7-

10 and 12, replicating the original experiments with unconstrained lists, in which items could 

repeat from one trial to the next, so membership in the prior list was no longer a valid cue for a 

“no” response.  The results replicated well with unconstrained lists, which disabled the list 

discrimination strategy.  In the between-experiment comparisons of Experiments 3-10 (Tables 
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B1-B5), list type had no effect on RT or error rate, and no effect on any of the eight analyses 

assessing distance contrasts in RT and error rate except for the interaction between list type and 

probe delay in the within-list distance contrast (-2 -1  1  2) in error rate.  None of the contrasts 

differed significantly between Experiment 11 (constrained lists) and Experiment 12 

(unconstrained lists; see Table 6).  We conclude that the list discrimination strategy was not an 

important factor in our cued recognition experiments, ruling out one possible item recognition 

strategy. 

Item Recognition Followed by Position Cuing.  Second, subjects could use an item 

recognition process to determine whether the probe item came from the current list and say “no” 

if it did not.  Prior list probes were never present in the current list, so prior list probes could be 

rejected quickly without accessing position, producing null prior list distance effects.  However, 

if the probe item was in the current list, the position-based cued recognition process would have 

to be engaged to distinguish matching probes from within-list lures.  Subjects would have to 

focus on the cued position, retrieve the item, and compare it with the probe.  This would increase 

their RTs for matches and within-list probes by an amount roughly equal to prior list lure RT 

minus motor execution time (Logan et al., 2023a).  The data in Figures 4-6 show prolonged RTs 

to within-list lures, but match RTs were only 18 ms longer than prior-list lures despite wide 

variation in overall RT across experiments.  The difference was significant, t(31) = 3.0113, SEM 

= 5.8313, p = .0028, BF10 = 7.7859, but small compared to the prolongation of RTs observed in 

sequential retrieval decisions in the “psychological refractory period” dual task procedure:  

Logan et al. (2023a) found a  395 ms prolongation in cued recall dual-task experiments (RT2 for 

SOA = 100 ms minus RT2 for SOA = 900) and Logan and Delheimer (2001) found a 602 ms 

prolongation in an item recognition dual-task experiment (with words; RT2 for SOA = 0 ms 

minus RT2 for SOA = 1000 ms; also see Carrier & Pashler, 1995).  

 Pre-Cue Effect.  Third, we realized that the pre-cue effect distinguishes cued 

recognition from item recognition.  Cued recognition requires focusing on the cued position in 

the memory list, and the pre-cue allows time to focus before the item part of the probe is 

presented.  This reduces RT in the pre-cue condition relative to the no-pre-cue condition (Logan 

et al., 2023b).  Thus, decisions based on cued recognition should be shorter with a pre-cue than 

without one.  Item recognition does not require focusing on the cued position and so would not 

benefit from pre-cuing the position.  Item recognition can begin only after the item part of the 
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probe is presented, at the end of the pre-cue delay.  RT is measured from the onset of the item 

part of the probe, so RTs for decisions based on item recognition should be unaffected by pre-

cuing.  A second, related, prediction is that pre-cues should speed up correct recognition of 

targets (based on cued recognition) while leaving correct rejection of prior list lures (based on 

item recognition) unaffected.  The difference between RTs to prior list lures and RTs to targets 

should be larger in experiments with pre-cues than in experiments without pre-cues.  On the 

other hand, if all responses are based on cued recognition, then the pre-cue should speed both 

“yes” and “no” responses by the same amount.  The difference between RTs to prior list lures 

and RTs to targets should be the same in experiments with and without a pre-cue.  The data, 

plotted in Figures 4 and 5, are more consistent with cued recognition. 

We tested the first prediction by comparing prior list lure RTs from experiments with pre-

cued probes (4, 6, 8, and 10) and experiments with simultaneous probes (3, 5, 7, and 9).  Prior 

list lure RTs were 292 ms shorter with pre-cued probes than with simultaneous probes, and the 

difference was significant, t(254) = 11.0413, SEM = 26.4097, p < 0.0001, BF10 > 1000, 

disconfirming the item recognition prediction.  We tested the second prediction by comparing the 

difference between prior list lure RT and “yes” RT in experiments with (4, 6, 8, and 10) and 

without pre-cues (3, 5, 7, and 9).  The 24 ms difference of differences only approached 

significance, t(254) = 1.9221, SEM = 12.2933, p = 0557, BF10 = 0.7838, failing to provide clear 

support for the item recognition prediction.  The results of  both comparisons are consistent with 

our assumption that subjects use cued recognition to evaluate prior list lures. 

Cue Type Effect.  Fourth, we realized that the same logic applies to the effect of cue 

type on RT and leads to similar predictions.  Cued recognition requires accessing position 

information in the probe but item recognition does not.  Cued recognition RTs will be faster 

when position information is easier to extract from the cue (spatial cues) than when it is harder 

(numeric cues).  Item recognition does not require position information, so item recognition RT 

should be unaffected by cue type.  We tested this prediction by comparing RTs to prior list 

probes from experiments with spatial cues (3, 4, 7, 8) with RTs from experiments with numeric 

cues (5, 6, 9, 10).  The difference was 163 ms.  It was highly significant, t(254) = 5.3686, SEM = 

30.4472, p < .0001, BF10 > 1000, consistent with our assumption that prior list lures were 

processed with cued recognition.  We tested a second prediction, that “yes” RTs should vary 

with cue type (because they depend on position) but prior list probe RTs should not (because 
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they do not depend on position), by comparing the difference between “yes” and prior list probe 

RTs in experiments with spatial cues (3, 4, 7, 8) and with the difference in experiments with 

numeric cues (5, 6, 9, 10).  The difference of differences was 7 ms, which was not significant, 

t(254) = 0.5611, SEM = 12.3747, p = .5752, BF10 = 0.1591, suggesting that prior list lures were 

processed with cued recognition. 

Model Fits.  Finally, we used model fits to test the importance of including item 

recognition in the decision process, comparing models that included item recognition in the 

decision process with models that did not include it.  We assumed that item recognition was not 

position specific and modeled it by comparing the probe item to each item in the list (following 

Logan et al., 2021).  We assumed this version of item recognition went on in parallel with cued 

recognition (following Logan et al., 2021).  We added value of the item match to the drift rate in 

the decision process with weight w.  The contribution from cued recognition was given weight 1 

– w, so the evidence for “yes” is 

𝑇𝑦𝑒𝑠 =  (1 − 𝑤)(𝒒 ∙ 𝒎𝑘) + 𝑤(∑ 𝒒 ∙ 𝒎𝑗
6
𝑗=1 )     (10) 

and the evidence for “no” is 

𝑇𝑛𝑜 = (1 − 𝑤)‖𝒎𝑘‖ + 𝑤(∑ ‖𝒎𝑗‖6
𝑗=1 )     (11) 

where k is the cued position in the list.  The drift rate for “yes” is 

𝑣𝑦𝑒𝑠 =
𝑇𝑦𝑒𝑠

1+𝜆𝜅𝑇𝑛𝑜
         (12) 

and the drift rate for “no” drift becomes 

𝑣𝑛𝑜 =
𝜆𝑇𝑛𝑜

1+𝜅𝑇𝑦𝑒𝑠
 .        (13)  

We fit two versions of this model.  One implemented item recognition in the position 

coding model with nonzero prior list strength.  The other implemented item recognition in the 

model with zero prior list strength.  Values of the best fitting parameters, measures of goodness 

of fit, and predicted RTs and error rates for each experiment are presented in Appendix D.  The 

mean predicted and observed values across the 320 subjects are presented in Figure 9. 

We calculated contrasts comparing goodness of fit measures in models with and without 

item recognition and got mixed results.  Table 7 contains the values for zero prior list length 

models with and without item recognition within each experiment and over all 320 subjects.  

AIC favored models without item recognition in four of the 10 experiments but the overall 

difference was not significant.  BIC favored models with without item recognition in five 
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experiments but the overall difference was not significant.  The correlations with RT were 

significantly higher in models with item recognition in eight experiments and overall.  The 

correlations with error rate were not significantly higher in models with item recognition in any 

experiment or overall.   

Table 8 contains the contrasts comparing goodness of fit measures for nonzero prior list 

strength models with and without item recognition within each experiment and over all 320 

subjects.  AIC favored models with item recognition in three experiments but the difference was 

not significant overall.  BIC favored models with item recognition in three experiments but the 

difference was not significant overall.  Correlations with RT were larger with item recognition 

than without in four experiments and the difference was significant overall.  Correlations with 

error rate were smaller with item recognition than without in one experiment and the difference 

was significant overall. 

In summary, item recognition does not improve the fit of the zero prior list strength 

model or the nonzero prior list strength model, as measured with AIC and BIC.  The correlations 

with RT improved by adding item recognition, but the correlations with error rate either did not 

change or reversed.  These results converge on the conclusions from the analyses of list 

discrimination, pre-cue delay, and cue type.  They suggest that item recognition is not a viable 

explanation the results that challenge position coding theory.   

 

Other Accounts of Position-Specific Prior List Intrusions 

Taken by themselves, the results of the cued recognition experiments (3-12) support 

item-dependent context theories of serial memory, which would not predict position specific 

prior list interference (Botvinick & Plaut, 2006; Lewandowsky & Murdock, 1989; Logan, 2021; 

Murdock, 1995; Solway et al., 2012).  Item-dependent context theories account for prior list 

intrusions that are semantically related to items in the current list (Loess, 1967; Wickens, 1970) 

and intrusions that follow an item that repeats from the prior list, intruding the item that followed 

the repeated item on the prior list (Fischer-Baum & McCloskey, 2015; Kahana et al., 2002; 

Zaromb et al., 2006).  However, item-dependent context theories do not account for the position 

specific prior list intrusions observed in the serial recall (Experiments 1-2) and cued recall 

(Logan et al., 2023a) experiments in this article and many others (Conrad, 1959; Henson, 1998; 

Melton & Von Lackum, 1941; Osth & Dennis, 2015; but see Caplan et al., 2022; Dennis, 2009; 
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Logan & Cox, 2023).  Taken together, our results on serial recall and cued recognition challenge 

item-dependent context theories as much as position coding theories.  Both have to explain why 

position specific prior list intrusions occur in serial recall and why position specific prior list 

interference does not occur in cued recognition.  As a first step, we consider ways to produce 

position specific prior list intrusions in item-dependent context models. 

Changing Memory Theories.  One way to accommodate our results is to develop 

accounts of position-specific prior list intrusions that do not assume position coding or do not 

attribute them to serial memory.  Accounts of prior list intrusions must assume that items in the 

prior list are activated at retrieval time along with items in the current list.  They must also 

assume the prior list is activated less than the current list, or else prior list intrusions would 

dominate correct retrievals.  Neither of these assumptions require position coding.  In principle, 

they could be implemented in any theory of serial order, including item-dependent context 

theories.  Accounts of position-specific prior list intrusions must also assume that prior list 

activation is position specific.  The prior list item that is activated most strongly is the one in the 

list position that is the focus of retrieval in the current list.  Position coding theories account for 

this position specificity in their fundamental assumption that items are associated with position 

codes and their equally fundamental assumption about activation and distance (Equation 1).  It is 

less clear how item-dependent context theories would account for it. 

Osth and Hurlstone (2023) showed important constraints on the ability of item-dependent 

context theories to produce prior list intrusions, analyzing the Context Retrieval and Updating 

(CRU) model of serial recall (Logan, 2021).  They modified CRU to represent the prior list as 

well as the current one, and they manipulated similarity between the list contexts to produce 

intrusions.  CRU made position-specific prior list intrusions when list contexts were sufficiently 

similar, but it did so by switching to the prior list and reporting prior-list items from the intrusion 

onward.  Subjects typically make one prior list intrusion and then return to the current list.  There 

was only one trial in Experiment 1 and one trial in Experiment 2 in which a subject recalled the 

prior list entirely.  We confirmed Osth and Hurlstone’s results with our own simulations (Logan 

& Cox, 2023).  List similarity by itself does not seem to be the answer (cf. Dennis, 2009). 

Caplan et al. (2022) showed that a simple modification of a classical chaining model 

could produce position-specific prior list intrusions.  The model assumes that the current list 

ABCDEF and the prior list ghijkl are both represented as associative chains that link adjacent 
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items.  Retrieval is initiated by activating a start element that is associated with the first item in 

each chain.  The start element is associated more strongly with the current list than with the prior 

list, so A is more likely to be retrieved than g.  A prior list intrusion occurs when g is retrieved 

instead of A.  The model prevents perseverating on the prior list (like CRU does) by using the 

evidence retrieved in the decision process as the cue for the next item instead of the item 

retrieved (Lewandowsky & Li, 1994).  The evidence for A and g retrieves evidence for B and h, 

continuing both chains.  The evidence for A is stronger than the evidence for g despite g winning 

the competition, so B tends to be retrieved next, getting the model back on track.  If the retrieved 

item g is used to cue retrieval instead of the evidence that drove retrieval, h is more likely to be 

retrieved than B, and the model will perseverate on the prior list, like CRU but unlike human 

subjects.  Caplan et al. (2022) showed that their model could fit position-specific prior list 

intrusion data, making it an attractive alternative to position coding.  They viewed their model as 

promising but preliminary, as they had not yet fitted it to the range of data and effects in the 

serial recall literature. 

Logan and Cox (2023) tried the Caplan et al. (2022) idea with CRU and found that it 

showed promise.  Using the evidence that drove retrieval instead of the item retrieved to update 

context, they were able to produce position-specific prior list intrusions but the model still tended 

to perseverate on the prior list.  They developed a version of CRU that updated context with the 

retrieved item on some trials and with the evidence that drove retrieval on other trials.  The 

updating was adaptive, using the item when it was likely that the retrieved item was correct and 

using the evidence when it was likely that the retrieved item was an error.  This produced 

position-specific prior list intrusions without perseverating (as much) on the prior list, more like 

human subjects.  However, the simulations are proofs of concept at best, and the changes to the 

model (adding an error detection component that assesses the likelihood of an error) are 

extensive, so the extension of CRU requires further investigation. 

These models suggest it may be possible to account for position-specific prior list 

intrusions without position coding, but they are challenged by our experimental results as much 

as position coding theories are.  They must also explain why position-specific prior list 

interference does not appear in cued recognition. 

Intruded Responses, Not Memories.  The changes to the models we proposed are based 

on the assumption that prior list intrusions are produced by retrieval from memory.  Position 
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coding accounts are based on the same assumption.  An alternative possibility is that prior list 

intrusions are produced in the output processes required in recall tasks rather than in the memory 

system itself.  Serial recall requires a sequence of actions to report each of the items (keystrokes 

in our experiments), and the order of the sequence is controlled by a motor program (Keele, 

1968; Logan, 2018).  Prior list intrusions may result from position coding in the motor program 

instead of position coding in memory.  The motor program might associate keystrokes with 

positions ( “first press the A key, second press the B key,” etc.) and position-specific intrusions 

might occur if the motor program used to report the previous list was still available (e.g., “first 

press the g key, second press the h key,” etc.) and the keystroke from the prior list wins the 

competition.  This would explain why prior list intrusions occur in serial recall and why prior list 

interference does not occur in cued recognition.  Cued recognition requires a simpler motor 

program that conveys a single judgment about the probe item, not a sequence of judgments about 

the identity of every item.  There is only one “position” in this motor program, so there is less 

opportunity for confusion. 

The motor program account predicts position specific prior list intrusions in tasks in 

which subjects execute the motor program without retrieving items from memory.  Copy typing 

is one such task, as it involves reporting a continuously visible list so the information required to 

respond is available perceptually.  Logan (2021) compared copy typing, serial recall, and 

perceptual report of 5, 6, and 7 letter consonant strings.  Each task required the same motor 

program (typing the letters in order) but varied in its requirements for memory and perception.  

Copy typing required the motor program but not memory.  The motor programming account 

predicts position specific prior list intrusions in the copy typing task. 

We tested this prediction by searching for prior list intrusions in Logan’s (2021) data.  

The subjects were 24 skilled typists who typed 192 lists in each condition.  Serial recall, whole 

report, and copy typing were run in separate blocks.  We identified intrusions in each task and 

determined whether they came from the previous list.  If they did, we calculated the distance 

between their position in the prior list and their position in the current response.  This was 

complicated by the random variation in list length within blocks.  Subjects could encode position 

from the beginning or the end of the list (Henson, 1998; Fischer-Baum & McCloskey, 2015).  

Following precedent (Fischer-Baum & McCloskey, 2015), we calculated distance from the 

beginning of the list and distance from the end of the list and chose the shorter distance.  We 
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summed the frequencies of prior list intrusions at each distance in each task across list lengths 

and subjects.  The frequencies for each task are plotted as a function of distance in Figure 10 

(left).   

Prior list intrusions were more frequent in report than in recall and least frequent in 

typing (1979, 1337, and 173 intrusions, respectively), reflecting large differences in overall 

accuracy, so we replotted the data as the proportion of the total number of prior list intrusions in 

each task at each distance (Figure 10, right).  Both plots show position specific prior list 

intrusions in copy typing.  There is a peak at distance = 0, confirming Prediction 4 of position 

coding theory (the critical contrast comparing distances -1 0 1).  This is consistent with the motor 

program account, in which position specific prior list intrusions are the product of position 

coding in the motor program.  

Serial recall and whole report also showed position specific prior list intrusions with 

sharp peaks at distance = 0.  The similarity of the proportions in Figure 10 (left) invites the 

conclusion that the motor system uses position coding but the memory system does not, but we 

cannot rule out the possibility that the memory system also uses position coding.  The difference 

in frequency between memory and typing could reflect additional memory-based intrusions.  We 

note as well that the motor programming account does not explain prior list intrusions in cued 

recall (Figure 3; Logan et al., 2023a), where the motor program specifies only one response.  At 

this point, the results invite speculation, not strong conclusions, but the speculation is intriguing.  

Understanding the role of the motor system and output and decision processes more generally is 

an important goal for future research (Dendauw et al., 2024). 

 

Implications for Position Coding Theories 

The results of our experiments challenge the core assumptions of the position coding 

account of position-specific prior list intrusions.  We showed in theoretical analysis and in 

simulations that position coding theories that predict position-specific prior list intrusions in 

recall must also predict position-specific prior list interference in cued recognition.  Contrary to 

this prediction, we failed to find position-specific prior list interference in 10 experiments. 

Our experiments challenge the core assumption that prior list items are associated with 

the same position codes as current list items with lower strength (Figure 1 top row).  In recall, the 

core assumption implies that prior list items can compete with current list items and it predicts 
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intrusions when prior list items win the competition (Figure 1 second row; Figure 2 top row).  

The prior list intrusions observed in Experiments 1 and 2 and many others are interpreted as 

confirming this prediction.  In cued recognition, we showed that the assumption predicts 

interference when prior list items are used as lures (Figure 1 bottom; Figure 2) and we failed to 

observe such interference (Figures 4-6).  The contrast testing the predicted peak in RT and error 

rate was not significant and the sprior parameter that represents prior list strength was 0 in 53% 

of the subjects and close to 0 in the other 47%. 

The challenge to the position coding account of position specific prior list intrusions has 

broader implications for position coding theories.  A major impetus for the development of 

position coding theories was their ability to account for four error phenomena that classical 

chaining theories could not explain: recovery from errors, transpositions to earlier list positions, 

phonological confusion effects, and position-specific prior list intrusions (Henson et al., 1996).  

Previous research has shown that theories based on different assumptions can account for the 

first three phenomena (Botvinick & Plaut, 2006; Logan, 2021; Osth & Hurlstone, 2023; Solway 

et al., 2012), leaving prior list intrusions as the last of the four unique predictions that support 

position coding theories.  Our experiments falsify this prediction when it is extended to cued 

recognition, leaving position coding models with no unique predictions that distinguish them 

from other theories of serial memory.  This challenges the dominance of position coding theories 

and encourages renewed attention to other theories and different approaches. 

 

Implications for Serial Memory 

The dissociation between position-specific prior list intrusions and position-specific prior 

list interference challenges all theories of serial memory, not just position coding theories.  The 

theories that account for intrusions must explain why there is no interference from prior-list lures 

in cued recognition.  The theories that account for the lack of interference must explain why 

intrusions occur in serial and cued recall.  We hope our results encourage theorists of all 

persuasions to rise to the challenge. 

Our results highlight the importance of using different retrieval tasks to test assumptions 

about memory representations (Hintzman, 2011).  Most of the work on serial memory has 

focused on serial recall to the exclusion of other retrieval tasks (Hurlstone et al., 2014).  Our 

results show that the retrieval task matters.  The predictions derived from the memory 
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representations may be the same, but the results differ substantially.  Serial recall shows evidence 

of position-specific prior list activation (Figure 3).  Cued recognition does not (Figures 4-6).  

These results underscore the important point that memory performance is a joint function of the 

representations and the processes that operate on them (Anderson, 1978; Atkinson & Shiffrin, 

1968).  Representation and process are confounded in a single task, like serial recall or cued 

recognition.  Their effects can be separated by using different retrieval tasks to access the same 

representation (e.g., Cox et al., 2018).  This has been a productive strategy in global theories of 

memory, explicating the relations between recognition and recall (Anderson et al., 1998; Gillund 

& Shiffrin, 1984; Humphreys et al., 1989; Murdock, 1982, 1983).  It should also be productive in 

theories of serial memory and further the goal of integrating those theories with other memory 

theories (Ward et al., 2010; Ward & Tan, 2023). 

Our results show the benefits of using cued recognition to probe serial memory.  The 

position cue requires attention to order information.  The item cue probes the state of the 

memory system, and different cues can be chosen to probe different states.  Carefully designed 

lures have led to important insights into the nature of false recognition (Shiffrin, Huber, & 

Marinelli, 1995), correct rejection of novel lures (Mewhort & Johns, 2000; Osth et al., 2023), the 

relationship between item and associative information (Cox & Criss, 2017), the organization of 

lexical memory (Grainger, 2018), and the organization of semantic memory  (Ratcliff & 

McKoon, 1988; Zbrodoff, 1999).  In cued recognition, lures probe the state of current and prior 

lists at different distances from the cued position, measuring their activation to test theories of 

serial order. 

 

Strategies and Models of Memory 

Our experiments challenge the position coding account of prior list intrusions, which 

distinguishes them from other theories of serial memory (Henson et al., 1998; Osth & Hurlstone, 

2023).  The theories are no longer so distinct.  This may be frustrating from the usual perspective 

on modeling, where models are treated as mutually exclusive and the goal is to find the one that 

fits best, declare it the winner, and discard the rest.  Mimicry makes models harder to distinguish.  

But mimicry can be beneficial.  Sometimes it reveals a basic truth in all models that account for 

the same phenomenon (Anderson, 1978).  For serial memory, the basic truth is the exponential 

distance gradient a(i|j) = |i-j| in Equation 1 that represents the similarity of position codes (Logan 
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& Cox, 2021; Murdock, 1997).  It appears in models that represent order as associations of items 

to contexts, whether the contexts are independent of (Lewandowsky & Farrell, 2008) or 

dependent on the items (Logan, 2021).  It is the key assumption that allows them to account for a 

broad range of order phenomena. 

One way to deal with mimicry is to embrace it, accepting that different models may fit 

the data equally well and using other criteria to distinguish models.  We might choose models 

based on how clearly they relate theoretical constructs to observable behavior in a specific 

domain (Navarro, 2019; Singmann et al., 2022).  If the task requires memory for positions, we 

might choose a position coding model because it provides a clear and direct way to relate the 

theory to the experiment, not because it provides a better fit (assuming the fits are equivalent).  

We might also choose models based on the questions they allow us to ask and use them to test 

hypotheses.  We tested hypotheses about the interaction between distance and prior list strength 

by comparing different versions of the position coding model.  Theoretical analyses and 

simulations of the models allowed us to derive four core predictions about the data.  The fits 

allowed us to measure the distance gradient and prior list strength directly as model parameters 

( and sprior). 

Another way to deal with mimicry is to treat models as alternative strategies subjects 

might employ to represent order instead of different candidates for the One True Model.  

Different subjects may choose different models for the same task, like our subjects with prior 

strength = 0 and prior strength > 0.  The same subject may choose different models for different 

tasks or choose different models at different times on the same task (Logan & Cox, 2023).  

Different models may be better suited to different tasks.  We represent position explicitly when 

keeping track of standings in sports, songs on the hit parade, and birth order of siblings.  We 

represent order with reference to context in understanding events and biographies.  These 

possibilities are enticing, inspiring broader multiple-representation theories of memory and new 

research on the determinants and consequences of strategy choice and the control processes that 

make the choices.  Mimicry will make it harder to distinguish between strategies in particular 

cases, but much can be learned from the core assumptions, like the similarity gradient in 

Equation 1, that all models share. 

The call to consider models as strategies emphasizes the role of processing as much as 

representation.  Processing is required to form a memory representation and to extract 
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information from it at retrieval (e.g., Craik, 2020).  Processing is required to control the encoding 

and retrieval processes, directing them to the relevant parts of the memory representation and 

controlling the order and timing of their execution (Atkinson & Shiffrin, 1968; Logan et al., 

2023a, 2023b).  The emphasis on processing raises the value of experimental procedures that 

allow the processes to be measured directly with RT as well as accuracy, to take advantage of the 

many process models that predict both measures (e.g., Ratcliff, 1978; Tillman et al., 2020; Usher 

& McClelland, 2001) and develop more complete models of memory.  The emphasis on 

processing is essential in distinguishing among memory representations.  The behavior we 

measure is the result of processes operating on representations.  To make inferences about 

representation from behavior, we must unravel the interactions between representations and 

processes, and that requires understanding the processes.  Our research has attempted to do that. 

 

Limitations 

Our 10 cued recognition experiments are close variations on a common design.  They all 

used lists of six consonants drawn from a pool of 20, presented briefly, and tested after a short 

1000 ms retention interval.  We chose to vary cue type and cue delay between experiments 

because of our interest in the relation between memory and attention tasks that manipulate cues 

in the same way (Logan et al., 2021, 2023a, 2023b).  The close variations demonstrate the 

replicability of the results but they do not demonstrate their generality.  It is possible that our 

results would not replicate with a broader range of materials and more variation in experimental 

design.   

It would be worthwhile adapting our procedure to word lists, which are common 

materials in studies of interference, and varying the size of the pool of items (Osth & Hurlstone, 

2023) and list length over a broad range (Ward et al., 2010; Ward & Tan, 2023).  It would also 

be worthwhile adapting our procedure to simple visual stimuli like color patches or oriented 

gratings, or to pictures, which are common in studies of visual memory.  If our results replicated 

across these variations, our conclusions would be much stronger. 

Our major result, the contrast between strong position-specific intrusions in serial recall 

and null position-specific interference in cued recognition, was tested between subjects.  Each set 

of subjects performed only one task, and it is possible that they represented serial order 

differently in ways that were tailored to the tasks they performed.   Possibly, subjects let item 
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activation decay more rapidly in cued recognition, and that produced the null results (if they can 

control decay, which is not clear).  It would be worthwhile replicating our experiments but 

mixing serial recall and cued recognition randomly and post-cuing the task so the lists would be 

represented in the same way. 

The major result of Experiments 3-12 is the null effect of position-specific prior list 

interference.  We found no evidence of such interference.  Indeed, we found no evidence of any 

kind of prior list interference.  Our focus on the predictions of position coding theory led us to an 

experimental design that maximized the number of targets, within-list lures, and lures from the 

immediately prior list at each distance (-2 -1  0  1  2).  A different control condition is required to 

demonstrate prior list interference that is not position specific.  Items from the immediately prior 

list would have to be compared with novel items or items from earlier lists.  There is a large 

literature demonstrating such interference in item recognition (Badre & Wagner, 2005; Jonides et 

al., 1998; McElree & Dosher, 1989; Monsell, 1978; for a review, see Jonides & Nee, 2006).  

Similar interference might occur in cued recognition. 

Failing to find prior list interference in cued recognition could mean that the task does not 

produce interference.  That could be true as an empirical observation, but it would raise the 

important theoretical question, why not?  Why should cued recognition show no prior list 

interference?  Prior list activation may decay faster in cued recognition, but why should that 

happen?  These are the same questions we raise about position specific prior list interference and 

they would require similar answers.  The answers are important and worth obtaining for what 

they will reveal about the nature of recognition memory and the nature of interference, 

expanding the insights gained from understanding the lack of position-specific prior list 

interference. 

Finding or failing to find prior list interference that is not position specific is not directly 

relevant to the specific question that motivated our experiments.  We were interested in position-

specific prior list interference.  We showed that the assumptions shared by all position coding 

theories predict that prior list items should be activated in proportion to their distance from the 

current focus of retrieval, and we showed that a plausible decision process that is typical of the 

literature predicts longer RTs and higher error rates at shorter distances.  Whether that particular 

kind of prior list interference would occur was the question, and that question does not require 

the existence of any other kind of prior list interference.  Indeed, the only kind of prior list 
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interference predicted by position coding theories is position specific.  They say nothing about 

other kinds of interference.   

 

Conclusions 

The ability to predict position specific prior list intrusions has led to the dominance of 

position coding theories in serial memory.  We showed that the assumptions that allow position 

coding theories to predict position specific prior list intrusions in serial recall also predict 

position specific interference from prior list lures in cued recognition.  We found no such 

interference in 10 experiments, falsifying the prediction.  This challenges the position coding 

account of position specific prior list intrusions and, by extension, challenges their dominance in 

research on serial memory.  The cued recognition results are consistent with alternatives to 

position coding theories, which do not assume position codes. 

We ran two serial recall experiments that used the same lists and presentation conditions 

as the cued recognition experiments and found position specific prior list intrusions in both of 

them, consistent with position coding theories and inconsistent with the alternatives.  Together, 

the results of our cued recognition and serial recall experiments challenge all theories of serial 

memory, whether or not they assume position coding.  All theories must explain why prior list 

intrusions are position specific while prior list interference is not. 
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Table 1 

The response from the position coding model to a probe at position 2.  The first row contains the 

possible responses.  The second row contains the activation of responses given the probe, which 

is represented as the vector m in the model.  The last three rows contain the vector q, which 

represents the activation of the possible responses to the probe item.  These vectors have 1 in the 

position of the probe letter and 0 elsewhere, so the dot product of m and q is simply 1 times the 

value of the probe letter in m. Thus, mqyes = 1.000, mqwithin = 0.500, and mqprior = 0.500. 

 

Position Probe in Position 2 

Responses “A” “B” “C” “D” “E” “F” “G” “H” “I” “J” “K” “L” 

m .500 1.000 .500 .250 .125 .063 .250 .500 .250 .125 .063 .031 

Cued Recognition Item Probes 

qyes .000 1.000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 

qwithin .000 .000 1.000 .000 .000 .000 .000 .000 .000 .000 .000 .000 

qprior .000 .000 .000 .000 .000 .000 .000 1.000 .000 .000 .000 .000 
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Table 2 
 

Results of contrasts assessing distance effects for within list errors, prior list errors, the 

difference between within list and prior list errors, and the peak in prior list errors for distance of 

zero in serial recall in Experiments 1 and 2, and comparisons of effects between experiments.  

The peak in prior list errors (-1 0 1) assesses position-specific prior list intrusions. 

 
Experiment t SEM p N > 0 BF10 

Within List Errors (-2 -1 1 2) 
1 12.7841 9.1887 <.0001 32 >1000 
2 14.3472 8.2638 <.0001 32 > 1000 
1 vs. 2 0.0885 12.3581 .9298 NA 0.2562 

Prior List Errors (-2 -1 1 2) 
1 6.7441 1.4364 <.0001 28 >1000 
2 4.6384 1.7652 <.0001 24 404.4950 
1 vs. 2 0.6591 2.2758 .5123 NA 0.3071 

Within List vs Prior List Errors (-2 -1 1 2) 
1 12.3385 8.7353 <.0001 32 >1000 
2 14.1163 7.8190 <.0001 32 >1000 
1 vs. 2 -0.2212 11.7236 .8256 NA 0.2608 

Prior List Error Peak (-1 0 1) 
1 8.3025 4.4942 <.0001 30 >1000 
2 8.0475 3.8327 <.0001 31 >1000 
1 vs. 2 1.2222 5.9830 .2263 NA 0.4798 

 
Note df = 31 for within-experiment (within-subject) comparisons (Experiments 11 or 12); df = 

62 for between-experiment (between-subject) comparisons (Experiments 11-12). 
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Table 3 

Contrasts evaluating the four predictions of position coding theories for current and prior lists in 

cued recognition (distances compared are in brackets) in Experiments 3-6. 

 
Exp t(31) SEM p N > 0 BF10 t(31) SEM p N > 0 BF10 

1. RT Distance Within List (-2 -1 1 2) 1. Error Rate Distance Within List (-2 -1 1 2) 

3 4.9315 30.0478 <.0001 25 867.4468 6.4008 0.0251 <.0001 31 41619.32 

4 4.3786 34.4401 0.0001 22 207.3346 7.2050 0.0254 <.0001 28 336411 

5 4.2778 20.5961 0.0002 25 160.3881 4.0478 0.0196 0.0003 22 89.8625 

6 5.2424 21.5628 <.0001 27 1962.11 4.2424 0.0194 0.0002 24 146.6164 

2. RT Distance Prior List (-2 -1 1 2) 2. Error Rate Distance Prior List (-2 -1 1 2) 

3 0.7666 17.7154 0.4491 16 0.2477 0.1341 0.0194 0.8942 14 0.1904 

4 1.1039 24.3338 0.2781 18 0.3296 0.3938 0.0165 0.6964 15 0.2029 

5 1.6062 19.4070 0.1184 15 0.5997 0.4191 0.0187 0.6780 13 0.2049 

6 0.3551 21.6912 0.7249 16 0.2002 0.8212 0.0143 0.4178 14 0.2577 

3. RT Distance Within vs Prior (-2 -1 1 2) 3. Error Rate Distance Within vs Prior (-2 -1 1 2) 

3 3.5091 38.3569 0.0014 26 24.2132 4.9108 0.0321 <.0001 27 821.7429 

4 3.5596 34.8176 0.0012 22 27.2920 6.1648 0.0287 <.0001 26 22381.54 

5 1.6675 34.1431 0.1055 22 0.6537 2.4691 0.0289 0.0193 23 2.5406 

6 3.0685 34.3286 0.0044 23 8.8292 3.1934 0.0221 0.0032 24 11.6707 

4. RT Peak Prior List (-1 0 1) 4. Error Rate Peak Prior List (-1 0 1) 

3 0.0235 32.9330 0.9814 15 0.1889 1.7545 0.0193 0.0892 16 0.7422 

4 0.5569 46.9468 0.5816 13 0.2180 1.1223 0.0220 0.2184 12 0.3357 

5 0.6473 20.8574 0.5222 18 0.2292 0.1201 0.0217 0.9052 11 0.1901 

6 0.0865 32.4205 0.9317 17 0.1895 0.3848 0.0203 0.7030 10 0.2022 
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Table 4 

Contrasts evaluating the four predictions of position coding theories for current and prior lists in 

cued recognition (distances compared are in brackets) in Experiments 7-10. 
Exp t(31) SEM p N > 0 BF10 t(31) SEM p N > 0 BF10 

1: RT Distance Within List (-2 -1 1 2) 1: Error Rate Distance Within List (-2 -1 1 2) 

7 7.2817 23.1304 <.0001 30  5.0076 0.0268 <.0001 28 >1000 

8 3.8957 24.6635 0.0005 26  4.2463 0.0250 0.0002 25 148.0722 

9 5.8127 18.1504 <.0001 28 8841.26 3.2670 0.0131 0.0027 18 13.7936 

10 4.6166 31.8936 0.0001 27 382.312 5.4074 0.0270 <.0001 25 3031.31 

2: RT Distance Prior List (-2 -1 1 2) 2: Error Rate Distance Prior List (-2 -1 1 2) 

7 0.4769 21.4020 0.6368 20  -2.7829 0.0150 0.0091 11 4.7773 

8 -1.2759 22.4040 0.2115 13  0.5961 0.0153 0.5555 13 0.2226 

9 0.3058 19.6308 0.7618 22 0.1972 -0.2981 0.0088 0.7676 10 0.1968 

10 -2.3513 20.3793 0.0252 12 2.031 0.7367 0.0230 0.4669 14 0.2426 

3: RT Distance Within vs Prior (-2 -1 1 2) 3: Error Rate Distance Within vs Prior (-2 -1 1 2) 

7 5.2315 30.2443 <.0001 26  5.3676 0.0328 <.0001 25 >1000 

8 2.7949 29.2231 0.0088 20  3.6148 0.0319 0.0011 22 31.1332 

9 4.0090 24.8189 0.0004 27 81.5769 2.8727 0.0158 0.0073 19 5.7731 

10 4.9613 39.3365 <.0001 27 937.795 4.1223 0.0313 0.0003 26 108.295 

4:RT Peak Prior List (-1 0 1) 4: Error Rate Peak Prior List (-1 0 1) 

7 1.2615 19.9368 0.2615 18  2.1627 0.0193 0.0384 23 1.4426 

8 1.2759 22.4040 0.2115 19  1.5081 0.0155 0.1417 22 0.5254 

9 0.1760 17.8834 0.8615 17 0.1916 1.4827 0.0105 0.1483 8 0.5083 

10 1.6878 31.1194 0.1015 20 0.6731 0.2853 0.0228 0.7773 13 0.1961 
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Table 5 
 
Contrasts evaluating the four predictions of position coding theories for current and prior lists in 

cued recognition (distances compared are in brackets) in Experiments 11 and 12. 

 
Exp t SEM p N > 0 BF10 t SEM p N > 0 BF10 

1: RT Distance Within List (-2 -1 1 2) 1: Error Rate Distance Within List (-2 -1 1 2) 

11 5.7834 27.7374 <.0001 29 8182.83 7.0412 0.0198 <.0001 28 220612 

12 7.4757 23.9611 <.0001 28 672278 7.1550 0.0248 <.0001 29 295826 

11-12 -0.5110 36.6153 0.6612 NA 0.2853 -1,1438 0.0328 0.2571 NA 0.4438 

2: RT Distance Prior List (-2 -1 1 2) 2: Error Rate Distance Prior List (-2 -1 1 2) 

11 -1.3830 35.7014 0.1765 13 0.4486 0.8915 0.0234 0.3795 17 0.2722 

12 -0.9512 18.8222 0.3489 13 0.2861 0.9049 0.0158 0.3725 16 0.2752 

11-12 0.4311 28.6265 0.6679 NA 0.2764 0.2325 0.0280 0.8169 NA 0.2613 

3: RT Distance Within vs Prior (-2 -1 1 2) 3: Error Rate Distance Within vs Prior (-2 -1 1 2) 

11 5.2983 35.9851 <.0001 25 2273.42 3.8410 0.0309 0.0006 26 53.8626 

12 7.9235 24.8662 <.0001 30 2081998 6.2139 0.0308 <.0001 27 25469.5 

11-12 0.1456 43.7408 0.8847 NA 0.2577 1.0570 0.416 0.2946 NA 0.4096 

4:RT Peak Prior List (-1 0 1) 4: Error Rate Peak Prior List (-1 0 1) 

11 0.1952 35.7014 0.8465 12 0.1922 -1.0553 0.0234 0.2995 11 0.3144 

12 -0.7225 24.9867 0.4754 11 0.2403 -2.2424 0.0267 0.322 8 1.6627 

11-12 0.6944 39.1651 0.4901 NA 0.3133 1.9842 0.0319 0.0517 NA 1.3208 

 
Note df = 31 for within-experiment (within-subject) comparisons (Experiments 11 or 12); df = 

62 for between-experiment (between-subject) comparisons (Experiments 11-12). 
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Table 6 
Contrasts comparing goodness of fit of the position coding models with zero and nonzero prior 
list strength in Experiments 3-12 (nonzero fit – zero fit). 
 

Exp t df SEM p BF10 t df SEM p BF10 

AIC* BIC* 

3 -1.3014 31 3.9523 0.2027 0.4073 -0.2476 31 3.9530 0.8061 0.1943 

4 0.0839 31 1.4138 0.9936 0.1894 3.0306 31 1.4143 0.0049 8.1222 

5 -2.1235 31 2.5695 0.0418 1.3472 -0.5019 31 2.5701 0.6193 0.2122 

6 -0.9192 31 3.2394 0.3651 0.2784 0.3650 31 3.2407 0.7176 0.2009 

7 -1.0167 31 11.6346 0.3172  3.3946 31 1.697 <.0001 18.5117 

8 11.4163 31 0.1493 <.0001  39.0482 31 0.1504 <.0001 >1000 

9 -2.1075 31 4.6019 0.0433 1.3104 -1.2025 31 4.6032 0.2383 0.3649 

10 1.3503 31 0.6419 0.1867 0.4313 7.8126 31 0.6442 <.0001 >1000 

11 -0.2565 31 1.3063 0.7993 0.1947 2.9222 31 1.3057 0.0064 6.4179 

12 -0.5223 31 1.2919 0.6052 0.2143 2.6987 31 1.2922 0.0112 4.0136 

3-12 -2.3900 319 1.3985 0.0174  2.4997 319 0.7938 0.0129 1.3457 

r RT** r P(Error)** 

3 -0.4388 31 0.0176 0.6639 0.2065 0.1934 31 0.0185 0.8479 0.1921 

4 1.0829 31 0.0107 0.2872 0.3229 1.3326 31 0.0141 0.1924 0.4223 

5 -2.0330 31 0.0152 0.0507 1.1544 0.3001 31 0.0056 0.7661 0.1969 

6 0.9629 31 0.0123 0.3431 0.289 0.5215 31 0.0073 0.6058 0.2142 

7 -0.2559 31 0.0111 0.7997  2.1319 31 0.0090 0.0411 1.3670 

8 -1.1341 31 0.0044 0.2655  0.7534 31 0.0038 0.4569 0.2454 

9 -0.4316 31 0.0167 0.6690 0.2059 1.17887 31 0.0190 0.0834 0.3558 

10 -0.6537 31 0.0118 0.5181 0.2301 1.7762 31 0.0063 0.0855 0.7668 

11 -1.6353 31 0.0117 0.1121 0.6246 1.1981 31 0.0109 0.2399 0.3632 

12 -0.6727 31 0.0070 0.5061 0.2328 1.0499 31 0.0102 0.3019 0.3128 

3-12 -1.5701 319 0.0039 0.1174  3.2518 319 0.0116 0.0013 10.8671 

 
Note: * = negative t values indicate preference for the nonzero prior strength model; ** = 
positive t values indicate preference for the nonzero prior strength model. 
  



 63 

Table 7 
Contrasts comparing goodness of fit of the zero prior list strength position coding models with 
and without item recognition in Experiments 3-12 (zero prior list strength and item recognition - 
zero prior list strength and no item recognition). 
 

Exp t df SEM p BF10 t df SEM p BF10 

AIC* BIC* 

3 0.0504 31 0.2335 0.9601 0.1890 5.6941 31 0.2334 <.0001 >1000 

4 -0.6534 31 0.1958 0.5183 0.2301 6.0820 31 0.1957 <.0001 >1000 

5 -4.3915 31 0.2879 0.0001 214.2841 0.1855 31 0.2878 0.8541 0.1919 

6 -3.1638 31 0.2615 0.0035 10.9181 1.8649 31 0.2617 0.0717 0.8788 

7 -1.1240 31 3.6600 0.2696 0.3363 2.5348 31 0.3479 0.0165 2.8879 

8 -0.0848 31 0.1793 0.9323 0.1895 7.2667 31 0.1793 <.0001 >1000 

9 -3.3575 31 0.3140 0.0021 16.9845 0.8360 31 0.3138 0.4096 0.2606 

10 -2.0873 31 0.2132 0.0452 1.2657 4.0962 31 0.2130 0.0003 101.4303 

11 -4.0716 31 0.2868 0.0003 95.3704 0.5070 31 0.2859 0.6158 0.2127 

12 0.2941 31 17.9702 0.7706 0.1966 0.3675 31 17.9633 0.7158 0.2011 

3-12 0.2050 319 5.7345 0.8377 0.0640 0.7393 319 5.6144 0.4603 0.0822 

r RT** r P(Error)** 

3 2.3828 31 0.0038 0.0235 2.1547 -1.9464 31 0.0023 0.0607 1.0008 

4 3.9673 31 0.0060 0.0004 73.5475 0.8072 31 0.0031 0.4257 0.2550 

5 2.8023 31 0.0035 0.0087 4.9752 -0.8148 31 0.0037 0.4214 0.2564 

6 3.4010 31 0.0059 0.0019 18.7896 0.2111 31 0.0038 0.8342 0.1928 

7 1.8425 31 0.0055 0.0750 0.8487 0.7218 31 0.0030 0.4758 0.2402 

8 2.4032 31 0.0071 0.0224 2.2395 1.1827 31 0.0035 0.2459 0.3573 

9 3.0147 31 0.0042 0.0051 7.8440 -0.2997 31 0.0036 0.7664 0.1969 

10 3.5000 31 0.0069 0.0014 23.6986 -1.3297 31 0.0062 0.1933 0.4209 

11 1.2186 31 0.0036 0.2322 0.3713 -1.4156 31 0.0046 0.1669 0.4669 

12 0.7640 31 0.0095 0.4507 0.2472 -0.3691 31 0.0119 0.7145 0.2012 

3-12 7.3881 319 0.0059 <.0001 >1000 -1.0859 319 0.0052 0.0938 0.1123 

 
Note: * = negative t values indicate preference for the item recognition model; ** = positive t 
values indicate preference for the no item recognition model. 
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Table 8 
Contrasts comparing goodness of fit of the nonzero prior list strength position coding models 
with and without item recognition in Experiments 3-12 (nonzero prior list strength and item 
recognition - nonzero prior list strength and no item recognition). 
 

Exp t df SEM p BF10 t df SEM p BF10 

AIC* BIC* 

3 -0.7227 31 0.2694 0.4753 0.2404 4.1675 31 0.2693 0.0002 121.3375 

4 1.1520 31 10.9857 0.2581 0.3460 1.2263 31 11.0905 0.2293 0.3744 

5 -3.3826 31 0.4835 0.0020 18.0024 -0.6575 31 0.4834 0.5157 0.2306 

6 -1.2453 31 9.3170 0.2224 0.3823 -1.1039 31 9.3149 0.2781 0.3296 

7 -1.4704 31 0.3696 0.1515 0.5003 2.0952 31 0.3696 0.0444 1.2830 

8 -0.2100 31 0.1826 0.8350 0.1927 7.0086 31 0.1826 <.0001 >1000 

9 -3.5927 31 0.5099 0.0011 29.5313 -1.0111 31 0.5098 0.3198 0.3017 

10 -0.6733 31 9.4167 0.5058 0.2329 -0.5337 31 9.4149 0.5973 0.2155 

11 -4.4876 31 0.3599 0.0001 274.1432 -0.8427 31 0.3590 0.4059 0.2619 

12 -0.8390 31 20.3149 0.4079 0.2612 -0.8165 31 20.6231 0.4204 0.2568 

3-12 1.0601 319 8.089 0.2889 0.1093 -0.6142 319 8.4983 0.5395 0.0756 

r RT** r P(Error)** 

3 0.9633 31 0.0047 0.3429 0.2891 -2.3544 31 0.0036 0.0251 2.0428 

4 1.0547 31 0.0117 0.2997 0.3142 -0.5935 31 0.0092 0.5571 0.2223 

5 2.3275 31 0.0047 0.0266 1.9430 -1.3134 31 0.0041 0.1987 0.4130 

6 2.8030 31 0.0091 0.0087 4.9825 0.3438 31 0.0092 0.7333 0.1995 

7 2.8732 31 0.0059 0.0073 5.7792 0.2850 31 0.0039 0.7776 0.1961 

8 2.4366 31 0.0071 0.0208 2.3867 1.3352 31 0.0036 0.1915 0.4236 

9 2.8420 31 0.0043 0.0079 5.4090 -0.4578 31 0.0045 0.6503 0.2081 

10 2.3095 31 0.0105 0.0277 1.8794 -0.6759 31 0.0087 0.5041 0.2332 

11 1.2842 31 0.0040 0.2086 0.3993 -1.9044 31 0.0050 0.0662 0.9354 

12 -0.7179 31 0.0151 0.4782 0.2396 -1.6658 31 0.0153 0.1058 0.6522 

3-12 4.3672 319 0.0086 <.0001 608.8551 -2.1906 319 0.0077 0.0292 0.6641 

 
Note: * = negative t values indicate preference for the no item recognition model; ** = positive t 
values indicate preference for the no item recognition model.  
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Table B1 

Summary tables for ANOVAs on Response Time (RT) and error rate (P(Error)) for “yes” 

responses across Experiments 3-10. 

 

Source df Mean Square F p p2 

Response Time 

List Type (L) 1 45571.9314 1.1869 .2770 .0048 

Probe Type (P) 1 1858346.0481 48.4015 < .0001 .1633 

Probe Delay (D) 1 6359450.0220 165.6350 < .0001 .4004 

L x P 1 3168.1888 .0825 .7742 .0038 

L x D 1 87652.5105 2.2830 .1321 .0091 

P x D 1 47771.0235 1.2442 .2657 .0050 

L x P x D 1 74845.1045 1.9494 .1639 .0078 

Error 248 38394.3716    

P(Error) 

List Type (L) 1 .0037 .3172 .5738 .0013 

Probe Type (P) 1 .0095 .8243 .3648 .0033 

Probe Delay (D) 1 .0504 4.3790 .0374 .0174 

L x P 1 .0017 .1434 .7052 .0006 

L x D 1 .0213 1.8482 .1752 .0074 

P x D 1 .0121 1.0495 .3066 .0042 

L x P x D 1 .0146 1.2688 .2611 .0051 

Error 248 .0115    

 

Note: Significant effects are in bold font. 
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Table B2 

Summary tables for ANOVAs on within list distance contrasts (-2 -1 1 2) in response time (RT) 

and error rate (P(Error)) across Experiments 3-10. 

 

Source df Mean Square F p p2 

Response Time 

List Type (L) 1 15306.3291 .5842 .4454 .0024 

Probe Type (P) 1 30465.5207 1.1628 .2819 .0047 

Probe Delay (D) 1 159885.0207 6.1027 .0142 .0240 

L x P 1 117.3160 .0045 .9467 .0000 

L x D 1 2023.3129 .0772 .7813 .0003 

P x D 1 16856.1535 .6434 .4233 .0026 

L x P x D 1 8848.9297 .3378 .5617 .0014 

Error 248 26199.2664    

P(Error) 

List Type (L) 1 .0069 .3783 .5391 .0015 

Probe Type (P) 1 .0564 3.0753 .0807 .0122 

Probe Delay (D) 1 .2542 13.8574 <.0001 .0529 

L x P 1 .0063 .3422 .5591 .0014 

L x D 1 .0780 4.2507 .0403 .0169 

P x D 1 .0044 .2419 .6232 .0010 

L x P x D 1 .0044 .2419 .6233 .0010 

Error 248 .0183    

 

Note: Significant effects are in bold font. 
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Table B3 

Summary tables for ANOVAs on prior list distance contrasts (-2 -1 1 2) in response time (RT) 

and error rate (P(Error)) across Experiments 3-10. 

 

Source df Mean Square F p p2 

Response Time 

List Type (L) 1 51938.4100 3.5204 .0618 .0140 

Probe Type (P) 1 24230.8139 1.6424 .2012 .0066 

Probe Delay (D) 1 10070.1225 .6826 .4095 .0027 

L x P 1 21708.3389 1.4714 .2263 .0059 

L x D 1 3800.7225 .2576 .6122 .0010 

P x D 1 35160.9377 2.3832 .1239 .0095 

L x P x D 1 65.4077 .0044 .9470 .0000 

Error 248 14753.4940    

P(Error) 

List Type (L) 1 .0252 2.6913 .1022 .0107 

Probe Type (P) 1 .0150 1.5977 .2074 .0064 

Probe Delay (D) 1 .0220 2.3508 .1265 .0094 

L x P 1 .0074 .7879 .3756 .0032 

L x D 1 .0125 1.3365 .2488 .0054 

P x D 1 .0000 .0007 .9786 .0000 

L x P x D 1 .0000 .0007 .9786 .0000 

Error 248 .0094    

 

Note: Significant effects are in bold font. 
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Table B4 

Summary tables for ANOVAs on contrasts comparing within-list and prior-list distance effects (-

2 -1 1 2) in response time (RT) and error rate (P(Error)) across Experiments 3-10. 

 

Source df Mean Square F p p2 

Response Time 

List Type (L) 1 123635.7454 3.0473 .0821 .0121 

Probe Type (P) 1 109036.1675 2.6875 .1024 .0107 

Probe Delay (D) 1 89703.9938 2.2110 .1383 .0088 

L x P 1 25017.3535 .6166 .4331 .0025 

L x D 1 11370.2235 .2803 .5970 .0011 

P x D 1 100707.0557 2.4822 .1164 .0099 

L x P x D 1 10435.8994 .2572 .6125 .0010 

Error 248 40571.6360    

P(Error) 

List Type (L) 1 .0586 2.1157 .1471 .0085 

Probe Type (P) 1 .0133 .4784 .4898 .0019 

Probe Delay (D) 1 .4259 15.3697 <.001 .0584 

L x P 1 .0000 .0016 .9679 .0000 

L x D 1 .0280 1.0102 .3158 .0041 

P x D 1 .0041 .1479 .7008 .0006 

L x P x D 1 .0041 .1479 .7009 .0006 

Error 248 .0277    

 

Note: Significant effects are in bold font. 
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Table B5 

Summary tables for ANOVAs on prior list distance contrasts (-1 0 1) in response time (RT) and 

error rate (P(Error)) across Experiments 3-10. 

 

Source df Mean Square F p p2 

Response Time 

List Type (L) 1 4911.3816 .1494 .6995 .0006 

Probe Type (P) 1 20059.4110 .6101 .4355 .0025 

Probe Delay (D) 1 9019.0635 .2743 .6009 .0011 

L x P 1 8538.9150 .2597 .6108 .0010 

L x D 1 293.0516 .0089 .9249 .0000 

P x D 1 13825.3504 .4205 .5173 .0017 

L x P x D 1 88346.4160 2.6868 .1024 .0107 

Error 248 32881.2113    

P(Error) 

List Type (L) 1 .0260 1.7932 .1818 .0072 

Probe Type (P) 1 .0002 .0167 .8974 .0000 

Probe Delay (D) 1 .0850 5.8570 .0162 .0231 

L x P 1 .0022 .1517 .6972 .0006 

L x D 1 .0004 .0298 .8630 .0001 

P x D 1 .0088 .6050 .4374 .0024 

L x P x D 1 .0053 .3661 .5457 .0015 

Error 248 .0145    

 

Note: Significant effects are in bold font. 
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Table C1 
Contrasts evaluating linear and quadratic trends in RT for correct responses as a function of 
serial position for match (yes) trials, within-list lures, and prior-list lures.  Each t test has 31 
degrees of freedom. 
 

Trial Trend Exp t SEM p BF10 Ex
p 

t SEM p BF10 

Yes Linear 3 0.3512 229.4812 0.7278 0.2000 7 1.2285 197.3516 0.2285 0.3753 
Quad 6.0704 179.7317 <.0001 >1000 7.8704 167.4703 <.0001 >1000 

Within Linear 1.7801 164.8887 0.0849 0.7714 1.2912 248.0939 0.2062 0.4025 
Quad 8.1089 167.0396 <.0001 >1000 7.4094 223.4416 <.0001 >1000 

Prior Linear 1.4667 138.5296 0.1525 0.4980 2.9715 111.2028 0.0057 7.1392 
Quad 4.7457 116.5855 <.0001 534.3189 3.4544 159.8824 0.0016 21.2875 

Yes Linear 4 -1.6635 169.2890 0.1063 0.6500 8 -0.7377 142.5805 0.4662 0.2428 
Quad 8.8555 136.5208 <.0001 >1000 6.9917 152.3969 <.0001 >1000 

Within Linear -0.9802 154.2175 0.3346 0.2935 -0.6368 141.8076 0.5289 0.2278 
Quad 7.8751 181.4746 <.0001 >1000 6.6350 172.7026 <.0001 >1000 

Prior Linear -1.2036 106.6782 0.2378 0.3653 -0.2723 108.9151 0.7872 0.1954 
Quad 4.2685 136.7072 0.0002 156.6463 3.4795 122.6473 0.0015 22.5808 

Yes Linear 5 3.8004 329.3887 0.0006 48.7689 9 1.5716 288.5769 0.1262 0.5719 
 Quad 8.2568 209.4112 <.0001 >1000 9.6502 233.5605 <.0001 >1000 
Within Linear 1.8566 268.9361 0.0729 0.8675 4.8283 190.4943 <.0001 662.5154 
 Quad 9.8953 136.0669 <.0001 >1000 9.3640 162.4536 <.0001 >1000 
Prior Linear 2.2000 207.5342 0.0354 1.5410 2.6624 140.5042 0.0122 3.7272 
 Quad 2.3852 196.4266 0.0234 2.1645 6.1778 136.5590 <.0001 >1000 
Yes Linear 6 3.6919 201.4793 0.0009 37.4755 10 3.3521 249.8308 0.0021 16.7736 
 Quad 6.5997 252.3151 <.0001 >1000 7.4755 244.1973 <.0001 >1000 
Within Linear 5.2903 142.2577 <.0001 >1000 2.1750 248.4765 0.0374 1.4742 
 Quad 7.7347 246.2249 <.0001 >1000 7.9714 266.8444 <.0001 >1000 
Prior Linear 2.8782 140.4779 0.0072 0.2000 1.2249 179.5029 0.2299 0.3738 
 Quad 6.7136 173.1142 <.0001 >1000 5.9659 192.7160 <.0001 >1000 
Yes Linear 11 1.2072 403.9968 0.2365 0.7714 12 2.1768 297.9729 0.0372 1.4789 
 Quad 11.0087 209.3930 <.0001 >1000 12.0144 205.2672 <.0001 >1000 
Within Linear 3.7532 259.6868 0.0007 0.4980 4.0314 227.7606 0.0003 86.2591 
 Quad 11.2647 194.4027 <.0001 534.3189 7.0327 252.9921 <.0001 >1000 
Prior Linear 1.3253 178.5305 0.1948 0.6500 2.7380 204.1361 0.0101 4.3517 
 Quad 7.1728 173.0699 <.0001 >1000 4.9306 160.1743 <.0001 865.4073 

 

Note: Significant effects are in bold font. 
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Table C2 
Contrasts evaluating linear and quadratic trends in proportion of correct responses as a function 
of serial position for match (yes) trials, within-list lures, and prior-list lures.  Each t test has 31 
degrees of freedom. 
 

Trial Trend Exp t SEM p BF10 Exp t SEM p BF10 
Yes Linear 3 1.7649 0.2957 0.0874 0.7539 7 -1.0001 0.2742 0.3250 0.2987 

Quad -
3.0199 0.2246 0.0050 7.9338 -4.9276 0.1495 <.0001 858.6436 

Within Linear -
1.7482 0.1466 0.0903 0.7354 -1.4901 0.1017 0.1463 0.5132 

Quad -
3.9957 0.1384 0.0004 78.9219 -6.1795 0.1651 <.0001 >1000 

Prior Linear -
0.5336 0.1142 0.5974 0.2155 -0.4618 0.0812 0.6474 0.2085 

Quad -
0.3613 0.0908 0.7203 0.2006 -2.7368 0.1033 0.0102 4.3410 

Yes Linear 4 -
0.5678 0.2133 0.5743 0.2192 

8 
-0.7481 0.2590 0.4600 0.2445 

Quad 2.1193 11.8699 0.0422 1.3374 -3.9908 0.1913 0.0004 77.9664 
Within Linear 0.8587 0.1019 0.3971 0.2652 0.2639 0.0947 0.7936 0.1950 

Quad -
2.9357 0.1613 0.0062 6.6072 -5.9239 0.1089 <.0001 >1000 

Prior Linear -
0.3603 0.0954 0.7210 0.2006 1.4535 0.0634 0.1561 0.4897 

Quad -
1.1837 0.0805 0.2455 0.3576 -2.1754 0.0725 0.0373 1.4753 

Yes Linear 5 -
2.9027 0.4330 0.0068 6.1549 

9 
1.5274 0.3018 0.1368 0.5390 

 Quad 1.8171 0.1836 0.0789 0.8160 -1.0008 0.1077 0.3247 0.2989 
Within Linear -

3.1107 0.1708 0.0040 9.6956 -2.9900 0.1792 0.0054 7.4322 

 Quad -
3.6950 0.2089 0.0008 37.7544 -7.4705 0.1627 <.0001 >1000 

Prior Linear -
2.7393 0.1683 0.0101 4.3635 -1.9992 0.1258 0.0544 1.0912 

 Quad -
0.6975 0.2352 0.4907 0.2364 -1.7312 0.0939 0.0934 0.7171 

Yes Linear 6 -
2.9527 0.3612 0.0060 6.8542 

10 
-2.0419 0.3872 0.0497 1.1718 

 Quad 0.0269 0.2612 0.9787 0.1889 0.0912 0.1970 0.9279 0.1896 
Within Linear -

3.4100 0.0765 0.0018 19.1878 -3.4445 0.1461 0.0017 20.7992 

 Quad -
4.6294 0.1458 0.0001 395.1826 -5.4572 0.1549 <.0001 >1000 

Prior Linear -
1.9987 0.0876 0.0545 1.0903 -1.5648 0.0909 0.1278 0.5667 

 Quad -
3.5806 0.0847 0.0012 28.6911 -2.7453 0.0882 0.0100 4.4180 

Yes Linear 11 1.7684 0.2567 0.0868 0.7579 12 1.5494 0.2108 0.1314 0.5550 
 Quad -

3.8493 0.1372 0.0006 54.9704 22.8041 0.1824 <.0001 >1000 

Within Linear 0.3466 0.1533 0.7313 0.1997 -0.3037 0.0926 0.7634 0.1971 
 Quad -

5.6375 0.2001 <.0001 >1000 -5.2350 0.2337 <.0001 >1000 

Prior Linear 2.8955 0.0863 0.0069 6.0608 1.4146 0.1381 0.1672 0.4663 
 Quad -

3.8128 0.1025 0.0006 50.2692 -3.3548 0.0880 0.0021 16.8787 

 

Note: Significant effects are in bold font. 
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Table D1 
Mean parameter values for model fits in Experiments 3-12. 

Expt   Msmtch  Bound Bias Scl RT Residual sprior _item 
Zero Prior List Strength 

3 0.2225 0.6587 0.3819 3.5704 0.5367 4.6853 0.3241   
4 0.1247 0.5333 0.4872 2.9956 0.5378 6.2008 0.2070   
5 0.3383 0.6776 0.3027 4.9415 0.5445 3.7936 0.2621   
6 0.2071 0.5625 0.4484 3.4991 0.5312 5.0891 0.1608   
7 0.2441 0.5961 0.4337 3.7335 0.5286 4.9420 0.3261   
8 0.1371 0.5521 0.5981 3.0091 0.5276 6.0719 0.2183   
9 0.3624 0.6765 0.2921 5.0483 0.5512 3.9276 0.2558   
10 0.1932 0.5071 0.7616 3.2817 0.5321 5.4502 0.1972   
11 0.3284 0.7200 0.2686 5.3314 0.5658 3.8052 0.2753   
12 0.3508 0.6655 0.3283 5.3019 0.5563 4.2929 0.2482   
Mean 0.2508 0.6149 0.4303 4.0713 0.5412 4.8259 0.2475   

Nonzero Prior List Strength 
3 0.2780 0.5499 0.3839 3.7374 0.5308 5.0790 0.3090 0.1636  
4 0.1410 0.5056 0.4894 3.0250 0.5363 6.3203 0.2049 0.0528  
5 0.4240 0.5403 0.3229 5.3506 0.5311 4.8966 0.2257 0.2085  
6 0.2271 0.5173 0.4613 3.6473 0.5276 5.3816 0.1497 0.0857  
7 0.2585 0.5615 0.4352 3.7699 0.5270 5.0137 0.3237 0.0594  
8 0.1411 0.5421 0.6003 3.0157 0.5273 6.1024 0.2178 0.0151  
9 0.3855 0.6269 0.2965 5.1239 0.5485 4.0078 0.2495 0.0712  
10 0.2035 0.4797 0.7643 3.3100 0.5309 5.4906 0.1942 0.0421  
11 0.3838 0.6218 0.2845 5.7388 0.5558 4.6619 0.2343 0.1627  
12 0.3839 0.6120 0.3337 5.3678 0.5527 4.3867 0.2431 0.0764  
Mean 0.2826 0.5557 0.4372 4.2086 0.5368 5.1341 0.2352 0.0938  

Zero Prior List Strength and Item Recognition 
3 0.1717 0.6790 0.3917 3.5904 0.5374 4.8299 0.3226  0.0439 
4 0.0850 0.5343 0.5127 2.9979 0.5384 6.5128 0.2075  0.0318 
5 0.1738 0.7611 0.3036 5.0613 0.5465 3.8063 0.2513  0.1495 
6 0.0944 0.6003 0.4837 3.5389 0.5326 5.4687 0.1579  0.0980 
7 0.1511 0.5013 0.4543 3.7407 0.5297 5.1595 0.3267  0.0742 
8 0.0897 0.4696 0.6329 3.0233 0.5279 6.4195 0.2174  0.0389 
9 0.1396 0.8200 0.2889 5.1902 0.5547 3.8781 0.2438  0.1955 
10 0.1342 0.5900 0.8431 3.2920 0.5334 5.9884 0.1970  0.0770 
11 0.1300 0.8169 0.2645 5.4740 0.5688 3.8088 0.2635  0.1787 
12 0.1396 0.7603 0.3498 5.3859 0.5602 4.4834 0.2439  0.1723 
Mean 0.1309 0.6533 0.4525 4.1295 0.5429 5.0355 0.2432  0.1060 

Nonzero Prior List Strength and Item Recognition 
3 0.1849 0.5561 0.3963 3.8551 0.5300 5.3521 0.2967 0.2050 0.0923 
4 0.0858 0.5093 0.5192 3.0312 0.5369 6.6807 0.2050 0.0588 0.0446 
5 0.1769 0.6693 0.2860 5.9494 0.5568 4.6514 0.2154 0.2114 0.1938 
6 0.1144 0.5320 0.5009 3.7088 0.5283 5.8238 0.1448 0.1057 0.1052 
7 0.1798 0.4645 0.4587 3.7842 0.5278 5.2670 0.3237 0.0723 0.0692 
8 0.0897 0.4554 0.6372 3.0346 0.5276 6.4696 0.2164 0.0194 0.0434 
9 0.1317 0.7603 0.2946 5.3046 0.5519 3.9815 0.2335 0.0935 0.2285 
10 0.1381 0.5620 0.8546 3.3316 0.5322 6.0929 0.1926 0.0489 0.0852 
11 0.1769 0.6693 0.2860 5.9494 0.5568 4.6514 0.2154 0.2114 0.1938 
12 0.1338 0.7009 0.3562 5.4980 0.5564 4.6102 0.2352 0.1066 0.2147 
Mean 0.1412 0.5879 0.4590 4.3447 0.5405 5.3581 0.2279 0.1133 0.1271 
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Table D2 
 
Measures of goodness of fit for each model fit in Experiments 3-12 
 
Expt ZPL NZPL IRO IRPL ZPL NZPL IRZ IRNZ 
 Akaike Information Criterion Bayesian Information Criterion 
3 519.50 514.36 519.54 513.74 548.66 547.68 552.86 551.23 
4 252.63 252.75 252.23 292.77 281.81 286.09 285.57 329.10 
5 738.02 732.57 734.03 727.40 767.19 765.90 767.36 764.90 
6 493.53 490.56 490.92 453.87 522.66 523.84 524.20 491.32 
7 569.19 565.85 565.94 563.02 597.18 599.16 599.25 600.49 
8 340.08 341.78 340.03 341.66 369.25 375.12 373.37 379.17 
9 762.73 753.03 759.40 747.24 791.87 786.34 792.70 784.71 
10 647.90 648.76 646.49 628.71 677.06 682.09 679.82 666.20 
11 694.89 694.56 691.20 689.45 723.95 727.76 724.40 726.80 
12 706.02 705.34 722.73 651.45 735.15 738.64 756.03 685.39 
Mean 544.31 541.97 544.19 533.43 573.46 575.28 577.50 536.51 
 Correlation RT Correlation P(Error) 
3 0.6769 0.6692 0.7056 0.6834 0.7149 0.7185 0.7010 0.6920 
4 0.6760 0.6876 0.7512 0.7265 0.5869 0.6056 0.5949 0.5883 
5 0.7701 0.7391 0.8007 0.7735 0.7594 0.7611 0.7499 0.7441 
6 0.6175 0.6294 0.6807 0.7097 0.6818 0.6856 0.6843 0.6956 
7 0.6962 0.6911 0.7407 0.7373 0.6932 0.7036 0.6877 0.6950 
8 0.5767 0.5696 0.6198 0.6121 0.7643 0.7661 0.7791 0.7822 
9 0.7285 0.7213 0.7686 0.7603 0.7075 0.7415 0.7041 0.7351 
10 0.6857 0.6780 0.7615 0.7544 0.6533 0.6645 0.6273 0.6460 
11 0.8188 0.7996 0.8328 0.8157 0.7242 0.7373 0.7034 0.7073 
12 0.8072 0.8025 0.8301 0.7682 0.7849 0.7955 0.7710 0.7148 
Mean 0.7152 0.7088 0.7623 0.7490 0.6903 0.6979 0.6812 0.6760 

 
Note: ZPL = zero prior list strength; NZPL = nonzero prior list strength; IRZ= item recognition 
with zero prior list strength; IRNZ = item recognition with nonzero prior list strength. 
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Appendix A: Simulation Methods 

We conducted two sets of simulations.  One varied the strength of associations to the 

prior list (sprior).  The other varied the probability of using position coding (pprior).  Each 

simulation generated a list of five items in which the middle position was cued, creating 

distances {-2 -1 0 1 2}.  The activation of current and prior list items was generated using 

Equation 1 for each distance.  These activation values were used to generate drift rates for the 

limited-capacity racing diffusion model using Equation 2 for recall and Equations 6 and 7 for 

cued recognition.  Thus, the same position codes and representations of order were used to 

simulate recall and cued recognition.  In both simulations,  = .3, recall threshold = 10.0, 

recognition thresholds = 2.8 for “yes” and 3.0 for “no,”   = 1.0, and  = 0.8.  In the simulations 

that varied list probability, prior list strength was greater than zero (sprior > 0) on pprior 

proportion of the trials (when position coding was engaged) and set equal to zero (sprior = 0) on 

1 – pprior proportion of the trials (when position coding was not engaged). 

On each trial, the simulation used drift rates defined in Equation 2 or Equations 6 and 7 

and a threshold (10 for recall; 2.8 for “yes” and 3.0 for “no” in cued recognition) to sample a 

random value from a Wald distribution (the finishing time distribution for a diffusion to a single 

bound) for each response category (10 current and prior list items for recall; “yes” vs. “no” for 

cued recognition), and the simulation chose the category with the shortest simulated RT.  Each 

condition (recall vs. recognition x 10 current- and prior-list items) was simulated 100000 times.  

Response probabilities and mean RTs were calculated for each response category as a function of 

the cued position in the current or prior list.  The results are plotted in Figures 2 (sprior varied) 

and A1 (pprior varied).  

To simulate recall, the program stepped through the 10 items in the current and the prior 

lists, using Equation 5 to calculate the probability of recalling the items in each list given their 

activation and strength of association to the position code (1 for the current list; sprior for the 

prior list) when trying to recall the item in position 3 in the current list.  To simulate cued 

recognition, the program stepped through the same 10 items in the current and prior lists, using 

Equation 8 and 9 to simulate the probability and response time (RT) for “yes” and “no” 

decisions, respectively.  To evaluate the effects of the strength of prior associations, the 

simulation was run five times with sprior = .1, .2, .3, .5, and .7 to cover the range where the 
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changes were most dramatic.  To evaluate the effects of the probability of using position coding, 

the simulation was run five times with pprior = .1, .2, .3, .5, and .7 with sprior fixed at .5. 

Matlab code for the simulations and the simulation results can be found on the Open 

Science Framework at https://osf.io/j4z7a/ 

 

Appendix B: Between-Experiment ANOVAs 

We compared Experiments 3-10 in 2 (precue vs no precue) x 2 (spatial vs numeric cues) 

x 2 (constrained vs unconstrained lists) between-subject ANOVAs on RT and error rate for “yes” 

responses (Table B1), within-list distance contrasts (-2 -1 1 2; Table B2), prior list distance 

contrasts (-2 -1 1 2; Table B3), contrasts evaluating the difference between within-list and prior-

list distance contrasts (Table B4), and contrasts evaluating the peak in prior-list distance effects 

at distance = 0 (Table B5). 

 

Appendix C: Serial Position Effects 

Mean RTs for correct responses and error rates for match (“yes”), within-list lures (“no”), 

and prior-list lures (“no”) in Experiments 3-12 are plotted as a function of the serial position of 

the probe in Figure C1.  Contrasts evaluating linear and quadratic trends in the serial position 

effects in these data are presented in Tables C1 (RT) and C2 (proportion correct).  The raw data 

and the means Figure C1 depicts are available on the Open Science Framework at 

https://osf.io/j4z7a/. 

  The contrasts can be interpreted as measures of the direction of sequential access to list 

items (Logan et al., 2023a):  The linear trend reflects sequential access from the beginning of the 

list (positive slope) or from the end of the list (negative slope).  The quadratic trend reflects 

access from both ends of the list, as if subjects start at the end of the list that is nearest to the 

probed position.  Of course there are other interpretations of the serial position effects, including 

interference (greater for middle positions) and encoding differences (early items may be encoded 

better than later items). 

 

Appendix D: Model Fitting Methods 

The models we fit to the data from each experiment are simplified versions of the models 

Logan et al. (2021) fit to their episodic flanker task.  We assume that memory for the current list 

https://osf.io/j4z7a/
https://osf.io/j4z7a/
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is represented in the form of a matrix M. The matrix M has N rows and 6 columns.  N is the total 

number of unique items in the stimulus set (for the consonants used in our experiments, N = 20).  

The six columns correspond to the six locations in which items are presented.  The entry mij in 

the matrix M gives the degree to which item i is activated by the position code for location j (i.e., 

mij = a(i|j) in Equation 1). Let ℂ𝑖 be an indicator variable that equals 1 if item i was on the 

current list and zero otherwise and let ℙ𝑖 be an indicator variable that equals 1 if item i was on 

the previous list and zero otherwise.  Then mij is given by 𝑚𝑖𝑗 = (ℂ𝑖 + 𝑠𝑝𝑟𝑖𝑜𝑟 × ℙ𝑖)𝜌|𝑖−𝑗|where 

parameters 𝜌 and sprior are as defined in the main text. 

Each trial of cued recognition involves a probe item and a cued location k.  The probe 

item is represented using a vector q with a 1 in the entry corresponding to the probe item and 

zeros elsewhere.  The degree to which the probe item is activated by the code for position k is 

given by the dot product between the vector q  and the kth column of M.  The kth column of M, 

written as m.k, is equivalent to the vector of item activations m described in the main text.  The 

only difference is that, in the main text, only the elements of m corresponding to items that were 

in either the current or prior list are depicted; all other elements of m have activations of zero 

(since, for any item i not in either the current or prior list, ℂ𝑖 = ℙ𝑖 = 0). 

As described in the main text, a recognition decision is modeled as the outcome of a race 

between a “yes” accumulator and a “no” accumulator.  The input to the “yes” accumulator is a 

function of the degree to which the contents of the recognition probe match the contents of 

memory.  The input to the “no” accumulator is a function of the maximum possible match value.  

As such, a subject will be more willing to make a “yes” response, and to do so more quickly, to 

the extent that the degree of match is large relative to how large it could be.  In total, we fit four 

different models to each of our cued recognition experiments.  The four models represent a 

factorial combination of the presence or absence of two potential contributors to the recognition 

process: prior-list representations and item recognition.  The simplest model, with no additional 

contributors, assumes that the inputs to the “yes” and “no” accumulators depend only on a 

comparison between the probe and the memory representation for the cued position in the current 

list, that is, the column of M corresponding to the cued position.  We first describe the simplest 

model and its implementation. 
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Cued Recognition 

On any given trial, the probe consists of an item and cued location k, which together are 

used to construct a vector q which serves as a retrieval cue.  The vector q has 6 entries, one for 

each possible position.  If the probe item had been presented at position i in the current list, then 

the vector q has a 1 in its ith position and zeros elsewhere.  Otherwise, vector q consists of all 

zeros, although this is merely a shorthand for the idea that the probe item does not have a 

corresponding row in the memory matrix M.  The joint item-position match is the dot product 

between the kth column of M and the cue vector q.  Because q has zeros everywhere except for 

the entry corresponding to the position in which the probe item had been studied (if it had been), 

this dot product is simply mik =  |I – k|, i.e., the degree to which the item studied in position I is 

associated with cued location k.  This match value is multiplied by a scaling parameter A (A > 0) 

to yield TY, the total input to the “yes” accumulator: 

𝑇𝑌 = 𝐴(𝒒 ∙ 𝑴⋅𝑘) = 𝐴𝜌|𝑖−𝑘| 

The maximum possible match is the product of the magnitudes of q and M.k, which would occur 

if they had exactly the same values in each of their entries.  By design, the magnitude of q is ||q|| 

= 1, so the maximum possible match is determined by the magnitude of M.k.  The magnitude of 

M.k is the square root of the sum of the squared entries in column k of matrix M, i.e., 

||𝑴⋅𝑘|| = √∑ 𝜌2|𝑗−𝑘|

6

𝑗=1

. 

The maximum match is multiplied by both the scaling parameter A from above as well as an 

additional weighting factor 𝜆 (𝜆 > 0) to yield the total input to the “no” accumulator: 

𝑇𝑁 = 𝐴𝜆(||𝒒|| × ||𝑴⋅𝑘||) = 𝐴𝜆||𝑴⋅𝑘|| = 𝐴𝜆√∑ 𝜌2|𝑗−𝑘|

6

𝑗=1

 

where the 𝜆 parameter acts to give different degrees of weight to mismatch information.  When 𝜆 

≥ 1, the total input to the “yes” accumulator will never exceed that to the “no” accumulator since, 

by definition, the input to the “no” accumulator is based on the maximum possible match.  The 𝜆 

parameter therefore reflects how large a match needs to be relative to its maximum before the 

match is seen as strong enough to favor a “yes” response.  For example, if 𝜆 = 0.5, then the total 
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input to the “yes” accumulator would exceed that of the “no” accumulator if the degree of match 

were at least half of its maximum possible value. 

The activation level of each accumulator is assumed to evolve over time according to a 

Wiener process with infinitesimal variance of 1.  The drift rates for each accumulator are 

functions of the total input to each accumulator along with feedforward inhibition from the input 

to the other accumulator, the strength of which is governed by parameter 𝜅 (𝜅 > 0):  

𝑑𝑌 =
𝑇𝑌

1 + 𝜅𝑇𝑁
 

𝑑𝑁 =
𝑇𝑁

1 + 𝜅𝑇𝑌
 

where dY and dN are the drift rates for the “yes” and “no” accumulators, respectively. 

Each accumulator has a threshold, 𝜃Y for the “yes” accumulator and 𝜃N for the “no” accumulator.  

Both accumulators start with zero activation at the beginning of a trial and the first accumulator 

to reach its threshold determines the response as well as the response time.  We parameterize the 

thresholds in terms of a “response caution” parameter B (B > 0) and a “bias” parameter w (0 < w 

< 1).  “Response caution” is the sum of the thresholds, i.e., B = 𝜃Y + 𝜃N, and reflects the total 

amount of memory evidence a subject generally requires before responding.  “Bias” reflects the 

degree to which the threshold for the “yes” accumulator is lower than that for the “no” 

accumulator, thereby favoring a “yes” response.  The two thresholds are given by 

𝜃𝑌 = 𝐵(1 − 𝑤) 

𝜃𝑁 = 𝐵𝑤 

such that the thresholds are unbiased when w = 0.5, are biased in favor of “yes” responses when 

w > 0.5, and are biased in favor of “no” responses when w < 0.5.  The total response time on a 

given trial is the time needed for the first accumulator to reach its threshold, plus a residual time 

R that includes the time needed to detect and orient to the probe, to focus on the cued position, 

and to execute the response associated with the winning accumulator.  In the present models, we 

simply assume that R is a constant. 

To summarize, the simplest model we consider has seven free parameters:  The position 

association gradient (0 <   < 1), the scaling parameter for converting matches to accumulator 

inputs (A > 0), the mismatch weight parameter (𝜆 > 0), the feedforward inhibition between 

accumulators (𝜅 > 0), response caution (B > 0), response bias (0 < w < 1), and residual time (R > 
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0).  For models assuming no contribution from the prior list, sprior is not a free parameter 

because it is fixed at sprior = 0.  For models that allow for prior list representations to contribute 

to cued recognition, sprior (0 < sprior < 1) is an additional free parameter to be estimated. 

Item recognition 

We also explored models that included an additional form of match/mismatch process 

corresponding to simple item recognition.  Item recognition was modeled by matching the probe 

vector q not just to the kth column of M, but to all columns of M and summing the result.  This 

amounts to item recognition because the resulting match represents the degree to which the probe 

item matches anything that had been studied recently, regardless of location.  This is 

accomplished by summing the dot products between the cue vector q and all 6 columns of the 

memory matrix M.  The total input to the “yes” accumulator is then a weighted sum of the joint 

item-position match and the item recognition match, where the parameter 𝜔 (0 < 𝜔 < 1) 

represents the relative weight of the item recognition match: 

𝑇𝑌 = 𝐴 [(1 − 𝜔)(𝒒 ∙ 𝑴⋅𝑘) + 𝜔 (∑ 𝒒 ∙ 𝑴⋅𝑗

6

𝑗=1

)] 

The maximum possible item recognition match, which contributes to the input to the “no” 

accumulator, is the sum of the maximum possible item-position joint match across all positions 

(columns) in the memory matrix M.  The contribution of the maximum possible item recognition 

match to the “no” input is weighted by the same factor as the contribution to the “yes” input: 

𝑇𝑁 = 𝐴𝜆 [𝜔(‖𝒒‖ × ‖𝑴.𝑘‖) + (1 − 𝜔) (∑‖𝑞‖

6

𝑗=1

× ‖𝑀.𝑗‖)] 

The rest of the model is unchanged and operates exactly as described above.  Thus, modeling the 

contribution of item recognition involves adding only one free parameter, the weight 𝜔 given to 

item recognition as opposed to joint item-position recognition. 

Prior list representations 

Just like the current list is represented in memory with the matrix M, the previous list is 

represented in another matrix L with the same structure (i.e., six columns corresponding to the 

six locations in the prior list and six rows corresponding to the six items presented in the prior 
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list).  If a probe item was present in the prior list, the degree to which it activates its 

representation in the prior list is given by parameter p, which ranges between 0 and 1.  For 

models that assume no contribution of prior list representations, p is assumed to be fixed at zero.  

If p is greater than zero, then the prior list representation contributes to both the joint item-

position match as well as the item recognition match.  In addition, the maximum possible values 

of both types of match are higher, reflecting the additional contribution of prior-list 

representations. 

Let qL denote a cue vector constructed in an analogous manner to the one for the current 

list (q).  The vector qL has all zeros except for the entry corresponding to the position in which 

the probe item appeared in the prior list (as above, this vector is all zeros if the item was not 

present in the prior list).  Then the total match value is given by 

𝑇𝑌 = 𝐴 {(1 − 𝜔)[𝒒 ∙ 𝑴⋅𝑘 + 𝑝(𝑞𝐿 ∙ 𝐿⋅𝑘)] + 𝜔 [∑ 𝒒 ∙ 𝑴⋅𝑗

6

𝑗=1

+ 𝑝 (∑ 𝒒𝐿 ∙ 𝑳⋅𝑗

6

𝑗=1

)]} 

while the maximum total match value is given by 

𝑇𝑁 = 𝐴𝜆 [(1 − 𝜔)(||𝑴⋅𝑘|| + 𝑝||𝑳⋅𝑘||) + 𝜔 (∑ ||𝑴⋅𝑗||

6

𝑗=1

+ 𝑝 ∑ ||𝑳⋅𝑗||

6

𝑗=1

)] 

Note that, because the matrices for each list are constructed in an identical manner, 

∑ ||𝑴⋅𝑗||6
𝑗=1 = ∑ ||𝑳⋅𝑗||6

𝑗=1 . 

Model fitting 

We fit a total of four models to the data from each subject in each experiment, finding the 

parameters of each model that maximized the total log-likelihood of the choices and response 

times produced by each subject in each experiment.  Let dY[n] and dN[n] denote the drift rates for 

the “yes” and “no” accumulators on trial n, which are determined by the study items and cues on 

trial n as described above.  The likelihood that the “yes” accumulator reaches its threshold at 

time t is given by the probability density function of an inverse Gaussian (Wald) distribution 

𝑓𝑌(𝑡|𝑑𝑌[𝑛], 𝜃𝑌) =
𝜃𝑌

√2𝜋𝑡3
𝑒𝑥𝑝 [

(𝜃𝑌 − 𝑡𝑑𝑌[𝑛])2

2𝑡
] 

where we assume that the infinitesimal variance of the diffusion process is one (since this 

amounts to a scaling parameter).  The likelihood that the “no” accumulator reaches its threshold 
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at time t is defined analogously, replacing dY[n] with dN[n] and 𝜃Y with 𝜃N.  Then, according to 

the racing diffusion decision process we employ, the likelihood of making response Q[n] (either 

Y for “yes” or N for “no”) on trial n with response time RT[n] is 

𝐿[𝑛] = 𝑓𝑄[𝑛](𝑅𝑇[𝑛] − 𝑅|𝑑𝑄[𝑛][𝑛], 𝜃𝑄[𝑛]) × [1 − 𝐹𝑄[𝑛] (𝑅𝑇[𝑛] − 𝑅|𝑑𝑄[𝑛][𝑛], 𝜃𝑄[𝑛])] 

where 𝑄[𝑛] denotes the response that was not made on trial n and R is the residual time.  The 

total log-likelihood of choices and response times is then given by 

 𝐿𝐿 = ∑ 𝑙𝑜𝑔 𝐿[𝑛]𝑁𝑇
𝑛=1  

where NT is the total number of trials observed. 

 When fitting these models, we noticed some numerical problems that arose when certain 

parameters were allowed to take extremely large or small values, which interfered with the 

parameter search routines we used (discussed shortly).  To address this issue, we introduced a set 

of regularization terms that encouraged model parameters to stay within a reasonable range.  

These terms amount to prior information about the scales of particular model parameters and 

were expressed in terms of simple probability distributions.  For the bias w and position 

similarity gradient 𝜓, both of which range between 0 and 1, we imposed a weak Beta prior with 

both shape parameters set to 1.5.  The intent of this prior was to prevent these parameters from 

being exactly zero or exactly one, both of which are a priori implausible anyway.  For 

competition 𝜅, boundary separation B, drift scale A, and “no” scale 𝜆, all of which must be 

nonnegative, we imposed a weak Gamma prior with shape 1.05 and rate 0.05, corresponding to a 

mode of 1 and a standard deviation of 20.  The effect of this was to avoid extremely large values 

while also preventing these parameters from being exactly zero; again, both of these situations 

are implausible regarding any of these parameters.  Notice that no regularization was applied to 

either the prior-list strength parameter p or the item recognition weight parameter 𝜔.  This was to 

avoid introducing any bias into the model comparisons that might arise from favoring particular 

values for these parameters.  As a result, the total quantity to be maximized during model fitting 

is given by 

𝑉 = ∑ 𝑙𝑜𝑔 𝐿[𝑛]

𝑁𝑇

𝑛=1

+ 𝑙𝑜𝑔 𝐵𝑒𝑡𝑎(𝑤|1.5, 1.5) + 𝑙𝑜𝑔 𝐵𝑒𝑡𝑎(𝜓|1.5, 1.5)

+ 𝑙𝑜𝑔 𝐺𝑎𝑚𝑚𝑎(𝜅|1.05, 0.05) 
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+𝑙𝑜𝑔 𝐺𝑎𝑚𝑚𝑎(𝐵|1.05, 0.05) + 𝑙𝑜𝑔 𝐺𝑎𝑚𝑚𝑎(𝐴|1.05, 0.05)

+ 𝑙𝑜𝑔 𝐺𝑎𝑚𝑚𝑎(𝜆|1.05, 0.05) 

 To find the model parameters that maximized V, we first ran the Nelder-Mead Simplex 

routine starting from a generic starting point for 500 iterations.  The set of parameters from the 

final step of the Simplex search was then used as the initial seed value for a more sophisticated 

nonlinear optimization routine implemented in the `ucminf` R package (Nielsen & Mortensen, 

2016). 

 The predicted and observed RTs in each experiment are presented in Figure D1.  The 

predicted and observed error rates in each experiment are presented in Figure D2. 

 

Appendix E: Parameter Recovery 

In the main text, we used model fits to test the hypothesis that subjects did not activate 

prior list representations in cued recognition.  The alternative hypothesis is that subjects did 

activate prior-list representations.  These two hypotheses are embodied by model variants that 

either fix sprior = 0 (no prior-list activation) or allow for sprior to take any value between 0 and 

1 (allowing for prior-list activation).  We conducted a parameter recovery exercise to understand 

how well the design of our cued recognition experiments would be able to distinguish between 

these two hypotheses.  For example, it may be difficult to distinguish a subject with a very small 

value of sprior from one with sprior = 0.  For such a subject, model selection metrics like AIC or 

BIC might favor the simpler model (with sprior fixed to zero) not because this subject actually 

had sprior = 0, but because the improvement in model fit is overwhelmed by the penalty for 

introducing an additional free parameter.  These parameter recovery exercises were designed to 

understand how often we might expect that to occur, both at the level of individual subjects and 

when these metrics are aggregated across groups of subjects.  For example, AIC or BIC might 

favor the simpler model for a single subject with a small value of sprior, but if many subjects 

have a small value of sprior, the more complex---and more correct---model may be identified 

when comparisons are based on summed or average AIC/BIC across subjects.  Therefore, as part 

of this parameter recovery exercise, we examined not just how well AIC/BIC could distinguish 

between individual subjects with sprior = 0 vs. sprior ≠ 0, but how well summed AIC/BIC could 

distinguish between groups of subjects, all of whom have sprior = 0 vs. sprior ≠ 0. 
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 We simulated 6 groups of 10000 subjects each.  Within each group, each subject had the 

same value of sprior, which could take one of six different values: 0, 0.1, 0.2, 0.3, 0.5, or 0.7 

(matching the values used for our initial simulations in the main text).  Because these simulations 

did not include an item recognition component, there were seven other parameters that were 

randomly sampled for each simulated subject.  These were sampled from the probability 

distributions summarized in Table E1, which were chosen to roughly match the mean and 

standard deviation of the estimated parameters values across all 10 cued recognition experiments 

described in the main text.  For each subject, we simulated choice and RT in 480 trials of cued 

recognition.  Those 480 trials had exactly the same frequency of trial types as in each of our 

experiments.  As such, each simulated subject engaged in the same number of target, within-list 

lure, and prior-list lure trials across different cued locations and lags as was experienced by each 

actual subject.  To simulate the outcome of a trial, we used the sampled parameter values for 

each simulated subject to compute the drift rates of the “yes” and “no” accumulators on each trial 

and drew random samples from the resulting Wald distributions to represent the time needed for 

each accumulator to reach its threshold on each trial.  The simulated choice on each trial was 

given by which accumulator had the shortest simulated time-to-threshold.  The simulated RT was 

how long it took the fastest accumulator to reach its threshold, plus the simulated subject’s 

residual time. 

 After simulating data from each simulated subject, we fit both the constrained model 

(with sprior fixed at zero) and the unconstrained model (with sprior as a free parameter) to the 

data from each simulated subject.  To do so, we used exactly the same fitting procedure as was 

used for the real subjects (described in Appendix D).  As such, our parameter recovery methods 

exactly matched the methods we used to apply these models, simply exchanging data produced 

by real subject with data produced by simulated subjects. 

 Figure E1 shows the fits of each model to the simulated data from each group of subjects.  

The unconstrained model that allows for nonzero prior list strength is able to fit the error rates 

and RTs for each group, although there is a slight tendency for this model to predict higher error 

rates and RTs for prior list lures at lag zero even when the data are simulated assuming sprior = 

0.  Note that this is not a consequence of the regularizing priors described in Appendix C, since 

no such regularization was applied to sprior (such regularization could push estimates of sprior 
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away from zero).  On the other hand, the constrained model that assumes zero prior list strength 

is clearly unable to fit the data produced by subjects with sprior > 0. 

But while this discrepancy is apparent when looking at averages over 1000 simulated 

participants, does it also result in model comparison metrics that favor the appropriate 

model?  This question is addressed by Figure D2, which shows the proportion of simulated 

samples of different sizes (from 1 participant up to 320 participants) that resulted in summed 

AIC (left panel) or summed BIC (right panel) favoring the unconstrained model.  For each 

sample size, we simulated 10000 samples by sampling with replacement from the pool of 1000 

simulated participants.  For single participants, AIC is more likely to favor the correct model 

regardless of the true value of sprior (see the individual points on the left side of the left panel of 

Figure D.3).  On the other hand, BIC is more conservative at the individual participant level, 

only favoring the more complex model when sprior > 0.1 (see the individual points on the left 

side of the right panel of Figure D.3).  When aggregating across participants in each sample, both 

AIC and BIC are more likely to favor the correct model.  Sample sizes of 32 and 320 are 

highlighted in Figure D.3 with vertical bars, since these reflect the sample size of each of our 

experiments (each of which had 32 actual participants) as well as the sample size across all ten 

cued recognition experiments (320 total participants).  With a sample size of 32, summed AIC 

favors the correct model essentially the whole time, regardless of the value of sprior used to 

simulate the data.  With a sample size of 32, summed BIC favors the correct model almost 

always except when sprior = 0.1, in which case it correctly favors the unconstrained model in 

63% of simulated samples.  When aggregating across 320 participants---equivalent to 

aggregating across each participant across all 10 of our cued recognition experiments---both 

summed AIC and summed BIC favor the correct model the vast majority of the time; summed 

BIC favors the correct model in 94% of samples of size 320 when sprior = 0.1.  To be sure, these 

results are optimistic in the sense that the models being used to fit the data have the same 

structure as the models used to produce the data.  Moreover, each group of simulated participants 

has the same value of sprior when actual participants would not be so 

homogeneous.  Nonetheless, these results verify that our experimental designs have sufficient 

power to distinguish between participants with different values of sprior on the basis of relative 

model fit.  Moreover, considerable power might be achieved by aggregating across participants.  
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Figure 1: Position Coding Model 

 
Figure 1 caption: The simple position coding model.  The top row shows its representation (left) 

and activation (right) assumptions, illustrating a probe cuing the second position.  The probe 

activates position code 2 and its neighbors, and they activate items on the current and prior lists 

that were associated with them.  Activation peaks at the cued position and decreases with 

distance for both the current list and the prior list, but prior list activation is weaker because the 

associations are not as strong.  The second row shows the decision process for recall.  The 
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activations produced by the probe become drift rates in separate diffusion processes, each with a 

single boundary.  The first to reach its boundary determines the response and its response time.  

The third row and fourth rows show the decision process in cued recognition.  The probe item is 

compared with the activated items by taking the dot product of a vector representing activation 

of possible responses and a vector representing the activation of the probe letter in the probe.  

There is only one letter in the probe, so the vector has activation = 1 in that position and 0 

everywhere else.  Consequently, the dot product is simply 1 times the activation of the probe 

letter in the memory lists.  This is illustrated by the red boxes on the activation functions in the 

third row.  The activation increases drift rate for “yes” responses and decreases drift rate for “no” 

responses.  The graded activation of current and prior list lures predicts distance effects for both 

lists and position-specific interference for prior list lures. 
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Figure 2: Position Coding Predictions 

 
Figure 2 caption:  Simulated predictions of within- and prior-list distance effects in response time 

(RT) and response probability from the position coding model in Figure 1.  The same 

representations of position are used in each panel.  The columns represent different values of 

prior list strength (.1-.7) relative to current list strength (1.0).  The top row presents serial and 

cued recall error rates, the middle row presents cued recognition task error rates, and the bottom 

row presents cued recognition response times (RT) in arbitrary units.  Prior list distance effects 

are observed in recall error rates for list strengths ≥ .2.  They are observed in cued recognition 

error rates and RTs for all prior list strengths. 
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Figure 3: Recall 

 

 
Figure 3 caption.  Within-list (red) and prior-list (blue) intrusions as a function of distance from 

the correct position.  The left and middle panels contain results from Experiments 1 and 2, 

respectively.  The right panel shows results from cued recall experiments reported by Logan et 

al. (2023a), which used the same list length, exposure duration, and retention interval as the 

present experiments.  
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Figure 4: Cued Recognition Unconstrained Lists 

 
Figure 4 caption:  Mean response times (RTs; top panels) and error rates (bottom panels) as a 

function of distance between the cued position and the position of the probed item in the current 

(within) or prior list for responses to Matches (“yes”) and responses to within-list and prior-list 

lures (“no”) in Experiments 3-6.  The cuing procedure for each experiment is illustrated at the 

top of each column (list → retention interval → probe).  In Experiments 3 and 6, the position cue 

is presented before the probe item.  Experiments 3-6 used lists that were constrained not to repeat 

letters from the immediately previous list. 
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Figure 5: Cued Recognition Constrained Lists 

 
Figure 5 caption:  Mean response times (RTs; top panels) and error rates (bottom panels) as a 

function of distance between the cued position and the position of the probed item in the current 

(within) or prior list for responses to Matches (“yes”) and responses to within-list and prior-list 

lures (“no”) in Experiments 7-10.  The cuing procedure for each experiment is illustrated at the 

top of each column (list → retention interval → probe).  In Experiments 8 and 10, the position 

cue is presented before the probe item.  Experiments 8-10 used unconstrained lists, in which 

letters from the immediately previous list were allowed to repeat. 
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Figure 6: Sequential Lists 

 
Figure 6 caption:  Mean response times (RTs; top panels) and error rates (bottom panels) as a 

function of distance between the cued position and the position of the probed item in the current 

(within) or prior list for responses to Matches (“yes”) and responses to within-list and prior-list 

lures (“no”) in Experiments 11 and 12.  Both experiments presented the memory lists 

sequentially and both used simultaneous numeric probes to cue recognition (e.g., 5D). 

Experiment 11 used constrained lists.  Experiment 12 used unconstrained lists. 

 

 

  

600

800

1000

1200

1400

1600

-2 -1 0 1 2

M
ea

n
 R

T 
in

 m
s

Distance

Match

Within

Prior

600

800

1000

1200

1400

1600

-2 -1 0 1 2

M
ea

n
 R

T 
in

 m
s

Distance

Match

Within

Prior

Sequential
Constrained

Sequential
Unconstrained

0

0.1

0.2

0.3

0.4

0.5

-2 -1 0 1 2

P
(E

rr
o

r)

Distance

Match

Within

Prior

0

0.1

0.2

0.3

0.4

0.5

-2 -1 0 1 2

P
(E

rr
o

r)

Distance

Match

Within

Prior



 92 

Figure 7: Observed and Predicted Performance Across Experiments 3-12 

 

 
Figure 7 caption:  Observed and predicted performance from the zero prior list strength model 

(left panels) and the nonzero prior list strength model (right panels) across Experiments 3-12.  

Solid lines and filled circle: Observed mean RT (top) and error rate (P(Error), bottom) across all 

320 subjects in the cued recognition experiments (3-12) for match trials (circle), within-list lures 

(red), and prior-list lures (blue) as a function of their distance from the cued position.  The 

observed data are repeated in the left and right panels to illustrate fits of different models.  

Dashed lines and empty square: Predicted mean RT and P(Error) for the zero prior list strength 

model (left panels) and the nonzero prior list strength model (right panels).  
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Figure 8: Differences in Prior List Strength 

 

 
Figure 8 caption:  Mean RT (top panels) and error rate (P(Error), bottom panels) for subjects 

with estimated prior list strength parameters equal to zero (left panels) and greater than zero 

(right panels). 
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Figure 9: Observed and Predicted Performance Across Experiments 3-12 

 
Figure 9 caption:  Observed and predicted performance from the item recognition model with 

prior list strength = 0 (left panels) and the item recognition with prior list strength > 0 (right 

panels) across Experiments 3-12.  Solid lines and filled circle: Observed mean RT (top) and error 

rate (P(Error), bottom) across all 320 subjects in the cued recognition experiments (3-12) for 

match trials (circle), within-list lures (red), and prior-list lures (blue) as a function of their 

distance from the cued position.  The observed data are repeated in the left and right panels to 

illustrate fits of different models.  Dashed lines and empty square: Predicted mean RT and 

P(Error) for the item recognition only model (left panels) and the item recognition plus prior list 

strength model (right panels).  
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Figure 10: Prior List Intrusions in Typing, Recall, and Report 
 
 

 
 
Figure 10 caption: Prior list intrusions from copy typing, serial recall, and whole report tasks 

from Logan (2021).  The left panel contains frequency counts of the number of intrusions across 

list lengths (5, 6, 7 letters) and subjects (N = 24).  The right panel converts the frequencies to 

proportions of the total number of prior list intrusions. 
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Figure A1: Using Position Coding Probabilistically 

 

 
 
Figure A1 caption:  Simulated predictions of within- and prior-list distance effects in response 

time (RT) and response probability from the position coding model. The same representations of 

position are used in each panel.  The columns represent different probabilities (pprior) of using 

position coding to represent lists.  The top row presents serial and cued recall error rates, the 

middle row presents cued recognition task error rates, and the bottom row presents cued 

recognition response times (RT).  Prior list distance effects are observed in recall and cued 

recognition for pprior values greater than or equal to 0.2. 
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Figure C1: Serial Position Curves 

 
 
Figure C1 caption:  Mean RT (rows 1 and 3) and mean error rate (rows 2 and 4) for targets 
(match), within-list lures (within), and prior-list lures (prior) as a function of serial position in 
Experiments 3-12.  Rows 1 and 2 show data from constrained lists.  Rows 3 and 4 show data 
from unconstrained lists. 
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Figure D1: Observed and Predicted RTs 

 
 

Figure D1 caption:  Observed (solid lines) and predicted (dashed lines) response times (RTs) in 

Experiments 3-12 (columns) for each model (rows). 
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Figure D2: Observed and Predicted Error Rates 

 

 
 

Figure D2 caption:  Observed (solid lines) and predicted (dashed lines) error rates in 

Experiments 3-12 (columns) for each model (rows). 
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Figure E1: Simulated RTs and Error Rates and Fits to Simulated RTs and Error Rates 

 
Figure E1 caption: Mean simulated RTs (top pair) error rates (bottom pair) across different probe 

types at different lags (solid lines), and mean predicted error rates (dashed lines) from models fit 

to simulated data.  Each column represents a different value of the sprior parameter, representing 

“true” prior list strength, used to generate the simulated data in each column.  The top row in 

each pair shows fits of the model constrained to have zero prior list strength (i.e., the estimated 

value of sprior was constrained to be zero).  The bottom row in each pair shows fits of the model 

allowing for nonzero prior list strength (i.e., sprior was a free parameter). 
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Figure E2: Proportion of Simulated Samples Favoring Nonzero Prior List Strength 

 

 
 

 

Figure E2 caption: Each point corresponds to 10000 simulated samples of each size and gives the 

proportion out of those 10000 simulated samples in which AIC (left panel) or BIC (right panel) 

summed across all subjects in each simulated sample favors the unconstrained model that allows 

nonzero prior list strength.  Highlighted sample sizes at 32 and 320 correspond to the sample size 

for each of the 10 cued recognition experiments in the main text (each of which had 32 subjects) 

as well as the sample size that would result from aggregating across all experiments (320 

subjects total). 
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