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Abstract

Various goodness-of-fit tests are designed based on the so-called information matrix
equivalence: if the assumed model is correctly specified, two information matrices that
are derived from the likelihood function are equivalent. In the literature, this principle
has been established for the likelihood function with fully observed data, but it has
not been verified under the likelihood for censored data. In this manuscript, we prove
the information matrix equivalence in the framework of semiparametric copula mod-
els for multivariate censored survival data. Based on this equivalence, we propose an
information ratio (IR) test for the specification of the copula function. The IR statistic
is constructed via comparing consistent estimates of the two information matrices. We
derive the asymptotic distribution of the IR statistic and propose a parametric boot-
strap procedure for the finite-sample P-value calculation. The performance of the IR
test is investigated via a simulation study and a real data example.

Key words: blanket test, copula selection, in-and-out-of-sample pseudo likelihood
ratio test, omnibus test, parametric bootstrap.

1 Introduction

As a graduate student, one learned an important derivation about the likelihood
method: assume a random variable X has a distribution function f(x;6) (probabil-
ity density function or probability mass function) with a p-dimensional parameter
6. Under certain regularity conditions (White 1982) assumed on f(x; 0), we have the
following equation:




When f(x; 0) is the true data generating mechanism of X, the left-side of Equation
can be expressed as a p X p matrix
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where £(6; x) = log f(x; 0) is the log-likelihood function, and E° denotes the expecta-
tion with respect to (w.r.t.) the true distribution of X. This matrix is referred to as the
Fisher information matrix, or the sensitivity matrix. The right-side of Equation (1)) can
be expressed as another p x p matrix

B { 206:0) [aa;éxq'} 2 v (s),

called the variability matrix (Varin et al.2011). Equation (1) becomes S*(6) = V*(90),
which is referred to as the second Bartlett identity (Bartlett1953a;b) or information
matrix equivalence (White|1982).

Several goodness-of-fit (GoF) tests for detecting model misspecification were de-
signed through comparing these two information matrices. White (1982) proposed an
information matrix (IM) test based on the elements of V*(8) — S*(0). Zhou et al.|(2012)
proposed an information ratio test by comparing $*(8) ~1V*(8) with a p-dimensional
identity matrix. |(Golden et al.| (2013) and Golden et al.|(2016) extended these two com-
parisons to a general framework, called generalized IM test, which covers a range of
comparison forms. Later, these tests were applied to copula models for multivariate
random variables (Huang and Prokhorov| 2014, Zhang et al.|2016, Prokhorov et al.
2019).

Copulas have been a popular tool for modeling the dependence structure of multi-
variate data, such as multivariate time series (Chen and Fan/2006afb)) and multivariate
survival times (Clayton|[1978, Hougaard| 1986, (Oakes| 1989, Shih and Louis [1995). In
this manuscript, we are interested in a class of semiparametric survival copula models
for multivariate survival times, denoted by (T3, T, - - - , T;). The multivariate survival
times can be times to different types of events collected on each subject, such as time
to relapse or second cancer and time to cardiovascular disease among breast cancer
survivors (Li et al.|2020). Or they are times to the same type of event from different in-
dividuals within a cluster, such as the survival times of acute lymphoblastic leukemia
patients from 104 institutions (Othus and Li/2010).

A survival copula specifies the joint survival function H(ty,--- ,t;) = Pr(Ty >
t, -, Ty > td) as

H(ty, -, t) :(D(Hl(l‘l),“' ;Hd(td);e)/ (2)

where H,(t) = Pr(T, > t),r = 1,---,d, are the marginal survival functions of indi-
vidual survival times, and C(uy,up,--- ,uy;0) : [0,1]7 — [0,1] is a copula function
with a p-dimensional parameter 6. Copulas were originally proposed for modeling
the joint cumulative distribution function (CDF) of multivariate random variables,
and its properties have been extensively studied (Mikosch![2006, Nelsen 2007). The



way that the survival copula relates the joint survival function to marginal survival
functions is completely analogous to the way that the original copula connects the
joint CDF to marginal CDFs. Thus, the survival copula satisfies the properties of the
original copula (Georges et al.2001, Nelsen|2007).

Copulas enjoy the flexibility in coupling different marginal distributions with a
wide variety of copula families that exhibit different dependence structures. A class
of semiparametric copula models assumes a parametric form for the copula function
but leaves the marginal distributions unspecified. Thus, a crucial element in such a
model is the specification of the copula function. Archimedean copula families, such
as Clayton, Frank, and Joe, are the most popular choices (Nelsen|2006). |Li et al. (2008)
and Othus and Li| (2010) considered the Gaussian copula, which belongs to the ellip-
tical families (including Gaussian and t copulas). Different copulas families display
different features. For example, in terms of the tail dependence, Clayton has a lower-
tail dependence; Joe has an upper-tail dependence; both Gaussian and Frank have no
dependence for either lower-tail or upper-tail. Misspecification of the copula function
can lead to incorrect estimation of the joint distribution as well as its derivatives, such
as conditional distributions.

The above-mentioned IM-based GoF tests (Huang and Prokhorov| 2014, |Zhang
et al.| 2016} Prokhorov et al.|2019) were proposed for detecting misspecification of the
copula function under a semiparametric copula model. They can be regarded as the
blanket tests introduced in Genest et al. (2009): they can be applied to any copula fami-
lies and do not require selection of smoothing parameters, weight functions, or kernel
functions. However, they were designed based on the presumption that the data are
fully observed, and may not be applicable for data with missing values. For exam-
ple, survival times can be missing due to censoring, such as the termination of the
follow-up or participants being lost to follow-up.

For censored survival times, several copula specification tests were proposed, but
most are limited to Archimedean families by using their unique properties. For exam-
ple, Shih| (1998) and Emura et al. (2010) designed their test statistics using the cross-
ratio function expressed as a function of the joint survival. The test statistics in|Wang
and Wells| (2000), Wang) (2010), and Lakhal-Chaieb| (2010) used the Kendall distribu-
tion, expressed in terms of the generator function. By contrast, Yilmaz and Lawless
(2011) and |Lin and Wu (2020) proposed tests for any copula families while imposing
assumptions on the form of copulas under the alternative hypothesis. For example,
in|Yilmaz and Lawless|(2011)), the null and alternative models are nested, i.e., the null
is embedded in the alternative. |Lin and Wu| (2020) assumes a particular form for the
alternative copulas. In addition, several tests, such asShih! (1998), Emura et al. (2010),
and |Andersen et al.|(2005), require the choice of a weight function or bandwidth, or
the partition of the data. According to Genest et al.|(2009), they are not blanket tests.

Our goal is to propose a blanket test for multivariate censored survival times, and
we adopt the information ratio (IR) test originally proposed in/Zhou et al.|(2012). First,
the IR test can be applied to all parametric copula families. Second, it is likelihood-
based and depends solely on the parametric form of the null copula. Thus, it does
not impose any assumptions on the alternative copulas. Third, it does not require
any smoothing parameters, weight functions, kernel functions, or partition of the



data. However, the first problem we encountered was whether the information matrix
equivalence, the foundation of the IR test, still holds under the likelihood for censored
data. No existing work has verified it. Thus, our first contribution is to prove this
equivalence in the presence of censoring.

The IR test was first proposed under the quasi-likelihood for cross-sectional or
longitudinal data (Zhou et al. 2012). Later, this test was extended to various models
for univariate and multivariate time series (Zhang et al. 2012} 2016; 2019; |2021). The
asymptotic properties of the IR statistic have been investigated for the above settings
where data are fully observed, but not for censored data yet. Another contribution of
our manuscript is to derive its asymptotic properties when the marginal distributions
and the copula parameters are estimated in the presence of censoring.

In this paper, we will show that if the copula function is correctly specified, the
IR statistic is asymptotically distributed as a normal random variable. However, the
expression of its asymptotic variance is complicated, so it is difficult to use an analytic
variance estimate to calculate P-values. Thus, we propose a bootstrap procedure to
approximate the statistic’s null distribution via generating replications of multivariate
censored data from the null copula.

Zhang et al. (2016) established the asymptotic equivalence between the IR statis-
tic and an in-and-out-of-sample pseudo (PIOS) likelihood ratio test statistic. The
PIOS statistic is based on the comparison between two types of pseudo likelihood:
the in-sample likelihood, which is the full likelihood, and the out-of-sample likelihood,
which is a “leave-one-out" cross-validated likelihood. In this manuscript, we will
prove the asymptotic equivalence between these two test statistics with censored
data. We created an R package called IRtests that implements both tests for cop-
ula specification with bivariate censored data, and it is available at https://github.
com/michellezhou2009/IRtests.

The remainder of the manuscript is organized as follows. In Section 2, we prove
the information matrix equivalence under a semiparametric copula model for cen-
sored survival times. We define the IR statistic in Section 3 and discuss its asymptotic
properties. In Section 4, we describe how to calculate P-values via bootstrap resam-
pling and how to use the P-values to select the best copula family. Section 5 presents
the simulation studies for investigating the finite-sample performance of the proposed
IR test and comparing it with the other two forms of generalized IM tests. In Section
6, we apply the IR test to a data example. Concluding remarks are given in Section 7.

2 Information Matrix Equivalence in the Presence
of Censoring

For ease of illustration, we present the proposed methods in the context of bivari-
ate event times (T3, T»). We denote the true marginal survival functions by H?(f) with
the probability density function f;(f) = —dH}(t)/dt. We assume a copula model
C(u1,up; 0) in Equation (2) for the joint survival function of (T}, T,) with € ® C RP.
To differentiate from this assumed copula, we denote the true copula by C°(uy, u). Ac-
cording to Sklar| (1959), for a continuous random vector (T;, T ), there exists a unique
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copula function C°(u1, uy) such that Pr(Ty > t1, T, > tp) = C° (H](t1), H3(t2)) for all
(t1,t2).

Definition 1 The assumed copula C(uq,uz; 0) is said to be correctly specified, denoted as
C%u,uz) € Cg = {C(u1,u;0),0 € O}, if there exists 6y € © such that C (uy, up; 0p) =
C° (u1,up) for all (uy,uz) € (0,1)% The value 6y is called the true value of the copula
parameter. On the other hand, if for any 0 € @, there exists some (u1,uz) € (0,1)? such that
C (u1,u; 0) # C° (uy, uz), we say that the assumed copula C(u1, uy; 0) is misspecified.

In the remainder of the manuscript, we let g9 and gg¢ denote the first-order and
second-order partial derivatives of a function g w.r.t. 0.

2.1 Likelihood Function

As mentioned earlier, survival times (T3, T;) are often subject to censoring. Let
(C1,Cy) denote the bivariate censoring times. We assume independent censoring, i.e.,
(C1,Cy) are independent of (T3, T>). The observed variables include

Xy =min{T,,C,}, andé, = (T, < C,), r=1,2, 3)

where I(-) is the identity function. Note that in some situations both event times are
subject to a common censoring time, i.e., C; = C».

Under a semiparametric copula model, the parameters consist of the unspecified
marginal survival functions and the copula parameter. Since our focus is the specifi-
cation of the copula function, we regard 0 as the parameter of interest and marginal
survival functions as nuisance parameters. For now, let us assume that the true marginal
survival functions HY, r = 1,2, are known. Thus, given (X3, X, 61, 62), the log-likelihood
under the assumed copula is a function of the copula parameter 6. It can be written as
the sum of two components: £(0) = (6, U}, U3, 61,62) + F(X1, X2, 61,62), where €Cis a
function of the assumed copula on (Uf, U3) with U} = H)(X,), r = 1,2. The second
term § = d1log f7(X1) + d2log f3(X>) is a function of marginal densities only, which
can be regarded as a constant. Thus, the log-likelihood can be defined as

£(6; Uy, Uy, 61,62) = €(8, U5, Uy, 61,62)
= 61602 log (U], U3; 0) + 81(1 — &) log ey (U3, U3; 0)
+ (1 —=101)d2logey (US, U3 0) + (1 —61)(1 —6,) log © (U3, Uy; 6) (4)

. o0C (uq,17;0 02T (uy,up;0
with ¢, (uq, up; 0) = % forr =1,2 and ¢(uy, up; 0) = %.

Remark 1 The survival copulas € and C° can be regarded as the assumed and true joint
CDF for (Y1, Y2) with Y, = H{(T,), r = 1,2, which are uniformly distributed on (0,1). The
above log-likelihood function is also the log-likelihood function for data (UY, U3, 61, 63), where
U? and 5, can be expressed as U = max{Y,, H)(C,)} and 6, = I (Y, > H(C,)).

Remark 2 If the bivariate event times (Ty, Ty) are fully observed, i.e., 6 = 6 =1,

0(6; Uy, Us, 81, 6,) = loge(Uy, U3; 6). (5)
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Definition 2 Given the log-likelihood function in Equation (4), we define

0" = argrﬂna@x E’ [¢(6; U], U5, 61,62)], (6)
S

as the pseudo-true value of the parameter 0, where E° takes the expectation w.r.t. the true
distributions of (Ty, To) and (Cq, Cy).

If the assumed copula is correctly specified, the pseudo-true value 8* = 6y (Shih
and Louis|1995, Chen et al.|2010); if the assumed copula is misspecified, 8 might not
be equal to 6.

2.2 Information Matrix Equivalence

Given the above log-likelihood function in Equation (4), the sensitivity and vari-
ability information matrices, both p x p dimensional, are defined as

S*(G) =E° [—Eeg] and V*(G) =E° [6968] . (7)

In the supplementary material, we provide expressions of {4 and g for four copula
families: Clayton, Frank, Joe, and Gaussian.

The proof of the information matrix equivalence in Theorem 1|requires the follow-
ing regularity conditions R1 - R6. First, we introduce all the required notation. Let
|| x|| denote the usual Euclidean metric of any p-dimensional vector x = (xq,- -, x;),

ie, [[x]| = /a3 +--+ x2. For a p x p matrix A, define [|A| = VBt a]Zk, where
ajy is the (j, k)-th element of A. For simplicity, in the remaining of the manuscript, we
suppress 61 and d; from the log-likelihood function (6, u1, uz, 61, 52) as well as its par-
tial derivatives defined as follows. For j,k =1,---,p, let 69]. = d¢/d0; denote the j-th
element of the p x 1 vector ¢y, and let Egjgk (6,uy,up) = 826/89]89;( denote the (j, k)-th
element of the p x p matrix £gg(0, u1, up). Define Lo, 9 = 0lg, /00 and ly.g o = 9Ly, /90,
both p x 1 vectors. Forr = 1,2, let 69].,”, = Bﬁgj/aur and gg/.gk,ur = 8£9j9k/8u,. Let lg,,
denote a p x 1 vector with the j-th element Egj,u,. Let /g4, denote a p x p matrix with
the (j, k)-th element lgq, ,,.

Our regularity conditions are:

R1 (i) {(Ta,T),i =1, ---,n}isanindependent and identically distributed (i.i.d.)
sample from an unknown joint survival function C°(H{(t;), Hj(t;)) with
continuous marginal survival functions Hy(-), r = 1,2;

(i) {(Ci,Cp),i = 1,---,n} is an ii.d. sample with joint survival function
G°(ty,t2) = Pr(Cyy > t1,Cpp > tp) and marginal survival functions G)(t) =
Pr(Cy >t),r=1,2;

(iii) The censoring variables (C;j;, Cjy) are independent of (Tj;, T;z) and there is
no mass concentration at 0 in the sense that GY(17) — 1asy — 0.

R2 Let O be a compact space of R”. For every € > 0,

liminf  E°[¢(6%, U, U3)] — E°[¢(6, U3, U3)] > 0.
pcammint [e(67, Uy, Uz)] — E°[£(6, Uy, U)]



R3 The true (unknown) copula function C°(u1,u;) has continuous partial deriva-
tives.

R4 For any (u1,u2), £(6,11,uz) is a continuous function of 6 € ©.
R5 Functions £y,(0,u1,u2), Lo, (0,u1,u2), and Ly, (0,u1,u2), jk = 1,--- ,p, r =
1,2, are well defined and continuous in (u1, uy,8) € [0,1]? x ©.

R6 (i) ||[4o(0,u1,u2)| < q{u1(1 —up)} "{uz(1 — up)}~* for some g4 > 0 and
a1,ay > 0 such that E°[{US(1 — UY) } 21 {US(1 — US)} 2] < oo;
(i) |[€ou, (0, u1,u2)| < q{us(1 —us)}~*{u,(1 —u,)}~* for some g, as, a,, and
s # r such that E°[{U(1 — U2) }=~%={U>(1 — U?)} ™| < oo for some €; €
(0,1/2);
(i) ||€ee(0,u1, u2)|| < q{u1(1 —uq)} " {ua(l — up)} " for some g > 0 and
a1,a2 > 0 such that E°[{US(1 — UY) } 21 {US(1 — U3) } "] < oo.

These regularity conditions are similar to those listed in [Shih and Louis| (1995)
and Chen et al. (2010), which also focused on semiparametric survival copula models
for censored survival data. |Shih and Louis| (1995)) referred them to as the standard
regularity conditions for maximum likelihood estimation (White|1982) in the copula
context. It is worth pointing out that our assumptions of homogenous censoring dis-
tribution (i.e., (Cj1, Cip) follows the same joint distribution across subjects) was also
imposed in Shih and Louis (1995). However, |Chen et al. (2010) allowed different cen-
soring distributions across subjects. We defer more discussions on this assumption to
Section[/} In addition, these regularity conditions except for those related to censoring
were used in Huang and Prokhorov| (2014) to prove the information matrix equiva-
lence under the log-likelihood function in Equation (5) for fully observed bivariate
event times.

Theorem 1 (Information Matrix Equivalence) Assume that conditions R1 - R6 hold. If
the assumed copula is correctly specified, under the log-likelihood function in Equation (),
S*(0") = V*(0"), where S*(0) and V*(0) are the sensitivity and variability matrices defined
in Equation (7), and 6" is the pseudo-true value of the parameter 0 defined in Equation (6).

We prove this theorem in Appendix|A| where we will show that S*(8) = V*(0) —
A(0) for any assumed copula, where A(6) = E(ECLCZ) {]E(ETLTZ) [A|Cy, Cz]} with

Elr, 1) AICL, G = ) //Q coo (11, tz; 0)ws, 5, (11, uz; 0)duydusy.
1

01,00=0, 81,62

Here, for each censoring status (d1,d2), Qs, 5, is the corresponding region for (Y7, Y>)
(Remark given (Cy, Cp) with U Qs.5, = [0, 1)?. In addition, w;, 5, is aratio of the
81,6,=0,1
true copula function versus the assumed copula or a ratio of their partial derivatives.
If the assumed copula is correctly specified, w;, 5, (111, u2;0%) = 1 for all (uq,uy)
and (41, 67). It leads to

1 r1
Ej;. 1) [AIC1, Co] = /0 /0 cop (111, t2; 0% diurduuy = 0, (8)
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because of the interchangeability between integrals and derivatives ensured by the
regularity conditions. Equation (8) makes A(6*) = 0, resulting in the information
matrix equivalence stated in Theorem |1} On the other hand, if the assumed copula is
misspecified, w;, 5,(u1,u2;0%) # 1 for some (uj,u2) and (d1,62), and thus, Equation
will not hold, indicating S*(6%) # V*(8*).

We define the following information matrix ratio: R*(6*) = S*(0*)~1v*(9*). If
the assumed copula is correctly specified, R*(68*) = I, a p-dimensional identity ma-
trix; otherwise, R*(6%) # I,. The discrepancy between R*(8*) and I, implies copula
misspecification, and it can be quantified by a scalar metric: t7[R*(0*)] — p, where tr(-)
denotes the trace of a matrix. This is the motivation for the IR test we will propose for
detecting copula misspecification.

3 Information Ratio Statistic under Semiparamet-
ric Copula Models

In this section, we propose an IR statistic, which is a consistent estimator of t7[R*(6*)]
under the semiparametric copula model.

3.1 IR Statistic

As described earlier, a semiparametric copula model assumes that the true marginal
survival functions H{(t) and Hj(t) are unspecified. Thus, obtaining a consistent esti-
mator of tr[R*(6%)] requires the consistent estimation for the marginal survival func-
tions, the copula parameter, and two information matrices. Let {(Xi1, Xi2, 6i1,0i2),1 =
1,---,n} be n independent realizations of (X1, X2, d1,02).

Consistent estimation of marginal survival functions and copula parameter. Shih
and Louis| (1995) proposed the following two-step procedure: at the first step, each
marginal survival function is estimated by a nonparametric estimator H, (t) with data
{(Xir,6i),i = 1,--- ,n}, r = 1,2. Under the assumption that the censoring times
are independent of the event times, we consider the Kaplan-Meier estimator, which
is a consistent estimator for the marginal survival function (Kaplan and Meier|1958).
Thus, U;, = IfIr(XZ-r) is a consistent estimate of U, = H)(X;,),r =1,2,i=1,--- ,n.

At the second step, the copula parameter 6 is estimated by a pseudo maximum
likelihood estimator (PMLE), which maximizes the psuedo log-likelihood function given
as ,(0) = Y1, £(6,U;1, Uy). Specifically, the PMLE of 6 is given as

0, = arg max 0,(6). )

Chen et al.| (2010) established the asymptotic properties of 0,. One of them is that,
under certain conditions, the PMLE 6, converges in probability to the pseudo-true
value 6" defined in Equation (6) as n — oo, regardless of whether the assumed copula

~

function is correctly specified or not. Thus, 0, is a consistent estimate of 6*.



Consistent estimation of information matrices. By Equation (7)), for a given value
6, S*(0) and V*(0) are the distributional means. If the true marginal survival func-
tions are known, these two information matrices can be consistently estimated by the
empirical means:

n n
—n ! Z log(0; U3, U3,) and n”! Z Lo(0; Uy, Up)lo(6; U3, u?z)/'
i=1 i=1

Chen et al.| (2010) provided the following consistent estimator for S*(6*):

~

~ 1 X ~ o~ o~
Sn(en) = _E ZEGB(BM Ui, uiZ)/
i=1

where U7 is estimated by U;,, and 6" is estimated by the PMLE 8,,. Following the
same idea, we propose the following consistent estimator for V*(0*):

~ o~ 12 ~ o~ o~ ~ o~ o~
Viu(0n) = - Y 0o(8,; U, Uix) Lo (,; Un, Uip) .
i=1

With the above estimators, the IR statistic is defined as
R, = tr [§n(§n)*1\7n(§n)} .

Next, we will present two key asymptotic properties of this IR statistic. First, Theorem
establishes the consistency of R,, i.e., it converges in probability to t*[R*(0")] for
any assumed copula. Second, Theorem [3|states the asymptotic normality of R, if the
assumed copula is correctly specified. This result will be used for designing the IR
test and copula selection in Section {4,

3.2 Asymptotic Properties of IR statistic

The consistency and asymptotic normality of the IR statistic R, requires the regu-
larity conditions R1 - R6 listed in Section[2.2]and the following additional conditions:

C1 (i) Let L = supy.q |£(6,U],U3)| and Lg = supg.q |fe(0, U7, U3)|. Then

lim B [LI(L > K) + LoI(Lo > K)] = 0;

— 00

(ii) For any # > 0 and any € > 0, there is K > 0 such that [£(0,u1,u)| <
K|€(6,u},u})| forall® € ® and all u, € [5,1) such that 1 — u, > e(1 —uj),
r=1,2.

C2 Forr = 1,2, if T, is subiect to non-trivial censoring (i.e., C, # o0), then the
Iiaplan-l\éeier estimator H, is truncated at the tail in the sense that for some T,
H,(t) = H,(7) forall t > 7, and G!(7,)H)(7,) > 0.

C3 (i) Regularity condition R2 holds with 6* € int(®*), where ®* is a compact

subset of ®;



(i) E°[—lee(6, U3, U3)] has all its eigenvalues bounded below and above by
some finite positive constants;

(iii) Var®[€e(0", U, U3) + Wi (0", X1, 61) + Wa(07, X2, 62)] has all its eigenvalues
bounded below and above by some finite positive constants, where for r =
1,2, W,(0%, X;, é,) is defined in Equation of Appendix|C}
(iv) (07, U], U3) + W1 (0", X1,061) + Wa (0", X, 62 ) satisfies Lindeberg condition.
C4 (i) Let Loy, = supyeg |[fo, (8,U3,U3)|| and Leg = supy.g |[£ee(0, U3, U3)||.
Then
I}l_l)};o E° [Lerl[,I(LB,uy Z K) + LBBI(LBB Z K)] = 0;

(i) Let Q(6,u1,uz2) = ||€o(6, u1,uz)|| + |[oe(6,u1, u2)||. For any # > 0 and any
€ > 0, there is K > 0 such that Q(6, u1, up) < KQ(6,u},u}) forall € ® and
allu, € [,1) such that1 —u, > e(1—u}), r=1,2.

C5 (i) Forj,k=1,---,p,r=1,2,let
LLGij,uy = Sup Mej,uy (61 ul/ uz)eak (9/ ul/ UZ) + gﬂk,ur (6/ ul/ u2)€9] (6/ ul/ uZ) ‘/
0cO

LLgg,.0 = sup |[€e,0(0, U1, Uz) Ly, (6, Uy, Ua) + Lg,0(6, U, Uz) £y, (6, U, L) |-
6cO

Then,

lim sup EO[LLG/Gk,u,I(LLGij,u, > K) -+ LLG,'Gk,GI(LLQ/Gk,G > K)] =0

K—oo (j,k)
(ii) Forjk=1,---,p,let

Qu,06, (0,11, u2) = [, (0, u1, u2) Ly, (6, u1, u2)|
+ [1€o;,0(0, u1, u2) Lo, (6,11, u2) + Lo, 0(6, u1, u2)le, (6, u1, u2)|.

For any 7 > 0 and any € > 0, there is K > 0, such that Qw].gk(ﬂ, Uy, up) <
KQnggk(B, uy,u}) forall @ € ® and all u, € [,1) such that 1 — u, > (1 —
u,), r=1,2.
C6 (i) Functions Egjgk,g(ﬂ,ul,uz) and fgjgk,ur(e,ul,uz), jk=1,---,p,vr=1,2, are
well-defined and continuous in (8, uq,u) € ® x (0,1)%;
(i) For j,k = 1,---,p,r = 1,2, let Lojo,u, = Supyg |€9].9k,ur(6, uy,us)| and
Loo,.0 = Supgcg [I€o,0,,0(0, U7, U3)||. Then,

Jim sup (Lo (Lo, > K) + Log ol (Log,e > K)| =0;
Js

(ili) Forj,k=1,---,p,let Qyp0,(0,u1,u2) = |0, (6,11, u2)| + (| Lo,0,,0(6, 11, u2)].
For any # > 0 and any € > 0, there is K > 0, such that Q2,9/9k(9, Uy, up) <
KQzlgl.gk(e, uy,u}) forall @ € ® and all u, € [,1) such that 1 — u, > (1 —
u), r=1,2.
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C7 (i) ||Co0,u, (0", u1, uz)|| < q{us(1 —us)}"{u,(1 —u,)}* for some g, as, a,, and
s # r such that E°[{U(1 — U2) }&~%={U>(1 — U?)} ™| < oo for some €; €
(0,1/2);

(i) |[€o(607, 11, u2)le(0%, 11, u2) || < g{ur(1 —uy)} "{ua(1l — up)} " for some
q > 0and ay,a, > 0 such that E°[{U(1 — U9) } 2 {US(1 — U3) } 2] < oo;

(iii) ||€ou, (0%, u1, u2)le(0%,ur, u2)'|| < q{us(1 —us)}~*{u,(1 — u,)} % for some
q, as, a,, and s # r such that E°[{U2(1 — U?) }&~*={UY(1 — UY)} %] < oo for
some €; € (0,1/2).

Our regularity conditions R1 - R6 combined with the above conditions C1 - C4 are
the conditions C1 - C5 and A1 - A4 of Chen et al.|(2010) for the existence, consistency,
and asymptotic normality of the PMLE 0,,.

Theorem 2 Under conditions R1 - R6 and C1 - C5, we have R,, — tr [R*(6")] in probability
as n — oo,

The proof of this theorem (Appendix [B) requires the e consistency of S.(8,) and
V,.(8,). (Chen et al. (2010) has proved the consistency of S,,(8,,), which | requires their
condition A4. We follow their arguments to prove the consistency of V,(6,), where
our conditions C5 is analogous to Chen et al.’s condition A4.

Theorem 3 Assume conditions R1 - R6 and C1 - C7 hold. Define the null hypothesis Hy:
C(u1,up) € Cop = {C(u1,uz0),0 € O}, ie., the assumed copula is correctly speci-
fied. If the null hypothesis Hy is true, R, converges to p in probability, and \/n(R, — p)
converges in distribution to a normal random variable with mean 0 and variance 03 =
Var[hg(Xi, Xin, 011,612, 0)], where hr(Xi1, Xin, 611, 012, 0) is given by Equation in Ap-
pendix|Cl

The proof of this theorem (Appendlx' (C) utilizes the Taylor expansion of S,, (6 ) and
Vn((-)n) One step requires the consistency for the first-order derivative of S,,(8,) and
of V, (9 ) w.r.t. 6. Again, we follow the arguments of Chen et al.|(2010) for proving the
consistency of S..(8,,), where our condition C6 (i) is analogous to Chen et al.’s Condi-
tion A2, and our conditions C6 (ii) & (iii) together are analogous to Chen et al.’s con-
dition A4. Another component in the proof involves the expansion of the estimated
pseudo-observations U;, — U}, using the asymptotic properties of the Kaplan-Meier
estimator for the marginal survival functions. Our condition R6 (iii) is analogous to
Chen et al.’s condition A3 (i), and so is our condition C7 (ii). Our condition C7 (i) is
analogous to Chen et al.’s condition A3 (ii), and so is our condition C7 (iii). We want to
point out that the expression of hr(Xj1, Xip, 61,912, 0) is different from the expansion
with fully observed data derived in Zhang et al.| (2016; 2021). In their settings, the
marginal distributions are estimated by the empirical distribution functions whose
expansions are different from those of Kaplan-Meier estimators.

3.3 Asymptotic Equivalence to the In-and-Out-of-Sample Pseudo
Likelihood Ratio Statistic

For semiparametric copula models with fully observed data, [Zhang et al. (2016)
showed that the IR statistic R, is asymptotically equivalent to a class of in-and-out-

11



of-sample pseudo (PIOS) likelihood ratio test statistic. Theorem [ below states this
asymptotic equivalence still holds in the presence of censoring. The PIOS statistic
is defined as a difference between two types of pseudo log-likelihood functions: in-
sample and out-of-sample. Under our log-likelihood function in Equation (), the
in-sample pseudo log-likelihood is defined as i = Yiiql (Gn, Ull, LIZZ) where 8, is
obtained from Equation (9) using all the observations. The out-of-sample pseudo log—
likelihood employs the leave-one-out techmque and is defined as /3" = Y | E(

U, Up ), where 9(71) = argmaxg ZSZLS#Z(G, Uy, Usz) is the PMLE using the data
with the i-th observation deleted. The PIOS test statistic is defined as T, = £ — (9.

A large value of T), suggests that the assumed copula model is a poor fit to the data
since it is sensitive to the deletion of individual observations.

Theorem 4 Under condition R1 - R6 and C1 - C4, |R, — Ty| = 0,(1).

The proof is provided in Appendix D} Because of this asymptotic equivalence, if the
null hypothesis Hy is true, the PIOS statistic T;, also converges to p in probability, and
Vn(T, — p) also converges in distribution to a normal random variable with mean 0
and the same variance 03.

4 Information Ratio Test and Copula Selection

In practice, it is challenging to calculate P-values using an analytical estimate of the
asymptotic variance 0z because its expression is complicated. To address this issue,
we suggest a parametric bootstrap resampling procedure for the P-value calculation.
This approach is commonly employed in GoF tests, including those based on informa-
tion matrix equivalence (Horowitz|[1994, Dhaene and Hoorelbeke| 2004, Golden et al.
2013, Huang and Prokhorov|[2014, Golden et al. 2016, Prokhorov et al.2019). (Genest
and Rémillard| (2008) provided the validation of this procedure in the general setting
of semi-parametric models.

4.1 P-value Calculation via Bootstrap Resampling

The key idea is to approximate null distribution of R, by the test statistics values
calculated from a large number of data replicates generated under the null copula (the
copula family tested as the null hypothesis). These data replicates are referred to as
the bootstrapped data, denoted by D (?); in contrast, we denote the original data by D.
The bootstraped data ®(?) is obtained by generating bootstrapped resamples of the

bivariate event times (Ti(lb), Tl(zb)) and bivariate censoring times (CZ.(lb ), Cz'(?_b )).

Generation of (T 1(117), Ti(zb)) under the null copula. For example, we test Clayton

copula as the null hypothesis, i.e.,

Hy : (Do(ul,uz) = C(u1,u0) = (uy 0+ uz 1)’1/9, for some 6 > 0.
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Let 5,1 be the PMLE of 0 from the log-likelihood function using the original data ® and
the above parametric form of Clayton copula function. First, we generate a bivariate

variable (Ul.(lb ), Ui(Zb)> from the Clayton copula with parameter value 0,. This step
can be implemented using R function rCopula of copula package. Second, we obtain
™ — g _1(Ul.(rh)), r = 1,2, where H: ! is the inverse function of the Kaplan-Meier

ir T T
estimator of the marginal survival functions.

Generation of (Cl(lb ), Cl(zb )). The censoring times C;; and Cj; might be correlated,
but our method does not rely on their joint distribution. Thus, we can simulate them
separately from their own marginal distributions. Under the assumption of indepen-
dent censoring, the survival function G,(t) of C;, can be consistently estimated by a

Kaplan-Meier estimator G,(t) using the data {(X;,,1 — ;),i = 1,---,n}. For each
r = 1,2, we first generate a random number v( ) from a uniform distribution between
0 and 1, and then obtain Ci(r) = ér‘ 1 (vl(rb )). In some cases, both event times are sub-

ject to the same censoring time, i.e., Cj; = Cj = C;, its sole survival function G(t) can
be estimated using the data {(max{Xj;, Xin},1—061dpp),i=1,---,n}.

Bootstrap resampling. The resampling procedure includes the following steps:

Step 1: Generate a bootstrapped resample of {( 11 , Z(Zb), Cl.(lh ), Cz‘(zb )),i =1,---,n}with

the same sample size of the or1gmal data followmg the above description. This

forms a bootstrapped data D {( X ,5l(f),5le’)),i =1,---,n}, where
Xl(rb) = mm{ i )¢ . }andéir) I(T( ) C( )) r=1,2.

Step 2: Based on the bootstrapped data D) calculate the test statistic, denoted as
RY, referred to as a bootstrap resample of R,,.

Step 3: Repeat Steps 1 and 2 B times, producing B bootstrap resamples {R,gb),b =
,B}.

The bootstrap resamples {\/n (R,Sb) —p),b=1,---,B} approximate the null distribu-
tion of \/n(R, — p), and their sample variance approximates the asymptotic variance
0%. Thus, we calculate

where Eun) is the average of { Rﬁf’), b=1,---,B}. The P-value of the IR test is

P-Value:ZX[l— (’Ralb ’)],

where ®(-) is the CDF of the standard normal distribution.

If the calculated p-value is smaller than a significance level a, we reject the null
hypothesis and conclude significant evidence suggesting copula misspecification. Al-
ternatively, we can use critical values to make conclusions. Let z,,, denote the upper
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100 * (x/2)% quantile of the standard normal distribution. If % > Zy/2, We reject
the null hypothesis.

4.2 Selection of the Best Copula Family

For some data, a GoF test would fail to reject several copula families. It might
be because the sample size is small or the censoring rate is high or both. As a re-
sult, the data do not contain sufficient information to reject the null hypothesis. In
addition, if the level of dependence is not strong, several families appear similar, and
consequently, it is more difficult for a test to tell them apart. In some situations, the
underlying true dependence structure might be complicated, and any parametric cop-
ula family is merely an approximation. For these cases, we are more concerned with
selecting the best copula family from several candidates in the sense that the data ex-
hibit the weakest evidence against it, i.e., showing the highest agreement between the
assumed copula and the data. Here, we propose using the P-value of the IR test as the
selection criteria: the best copula family is the one with the largest P-value.

5 Simulation

In this section, we investigate the finite-sample performance of the proposed IR
test through two simulation studies, where we consider different sample sizes, cop-
ula families with various dependence strength, and censoring rate (proportions of
censored event times). The first study focuses on the null distribution of the IR statis-
tic, i.e., the distribution when the null copula is the true copula. We compare it with
the normal distribution and PIOS’s null distribution. The second study examines the
type I error rate and power of IR test as well as the performance of using IR’s p-value
for copula selection. As mentioned earlier, IR is a specific form of generalized IM tests.
Thus, we compare our IR with two other forms: White test (difference between two
IMs), and log IM test (difference between logarithms of two IMs).

5.1 Simulation Setting

We consider four copula families: Clayton, Frank, Joe, and Gaussian, each with a
scalar copula parameter 6. The value of 6 is determined by Kendall’s T coefficient,
which reflects the dependence strength (Kendall [1938). The relationship between
Kendall’s T and 6 for each of the above copula families is described in the supple-
mentary material.

Given a copula family C with a parameter value 6, we generate (Tj;, T;p) whose
marginal distributions are both exponential distribution with mean 1 and joint sur-
vival function follows the given copula family C. For example, the copula is Clayton
with parameter 6 = 2, corresponding to Kendall’s T = 0.5. Following a similar pro-
cedure described in Section we first generate (Uj1, Ujp) from Clayton copula with
6 = 2 using R function rCopula. Second, calculate T;, = —log(U;,), r = 1,2. Note that
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—log(x) is the inverse function of the survival function for exponential distribution
with mean 1.

In this simulation, both event times are subject to a common censoring time C;,
generated from an exponential distribution with mean 4, 3/2 or 3/7, that correspond
to a censoring rate of 20%, 40%, or 70% for individual event times. In addition, we
include a no-censoring setting, i.e., T;; and T}, are fully observed, to investigate the
effect of censoring on the performance of the IR test. Thus, there are four censoring
scenarios, denoted as “no-censoring”, “20%-censored", “40%-censored", and “70%-
censored". Figures 1 - 4 in the supplementary material plot the estimated pseudo-
observations (ﬁil, LAIZ'Z) obtained from one replication of the simulated bivariate cen-
sored survival times of sample size n = 100 or 600 generated from each of the four
copula families with Kendall’s T = 0.3 or 0.7.

5.2 Study I: Null Distributions of IR and PIOS statistics

In this study, we generate data from a copula family and test for the same copula
family, i.e., the null copula is the true copula. Figure 5 - 8 in the supplementary mate-
rial plot the normal quantile-quantile (QQ) plots of 500 replications of the IR and PIOS
statistics under Clayton, Frank, Joe, or Gaussian with Kendall’s T = 0.5 at sample size
n = 100,300, 600. These plots allow us to examine (1) whether IR’s null distribution
is close to normal, and (2) whether the null distributions of IR and PIOS statistics are
similar to each other.

First, we focus on comparing the IR’s null distribution with normality. For a given
sample size, the distribution gets more skewed to the right as the censoring rate in-
creases. For each censoring scenario, as the sample size increases, it is getting closer
to the normal distribution, which confirms the asymptotic normality of the IR statistic
(Theorem ).

Second, we compare the distributions of IR and PIOS. The QQ plots clearly show
that their distributions are close, and they get more similar as the sample size in-
creases. It confirms the asymptotic equivalence between IR and PIOS (Theorem [4).
However, their computational times are substantially different. The PIOS statistic re-
quires repeated (n times) estimation of the copula parameter, /é(_i), when obtaining
the out-of-sample peudo log-likelihood. Thus, its computational burden is more in-
tensive than IR. In addition, as the sample size increases, IR is more computationally
efficient. Specifically, using a Dell desktop computer with 3.20 GHz Intel(R) Core(TM)
i7-8700 CPU, the average computational time with sample size n = 100 is 0.0072 sec-
onds for calculating the IR statistic and 0.11 seconds for PIOS (about 15 times of IR’s
time). When the sample size increases to 600, the average computational time is 0.02
seconds for IR and 1.1 seconds for PIOS (about 55 times of IR’s time). Note that the
computation of the PIOS statistic has been optimized via parallel computation using
R packages "parallel”, "foreach”, and "doSNOW". If without the parallel computation,
it would take even longer.
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5.3 Study II: Test Size and Power of IR Test

In this study, we investigate the type I error rate and power of the proposed IR test.
The bivariate event times (Tj;, Tj;) are generated from each of the four copula families;
under a true copula, we test each of the four copula families as the null hypothesis.
For example, in one scenario, (T, Tip) is generated from Clayton, i.e., the true copula
is Clayton, and we test four different null copulas: Clayton, Frank, Joe, and Gaussian.
We consider three different dependence levels: Kendall’s T = 0.3,0.5,0.7 and three
sample sizes n = 100,300, 600. Figures I]- @ plots the proportion of rejecting the null
hypothesis at the significance level 0.05 among 500 replications at sample size 600.
For each simulation replication, the P-value is calculated from B = 500 bootstrap
resamples. The rejection proportions for sample size n = 100 and 300 are plotted in
Figures 9 - 16 of the supplementary material.

When the null copula is the same as the true copula, the rejection proportions are
the empirical type I error rates, also extracted in Table I} In most scenarios, the IR
test can maintain the nominal test size, i.e., the empirical type I error rates are close to
the significance level 0.05. When the null copula is different from the true copula, the
rejection proportions are the empirical test power. The results indicate that Kendall’s
T, sample size, and censoring rate all affect the power. First, Kendall’s T reflects the
strength of the dependence between the bivariate event times. When 7 is large, i.e., the
event times are highly dependent with each other, the true copula’s distinct features
such as tail dependence are more pronounced, and thus, our IR test is more powerful
to detect deviations from the null copula. However, when the dependency is weak,
copula families appear similar to each other (See Figures 1 and 3 in the supplementary
material). Thus, the IR test has a lower power for a smaller Kendall’s 7. Similar pat-
tens are observed in (Genest et al. (2009) and Zhang et al. (2016). Second, as expected,
when the sample size is larger or the censoring rate is lower or both, the data provide
more information of the underlying true copula, and consequently, the IR test is more
powerful.

We observe that when the censoring rate is 70%, the proportion of rejecting Clay-
ton when the true copula is Clayton is much lower than the significance level 0.05.
In other words, the IR test is over conservative against Clayton when the event times
are heavily censored. A possible explanation is that when the censoring time follows
an exponential distribution, it is more likely to censor smaller event times, leading
to insufficient information on the lower-tail dependence, which is a distinct feature
of Clayton. As a result, the data exhibit minimal evidence against Clayton. With the
same reason, when the true copula is Frank, it is difficult to tell apart from Clayton
because they appear alike under heavy censoring (Figures 1 - 4 of the supplementary
material). Thus, the proportion of rejecting Clayton when the true copula is Frank is
low. Similarly, the proportion of rejecting Frank when the true copula is Clayton is
also low. By contrast, since Joe has the upper-tail dependence, the IR test has a much
higher power of rejecting Joe when the true copula is Clayton or Frank, or rejecting
Clayton or Frank when the true copula is Joe.

We also observe low proportions of rejecting Frank when the true copula is Gaus-
sian for all sample sizes, Kendall’s T values, and censoring rates (Figure[2). It could
be because both families have no dependence on either tails. However, when the true
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copula is Frank and the null copula is Gaussian, the test performs better (Figure ). It
calls for more investigations.

As pointed out in the introduction, our IR test can be regarded as a specific form of
comparing the two information matrices in the class of generalized IM tests (Prokhoroy
et al. 2019). The other forms include the White test, determinant White test, trace
White test, determinant IR test, log trace IM test, log GAIC IM test, log eigenspec-
trum IM test, and eigenvalue test. However, for the case of scaler parameter, i.e.,
p = 1, some tests are equivalent. Specifically, the determinant IR and eigenvalue
tests are the same as the IR test: R, = S, (@n)*lvn (/én) The White, determinant
White, and trace White are the same; they all take a difference: T,, = V. (6,1) -S, (én)
The log trace IM, log GAIC IM, and log eigenspectrum IM are equivalent, given as
Zy, = 10g[S,(6,)] — 10g[V,,(8,)]. Thus, in this study, we compare our IR test R, with
Ty, referred to as the White test, and Z,,, referred to as the log IM test. The P-values of
these two tests are also obtained by the parametric bootstrap resampling procedure
described in Section The results show that these three tests perform similarly for
most scenarios.

5.4 Copula Selection

We also examine how well using the P-value of the IR test as the criterion can cor-
rectly select the true copula as the best among the four families. With each simulated
data, we obtain the P-value for testing each of Clayton, Frank, Joe, and Gaussian as
the null hypothesis. Following Section[4.2, we select the copula family with the largest
P-value as the best. Figures 17 - 28 in the supplementary material report the percent-
age of choosing each family as the best among the 500 replications. Consistent with
our findings on the test power, when the sample size is larger or the dependence is
stronger or the censoring rate is lower, the proportion of selecting the true copula as
the best is higher. Copulas with similar properties are more difficult to tell apart. For
example, when the true copula is Gaussian, Frank copula is a strong competitor, even
when the sample size is 600, Kendall’s T = 0.7, and the event times are fully observed.
In addition, our IR test performs similarly to the other two generalized IM tests.

6 Data Example

The data example is 748 dizygotic female twin pairs from the Australian NHMRC
Twin Registry (Duffy et al[1990), and the bivariate event times (T;, T») are the ages
at appendicectomy measured for each twin pair. For this data, the event times are
heavily censored with the censoring rate of about 74%. Among the 748 twin pairs, 82
(11%) pairs have both event times observed, 222 (30%) have one event time observed
and the other censored, and 444 (59%) have both event times censored. Figure B|plots
the estimated pseudo-observations {(Uj;, Uj),i=1,--- ,n}.

Emura et al. (2010) analyzed this data and concluded that Gumbel provides the
best fit over three other copula families: Clayton, Frank, and Log-copula. In this
manuscript, we test for five copula families: Clayton, Frank, Gumbel, Joe, and Gaus-
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sian using our proposed IR test as well as the White test and log IM test. Table 2| re-
ports their test statistic values and P-values calculated using B = 1000 bootstrapped
resamples.

Among the three tests, only the log IM test reaches the same conclusion as Emura
et al. (2010): Gumbel is the best copula family with the P-value 0.307, and Clayton
is the second best with the P-value 0.273. In contrast, for both our IR test and White
test, Clayton is the best copula and Gumbel is the second. However, under the IR
test, the difference of the P-values between Clayton and Gumbel is tiny: the P-values
is 0.296 for Clayton and 0.291 for Gumbel. It indicates that Gumbel’s goodness-of-fit
is comparable with Clayton. On the other hand, under the White test, the lead of
Clayton over Gumbel is more substantial (P-values 0.379 for Clayton and 0.258 for
Gumbel).

7 Concluding Remarks

Information matrix equivalence plays an important role in model diagnosis, and
a number of GoF tests have been established based on this principle. However, this
equivalence has not been verified for censored data. Thus, one major contribution of
this work is to prove the equivalence of the two information matrices under a class
of semiparametric copula models for multivariate data in the presence of right cen-
soring. The proof provides a framework which might be extended to other censoring
schemes.

Based on this equivalence, we propose an IR test for the specification of the cop-
ula function via comparing consistent estimates of the two information matrices. This
test is likelihood-based and depends on only the parametric form of the assumed
copula function. Thus, it can be applied to all copula families, and do not rely on
choices of weight functions, bandwidth, or smoothing parameters. In addition, the
IR statistic is asymptotically equivalent to a class of PIOS test statistics, which pro-
vides a global measure of how the assumed model fits the data via the leave-one-out
cross-validation. Furthermore, the IR test does not assume any parametric form of
alternative copulas. It can be regarded as an omnibus test.

In this manuscript, we derive the asymptotic properties of the IR statistic following
similar arguments in Chen et al.|(2010). They considered a more general distributional
assumption for censoring: the joint distribution of the bivariate censoring times could
be different across subjects. Under this relaxed assumption, the pseudo-true value of
the copula parameter is defined as

n
0, = argm(;alxn_l ; E°[€(6, Uiy, Up)]-

This value depends on the sample size since the observed survival times might not be
identically distributed due to non-identically distributed bivariate censoring times.
Correspondingly, the definitions of the sensitivity and variability matrices can be
modified as S*(8) = n 1 Y1, E°[—lge] and V*(0) = n~ 1Y} | E°[lel}], which also
depend on the sample size. It worths pointing out that the proof of Theorem [1|is still
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valid, and thus, the information matrix equivalence still holds, and the IR test is still
valid. However, for generating bootstrap resamples of censoring times, the Kaplan-
Meier estimator of the censoring survival function is not appropriate when assuming
heterogenous censoring distribution. Under this assumption, it would require some
subject-specific covariates Z; to estimate the subject-specific censoring survival func-
tion G, (t) = Pr(Cj, > t | Z;) forr =1, 2.

In general, if testing within Archimedean families, the GoF tests that target these
families are expected to be more powerful than our proposed IR test because they uti-
lize their distinct properties such as cross-ratio functions or Kendall distribution. On
the other hand, our proposed IR test can compare copula families beyond Archimedean.
In Section we demonstrate how to use the P-value of the IR test to select the best
copula family among several candidates.

Equation (8) is the key step for proving the information matrix equivalence. It also
implies that this equivalence holds for any censoring distribution when the assumed
copula is correctly specified. However, when the assumed copula is misspecified, the
difference between two information matrices depends on the censoring distribution.
Our simulation study has shown that the censoring rate is one factor that affects the
performance of the IR test. We hypothesize that besides the censoring rate, the shape
of the censoring distribution might be another factor. For example, as discussed in our
simulation, the shape of the exponential distribution for censoring leads to insufficient
information on the lower-tail dependence. It causes the low power of differentiating
between Clayton and Frank. It is our interest to conduct more studies to investigate
other distributions for censoring, such as gamma, Weibull, or uniform distributions.

In the simulation study and data example, we compare our IR test with two other
forms of generalized IM tests, and they perform similarly. For example, all three tests
exhibit a lower power for rejecting Frank when the true copula is Gaussian because
they both have neither upper-tail or lower-tail dependence. Our studies focus on
the case of scalar copula parameter, i.e., p = 1, for which the class of generalized
IM tests reduces to three forms of comparing IMs: ratio, difference, and difference of
logarithm. However, if p > 1, the class would not be limited to only these three forms.
In addition, different IM-based tests would perform more diversely. It worths further
investigation for cases with p > 1.

8 Supplementary Material

In the supplementary material, we present the expressions of the copula function,
and the derivatives of the log-likelihood function for Clayton, Frank, Joe, and Gaus-
sian copulas. We also show more results of the simulation study, including (i) scatter
plots (Figures 1 - 4) of estimated pseudo-observations (lAIﬂ, lAliz) from one simulated
bivariate censored data, (ii) QQ plots (Figures 5 - 8) of the IR and PIOS statistics when
the null copula is the true copula, (iii) bar plots (Figures 9 - 16) of proportions of re-
jecting the null hypothesis for sample sizes 100 and 300, and (iv) bar plots (Figures 17

- 28) of proportions of selecting different copula families as the best copula.
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Table 1: Simulation results: Empirical type I errors for the IR test R,, White test T}, and
log IM test Z,,.

No Cen.
R, T,

Zn

20% Cen.
R, T, Zy

IR,

40% Cen.
T

Zn

Ry

70% Cen.
T

Zn

0.3

100
300
600

0.038 0.018
0.036 0.026
0.044 0.036

0.044
0.032
0.046

Clayton Copula

0.034 0.014 0.048
0.030 0.018 0.034
0.034 0.030 0.036

0.024
0.022
0.018

0.002
0.010
0.014

0.026
0.020
0.022

0.000
0.012
0.012

0.000
0.002
0.004

0.078
0.016
0.014

0.5

100
300
600

0.048 0.028
0.036 0.030
0.048 0.040

0.038
0.042
0.052

0.032 0.022 0.036
0.028 0.018 0.024
0.042 0.040 0.042

0.032
0.024
0.022

0.012
0.018
0.018

0.040
0.028
0.024

0.022
0.008
0.004

0.000
0.004
0.004

0.040
0.010
0.008

0.7

100
300
600

0.054 0.026
0.050 0.034
0.028 0.028

0.058
0.050
0.034

0.026 0.014 0.026
0.036 0.024 0.040
0.018 0.016 0.020

0.020
0.014
0.014

0.010
0.012
0.010

0.022
0.018
0.014

0.016
0.016
0.008

0.002
0.006
0.002

0.016
0.018
0.008

0.3

100
300
600

0.032  0.034
0.050 0.052
0.036 0.040

0.038
0.052
0.030

Frank Copula
0.028 0.032 0.044
0.048 0.046 0.052
0.040 0.040 0.034

0.040
0.046
0.038

0.048
0.044
0.038

0.050
0.042
0.036

0.022
0.058
0.040

0.034
0.060
0.040

0.034
0.050
0.036

0.5

100
300
600

0.038 0.036
0.054 0.054
0.038 0.028

0.044
0.048
0.028

0.038 0.036 0.058
0.038 0.036 0.040
0.038 0.042 0.040

0.048
0.040
0.036

0.054
0.040
0.038

0.066
0.048
0.034

0.024
0.030
0.038

0.024
0.034
0.038

0.048
0.048
0.034

0.7

100
300
600

0.048 0.040
0.066 0.060
0.040 0.040

0.068
0.058
0.034

0.050 0.038 0.058
0.054 0.046 0.048
0.042 0.042 0.034

0.066
0.054
0.038

0.046
0.040
0.038

0.078
0.058
0.038

0.018
0.030
0.042

0.010
0.030
0.042

0.118
0.052
0.064

0.3

100
300
600

0.054 0.064
0.066 0.078
0.054 0.072

0.066
0.078
0.056

Joe Copula
0.046 0.062 0.062
0.058 0.066 0.076
0.048 0.062 0.046

0.052
0.050
0.046

0.074
0.060
0.060

0.060
0.070
0.050

0.034
0.046
0.048

0.066
0.050
0.064

0.038
0.054
0.046

0.5

100
300
600

0.050 0.044
0.068 0.062
0.046 0.052

0.052
0.082
0.042

0.052 0.046 0.054
0.058 0.060 0.078
0.044 0.052 0.048

0.040
0.050
0.050

0.034
0.048
0.054

0.050
0.060
0.048

0.048
0.056
0.046

0.036
0.054
0.054

0.050
0.062
0.044

0.7

100
300
600

0.050 0.038
0.056 0.042
0.062 0.062

0.046
0.050
0.062

0.054 0.040 0.052
0.050 0.044 0.050
0.074 0.074 0.068

0.044
0.052
0.060

0.034
0.042
0.062

0.038
0.050
0.060

0.046
0.064
0.080

0.028
0.046
0.084

0.042
0.052
0.076

0.3

100
300
600

0.026 0.014
0.040 0.028
0.054 0.044

0.048
0.046
0.056

Gaussian Copula

0.042 0.016 0.044
0.040 0.034 0.044
0.052 0.044 0.060

0.034
0.052
0.070

0.014
0.042
0.062

0.036
0.052
0.070

0.014
0.024
0.042

0.000
0.012
0.030

0.018
0.034
0.036

0.5

100
300
600

0.022 0.018
0.046 0.042
0.042 0.036

0.044
0.042
0.044

0.022 0.012 0.042
0.040 0.034 0.048
0.062 0.048 0.060

0.022
0.054
0.052

0.002
0.036
0.048

0.034
0.054
0.056

0.018
0.024
0.038

0.002
0.010
0.028

0.026
0.032
0.042

0.7

100
300
600

0.032 0.028
0.048 0.042
0.048 0.042

0.040
0.044
0.046

0.030 0.020 0.032
0.044 0.040 0.040
0.048 0.042 0.050

0.026
0.046
0.044

0.010
0.046
0.044

0.026
0.042
0.054

0.022
0.012
0.024

0.006
0.008
0.014

0.020
0.016
0.024
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Table 2: Data example: The PMLE 0, of the copula parameter, the test statistic with the
P-value (in the paratheses) of the IR, White, and log IM tests for Clayton, Frank, Gumbel,

Joe, and Gaussian.

Copula

-~

On

IR

White

log IM

Clayton
Frank
Gumbel
Joe
Gaussian

0.750
1.795
1.162
1.204
0.304

1.085 (0.296)
1.075 (0.039)
1.060 (0.291)
1.085 (0.215)
1.083 (0.166)

0.003 (0.379)
0.001 (0.038)
0.051 (0.258)
0.045 (0.191)
0.035 (0.188)

0.081 (0.273)
0.072 (0.046)
0.058 (0.307)
0.081 (0.238)
0.079 (0.177)
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Figure 1: Simulation results: Proportions of rejecting Clayton when the true copula is
Clayton, Frank, Joe, or Gaussian and the sample size is 600. The dashed lines represent
the significance level 0.05.
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Figure 2: Simulation results: Proportions of rejecting Frank when the true copula is Clay-
ton, Frank, Joe, or Gaussian and the sample size is 600. The dashed lines represent the
significance level 0.05.
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Figure 3: Simulation results: Proportions of rejecting Joe when the true copula is Clayton,
Frank, Joe, or Gaussian and the sample size is 600. The dashed lines represent the signifi-
cance level 0.05.
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Figure 4: Simulation results: Proportions of rejecting Gaussian when the true copula is
Clayton, Frank, Joe, or Gaussian and the sample size is 600. The dashed lines represent
the significance level 0.05.
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Figure 5: Data example: Scatter plot of estimated pseudo-observations U;; and Uj.
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Appendix
A Proof of Theorem

The outline of the prove is as follows. First, we will show that for an assumed
copula with a given 6,

§7(0) = V*(6) — A(6), (10)

where A(0) is a p x p matrix. Second, we prove that if the assumed copula is correctly

specified, A(0) = 0,xp.

Derive S*(0) = V*(0) — A(6). The sensitivity and variability matrices in Equa-
tion @) are functions of £¢fj and £gg. We derive the expressions of these two quantities.
By Equation (), we have

C C ¢ C
o = (sl(szf +6(1—06)22 41— 51)52%;’ +(1-6)(1— 52)@9. (11)

©
Thus,
cocl C1,0C] 2,6 CoC!
Coly =6107 250 4 61(1—6) — 52 4+ (1—61)0——22 + (1 —61) (1 — 52)%,
C c? 3
(12)
and
C CoT) C €1,0C
lop = 5162 [99_629]‘1‘51(1—52)[ 100 219
C1 (Bl
€200 T260T29 Coo (Dg@/a
1- £200 2020\ L (1-4)(1—dy) | -2 — .3
+ m[ B -a)0-a) |-t o

Consequently, —{gg = (gl — A, where A is a p X p matrix with the (j, k)-th element

e1,0,0, (11, 12; 0)
c1(u1, up; )

Cojo, (11, 12; 0)
(D(Ml, Up, 9) !

e, (U1, U2; 0)
c(u1,up; 0)
20,0, (11, 12; 0)

ca(u, up; 0)

+01(1—d2)

Ajk(8,u1,uz) = 6162

+(1—61)62 +(1-=461)(1—6,)

Note that, for simplicity, we suppress (d1,J;) from the A function. Thus, A(6) is a
p x p matrix with the (j, k)-th element A (0) = E°[A; (6, U], U3)].
To derive the expression of A (8), we invoke the double expectation theorem by

conditioning on (Cy, (), ie., Ay(0) = E%CuCz) {IE‘ET]’TZ)[Ajk\Cl,Cz]}, where E?T],Tz)
and Ef. -, denote the expectations w.r.t. the true distributions of (T1, T2) and (Cq, C2),
respectively. In Remark |1} we stated that given that the true marginal survival func-

tions HY(-) are known, the copula C can be regarded as the joint CDF of (Y3, Y>) with
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Y, = H)(T,), r = 1,2, which are uniformly distributed on (0,1). Thus, the expectation
w.r.t. (T1, To) is equivalent to the expectation w.r.t. (Y7, Y2), which gives

Aj(8) =Eic, o, {E%yl,yz) [A(6; Uy, U3)[ Gy, G } - (14)

In addition, U? can be expressed as U = max{Y;, H'(C;)} and §, = I (Y, > H)(C,)).

Proof of Aj;(6*) = 0 under correct specification. If the assumed copula C is

correctly specified, EY is taken w.r.t. C as follows:
y sp (Y1,Y2)

E%Ysz) [A]'k|C1,C2] = // A]'k(e,' LI&’, Ug)a:(ul,uz; B)dulduz.

Given the regularity conditions R1 - R6, by the law of total probability, we can show
that this conditional expectation E(EY1,Y2) [Aik|C1, Co] = A1) + A) + Aa) + Ao
where A(Ll), A(LO), «4(0,1), and A(o,o) correspond to each censoring scenario (61,62),
given as

A1 (0,C1,Co) = / /[H? e ey o 1125 O, (15)
A@10)(0,C1,Cr) = //[H?(Cl), 0H9(C)] e, (U1, t2; 0)durduy, (16)
Ay (6,C1,C) = | /[O,HO s 0012 O (17)
A0,0)(8,C1,Cr) = / /[O,HO O Coj6, (U1, t2; 0)duaduy. (18)

* Under the scenario withé; =Tand 6 =1, Ay = o6 /c with both U} = Y7 and
Uj = Y, being random variables. In addition, the integral under this scenario
is taken over the region of (Y1,Y2): Oq1 = [H{(Cy),1] x [H3(C2),1]. Thus, the
conditional expectation is

C Ui, U ,6
// GGk L2 ) (ul,uz;(-))duldug = // (nggk(ul,uz; G)dulduz,
011 Qll

ull uZI

which results in Ay in Equation (15).

e Under the scenariowithdy =1land d, =0, A = 1,06, /c1 with Uj = H3(Cy) asa
fixed number and U] = Y; as the only random variable. In addition, the integral
under this scenario is taken over the region of (Y1,Y2): Qi = [H](Cy),1] x
[0, H5(Cy)]. Thus, the conditional expectation is

1,010, (11, Hy(C2); 0) {/ }
u,uy; 0)duy » du
/[H°<c1> i (i, H3(C);0) gy “ 1 OB p i

= o. (11, HS(C2); 0)du,
(o o H2(C2):8)
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since f[O,Hg(Cz)} c(uq, up;0)duy = «1(ug, HY(Cy);0). The regularity condition R6
ensures that functions 0,6, j,k=1,---,p, are dominated by integrable function

w.rt. (uy,up) for all 8. It allows the following interchangeability between the
integral and derivation in 1,06,

82
e ,11g; 0)duy = / o (111, 112; 0)dts.
anBGk /[O,Hg(Cz)](B(ul uz; 0)du; [0,HY(C2)] 69/9"(“1 t2; 8)duz

Thus, the conditional expectation is [ me e, (11, u2; 0)durduy, which is A1g in
Equation (16).

Under the scenariowithdy = 0and d, =1, A = 2,06, /ey with U] = H{(Cy) asa
fixed number and Uj = Y> as the only random variable. In addition, the integral
under this scenario is taken over the region of (Y1,Y2): Qn = [0, H](C1)] x
[H5(C2),1]. Thus, the conditional expectation is

/ e { / o (1, 12; 0)du }du
[Hg(C2),1] @z(H(])(Cl),uz;e) [O,H?(Cl)] 1, U2, 1 2

= 0. (HY(Cy), uz; 0)dusy,
ey "2 PG 1 O)
since f[o,Hg’(cl)] e(ur, uz; 0)duy = c2(H{(C1), u2;0). Similarly, in ¢z, ,, the inte-
gral and derivation are interchangeable as follows:

82
e ,11y; 0)duy = / o (111, 12; 0)duy.
39j89k /[O,H?(Q)]@(ul uz; 8)dus [0,HY(Cy)] 69/9"(“1 ti2; 0)duy

Thus, the conditional expectation is [ me e, (11, U2; 0)durduy, which is Agp in
Equation (17).

Under the scenario with §; = 0and 6, =0, A = Coyo, /C with both U} = H{(C)
and Uj = Hj(C) as fixed numbers. In addition, the integral under this scenario
is taken over the region of (Y1,Y2): Qoo = [0, H](C1)] x [0, H3(C2)]. Thus, the
conditional expectation is

i (ont e {// ¢(u1, 12; 0)dudu }
(D(H%<Cl)/ Hg(CZ), e) . [O'H?(Cl)]X[O,Hg(CZ)] 1,42, 1aUn
:(D(’j(?k(Hg(Cl)zHg(Cz);B).

Again, in (Dgl.gk, the integral and derivations can be interchangeable as follows:

9?
90.00) ,up; 0)dud
96,00 //[OIH?(Q)]X[O,HS(Q)](B(ul tz; 0)diurditz

- j ,U2; 0 du-duo.
/[O’H?(Cl)}X[O'Hg(Cz)} @9191((7/[1 Uy ) urduy

Thus, the conditional expectation is Ag in Equation (18).
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Combining all the four censoring statuses, we have

E° Ai|Cq,Col = // co.0. (U1, Up; 0)durdus.
(T1,T2)[ ! ‘ ] 011 U Q10U Q01 U Q0o jk( )

Again, due to the interchangeability between the integral and derivation, we have

E?TLTZ) [A]-k\Cl, Cz] Ui, Up, B)dulduz.

82
= — C
aQj‘aek //011 U Q10 U Qo1 U Qoo (
Since Q11 U Q10U Qo1 U Qoo = [0,1]? and ff[o 12 c(uy, up; 0)durduy; = 1 for any 0, we
can show that for any 6, ]E‘EY1 YZ)[Ajk|Cer2] = 0forjk =1,---,p. It implies that

A (0) = E%Cl,Cz) {E%YI,YZ)[AJ"(|C1'CZ]} = 0. Furtermore, evaluating at 8 = 6, we
have Aj(6") = 0, which proves Theorem 1]

Expression of Aj(0") under copula misspecification. Again, we use the dou-

ble expectation theorem in Equation (I4). If the assumed copula is misspecified, this

0
conditional expectation E[EYLYZ)[A]‘](’C1,C2] is taken w.rt. C° Let ¢! = %’2’“2),

20
r=12and ¢’ = %. Following the above derivations under correct copula

specification, we can show that
By, 1) 1Bk C1, G = //Ou e, (11, U2; 0)wi1 (ur, uz; 0)durduy
+ //010 CGij(ull H5(c2); 0)wig(uy, H(c2); 0)duy
T //QO1 C"f"k(H(l)<C1)'”2i 0)wio(Hy(c1),uz; 0)duy
+ [ o (H(er), H(c2); 0w (H (e2), H(e2); 0) s,

where wy1 (11, up;0) = " (u1, uz)/c(u, uz; 0), wio(u1, u2; 0) = ¢ (U1, uz)/c1 (11, uz; 0),

wo1 (U1, u2;0) = (11, uz)/co(ug, u2;0), and woo (11, ua; 0) = C°(uy, uz)/ C(uy, uz; 0).
By Definition[1} when the assumed copula is misspecified, there exists some (1, u2)

such that wy, 4, (11, up; 0") # 1 for some dq,dp = 0,1. Thus, for some j,k=1,---,p,

92 .
36,0; //[0,1]2 c(uy, up; 0 )durduy.

Consequently, Ajx(8") # 0 for some j,k=1,---,p.

Efy, y,) [k (07, U3, Uz)|C1, Co] #

B Proof of Theorem

To show |R, —tr [S*(6%)"'V*(6*)]| = 0,(1), we need to first prove the consis-
tency of S,,(8,,) and V,,(8,). [Chen et al|(2010) has shown the consistency of S, (8,)
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which requires conditions A2 and A4 (i) & (ii) listed in their paper. To prove the con-
sistency of V,,(8,,), our conditions R5 and C5 are analogous to Chen et al.’s those two
conditions, respectively. Thus, following the same arguments in their paper, we can
show that sup,_q 1 Ly |14e(6, U, 12)59(6 Uﬂ,lllz) I(Xjy < 17)]| is asymptotically
ignorable as 7 — 0. This together with the continuity of Lg(6,11,1p) (our condition
R5), and the consistency of the Kaplan-Meier estimate H, and the PMLE ,, leads to
1V (8) — V*(8°)]| = 0p(1).

Our condition C3 (ii) (which is equivalent to Condition A1 (ii) of Chen et al.|(2010))
ensures that S*(6},) is finite and non-singular. Thus, by Slutsky’s Theorem, it implies

tr [gn (0,)V, (@n)} converges tr [S*(0*)~'V*(6*)] in probability as n — coc.
The proof of Theorem 2] ends.

C Proof of Theorem 3|

To prove this theorem, we need to prove the following lemma:
Lemma 1 Under Conditions R1 - R6 and C1 - C7,

(1) \/ﬁ {/S\n (/én) — S*(B*)} = ﬁ Z?:l hs(e* i1, X2, 011, (51‘2) -+ 0p( ) where hs(e* X,
Xin, 011, 0i2) is a p x p matrix with the (], k)-th element hgk(e Xi1, Xin, 011, 012) Qiven
in Equation (24) being independent random variables with mean 0.

(2) \/E{Vn(en) — V*((-)*)} = WZ?zl hy (0%, Xi1, Xip, i1, 0i2), where hy (0%, X1, Xip,

0i1,02) is a p X p matrix with the (j, k)-th element hvk(ﬂ X, Xin, 011, 012) given in
Equation (25) being independent random variables with mean 0.

Proof of Lemmal Let Sj(0%) = E° [—Egjgk((-)*, Uy, Uz)] denote the (j, k)-th ele-
ment of S*(0"). Similarly, let S, Jk (5 )= -—n"1Y", b 0y (6,,, Ui, Uyp) denote the (j, k)-
th element of S,,(6,), j,k=1,---,p. By the mean-value theorem, we have

!/

n
Sujk(0n) = —n1Y g, (6%, Ui, Up) + (6, —67),

n
—n 'Yy Coj0,,0(0, Uin, Uin)
i=1 i=1

where 0 lies on the linear segment between 6* and Bn

Using the same arguments for the consistency of S.(6,), by condition C6 (i) (anal-
ogous to Chen et al.’s condition A2) and condition C6 (ii) & (iii) (analogous to Chen
et al.’s Condition A4), we can show supg_gn ' Yi', 1€6,6,,6(6, U, Up) (X < 1)l
is asymptotically ignorable as # — 0. This together with the continuity of Egjgklg (in
our condition C6 (i)) and the consistency of the Kaplan-Meier estimate and PMLE 0.,

we can show that ||[n=1 Y, Egjgklg(é, U, Up) — E° [ﬁgjgk,g((-)*, uy, Ug)} | = 0p(1). Let
Mjk(e*) = [° {Egjgkle(ﬂ*, us, US)} (a p x 1 vector). Because 0,, is \/n-consistent, we
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have
n
Su(Bn)jk = —n' Y Lo, (0%, Unn, Uin) — Mj(6%) (B, — %) + 0, (n~1/2). (19)
i=1
Again applying the mean-value theorem on Equation (19), we have
g pplymg q
Sjk(8) — S(6%)
1 -1 2
72[ 699k9 ?1/ 102) *} Z

r=1i=
M (0%)' (8, — %) + op(nfl/z) (20)

n

59 gk ur 9 uzlz u12)<u uzpr)
1

where (U;1, Uj,) lies on the linear segment between (Up, Up) and (u, uy).
Based on the expansion of 9, around 0" in Chen et al. (2010), we have

* ([ yk 1 * * —
=5"(0") 71 ) [6e(6%, Uy, Uiy) + Wi (67, Xin, bn) + Wa(87, Xin, 82)] + 0 (n™'2)
(21)
where forr = 1,2,
Wr(e*/ Xirrfsir) EO [gﬂuy(e* ul/ uz) lr( ) ’ Xl?’l 511’] (22)

with

Xr dNiy (u) /X [(Xiy > u)dA)(u)
—co Py, (1) — P, (u)

with A%(u) = —logH}(u), the true cumulative hazard function of Tj,, N;(u) =
8 l(Xiy < u), dN;y(u) = Niy(u) — Niy(u—), and Py, (u) = n= LY} Pr(Xy, > u). Us-
ing similar arguments for obtaining Equation (2I), under our condition R6 (iii) and C7
(i) (analogous to Chen et al.’s condition A3 (i) & (ii)) and condition C6 (ii) (analogous

to Chen et al.’s Condition A4 (i)), we can show that

1) = ~H,(X,) |

71 ZEG Ok, ur 9 ull/ uzZ)(u uo =n! Zhskr 9* Xir, 51;’) +Op( 1/2)1 (23)
i=1 i=1
where hg, (0%, Xir, 6ir) = E° {fejek,u,(e*, ug, u) I (Xy) | X, 5ir]
From Equations (20), (21), and (23), we have

n

\/ﬁ{gn,jk(an)_ (0 } 2 (0%, Xi1, Xin, 61, 010) +0p(1),

i=1
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where
hs, (0%, Xin, Xi2, 611, 012)
= [—59]-9,((3*/ h,uy) — ]*k(e*)} — hs, 1(0", Xi1,0n1) — hs, 2(0%, Xia, 6i2)
. (0°)'S*(0°) 71 [€(67, Ui, Upp) + W1 (0%, Xin, 611) + Wa (6%, Xin, 5)]  (24)

Let V]’-‘k((-)*) and vn,]-k(ﬂ*) denote the (j, k)-th element of V*(8*) and V,(8*). We
apply the same techniques above, with our condition C5 (i) (analogous to Chen et
al.’s condition A4 (i)) and condition C7 (ii) & (iii) (analogous to Chen et al.’s condition
A3 (i) & (ii)), we can show

\/ﬁ{vn,jk(an)— ;fk(e*)} v, (0, Xin, Xia, 811, 02) + 0p(1),

where
hy, (6%, X1, Xip, 011, 0i2)
= [59]-(9*/ i, Up) o, (67, U}y, Up)' — *(9*)} + hv1(07, Xin, 61n) + by 2(0%, Xin, i2)
+ ij(e*)’s*(e*)*l [Co(6%, U3, UDy) + Wi (07, Xi1, 01 ) + Wa (60", Xin, 610)] (25)
with
P (67, Xir, 0ir) = B { [ Loy, (67, U, U3) o, (67, UL, U3)
Ly (07, U3, U3) o (67, U3, U3) | ¢ 1ir(X,) | Xir, 0}

and P (0") = IE°[¢g, ¢(6", U}, U3)Le, (07, U}, U3) + Lg,0(6", U3, U3)Le, (6%, Uy, U3)].
The proof of Lemma [I]ends.

Proof of Theorem [3f Under the null hypothesis that the assumed copula function
is correctly specified, R*(8*) = S*(6*)~'V*(6*) = I, due to Theorem || and conse-
quently, by Theorem[2} R, — p = tr [I,] in probability as n — co. In addition, R, — p
can be expressed as R, — p = t7[S,(8,)'V,.(6,) — S*(6*)"1V*(8*)]. With algebraic
derivations, we have

VA(R, = p) = V/ntr [8,(8,) 1V, (8,) — 8°(67) 1V (67)

=tr [8%(0) 7 Vi { Va(B,) — V*(0) }
+tr [s*(e*)*v*(e )87 (0) 7 i {87(6") ~8.(8) }|

*

Under the null hypothes1s, S ((-)*) = V*(6*), the second term in Equation (26) be-
comes tr[S*(6%)~1y/n {S S.(6,) } The third term in Equation is 0, (1)
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because ||S(8,)'V,(8%) — S*(6*) "1 V*(8")|| = 0,(1) shown in the proof of Theo-
rem(Appendix and ||S,(8,,) — S*(6")]| = O, (n~1/%) by Lemma Thus, we can
write

1 n
Vi(R, —p) = NG hr(Xi1, X2, 01,012, 0) + 0p(1),
i=1

where

hr (0%, Xi1, Xi2, 6i1,0nn) = tr [S*(e*)fl {hv (0%, Xi1, Xi2, i1, 0in) — hS(e*/Xil/Xi2/5il/5i2)}} -
(27)

By Central Limit Theorem for independent random variables, we can show that \/n (R, —
p) converges in distribution to a normal random variable with mean 0 and variance
0% = Var[hg(Xnn, Xi2, 611, 612, 0)).

The proof of Theorem [ ends.

D Proof of Theorem 4

To prove this theorem, we need to first prove the following lemma:
Lemma 2 Under Condition R1 - R6 and C1 - C4, sup,,,, 16, — 5(_1-) | =0,(n1).
Proof of Lemma [2| The "out-of-sample” PMLE 5(71 is obtained by maximizing

)
Y152 0(0, Ust, Us2), ie, Y0y 52 Lo(0_(iy, Us1, Usz) = 0. Apply the mean-value the-
orem, we have

s=1,s#i s=1,s#i s=1,s#i
n n
=Y Lo(0n, Us1, Usp) — Lo (0, Uiy, Up) + Y Loo(6, U1, Usp) (8(_j) — 6y)
s=1 s=1,5%i

where 0 lies in the linear segment between /B\(,i) and ﬁn. Since Y i, lo (/6\,1, ﬁsl, HSQ) =0
(@n is the PMLE using all the observations), we have

0, —0(_s) = S(_1(8) 'n0o(8,, Un, Up) (28)

where §(,i) (6) = —n! Yos—1,52i Loo (6, Uy, Usy). Thus,

§(_i) (5)_1H X sup

1<i<n

~

o(8,, Uy, Upp) H .

sup ||§n —5(—1')H <nt sup
1<i<n 1<i<n

Using the same arguments for proving the consistency of S.(), we can prove that

asn — oo, §(_i) (6) — S*(6*) in probability. Our condition C3 (ii) (equivalent to Chen
et al.’s Condition Al (ii)) assumes the boundedness for the eigenvalues of S*(6),
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Sy H < co. In addition, our condition R6 (i) & (i)

which ensures that SUP; <<y
(equivalent to Chen et al.’s Condition A3) ensures that SUpPj <<y 12} (/én/ ﬁilr aiZ) | =
0y(1), and thus, sup,;,, [[n~4e(6y, Ui, Up)|| = Op(1). It leads to sup; ., [[6x —
0_ill = Op(n1).

The proof of Lemma P]ends.

Proof of Theorem 4l Recall that the PIOS test statistic is defined as

i=1 i=1
Applying the mean value theorem on ¢ (5(_i), Uy, Uyp), we have
n PR N . N 1 n N N . N2
Ty =—) Lo(6,, Un, Up) (9(71‘) - Gn) 3 Y Loo(6, U1, Up) (9(4) - 9n> ,
i=1 i=1
where 0 lies on the linear segment between 6(71‘) and 8,. Plugging in Equation ,
we have

(29)

In the proof of Lemma |2} we have shown that Hg(—i) (8) — S*(6")|| = o0p(1). In ad-
dition, because ||S,(8,) — S*(8%)|| = 0p(1), we have ||§(_i) (0) —S,(6,)| = 0p(1),
and consequently, the first term in Equation is op(l). For the second term, fol-
lowing similar arguments, we can show ||~ Y ; Log(8, U, Uin) — S*(6%) | = 0,(1).
Together with sup, ., 16, — 5(,1-) | = Op(n~1), the second term is Op(n~!). Com-
bining the two terms, we have |T, — R,| = 0,(1).
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The proof of Theorem ] ends.
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