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Abstract

Position-specific intrusions of items from prior lists are rare but important phenomena that
distinguish broad classes of theory in serial memory. They are uniquely predicted by position
coding theories, which assume items on all lists are associated with the same set of codes
representing their positions. Activating a position code activates items associated with it in
current and prior lists in proportion to their distance from the activated position. Thus, prior list
intrusions are most likely to come from the coded position. Alternative “item dependent”
theories based on associations between items and contexts built from items have difficulty
accounting for the position specificity of prior list intrusions. We tested the position coding
account with a position-cued recognition task designed to produce prior list interference. Cuing
a position should activate a position code, which should activate items in nearby positions in the
current and prior lists. We presented lures from the prior list to test for position-specific
activation in response time and error rate; lures from nearby positions should interfere more. We
found no evidence for such interference in 10 experiments, falsifying the position coding
prediction. We ran two serial recall experiments with the same materials and found position-
specific prior list intrusions. These results challenge all theories of serial memory: Position
coding theories can explain the prior list intrusions in serial recall and but not the absence of
prior list interference in cued recognition. Item dependent theories can explain the absence of
prior list interference in cued recognition but cannot explain the occurrence of prior list

intrusions in serial recall.
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Introduction

The problem of serial order has been a central topic in psychology and neuroscience for
nearly 150 years (Ebbinghaus, 1885; Ladd & Woodworth, 1911; Lashley, 1951). It is important
practically because it is ubiquitous in daily life, addressing how we perceive structure in the
world, how we structure our actions in time and space, and how we structure our memories of
those percepts and actions. It is challenging theoretically. The 150 years were filled with
controversy, pitting itfem-dependent theories that explain serial order in terms of associations
between the elements of the structure (Ebbinghaus, 1885; Ebenholtz, 1963; Hull, 1932, 1934)
against item-independent theories that explain order in terms of associations between the
elements and a separate set of codes that represent temporal or spatial positions. (Ladd &
Woodworth, 1911; Tolman, 1948; Young, 1961). For the last 25 years, item-independent
position coding theories have dominated research on serial memory, following an influential
paper by Henson et al. (1996), who showed that item-dependent theories based on simple chains
of associations between adjacent elements could not explain how people recover from errors,
respond to manipulations of phonological similarity, produce transpositions to earlier list
positions, or produce position-specific intrusions from previous lists. Their findings inspired
many researchers to develop theories that implement position coding in various ways (Anderson
& Matessa, 1997; Brown et al., 2000, 2007; Burgess & Hitch, 1999; Farrell, 2012; Hartley et al.,
2016; Henson, 1998; Lewandowsky & Farrell, 2008; Oberauer et al., 2012). Only a few
developed item-dependent theories (Botvinick & Plaut, 2006; Dennis, 2009; Logan, 2021;
Solway et al., 2012; also see Lewandowsky & Murdock, 1989; Murdock, 1995).

Recent investigations have shown that item-dependent theories can account for three of
the four phenomena that are incompatible with simple chaining theories, by assuming compound
retrieval cues and remote associations (Lewandowsky & Li, 1994; Murdock, 1995; Solway et al.,
2012) or associations between items and contexts made of fading traces of past items (Logan,
2021). These more elaborate theories can explain recovery from errors (Lewandowsky & Li,
1994; Logan, 2018, 2021), phonological confusability effects (Osth & Hurlstone, 2023; also see
Logan, 2018), and transitions to earlier list positions (Logan, 2021; Logan & Cox, 2023; Solway
et al., 2012), but cannot explain position-specific intrusions from prior lists (Osth & Hurlstone,

2023; but see Caplan et al., 2022; Dennis, 2009). Thus, position coding theories uniquely



explain position-specific prior list intrusions (Conrad, 1959; Henson, 1998; Melton & Von
Lackum, 1941; Osth & Dennis, 2015).

This article reports a critical test of the position coding explanation of position-specific
prior list intrusions, using a cued recognition task to elicit position-specific prior list
interference. Subjects were given lists of six random letters to remember followed by a probe
display containing a letter and a position cue. They were asked to decide whether the probe
letter occurred in the cued position in the memory list (Logan et al., 2021), and lures (probe
letters that required a “no” response) were sampled from the prior list and from uncued positions
within the current list. For example, given list ABCDEF and prior list QRSTUV, ##C### is a
matching probe that requires a “yes” response, ##S### is a prior-list lure that requires a “no”
response, and ##B### is a within-list lure that requires a “no” response. We show that position
coding theories predict longer response time (RT) and higher error rates for prior list lures the
closer they are to the cued position—position-specific prior list interference.

This prediction follows directly from the fundamental assumptions of the position coding
account of position-specific prior list intrusions: Items in the current list and the prior list are
associated with the same position codes. The associations with items in the prior list are weaker.
Items are retrieved by activating position codes and reporting what is associated with them. A
position code activates the items on both lists in proportion to their strength of association. Items
from the current list are activated more than items from the prior list. Under these conditions,
retrieving and reporting an item from the prior list is a prior list intrusion. Ifit is in the right
position in the wrong list, it is position-specific (e.g., Henson, 1998).

The cued recognition task establishes the conditions necessary to produce position-
specific prior list intrusions and tests their ability to produce position-specific prior list
interference. Cued recognition requires focusing on the cued position, which should activate a
position code. The position code should activate items associated with it on the current and prior
lists in proportion to their distance from the cued position. (in the example above, C and S would
be activated more than B and Q). Under these conditions, prior-list lures should match the
activated memory items, providing evidence for a “yes” response instead of the required “no”
response, which should increase RT and error rate in proportion to the proximity of the lure to

the cued position (Logan et al., 2021)—position-specific prior-list interference.



The cued recognition task provides more information about prior list activation than
recall tasks. In recall tasks, prior list activation is apparent as prior-list intrusion errors, which
occur only when a prior list item wins the competition with the correct item and the within-list
items. These errors are rare because prior list items have less activation, so they usually lose the
competition. Recall tasks provide no information about prior list activation when the correct
item or a within-list item wins the competition. On those trials, the prior list items could be
activated less than current list items or not activated at all. Like recall tasks, the cued recognition
task provides information about prior list activation on error trials, when subjects respond “yes”
to prior list lures, analogous to prior list intrusion errors. The cued recognition task also provides
information about prior list activation on correct trials, when subjects respond “no.” The prior
list lure will match the prior list item and activate the “yes” response on all trials, and this will
increase RTs for correct “no” responses, as we show below. Thus, cued recognition provides
information about prior list activation in both false alarm rate and correct-rejection RT.

The cued recognition task allows stronger conclusions than recall tasks. Position-specific
prior list interference is elicited by an experimental manipulation (the presentation of a prior-list
lure) that allows us to assess prior list activation in RT and error rate on any trial. Observing
such interference would support position coding predictions and failing to observe it would
falsify them. Position-specific prior list intrusions are emitted occasionally by subjects.
Observing such intrusions supports position coding predictions but failing to observe them does
not falsify them. The prior list item could be activated, as the theory predicts, but not strongly
enough to produce an error. The cued recognition task allows us to measure the activation of

prior list items when the activation is not strong enough to produce an error.

Position Coding Model

We used a simple generic position coding model, depicted in Figure 1, to formalize
predictions and test hypotheses. It embodies the core assumptions of established position coding
theories that predict position-specific prior list intrusions, so its predictions generalize to all those
theories. Like all position coding theories, the generic model assumes that items on each list are
associated with an ordered set of position codes (Anderson & Matessa, 1997; Brown et al., 2000,
2007; Burgess & Hitch, 1999; Farrell, 2012; Henson, 1998; Lewandowsky & Farrell, 2008;

Oberauer et al., 2012). Like all position coding theories of prior-list intrusions, the strength of



associations between position codes and items is weaker for the prior list than for the current list
because of decay or reduced contextual similarity (Brown et al., 2007; Burgess & Hitch, 1999;
Henson, 1998). We assume association strength s equals 1 for the current list and 0 < sprior < 1
for the prior list. This is illustrated by the lighter dashed lines in the top left panel of Figure 1.
Like all position coding theories, the generic model assumes that items are retrieved by
activating position codes. Activation spreads from the position codes to the associated items in
proportion to their associative strength. Current list items have stronger associations than prior
list items, and so are more likely to be retrieved. Prior list intrusions occur when an item is
retrieved from the prior list instead of the current one.

Like all position coding theories, the model assumes that cuing a list position activates
position codes in proportion to their distance from the cued position. The activation of the item
1n position i given a cue in position j is:

a(ilj) = sp'~J! (1)
where 0 < p <1 is the rate at which activation decreases with distance. For the current list, s =
1; for the prior list, s = sprior. Equation 1 is a common expression for contextual drift (Estes,
1955; Murdock, 1997) that is used explicitly to model within-list distance effects in models of
serial recall (Farrell, 2012; Lewandowsky & Farrell, 2008; Logan, 2021; Logan & Cox, 2021).
Equation 1 is responsible for order errors (transpositions) that dominate serial recall. It is also
responsible for the position specificity of prior list intrusions (and interference). Activation is
higher for the cued position than for its neighbors on both the current and prior lists, so items
retrieved from both lists are more likely to come from the cued position than its neighbors. The
activation across positions in both lists is illustrated in the top right panel of Figure 1. In the
generic model, the activation produced by a cue is represented as a vector m whose elements
correspond to the set of possible items, which is shown in the top row of Table 1. The values for
items on the current and prior list are given by Equation 1. The values for items that were not on
either list are set to 0. Importantly, we assume that the activation values in m — the results of
cuing a position -- are the same whether the retrieval task is recall or cued recognition.

These assumptions are common to all position coding theories of serial recall (Anderson
& Matessa, 1997; Brown et al., 2000, 2007; Burgess & Hitch, 1999; Farrell, 2012; Henson,
1998; Lewandowsky & Farrell, 2008; Oberauer et al., 2012) and all position coding accounts of
prior list intrusions (Brown et al., 2007; Burgess & Hitch, 1999; Henson, 1998). The theories



share these assumptions but differ in ancillary assumptions like response suppression, primacy
gradients, etc. that are designed to address specific effects in serial recall (Lewandowsky &
Farrell, 2008). The core assumptions are at issue here. We believe that the predictions of the
generic model represent the predictions of the general class of position coding theories and the
subclass of position coding theories that address position specific prior list intrusions.
Confirmation of the predictions would support position coding theories of position specific prior
list intrusions. Failure to confirm the predictions would falsify some of the assumptions
(depending on the nature of the failure), challenge position coding accounts of position specific
prior list intrusions, and more generally, challenge the dominance of position coding theories of
serial memory.

We apply the generic model to recall and cued recognition tasks by assuming that they
access the same memory representations in different ways (i.e., m is the same but the decision
process applied to it is different). This assumption has a long history in computational models of
memory. Models that relate recognition and recall generally assume that the representations are
the same in the two tasks but the decision processes are different (Anderson et al., 1998; Gillund
& Shiffrin, 1981; Hintzman, 1984, 1988; Humphreys et al., 1989; Murdock, 1982, 1983;
Raiijmakers & Shiffrin, 1984). We view memory retrieval as attention turned inward (Logan et
al., 2021) and decision processes as mechanisms of attention (Logan et al., 2023a), so we think
of recognition and recall as requiring attention to different aspects of memory representations. It
is possible that recognition and recall rely on different representations as well as decision
processes. Our assumption of a common representation is simpler and consistent with existing
computational models.

Serial Recall. In serial recall, m represents the strengths with which the items on the
current and prior lists compete with each other for retrieval. We model the competition as a
limited-capacity racing diffusion decision process, which accounts for response time (RT) and
response probability (accuracy; Logan et al., 2021; Tillman et al., 2020). There is one runner for
each possible response, and the first runner to finish is retrieved. The finishing time for each
runner depends on its drift rate (v) and its threshold (6). The drift rate is Equation 1 normalized
by 1 plus the length of m, which represents the activity produced by the retrieval cue (Carandini
& Heeger, 2012; Lo & Wang, 2006), multiplied by a constant x, which represents capacity

limitations:
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If k=0, capacity is unlimited; if x> 0, capacity is limited.
The finishing time distribution for each runner is Wald (Inverse Gaussian) with a drift

given by Equation 1 and a common threshold. The density and distribution functions are:

f(t10,0) = sz exp [~ L] 3)
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where @(.) is the standard normal cumulative distribution function. The finishing time

distribution for item 7 in a race between N items is:

f&.0) = fi@® [T}l - F©)] ().

The probability that i finishes first is given by the integral of Equation 5. The decision process is
illustrated in the second row of Figure 1.

Cued Recognition. Our model of the cued recognition task makes the same assumptions
about representation and activation (Figure 1, top) and uses the same vector m to represent the
activation from the position cue, but it makes different assumptions about the decision process
applied to m. In serial recall, the decision is based on the activation of individual items, each of
which requires a separate response. In cued recognition, we adopted the decision model Logan
et al. (2021) applied to the task. In this model, the decision is based only on the activation of the
item in the probed position. High activation is evidence for a “yes” response; low activation is
evidence for a “no” response. Lures from nearby positions in either list will have greater
activation than lures from more distant positions, and so provide evidence for a “yes” response,
which increases RT and error rate for the required “no” response. This is illustrated in the
bottom panels of Figure 1.

We assume that the activated items on both lists are represented in vector m with one
element for each possible item, whose value is specified by Equation 1, as in serial recall. The
probe item is represented as a vector g with the same dimensionality as m, with 1 in the element
representing the probe item and 0 in all other elements. Table 1 presents ¢ vectors for matching
probes, within-list probes, and prior-list probes. The probe is matched to the activated items by
taking the dot product of the vectors (m- q). As illustrated in Table 1, this amounts to

multiplying the memory list item corresponding to the probe by 1 and multiplying all other items



by 0, so the match value depends only on the activation of the probe item in the probed position
whether the activation comes from the current or prior memory list. Consequently, the dot
product m- q is given by Equation 1 times 1. The process is illustrated in the bottom panel of
Figure 1. The lines represent the activation of m and the red box represents the nonzero element
in ¢ and the contribution of m to the dot product. Table 1 contains numerical examples.

The decision process uses the limited-capacity racing diffusion model as serial recall but
configures it differently. There are only two runners, one for a “yes” response and one for a “no”
response. Equation 1 provides positive evidence for a “yes” response. The larger the value of
a(i,j), the more likely the response should be “yes.” The drift rate for the “yes” response is
simply Equation 1 normalized by 1 plus the length of m multiplied by a constant x to implement

capacity limitations and an additional scaling constant A to balance “yes” and “no” evidence:

a(ily) (6)

yes = 14kA|ml|

Equation 1 provides negative evidence for a “no” response. The higher the value of a(i,j), the
less likely the response should be “no.” The racing diffusion model (and neurons) require
positive evidence (because the diffusion has a single upper bound and neurons can only have
positive firing rates). We create positive evidence by defining the drift rate for the “no” response
is the length of the vector m, which represents the largest possible dot product of the probe and
the activated memory items (Logan et al., 2021), multiplied by A to balance “yes” and “no”
evidence, and divided by 1 plus the evidence for a “yes” response multiplied by x to implement

capacity limitations:

_ _ Alml
1+xa(ilj)

(7)

In Equation 7, “no” drift rate decreases as the evidence for a “yes” response increases. “No”

no

drift rate is highest when there is no evidence for a “yes” response (i.e., a(i,j) = 0) and lowest on
match trials when the evidence for a “yes” response is strongest ((i.e., a(i,j) = 1).

The denominators that normalize the drift rates are different in recall (Equation 2) and
cued recognition (Equations 6-7). In recall, each response is normalized by the total activity
produced by the retrieval cue (i.e., the length of m), while in cued recognition, each response is
normalized by the activity supporting the other response. Normalization can be viewed as

inhibition (Caradini & Heeger, 2012; Lo & Wang, 2006). In recall, each possible response
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inhibits every other possible response. In recognition, the two responses inhibit each other, as in
lateral inhibition.
The finishing time distributions for “yes” and “no” runners are Wald with drift rates vyes,

Vno, and thresholds Ges and 6. The finishing time distributions for “yes” and “no” responses are

(£, "yes" [Vyes, Vno, Byes) Ono) = f (tlVyes, Byes)[1 = F ([ Vno, On] (8)
and

f(£."10"|[Vyes) Vno» Oyess Ono) = f (¢10no, Ono) [1 = F(¢Vyes, Oyes] 9).
The accuracy of “yes” and “no” responses is given by the integrals of Equations 8 and 9,
respectively.

Again, it is important to emphasize that that the cued recognition model makes the same
assumptions about representation and activation as the serial and recall model. It differs only in

the configuration of the decision process, as if subjects are attending to the same information in

different ways (Logan et al., 2021, 2023a).

Four Core Predictions

The generic position coding model assumes that memory performance is the result of the
activation of position codes, which depends on the distance from the cued position (©*/), and the
strength of association (s) between the position codes and the items (Equation 1). We derived
four core predictions from the model about performance in memory tasks that require serial
retrieval (serial recall, cued recognition).

Prediction 1: Within-list transposition errors should decrease with distance from the
intended (cued) position (distances -2 -1 1 2). Performance should be worse for positions £1
away from the cued position than for positions +2 away. This follows from the distance
component of Equation 1. This is a core prediction of position coding theories but it is not
unique to them. Alternatives to position coding make the same prediction (Logan, 2021; Solway
et al., 2012). Nevertheless, it is important to test. Failing to confirm it would challenge position-
coding and non-position-coding theories alike.

Prediction 2: Prior-list intrusion errors should show the same distance effect (-2 -1 1
2). This follows from the distance component of Equation 1 and from the assumption that prior-

list and current-list items are associated with the same position codes. This is a core prediction
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that is unique to the position coding account of position-specific prior list intrusions in recall and
interference in cued recognition. It is not predicted by alternatives to position coding theories.

Prediction 3: The prior-list distance effect should be smaller than the within-list
distance effect at corresponding distances (-2 -1 1 2). This follows from the multiplication of
s and P/l in Equation 1. For the current list, s = 1, so the distance effect is simply p*/. For the
prior list, s = sprior < 1 so the distance effect is sprior x o7/, which is smaller. This is a core
prediction of the position coding account of position-specific prior list intrusions and interference
but it is not unique. Theories that assume no such intrusions or interference also predict a
smaller (i.e., null) effect of prior list distance.

Prediction 4: Prior list errors should peak at distance = 0 (distances -1 0 1). This
follows from the distance component of Equation 1. This is the strongest prediction of the
position coding model. It predicts position-specific prior list intrusions in serial recall, and it
predicts position-specific prior list interference in cued recognition. It is unique to the position
coding account. Failure to confirm this prediction would seriously challenge the position coding
account of position-specific prior list intrusions.

Simulations. We ran simulations of the position coding model to illustrate the four
predictions in recall and cued recognition and to assess the effects of varying prior list strength
(sprior) on the predictions. We assumed five-item lists that were cued in the third (middle)
position and used Equation 1 to specify activation for distances of -2, -1, 1, and 2 for within list
errors and distances of -2, -1, 0, 1, and 2 for prior list errors. We used Equation 2 to simulate
recall and Equations 6-7 to simulate cued recognition. In all simulations, p=.5 and x= .2 for
both tasks, @ recan = 10.0 for recall, and 8 yes = 2.8, 810 = 3.0, and A = .8 for cued recognition.
Further details of the simulations are presented in Appendix A. MATLAB code for the
simulations is posted on OSF.

Figure 2 shows the effect of prior list strength (sprior = .1, .2, .3, .5, .7) on predicted
distance effects. The top panel shows predicted within-list transposition errors and prior list
intrusions in recall. There are strong within-list distance effects (-2 -1 1 2) at all values of sprior,
confirming Prediction 1. There are prior-list distance effects (-2 -1 1 2), confirming Prediction 2.
Within-list distance effects were stronger than prior-list distance effects at all values of sprior,
confirming Prediction 3. Prior-list distance effects peaked at the cued position (-1 01),

confirming Prediction 4 for values of sprior > .2. Thus, the position coding model predicts prior
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list intrusions in recall. The middle panel shows predicted error rates for within-list and prior-list
lures in cued recognition, which also confirm the four predictions. There are strong within-list
distance effects and weaker position-specific prior list interference effects with a peak at the cued
position at all values or sprior. The bottom panel shows predicted RTs for correct responses to
matching probes, within-list lures, and prior-list lures in cued recognition (i.e., the additional
information that cued recognition provides about prior list activation). The RTs show within-list
distance effects and weaker position-specific prior list interference that peaks at the cued position
at all values of sprior, confirming the four predictions. Prior list interference is greater the
stronger the associations of position codes prior list items. Thus, the position coding model
predicts position-specific prior list interference in cued recognition over a broad range of prior
list association strengths.

The effects of the prior list appear stronger in cued recognition than in recall. This
follows from the model. Prior list items may be activated to the same extent in recall and cued
recognition, but prior list intrusions only occur if the prior-list item happens to finish first in the
decision process, before the correct item or another item from the current list. Cued recognition
probes the activation of prior list items directly on every trial, showing prior list interference in

both accuracy and RT.

The Experiments

We conducted 12 experiments to test for the prior list intrusions and interference
predicted by the position coding model. Experiments 1 and 2 tested serial recall to ensure that
position-specific prior list intrusions would occur with our materials (consonants), list length (6
items), exposure duration (1000 ms), and retention interval (1000 ms). The remaining
experiments tested cued recognition to determine whether the same study conditions would
produce the predicted position-specific prior list interference. Experiments 3-10 manipulated
factors intended to increase the likelihood that position codes would be activated. We presented
the position component of the probe 500 ms before the probe letter appeared so subjects could
begin to focus on the cued position in the list. We cued position with a number or a spatial
display depicting its position. Experiments 11-12 tested cued recognition with sequential

presentation of the lists instead of simultaneous presentation. Most studies of serial recall,
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including those that address position-specific prior list intrusions, use sequential presentation.

The goal was to generalize our results and strengthen connections to that literature.

Experiments 1-2: Serial Recall

The first two experiments used serial recall to determine whether it is possible to get
position-specific prior list intrusions with the simultaneously presented six-item lists used later in
the cued recognition experiments. The purpose was to establish that items on the current list and
prior list could be associated with position codes under these conditions. Subjects were given
lists of six consonants to remember, presented in a row on the computer screen for 1000 ms. The
screen went blank for 1000 ms and then a screen containing “RECALL” appeared, cuing
subjects to type the list into their computer keyboards in correct order. Their recall errors were
scored as within-list transpositions or prior-list intrusions, which were analyzed as a function of
their distance in the list from the correct letter. In theory, these errors reflect the same activation
measured by within-list lures and prior-list lures, respectively, in cued recognition.

The experiments were the same except for the way the lists were constructed.

Experiment 1 used lists that were constrained so that no letters repeated from one list to the next.
Experiment 2 used lists that were unconstrained, so letters could repeat from one list to the next.
The difference in the lists addresses an alternative interpretation of the cued recognition results
and will be addressed in the General Discussion.

Each experiment tested the four predictions for error rate derived from the position
coding model: (1) Within-list transposition errors should show a distance effect, with more errors
from %1 position away from the correct position than from +2 positions away. (2) Prior-list
intrusion errors should show the same distance effect for positions =1 and £2 away from the
correct position. (3) The prior list distance effect should be smaller than the within-list distance
effect at corresponding positions, reflecting the reduced strength of prior-list associations
(sprior). (4) Prior list intrusion errors should show position-specific interference, manifest as
more errors from the correct position in the prior list (distance = 0) than for lures from adjacent

positions (distance = £1).

Method
Subjects
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Each experiment tested 32 subjects recruited online through Prolific

(https://www.prolific.co/). We included only subjects 18-40 years of age, located in the USA,
with English as first language, with an approval rating of at least 95%, who typed at least 40
words per minute (WPM) on the typing test. Subjects who participated in one experiment were
excluded from the others. Experiments 1-2 involved a single 1.5-hour session. Subjects were
paid USD $12 per hour. The study was approved by the Vanderbilt University Institutional
Review Board.

Subjects reported their age and gender. The mean age (standard deviation in brackets) of
the subjects was 30.97 (6.01) and 31.94 (5.60). for Experiments 1-2 respectively. The gender
distribution (male:female:prefer-not-to-say) was 15:17:0 and 26:6:0 for Experiments 1-2
respectively. Mean speed on the typing test was 60.80 (17.70) and 64.73 (15.10) for
Experiments 1-2, respectively. Mean accuracy was 0.9173 (0.0430) and 0.9272 (0.0427) for

Experiments 1-2, respectively.

Apparatus and Stimuli

The experiments were conducted online on subjects’ personal computers. Subjects were
instructed to use Google Chrome or Mozilla Firefox to complete the experiment. Phone and
tablet users were excluded in the Prolific intake, and the experiment would not run on their
browsers. The trials for each session were generated individually and sent to subjects’ computers
using a custom Python backend. The experiment was controlled by Javascript in the web
browser using a custom function written to operate in jsPsych (de Leeuw, 2015). When the
experiment started, subjects’ web browsers were instructed to enter fullscreen mode to reduce
distraction.

The memory lists consisted of six uppercase letters selected at random from the set of 20
consonants (excluding vowels and Y), displayed in a row. Experiment 1 used constrained lists,
in which no letters were repeated from one trial to the next. Experiment 2 used unconstrained
lists, in which letters were allowed to repeat from one trial to the next. Characters were
presented in a monospaced typeface (Courier New or Courier, displayed in white, 45 pixels high.

The background of the display was set to mid-gray ([127, 127, 127] in 24-bit RGB values).

Procedure
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In both experiments, each trial began with a fixation cross presented in the center of the
screen for 1000 ms. Then the memory list was presented for 1000 ms, followed by a blank
screen for 1000 ms, and then a probe display containing the word RECALL appeared. Subjects
were required to type the letters in the list in response to the probe, and the letters they typed
were echoed on the screen in left to right order, as in typing text. They were told to type six
letters on each trial and hit “return” when they were finished. Then the screen went blank for a
1000 ms intertrial interval. Space and backspace keys were disabled. There were 480 trials in
each experiment. Breaks were given every 80 trials.

The instructions were written and presented using a self-paced series of manually
controlled slides. Subjects were allowed to review the instructions if they wished. Each subject
completed a typing test to ensure they had enough skill to execute keystrokes automatically,
without hunting and pecking on the keyboard, which might limit performance. The typing test
involved typing a paragraph about the many merits of border collies (Logan & Zbrodoff, 1998).
The paragraph was presented on the top of the screen and subjects’ keystrokes were echoed in a
panel below the paragraph.

At the end of each block, a screen was presented indicating the overall accuracy for the
preceding block, and subjects were allowed to take a self-timed break. Every 5 minutes, the
experiment checked whether accuracy was greater than 60%. If subjects fell below this criterion,
they were warned to improve performance and given an opportunity to review the instructions.

On the third warning, subjects were excluded from the experiment but paid nevertheless.

Data Analysis

Experiments 1 and 2 were designed to measure within-list transposition errors and
position-specific prior list intrusions in serial recall. We identified within-list errors as items
from the list that were recalled in the wrong position. Distance was defined as the signed
difference between the position in the recall sequence and the position in the memory list. We
included distances (-2 -1 1 2) to parallel the distance manipulation in the cued recognition
experiments. We identified prior-list errors as recalled items that were in the prior list and not in
the current list. We defined distance as the signed difference between the position in the prior
list and the position that was reported in the current list. For example, if the current list is

ABCDEF and the prior list is GHIJKL, then recalling K (in error) after recalling A and B is a
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prior list intrusion with distance =2. We did not normalize within-list transpositions or prior-list
intrusions for availability.

We tested the four predictions with contrasts. We tested Predictions 1 and 2 (within- and
prior-list distance effects) using contrast weights (-1 1 1 -1) for distances (-2 -1 1 2) to compare
distances +1 and 2. We tested Prediction 3 by comparing the (-2 -1 1 2) distance contrast for
the current list with the (-2 -1 1 2) distance contrast for the prior list, using weights (-1 1 1 -1) for
the current list and (1 -1 -1 1) for the prior lists. We tested Prediction 4 (position specific prior
list intrusions) using weights (-1 2 -1) for distances (-1 0 1) in the prior list. This is the critical
contrast that tests for position-specific prior list intrusions.

For each contrast, we divided the data for each subject into the relevant cells (4 distances
for within-list lures; 5 distances for prior list lures) and calculated the proportion of errors. Then
we calculated the contrast values for each subject, multiplying the error rates by the contrast
weights and summing them. Then, we did a ¢ test asking whether the mean contrast was
significantly greater than zero. The error term was the standard error of the mean contrast value.
We also counted the number of subjects who showed an effect in the expected direction and
reported JZS Bayes Factors (BF) to quantify support for null (BFo1) and alternative (BF10)
hypotheses.

Our contrasts provide inferential statistical tests of specific hypotheses derived from
theory. They evaluate relations between conditions, and the error variability depends on those
relations, which cannot be expressed as error bars around individual means. Because of this, we
do not present error bars in any of our figures.

Data and programs for presenting the task and analyzing the data for all experiments in

this article are available on the Open Science Framework at https://osf.io/j4z7a/.

Results
Mean within-list and prior-list error rates for Experiments 1 and 2 are plotted as a
function of distance in the left and middle panels of Figure 3, respectively. Table 2 contains
contrasts evaluating distance effects. The right panel of Figure 3 contains within-list and prior-
list error rates from position-cued recall experiments that used the same (unconstrained) lists and
probed recall of a single item with a spatial cue (e.g., ###?##, where the underline represents a

caret " pointing at the cued position; Logan et al., 2023a).


https://osf.io/j4z7a/
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The data from Experiments 1 and 2 confirmed the four core predictions of position
coding theory. There were significant distance effects (-2 -1 1 2) in each experiment for both
within- and prior-list errors, confirming Predictions 1 and 2. Within-list distance effects were
significantly stronger than prior-list distance effects in each experiment, confirming Prediction 3.
There were significant position-specific prior list intrusions in each experiment. Intrusions were
more frequent at lag 0 than at lags + 1 in 30 out of 32 subjects in Experiment 1 and in 31 out of
32 subjects in Experiment 2. The contrast assessing position specific prior list intrusions (-1 0 1)
was significant in each experiment.

Experiment 2 replicated the results of Experiment 1 very closely. The patterns in Figure
3 are very similar. Table 2 contains 7 tests comparing prior list contrasts (-1 0 1) and (-2 -1 1 2),
within list contrasts (-2 -1 1 2), and contrasts comparing (-2 -1 1 2) in prior versus current lists
between experiments. None of the ¢ tests were significant.

The cued recall data in Figure 3 build a bridge between serial recall and cued recognition.
Cued recall requires subjects to recall items, like serial recall, while focusing on a single item in
the memory list in response to a cue, like cued recognition. The cued recall data were obtained
in dual task experiments in which subjects were given 6-item lists to remember and then were
given two spatial cues in succession indicating the two items to be reported (e.g., ####H#
followed by ###### cues the report of the second and the fifth item in the list). The interval
between the two cues varied to produce dual-task interference (100, 300, or 900 ms). The data in
Figure 3 collapse over four experiments, the interval between cues, and responses to the first and
second cue to obtain sufficient observations. The contrast testing position-specific prior list
intrusions was significant in each of the four experiments. Figure 3 also shows that within-list
distance effects (-2 -1 1 2) were stronger than prior list distance effects (-2 -1 1 2), as in serial
recall. In theory, this means that the cue in cued recall activated position codes, the position
codes activated items on both lists, and the activation was greater for items on the current list.
Thus, the position cue in cued recognition should also activate a position code and the items

associated with it on both lists.

Discussion
Experiments 1 and 2 confirmed the four predictions of position coding theory in serial

recall and set the stage for the cued recognition experiments to follow. They show that position-
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specific prior list intrusions can be observed under our list presentation conditions if the retrieval
task is serial recall. In theory, this means that position codes were activated in serial recall, and
they activated associated items on the current and prior lists. The data from Logan et al. (2023a)
in Figure 4 show that position-specific prior list intrusions can also be observed in cued recall.
In theory, this means that the position cues activated position codes, which activated items in the
current and prior list. It means that the position cues in the cued recognition experiments should
also activate position codes, which should activate items on the current and prior list. Cued
recognition allows us to test that activation directly, using lures from uncued positions in the

current list and lures from all positions in the prior list.

Experiments 3-10: Cued Recognition

The simulations established that position coding theories predict position-specific prior
list interference when cued recognition is tested with prior list lures. Experiments 1 and 2
established that position-specific prior list intrusions occur under our presentation conditions in
serial recall. Now, we report the cued recognition experiments that test for position-specific
prior list interference under the same conditions. We ran a series of eight experiments with
manipulations intended to enhance the activation of position codes. We began with probes that
cued position spatially, following our previous experiments on cued recognition (Logan et al.,
2021; Logan et al., 2023b). The probe consisted of five # symbols and a letter with a caret (*)
underneath it to indicate the cued position (e.g., ###D##, where the underline represents the
caret). Then we tried cuing spatial position numerically (e.g., 4D cues the fourth position),
thinking that numeric cues might cue position more directly. Then we tried pre-cuing position so
subjects could begin to focus on the cued position in the memory list before the letter probe was
presented (Logan et al., 2023b). We first ran the series with constrained lists (items could not
repeat in consecutive lists) and then replicated it with another four experiments that used
unconstrained lists (items could repeat in consecutive lists) to address alternative interpretations
(see General Discussion). Altogether, we ran eight experiments in a 2 (probe type) x 2 (pre-cue)
x 2 (list type) design.

Each experiment had the same basic design to test the predictions of position coding
theory. Half of the probes contained fargets that matched the item in the cued position in the

memory list. The other half of the probes contained lures that did not match the item in the cued
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position in the memory list. Half of the lures (within-list lures) were sampled from the current
list -2, -1, 1, or 2 positions away from the cued position to ensure that subjects focused on the
cued position. The other half of the lures (prior-list lures) were sampled from the prior list -2, -
1, 0, 1, or 2 positions away from the cued position to test for position-specific prior list
interference.

Each experiment tested the four predictions for RT and error rate derived from the
position coding model: (1) Within-list lures should show a distance effect, with worse
performance for lures =1 position away from the cued position than for lures +2 positions away.
(2) Prior-list lures should show the same distance effect for lures =1 and +2 positions away from
the cued position. (3) The prior list distance effect should be smaller than the within-list distance
effect at corresponding positions, reflecting the reduced strength of prior-list associations
(sprior). (4) Prior list lures should show position-specific interference, manifest as worse
performance for lures from the cued position in the prior list (distance = 0) than for lures from
adjacent positions (distance = +1). This is the strongest prediction of the position coding model.
The same activation of prior list items predicts position specific interference in cued recognition
and position specific intrusions in serial recall. Failure to confirm this prediction would

seriously challenge the position coding account of position-specific prior list intrusions.

Method

Subjects

Each experiment recruited 32 subjects from Prolific using the same selection criteria as
Experiments 1 and 2. The mean age (standard deviation in brackets) of the subjects was 28.63
(6.96), 30.16 (5.73), 30.53 (5.86), 29.91 (6.79), 29.22 (5.53), 29.06 (5.54), 31.69 (4.43), and
28.66 (6.39) for Experiments 3-10 respectively. The gender distribution (male:female:prefer-
not-to-say) was 15:17:0, 18:14:0, 16:15:1, 16:16:0, 18:14:0, 14:17:1, 16:16:0, and 16:16:0 for
Experiments 3-10 respectively. No typing test was required because subjects only pressed one of

two keys.

Apparatus and Stimuli
The apparatus was the same as in Experiments 1 and 2 (subjects” home computers), and

the memory lists were the same: six consonants randomly selected from a set of 20 with the
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constraint that no items repeat on consecutive lists (Experiments 3-6) or with no constraint (items
could repeat on consecutive lists; Experiments 7-10). The presentation duration of the memory
lists (1000 ms), the retention interval between the memory list and the complete probe (1000
ms), and the intertrial interval (1000 ms) were the same as in Experiments 1 and 2, but the probe
differed. Experiments 3, 4, 7, and 8 used spatial probes, which displayed an array of five #
symbols plus a probe letter with a caret (") underneath it in the cued position (e.g., #CH##,
where the underline represents the caret). Experiments 5, 6, 9, and 10 used numeric probes,
which displayed a single number and a probe letter presented in the center of the screen (e.g.,
2C). Experiments 3, 5, 7, and 9 had blank 1000 ms retention intervals followed by complete
probes (##C### or 2C). Experiments 4, 6, 8, and 10 pre-cued the probed position 500 ms after
the memory list. The position component of the probe was presented with a blank instead of the
probe letter for 500 ms (e.g., ##_### or 2), followed by the complete probe (##C### or 2C), in
which the blank position in the precue was replaced by the probe letter.

Procedure

Each trial began with a fixation cross presented in the center of the screen for 1000 ms.
Then the memory list was presented for 1000 ms. In Experiments 3, 5, 7, and 9, the memory list
was followed by a blank screen for 1000 ms, and then the complete probe display (containing the
position cue and the probe letter) appeared. In Experiments 4, 6, 8, and 10, the position cue
appeared 500 ms after the memory list for 500 ms, when the probe letter was added to complete
the probe display. In all experiments, the probe display remained onscreen until subjects
responded, and then the screen went blank for a 1000 ms intertrial interval.

There were 480 trials per session, constructed by randomly interleaving 240 trials of 120
targets and 120 within-list lures with 240 trials of 120 targets and 120 prior list lures. The targets
were no different in the two sets of trials but the lures differed. The design for targets and
within-list lures involved 6 probe positions and 4 distances (-2 -1 1 2), creating 24 “no” trials,
plus 24 “yes” trials (6 probe positions replicated 4 times), for a total of 48 trials for one
replication. The 240 target and within-lure trials replicated this design 5 times. The design for
targets and prior-list lures involved 6 probe positions and 5 distances (-2 -1 0 1 2), creating 30
“no” trials and 30 “yes” trials (6 probe positions replicated 5 times), for a total of 60 trials for

one replication. The 240 target and prior-list trials replicated this design 4 times. For each
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subject, the 240 trials for within- and prior-list lures were randomized separately and then
combined randomly to produce the final set of 480 trials.

Subjects were told to indicate whether the cued letter in the probe was presented in the
same position in the memory list, pressing the M (or Z) key on the keyboard to indicate a “yes”
response and the Z (or M) key to indicate a “no” response. Mapping of response categories to
keys was counterbalanced between subjects. The instructions were written and presented using a
self-paced series of manually controlled slides. Subjects were allowed to review the instructions
if they wished.

Subjects had to respond within 3000 ms of the presentation of the probe or the trial was
terminated with the message “TOO SLOW?” presented centrally in red font for 3000 ms. These
trials were excluded from analysis and treated as errors in calculating feedback during the task.
At the end of each block, a screen was presented indicating the overall accuracy for the
preceding block, and subjects were allowed to take a self-timed break. Every five minutes, the
experiment checked whether accuracy was greater than 60%. If subjects fell below this criterion,
they were warned to improve performance and given an opportunity to review the instructions.

On the third warning, subjects were excluded from the experiment.

Data Analysis

We tested the four predictions of position coding theory with four contrasts on the mean
RTs and error rates. The within-list distance effects in Prediction (1) were tested with a contrast
using weights (-1 1 1 -1) for distances (-2 -1 1 2). The corresponding prior-list distance effects
in Prediction (2) were tested using the same contrast weights for the same distances in the prior
list. The attenuation of distance effects in prior lists relative to current list effects in Prediction
(3) was tested with contrast weights (-1 1 1 -1) for within-list distances (-2 -1 1 2) and contrast
weights (1 -1 -1 1) for prior-list distances (-2 -1 1 2). The position-specific prior list interference
in Prediction (4) was tested with contrast weights (-1 2 -1) for prior-list distances (-1 0 1). The
confidence intervals around contrast values cannot be expressed as error bars around the
component RTs and error rates. Confidence intervals around mean RTs and error rates cannot
support inferences about the significance of the contrasts. Consequently, we present no error

bars in the figures.
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Results

Mean RT for correct responses (top) and error rate (bottom) for matches (“yes”
response), within-list lures (“no” response), and prior-list lures (“no” response) are plotted as a
function of distance from the cued position in Figure 4 for Experiments 3-6 and Figure 5 for
Experiments 7-10. The pattern of the data was very similar across experiments. It shifted
downward but remained the same when probe position was pre-cued (Experiments 4, 6, 8, and
10 vs. Experiments 3, 5, 7, and 9), following previous research (Logan et al., 2023b). RTs were
longer with numeric position cues (Experiments 5, 6, 9, 10 vs. Experiments 3, 4, 7, 8) but the
pattern of the data was very similar. The pattern was the same whether lists were constrained to
exclude letter repetitions in consecutive lists (Experiments 3-6) or unconstrained to allow

repetitions (Experiments 7-10). Serial position data are presented in Appendix C in Figure C1.

Position Coding Model Predictions

We assessed the four predictions of the position coding model separately for each
experiment. Contrasts evaluating the predictions are presented in Table 3 for Experiments 3-6
and Table 4 for Experiments 7-10.

Prediction 1: Distance Effects for Within-List Lures (-2 -1 1 2). In each experiment,
subjects were able to focus on the cued item and ignore the other items in the list: d’s, calculated
from hit rates from “yes” trials and false alarm rates from within-list lures, averaged (SEM in
brackets) 2.0942 (.1504), 2.5683 (.1527), 1.9732 (.1575), and 2.2042 (.1435) in Experiments 3-6,
respectively, and 2.1247 (0.1262), 2.3239 (.1187), 1.9038 (0.1379), and 2.1344 (0.1630) for
Experiments 7-10, respectively. In theory, this means position codes for the cued positions were
activated. Current list items are associated with position codes with strength (sprior) =1, so
within-list lures should be activated in proportion to their distance from the cued position
(Equation 1). In each experiment, RT and error rate for within-list lures decreased substantially
as the distance between the probed position and the lure’s position increased. The within-list
distance contrasts were highly significant for both RT and error rate in each experiment. In
theory, this means position codes activated neighboring items in proportion to their distance from
the cued position.

Prediction 2: Distance Effects for Prior-List Lures (-2 -1 1 2). Having established the

conditions necessary to produce prior list intrusions (activation of position codes, activation of
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neighboring within-list items), the question is whether lures from prior lists produced the
predicted distance effects at the same distances as within-list lures. In each experiment, the
answer was clearly negative. RTs and error rates for prior list lures showed no effect of distance
in any experiment. The contrast was significant only for RT in Experiment 10, where RTs were
shorter for distances of =1 than for distances of =2 (Tables 3 and 4). These results fail to
confirm the prediction, but the prediction for distances (-2 -1 1 2) is not strong. The simulations
in Figures 2 and 3 show weak effects at these distances.

Prediction 3: Distance Effects are Stronger Within-List than Between-List. Position
coding theories assume that items in the current list are more strongly associated with position
codes than items in the prior list. This implies that within-list distance effects should be stronger
than prior-list distance effects at the same distances (-2 -1 1 2). Contrasts comparing within- and
prior-list distance effects supported this prediction. They were highly significant for error rate in
every experiment and highly significant for RT in every experiment but Experiment 5 (Tables 3
and 4). On the balance, the data confirm the prediction.

Prediction 4: Distance Effects with Prior List Lures (-1 0 1). The results supporting
the first and third predictions establish the conditions necessary to produce position-specific prior
list interference. The probe activates the position code in the cued position, which activates
items associated with it and its nearby neighbors on the current list and, to a lesser extent, on the
prior list. Prior list activation should be strongest at the cued position, so interference should
peak at distance = 0. The prior list contrast comparing distance = 0 with distance = *1 tests this
prediction directly. The contrast for RT was not significant in any experiment (Tables 3 and 4).
The contrast for error rate was significant only in Experiment 7 (i.e., 1 out of 16 contrasts), but
the difference may be due to the negative (-2 -1 1 2) prior list distance contrast, in which error
rate was lower for distances + 1 than for = 2. A contrast comparing error rates at distances + 2
with distance 0 found no significant difference, #(31) = 0.000003, SEM = 0.0215, p =.9999, BF 10
=(0.1888. On the balance, the data disconfirm the prediction. They challenge the position

coding account of position-specific prior list intrusions in serial and cued recall.

Between-Experiment Comparisons
Experiments 3-10 manipulated list type (constrained or unconstrained), probe type

(spatial or numerical), and pre-cue delay (0 or 500 ms) between experiments, attempting to
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increase the likelihood of activating position codes and to address alternative interpretations.
Each experiment involved a single combination of these variables, so their effects were not
assessed with the inferential statistics reported so far. Here, we take advantage of the factorial
structure of the between-experiment manipulations and evaluate their effects in 2x2x2 between-
subject analyses of variance (ANOVAs). We performed one set of ANOVAs on mean RTs and
error rates to assess the effects of the manipulations on cued recognition performance. We
performed four sets of ANOVAs on the contrasts evaluating the four predictions of the position
coding theory, asking whether the effects assessed with the contrasts interact with the between-
experiment manipulations. Summary tables for the ANOVAs are presented in Appendix B.

Mean RT and Error Rate. We focused on RTs for “yes” (match) responses. They
appeared to change in the same way across experiments as “no” responses to within- and prior-
list lures. They were based on more observations than “no” responses (240 vs. 120 for each type
of lure) and had not been tested in any of the previous analyses. Averaged across experiments,
“yes” RT was 315 ms shorter with a 500 ms pre-cue than without, suggesting that the pre-cue
allowed time to focus on the cued position (Logan et al., 2023b), which should increase the
activation of position codes. “Yes” RT was 170 ms longer with numeric probes than spatial
probes, and not affected by list type (difference = 27 ms). These results were confirmed by
significant main effects of pre-cue delay and probe type in the ANOVA on mean RTs. No other
effects were significant. Averaged across experiments, error rate on “yes” trials was 0.0281
smaller with a pre-cue than without, 0.0122 smaller with spatial probes than with numeric
probes, and 0.0023 smaller with unconstrained lists than with constrained lists. The pre-cue
effect was the only significant effect in the analyses. The summary tables for the ANOVAs are
presented in Table B1 in Appendix B.

Prediction 1: Within Distance (-2 -1 1 2). There were no significant effects in the
ANOVA on the RT contrasts. The effects were consistent across experiments. The null effect of
probe delay is consistent with the null interaction between probe delay and distance in Logan et
al. (2023b). The only significant effects in the ANOVA on the P(Error) contrasts were the main
effects of probe type and probe delay. The contrasts were larger for spatial probes and larger for

the 500 ms delay. Summary tables for the ANOV As are presented in Table B2 in Appendix B.
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Prediction 2: Prior Distance (-2 -1 1 2). There were no significant main effects or
interactions in the ANOVAs on RT and P(Error). The null prior distance effects were consistent
across experiments. Summary tables for the ANOVAs are presented in Table B3 in Appendix B.

Prediction 3: Within vs. Prior Distance (-2 -1 1 2). There were no significant effects in
the ANOVA on RT, indicating that within-list distance effects were stronger than prior-list
distance effects in each experiment. The effect of probe delay was significant in the ANOVA on
P(Error), indicating smaller differences between within and prior distance effects with the 500
ms delay, which may be a floor effect. Summary tables for the ANOV As are presented in Table
B4 in Appendix B.

Prediction 4: Prior Distance (-1 0 1). A sharp peak in interference at distance = 0 is the
strongest prediction of the position coding model (Figure 2). There were no significant effects in
the ANOVA on this contrast in RT, indicating that the null distance effect replicated consistently
across experiments. List type was the only significant effect in the ANOVA on the contrast in
P(Error), indicating a smaller contrast value with unconstrained lists. These results disconfirm
the prediction and thereby challenge the position coding account of position-specific prior list
intrusions. Summary tables for the ANOV As are presented in Table B5 in Appendix B.

Summary. The ANOV As provided statistical support for the differences in overall RT
and error rate between experiments. There were few differences in the distance contrasts across

experiments, suggesting that the contrasts replicated well.

Discussion

Across experiments, overall performance varied with pre-cue delay and probe type but
the pattern of distance effects remained the same. Distance had strong effects on within-list lures
but null effects on prior-list lures, measured either at (-2 -1 1 2) or (-1 0 1). This pattern of
effects confirms Predictions 1 and 3 about within-list lures but disconfirms Predictions 2 and 4
about prior list lures. The results have strong implications for position coding theories of serial
order. The experiments established the conditions necessary (in theory) to produce position-
specific prior list interference. The large d’ values comparing “yes” and within-list “no”
responses suggest that the position code for the cued position was activated more than the others.
The within-list distance contrast (-2 -1 1 2) suggests that position codes for nearby items were

activated in proportion to their distance from the cued position. Within-list distance effects were
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stronger than prior-list distance effects, suggesting that position codes activated items in the
current list more strongly than items in the prior list. In theory, the activated position codes
should activate items from the prior list in proportion to their distance from the cued position.
This activation should reduce the drift rate for “no” responses (Equation 7), slowing RT and
increasing error rate in (inverse) proportion to their distance from the cued position, but across
experiments, distance had no effect on either measure. This key prediction was not confirmed in
any of the eight experiments. This challenges the position coding account of position-specific
prior list intrusions and position coding theories more broadly. We discuss alternative
interpretations and implications in the General Discussion, after reporting the last two

experiments.

Experiments 11-12: Cued Recognition with Sequential List Presentation

In all the experiments so far, the memory lists have been presented simultaneously for
1000 ms. In the literature, experiments on position-specific prior list intrusions and serial
memory in general usually present the memory list sequentially, one item at a time. Experiments
1 and 2 show that position-specific prior list intrusions can be found with simultaneously
presented lists, but the effects may be more robust with sequentially presented lists. Experiments
11 and 12 replicated the cued recognition results with sequentially presented lists to determine
whether position-specific prior list interference would occur with those lists.

Experiments 11 and 12 were replications of Experiments 5 and 9 with sequential lists. In
both experiments, the position cues were numeric and position and item cues were presented
simultaneously (e.g., SR). Experiment 11 used constrained lists. Experiment 12 used

unconstrained lists. Each experiment tested the four predictions of position coding theory.

Method
Subjects
Each experiment recruited 32 subjects from Prolific, using the same selection criteria as
the previous experiments. The mean age (standard deviation in brackets) of the subjects was
30.19 (5.29) and 29.09 (5.96) for Experiments 11 and 12, respectively. The gender distribution
(male:female:prefer-not-to-say) was 22:10:0 and 18:13:1, respectively.



27

Apparatus and Stimuli

These were the same as in Experiments 5 and 9 (numeric cues, no pre-cue delay), except
that the lists were presented sequentially. Each item appeared in the center of the screen for 500
ms, whereupon it was replaced by the next item. The retention interval, which began after the

last item was erased from the screen, was 1000 ms, as in the previous experiments.

Procedure

The procedure was the same as in Experiments 3-10.

Results

Mean RT for correct responses (top) and error rate (bottom) for matches (“yes”
response), within-list lures (“no” response), and prior-list lures (“no” response) for each
experiment are plotted as a function of distance from the cued position in Figure 5. The results
replicated Experiments 5 and 9 closely. There were strong distance effects for within-list lures
and null distance effects with prior list lures.

As before, d’ comparing hit rates from “yes” trials with false alarm rates from within-list
“no” trials showed that subjects were able to focus sharply on the cued position, activating a
position code in theory. The d’s (SEM in brackets) were 2.0872 (0.1459) and 2.0642 (0.1549)
for Experiments 11 and 12, respectively. We tested the four predictions of position coding
theory in each experiment using contrasts presented in Table 6. The contrasts evaluating within-
list distance effects (-2 -1 1 2) and the contrasts comparing within-list and prior-list distance
effects were highly significant for RT and error rate in each experiment, confirming Predictions
1 and 3. The contrasts evaluating prior list distances did not show evidence of interference,
disconfirming Predictions 2 and 4. The contrast for distances (-2 -1 1 2) was not significant for

RT or error rate in either experiment, nor was the critical contrast for distances (-1 0 1).

Discussion
The results show that the main findings in cued recognition can be replicated with
sequentially presented lists. Thus, the findings generalize to conditions more typical of the
literature on position-specific prior list intrusions and the broader literature on serial memory.

As in the previous cued recognition experiments, these experiments established the conditions
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necessary (in theory) to produce position-specific prior list interference (activating position
codes, activating nearby position codes more strongly than remote ones, activating the current
list more than the prior list), but none was observed in either experiment. The results confirmed
Predictions 1 and 3 but disconfirmed Predictions 2 and 4. Now there are 10 experiments

showing that result.

General Discussion

The experiments were designed to test predictions derived from the position coding
account of position-specific prior list intrusions. We showed that a position coding model that
produces prior list intrusions must also produce position-specific prior list interference in a cued
recognition task (when coupled with an appropriate decision process; Figures 1-2). We failed to
find such interference in 10 experiments. Figure 7 plots the mean observed RTs and error rates
(solid lines) across all 320 subjects in Experiments 3-12 for match responses, within-list lures,
and prior-list lures as a function of distance from the cued position. The pattern of the observed
data does not resemble the position coding predictions in Figure 2 very closely. The observed
pattern is most similar to the predictions with the lowest prior list strength (sprior = 0.1).
However, these strengths and probabilities are too low to account for the position-specific prior
list intrusions we observed in serial recall in Experiments 1 and 2 (cf. predictions in the top left
panels of Figure 2). Thus, the results challenge the position coding account of prior list
intrusions. They challenge position coding theories more generally because their account of
position-specific prior list intrusions is a unique prediction that distinguishes them from other
theories of serial memory (Henson et al., 1996; Osth & Hurlstone, 2022).

Each experiment tested four predictions derived from the core assumptions of position
coding theory. The theory assumes that position codes are activated in proportion to their
distance from the cued location, the position codes activate items associated with them on the
current list and the prior list in proportion to their activation, and associations to the current list
are stronger than associations to the prior list. This leads to the four predictions, which we tested
on the data from all 320 subjects in Experiments 3-12.

Prediction 1. For within-list probes, RT and error rate should both decrease with
distance, assessed with contrasts comparing positions (-2 -1 1 2). Prediction 1 was confirmed.

The within-list distance effects (-2 -1 1 2) were strong and highly significant. For RT, #(319) =
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8.9228, SEM = 8.9228, p < 0.0001, N> 0 =269, BF 10> 1000; for P(Error), (319) = 9.4483,
SEM =0.0097, p <0.0001, N> 0 =248, BF0>1000.

Prediction 2. For prior-list probes, RT and error rate should also decrease with distance
over the same set of distances (-2 -1 1 2). Prediction 2 was disconfirmed. The prior-list distance
effects (-2 -1 1 2) were null. For RT, #319)=0.1882, SEM = 6.7750, p = 0.8508, N> 0 = 156,
BF10=0.0638; for P(Error), #(319) =2.1014, SEM = 0.0056, p = 0.0364, N> 0 =150, BFi0 =
0.5508.

Prediction 3. The (-2 -1 1 2) distance effect should be stronger for within-list lures than
for prior-list lures. Prediction 3 was confirmed. Within-list distance effects (-2 -1 1 2) were
much stronger than prior-list distance effects (-2 -1 1 2). For RT, #319) = 12.7175, SEM =
11.1316, p <0.0001, N> 0 = 248, BF 19> 1000; for P(Error), #319) = 7.0079, SEM = 0.0114, p <
0.0001 N> 0=236, BFi0> 1000.

Prediction 4. For prior-list probes, RT and error rate should peak at distance = 0,
assessed with contrasts comparing positions (-1 0 1). Prediction 4 was disconfirmed. There was
no peak at distance = 0 for prior list lures. For RT, #(319) = 1.0564, SEM = 10.0030, p = 0.2916,
N>0=152, BFio=0.1089; for P(Error), #(319) = 0.0177, SEM = 0.0072, p = 0.2810, N> 0 =
118, BF10=0.0627.

The data confirm Predictions 1 and 3 but disconfirm the critical Predictions 2 and 4,
which are the most diagnostic. These results challenge the position coding account of position-

specific prior list interference and, by extension, position-specific prior list intrusions.

Model Fits

We sought converging evidence on the four predictions by fitting versions of the position
coding model that simulated the predictions in Figure 2 to the data from Experiments 3-12 to test
hypotheses about prior list strength and the distance effects. The contrasts in the previous
analyses are operational definitions of the strength (sprior) and distance (p) components of
Equation 1. The fits measure these components directly as best-fitting model parameters and
confirm the contrast results. The contrast analyses suggested that prior list strength equaled zero
in Experiments 3-12. Position coding theory predicts strength greater than zero. We test this
hypothesis by comparing the fits of models that fix sprior to 0 with models that allow it to vary

freely. Position coding theory predicts models with sprior free to vary will fit better than models
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with sprior fixed at 0. The fits with sprior free to vary provide estimates of prior list strength.
Position coding theory predicts the estimates will be greater than 0. The fitting procedure is
described in Appendix D.

We used Equation 1 to generate activation strengths for targets, within-list lures, and
prior-list lures, and Equations 6 and 7 to generate drift rates for “yes” and “no” responses. The
position similarity gradient p, prior list strength sprior, and capacity xk were each estimated as
free parameters for each subject in each experiment. In addition, we estimated the thresholds for
the two accumulators, a residual time parameter, and two scaling parameters for converting
activations into drift rates. For each trial experienced by a subject, we used Equations 8 and 9 to
compute the likelihood of making the response observed on that trial at the time observed on that
trial. We found parameters for each subject in each experiment that maximized the total
likelihood of the observed responses and RTs across all trials. As a result, models were fit to the
complete joint distributions of correct and error responses and RTs in all conditions.

We fit two models. The first was a nonzero prior list strength model, representing the
position coding model in Figure 1, which allowed sprior to vary between 0 and 1. The second
was a zero prior list strength baseline model, which fixed sprior at 0 to eliminate prior list items
from the model. A complete description of the models, their best-fitting parameter values, and
their predictions for mean correct RT and error rate in each experiment are presented in
Appendix D. The results of a parameter recovery analysis of the models are presented in
Appendix E.

The model predictions across all 320 subjects are shown in the left (zero prior list
strength) and right (nonzero prior list strength) panels of Figure 7 (dashed lines). The quality of
the fits was about the same for the two models (see below) but the nonzero prior list strength
model predicted a peak in RT and error rate at distance = 0 for prior-list lures that was not
observed in the data (Figure 7). The zero prior strength model correctly predicted the observed
flat function.

The four predictions (contrasts) of position coding theory are determined by the
combination of prior list strength and distance parameters in Equation 1. Prediction 1 (-2-112
distance effect in within-list lures) depends only on the distance parameter p in Equation 1. It

was greater than zero in every subject, averaging 0.2508 in the zero prior list strength model fits



31

and 0.2826 in the nonzero prior list strength model fits (Table D1), confirming Prediction 1 in
both models.

Predictions 2 and 4 (-2 -1 1 2 and -1 0 1 distance effects in prior list lures) depend on the
product of distance and the prior list strength parameter sprior in Equation 1. Estimates of sprior
were greater than zero on average (0.0938; Table D1), as predicted, but they were equal to zero
in 169 of the 320 subjects, disconfirming the prediction for those subjects. The low sprior values
reduce the activation of prior list lures, eliminating the distance effect and disconfirming
Predictions 2 and 4.

Prediction 3 compares within-list distance effects, which depend only on the distance
parameter, with prior-list distance effects, which depend on the product of the distance parameter
and the prior list strength parameter. The relatively high value of the distance parameter
accounts for the strong distance effects in within-list lures, but its effect in prior-list lures is
diminished by the low value of the prior list strength parameter, predicting the difference in
distance effects and confirming Prediction 3.

We tested the importance of the prior list strength parameter underlying predictions 2-4
by comparing the fit of the nonzero prior strength model, which includes the sprior parameter,
with the fit of the zero prior strength model, which excludes it. The position coding model
predicts the nonzero prior strength model will fit better because it allows values of sprior > 0.
We compared the fit of the two models within each experiment and over all 320 subjects with
paired sample ¢ tests on four fit measures. AIC and BIC measure the likelihood of the data given
the parameters, using different penalty terms for models with greater complexity (¢ tests for each
experiment are in Table 6; mean goodness of fit values are in Table C2). Overall, AIC preferred
the nonzero prior strength model (565.85) over the zero prior strength model (569.19), #(319) = -
2.3900, SEM = 1.3985, p = 0.0174, BF10 = 1.0366, but the difference was significant only in
Experiments 5, 8, and 9. Overall, BIC preferred the zero prior strength model (597.18) to the
nonzero prior strength model (599.16), #(319) =2.4997, SEM = 0.7938, p = 0.0129, BF10 =
1.3457. The preference for the zero prior strength model was significant in Experiments 4, 7, 8,
10, 11, and 12.

We calculated the squared correlation 7° between observed and predicted RTs and error
rates for each subject in each experiment. It measures the fit of the model to the pattern of the

data and uses the same scale for RT and error rate (Table 6). Averaged over subjects and
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experiments, the correlation between observed and predicted RTs was larger for the zero prior
strength model (0.6758) than for the nonzero prior strength model (0.6696) but the difference
was not significant overall, #319) = 1.5701, SEM = 0.0039, p = 0.1174, BF10=0.2117, or in any
experiment. The mean correlation between observed and predicted error rates was larger for the
nonzero prior strength model (0.6916) than for the zero prior strength model (0.6797) overall,
#(254)=3.2518, SEM =0.0116, p = 0.0013, BF10 = 19.1846, but it was significant only in
Experiment 7.

Altogether, the model fits lead to the same conclusions as the contrast analyses of the
mean RTs and error rates. They provide little support for the position coding predictions.
Estimates of prior list strength were low overall and equal to zero for more than half the subjects.
The position coding model with nonzero prior strength did not fit better than the baseline model
with zero prior strength. The correlation analyses showed that the baseline model predicted the
observed RTs and error rates as well as the more complex model.

The 53% of subjects with best-fitting prior strength values of zero falsify the position
coding predictions, but the 47% with values greater than zero may provide some support. We
separated the data for the two groups of subjects and plotted them in Figure 8. The sprior =0
group showed no prior list distance effect. The (-1 0 1) distance contrast was not significant for
RT, #(168) =-1.4707, SEM = 11.6264, p = 0.1432, BF10 = 0.2469, or for P(Error), #(168) = -
0.1561, SEM = 0.0079, p = 0.8762, BF10=0.0868. However, the sprior > 0 group showed a
little peak in prior list performance at distance = 0. The (-1 0 1) contrast was significant for RT,
#(150) = 2.4889, SEM = 16.4102, p = 0.0139, BF10 = 1.7855, and for P(Error), #(150) = 3.1028,
SEM =0.0116, p =0.0023, BFi0=8.8611. We compared the magnitude of the (-1 0 1) contrast
between groups and found it was significantly larger in the sprior > 0 group for both RT, #318)
=2.8811, SEM =20.1114, p = 0.0042, BF'10 = 6.3267, and for P(Error), #318) = 2.6484, SEM =
0.0140, p = 0.0085, BF'10 = 3.4546. The sprior > 0 group provides some hope that the position
coding account may explain position specific prior list interference, at least in some subjects.
Position coding may be an individual difference or a strategy choice. Other approaches may be

used by other subjects, either as an individual difference or a choice.
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Summary

The cued recognition results (contrasts and model fits in Experiments 3-12) disconfirm
Predictions 2 and 4 of the position coding account of position specific prior list interference.
Predictions 1 and 3 were confirmed, but they are also consistent with theories of serial memory
that do not assume position codes (e.g., item-dependent context theories). By extension, the
cued recognition results challenge the position coding account of position specific prior list
intrusions in recall tasks, which played a central role in the dominance of position coding
theories of serial memory (Henson, 1998; Henson et al., 1996; Lewandowsky & Farrell, 2008).
However, the serial recall results (contrasts in Experiments 1-2) confirm Predictions 1-4 of the
position coding account of position specific prior list intrusions. Together, the cued recognition
and serial recall results present a bigger challenge to position coding theories: They must change
somehow to account for both the presence of position specific prior list intrusions in serial recall
and the absence of position specific prior list interference in cued recognition.

Alternatives to position coding theories are challenged just as much by our results. Item-
dependent theories do not assume position codes and so would predict the null effects of prior
list distance we observed in cued recognition but they would also predict no position specific
prior list intrusions in serial recall (Logan & Cox, 2023; Osth & Hurlstone, 2022), contrary to the
results of Experiments 1 and 2. They too must change somehow to account the whole set of
results.

We consider two ways to accommodate our results. First, we consider alternatives to our
model of cued recognition that do not require focusing on a position to process prior list lures
and so should not activate position codes that cause prior list interference. Then we consider

ways to modify item-dependent context theories to produce prior list intrusions in serial recall.

Can Cued Recognition Be Done Without Focusing on Position?

The conclusions about position coding theory rest on the assumption that subjects
evaluate prior list lures by using the position cue to retrieve the list item in the cued position and
then comparing the retrieved item to the item in the probe (Logan et al., 2021, 2023b). The
assumption implies that probing with the cue activates the position code for the cued position,

which should produce position-specific prior list interference. The assumption may not be valid.
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Subjects may use the item to retrieve position or to make recognition judgments without
accessing position.

Using the Item to Retrieve a Position Code. Subjects could perform the cued
recognition task with an “item-first” strategy that uses the item to retrieve a position code and
then compares the retrieved position code to the one in the probe. This would make exactly the
same predictions as our assumed “position-first” strategy that uses the position cue to retrieve an
item because both strategies depend on the similarity between the probed position and the
position of the item in the list. In the position-first strategy, positional similarity determines the
activation of items at different distances from the cued position (Equation 1), and this determines
RT and error rate produced by the decision process that compares the items (Equations 6 and 7).
In the item-first strategy, positional similarity determines the comparison between the retrieved
position and the cued position at different distances (Equation 1), and this determines RT and
error rate produced by the decision process (Equations 6 and 7). Consequently, the item-first
strategy makes the same predictions as the position-first strategy.

A more challenging possibility is that subjects may use the probe item in an item
recognition process that compares the probe to all the items in the memory list without focusing
on the cued position. The probe could be compared with each item in the memory list in parallel
(Ratcliff, 1978) or with a composite representation formed by collapsing the memory list (e.g.,
by summing item vectors; Anderson, 1973). Neither case involves position information, so RT
and error rate would not depend on activating position codes. Prior list distance effects would be
null, as observed. Item recognition is a serious alternative that challenges the validity of using
prior list lures to measure activation of position codes. We addressed it in five ways.

List Discrimination Strategy. First, we realized that the constrained lists in
Experiments 3-6 and 11 allow a list discrimination strategy, in which subjects determine whether
the probe came from the prior list and say “no” if it did. Items could not repeat from one trial to
the next, so this strategy would produce correct “no” responses to prior list lures and predict RTs
and error rates that were unaffected by distance. To address this strategy, we ran Experiments 7-
10 and 12, replicating the original experiments with unconstrained lists, in which items could
repeat from one trial to the next, so membership in the prior list was no longer a valid cue for a
“no” response. The results replicated well with unconstrained lists, which disabled the list

discrimination strategy. In the between-experiment comparisons of Experiments 3-10 (Tables
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B1-B5), list type had no effect on RT or error rate, and no effect on any of the eight analyses
assessing distance contrasts in RT and error rate except for the interaction between list type and
probe delay in the within-list distance contrast (-2 -1 1 2) in error rate. None of the contrasts
differed significantly between Experiment 11 (constrained lists) and Experiment 12
(unconstrained lists; see Table 6). We conclude that the list discrimination strategy was not an
important factor in our cued recognition experiments, ruling out one possible item recognition
strategy.

Item Recognition Followed by Position Cuing. Second, subjects could use an item
recognition process to determine whether the probe item came from the current list and say “no”
if it did not. Prior list probes were never present in the current list, so prior list probes could be
rejected quickly without accessing position, producing null prior list distance effects. However,
if the probe item was in the current list, the position-based cued recognition process would have
to be engaged to distinguish matching probes from within-list lures. Subjects would have to
focus on the cued position, retrieve the item, and compare it with the probe. This would increase
their RTs for matches and within-list probes by an amount roughly equal to prior list lure RT
minus motor execution time (Logan et al., 2023a). The data in Figures 4-6 show prolonged RTs
to within-list lures, but match RTs were only 18 ms longer than prior-list lures despite wide
variation in overall RT across experiments. The difference was significant, #(31) =3.0113, SEM
=5.8313, p =.0028, BF10=7.7859, but small compared to the prolongation of RTs observed in
sequential retrieval decisions in the “psychological refractory period” dual task procedure:
Logan et al. (2023a) found a 395 ms prolongation in cued recall dual-task experiments (RT2 for
SOA = 100 ms minus RT2 for SOA = 900) and Logan and Delheimer (2001) found a 602 ms
prolongation in an item recognition dual-task experiment (with words; RT2 for SOA =0 ms
minus RT2 for SOA = 1000 ms; also see Carrier & Pashler, 1995).

Pre-Cue Effect. Third, we realized that the pre-cue effect distinguishes cued
recognition from item recognition. Cued recognition requires focusing on the cued position in
the memory list, and the pre-cue allows time to focus before the item part of the probe is
presented. This reduces RT in the pre-cue condition relative to the no-pre-cue condition (Logan
et al., 2023b). Thus, decisions based on cued recognition should be shorter with a pre-cue than
without one. Item recognition does not require focusing on the cued position and so would not

benefit from pre-cuing the position. Item recognition can begin only after the item part of the
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probe is presented, at the end of the pre-cue delay. RT is measured from the onset of the item
part of the probe, so RTs for decisions based on item recognition should be unaffected by pre-
cuing. A second, related, prediction is that pre-cues should speed up correct recognition of
targets (based on cued recognition) while leaving correct rejection of prior list lures (based on
item recognition) unaffected. The difference between RTs to prior list lures and RTs to targets
should be larger in experiments with pre-cues than in experiments without pre-cues. On the
other hand, if all responses are based on cued recognition, then the pre-cue should speed both
“yes” and “no” responses by the same amount. The difference between RTs to prior list lures
and RTs to targets should be the same in experiments with and without a pre-cue. The data,
plotted in Figures 4 and 5, are more consistent with cued recognition.

We tested the first prediction by comparing prior list lure RTs from experiments with pre-
cued probes (4, 6, 8, and 10) and experiments with simultaneous probes (3, 5, 7, and 9). Prior
list lure RTs were 292 ms shorter with pre-cued probes than with simultaneous probes, and the
difference was significant, #254) = 11.0413, SEM = 26.4097, p < 0.0001, BF10 > 1000,
disconfirming the item recognition prediction. We tested the second prediction by comparing the
difference between prior list lure RT and “yes” RT in experiments with (4, 6, 8, and 10) and
without pre-cues (3, 5, 7, and 9). The 24 ms difference of differences only approached
significance, #(254) = 1.9221, SEM = 12.2933, p = 0557, BF10 = 0.7838, failing to provide clear
support for the item recognition prediction. The results of both comparisons are consistent with
our assumption that subjects use cued recognition to evaluate prior list lures.

Cue Type Effect. Fourth, we realized that the same logic applies to the effect of cue
type on RT and leads to similar predictions. Cued recognition requires accessing position
information in the probe but item recognition does not. Cued recognition RTs will be faster
when position information is easier to extract from the cue (spatial cues) than when it is harder
(numeric cues). Item recognition does not require position information, so item recognition RT
should be unaffected by cue type. We tested this prediction by comparing RTs to prior list
probes from experiments with spatial cues (3, 4, 7, 8) with RTs from experiments with numeric
cues (5, 6,9, 10). The difference was 163 ms. It was highly significant, #(254) = 5.3686, SEM =
30.4472, p <.0001, BF'10 > 1000, consistent with our assumption that prior list lures were
processed with cued recognition. We tested a second prediction, that “yes” RTs should vary

with cue type (because they depend on position) but prior list probe RTs should not (because
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they do not depend on position), by comparing the difference between “yes” and prior list probe
RTs in experiments with spatial cues (3, 4, 7, 8) and with the difference in experiments with
numeric cues (5, 6, 9, 10). The difference of differences was 7 ms, which was not significant,
t(254)=0.5611, SEM = 12.3747, p = .5752, BF10 = 0.1591, suggesting that prior list lures were
processed with cued recognition.

Model Fits. Finally, we used model fits to test the importance of including item
recognition in the decision process, comparing models that included item recognition in the
decision process with models that did not include it. We assumed that item recognition was not
position specific and modeled it by comparing the probe item to each item in the list (following
Logan et al., 2021). We assumed this version of item recognition went on in parallel with cued
recognition (following Logan et al., 2021). We added value of the item match to the drift rate in
the decision process with weight w. The contribution from cued recognition was given weight 1

—w, so the evidence for “yes” is

Tyes = (1 _W)(q'mk)+W(Z]6‘=1q'mj) (10)
and the evidence for “no” is
Tho = 1- W)”mk” + W(Z?=1llm]”) (11)

where £ is the cued position in the list. The drift rate for “yes” is
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We fit two versions of this model. One implemented item recognition in the position
coding model with nonzero prior list strength. The other implemented item recognition in the
model with zero prior list strength. Values of the best fitting parameters, measures of goodness
of fit, and predicted RTs and error rates for each experiment are presented in Appendix D. The
mean predicted and observed values across the 320 subjects are presented in Figure 9.

We calculated contrasts comparing goodness of fit measures in models with and without
item recognition and got mixed results. Table 7 contains the values for zero prior list length
models with and without item recognition within each experiment and over all 320 subjects.
AIC favored models without item recognition in four of the 10 experiments but the overall

difference was not significant. BIC favored models with without item recognition in five
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experiments but the overall difference was not significant. The correlations with RT were
significantly higher in models with item recognition in eight experiments and overall. The
correlations with error rate were not significantly higher in models with item recognition in any
experiment or overall.

Table 8 contains the contrasts comparing goodness of fit measures for nonzero prior list
strength models with and without item recognition within each experiment and over all 320
subjects. AIC favored models with item recognition in three experiments but the difference was
not significant overall. BIC favored models with item recognition in three experiments but the
difference was not significant overall. Correlations with RT were larger with item recognition
than without in four experiments and the difference was significant overall. Correlations with
error rate were smaller with item recognition than without in one experiment and the difference
was significant overall.

In summary, item recognition does not improve the fit of the zero prior list strength
model or the nonzero prior list strength model, as measured with AIC and BIC. The correlations
with RT improved by adding item recognition, but the correlations with error rate either did not
change or reversed. These results converge on the conclusions from the analyses of list
discrimination, pre-cue delay, and cue type. They suggest that item recognition is not a viable

explanation the results that challenge position coding theory.

Other Accounts of Position-Specific Prior List Intrusions

Taken by themselves, the results of the cued recognition experiments (3-12) support
item-dependent context theories of serial memory, which would not predict position specific
prior list interference (Botvinick & Plaut, 2006; Lewandowsky & Murdock, 1989; Logan, 2021;
Murdock, 1995; Solway et al., 2012). Item-dependent context theories account for prior list
intrusions that are semantically related to items in the current list (Loess, 1967; Wickens, 1970)
and intrusions that follow an item that repeats from the prior list, intruding the item that followed
the repeated item on the prior list (Fischer-Baum & McCloskey, 2015; Kahana et al., 2002;
Zaromb et al., 2006). However, item-dependent context theories do not account for the position
specific prior list intrusions observed in the serial recall (Experiments 1-2) and cued recall
(Logan et al., 2023a) experiments in this article and many others (Conrad, 1959; Henson, 1998;
Melton & Von Lackum, 1941; Osth & Dennis, 2015; but see Caplan et al., 2022; Dennis, 2009;
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Logan & Cox, 2023). Taken together, our results on serial recall and cued recognition challenge
item-dependent context theories as much as position coding theories. Both have to explain why
position specific prior list intrusions occur in serial recall and why position specific prior list
interference does not occur in cued recognition. As a first step, we consider ways to produce
position specific prior list intrusions in item-dependent context models.

Changing Memory Theories. One way to accommodate our results is to develop
accounts of position-specific prior list intrusions that do not assume position coding or do not
attribute them to serial memory. Accounts of prior list intrusions must assume that items in the
prior list are activated at retrieval time along with items in the current list. They must also
assume the prior list is activated less than the current list, or else prior list intrusions would
dominate correct retrievals. Neither of these assumptions require position coding. In principle,
they could be implemented in any theory of serial order, including item-dependent context
theories. Accounts of position-specific prior list intrusions must also assume that prior list
activation is position specific. The prior list item that is activated most strongly is the one in the
list position that is the focus of retrieval in the current list. Position coding theories account for
this position specificity in their fundamental assumption that items are associated with position
codes and their equally fundamental assumption about activation and distance (Equation 1). Itis
less clear how item-dependent context theories would account for it.

Osth and Hurlstone (2023) showed important constraints on the ability of item-dependent
context theories to produce prior list intrusions, analyzing the Context Retrieval and Updating
(CRU) model of serial recall (Logan, 2021). They modified CRU to represent the prior list as
well as the current one, and they manipulated similarity between the list contexts to produce
intrusions. CRU made position-specific prior list intrusions when list contexts were sufficiently
similar, but it did so by switching to the prior list and reporting prior-list items from the intrusion
onward. Subjects typically make one prior list intrusion and then return to the current list. There
was only one trial in Experiment 1 and one trial in Experiment 2 in which a subject recalled the
prior list entirely. We confirmed Osth and Hurlstone’s results with our own simulations (Logan
& Cox, 2023). List similarity by itself does not seem to be the answer (cf. Dennis, 2009).

Caplan et al. (2022) showed that a simple modification of a classical chaining model
could produce position-specific prior list intrusions. The model assumes that the current list

ABCDEF and the prior list ghijkl are both represented as associative chains that link adjacent
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items. Retrieval is initiated by activating a start element that is associated with the first item in
each chain. The start element is associated more strongly with the current list than with the prior
list, so A4 is more likely to be retrieved than g. A prior list intrusion occurs when g is retrieved
instead of A. The model prevents perseverating on the prior list (like CRU does) by using the
evidence retrieved in the decision process as the cue for the next item instead of the item
retrieved (Lewandowsky & Li, 1994). The evidence for 4 and g retrieves evidence for B and 4,
continuing both chains. The evidence for A4 is stronger than the evidence for g despite g winning
the competition, so B tends to be retrieved next, getting the model back on track. If the retrieved
item g is used to cue retrieval instead of the evidence that drove retrieval, / is more likely to be
retrieved than B, and the model will perseverate on the prior list, like CRU but unlike human
subjects. Caplan et al. (2022) showed that their model could fit position-specific prior list
intrusion data, making it an attractive alternative to position coding. They viewed their model as
promising but preliminary, as they had not yet fitted it to the range of data and effects in the
serial recall literature.

Logan and Cox (2023) tried the Caplan et al. (2022) idea with CRU and found that it
showed promise. Using the evidence that drove retrieval instead of the item retrieved to update
context, they were able to produce position-specific prior list intrusions but the model still tended
to perseverate on the prior list. They developed a version of CRU that updated context with the
retrieved item on some trials and with the evidence that drove retrieval on other trials. The
updating was adaptive, using the item when it was likely that the retrieved item was correct and
using the evidence when it was likely that the retrieved item was an error. This produced
position-specific prior list intrusions without perseverating (as much) on the prior list, more like
human subjects. However, the simulations are proofs of concept at best, and the changes to the
model (adding an error detection component that assesses the likelihood of an error) are
extensive, so the extension of CRU requires further investigation.

These models suggest it may be possible to account for position-specific prior list
intrusions without position coding, but they are challenged by our experimental results as much
as position coding theories are. They must also explain why position-specific prior list
interference does not appear in cued recognition.

Intruded Responses, Not Memories. The changes to the models we proposed are based

on the assumption that prior list intrusions are produced by retrieval from memory. Position
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coding accounts are based on the same assumption. An alternative possibility is that prior list
intrusions are produced in the output processes required in recall tasks rather than in the memory
system itself. Serial recall requires a sequence of actions to report each of the items (keystrokes
in our experiments), and the order of the sequence is controlled by a motor program (Keele,
1968; Logan, 2018). Prior list intrusions may result from position coding in the motor program
instead of position coding in memory. The motor program might associate keystrokes with
positions ( “first press the 4 key, second press the B key,” etc.) and position-specific intrusions
might occur if the motor program used to report the previous list was still available (e.g., “first
press the g key, second press the / key,” etc.) and the keystroke from the prior list wins the
competition. This would explain why prior list intrusions occur in serial recall and why prior list
interference does not occur in cued recognition. Cued recognition requires a simpler motor
program that conveys a single judgment about the probe item, not a sequence of judgments about
the identity of every item. There is only one “position” in this motor program, so there is less
opportunity for confusion.

The motor program account predicts position specific prior list intrusions in tasks in
which subjects execute the motor program without retrieving items from memory. Copy typing
is one such task, as it involves reporting a continuously visible list so the information required to
respond is available perceptually. Logan (2021) compared copy typing, serial recall, and
perceptual report of 5, 6, and 7 letter consonant strings. Each task required the same motor
program (typing the letters in order) but varied in its requirements for memory and perception.
Copy typing required the motor program but not memory. The motor programming account
predicts position specific prior list intrusions in the copy typing task.

We tested this prediction by searching for prior list intrusions in Logan’s (2021) data.
The subjects were 24 skilled typists who typed 192 lists in each condition. Serial recall, whole
report, and copy typing were run in separate blocks. We identified intrusions in each task and
determined whether they came from the previous list. If they did, we calculated the distance
between their position in the prior list and their position in the current response. This was
complicated by the random variation in list length within blocks. Subjects could encode position
from the beginning or the end of the list (Henson, 1998; Fischer-Baum & McCloskey, 2015).
Following precedent (Fischer-Baum & McCloskey, 2015), we calculated distance from the

beginning of the list and distance from the end of the list and chose the shorter distance. We
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summed the frequencies of prior list intrusions at each distance in each task across list lengths
and subjects. The frequencies for each task are plotted as a function of distance in Figure 10
(left).

Prior list intrusions were more frequent in report than in recall and least frequent in
typing (1979, 1337, and 173 intrusions, respectively), reflecting large differences in overall
accuracy, so we replotted the data as the proportion of the total number of prior list intrusions in
each task at each distance (Figure 10, right). Both plots show position specific prior list
intrusions in copy typing. There is a peak at distance = 0, confirming Prediction 4 of position
coding theory (the critical contrast comparing distances -1 0 1). This is consistent with the motor
program account, in which position specific prior list intrusions are the product of position
coding in the motor program.

Serial recall and whole report also showed position specific prior list intrusions with
sharp peaks at distance = 0. The similarity of the proportions in Figure 10 (left) invites the
conclusion that the motor system uses position coding but the memory system does not, but we
cannot rule out the possibility that the memory system also uses position coding. The difference
in frequency between memory and typing could reflect additional memory-based intrusions. We
note as well that the motor programming account does not explain prior list intrusions in cued
recall (Figure 3; Logan et al., 2023a), where the motor program specifies only one response. At
this point, the results invite speculation, not strong conclusions, but the speculation is intriguing.
Understanding the role of the motor system and output and decision processes more generally is

an important goal for future research (Dendauw et al., 2024).

Implications for Position Coding Theories

The results of our experiments challenge the core assumptions of the position coding
account of position-specific prior list intrusions. We showed in theoretical analysis and in
simulations that position coding theories that predict position-specific prior list intrusions in
recall must also predict position-specific prior list interference in cued recognition. Contrary to
this prediction, we failed to find position-specific prior list interference in 10 experiments.

Our experiments challenge the core assumption that prior list items are associated with
the same position codes as current list items with lower strength (Figure 1 top row). In recall, the

core assumption implies that prior list items can compete with current list items and it predicts



43

intrusions when prior list items win the competition (Figure 1 second row; Figure 2 top row).
The prior list intrusions observed in Experiments 1 and 2 and many others are interpreted as
confirming this prediction. In cued recognition, we showed that the assumption predicts
interference when prior list items are used as lures (Figure 1 bottom; Figure 2) and we failed to
observe such interference (Figures 4-6). The contrast testing the predicted peak in RT and error
rate was not significant and the sprior parameter that represents prior list strength was 0 in 53%
of the subjects and close to 0 in the other 47%.

The challenge to the position coding account of position specific prior list intrusions has
broader implications for position coding theories. A major impetus for the development of
position coding theories was their ability to account for four error phenomena that classical
chaining theories could not explain: recovery from errors, transpositions to earlier list positions,
phonological confusion effects, and position-specific prior list intrusions (Henson et al., 1996).
Previous research has shown that theories based on different assumptions can account for the
first three phenomena (Botvinick & Plaut, 2006; Logan, 2021; Osth & Hurlstone, 2023; Solway
et al., 2012), leaving prior list intrusions as the last of the four unique predictions that support
position coding theories. Our experiments falsify this prediction when it is extended to cued
recognition, leaving position coding models with no unique predictions that distinguish them
from other theories of serial memory. This challenges the dominance of position coding theories

and encourages renewed attention to other theories and different approaches.

Implications for Serial Memory

The dissociation between position-specific prior list intrusions and position-specific prior
list interference challenges all theories of serial memory, not just position coding theories. The
theories that account for intrusions must explain why there is no interference from prior-list lures
in cued recognition. The theories that account for the lack of interference must explain why
intrusions occur in serial and cued recall. We hope our results encourage theorists of all
persuasions to rise to the challenge.

Our results highlight the importance of using different retrieval tasks to test assumptions
about memory representations (Hintzman, 2011). Most of the work on serial memory has
focused on serial recall to the exclusion of other retrieval tasks (Hurlstone et al., 2014). Our

results show that the retrieval task matters. The predictions derived from the memory
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representations may be the same, but the results differ substantially. Serial recall shows evidence
of position-specific prior list activation (Figure 3). Cued recognition does not (Figures 4-6).
These results underscore the important point that memory performance is a joint function of the
representations and the processes that operate on them (Anderson, 1978; Atkinson & Shiffrin,
1968). Representation and process are confounded in a single task, like serial recall or cued
recognition. Their effects can be separated by using different retrieval tasks to access the same
representation (e.g., Cox et al., 2018). This has been a productive strategy in global theories of
memory, explicating the relations between recognition and recall (Anderson et al., 1998; Gillund
& Shiffrin, 1984; Humphreys et al., 1989; Murdock, 1982, 1983). It should also be productive in
theories of serial memory and further the goal of integrating those theories with other memory
theories (Ward et al., 2010; Ward & Tan, 2023).

Our results show the benefits of using cued recognition to probe serial memory. The
position cue requires attention to order information. The item cue probes the state of the
memory system, and different cues can be chosen to probe different states. Carefully designed
lures have led to important insights into the nature of false recognition (Shiffrin, Huber, &
Marinelli, 1995), correct rejection of novel lures (Mewhort & Johns, 2000; Osth et al., 2023), the
relationship between item and associative information (Cox & Criss, 2017), the organization of
lexical memory (Grainger, 2018), and the organization of semantic memory (Ratcliff &
McKoon, 1988; Zbrodoft, 1999). In cued recognition, lures probe the state of current and prior
lists at different distances from the cued position, measuring their activation to test theories of

serial order.

Strategies and Models of Memory

Our experiments challenge the position coding account of prior list intrusions, which
distinguishes them from other theories of serial memory (Henson et al., 1998; Osth & Hurlstone,
2023). The theories are no longer so distinct. This may be frustrating from the usual perspective
on modeling, where models are treated as mutually exclusive and the goal is to find the one that
fits best, declare it the winner, and discard the rest. Mimicry makes models harder to distinguish.
But mimicry can be beneficial. Sometimes it reveals a basic truth in all models that account for
the same phenomenon (Anderson, 1978). For serial memory, the basic truth is the exponential

distance gradient a(ilj) = p*/! in Equation 1 that represents the similarity of position codes (Logan
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& Cox, 2021; Murdock, 1997). It appears in models that represent order as associations of items
to contexts, whether the contexts are independent of (Lewandowsky & Farrell, 2008) or
dependent on the items (Logan, 2021). It is the key assumption that allows them to account for a
broad range of order phenomena.

One way to deal with mimicry is to embrace it, accepting that different models may fit
the data equally well and using other criteria to distinguish models. We might choose models
based on how clearly they relate theoretical constructs to observable behavior in a specific
domain (Navarro, 2019; Singmann et al., 2022). If the task requires memory for positions, we
might choose a position coding model because it provides a clear and direct way to relate the
theory to the experiment, not because it provides a better fit (assuming the fits are equivalent).
We might also choose models based on the questions they allow us to ask and use them to test
hypotheses. We tested hypotheses about the interaction between distance and prior list strength
by comparing different versions of the position coding model. Theoretical analyses and
simulations of the models allowed us to derive four core predictions about the data. The fits
allowed us to measure the distance gradient and prior list strength directly as model parameters
(p and sprior).

Another way to deal with mimicry is to treat models as alternative strategies subjects
might employ to represent order instead of different candidates for the One True Model.
Different subjects may choose different models for the same task, like our subjects with prior
strength = 0 and prior strength > 0. The same subject may choose different models for different
tasks or choose different models at different times on the same task (Logan & Cox, 2023).
Different models may be better suited to different tasks. We represent position explicitly when
keeping track of standings in sports, songs on the hit parade, and birth order of siblings. We
represent order with reference to context in understanding events and biographies. These
possibilities are enticing, inspiring broader multiple-representation theories of memory and new
research on the determinants and consequences of strategy choice and the control processes that
make the choices. Mimicry will make it harder to distinguish between strategies in particular
cases, but much can be learned from the core assumptions, like the similarity gradient in
Equation 1, that all models share.

The call to consider models as strategies emphasizes the role of processing as much as

representation. Processing is required to form a memory representation and to extract
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information from it at retrieval (e.g., Craik, 2020). Processing is required to control the encoding
and retrieval processes, directing them to the relevant parts of the memory representation and
controlling the order and timing of their execution (Atkinson & Shiffrin, 1968; Logan et al.,
2023a, 2023b). The emphasis on processing raises the value of experimental procedures that
allow the processes to be measured directly with RT as well as accuracy, to take advantage of the
many process models that predict both measures (e.g., Ratcliff, 1978; Tillman et al., 2020; Usher
& McClelland, 2001) and develop more complete models of memory. The emphasis on
processing is essential in distinguishing among memory representations. The behavior we
measure is the result of processes operating on representations. To make inferences about
representation from behavior, we must unravel the interactions between representations and

processes, and that requires understanding the processes. Our research has attempted to do that.

Limitations

Our 10 cued recognition experiments are close variations on a common design. They all
used lists of six consonants drawn from a pool of 20, presented briefly, and tested after a short
1000 ms retention interval. We chose to vary cue type and cue delay between experiments
because of our interest in the relation between memory and attention tasks that manipulate cues
in the same way (Logan et al., 2021, 2023a, 2023b). The close variations demonstrate the
replicability of the results but they do not demonstrate their generality. It is possible that our
results would not replicate with a broader range of materials and more variation in experimental
design.

It would be worthwhile adapting our procedure to word lists, which are common
materials in studies of interference, and varying the size of the pool of items (Osth & Hurlstone,
2023) and list length over a broad range (Ward et al., 2010; Ward & Tan, 2023). It would also
be worthwhile adapting our procedure to simple visual stimuli like color patches or oriented
gratings, or to pictures, which are common in studies of visual memory. If our results replicated
across these variations, our conclusions would be much stronger.

Our major result, the contrast between strong position-specific intrusions in serial recall
and null position-specific interference in cued recognition, was tested between subjects. Each set
of subjects performed only one task, and it is possible that they represented serial order

differently in ways that were tailored to the tasks they performed. Possibly, subjects let item
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activation decay more rapidly in cued recognition, and that produced the null results (if they can
control decay, which is not clear). It would be worthwhile replicating our experiments but
mixing serial recall and cued recognition randomly and post-cuing the task so the lists would be
represented in the same way.

The major result of Experiments 3-12 is the null effect of position-specific prior list
interference. We found no evidence of such interference. Indeed, we found no evidence of any
kind of prior list interference. Our focus on the predictions of position coding theory led us to an
experimental design that maximized the number of targets, within-list lures, and lures from the
immediately prior list at each distance (-2 -1 0 1 2). A different control condition is required to
demonstrate prior list interference that is not position specific. Items from the immediately prior
list would have to be compared with novel items or items from earlier lists. There is a large
literature demonstrating such interference in item recognition (Badre & Wagner, 2005; Jonides et
al., 1998; McElree & Dosher, 1989; Monsell, 1978; for a review, see Jonides & Nee, 20006).
Similar interference might occur in cued recognition.

Failing to find prior list interference in cued recognition could mean that the task does not
produce interference. That could be true as an empirical observation, but it would raise the
important theoretical question, why not? Why should cued recognition show no prior list
interference? Prior list activation may decay faster in cued recognition, but why should that
happen? These are the same questions we raise about position specific prior list interference and
they would require similar answers. The answers are important and worth obtaining for what
they will reveal about the nature of recognition memory and the nature of interference,
expanding the insights gained from understanding the lack of position-specific prior list
interference.

Finding or failing to find prior list interference that is not position specific is not directly
relevant to the specific question that motivated our experiments. We were interested in position-
specific prior list interference. We showed that the assumptions shared by all position coding
theories predict that prior list items should be activated in proportion to their distance from the
current focus of retrieval, and we showed that a plausible decision process that is typical of the
literature predicts longer RTs and higher error rates at shorter distances. Whether that particular
kind of prior list interference would occur was the question, and that question does not require

the existence of any other kind of prior list interference. Indeed, the only kind of prior list
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interference predicted by position coding theories is position specific. They say nothing about

other kinds of interference.

Conclusions

The ability to predict position specific prior list intrusions has led to the dominance of
position coding theories in serial memory. We showed that the assumptions that allow position
coding theories to predict position specific prior list intrusions in serial recall also predict
position specific interference from prior list lures in cued recognition. We found no such
interference in 10 experiments, falsifying the prediction. This challenges the position coding
account of position specific prior list intrusions and, by extension, challenges their dominance in
research on serial memory. The cued recognition results are consistent with alternatives to
position coding theories, which do not assume position codes.

We ran two serial recall experiments that used the same lists and presentation conditions
as the cued recognition experiments and found position specific prior list intrusions in both of
them, consistent with position coding theories and inconsistent with the alternatives. Together,
the results of our cued recognition and serial recall experiments challenge all theories of serial
memory, whether or not they assume position coding. All theories must explain why prior list

intrusions are position specific while prior list interference is not.
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Table 1
The response from the position coding model to a probe at position 2. The first row contains the
possible responses. The second row contains the activation of responses given the probe, which
is represented as the vector m in the model. The last three rows contain the vector ¢, which
represents the activation of the possible responses to the probe item. These vectors have 1 in the
position of the probe letter and 0 elsewhere, so the dot product of m and ¢ is simply 1 times the

value of the probe letter in m. Thus, m qyes = 1.000, m -qwithin = 0.500, and m -gprior = 0.500.

Position Probe in Position 2

Responses CGA” G‘B” EGC?’ 6‘D7, 56E’7 65F7, GGG” 65H’7 C‘I” EGJ’? 66K3’ GGL”

m .500 | 1.000 | .500 |.250 |.125 |.063 | .250 | .500 | .250 | .125 | .063 | .031
Cued Recognition Item Probes

Qyes .000 | 1.000 | .000 |.000 |.000 |.000 |.000 |.000 |.000 | .000 | .000 | .000

Qwithin .000 | .000 | 1.000 | .000 | .000 | .000 |.000 |.000 |.000 |.000 |.000 |.000

Qprior .000 | .000 | .000 |.000 |.000 |.000 |.000 |1.000  .000 | .000 |.000 | .000
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Table 2

Results of contrasts assessing distance effects for within list errors, prior list errors, the
difference between within list and prior list errors, and the peak in prior list errors for distance of
zero in serial recall in Experiments 1 and 2, and comparisons of effects between experiments.

The peak in prior list errors (-1 0 1) assesses position-specific prior list intrusions.

Experiment I t | SEM | p | N>0 | BF1o
Within List Errors (-2 -1 1 2)

1 12.7841 9.1887 <.0001 32 >1000

2 14.3472 8.2638 <.0001 32 > 1000

1vs.2 0.0885 12.3581 9298 NA 0.2562

Prior List Errors (-2 -1 1 2)

1 6.7441 1.4364 <.0001 28 >1000

2 4.6384 1.7652 <.0001 24 404.4950

1vs.2 0.6591 2.2758 5123 NA 0.3071

Within List vs Prior List Errors (-2 -1 1 2)

1 12.3385 8.7353 <.0001 32 >1000

2 14.1163 7.8190 <.0001 32 >1000

1vs.2 -0.2212 11.7236 .8256 NA 0.2608
Prior List Error Peak (-1 0 1)

1 8.3025 4.4942 <.0001 30 >1000

2 8.0475 3.8327 <.0001 31 >1000

1vs.2 1.2222 5.9830 2263 NA 0.4798

Note df = 31 for within-experiment (within-subject) comparisons (Experiments 11 or 12); df =

62 for between-experiment (between-subject) comparisons (Experiments 11-12).
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Contrasts evaluating the four predictions of position coding theories for current and prior lists in

cued recognition (distances compared are in brackets) in Experiments 3-6.

Exp

3

«(31)

4.9315

4.3786

4.2778
5.2424

0.7666
1.1039
1.6062
0.3551
3.
3.5091
3.5596
1.6675

3.0685

0.0235

0.5569

0.6473

0.0865

SEM

p

N>0

BF10

RT Distance Within List (-2 -1 1 2)

30.0478

34.4401

20.5961
21.5628

<.0001

0.0001

0.0002
<.0001

25

22

25
27

867.4468

207.3346

160.3881
1962.11

RT Distance Prior List (-2 -1 1 2)

17.7154

24.3338

19.4070
21.6912

0.4491

0.2781

0.1184
0.7249

16

18

15
16

0.2477

0.3296

0.5997
0.2002

RT Distance Within vs Prior (-2 -1 1 2)

38.3569

348176

34.1431

34.3286

4. RT Peak Prior List (-1 0 1)

32.9330

46.9468

20.8574

32.4205

0.0014

0.0012

0.1055

0.0044

0.9814

0.5816

0.5222

0.9317

26

22

22

23

15

13

18

17

24.2132

27.2920

0.6537

8.8292

0.1889

0.2180

0.2292

0.1895

1(31)

6.4008
7.2050
4.0478

4.2424

0.1341
0.3938
0.4191
0.8212
3.
4.9108
6.1648
2.4691

3.1934

1.7545
1.1223
0.1201

0.3848

SEM

p

N>0

BF10

Error Rate Distance Within List (-2 -1 1 2)

0.0251

0.0254

0.0196
0.0194

<.0001

<.0001

0.0003
0.0002

31

28

22
24

41619.32

336411

89.8625
146.6164

Error Rate Distance Prior List (-2 -1 1 2)

0.0194

0.0165

0.0187
0.0143

0.8942

0.6964

0.6780
0.4178

14

15

13
14

0.1904

0.2029

0.2049
0.2577

Error Rate Distance Within vs Prior (-2 -1 1 2)

0.0321

0.0287

0.0289

0.0221

<.0001

<.0001

0.0193

0.0032

27

26

23
24

821.7429

22381.54

2.5406

11.6707

4. Error Rate Peak Prior List (-1 0 1)

0.0193

0.0220

0.0217

0.0203

0.0892

0.2184

0.9052

0.7030

16

12

11
10

0.7422

0.3357

0.1901

0.2022
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Table 4
Contrasts evaluating the four predictions of position coding theories for current and prior lists in

cued recognition (distances compared are in brackets) in Experiments 7-10.

Exp | #«(31) SEM P N>0 | BFj t(31) SEM p N>0 | BFj
1: RT Distance Within List (-2 -1 1 2) 1: Error Rate Distance Within List (-2 -1 1 2)
7 7.2817 = 23.1304  <.0001 30 5.0076 = 0.0268 = <.0001 28 >1000
8 3.8957  24.6635 = 0.0005 26 4.2463 = 0.0250 | 0.0002 25 148.0722
9 5.8127  18.1504  <.0001 28 8841.26 3.2670 = 0.0131 | 0.0027 18 13.7936
10 4.6166 = 31.8936 @ 0.0001 27 382.312 54074 @ 0.0270 = <.0001 25 3031.31
2: RT Distance Prior List (-2 -1 1 2) 2: Error Rate Distance Prior List (-2 -1 1 2)
7 0.4769  21.4020  0.6368 20 -2.7829 | 0.0150 = 0.0091 11 4.7773
8 -1.2759 | 22.4040 @ 0.2115 13 0.5961 = 0.0153 | 0.5555 13 0.2226
9 0.3058  19.6308 = 0.7618 22 0.1972 ' -0.2981 & 0.0088  0.7676 10 0.1968
10 -2.3513 | 20.3793 | 0.0252 12 2.031 0.7367 @ 0.0230 = 0.4669 14 0.2426
3: RT Distance Within vs Prior (-2 -1 1 2) 3: Error Rate Distance Within vs Prior (-2 -1 1 2)
7 52315  30.2443  <.0001 26 53676 | 0.0328  <.0001 25 >1000
8 2.7949 = 29.2231  0.0088 20 3.6148 = 0.0319 = 0.0011 22 31.1332
9 4.0090 = 24.8189 = 0.0004 27 81.5769 2.8727 @ 0.0158 = 0.0073 19 5.7731
10 49613 = 393365 @ <.0001 27 937.795 4.1223 | 0.0313 = 0.0003 26 108.295
4:RT Peak Prior List (-1 0 1) 4: Error Rate Peak Prior List (-1 0 1)
7 1.2615 = 19.9368  0.2615 18 2.1627 = 0.0193 = 0.0384 23 1.4426
8 1.2759 = 22.4040 @ 0.2115 19 1.5081 @ 0.0155 = 0.1417 22 0.5254
9 0.1760  17.8834 = 0.8615 17 0.1916  1.4827 @ 0.0105  0.1483 8 0.5083

10 1.6878 = 31.1194  0.1015 20 0.6731 0.2853 | 0.0228 = 0.7773 13 0.1961
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Contrasts evaluating the four predictions of position coding theories for current and prior lists in

cued recognition (distances compared are in brackets) in Experiments 11 and 12.

Exp

11
12
11-12

11
12

11-12

11
12

11-12

11
12

11-12

t

SEM

p

N>0

1: RT Distance Within List (-2 -1 1 2)

5.7834

74757

-0.5110

2: RT Distance Prior List (-2 -1 1 2)

-1.3830
-0.9512

0.4311

27.7374

23.9611
36.6153

35.7014
18.8222

28.6265

<.0001

<.0001
0.6612

0.1765
0.3489

0.6679

29

28
NA

13
13

NA

3: RT Distance Within vs Prior (-2 -1 1 2)

5.2983
7.9235

0.1456

0.1952
-0.7225

0.6944

35.9851
24.8662

43.7408

<.0001
<.0001

0.8847

25
30

NA

4:RT Peak Prior List (-1 0 1)

35.7014
24.9867

39.1651

0.8465
0.4754

0.4901

12

11

NA

BF1o

8182.83
672278
0.2853

0.4486
0.2861

0.2764

2273.42
2081998

0.2577

0.1922
0.2403

0.3133

t SEM P N>0 BFio

1: Error Rate Distance Within List (-2 -1 1 2)

7.0412 0.0198 <.0001 28 220612
7.1550 0.0248 <.0001 29 295826
-1,1438  0.0328 0.2571 NA 0.4438

2: Error Rate Distance Prior List (-2 -1 1 2)

0.8915 0.0234 0.3795 17 0.2722
0.9049 0.0158 0.3725 16 0.2752
0.2325 0.0280 0.8169 NA 0.2613

3: Error Rate Distance Within vs Prior (-2 -1 1 2)

3.8410 0.0309 0.0006 26 53.8626
6.2139 0.0308 <.0001 27 25469.5
1.0570 0.416 0.2946 NA 0.4096

4: Error Rate Peak Prior List (-1 0 1)

-1.0553 0.0234 0.2995 11 0.3144
-2.2424 0.0267 0.322 8 1.6627
1.9842 0.0319 0.0517 NA 1.3208

Note df = 31 for within-experiment (within-subject) comparisons (Experiments 11 or 12); df =

62 for between-experiment (between-subject) comparisons (Experiments 11-12).



Contrasts comparing goodness of fit of the position coding models with zero and nonzero prior

Table 6

list strength in Experiments 3-12 (nonzero fit — zero fit).

Exp

3

10
11
12

3-12

10
11
12

3-12

-1.3014

0.0839
-2.1235
-0.9192
-1.0167
11.4163
-2.1075

1.3503
-0.2565
-0.5223

-2.3900

-0.4388

1.0829

-2.0330

0.9629

-0.2559

-1.1341

-0.4316

-0.6537

-1.6353

-0.6727

-1.5701

df

31
31
31
31
31
31
31
31
31
31

319

31
31
31
31
31
31
31
31
31
31

319

SEM
AIC”
3.9523
1.4138
2.5695
3.2394
11.6346
0.1493
4.6019
0.6419
1.3063
1.2919
1.3985
rRT™
0.0176
0.0107
0.0152
0.0123
0.0111
0.0044
0.0167
0.0118
0.0117
0.0070

0.0039

p

0.2027
0.9936
0.0418
0.3651
0.3172
<.0001
0.0433
0.1867
0.7993
0.6052

0.0174

0.6639

0.2872

0.0507

0.3431

0.7997

0.2655

0.6690

0.5181

0.1121

0.5061

0.1174

BFio

0.4073
0.1894
1.3472
0.2784

1.3104
0.4313
0.1947

0.2143

0.2065
0.3229
1.1544

0.289

0.2059
0.2301
0.6246

0.2328

-0.2476
3.0306
-0.5019
0.3650
3.3946
39.0482
-1.2025
7.8126
2.9222
2.6987

2.4997

0.1934

1.3326

0.3001

0.5215

2.1319

0.7534

1.17887

1.7762

1.1981

1.0499

3.2518

df

31
31
31
31
31
31
31
31
31
31

319

31
31
31
31
31
31
31
31
31
31

319

SEM »
BIC*

3.9530 0.8061
1.4143 0.0049
2.5701 0.6193
3.2407 0.7176
1.697 <.0001
0.1504 <.0001
4.6032 0.2383
0.6442 <.0001
1.3057 0.0064
1.2922 0.0112
0.7938 0.0129

r P(Error)™
0.0185 0.8479
0.0141 0.1924
0.0056 0.7661
0.0073 0.6058
0.0090 0.0411
0.0038 0.4569
0.0190 0.0834
0.0063 0.0855
0.0109 0.2399
0.0102 0.3019
0.0116 0.0013

Note: * = negative ¢ values indicate preference for the nonzero prior strength model;
positive ¢ values indicate preference for the nonzero prior strength model.

% —
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BFio

0.1943
8.1222
0.2122
0.2009
18.5117
>1000
0.3649
>1000
6.4179
4.0136

1.3457

0.1921
0.4223
0.1969
0.2142
1.3670
0.2454
0.3558
0.7668
0.3632
0.3128

10.8671



Contrasts comparing goodness of fit of the zero prior list strength position coding models with

Table 7

63

and without item recognition in Experiments 3-12 (zero prior list strength and item recognition -
zero prior list strength and no item recognition).

Exp t

3 0.0504
4 -0.6534
5 -4.3915
6 -3.1638
7 ~1.1240
8 -0.0848
9 -3.3575
10 -2.0873
1 -4.0716
12 0.2941
3-12 0.2050
3 2.3828
4 3.9673
5 2.8023
6 3.4010
7 1.8425
8 2.4032
9 3.0147
10 3.5000
11 1.2186
12 0.7640
3-12 73881

df

31
31
31
31
31
31
31
31
31
31

319

31
31
31
31
31
31
31
31
31
31

319

SEM
AIC*
0.2335
0.1958
0.2879
0.2615
3.6600
0.1793
0.3140
0.2132
0.2868
17.9702
5.7345

rRT™

0.0038
0.0060
0.0035
0.0059
0.0055
0.0071
0.0042
0.0069
0.0036
0.0095

0.0059

p

0.9601
0.5183
0.0001
0.0035
0.2696
0.9323
0.0021
0.0452
0.0003
0.7706

0.8377

0.0235

0.0004

0.0087

0.0019

0.0750

0.0224

0.0051

0.0014

0.2322

0.4507

<.0001

BF10

0.1890
0.2301
214.2841
10.9181
0.3363
0.1895
16.9845
1.2657
95.3704
0.1966

0.0640

2.1547
73.5475
4.9752
18.7896
0.8487
2.2395
7.8440
23.6986
0.3713

0.2472

>1000

5.6941
6.0820
0.1855
1.8649
2.5348
7.2667
0.8360
4.0962
0.5070
0.3675

0.7393

-1.9464

0.8072

-0.8148

0.2111

0.7218

1.1827

-0.2997

-1.3297

-1.4156

-0.3691

-1.0859

df

31
31
31
31
31
31
31
31
31
31

319

31
31
31
31
31
31
31
31
31
31

319

SEM »
BIC”
0.2334 <.0001
0.1957 <.0001
0.2878 0.8541
0.2617 0.0717
0.3479 0.0165
0.1793 <.0001
0.3138 0.4096
0.2130 0.0003
0.2859 0.6158
17.9633 0.7158
5.6144 0.4603
r P(Error)™
0.0023 0.0607
0.0031 0.4257
0.0037 0.4214
0.0038 0.8342
0.0030 0.4758
0.0035 0.2459
0.0036 0.7664
0.0062 0.1933
0.0046 0.1669
0.0119 0.7145
0.0052 0.0938

Note: * = negative ¢ values indicate preference for the item recognition model; ** = positive ¢
values indicate preference for the no item recognition model.

BFo

>1000
>1000
0.1919
0.8788
2.8879
>1000
0.2606
101.4303
0.2127
0.2011

0.0822

1.0008
0.2550
0.2564
0.1928
0.2402
0.3573
0.1969
0.4209
0.4669

0.2012

0.1123



Table 8

Contrasts comparing goodness of fit of the nonzero prior list strength position coding models
with and without item recognition in Experiments 3-12 (nonzero prior list strength and item
recognition - nonzero prior list strength and no item recognition).

Exp t

3 -0.7227
4 1.1520
5 -3.3826
6 -1.2453
7 -1.4704
8 -0.2100
9 -3.5927
10 -0.6733
1 -4.4876
12 -0.8390
3-12 1.0601
3 0.9633
4 1.0547
5 2.3275
6 2.8030
7 2.8732
8 2.4366
9 2.8420
10 2.3095
11 1.2842
12 -0.7179
312 43672

df

31
31
31
31
31
31
31
31
31
31

319

31
31
31
31
31
31
31
31
31
31

319

SEM
AIC*
0.2694
10.9857
0.4835
9.3170
0.3696
0.1826
0.5099
9.4167
0.3599
20.3149
8.089

rRT™

0.0047
0.0117
0.0047
0.0091
0.0059
0.0071
0.0043
0.0105
0.0040
0.0151

0.0086

p

0.4753
0.2581
0.0020
0.2224
0.1515
0.8350
0.0011
0.5058
0.0001
0.4079

0.2889

0.3429

0.2997

0.0266

0.0087

0.0073

0.0208

0.0079

0.0277

0.2086

0.4782

<.0001

BF10

0.2404
0.3460
18.0024
0.3823
0.5003
0.1927
29.5313
0.2329
274.1432
0.2612

0.1093

0.2891
0.3142
1.9430
4.9825
5.7792
2.3867
5.4090
1.8794
0.3993
0.2396

608.8551

4.1675
1.2263
-0.6575
-1.1039
2.0952
7.0086
-1.0111
-0.5337
-0.8427
-0.8165

-0.6142

-2.3544

-0.5935

-1.3134

0.3438

0.2850

1.3352

-0.4578

-0.6759

-1.9044

-1.6658

-2.1906

df

31
31
31
31
31
31
31
31
31
31

319

31
31
31
31
31
31
31
31
31
31

319

SEM »
BIC”
0.2693 0.0002
11.0905 0.2293
0.4834 0.5157
9.3149 0.2781
0.3696 0.0444
0.1826 <.0001
0.5098 0.3198
9.4149 0.5973
0.3590 0.4059
20.6231 0.4204
8.4983 0.5395
r P(Error)™
0.0036 0.0251
0.0092 0.5571
0.0041 0.1987
0.0092 0.7333
0.0039 0.7776
0.0036 0.1915
0.0045 0.6503
0.0087 0.5041
0.0050 0.0662
0.0153 0.1058
0.0077 0.0292

64

Note: * = negative ¢ values indicate preference for the no item recognition model; ** = positive ¢
values indicate preference for the no item recognition model.

BFo

121.3375
0.3744
0.2306
0.3296
1.2830
>1000
0.3017
0.2155
0.2619
0.2568

0.0756

2.0428
0.2223
0.4130
0.1995
0.1961
0.4236
0.2081
0.2332
0.9354
0.6522

0.6641



Table B1

Summary tables for ANOVAs on Response Time (RT) and error rate (P(Error)) for “yes”

responses across Experiments 3-10.

65

Source

df

Mean Square F P Mp
Response Time
List Type (L) 1 455719314 1.1869 2770 .0048
Probe Type (P) 1 1858346.0481 48.4015 <.0001 1633
Probe Delay (D) 1 6359450.0220 165.6350 <.0001 4004
LxP 1 3168.1888 .0825 1742 .0038
LxD 1 87652.5105 2.2830 1321 .0091
PxD 1 47771.0235 1.2442 2657 .0050
LxPxD 1 74845.1045 1.9494 .1639 .0078
Error 248 38394.3716
P(Error)

List Type (L) 1 .0037 3172 5738 .0013
Probe Type (P) 1 .0095 .8243 3648 .0033
Probe Delay (D) 1 .0504 4.3790 0374 0174
LxP 1 .0017 1434 7052 .0006
LxD 1 0213 1.8482 1752 .0074
PxD 1 0121 1.0495 3066 .0042
LxPxD 1 .0146 1.2688 2611 .0051
Error 248 0115

Note: Significant effects are in bold font.
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Summary tables for ANOV As on within list distance contrasts (-2 -1 1 2) in response time (RT)

and error rate (P(Error)) across Experiments 3-10.

Source

df

Mean Square F p Mp
Response Time
List Type (L) 1 15306.3291 5842 4454 .0024
Probe Type (P) 1 30465.5207 1.1628 2819 .0047
Probe Delay (D) 1 159885.0207 6.1027 0142 .0240
LxP 1 117.3160 .0045 9467 .0000
LxD 1 2023.3129 0772 7813 .0003
PxD 1 16856.1535 .6434 4233 .0026
LxPxD 1 8848.9297 3378 5617 .0014
Error 248 26199.2664
P(Error)

List Type (L) 1 .0069 3783 5391 0015
Probe Type (P) 1 0564 3.0753 .0807 0122
Probe Delay (D) 1 2542 13.8574 <.0001 .0529
LxP 1 .0063 3422 5591 0014
LxD 1 .0780 4.2507 0403 .0169
PxD 1 .0044 2419 .6232 .0010
LxPxD 1 .0044 2419 .6233 .0010
Error 248 .0183

Note: Significant effects are in bold font.



Table B3
Summary tables for ANOVAs on prior list distance contrasts (-2 -1 1 2) in response time (RT)

and error rate (P(Error)) across Experiments 3-10.

Source df Mean Square F p e’
Response Time
List Type (L) 1 51938.4100 3.5204 .0618 .0140
Probe Type (P) 1 24230.8139 1.6424 2012 .0066
Probe Delay (D) 1 10070.1225 .6826 4095 .0027
LxP 1 21708.3389 1.4714 2263 .0059
LxD 1 3800.7225 2576 6122 .0010
PxD 1 35160.9377 2.3832 1239 .0095
LxPxD 1 65.4077 .0044 .9470 .0000
Error 248 14753.4940
P(Error)

List Type (L) 1 0252 2.6913 1022 0107
Probe Type (P) 1 .0150 1.5977 2074 .0064
Probe Delay (D) 1 .0220 2.3508 1265 .0094
LxP 1 .0074 7879 3756 .0032
LxD 1 0125 1.3365 2488 .0054
PxD 1 .0000 .0007 9786 .0000
LxPxD 1 .0000 .0007 9786 .0000
Error 248 .0094

Note: Significant effects are in bold font.
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Summary tables for ANOVAs on contrasts comparing within-list and prior-list distance effects (-

2 -1 12) in response time (RT) and error rate (P(Error)) across Experiments 3-10.

Source

df

F

Mean Square p Mp
Response Time
List Type (L) 1 123635.7454 3.0473 .0821 0121
Probe Type (P) 1 109036.1675 2.6875 .1024 0107
Probe Delay (D) 1 89703.9938 2.2110 1383 .0088
LxP 1 25017.3535 6166 4331 .0025
LxD 1 11370.2235 2803 .5970 0011
PxD 1 100707.0557 2.4822 1164 .0099
LxPxD 1 10435.8994 2572 6125 .0010
Error 248 40571.6360
P(Error)

List Type (L) 1 .0586 2.1157 1471 .0085
Probe Type (P) 1 .0133 4784 4898 .0019
Probe Delay (D) 1 4259 15.3697 <.001 0584
LxP 1 .0000 .0016 9679 .0000
LxD 1 .0280 1.0102 3158 .0041
PxD 1 .0041 1479 .7008 .0006
LxPxD 1 .0041 .1479 .7009 .0006
Error 248 0277

Note: Significant effects are in bold font.
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Summary tables for ANOVAs on prior list distance contrasts (-1 0 1) in response time (RT) and

error rate (P(Error)) across Experiments 3-10.

Source df Mean Square F P N
Response Time
List Type (L) 1 4911.3816 .1494 .6995 .0006
Probe Type (P) 1 20059.4110 6101 4355 .0025
Probe Delay (D) 1 9019.0635 2743 .6009 0011
LxP 1 8538.9150 2597 .6108 .0010
LxD 1 293.0516 .0089 .9249 .0000
PxD 1 13825.3504 4205 5173 .0017
LxPxD 1 88346.4160 2.6868 1024 0107
Error 248 32881.2113
P(Error)

List Type (L) 1 .0260 1.7932 1818 .0072
Probe Type (P) 1 .0002 0167 .8974 .0000
Probe Delay (D) 1 .0850 5.8570 0162 0231
LxP 1 .0022 A517 .6972 .0006
LxD 1 .0004 .0298 .8630 .0001
PxD 1 .0088 .6050 4374 .0024
LxPxD 1 .0053 3661 5457 0015
Error 248 .0145

Note: Significant effects are in bold font.
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Table C1
Contrasts evaluating linear and quadratic trends in RT for correct responses as a function of
serial position for match (yes) trials, within-list lures, and prior-list lures. Each t test has 31

70

Trial Trend Exp t SEM p BF Ex t SEM p BFyg
p
Yes Linear 3 0.3512 229.4812 0.7278 0.2000 | 7 1.2285 197.3516 0.2285 0.3753
Quad 6.0704 179.7317 <.0001 >1000 7.8704 167.4703 <.0001 >1000
Within Linear 1.7801 164.8887 0.0849 0.7714 1.2912 248.0939 0.2062 0.4025
Quad 8.1089 167.0396 <.0001 >1000 7.4094 223.4416 <.0001 >1000
Prior Linear 1.4667 138.5296 0.1525 0.4980 2.9715 111.2028 0.0057 7.1392
Quad 4.7457 116.5855 <.0001 534.3189 3.4544 159.8824 0.0016 21.2875
Yes Linear 4 -1.6635 169.2890 0.1063 0.6500 | 8 -0.7377 142.5805 0.4662 0.2428
Quad 8.8555 136.5208 <.0001 >1000 6.9917 152.3969 <.0001 >1000
Within Linear -0.9802 154.2175 0.3346 0.2935 -0.6368 141.8076 0.5289 0.2278
Quad 7.8751 181.4746 <.0001 >1000 6.6350 172.7026 <.0001 >1000
Prior Linear -1.2036 106.6782 0.2378 0.3653 -0.2723 108.9151 0.7872 0.1954
Quad 4.2685 136.7072 0.0002 156.6463 3.4795 122.6473 0.0015 22.5808
Yes Linear 5 3.8004 329.3887 0.0006 48.7689 | 9 1.5716 288.5769 0.1262 0.5719
Quad 8.2568 209.4112 <.0001 >1000 9.6502 233.5605 <.0001 >1000
Within Linear 1.8566 268.9361 0.0729 0.8675 4.8283 190.4943 <.0001 662.5154
Quad 9.8953 136.0669 <.0001 >1000 9.3640 162.4536 <.0001 >1000
Prior Linear 2.2000 207.5342 0.0354 1.5410 2.6624 140.5042 0.0122 3.7272
Quad 2.3852 196.4266 0.0234 2.1645 6.1778 136.5590 <.0001 >1000
Yes Linear 6 3.6919 201.4793 0.0009 374755 | 10 3.3521 249.8308 0.0021 16.7736
Quad 6.5997 252.3151 <.0001 >1000 7.4755 244.1973 <.0001 >1000
Within Linear 5.2903 142.2577 <.0001 >1000 2.1750 248.4765 0.0374 1.4742
Quad 7.7347 246.2249 <.0001 >1000 7.9714 266.8444 <.0001 >1000
Prior Linear 2.8782 140.4779 0.0072 0.2000 1.2249 179.5029 0.2299 0.3738
Quad 6.7136 173.1142 <.0001 >1000 5.9659 192.7160 <.0001 >1000
Yes Linear 11 1.2072 403.9968 0.2365 0.7714 | 12 2.1768 297.9729 0.0372 1.4789
Quad 11.0087 209.3930 <.0001 >1000 12.0144 205.2672 <.0001 >1000
Within Linear 3.7532 259.6868 0.0007 0.4980 4.0314 227.7606 0.0003 86.2591
Quad 11.2647 194.4027 <.0001 534.3189 7.0327 252.9921 <.0001 >1000
Prior Linear 1.3253 178.5305 0.1948 0.6500 2.7380 204.1361 0.0101 4.3517
Quad 7.1728 173.0699 <.0001 >1000 4.9306 160.1743 <.0001 865.4073

Note: Significant effects are in bold font.
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Contrasts evaluating linear and quadratic trends in proportion of correct responses as a function

of serial position for match (yes) trials, within-list lures, and prior-list lures. Each t test has 31
degrees of freedom.

Trial Trend Exp | ¢ SEM p BFg Exp | ¢ SEM p BFg
Yes Linear | 3 17649 | 02957 | 0.0874 07539 | 7 J1.0001 | 0.2742 | 0.3250 0.2987
Quad -
3.0199 | 02246 | 0.0050 |  7.9338 49276 | 0.1495 | <0001 | 8386436
Within | Linear - 0.5132
1.7482 | 0.1466 | 0.0903 0.7354 -1.4901 | 0.1017 | 0.1463 :
Quad i >1000
3.9957 | 0.1384 | 0.0004 | 78.9219 6.1795 | 0.1651 | <.0001
Prior Linear - 0.2085
0.5336 | 0.1142 | 0.5974 0.2155 204618 | 0.0812 | 0.6474 :
Quad . 43410
0.3613 | 0.0908 | 0.7203 0.2006 27368 | 0.1033 | 0.0102 :
Yes Linear | 4 - 8 0.2445
0.5678 | 02133 | 0.5743 0.2192 -0.7481 | 0.2590 | 0.4600 :
Quad 2.1193 | 11.8699 | 0.0422 13374 3.9908 | 0.1913 | 0.0004 | 77.9664
Within | Linear 0.8587 | 0.1019 | 0.3971 0.2652 02639 | 0.0947 | 0.7936 0.1950
Quad - >1000
2.9357 | 0.1613 | 0.0062 6.6072 59239 | 0.1089 | <.0001
Prior Linear - 0.4897
0.3603 | 0.0954 | 0.7210 0.2006 14535 | 0.0634 | 0.1561 :
Quad . 1.4753
1.1837 | 0.0805 | 0.2455 0.3576 21754 | 0.0725 | 0.0373 :
Yes Linear | 5 - 9 0.5390
2.9027 | 0.4330 | 0.0068 6.1549 15274 | 03018 | 0.1368 :
Quad 1.8171 | 0.1836 | 0.0789 0.8160 1.0008 | 0.1077 | 0.3247 0.2989
Within | Linear - 74322
3.1107 | 0.1708 | 0.0040 9.6956 29900 | 0.1792 | 0.0054 :
Quad i >1000
3.6950 | 02089 | 0.0008 | 37.7544 74705 | 0.1627 | <.0001
Prior Linear - 1.0912
2.7393 | 0.1683 | 0.0101 43635 219992 | 0.1258 | 0.0544 :
Quad . 0.7171
0.6975 | 02352 | 0.4907 0.2364 217312 | 0.0939 | 0.0934 :
Yes Linear | 6 - 10 11718
2.9527 | 0.3612 | 0.0060 6.8542 2.0419 | 03872 | 0.0497 :
Quad 0.0269 | 02612 | 0.9787 0.1889 0.0912 | 0.1970 | 0.9279 0.1896
Within | Linear -
34100 | 00765 | 0.0018 | 19.1878 34445 | 0.1461 | 0.0017 | 207992
Quad - >1000
4.6294 | 0.1458 | 0.0001 | 395.1826 54572 | 0.1549 | <.0001
Prior Linear - 0.5667
1.9987 | 0.0876 | 0.0545 1.0903 15648 | 0.0909 | 0.1278 :
Quad i 4.4180
3.5806 | 0.0847 | 0.0012 | 28.6911 27453 | 0.0882 | 0.0100 :
Yes Linear | 11 | 1.7684 | 0.2567 | 0.0868 07579 | 12 | 1.5494 | 0.2108 | 0.1314 0.5550
Quad i >1000
3.8493 | 0.1372 | 0.0006 | 54.9704 22.8041 | 0.1824 | <.0001
Within | Linear 03466 | 0.1533 | 0.7313 0.1997 203037 | 0.0926 | 0.7634 0.1971
Quad - >1000
5.6375 | 02001 | <.0001 >1000 52350 | 0.2337 | <.0001
Prior | Linear 2.8955 | 0.0863 | 0.0069 6.0608 14146 | 0.1381 | 0.1672 0.4663
Quad -
3.8128 | 01025 | 0.0006 | 502692 33548 | 0.0880 | 0.0021 | 168787

Note: Significant effects are in bold font.
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Table D1
Mean parameter values for model fits in Experiments 3-12.
Expt | p | Msmtch | | Bound | Bias | ScIRT [ Residual | sprior o _item
Zero Prior List Strength
3 0.2225 0.6587 0.3819 3.5704 0.5367 4.6853 0.3241
4 0.1247 0.5333 0.4872 2.9956 0.5378 6.2008 0.2070
5 0.3383 0.6776 0.3027 4.9415 0.5445 3.7936 0.2621
6 0.2071 0.5625 0.4484 3.4991 0.5312 5.0891 0.1608
7 0.2441 0.5961 0.4337 3.7335 0.5286 4.9420 0.3261
8 0.1371 0.5521 0.5981 3.0091 0.5276 6.0719 0.2183
9 0.3624 0.6765 0.2921 5.0483 0.5512 3.9276 0.2558
10 0.1932 0.5071 0.7616 3.2817 0.5321 5.4502 0.1972
11 0.3284 0.7200 0.2686 5.3314 0.5658 3.8052 0.2753
12 0.3508 0.6655 0.3283 5.3019 0.5563 4.2929 0.2482
Mean 0.2508 0.6149 0.4303 4.0713 0.5412 4.8259 0.2475
Nonzero Prior List Strength
3 0.2780 0.5499 0.3839 3.7374 0.5308 5.0790 0.3090 0.1636
4 0.1410 0.5056 0.4894 3.0250 0.5363 6.3203 0.2049 0.0528
5 0.4240 0.5403 0.3229 5.3506 0.5311 4.8966 0.2257 0.2085
6 0.2271 0.5173 0.4613 3.6473 0.5276 5.3816 0.1497 0.0857
7 0.2585 0.5615 0.4352 3.7699 0.5270 5.0137 0.3237 0.0594
8 0.1411 0.5421 0.6003 3.0157 0.5273 6.1024 0.2178 0.0151
9 0.3855 0.6269 0.2965 5.1239 0.5485 4.0078 0.2495 0.0712
10 0.2035 0.4797 0.7643 3.3100 0.5309 5.4906 0.1942 0.0421
11 0.3838 0.6218 0.2845 5.7388 0.5558 4.6619 0.2343 0.1627
12 0.3839 0.6120 0.3337 5.3678 0.5527 4.3867 0.2431 0.0764
Mean 0.2826 0.5557 0.4372 4.2086 0.5368 5.1341 0.2352 0.0938
Zero Prior List Strength and Item Recognition
3 0.1717 0.6790 0.3917 3.5904 0.5374 4.8299 0.3226 0.0439
4 0.0850 0.5343 0.5127 2.9979 0.5384 6.5128 0.2075 0.0318
5 0.1738 0.7611 0.3036 5.0613 0.5465 3.8063 0.2513 0.1495
6 0.0944 0.6003 0.4837 3.5389 0.5326 5.4687 0.1579 0.0980
7 0.1511 0.5013 0.4543 3.7407 0.5297 5.1595 0.3267 0.0742
8 0.0897 0.4696 0.6329 3.0233 0.5279 6.4195 0.2174 0.0389
9 0.1396 0.8200 0.2889 5.1902 0.5547 3.8781 0.2438 0.1955
10 0.1342 0.5900 0.8431 3.2920 0.5334 5.9884 0.1970 0.0770
11 0.1300 0.8169 0.2645 5.4740 0.5688 3.8088 0.2635 0.1787
12 0.1396 0.7603 0.3498 5.3859 0.5602 4.4834 0.2439 0.1723
Mean 0.1309 0.6533 0.4525 4.1295 0.5429 5.0355 0.2432 0.1060
Nonzero Prior List Strength and Item Recognition
3 0.1849 0.5561 0.3963 3.8551 0.5300 5.3521 0.2967 0.2050 0.0923
4 0.0858 0.5093 0.5192 3.0312 0.5369 6.6807 0.2050 0.0588 0.0446
5 0.1769 0.6693 0.2860 5.9494 0.5568 4.6514 0.2154 0.2114 0.1938
6 0.1144 0.5320 0.5009 3.7088 0.5283 5.8238 0.1448 0.1057 0.1052
7 0.1798 0.4645 0.4587 3.7842 0.5278 5.2670 0.3237 0.0723 0.0692
8 0.0897 0.4554 0.6372 3.0346 0.5276 6.4696 0.2164 0.0194 0.0434
9 0.1317 0.7603 0.2946 5.3046 0.5519 3.9815 0.2335 0.0935 0.2285
10 0.1381 0.5620 0.8546 3.3316 0.5322 6.0929 0.1926 0.0489 0.0852
11 0.1769 0.6693 0.2860 5.9494 0.5568 4.6514 0.2154 0.2114 0.1938
12 0.1338 0.7009 0.3562 5.4980 0.5564 4.6102 0.2352 0.1066 0.2147
Mean 0.1412 0.5879 0.4590 4.3447 0.5405 5.3581 0.2279 0.1133 0.1271




Table D2

Measures of goodness of fit for each model fit in Experiments 3-12

Expt |ZPL |NZPL [IRO |IRPL |ZPL |[NZPL |IRZ [IRNZ
Akaike Information Criterion Bayesian Information Criterion
3 519.50 | 514.36 | 519.54 | 513.74 | 548.66 | 547.68 | 552.86 | 551.23
4 252.63 | 252.75 |252.23 | 292.77 | 281.81 | 286.09 | 285.57 | 329.10
5 738.02 | 732.57 | 734.03 | 727.40 | 767.19 | 765.90 | 767.36 | 764.90
6 493.53 |1 490.56 | 490.92 | 453.87 | 522.66 | 523.84 | 524.20 | 491.32
7 569.19 | 565.85 | 565.94 | 563.02 | 597.18 | 599.16 | 599.25 | 600.49
8 340.08 | 341.78 | 340.03 | 341.66 | 369.25 | 375.12 | 373.37 | 379.17
9 762.73 | 753.03 | 759.40 | 747.24 | 791.87 | 786.34 | 792.70 | 784.71
10 647.90 | 648.76 | 646.49 | 628.71 | 677.06 | 682.09 | 679.82 | 666.20
11 694.89 | 694.56 | 691.20 | 689.45 | 723.95 | 727.76 | 724.40 | 726.80
12 706.02 | 705.34 | 722.73 | 651.45 | 735.15 | 738.64 | 756.03 | 685.39
Mean | 544.31 | 541.97 | 544.19 | 533.43 | 573.46 | 575.28 | 577.50 | 536.51
Correlation RT Correlation P(Error)

3 0.6769 | 0.6692 | 0.7056 | 0.6834 | 0.7149 | 0.7185 | 0.7010 | 0.6920
4 0.6760 | 0.6876 | 0.7512 | 0.7265 | 0.5869 | 0.6056 | 0.5949 | 0.5883
5 0.7701 | 0.7391 | 0.8007 | 0.7735 ] 0.7594 | 0.7611 | 0.7499 | 0.7441
6 0.6175 | 0.6294 | 0.6807 | 0.7097 | 0.6818 | 0.6856 | 0.6843 | 0.6956
7 0.6962 | 0.6911 | 0.7407 | 0.7373 ] 0.6932 | 0.7036 | 0.6877 | 0.6950
8 0.5767 | 0.5696 | 0.6198 | 0.6121 | 0.7643 | 0.7661 | 0.7791 | 0.7822
9 0.7285 | 0.7213 | 0.7686 | 0.7603 | 0.7075 | 0.7415 | 0.7041 | 0.7351
10 0.6857 | 0.6780 | 0.7615 | 0.7544 | 0.6533 | 0.6645 | 0.6273 | 0.6460
11 0.8188 | 0.7996 | 0.8328 | 0.8157 | 0.7242 | 0.7373 | 0.7034 | 0.7073
12 0.8072 | 0.8025 | 0.8301 | 0.7682 | 0.7849 | 0.7955 | 0.7710 | 0.7148
Mean | 0.7152 | 0.7088 | 0.7623 | 0.7490 | 0.6903 | 0.6979 | 0.6812 | 0.6760
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Note: ZPL = zero prior list strength; NZPL = nonzero prior list strength; IRZ= item recognition
with zero prior list strength; IRNZ = item recognition with nonzero prior list strength.
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Appendix A: Simulation Methods

We conducted two sets of simulations. One varied the strength of associations to the
prior list (sprior). The other varied the probability of using position coding (pprior). Each
simulation generated a list of five items in which the middle position was cued, creating
distances {-2 -1 0 1 2}. The activation of current and prior list items was generated using
Equation 1 for each distance. These activation values were used to generate drift rates for the
limited-capacity racing diffusion model using Equation 2 for recall and Equations 6 and 7 for
cued recognition. Thus, the same position codes and representations of order were used to
simulate recall and cued recognition. In both simulations, p= .3, recall threshold = 10.0,
recognition thresholds = 2.8 for “yes” and 3.0 for “no,” k¥ = 1.0, and 4 =0.8. In the simulations
that varied list probability, prior list strength was greater than zero (sprior > 0) on pprior
proportion of the trials (when position coding was engaged) and set equal to zero (sprior = 0) on
1 — pprior proportion of the trials (when position coding was not engaged).

On each trial, the simulation used drift rates defined in Equation 2 or Equations 6 and 7
and a threshold (10 for recall; 2.8 for “yes” and 3.0 for “no” in cued recognition) to sample a
random value from a Wald distribution (the finishing time distribution for a diffusion to a single
bound) for each response category (10 current and prior list items for recall; “yes” vs. “no” for
cued recognition), and the simulation chose the category with the shortest simulated RT. Each
condition (recall vs. recognition x 10 current- and prior-list items) was simulated 100000 times.
Response probabilities and mean RTs were calculated for each response category as a function of
the cued position in the current or prior list. The results are plotted in Figures 2 (sprior varied)
and A1 (pprior varied).

To simulate recall, the program stepped through the 10 items in the current and the prior
lists, using Equation 5 to calculate the probability of recalling the items in each list given their
activation and strength of association to the position code (1 for the current list; sprior for the
prior list) when trying to recall the item in position 3 in the current list. To simulate cued
recognition, the program stepped through the same 10 items in the current and prior lists, using
Equation 8 and 9 to simulate the probability and response time (RT) for “yes” and “no”
decisions, respectively. To evaluate the effects of the strength of prior associations, the

simulation was run five times with sprior = .1, .2, .3, .5, and .7 to cover the range where the
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changes were most dramatic. To evaluate the effects of the probability of using position coding,
the simulation was run five times with pprior = .1, .2, .3, .5, and .7 with sprior fixed at .5.
Matlab code for the simulations and the simulation results can be found on the Open

Science Framework at https://osf.io/j4z7a/

Appendix B: Between-Experiment ANOV As
We compared Experiments 3-10 in 2 (precue vs no precue) x 2 (spatial vs numeric cues)
x 2 (constrained vs unconstrained lists) between-subject ANOVAs on RT and error rate for “yes”
responses (Table B1), within-list distance contrasts (-2 -1 1 2; Table B2), prior list distance
contrasts (-2 -1 1 2; Table B3), contrasts evaluating the difference between within-list and prior-
list distance contrasts (Table B4), and contrasts evaluating the peak in prior-list distance effects

at distance = 0 (Table BS).

Appendix C: Serial Position Effects
Mean RTs for correct responses and error rates for match (“yes”), within-list lures (“no”
and prior-list lures (“no”) in Experiments 3-12 are plotted as a function of the serial position of
the probe in Figure C1. Contrasts evaluating linear and quadratic trends in the serial position
effects in these data are presented in Tables C1 (RT) and C2 (proportion correct). The raw data
and the means Figure C1 depicts are available on the Open Science Framework at

https://osf.i0/14z7a/.

The contrasts can be interpreted as measures of the direction of sequential access to list
items (Logan et al., 2023a): The linear trend reflects sequential access from the beginning of the
list (positive slope) or from the end of the list (negative slope). The quadratic trend reflects
access from both ends of the list, as if subjects start at the end of the list that is nearest to the
probed position. Of course there are other interpretations of the serial position effects, including
interference (greater for middle positions) and encoding differences (early items may be encoded

better than later items).

Appendix D: Model Fitting Methods
The models we fit to the data from each experiment are simplified versions of the models

Logan et al. (2021) fit to their episodic flanker task. We assume that memory for the current list


https://osf.io/j4z7a/
https://osf.io/j4z7a/
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is represented in the form of a matrix M. The matrix M has N rows and 6 columns. N is the total
number of unique items in the stimulus set (for the consonants used in our experiments, N = 20).
The six columns correspond to the six locations in which items are presented. The entry m;; in
the matrix M gives the degree to which item i is activated by the position code for location j (i.e.,
mi; = a(ilj) in Equation 1). Let C; be an indicator variable that equals 1 if item i was on the
current list and zero otherwise and let IP; be an indicator variable that equals 1 if item i was on
the previous list and zero otherwise. Then mj; is given by m;; = (C; + sprior X P)p!"=/lwhere
parameters p and sprior are as defined in the main text.

Each trial of cued recognition involves a probe item and a cued location k. The probe
item is represented using a vector ¢ with a 1 in the entry corresponding to the probe item and
zeros elsewhere. The degree to which the probe item is activated by the code for position £ is
given by the dot product between the vector ¢ and the kth column of M. The kth column of M,
written as m., is equivalent to the vector of item activations m described in the main text. The
only difference is that, in the main text, only the elements of m corresponding to items that were
in either the current or prior list are depicted; all other elements of m have activations of zero
(since, for any item i not in either the current or prior list, C; = P; = 0).

As described in the main text, a recognition decision is modeled as the outcome of a race
between a “yes” accumulator and a “no” accumulator. The input to the “yes” accumulator is a
function of the degree to which the contents of the recognition probe match the contents of
memory. The input to the “no” accumulator is a function of the maximum possible match value.
As such, a subject will be more willing to make a “yes” response, and to do so more quickly, to
the extent that the degree of match is large relative to how large it could be. In total, we fit four
different models to each of our cued recognition experiments. The four models represent a
factorial combination of the presence or absence of two potential contributors to the recognition
process: prior-list representations and item recognition. The simplest model, with no additional
contributors, assumes that the inputs to the “yes” and “no” accumulators depend only on a
comparison between the probe and the memory representation for the cued position in the current
list, that is, the column of M corresponding to the cued position. We first describe the simplest

model and its implementation.
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Cued Recognition

On any given trial, the probe consists of an item and cued location k, which together are
used to construct a vector q which serves as a retrieval cue. The vector q has 6 entries, one for
each possible position. If the probe item had been presented at position i in the current list, then
the vector q has a 1 in its ith position and zeros elsewhere. Otherwise, vector q consists of all
zeros, although this is merely a shorthand for the idea that the probe item does not have a
corresponding row in the memory matrix M. The joint item-position match is the dot product
between the kth column of M and the cue vector . Because q has zeros everywhere except for
the entry corresponding to the position in which the probe item had been studied (if it had been),
this dot product is simply mix = p =¥, i.e., the degree to which the item studied in position 7 is
associated with cued location k. This match value is multiplied by a scaling parameter 4 (4 > 0)
to yield T, the total input to the “yes” accumulator:

Ty = A(q- M) = Apl™X
The maximum possible match is the product of the magnitudes of q and M.k, which would occur
if they had exactly the same values in each of their entries. By design, the magnitude of q is ||q]|
=1, so the maximum possible match is determined by the magnitude of M.x. The magnitude of

M.k is the square root of the sum of the squared entries in column & of matrix M, i.e.,

||M-k||=

The maximum match is multiplied by both the scaling parameter 4 from above as well as an

additional weighting factor A (4 > 0) to yield the total input to the “no” accumulator:

6
Ty = 42(|lq1] % IM.el]) = A2 1M1 = a2 | )" peli

Jj=1

where the A parameter acts to give different degrees of weight to mismatch information. When 4
> 1, the total input to the “yes” accumulator will never exceed that to the “no” accumulator since,
by definition, the input to the “no” accumulator is based on the maximum possible match. The 4
parameter therefore reflects how large a match needs to be relative to its maximum before the

match is seen as strong enough to favor a “yes” response. For example, if 4 = 0.5, then the total
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input to the “yes” accumulator would exceed that of the “no” accumulator if the degree of match
were at least half of its maximum possible value.

The activation level of each accumulator is assumed to evolve over time according to a
Wiener process with infinitesimal variance of 1. The drift rates for each accumulator are
functions of the total input to each accumulator along with feedforward inhibition from the input

to the other accumulator, the strength of which is governed by parameter « (x > 0):

dy = —
Y14 kT
Ty
dy = ———
N1 4 kTy

where dy and d are the drift rates for the “yes” and “no” accumulators, respectively.
Each accumulator has a threshold, 8y for the “yes” accumulator and 6y for the “no” accumulator.
Both accumulators start with zero activation at the beginning of a trial and the first accumulator
to reach its threshold determines the response as well as the response time. We parameterize the
thresholds in terms of a “response caution” parameter B (B > 0) and a “bias” parameter w (0 <w
<1). “Response caution” is the sum of the thresholds, i.e., B = 8y + O, and reflects the total
amount of memory evidence a subject generally requires before responding. “Bias” reflects the
degree to which the threshold for the “yes” accumulator is lower than that for the “no”
accumulator, thereby favoring a “yes” response. The two thresholds are given by
0y =B(1—w)
Oy = Bw

such that the thresholds are unbiased when w = 0.5, are biased in favor of “yes” responses when
w> 0.5, and are biased in favor of “no” responses when w < 0.5. The total response time on a
given trial is the time needed for the first accumulator to reach its threshold, plus a residual time
R that includes the time needed to detect and orient to the probe, to focus on the cued position,
and to execute the response associated with the winning accumulator. In the present models, we
simply assume that R is a constant.

To summarize, the simplest model we consider has seven free parameters: The position
association gradient (0 < p < 1), the scaling parameter for converting matches to accumulator
inputs (4 > 0), the mismatch weight parameter (4 > 0), the feedforward inhibition between

accumulators (k > 0), response caution (B > 0), response bias (0 <w < 1), and residual time (R >
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0). For models assuming no contribution from the prior list, sprior is not a free parameter
because it is fixed at sprior = 0. For models that allow for prior list representations to contribute

to cued recognition, sprior (0 < sprior < 1) is an additional free parameter to be estimated.

Item recognition

We also explored models that included an additional form of match/mismatch process
corresponding to simple item recognition. Item recognition was modeled by matching the probe
vector ¢ not just to the kth column of M, but to all columns of M and summing the result. This
amounts to item recognition because the resulting match represents the degree to which the probe
item matches anything that had been studied recently, regardless of location. This is
accomplished by summing the dot products between the cue vector q and all 6 columns of the
memory matrix M. The total input to the “yes” accumulator is then a weighted sum of the joint
item-position match and the item recognition match, where the parameter w (0 <w <1)

represents the relative weight of the item recognition match:

6
Ty=Al(1-w)(q-M,)+w Zq-M.j
j=1

The maximum possible item recognition match, which contributes to the input to the “no”
accumulator, is the sum of the maximum possible item-position joint match across all positions
(columns) in the memory matrix M. The contribution of the maximum possible item recognition

match to the “no” input is weighted by the same factor as the contribution to the “yes” input:

6
Ty = 42 |w(llglh x IM.D) + (1 = w) | > llall x |
=1

The rest of the model is unchanged and operates exactly as described above. Thus, modeling the
contribution of item recognition involves adding only one free parameter, the weight w given to

item recognition as opposed to joint item-position recognition.

Prior list representations

Just like the current list is represented in memory with the matrix M, the previous list is
represented in another matrix L with the same structure (i.e., six columns corresponding to the

six locations in the prior list and six rows corresponding to the six items presented in the prior
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list). If a probe item was present in the prior list, the degree to which it activates its
representation in the prior list is given by parameter p, which ranges between 0 and 1. For
models that assume no contribution of prior list representations, p is assumed to be fixed at zero.
If p 1s greater than zero, then the prior list representation contributes to both the joint item-
position match as well as the item recognition match. In addition, the maximum possible values
of both types of match are higher, reflecting the additional contribution of prior-list
representations.

Let qL denote a cue vector constructed in an analogous manner to the one for the current
list (q). The vector qu has all zeros except for the entry corresponding to the position in which
the probe item appeared in the prior list (as above, this vector is all zeros if the item was not

present in the prior list). Then the total match value is given by

6 6
Ty=A{(1—-w)q-M;+p(q, L)]+w Zq-M‘jﬂo ZqL'L-j
j=1 j=1

while the maximum total match value is given by

_ ] ]
Ty = AL | (1 = @) (|IM || + p|ILi]]) + @ Z ||M-j|| +Pz ||L~j||
i j=1 j=1

Note that, because the matrices for each list are constructed in an identical manner,

j=1 ||M1|| =X |L1||

Model fitting

We fit a total of four models to the data from each subject in each experiment, finding the
parameters of each model that maximized the total log-likelihood of the choices and response
times produced by each subject in each experiment. Let dy[n] and dn[n] denote the drift rates for
the “yes” and “no” accumulators on trial n, which are determined by the study items and cues on
trial n as described above. The likelihood that the “yes” accumulator reaches its threshold at
time ¢ is given by the probability density function of an inverse Gaussian (Wald) distribution

Oy exp [(9}' - tdy[n])zl
V2mt3 2t

where we assume that the infinitesimal variance of the diffusion process is one (since this

fr(tldy[n],0y) =

amounts to a scaling parameter). The likelihood that the “no” accumulator reaches its threshold
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at time ¢ is defined analogously, replacing dy[n] with dx[n] and 8y with On. Then, according to
the racing diffusion decision process we employ, the likelihood of making response Q[n] (either

Y for “yes” or N for “no”) on trial n with response time R7[n] is

L[n] = form(RTIn] = Rldgpm[nl, 61m) X |1 = Fom (RTIn] = Rldgpm[n], Ogpm )|
where Q [n] denotes the response that was not made on trial n and R is the residual time. The

total log-likelihood of choices and response times is then given by

LL = Z,’Zl log LIn]
where Nt is the total number of trials observed.

When fitting these models, we noticed some numerical problems that arose when certain
parameters were allowed to take extremely large or small values, which interfered with the
parameter search routines we used (discussed shortly). To address this issue, we introduced a set
of regularization terms that encouraged model parameters to stay within a reasonable range.
These terms amount to prior information about the scales of particular model parameters and
were expressed in terms of simple probability distributions. For the bias w and position
similarity gradient 1, both of which range between 0 and 1, we imposed a weak Beta prior with
both shape parameters set to 1.5. The intent of this prior was to prevent these parameters from
being exactly zero or exactly one, both of which are a priori implausible anyway. For
competition k, boundary separation B, drift scale 4, and “no” scale A, all of which must be
nonnegative, we imposed a weak Gamma prior with shape 1.05 and rate 0.05, corresponding to a
mode of 1 and a standard deviation of 20. The effect of this was to avoid extremely large values
while also preventing these parameters from being exactly zero; again, both of these situations
are implausible regarding any of these parameters. Notice that no regularization was applied to
either the prior-list strength parameter p or the item recognition weight parameter w. This was to
avoid introducing any bias into the model comparisons that might arise from favoring particular
values for these parameters. As a result, the total quantity to be maximized during model fitting
is given by

Nt
V= Z log L[n] + log Beta(w|1.5,1.5) + log Beta(y|1.5,1.5)
n=1

+ log Gamma(x|1.05,0.05)
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+log Gamma(B|1.05,0.05) + log Gamma(A|1.05,0.05)
+ log Gamma(4]|1.05,0.05)

To find the model parameters that maximized V, we first ran the Nelder-Mead Simplex
routine starting from a generic starting point for 500 iterations. The set of parameters from the
final step of the Simplex search was then used as the initial seed value for a more sophisticated
nonlinear optimization routine implemented in the “'ucminf” R package (Nielsen & Mortensen,
2016).

The predicted and observed RTs in each experiment are presented in Figure D1. The

predicted and observed error rates in each experiment are presented in Figure D2.

Appendix E: Parameter Recovery

In the main text, we used model fits to test the hypothesis that subjects did not activate
prior list representations in cued recognition. The alternative hypothesis is that subjects did
activate prior-list representations. These two hypotheses are embodied by model variants that
either fix sprior = 0 (no prior-list activation) or allow for sprior to take any value between 0 and
1 (allowing for prior-list activation). We conducted a parameter recovery exercise to understand
how well the design of our cued recognition experiments would be able to distinguish between
these two hypotheses. For example, it may be difficult to distinguish a subject with a very small
value of sprior from one with sprior = 0. For such a subject, model selection metrics like AIC or
BIC might favor the simpler model (with sprior fixed to zero) not because this subject actually
had sprior = 0, but because the improvement in model fit is overwhelmed by the penalty for
introducing an additional free parameter. These parameter recovery exercises were designed to
understand how often we might expect that to occur, both at the level of individual subjects and
when these metrics are aggregated across groups of subjects. For example, AIC or BIC might
favor the simpler model for a single subject with a small value of sprior, but if many subjects
have a small value of sprior, the more complex---and more correct---model may be identified
when comparisons are based on summed or average AIC/BIC across subjects. Therefore, as part
of this parameter recovery exercise, we examined not just how well AIC/BIC could distinguish
between individual subjects with sprior = 0 vs. sprior # 0, but how well summed AIC/BIC could

distinguish between groups of subjects, all of whom have sprior =0 vs. sprior # 0.
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We simulated 6 groups of 10000 subjects each. Within each group, each subject had the
same value of sprior, which could take one of six different values: 0, 0.1, 0.2, 0.3, 0.5, or 0.7
(matching the values used for our initial simulations in the main text). Because these simulations
did not include an item recognition component, there were seven other parameters that were
randomly sampled for each simulated subject. These were sampled from the probability
distributions summarized in Table E1, which were chosen to roughly match the mean and
standard deviation of the estimated parameters values across all 10 cued recognition experiments
described in the main text. For each subject, we simulated choice and RT in 480 trials of cued
recognition. Those 480 trials had exactly the same frequency of trial types as in each of our
experiments. As such, each simulated subject engaged in the same number of target, within-list
lure, and prior-list lure trials across different cued locations and lags as was experienced by each
actual subject. To simulate the outcome of a trial, we used the sampled parameter values for
each simulated subject to compute the drift rates of the “yes” and “no” accumulators on each trial
and drew random samples from the resulting Wald distributions to represent the time needed for
each accumulator to reach its threshold on each trial. The simulated choice on each trial was
given by which accumulator had the shortest simulated time-to-threshold. The simulated RT was
how long it took the fastest accumulator to reach its threshold, plus the simulated subject’s
residual time.

After simulating data from each simulated subject, we fit both the constrained model
(with sprior fixed at zero) and the unconstrained model (with sprior as a free parameter) to the
data from each simulated subject. To do so, we used exactly the same fitting procedure as was
used for the real subjects (described in Appendix D). As such, our parameter recovery methods
exactly matched the methods we used to apply these models, simply exchanging data produced
by real subject with data produced by simulated subjects.

Figure E1 shows the fits of each model to the simulated data from each group of subjects.
The unconstrained model that allows for nonzero prior list strength is able to fit the error rates
and RTs for each group, although there is a slight tendency for this model to predict higher error
rates and RTs for prior list lures at lag zero even when the data are simulated assuming sprior =
0. Note that this is not a consequence of the regularizing priors described in Appendix C, since

no such regularization was applied to sprior (such regularization could push estimates of sprior
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away from zero). On the other hand, the constrained model that assumes zero prior list strength
is clearly unable to fit the data produced by subjects with sprior > 0.

But while this discrepancy is apparent when looking at averages over 1000 simulated
participants, does it also result in model comparison metrics that favor the appropriate
model? This question is addressed by Figure D2, which shows the proportion of simulated
samples of different sizes (from 1 participant up to 320 participants) that resulted in summed
AIC (left panel) or summed BIC (right panel) favoring the unconstrained model. For each
sample size, we simulated 10000 samples by sampling with replacement from the pool of 1000
simulated participants. For single participants, AIC is more likely to favor the correct model
regardless of the true value of sprior (see the individual points on the left side of the left panel of
Figure D.3). On the other hand, BIC is more conservative at the individual participant level,
only favoring the more complex model when sprior > 0.1 (see the individual points on the left
side of the right panel of Figure D.3). When aggregating across participants in each sample, both
AIC and BIC are more likely to favor the correct model. Sample sizes of 32 and 320 are
highlighted in Figure D.3 with vertical bars, since these reflect the sample size of each of our
experiments (each of which had 32 actual participants) as well as the sample size across all ten
cued recognition experiments (320 total participants). With a sample size of 32, summed AIC
favors the correct model essentially the whole time, regardless of the value of sprior used to
simulate the data. With a sample size of 32, summed BIC favors the correct model almost
always except when sprior = 0.1, in which case it correctly favors the unconstrained model in
63% of simulated samples. When aggregating across 320 participants---equivalent to
aggregating across each participant across all 10 of our cued recognition experiments---both
summed AIC and summed BIC favor the correct model the vast majority of the time; summed
BIC favors the correct model in 94% of samples of size 320 when sprior = 0.1. To be sure, these
results are optimistic in the sense that the models being used to fit the data have the same
structure as the models used to produce the data. Moreover, each group of simulated participants
has the same value of sprior when actual participants would not be so
homogeneous. Nonetheless, these results verify that our experimental designs have sufficient
power to distinguish between participants with different values of sprior on the basis of relative

model fit. Moreover, considerable power might be achieved by aggregating across participants.
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Figure 1: Position Coding Model
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Figure 1 caption: The simple position coding model. The top row shows its representation (left)
and activation (right) assumptions, illustrating a probe cuing the second position. The probe
activates position code 2 and its neighbors, and they activate items on the current and prior lists
that were associated with them. Activation peaks at the cued position and decreases with
distance for both the current list and the prior list, but prior list activation is weaker because the

associations are not as strong. The second row shows the decision process for recall. The
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activations produced by the probe become drift rates in separate diffusion processes, each with a
single boundary. The first to reach its boundary determines the response and its response time.
The third row and fourth rows show the decision process in cued recognition. The probe item is
compared with the activated items by taking the dot product of a vector representing activation
of possible responses and a vector representing the activation of the probe letter in the probe.
There is only one letter in the probe, so the vector has activation = 1 in that position and 0
everywhere else. Consequently, the dot product is simply 1 times the activation of the probe
letter in the memory lists. This is illustrated by the red boxes on the activation functions in the
third row. The activation increases drift rate for “yes” responses and decreases drift rate for “no”
responses. The graded activation of current and prior list lures predicts distance effects for both

lists and position-specific interference for prior list lures.
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Figure 2 caption: Simulated predictions of within- and prior-list distance effects in response time

(RT) and response probability from the position coding model in Figure 1. The same

representations of position are used in each panel. The columns represent different values of

prior list strength (.1-.7) relative to current list strength (1.0). The top row presents serial and

cued recall error rates, the middle row presents cued recognition task error rates, and the bottom

row presents cued recognition response times (RT) in arbitrary units. Prior list distance effects

are observed in recall error rates for list strengths >.2. They are observed in cued recognition

error rates and RTs for all prior list strengths.
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Figure 3 caption. Within-list (red) and prior-list (blue) intrusions as a function of distance from

the correct position. The left and middle panels contain results from Experiments 1 and 2,

respectively. The right panel shows results from cued recall experiments reported by Logan et

al. (2023a), which used the same list length, exposure duration, and retention interval as the

present experiments.
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Figure 4: Cued Recognition Unconstrained Lists
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Figure 4 caption: Mean response times (RTs; top panels) and error rates (bottom panels) as a
function of distance between the cued position and the position of the probed item in the current
(within) or prior list for responses to Matches (“yes”) and responses to within-list and prior-list
lures (“no”) in Experiments 3-6. The cuing procedure for each experiment is illustrated at the
top of each column (list = retention interval = probe). In Experiments 3 and 6, the position cue
is presented before the probe item. Experiments 3-6 used lists that were constrained not to repeat

letters from the immediately previous list.
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Figure 5: Cued Recognition Constrained Lists
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Figure 5 caption: Mean response times (RTs; top panels) and error rates (bottom panels) as a

function of distance between the cued position and the position of the probed item in the current

(within) or prior list for responses to Matches (“yes”) and responses to within-list and prior-list

lures (“no

) in Experiments 7-10. The cuing procedure for each experiment is illustrated at the

top of each column (list = retention interval = probe). In Experiments 8 and 10, the position

cue is presented before the probe item. Experiments 8-10 used unconstrained lists, in which

letters from the immediately previous list were allowed to repeat.
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Figure 6: Sequential Lists
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Figure 6 caption: Mean response times (RTs; top panels) and error rates (bottom panels) as a
function of distance between the cued position and the position of the probed item in the current
(within) or prior list for responses to Matches (“yes”) and responses to within-list and prior-list
lures (“no”) in Experiments 11 and 12. Both experiments presented the memory lists
sequentially and both used simultaneous numeric probes to cue recognition (e.g., SD).

Experiment 11 used constrained lists. Experiment 12 used unconstrained lists.



Figure 7: Observed and Predicted Performance Across Experiments 3-12
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Figure 7 caption: Observed and predicted performance from the zero prior list strength model

(left panels) and the nonzero prior list strength model (right panels) across Experiments 3-12.
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Solid lines and filled circle: Observed mean RT (top) and error rate (P(Error), bottom) across all

320 subjects in the cued recognition experiments (3-12) for match trials (circle), within-list lures

(red), and prior-list lures (blue) as a function of their distance from the cued position. The
observed data are repeated in the left and right panels to illustrate fits of different models.

Dashed lines and empty square: Predicted mean RT and P(Error) for the zero prior list strength

model (left panels) and the nonzero prior list strength model (right panels).
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Figure 8 caption: Mean RT (top panels) and error rate (P(Error), bottom panels) for subjects
with estimated prior list strength parameters equal to zero (left panels) and greater than zero

(right panels).



Figure 9: Observed and Predicted Performance Across Experiments 3-12
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Figure 9 caption: Observed and predicted performance from the item recognition model with
prior list strength = 0 (left panels) and the item recognition with prior list strength > 0 (right
panels) across Experiments 3-12. Solid lines and filled circle: Observed mean RT (top) and error
rate (P(Error), bottom) across all 320 subjects in the cued recognition experiments (3-12) for
match trials (circle), within-list lures (red), and prior-list lures (blue) as a function of their
distance from the cued position. The observed data are repeated in the left and right panels to
illustrate fits of different models. Dashed lines and empty square: Predicted mean RT and
P(Error) for the item recognition only model (left panels) and the item recognition plus prior list

strength model (right panels).
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Figure 10: Prior List Intrusions in Typing, Recall, and Report
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Figure 10 caption: Prior list intrusions from copy typing, serial recall, and whole report tasks
from Logan (2021). The left panel contains frequency counts of the number of intrusions across
list lengths (5, 6, 7 letters) and subjects (N = 24). The right panel converts the frequencies to

proportions of the total number of prior list intrusions.



Figure A1: Using Position Coding Probabilistically
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Figure A1 caption: Simulated predictions of within- and prior-list distance effects in response

time (RT) and response probability from the position coding model. The same representations of

position are used in each panel. The columns represent different probabilities (pprior) of using

position coding to represent lists. The top row presents serial and cued recall error rates, the

middle row presents cued recognition task error rates, and the bottom row presents cued

recognition response times (RT). Prior list distance effects are observed in recall and cued

recognition for pprior values greater than or equal to 0.2.
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Figure C1: Serial Position Curves
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Experiment 11
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Figure C1 caption: Mean RT (rows 1 and 3) and mean error rate (rows 2 and 4) for targets
(match), within-list lures (within), and prior-list lures (prior) as a function of serial position in
Experiments 3-12. Rows 1 and 2 show data from constrained lists. Rows 3 and 4 show data
from unconstrained lists.
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Figure D1: Observed and Predicted RTs
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Figure D1 caption: Observed (solid lines) and predicted (dashed lines) response times (RTs) in

Experiments 3-12 (columns) for each model (rows).



Figure D2: Observed and Predicted Error Rates
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Figure D2 caption: Observed (solid lines) and predicted (dashed lines) error rates in

Experiments 3-12 (columns) for each model (rows).
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Figure E1: Simulated RTs and Error Rates and Fits to Simulated RTs and Error Rates
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Figure E1 caption: Mean simulated RTs (top pair) error rates (bottom pair) across different probe

types at different lags (solid lines), and mean predicted error rates (dashed lines) from models fit

to simulated data. Each column represents a different value of the sprior parameter, representing

“true” prior list strength, used to generate the simulated data in each column. The top row in

each pair shows fits of the model constrained to have zero prior list strength (i.e., the estimated

value of sprior was constrained to be zero). The bottom row in each pair shows fits of the model

allowing for nonzero prior list strength (i.e., sprior was a free parameter).
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Figure E2: Proportion of Simulated Samples Favoring Nonzero Prior List Strength
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Figure E2 caption: Each point corresponds to 10000 simulated samples of each size and gives the

proportion out of those 10000 simulated samples in which AIC (left panel) or BIC (right panel)

summed across all subjects in each simulated sample favors the unconstrained model that allows

nonzero prior list strength. Highlighted sample sizes at 32 and 320 correspond to the sample size

for each of the 10 cued recognition experiments in the main text (each of which had 32 subjects)

as well as the sample size that would result from aggregating across all experiments (320

subjects total).
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