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Abstract

Various goodness-of-fit tests are designed based on the so-called information matrix
equivalence: if the assumed model is correctly specified, two information matrices that
are derived from the likelihood function are equivalent. In the literature, this principle
has been established for the likelihood function with fully observed data, but it has
not been verified under the likelihood for censored data. In this manuscript, we prove
the information matrix equivalence in the framework of semiparametric copula mod-
els for multivariate censored survival data. Based on this equivalence, we propose an
information ratio (IR) test for the specification of the copula function. The IR statistic
is constructed via comparing consistent estimates of the two information matrices. We
derive the asymptotic distribution of the IR statistic and propose a parametric boot-
strap procedure for the finite-sample P-value calculation. The performance of the IR
test is investigated via a simulation study and a real data example.

Key words: blanket test, copula selection, in-and-out-of-sample pseudo likelihood
ratio test, omnibus test, parametric bootstrap.

1 Introduction
As a graduate student, one learned an important derivation about the likelihood

method: assume a random variable X has a distribution function f (x; θ) (probabil-
ity density function or probability mass function) with a p-dimensional parameter
θ. Under certain regularity conditions (White 1982) assumed on f (x; θ), we have the
following equation:

−
∫︂

∂2 log f (x; θ)

∂θ∂θ′
f (x; θ)dx =

∫︂ [︃
∂ log f (x; θ)

∂θ

]︃ [︃
∂ log f (x; θ)

∂θ

]︃′
f (x; θ)dx. (1)
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When f (x; θ) is the true data generating mechanism of X, the left-side of Equation
(1) can be expressed as a p × p matrix

E
0

[︃
−∂2ℓ(θ; X)

∂θ∂θ′

]︃
≜ S∗(θ),

where ℓ(θ; x) = log f (x; θ) is the log-likelihood function, and E0 denotes the expecta-
tion with respect to (w.r.t.) the true distribution of X. This matrix is referred to as the
Fisher information matrix, or the sensitivity matrix. The right-side of Equation (1) can
be expressed as another p × p matrix

E
0

{︄[︃
∂ℓ(θ; X)

∂θ

]︃ [︃
∂ℓ(θ; X)

∂θ

]︃′}︄
≜ V∗(θ),

called the variability matrix (Varin et al. 2011). Equation (1) becomes S∗(θ) = V∗(θ),
which is referred to as the second Bartlett identity (Bartlett 1953a;b) or information
matrix equivalence (White 1982).

Several goodness-of-fit (GoF) tests for detecting model misspecification were de-
signed through comparing these two information matrices. White (1982) proposed an
information matrix (IM) test based on the elements of V∗(θ)−S∗(θ). Zhou et al. (2012)
proposed an information ratio test by comparing S∗(θ)−1V∗(θ) with a p-dimensional
identity matrix. Golden et al. (2013) and Golden et al. (2016) extended these two com-
parisons to a general framework, called generalized IM test, which covers a range of
comparison forms. Later, these tests were applied to copula models for multivariate
random variables (Huang and Prokhorov 2014, Zhang et al. 2016, Prokhorov et al.
2019).

Copulas have been a popular tool for modeling the dependence structure of multi-
variate data, such as multivariate time series (Chen and Fan 2006a;b) and multivariate
survival times (Clayton 1978, Hougaard 1986, Oakes 1989, Shih and Louis 1995). In
this manuscript, we are interested in a class of semiparametric survival copula models
for multivariate survival times, denoted by (T1, T2, · · · , Td). The multivariate survival
times can be times to different types of events collected on each subject, such as time
to relapse or second cancer and time to cardiovascular disease among breast cancer
survivors (Li et al. 2020). Or they are times to the same type of event from different in-
dividuals within a cluster, such as the survival times of acute lymphoblastic leukemia
patients from 104 institutions (Othus and Li 2010).

A survival copula specifies the joint survival function H(t1, · · · , td) = Pr(T1 >
t1, · · · , Td > td) as

H(t1, · · · , td) = C (H1(t1), · · · , Hd(td); θ) , (2)

where Hr(t) = Pr(Tr > t), r = 1, · · · , d, are the marginal survival functions of indi-
vidual survival times, and C(u1, u2, · · · , ud; θ) : [0, 1]d → [0, 1] is a copula function
with a p-dimensional parameter θ. Copulas were originally proposed for modeling
the joint cumulative distribution function (CDF) of multivariate random variables,
and its properties have been extensively studied (Mikosch 2006, Nelsen 2007). The
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way that the survival copula relates the joint survival function to marginal survival
functions is completely analogous to the way that the original copula connects the
joint CDF to marginal CDFs. Thus, the survival copula satisfies the properties of the
original copula (Georges et al. 2001, Nelsen 2007).

Copulas enjoy the flexibility in coupling different marginal distributions with a
wide variety of copula families that exhibit different dependence structures. A class
of semiparametric copula models assumes a parametric form for the copula function
but leaves the marginal distributions unspecified. Thus, a crucial element in such a
model is the specification of the copula function. Archimedean copula families, such
as Clayton, Frank, and Joe, are the most popular choices (Nelsen 2006). Li et al. (2008)
and Othus and Li (2010) considered the Gaussian copula, which belongs to the ellip-
tical families (including Gaussian and t copulas). Different copulas families display
different features. For example, in terms of the tail dependence, Clayton has a lower-
tail dependence; Joe has an upper-tail dependence; both Gaussian and Frank have no
dependence for either lower-tail or upper-tail. Misspecification of the copula function
can lead to incorrect estimation of the joint distribution as well as its derivatives, such
as conditional distributions.

The above-mentioned IM-based GoF tests (Huang and Prokhorov 2014, Zhang
et al. 2016, Prokhorov et al. 2019) were proposed for detecting misspecification of the
copula function under a semiparametric copula model. They can be regarded as the
blanket tests introduced in Genest et al. (2009): they can be applied to any copula fami-
lies and do not require selection of smoothing parameters, weight functions, or kernel
functions. However, they were designed based on the presumption that the data are
fully observed, and may not be applicable for data with missing values. For exam-
ple, survival times can be missing due to censoring, such as the termination of the
follow-up or participants being lost to follow-up.

For censored survival times, several copula specification tests were proposed, but
most are limited to Archimedean families by using their unique properties. For exam-
ple, Shih (1998) and Emura et al. (2010) designed their test statistics using the cross-
ratio function expressed as a function of the joint survival. The test statistics in Wang
and Wells (2000), Wang (2010), and Lakhal-Chaieb (2010) used the Kendall distribu-
tion, expressed in terms of the generator function. By contrast, Yilmaz and Lawless
(2011) and Lin and Wu (2020) proposed tests for any copula families while imposing
assumptions on the form of copulas under the alternative hypothesis. For example,
in Yilmaz and Lawless (2011), the null and alternative models are nested, i.e., the null
is embedded in the alternative. Lin and Wu (2020) assumes a particular form for the
alternative copulas. In addition, several tests, such as Shih (1998), Emura et al. (2010),
and Andersen et al. (2005), require the choice of a weight function or bandwidth, or
the partition of the data. According to Genest et al. (2009), they are not blanket tests.

Our goal is to propose a blanket test for multivariate censored survival times, and
we adopt the information ratio (IR) test originally proposed in Zhou et al. (2012). First,
the IR test can be applied to all parametric copula families. Second, it is likelihood-
based and depends solely on the parametric form of the null copula. Thus, it does
not impose any assumptions on the alternative copulas. Third, it does not require
any smoothing parameters, weight functions, kernel functions, or partition of the
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data. However, the first problem we encountered was whether the information matrix
equivalence, the foundation of the IR test, still holds under the likelihood for censored
data. No existing work has verified it. Thus, our first contribution is to prove this
equivalence in the presence of censoring.

The IR test was first proposed under the quasi-likelihood for cross-sectional or
longitudinal data (Zhou et al. 2012). Later, this test was extended to various models
for univariate and multivariate time series (Zhang et al. 2012; 2016; 2019; 2021). The
asymptotic properties of the IR statistic have been investigated for the above settings
where data are fully observed, but not for censored data yet. Another contribution of
our manuscript is to derive its asymptotic properties when the marginal distributions
and the copula parameters are estimated in the presence of censoring.

In this paper, we will show that if the copula function is correctly specified, the
IR statistic is asymptotically distributed as a normal random variable. However, the
expression of its asymptotic variance is complicated, so it is difficult to use an analytic
variance estimate to calculate P-values. Thus, we propose a bootstrap procedure to
approximate the statistic’s null distribution via generating replications of multivariate
censored data from the null copula.

Zhang et al. (2016) established the asymptotic equivalence between the IR statis-
tic and an in-and-out-of-sample pseudo (PIOS) likelihood ratio test statistic. The
PIOS statistic is based on the comparison between two types of pseudo likelihood:
the in-sample likelihood, which is the full likelihood, and the out-of-sample likelihood,
which is a “leave-one-out" cross-validated likelihood. In this manuscript, we will
prove the asymptotic equivalence between these two test statistics with censored
data. We created an R package called IRtests that implements both tests for cop-
ula specification with bivariate censored data, and it is available at https://github.
com/michellezhou2009/IRtests.

The remainder of the manuscript is organized as follows. In Section 2, we prove
the information matrix equivalence under a semiparametric copula model for cen-
sored survival times. We define the IR statistic in Section 3 and discuss its asymptotic
properties. In Section 4, we describe how to calculate P-values via bootstrap resam-
pling and how to use the P-values to select the best copula family. Section 5 presents
the simulation studies for investigating the finite-sample performance of the proposed
IR test and comparing it with the other two forms of generalized IM tests. In Section
6, we apply the IR test to a data example. Concluding remarks are given in Section 7.

2 Information Matrix Equivalence in the Presence
of Censoring

For ease of illustration, we present the proposed methods in the context of bivari-
ate event times (T1, T2). We denote the true marginal survival functions by H0

r(t) with
the probability density function f 0

r (t) = −dH0
r(t)/dt. We assume a copula model

C(u1, u2; θ) in Equation (2) for the joint survival function of (T1, T2) with θ ∈ Θ ⊂ Rp.
To differentiate from this assumed copula, we denote the true copula byC0(u1, u2). Ac-
cording to Sklar (1959), for a continuous random vector (T1, T2), there exists a unique
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copula function C0(u1, u2) such that Pr(T1 > t1, T2 > t2) = C
0 (H0

1(t1), H0
2(t2)) for all

(t1, t2).

Definition 1 The assumed copula C(u1, u2; θ) is said to be correctly specified, denoted as
C

0(u1, u2) ∈ Cθ = {C(u1, u2; θ), θ ∈ Θ}, if there exists θ0 ∈ Θ such that C (u1, u2; θ0) =
C

0 (u1, u2) for all (u1, u2) ∈ (0, 1)2. The value θ0 is called the true value of the copula
parameter. On the other hand, if for any θ ∈ Θ, there exists some (u1, u2) ∈ (0, 1)2 such that
C (u1, u2; θ) ̸= C

0 (u1, u2), we say that the assumed copula C(u1, u2; θ) is misspecified.

In the remainder of the manuscript, we let gθ and gθθ denote the first-order and
second-order partial derivatives of a function g w.r.t. θ.

2.1 Likelihood Function
As mentioned earlier, survival times (T1, T2) are often subject to censoring. Let

(C1, C2) denote the bivariate censoring times. We assume independent censoring, i.e.,
(C1, C2) are independent of (T1, T2). The observed variables include

Xr = min{Tr, Cr}, and δr = I(Tr ≤ Cr), r = 1, 2, (3)

where I(·) is the identity function. Note that in some situations both event times are
subject to a common censoring time, i.e., C1 = C2.

Under a semiparametric copula model, the parameters consist of the unspecified
marginal survival functions and the copula parameter. Since our focus is the specifi-
cation of the copula function, we regard θ as the parameter of interest and marginal
survival functions as nuisance parameters. For now, let us assume that the true marginal
survival functions H0

r , r = 1, 2, are known. Thus, given (X1, X2, δ1, δ2), the log-likelihood
under the assumed copula is a function of the copula parameter θ. It can be written as
the sum of two components: ℓ(θ) = C(θ, U0

1, U0
2, δ1, δ2) + F(X1, X2, δ1, δ2), where C is a

function of the assumed copula on (U0
1, U0

2) with U0
r = H0

r(Xr), r = 1, 2. The second
term F = δ1 log f 0

1(X1) + δ2 log f 0
2(X2) is a function of marginal densities only, which

can be regarded as a constant. Thus, the log-likelihood can be defined as

ℓ(θ; U0
1, U0

2, δ1, δ2) = C(θ, U0
1, U0

2, δ1, δ2)

= δ1δ2 log c(U0
1, U0

2; θ) + δ1(1 − δ2) log c1 (U0
1, U0

2; θ)

+ (1 − δ1)δ2 log c2 (U0
1, U0

2; θ) + (1 − δ1)(1 − δ2) logC (U0
1, U0

2; θ) (4)

with cr(u1, u2; θ) = ∂C(u1,u2;θ)
∂ur

for r = 1, 2 and c(u1, u2; θ) = ∂2
C(u1,u2;θ)
∂u1∂u2

.

Remark 1 The survival copulas C and C0 can be regarded as the assumed and true joint
CDF for (Y1, Y2) with Yr = H0

r(Tr), r = 1, 2, which are uniformly distributed on (0, 1). The
above log-likelihood function is also the log-likelihood function for data (U0

1, U0
2, δ1, δ2), where

U0
r and δr can be expressed as U0

r = max{Yr, H0
r(Cr)} and δr = I (Yr ≥ H0

r(Cr)).

Remark 2 If the bivariate event times (T1, T2) are fully observed, i.e., δ1 = δ2 ≡ 1,

ℓ(θ; U0
1, U0

2, δ1, δ2) = log c(U0
1, U0

2; θ). (5)
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Definition 2 Given the log-likelihood function in Equation (4), we define

θ∗ = arg max
θ∈Θ

E
0 [ℓ(θ; U0

1, U0
2, δ1, δ2)] , (6)

as the pseudo-true value of the parameter θ, where E0 takes the expectation w.r.t. the true
distributions of (T1, T2) and (C1, C2).

If the assumed copula is correctly specified, the pseudo-true value θ∗ = θ0 (Shih
and Louis 1995, Chen et al. 2010); if the assumed copula is misspecified, θ∗ might not
be equal to θ0.

2.2 Information Matrix Equivalence
Given the above log-likelihood function in Equation (4), the sensitivity and vari-

ability information matrices, both p × p dimensional, are defined as

S∗(θ) = E
0 [−ℓθθ] and V∗(θ) = E

0
[︁
ℓθℓ

′
θ

]︁
. (7)

In the supplementary material, we provide expressions of ℓθ and ℓθθ for four copula
families: Clayton, Frank, Joe, and Gaussian.

The proof of the information matrix equivalence in Theorem 1 requires the follow-
ing regularity conditions R1 - R6. First, we introduce all the required notation. Let
∥x∥ denote the usual Euclidean metric of any p-dimensional vector x = (x1, · · · , xp),

i.e., ∥x∥ =
√︂

x2
1 + · · ·+ x2

p. For a p × p matrix A, define ∥A∥ =
√︂

∑
p
j,k=1 a2

jk, where

ajk is the (j, k)-th element of A. For simplicity, in the remaining of the manuscript, we
suppress δ1 and δ2 from the log-likelihood function ℓ(θ, u1, u2, δ1, δ2) as well as its par-
tial derivatives defined as follows. For j, k = 1, · · · , p, let ℓθj = ∂ℓ/∂θj denote the j-th
element of the p × 1 vector ℓθ, and let ℓθjθk(θ, u1, u2) = ∂2ℓ/∂θj∂θk denote the (j, k)-th
element of the p× p matrix ℓθθ(θ, u1, u2). Define ℓθj,θ = ∂ℓθj /∂θ and ℓθjθk ,θ = ∂ℓθjθk /∂θ,
both p × 1 vectors. For r = 1, 2, let ℓθj,ur = ∂ℓθj /∂ur and ℓθjθk ,ur = ∂ℓθjθk /∂ur. Let ℓθ,ur

denote a p × 1 vector with the j-th element ℓθj,ur . Let ℓθθ,ur denote a p × p matrix with
the (j, k)-th element ℓθjθk ,ur .

Our regularity conditions are:

R1 (i) {(Ti1, Ti2), i = 1, · · · , n} is an independent and identically distributed (i.i.d.)
sample from an unknown joint survival function C0(H0

1(t1), H0
2(t2)) with

continuous marginal survival functions H0
r(·), r = 1, 2;

(ii) {(Ci1, Ci2), i = 1, · · · , n} is an i.i.d. sample with joint survival function
G0(t1, t2) = Pr(Ci1 > t1, Ci2 > t2) and marginal survival functions G0

r(t) =
Pr(Cir > t), r = 1, 2;

(iii) The censoring variables (Ci1, Ci2) are independent of (Ti1, Ti2) and there is
no mass concentration at 0 in the sense that G0

r(η) → 1 as η → 0.

R2 Let Θ be a compact space of Rp. For every ϵ > 0,

lim inf
θ∈Θ:∥θ−θ∗∥≥ϵ

E
0[ℓ(θ∗, U0

1, U0
2)]−E0[ℓ(θ, U0

1, U0
2)] > 0.
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R3 The true (unknown) copula function C0(u1, u2) has continuous partial deriva-
tives.

R4 For any (u1, u2), ℓ(θ, u1, u2) is a continuous function of θ ∈ Θ.

R5 Functions ℓθj(θ, u1, u2), ℓθj,θk(θ, u1, u2), and ℓθj,ur(θ, u1, u2), j, k = 1, · · · , p, r =

1, 2, are well defined and continuous in (u1, u2, θ) ∈ [0, 1]2 × Θ.

R6 (i) ∥ℓθ(θ, u1, u2)∥ ≤ q{u1(1 − u1)}−a1{u2(1 − u2)}−a2 for some q > 0 and
a1, a2 ≥ 0 such that E0[{U0

1(1 − U0
1)}−2a1{U0

2(1 − U0
2)}−2a2 ] < ∞;

(ii) ∥ℓθ,ur(θ, u1, u2)∥ ≤ q{us(1 − us)}−as{ur(1 − ur)}−ar for some q, as, ar, and
s ̸= r such that E0[{U0

s(1 − U0
s)}ϵs−as{U0

r(1 − U0
r)}−ar ] < ∞ for some ϵs ∈

(0, 1/2);
(iii) ∥ℓθθ(θ, u1, u2)∥ ≤ q{u1(1 − u1)}−a1{u2(1 − u2)}−a2 for some q > 0 and

a1, a2 ≥ 0 such that E0[{U0
1(1 − U0

1)}−2a1{U0
2(1 − U0

2)}−2a2 ] < ∞.

These regularity conditions are similar to those listed in Shih and Louis (1995)
and Chen et al. (2010), which also focused on semiparametric survival copula models
for censored survival data. Shih and Louis (1995) referred them to as the standard
regularity conditions for maximum likelihood estimation (White 1982) in the copula
context. It is worth pointing out that our assumptions of homogenous censoring dis-
tribution (i.e., (Ci1, Ci2) follows the same joint distribution across subjects) was also
imposed in Shih and Louis (1995). However, Chen et al. (2010) allowed different cen-
soring distributions across subjects. We defer more discussions on this assumption to
Section 7. In addition, these regularity conditions except for those related to censoring
were used in Huang and Prokhorov (2014) to prove the information matrix equiva-
lence under the log-likelihood function in Equation (5) for fully observed bivariate
event times.

Theorem 1 (Information Matrix Equivalence) Assume that conditions R1 - R6 hold. If
the assumed copula is correctly specified, under the log-likelihood function in Equation (4),
S∗(θ∗) = V∗(θ∗), where S∗(θ) and V∗(θ) are the sensitivity and variability matrices defined
in Equation (7), and θ∗ is the pseudo-true value of the parameter θ defined in Equation (6).

We prove this theorem in Appendix A, where we will show that S∗(θ) = V∗(θ)−
A(θ) for any assumed copula, where A(θ) = E0

(C1,C2)

{︂
E0

(T1,T2)
[∆|C1, C2]

}︂
with

E
0
(T1,T2)

[∆|C1, C2] = ∑
δ1,δ2=0,1

∫︂ ∫︂
Ωδ1,δ2

cθθ(u1, u2; θ)wδ1,δ2(u1, u2; θ)du1du2.

Here, for each censoring status (δ1, δ2), Ωδ1,δ2 is the corresponding region for (Y1, Y2)

(Remark 1) given (C1, C2) with
⋃︂

δ1,δ2=0,1

Ωδ1,δ2 = [0, 1]2. In addition, wδ1,δ2 is a ratio of the

true copula function versus the assumed copula or a ratio of their partial derivatives.
If the assumed copula is correctly specified, wδ1,δ2(u1, u2; θ∗) ≡ 1 for all (u1, u2)

and (δ1, δ2). It leads to

E
0
(T1,T2)

[∆|C1, C2] =
∫︂ 1

0

∫︂ 1

0
cθθ(u1, u2; θ∗)du1du2 = 0, (8)
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because of the interchangeability between integrals and derivatives ensured by the
regularity conditions. Equation (8) makes A(θ∗) = 0, resulting in the information
matrix equivalence stated in Theorem 1. On the other hand, if the assumed copula is
misspecified, wδ1,δ2(u1, u2; θ∗) ̸= 1 for some (u1, u2) and (δ1, δ2), and thus, Equation
(8) will not hold, indicating S∗(θ∗) ̸= V∗(θ∗).

We define the following information matrix ratio: R∗(θ∗) = S∗(θ∗)−1V∗(θ∗). If
the assumed copula is correctly specified, R∗(θ∗) = Ip, a p-dimensional identity ma-
trix; otherwise, R∗(θ∗) ̸= Ip. The discrepancy between R∗(θ∗) and Ip implies copula
misspecification, and it can be quantified by a scalar metric: tr[R∗(θ∗)]− p, where tr(·)
denotes the trace of a matrix. This is the motivation for the IR test we will propose for
detecting copula misspecification.

3 Information Ratio Statistic under Semiparamet-
ric Copula Models

In this section, we propose an IR statistic, which is a consistent estimator of tr[R∗(θ∗)]
under the semiparametric copula model.

3.1 IR Statistic
As described earlier, a semiparametric copula model assumes that the true marginal

survival functions H0
1(t) and H0

2(t) are unspecified. Thus, obtaining a consistent esti-
mator of tr[R∗(θ∗)] requires the consistent estimation for the marginal survival func-
tions, the copula parameter, and two information matrices. Let {(Xi1, Xi2, δi1, δi2), i =
1, · · · , n} be n independent realizations of (X1, X2, δ1, δ2).
Consistent estimation of marginal survival functions and copula parameter. Shih
and Louis (1995) proposed the following two-step procedure: at the first step, each
marginal survival function is estimated by a nonparametric estimator ˆ︁Hr(t) with data
{(Xir, δir), i = 1, · · · , n}, r = 1, 2. Under the assumption that the censoring times
are independent of the event times, we consider the Kaplan-Meier estimator, which
is a consistent estimator for the marginal survival function (Kaplan and Meier 1958).
Thus, ˆ︁Uir = ˆ︁Hr(Xir) is a consistent estimate of U0

ir = H0
r(Xir), r = 1, 2, i = 1, · · · , n.

At the second step, the copula parameter θ is estimated by a pseudo maximum
likelihood estimator (PMLE), which maximizes the psuedo log-likelihood function given
as ℓn(θ) = ∑n

i=1 ℓ(θ, ˆ︁Ui1, ˆ︁Ui2). Specifically, the PMLE of θ is given as

ˆ︁θn = arg max
θ

ℓn(θ). (9)

Chen et al. (2010) established the asymptotic properties of ˆ︁θn. One of them is that,
under certain conditions, the PMLE ˆ︁θn converges in probability to the pseudo-true
value θ∗ defined in Equation (6) as n → ∞, regardless of whether the assumed copula
function is correctly specified or not. Thus, ˆ︁θn is a consistent estimate of θ∗.
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Consistent estimation of information matrices. By Equation (7), for a given value
θ, S∗(θ) and V∗(θ) are the distributional means. If the true marginal survival func-
tions are known, these two information matrices can be consistently estimated by the
empirical means:

−n−1
n

∑
i=1

ℓθθ(θ; U0
i1, U0

i2) and n−1
n

∑
i=1

ℓθ(θ; U0
i1, U0

i2)ℓθ(θ; U0
i1, U0

i2)
′.

Chen et al. (2010) provided the following consistent estimator for S∗(θ∗):

ˆ︁Sn(ˆ︁θn) = − 1
n

n

∑
i=1

ℓθθ(ˆ︁θn; ˆ︁Ui1, ˆ︁Ui2),

where U0
ir is estimated by ˆ︁Uir, and θ∗ is estimated by the PMLE ˆ︁θn. Following the

same idea, we propose the following consistent estimator for V∗(θ∗):

ˆ︁Vn(ˆ︁θn) =
1
n

n

∑
i=1

ℓθ(ˆ︁θn; ˆ︁Ui1, ˆ︁Ui2)ℓθ(ˆ︁θn; ˆ︁Ui1, ˆ︁Ui2)
′.

With the above estimators, the IR statistic is defined as

Rn = tr
[︂ˆ︁Sn(ˆ︁θn)

−1ˆ︁Vn(ˆ︁θn)
]︂

.

Next, we will present two key asymptotic properties of this IR statistic. First, Theorem
2 establishes the consistency of Rn, i.e., it converges in probability to tr[R∗(θ∗)] for
any assumed copula. Second, Theorem 3 states the asymptotic normality of Rn if the
assumed copula is correctly specified. This result will be used for designing the IR
test and copula selection in Section 4.

3.2 Asymptotic Properties of IR statistic
The consistency and asymptotic normality of the IR statistic Rn requires the regu-

larity conditions R1 - R6 listed in Section 2.2 and the following additional conditions:

C1 (i) Let L = supθ∈Θ |ℓ(θ, U0
1, U0

2)| and Lθ = supθ∈Θ |ℓθ(θ, U0
1, U0

2)|. Then

lim
K→∞

E
0 [L I(L ≥ K) + LθI(Lθ ≥ K)] = 0;

(ii) For any η > 0 and any ϵ > 0, there is K > 0 such that |ℓ(θ, u1, u2)| ≤
K|ℓ(θ, u′

1, u′
2)| for all θ ∈ Θ and all ur ∈ [η, 1) such that 1 − ur ≥ ϵ(1 − u′

r),
r = 1, 2.

C2 For r = 1, 2, if Tr is subject to non-trivial censoring (i.e., Cr ̸= ∞), then the
Kaplan-Meier estimator ˆ︁Hr is truncated at the tail in the sense that for some τr,ˆ︁Hr(t) = ˆ︁Hr(τr) for all t ≥ τr and G0

r(τr)H0
r(τr) > 0.

C3 (i) Regularity condition R2 holds with θ∗ ∈ int(Θ∗), where Θ∗ is a compact
subset of Θ;
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(ii) E0 [−ℓθθ(θ
∗, U0

1, U0
2)] has all its eigenvalues bounded below and above by

some finite positive constants;
(iii) Var0 [ℓθ(θ

∗, U0
1, U0

2) + W1(θ
∗, X1, δ1) + W2(θ

∗, X2, δ2)] has all its eigenvalues
bounded below and above by some finite positive constants, where for r =
1, 2, Wr(θ

∗, Xr, δr) is defined in Equation (22) of Appendix C;
(iv) ℓθ(θ

∗, U0
1, U0

2)+W1(θ
∗, X1, δ1)+W2(θ

∗, X2, δ2) satisfies Lindeberg condition.

C4 (i) Let Lθ,ur = supθ∈Θ ∥ℓθ,ur(θ, U0
1, U0

2)∥ and Lθθ = supθ∈Θ ∥ℓθθ(θ, U0
1, U0

2)∥.
Then

lim
K→∞

E
0 [Lθ,ur I(Lθ,ur ≥ K) + LθθI(Lθθ ≥ K)] = 0;

(ii) Let Q(θ, u1, u2) = ∥ℓθ(θ, u1, u2)∥+ ∥ℓθθ(θ, u1, u2)∥. For any η > 0 and any
ϵ > 0, there is K > 0 such that Q(θ, u1, u2) ≤ KQ(θ, u′

1, u′
2) for all θ ∈ Θ and

all ur ∈ [η, 1) such that 1 − ur ≥ ϵ(1 − u′
r), r = 1, 2.

C5 (i) For j, k = 1, · · · , p, r = 1, 2, let

LLθjθk ,ur = sup
θ∈Θ

|ℓθj,ur(θ, U1, U2)ℓθk(θ, U1, U2) + ℓθk ,ur(θ, U1, U2)ℓθj(θ, U1, U2)|,

LLθjθk ,θ = sup
θ∈Θ

∥ℓθj,θ(θ, U1, U2)ℓθk(θ, U1, U2) + ℓθk ,θ(θ, U1, U2) ℓθj(θ, U1, U2)∥.

Then,

lim
K→∞

sup
(j,k)

E
0[LLθjθk ,ur I(LLθjθk ,ur ≥ K) + LLθjθk ,θI(LLθjθk ,θ ≥ K)] = 0;

(ii) For j, k = 1, · · · , p, let

Q1,θjθk(θ, u1, u2) = |ℓθj(θ, u1, u2)ℓθk(θ, u1, u2)|
+ ∥ℓθj,θ(θ, u1, u2)ℓθk(θ, u1, u2) + ℓθk ,θ(θ, u1, u2)ℓθj(θ, u1, u2)∥.

For any η > 0 and any ϵ > 0, there is K > 0, such that Q1,θjθk(θ, u1, u2) ≤
KQ1,θjθk(θ, u′

1, u′
2) for all θ ∈ Θ and all ur ∈ [η, 1) such that 1 − ur ≥ ϵ(1 −

u′
r), r = 1, 2.

C6 (i) Functions ℓθjθk ,θ(θ, u1, u2) and ℓθjθk ,ur(θ, u1, u2), j, k = 1, · · · , p, r = 1, 2, are
well-defined and continuous in (θ, u1, u2) ∈ Θ × (0, 1)2;

(ii) For j, k = 1, · · · , p, r = 1, 2, let Lθjθk ,ur = supθ∈Θ |ℓθjθk ,ur(θ, U0
1, U0

2)| and
Lθjθk ,θ = supθ∈Θ ∥ℓθjθk ,θ(θ, U0

1, U0
2)∥. Then,

lim
K→∞

sup
(j,k)

E
0
[︂

Lθjθk ,ur I(Lθjθk ,ur ≥ K) + Lθjθk ,θI(Lθjθk ,θ ≥ K)
]︂
= 0;

(iii) For j, k = 1, · · · , p, let Q2,θjθk(θ, u1, u2) = |ℓθjθk(θ, u1, u2)|+ ∥ℓθjθk ,θ(θ, u1, u2)∥.
For any η > 0 and any ϵ > 0, there is K > 0, such that Q2,θjθk(θ, u1, u2) ≤
KQ2,θjθk(θ, u′

1, u′
2) for all θ ∈ Θ and all ur ∈ [η, 1) such that 1 − ur ≥ ϵ(1 −

u′
r), r = 1, 2.
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C7 (i) ∥ℓθθ,ur(θ
∗, u1, u2)∥ ≤ q{us(1 − us)}−as{ur(1 − ur)}−ar for some q, as, ar, and

s ̸= r such that E0[{U0
s(1 − U0

s)}ϵs−as{U0
r(1 − U0

r)}−ar ] < ∞ for some ϵs ∈
(0, 1/2);

(ii) ∥ℓθ(θ
∗, u1, u2)ℓθ(θ

∗, u1, u2)′∥ ≤ q{u1(1 − u1)}−a1{u2(1 − u2)}−a2 for some
q > 0 and a1, a2 ≥ 0 such that E0[{U0

1(1 − U0
1)}−2a1{U0

2(1 − U0
2)}−2a2 ] < ∞;

(iii) ∥ℓθ,ur(θ
∗, u1, u2)ℓθ(θ

∗, u1, u2)′∥ ≤ q{us(1 − us)}−as{ur(1 − ur)}−ar for some
q, as, ar, and s ̸= r such that E0[{U0

s(1 − U0
s)}ϵs−as{U0

r(1 − U0
r)}−ar ] < ∞ for

some ϵs ∈ (0, 1/2).

Our regularity conditions R1 - R6 combined with the above conditions C1 - C4 are
the conditions C1 - C5 and A1 - A4 of Chen et al. (2010) for the existence, consistency,
and asymptotic normality of the PMLE ˆ︁θn.

Theorem 2 Under conditions R1 - R6 and C1 - C5, we have Rn → tr [R∗(θ∗)] in probability
as n → ∞.

The proof of this theorem (Appendix B) requires the consistency of ˆ︁Sn(ˆ︁θn) andˆ︁Vn(ˆ︁θn). Chen et al. (2010) has proved the consistency of ˆ︁Sn(ˆ︁θn), which requires their
condition A4. We follow their arguments to prove the consistency of ˆ︁Vn(ˆ︁θn), where
our conditions C5 is analogous to Chen et al.’s condition A4.

Theorem 3 Assume conditions R1 - R6 and C1 - C7 hold. Define the null hypothesis H0:
C0(u1, u2) ∈ Cθ = {C(u1, u2; θ), θ ∈ Θ}, i.e., the assumed copula is correctly speci-
fied. If the null hypothesis H0 is true, Rn converges to p in probability, and

√
n(Rn − p)

converges in distribution to a normal random variable with mean 0 and variance σ2
R =

Var[hR(Xi1, Xi2, δi1, δi2, θ)], where hR(Xi1, Xi2, δi1, δi2, θ) is given by Equation (27) in Ap-
pendix C.

The proof of this theorem (Appendix C) utilizes the Taylor expansion of ˆ︁Sn(ˆ︁θn) andˆ︁Vn(ˆ︁θn). One step requires the consistency for the first-order derivative of ˆ︁Sn(ˆ︁θn) and
of ˆ︁Vn(ˆ︁θn) w.r.t. θ. Again, we follow the arguments of Chen et al. (2010) for proving the
consistency of ˆ︁Sn(ˆ︁θn), where our condition C6 (i) is analogous to Chen et al.’s Condi-
tion A2, and our conditions C6 (ii) & (iii) together are analogous to Chen et al.’s con-
dition A4. Another component in the proof involves the expansion of the estimated
pseudo-observations ˆ︁Uir − U0

ir using the asymptotic properties of the Kaplan-Meier
estimator for the marginal survival functions. Our condition R6 (iii) is analogous to
Chen et al.’s condition A3 (i), and so is our condition C7 (ii). Our condition C7 (i) is
analogous to Chen et al.’s condition A3 (ii), and so is our condition C7 (iii). We want to
point out that the expression of hR(Xi1, Xi2, δi1, δi2, θ) is different from the expansion
with fully observed data derived in Zhang et al. (2016; 2021). In their settings, the
marginal distributions are estimated by the empirical distribution functions whose
expansions are different from those of Kaplan-Meier estimators.

3.3 Asymptotic Equivalence to the In-and-Out-of-Sample Pseudo
Likelihood Ratio Statistic

For semiparametric copula models with fully observed data, Zhang et al. (2016)
showed that the IR statistic Rn is asymptotically equivalent to a class of in-and-out-
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of-sample pseudo (PIOS) likelihood ratio test statistic. Theorem 4 below states this
asymptotic equivalence still holds in the presence of censoring. The PIOS statistic
is defined as a difference between two types of pseudo log-likelihood functions: in-
sample and out-of-sample. Under our log-likelihood function in Equation (4), the
in-sample pseudo log-likelihood is defined as ℓin

n = ∑n
i=1 ℓ(ˆ︁θn, ˆ︁Ui1, ˆ︁Ui2), where ˆ︁θn is

obtained from Equation (9) using all the observations. The out-of-sample pseudo log-
likelihood employs the leave-one-out technique and is defined as ℓout

n = ∑n
i=1 ℓ(ˆ︁θ(−i),ˆ︁Ui1, ˆ︁Ui2), where ˆ︁θ(−i) = arg maxθ ∑n

s=1,s ̸=i ℓ(θ, ˆ︁Us1, ˆ︁Us2) is the PMLE using the data
with the i-th observation deleted. The PIOS test statistic is defined as Tn = ℓin

n − ℓout
n .

A large value of Tn suggests that the assumed copula model is a poor fit to the data
since it is sensitive to the deletion of individual observations.

Theorem 4 Under condition R1 - R6 and C1 - C4, |Rn − Tn| = op(1).

The proof is provided in Appendix D. Because of this asymptotic equivalence, if the
null hypothesis H0 is true, the PIOS statistic Tn also converges to p in probability, and√

n(Tn − p) also converges in distribution to a normal random variable with mean 0
and the same variance σ2

R.

4 Information Ratio Test and Copula Selection
In practice, it is challenging to calculate P-values using an analytical estimate of the

asymptotic variance σ2
R because its expression is complicated. To address this issue,

we suggest a parametric bootstrap resampling procedure for the P-value calculation.
This approach is commonly employed in GoF tests, including those based on informa-
tion matrix equivalence (Horowitz 1994, Dhaene and Hoorelbeke 2004, Golden et al.
2013, Huang and Prokhorov 2014, Golden et al. 2016, Prokhorov et al. 2019). Genest
and Rémillard (2008) provided the validation of this procedure in the general setting
of semi-parametric models.

4.1 P-value Calculation via Bootstrap Resampling
The key idea is to approximate null distribution of Rn by the test statistics values

calculated from a large number of data replicates generated under the null copula (the
copula family tested as the null hypothesis). These data replicates are referred to as
the bootstrapped data, denoted by D(b); in contrast, we denote the original data by D.
The bootstraped data D(b) is obtained by generating bootstrapped resamples of the
bivariate event times (T(b)

i1 , T(b)
i2 ) and bivariate censoring times (C(b)

i1 , C(b)
i2 ).

Generation of (T(b)
i1 , T(b)

i2 ) under the null copula. For example, we test Clayton
copula as the null hypothesis, i.e.,

H0 : C0(u1, u2) = C(u1, u2; θ) = (u−θ
1 + u−θ

2 − 1)−1/θ , for some θ > 0.
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Let ˆ︁θn be the PMLE of θ from the log-likelihood function using the original data D and
the above parametric form of Clayton copula function. First, we generate a bivariate
variable

(︂
U(b)

i1 , U(b)
i2

)︂
from the Clayton copula with parameter value ˆ︁θn. This step

can be implemented using R function rCopula of copula package. Second, we obtain
T(b)

ir = ˆ︁H−1
r (U(b)

ir ), r = 1, 2, where ˆ︁H−1
r is the inverse function of the Kaplan-Meier

estimator of the marginal survival functions.

Generation of (C(b)
i1 , C(b)

i2 ). The censoring times Ci1 and Ci2 might be correlated,
but our method does not rely on their joint distribution. Thus, we can simulate them
separately from their own marginal distributions. Under the assumption of indepen-
dent censoring, the survival function Gr(t) of Cir can be consistently estimated by a
Kaplan-Meier estimator ˆ︁Gr(t) using the data {(Xir, 1 − δir), i = 1, · · · , n}. For each
r = 1, 2, we first generate a random number v(b)ir from a uniform distribution between

0 and 1, and then obtain C(b)
ir = ˆ︁G−1

r

(︂
v(b)ir

)︂
. In some cases, both event times are sub-

ject to the same censoring time, i.e., Ci1 = Ci2 = Ci, its sole survival function G(t) can
be estimated using the data {(max{Xi1, Xi2}, 1 − δi1δi2), i = 1, · · · , n}.

Bootstrap resampling. The resampling procedure includes the following steps:

Step 1: Generate a bootstrapped resample of {(T(b)
i1 , T(b)

i2 , C(b)
i1 , C(b)

i2 ), i = 1, · · · , n} with
the same sample size of the original data following the above description. This
forms a bootstrapped data D(b) = {(X(b)

i1 , X(b)
i2 , δ

(b)
i1 , δ

(b)
i2 ), i = 1, · · · , n}, where

X(b)
ir = min{T(b)

ir , C(b)
ir } and δ

(b)
ir = I(T(b)

ir ≤ C(b)
ir ), r = 1, 2.

Step 2: Based on the bootstrapped data D(b), calculate the test statistic, denoted as
R(b)

n , referred to as a bootstrap resample of Rn.

Step 3: Repeat Steps 1 and 2 B times, producing B bootstrap resamples {R(b)
n , b =

1, · · · , B}.

The bootstrap resamples {
√

n(R(b)
n − p), b = 1, · · · , B} approximate the null distribu-

tion of
√

n(Rn − p), and their sample variance approximates the asymptotic variance
σ2

R. Thus, we calculate

σb =

⌜⃓⃓⎷ 1
B − 1

B

∑
b=1

[︂
R(b)

n − Rbn
]︂2

where Rbn is the average of {R(b)
n , b = 1, · · · , B}. The P-value of the IR test is

p-value = 2 ×
[︃

1 − Φ
(︃
|Rn − p|

σb

)︃]︃
,

where Φ(·) is the CDF of the standard normal distribution.
If the calculated p-value is smaller than a significance level α, we reject the null

hypothesis and conclude significant evidence suggesting copula misspecification. Al-
ternatively, we can use critical values to make conclusions. Let zα/2 denote the upper
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100 ∗ (α/2)% quantile of the standard normal distribution. If |Rn−p|
σb

> zα/2, we reject
the null hypothesis.

4.2 Selection of the Best Copula Family
For some data, a GoF test would fail to reject several copula families. It might

be because the sample size is small or the censoring rate is high or both. As a re-
sult, the data do not contain sufficient information to reject the null hypothesis. In
addition, if the level of dependence is not strong, several families appear similar, and
consequently, it is more difficult for a test to tell them apart. In some situations, the
underlying true dependence structure might be complicated, and any parametric cop-
ula family is merely an approximation. For these cases, we are more concerned with
selecting the best copula family from several candidates in the sense that the data ex-
hibit the weakest evidence against it, i.e., showing the highest agreement between the
assumed copula and the data. Here, we propose using the P-value of the IR test as the
selection criteria: the best copula family is the one with the largest P-value.

5 Simulation
In this section, we investigate the finite-sample performance of the proposed IR

test through two simulation studies, where we consider different sample sizes, cop-
ula families with various dependence strength, and censoring rate (proportions of
censored event times). The first study focuses on the null distribution of the IR statis-
tic, i.e., the distribution when the null copula is the true copula. We compare it with
the normal distribution and PIOS’s null distribution. The second study examines the
type I error rate and power of IR test as well as the performance of using IR’s p-value
for copula selection. As mentioned earlier, IR is a specific form of generalized IM tests.
Thus, we compare our IR with two other forms: White test (difference between two
IMs), and log IM test (difference between logarithms of two IMs).

5.1 Simulation Setting
We consider four copula families: Clayton, Frank, Joe, and Gaussian, each with a

scalar copula parameter θ. The value of θ is determined by Kendall’s τ coefficient,
which reflects the dependence strength (Kendall 1938). The relationship between
Kendall’s τ and θ for each of the above copula families is described in the supple-
mentary material.

Given a copula family C with a parameter value θ, we generate (Ti1, Ti2) whose
marginal distributions are both exponential distribution with mean 1 and joint sur-
vival function follows the given copula family C. For example, the copula is Clayton
with parameter θ = 2, corresponding to Kendall’s τ = 0.5. Following a similar pro-
cedure described in Section 4.1, we first generate (Ui1, Ui2) from Clayton copula with
θ = 2 using R function rCopula. Second, calculate Tir = − log(Uir), r = 1, 2. Note that
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− log(x) is the inverse function of the survival function for exponential distribution
with mean 1.

In this simulation, both event times are subject to a common censoring time Ci,
generated from an exponential distribution with mean 4, 3/2 or 3/7, that correspond
to a censoring rate of 20%, 40%, or 70% for individual event times. In addition, we
include a no-censoring setting, i.e., Ti1 and Ti2 are fully observed, to investigate the
effect of censoring on the performance of the IR test. Thus, there are four censoring
scenarios, denoted as “no-censoring", “20%-censored", “40%-censored", and “70%-
censored". Figures 1 - 4 in the supplementary material plot the estimated pseudo-
observations ( ˆ︁Ui1, ˆ︁Ui2) obtained from one replication of the simulated bivariate cen-
sored survival times of sample size n = 100 or 600 generated from each of the four
copula families with Kendall’s τ = 0.3 or 0.7.

5.2 Study I: Null Distributions of IR and PIOS statistics
In this study, we generate data from a copula family and test for the same copula

family, i.e., the null copula is the true copula. Figure 5 - 8 in the supplementary mate-
rial plot the normal quantile-quantile (QQ) plots of 500 replications of the IR and PIOS
statistics under Clayton, Frank, Joe, or Gaussian with Kendall’s τ = 0.5 at sample size
n = 100, 300, 600. These plots allow us to examine (1) whether IR’s null distribution
is close to normal, and (2) whether the null distributions of IR and PIOS statistics are
similar to each other.

First, we focus on comparing the IR’s null distribution with normality. For a given
sample size, the distribution gets more skewed to the right as the censoring rate in-
creases. For each censoring scenario, as the sample size increases, it is getting closer
to the normal distribution, which confirms the asymptotic normality of the IR statistic
(Theorem 3).

Second, we compare the distributions of IR and PIOS. The QQ plots clearly show
that their distributions are close, and they get more similar as the sample size in-
creases. It confirms the asymptotic equivalence between IR and PIOS (Theorem 4).
However, their computational times are substantially different. The PIOS statistic re-
quires repeated (n times) estimation of the copula parameter, ˆ︁θ(−i), when obtaining
the out-of-sample peudo log-likelihood. Thus, its computational burden is more in-
tensive than IR. In addition, as the sample size increases, IR is more computationally
efficient. Specifically, using a Dell desktop computer with 3.20 GHz Intel(R) Core(TM)
i7-8700 CPU, the average computational time with sample size n = 100 is 0.0072 sec-
onds for calculating the IR statistic and 0.11 seconds for PIOS (about 15 times of IR’s
time). When the sample size increases to 600, the average computational time is 0.02
seconds for IR and 1.1 seconds for PIOS (about 55 times of IR’s time). Note that the
computation of the PIOS statistic has been optimized via parallel computation using
R packages "parallel", "foreach", and "doSNOW". If without the parallel computation,
it would take even longer.
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5.3 Study II: Test Size and Power of IR Test
In this study, we investigate the type I error rate and power of the proposed IR test.

The bivariate event times (Ti1, Ti2) are generated from each of the four copula families;
under a true copula, we test each of the four copula families as the null hypothesis.
For example, in one scenario, (Ti1, Ti2) is generated from Clayton, i.e., the true copula
is Clayton, and we test four different null copulas: Clayton, Frank, Joe, and Gaussian.
We consider three different dependence levels: Kendall’s τ = 0.3, 0.5, 0.7 and three
sample sizes n = 100, 300, 600. Figures 1 - 4 plots the proportion of rejecting the null
hypothesis at the significance level 0.05 among 500 replications at sample size 600.
For each simulation replication, the P-value is calculated from B = 500 bootstrap
resamples. The rejection proportions for sample size n = 100 and 300 are plotted in
Figures 9 - 16 of the supplementary material.

When the null copula is the same as the true copula, the rejection proportions are
the empirical type I error rates, also extracted in Table 1. In most scenarios, the IR
test can maintain the nominal test size, i.e., the empirical type I error rates are close to
the significance level 0.05. When the null copula is different from the true copula, the
rejection proportions are the empirical test power. The results indicate that Kendall’s
τ, sample size, and censoring rate all affect the power. First, Kendall’s τ reflects the
strength of the dependence between the bivariate event times. When τ is large, i.e., the
event times are highly dependent with each other, the true copula’s distinct features
such as tail dependence are more pronounced, and thus, our IR test is more powerful
to detect deviations from the null copula. However, when the dependency is weak,
copula families appear similar to each other (See Figures 1 and 3 in the supplementary
material). Thus, the IR test has a lower power for a smaller Kendall’s τ. Similar pat-
tens are observed in Genest et al. (2009) and Zhang et al. (2016). Second, as expected,
when the sample size is larger or the censoring rate is lower or both, the data provide
more information of the underlying true copula, and consequently, the IR test is more
powerful.

We observe that when the censoring rate is 70%, the proportion of rejecting Clay-
ton when the true copula is Clayton is much lower than the significance level 0.05.
In other words, the IR test is over conservative against Clayton when the event times
are heavily censored. A possible explanation is that when the censoring time follows
an exponential distribution, it is more likely to censor smaller event times, leading
to insufficient information on the lower-tail dependence, which is a distinct feature
of Clayton. As a result, the data exhibit minimal evidence against Clayton. With the
same reason, when the true copula is Frank, it is difficult to tell apart from Clayton
because they appear alike under heavy censoring (Figures 1 - 4 of the supplementary
material). Thus, the proportion of rejecting Clayton when the true copula is Frank is
low. Similarly, the proportion of rejecting Frank when the true copula is Clayton is
also low. By contrast, since Joe has the upper-tail dependence, the IR test has a much
higher power of rejecting Joe when the true copula is Clayton or Frank, or rejecting
Clayton or Frank when the true copula is Joe.

We also observe low proportions of rejecting Frank when the true copula is Gaus-
sian for all sample sizes, Kendall’s τ values, and censoring rates (Figure 2). It could
be because both families have no dependence on either tails. However, when the true
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copula is Frank and the null copula is Gaussian, the test performs better (Figure 4). It
calls for more investigations.

As pointed out in the introduction, our IR test can be regarded as a specific form of
comparing the two information matrices in the class of generalized IM tests (Prokhorov
et al. 2019). The other forms include the White test, determinant White test, trace
White test, determinant IR test, log trace IM test, log GAIC IM test, log eigenspec-
trum IM test, and eigenvalue test. However, for the case of scaler parameter, i.e.,
p = 1, some tests are equivalent. Specifically, the determinant IR and eigenvalue
tests are the same as the IR test: Rn = ˆ︁Sn(ˆ︁θn)−1ˆ︁Vn(ˆ︁θn). The White, determinant
White, and trace White are the same; they all take a difference: Tn = ˆ︁Vn(ˆ︁θn)− ˆ︁Sn(ˆ︁θn).
The log trace IM, log GAIC IM, and log eigenspectrum IM are equivalent, given as
Zn = log[ˆ︁Sn(ˆ︁θn)]− log[ˆ︁Vn(ˆ︁θn)]. Thus, in this study, we compare our IR test Rn with
Tn, referred to as the White test, and Zn, referred to as the log IM test. The P-values of
these two tests are also obtained by the parametric bootstrap resampling procedure
described in Section 4.1. The results show that these three tests perform similarly for
most scenarios.

5.4 Copula Selection
We also examine how well using the P-value of the IR test as the criterion can cor-

rectly select the true copula as the best among the four families. With each simulated
data, we obtain the P-value for testing each of Clayton, Frank, Joe, and Gaussian as
the null hypothesis. Following Section 4.2, we select the copula family with the largest
P-value as the best. Figures 17 - 28 in the supplementary material report the percent-
age of choosing each family as the best among the 500 replications. Consistent with
our findings on the test power, when the sample size is larger or the dependence is
stronger or the censoring rate is lower, the proportion of selecting the true copula as
the best is higher. Copulas with similar properties are more difficult to tell apart. For
example, when the true copula is Gaussian, Frank copula is a strong competitor, even
when the sample size is 600, Kendall’s τ = 0.7, and the event times are fully observed.
In addition, our IR test performs similarly to the other two generalized IM tests.

6 Data Example
The data example is 748 dizygotic female twin pairs from the Australian NHMRC

Twin Registry (Duffy et al. 1990), and the bivariate event times (T1, T2) are the ages
at appendicectomy measured for each twin pair. For this data, the event times are
heavily censored with the censoring rate of about 74%. Among the 748 twin pairs, 82
(11%) pairs have both event times observed, 222 (30%) have one event time observed
and the other censored, and 444 (59%) have both event times censored. Figure 5 plots
the estimated pseudo-observations {( ˆ︁Ui1, ˆ︁Ui2), i = 1, · · · , n}.

Emura et al. (2010) analyzed this data and concluded that Gumbel provides the
best fit over three other copula families: Clayton, Frank, and Log-copula. In this
manuscript, we test for five copula families: Clayton, Frank, Gumbel, Joe, and Gaus-
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sian using our proposed IR test as well as the White test and log IM test. Table 2 re-
ports their test statistic values and P-values calculated using B = 1000 bootstrapped
resamples.

Among the three tests, only the log IM test reaches the same conclusion as Emura
et al. (2010): Gumbel is the best copula family with the P-value 0.307, and Clayton
is the second best with the P-value 0.273. In contrast, for both our IR test and White
test, Clayton is the best copula and Gumbel is the second. However, under the IR
test, the difference of the P-values between Clayton and Gumbel is tiny: the P-values
is 0.296 for Clayton and 0.291 for Gumbel. It indicates that Gumbel’s goodness-of-fit
is comparable with Clayton. On the other hand, under the White test, the lead of
Clayton over Gumbel is more substantial (P-values 0.379 for Clayton and 0.258 for
Gumbel).

7 Concluding Remarks
Information matrix equivalence plays an important role in model diagnosis, and

a number of GoF tests have been established based on this principle. However, this
equivalence has not been verified for censored data. Thus, one major contribution of
this work is to prove the equivalence of the two information matrices under a class
of semiparametric copula models for multivariate data in the presence of right cen-
soring. The proof provides a framework which might be extended to other censoring
schemes.

Based on this equivalence, we propose an IR test for the specification of the cop-
ula function via comparing consistent estimates of the two information matrices. This
test is likelihood-based and depends on only the parametric form of the assumed
copula function. Thus, it can be applied to all copula families, and do not rely on
choices of weight functions, bandwidth, or smoothing parameters. In addition, the
IR statistic is asymptotically equivalent to a class of PIOS test statistics, which pro-
vides a global measure of how the assumed model fits the data via the leave-one-out
cross-validation. Furthermore, the IR test does not assume any parametric form of
alternative copulas. It can be regarded as an omnibus test.

In this manuscript, we derive the asymptotic properties of the IR statistic following
similar arguments in Chen et al. (2010). They considered a more general distributional
assumption for censoring: the joint distribution of the bivariate censoring times could
be different across subjects. Under this relaxed assumption, the pseudo-true value of
the copula parameter is defined as

θ∗n = arg max
θ

n−1
n

∑
i=1

E
0[ℓ(θ, U0

i1, U0
i2)].

This value depends on the sample size since the observed survival times might not be
identically distributed due to non-identically distributed bivariate censoring times.
Correspondingly, the definitions of the sensitivity and variability matrices can be
modified as S∗(θ) = n−1 ∑n

i=1 E
0[−ℓθθ] and V∗(θ) = n−1 ∑n

i=1E
0[ℓθℓ

′
θ], which also

depend on the sample size. It worths pointing out that the proof of Theorem 1 is still
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valid, and thus, the information matrix equivalence still holds, and the IR test is still
valid. However, for generating bootstrap resamples of censoring times, the Kaplan-
Meier estimator of the censoring survival function is not appropriate when assuming
heterogenous censoring distribution. Under this assumption, it would require some
subject-specific covariates Zi to estimate the subject-specific censoring survival func-
tion Gir(t) = Pr(Cir > t | Zi) for r = 1, 2.

In general, if testing within Archimedean families, the GoF tests that target these
families are expected to be more powerful than our proposed IR test because they uti-
lize their distinct properties such as cross-ratio functions or Kendall distribution. On
the other hand, our proposed IR test can compare copula families beyond Archimedean.
In Section 4.2, we demonstrate how to use the P-value of the IR test to select the best
copula family among several candidates.

Equation (8) is the key step for proving the information matrix equivalence. It also
implies that this equivalence holds for any censoring distribution when the assumed
copula is correctly specified. However, when the assumed copula is misspecified, the
difference between two information matrices depends on the censoring distribution.
Our simulation study has shown that the censoring rate is one factor that affects the
performance of the IR test. We hypothesize that besides the censoring rate, the shape
of the censoring distribution might be another factor. For example, as discussed in our
simulation, the shape of the exponential distribution for censoring leads to insufficient
information on the lower-tail dependence. It causes the low power of differentiating
between Clayton and Frank. It is our interest to conduct more studies to investigate
other distributions for censoring, such as gamma, Weibull, or uniform distributions.

In the simulation study and data example, we compare our IR test with two other
forms of generalized IM tests, and they perform similarly. For example, all three tests
exhibit a lower power for rejecting Frank when the true copula is Gaussian because
they both have neither upper-tail or lower-tail dependence. Our studies focus on
the case of scalar copula parameter, i.e., p = 1, for which the class of generalized
IM tests reduces to three forms of comparing IMs: ratio, difference, and difference of
logarithm. However, if p > 1, the class would not be limited to only these three forms.
In addition, different IM-based tests would perform more diversely. It worths further
investigation for cases with p > 1.

8 Supplementary Material
In the supplementary material, we present the expressions of the copula function,

and the derivatives of the log-likelihood function for Clayton, Frank, Joe, and Gaus-
sian copulas. We also show more results of the simulation study, including (i) scatter
plots (Figures 1 - 4) of estimated pseudo-observations ( ˆ︁Ui1, ˆ︁Ui2) from one simulated
bivariate censored data, (ii) QQ plots (Figures 5 - 8) of the IR and PIOS statistics when
the null copula is the true copula, (iii) bar plots (Figures 9 - 16) of proportions of re-
jecting the null hypothesis for sample sizes 100 and 300, and (iv) bar plots (Figures 17
- 28) of proportions of selecting different copula families as the best copula.
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Table 1: Simulation results: Empirical type I errors for the IR test Rn, White test Tn, and
log IM test Zn.

No Cen. 20% Cen. 40% Cen. 70% Cen.
τ n Rn Tn Zn Rn Tn Zn IRn Tn Zn Rn Tn Zn

Clayton Copula
100 0.038 0.018 0.044 0.034 0.014 0.048 0.024 0.002 0.026 0.000 0.000 0.078

0.3 300 0.036 0.026 0.032 0.030 0.018 0.034 0.022 0.010 0.020 0.012 0.002 0.016
600 0.044 0.036 0.046 0.034 0.030 0.036 0.018 0.014 0.022 0.012 0.004 0.014
100 0.048 0.028 0.038 0.032 0.022 0.036 0.032 0.012 0.040 0.022 0.000 0.040

0.5 300 0.036 0.030 0.042 0.028 0.018 0.024 0.024 0.018 0.028 0.008 0.004 0.010
600 0.048 0.040 0.052 0.042 0.040 0.042 0.022 0.018 0.024 0.004 0.004 0.008
100 0.054 0.026 0.058 0.026 0.014 0.026 0.020 0.010 0.022 0.016 0.002 0.016

0.7 300 0.050 0.034 0.050 0.036 0.024 0.040 0.014 0.012 0.018 0.016 0.006 0.018
600 0.028 0.028 0.034 0.018 0.016 0.020 0.014 0.010 0.014 0.008 0.002 0.008

Frank Copula
100 0.032 0.034 0.038 0.028 0.032 0.044 0.040 0.048 0.050 0.022 0.034 0.034

0.3 300 0.050 0.052 0.052 0.048 0.046 0.052 0.046 0.044 0.042 0.058 0.060 0.050
600 0.036 0.040 0.030 0.040 0.040 0.034 0.038 0.038 0.036 0.040 0.040 0.036
100 0.038 0.036 0.044 0.038 0.036 0.058 0.048 0.054 0.066 0.024 0.024 0.048

0.5 300 0.054 0.054 0.048 0.038 0.036 0.040 0.040 0.040 0.048 0.030 0.034 0.048
600 0.038 0.028 0.028 0.038 0.042 0.040 0.036 0.038 0.034 0.038 0.038 0.034
100 0.048 0.040 0.068 0.050 0.038 0.058 0.066 0.046 0.078 0.018 0.010 0.118

0.7 300 0.066 0.060 0.058 0.054 0.046 0.048 0.054 0.040 0.058 0.030 0.030 0.052
600 0.040 0.040 0.034 0.042 0.042 0.034 0.038 0.038 0.038 0.042 0.042 0.064

Joe Copula
100 0.054 0.064 0.066 0.046 0.062 0.062 0.052 0.074 0.060 0.034 0.066 0.038

0.3 300 0.066 0.078 0.078 0.058 0.066 0.076 0.050 0.060 0.070 0.046 0.050 0.054
600 0.054 0.072 0.056 0.048 0.062 0.046 0.046 0.060 0.050 0.048 0.064 0.046
100 0.050 0.044 0.052 0.052 0.046 0.054 0.040 0.034 0.050 0.048 0.036 0.050

0.5 300 0.068 0.062 0.082 0.058 0.060 0.078 0.050 0.048 0.060 0.056 0.054 0.062
600 0.046 0.052 0.042 0.044 0.052 0.048 0.050 0.054 0.048 0.046 0.054 0.044
100 0.050 0.038 0.046 0.054 0.040 0.052 0.044 0.034 0.038 0.046 0.028 0.042

0.7 300 0.056 0.042 0.050 0.050 0.044 0.050 0.052 0.042 0.050 0.064 0.046 0.052
600 0.062 0.062 0.062 0.074 0.074 0.068 0.060 0.062 0.060 0.080 0.084 0.076

Gaussian Copula
100 0.026 0.014 0.048 0.042 0.016 0.044 0.034 0.014 0.036 0.014 0.000 0.018

0.3 300 0.040 0.028 0.046 0.040 0.034 0.044 0.052 0.042 0.052 0.024 0.012 0.034
600 0.054 0.044 0.056 0.052 0.044 0.060 0.070 0.062 0.070 0.042 0.030 0.036
100 0.022 0.018 0.044 0.022 0.012 0.042 0.022 0.002 0.034 0.018 0.002 0.026

0.5 300 0.046 0.042 0.042 0.040 0.034 0.048 0.054 0.036 0.054 0.024 0.010 0.032
600 0.042 0.036 0.044 0.062 0.048 0.060 0.052 0.048 0.056 0.038 0.028 0.042
100 0.032 0.028 0.040 0.030 0.020 0.032 0.026 0.010 0.026 0.022 0.006 0.020

0.7 300 0.048 0.042 0.044 0.044 0.040 0.040 0.046 0.046 0.042 0.012 0.008 0.016
600 0.048 0.042 0.046 0.048 0.042 0.050 0.044 0.044 0.054 0.024 0.014 0.024
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Table 2: Data example: The PMLE ˆ︁θn of the copula parameter, the test statistic with the
P-value (in the paratheses) of the IR, White, and log IM tests for Clayton, Frank, Gumbel,
Joe, and Gaussian.

Copula ˆ︁θn IR White log IM
Clayton 0.750 1.085 (0.296) 0.003 (0.379) 0.081 (0.273)
Frank 1.795 1.075 (0.039) 0.001 (0.038) 0.072 (0.046)

Gumbel 1.162 1.060 (0.291) 0.051 (0.258) 0.058 (0.307)
Joe 1.204 1.085 (0.215) 0.045 (0.191) 0.081 (0.238)

Gaussian 0.304 1.083 (0.166) 0.035 (0.188) 0.079 (0.177)
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Figure 1: Simulation results: Proportions of rejecting Clayton when the true copula is
Clayton, Frank, Joe, or Gaussian and the sample size is 600. The dashed lines represent
the significance level 0.05.
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Figure 2: Simulation results: Proportions of rejecting Frank when the true copula is Clay-
ton, Frank, Joe, or Gaussian and the sample size is 600. The dashed lines represent the
significance level 0.05.
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Figure 3: Simulation results: Proportions of rejecting Joe when the true copula is Clayton,
Frank, Joe, or Gaussian and the sample size is 600. The dashed lines represent the signifi-
cance level 0.05.
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Figure 4: Simulation results: Proportions of rejecting Gaussian when the true copula is
Clayton, Frank, Joe, or Gaussian and the sample size is 600. The dashed lines represent
the significance level 0.05.
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Figure 5: Data example: Scatter plot of estimated pseudo-observations ˆ︁Ui1 and ˆ︁Ui2.
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Appendix

A Proof of Theorem 1
The outline of the prove is as follows. First, we will show that for an assumed

copula with a given θ,
S∗(θ) = V∗(θ)− A(θ), (10)

where A(θ) is a p× p matrix. Second, we prove that if the assumed copula is correctly
specified, A(θ∗) = 0p×p.

Derive S∗(θ) = V∗(θ)− A(θ). The sensitivity and variability matrices in Equa-
tion (7) are functions of ℓθℓ

′
θ and ℓθθ. We derive the expressions of these two quantities.

By Equation (4), we have

ℓθ = δ1δ2
cθ

c
+ δ1(1 − δ2)

c1,θ

c1
+ (1 − δ1)δ2

c2,θ

c2
+ (1 − δ1)(1 − δ2)

Cθ

C
. (11)

Thus,

ℓθℓ
′
θ =δ1δ2

cθc
′
θ

c2 + δ1(1 − δ2)
c1,θc

′
1,θ

c2
1

+ (1 − δ1)δ2
c2,θc

′
2,θ

c2
2

+ (1 − δ1)(1 − δ2)
CθC

′
θ

C2 ,

(12)

and

ℓθθ = δ1δ2

[︃
cθθ

c
− cθc

′
θ

c2

]︃
+ δ1(1 − δ2)

[︄
c1,θθ

c1
−
c1,θc

′
1,θ

c2
1

]︄

+ (1 − δ1)δ2

[︄
c2,θθ

c2
−
c2,θc

′
2,θ

c2
2

]︄
+ (1 − δ1)(1 − δ2)

[︃
Cθθ

C
− CθC

′
θ

C2

]︃
. (13)

Consequently, −ℓθθ = ℓθℓ
′
θ − ∆, where ∆ is a p × p matrix with the (j, k)-th element

∆jk(θ, u1, u2) = δ1δ2
cθjθk(u1, u2; θ)

c(u1, u2; θ)
+ δ1(1 − δ2)

c1,θjθk(u1, u2; θ)

c1(u1, u2; θ)

+ (1 − δ1)δ2
c2,θjθk(u1, u2; θ)

c2(u1, u2; θ)
+ (1 − δ1)(1 − δ2)

Cθjθk(u1, u2; θ)

C(u1, u2; θ)
,

Note that, for simplicity, we suppress (δ1, δ2) from the ∆ function. Thus, A(θ) is a
p × p matrix with the (j, k)-th element Ajk(θ) = E0[∆jk(θ, U0

1, U0
2)].

To derive the expression of Ajk(θ), we invoke the double expectation theorem by

conditioning on (C1, C2), i.e., Ajk(θ) = E0
(C1,C2)

{︂
E0

(T1,T2)
[∆jk|C1, C2]

}︂
, where E0

(T1,T2)

andE0
(C1,C2)

denote the expectations w.r.t. the true distributions of (T1, T2) and (C1, C2),
respectively. In Remark 1, we stated that given that the true marginal survival func-
tions H0

r(·) are known, the copula C can be regarded as the joint CDF of (Y1, Y2) with
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Yr = H0
r(Tr), r = 1, 2, which are uniformly distributed on (0, 1). Thus, the expectation

w.r.t. (T1, T2) is equivalent to the expectation w.r.t. (Y1, Y2), which gives

Ajk(θ) = E
0
(C1,C2)

{︂
E

0
(Y1,Y2)

[∆jk(θ; U0
1, U0

2)|C1, C2]
}︂

. (14)

In addition, U0
r can be expressed as U0

r = max{Yr, H0
r(Cr)} and δr = I (Yr ≥ H0

r(Cr)).

Proof of Ajk(θ
∗) = 0 under correct specification. If the assumed copula C is

correctly specified, E0
(Y1,Y2)

is taken w.r.t. C as follows:

E
0
(Y1,Y2)

[∆jk|C1, C2] =
∫︂∫︂

∆jk(θ; U0
1, U0

2)c(u1, u2; θ)du1du2.

Given the regularity conditions R1 - R6, by the law of total probability, we can show
that this conditional expectation E0

(Y1,Y2)
[∆jk|C1, C2] = A(1,1) +A(1,0) +A(0,1) +A(0,0)

where A(1,1),A(1,0),A(0,1), and A(0,0) correspond to each censoring scenario (δ1, δ2),
given as

A(1,1)(θ, C1, C2) =
∫︂∫︂

[H0
1 (C1),1]×[H0

2 (C2),1]
cθjθk(u1, u2; θ)du1du2, (15)

A(1,0)(θ, C1, C2) =
∫︂∫︂

[H0
1 (C1),1]×[0,H0

2 (C2)]
cθjθk(u1, u2; θ)du1du2, (16)

A(0,1)(θ, C1, C2) =
∫︂∫︂

[0,H0
1 (C1)]×[H0

2 (C2),1]
cθjθk(u1, u2; θ)du2du2, (17)

A(0,0)(θ, C1, C2) =
∫︂∫︂

[0,H0
1 (C1)]×[0,H0

2 (C2)]
cθjθk(u1, u2; θ)du2du2. (18)

• Under the scenario with δ1 = 1 and δ2 = 1, ∆jk = cθjθk /c with both U0
1 = Y1 and

U0
2 = Y2 being random variables. In addition, the integral under this scenario

is taken over the region of (Y1, Y2): Ω11 = [H0
1(C1), 1] × [H0

2(C2), 1]. Thus, the
conditional expectation is

∫︂∫︂
Ω11

cθjθk(u1, u2; θ)

c(u1, u2; θ)
c(u1, u2; θ)du1du2 =

∫︂∫︂
Ω11

cθjθk(u1, u2; θ)du1du2,

which results in A11 in Equation (15).

• Under the scenario with δ1 = 1 and δ2 = 0, ∆ = c1,θjθk /c1 with U0
2 = H0

2(C2) as a
fixed number and U0

1 = Y1 as the only random variable. In addition, the integral
under this scenario is taken over the region of (Y1, Y2): Ω10 = [H0

1(C1), 1] ×
[0, H0

2(C2)]. Thus, the conditional expectation is

∫︂
[H0

1 (C1),1]

c1,θjθk(u1, H0
2(C2); θ)

c1(u1, H0
2(C2); θ)

{︃∫︂
[0,H0

2 (C2)]
c(u1, u2; θ)du2

}︃
du1

=
∫︂
[H0

1 (C1),1]
c1,θjθk(u1, H0

2(C2); θ)du1,
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since
∫︁
[0,H0

2 (C2)]
c(u1, u2; θ)du2 = c1(u1, H0

2(C2); θ). The regularity condition R6
ensures that functions cθjθk , j, k = 1, · · · , p, are dominated by integrable function
w.r.t. (u1, u2) for all θ. It allows the following interchangeability between the
integral and derivation in c1,θjθk :

∂2

∂θj∂θk

∫︂
[0,H0

2 (C2)]
c(u1, u2; θ)du2 =

∫︂
[0,H0

2 (C2)]
cθjθk(u1, u2; θ)du2.

Thus, the conditional expectation is
∫︁∫︁

Ω10
cθjθk(u1, u2; θ)du1du2, which is A10 in

Equation (16).

• Under the scenario with δ1 = 0 and δ2 = 1, ∆ = c2,θjθk /c2 with U0
1 = H0

1(C1) as a
fixed number and U0

2 = Y2 as the only random variable. In addition, the integral
under this scenario is taken over the region of (Y1, Y2): Ω01 = [0, H0

1(C1)] ×
[H0

2(C2), 1]. Thus, the conditional expectation is

∫︂
[H0

2 (C2),1]

c2,θjθk(H0
1(C1), u2; θ)

c2(H0
1(C1), u2; θ)

{︃∫︂
[0,H0

1 (C1)]
c(u1, u2; θ)du1

}︃
du2

=
∫︂
[H0

2 (C2),1]
c2,θjθk(H0

1(C1), u2; θ)du2,

since
∫︁
[0,H0

1 (C1)]
c(u1, u2; θ)du1 = c2(H0

1(C1), u2; θ). Similarly, in c2,θj,θk , the inte-
gral and derivation are interchangeable as follows:

∂2

∂θj∂θk

∫︂
[0,H0

1 (C1)]
c(u1, u2; θ)du1 =

∫︂
[0,H0

1 (C1)]
cθjθk(u1, u2; θ)du1.

Thus, the conditional expectation is
∫︁∫︁

Ω01
cθjθk(u1, u2; θ)du1du2, which is A01 in

Equation (17).

• Under the scenario with δ1 = 0 and δ2 = 0, ∆ = Cθjθk /Cwith both U0
1 = H0

1(C1)

and U0
2 = H0

2(C2) as fixed numbers. In addition, the integral under this scenario
is taken over the region of (Y1, Y2): Ω00 = [0, H0

1(C1)] × [0, H0
2(C2)]. Thus, the

conditional expectation is

Cθjθk(H0
1(C1), H0

2(C2); θ)

C(H0
1(C1), H0

2(C2); θ)

{︃∫︂∫︂
[0,H0

1 (C1)]×[0,H0
2 (C2)]

c(u1, u2; θ)du1du2

}︃
=Cθjθk(H0

1(C1), H0
2(C2); θ).

Again, in Cθjθk , the integral and derivations can be interchangeable as follows:

∂2

∂θj∂θk

∫︂∫︂
[0,H0

1 (C1)]×[0,H0
2 (C2)]

c(u1, u2; θ)du1du2

=
∫︂∫︂

[0,H0
1 (C1)]×[0,H0

2 (C2)]
cθjθk(u1, u2; θ)du1du2.

Thus, the conditional expectation is A00 in Equation (18).
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Combining all the four censoring statuses, we have

E
0
(T1,T2)

[∆jk|C1, C2] =
∫︂∫︂

Ω11
⋃︁

Ω10
⋃︁

Ω01
⋃︁

Ω00

cθjθk(u1, u2; θ)du1du2.

Again, due to the interchangeability between the integral and derivation, we have

E
0
(T1,T2)

[∆jk|C1, C2] =
∂2

∂θj∂θk

∫︂∫︂
Ω11

⋃︁
Ω10

⋃︁
Ω01

⋃︁
Ω00

c(u1, u2; θ)du1du2.

Since Ω11
⋃︁

Ω10
⋃︁

Ω01
⋃︁

Ω00 = [0, 1]2 and
∫︁∫︁

[0,1]2 c(u1, u2; θ)du1du2 = 1 for any θ, we
can show that for any θ, E0

(Y1,Y2)
[∆jk|C1, C2] = 0 for j, k = 1, · · · , p. It implies that

Ajk(θ) = E
0
(C1,C2)

{︂
E

0
(Y1,Y2)

[∆jk|C1, C2]
}︂

= 0. Furtermore, evaluating at θ = θ∗, we
have Ajk(θ

∗) = 0, which proves Theorem 1.

Expression of Ajk(θ
∗) under copula misspecification. Again, we use the dou-

ble expectation theorem in Equation (14). If the assumed copula is misspecified, this
conditional expectation E0

(Y1,Y2)
[∆jk|C1, C2] is taken w.r.t. C0. Let c0

r = ∂C0(u1,u2)
∂ur

,

r = 1, 2, and c0 = ∂2
C

0(u1,u2)
∂u1∂u2

. Following the above derivations under correct copula
specification, we can show that

E
0
(Y1,Y2)

[∆jk|C1, C2] =
∫︂∫︂

Ω11

cθjθk(u1, u2; θ)w11(u1, u2; θ)du1du2

+
∫︂∫︂

Ω10

cθjθk(u1, H0
2(c2); θ)w10(u1, H0

2(c2); θ)du1

+
∫︂∫︂

Ω01

cθjθk(H0
1(c1), u2; θ)w10(H0

1(c1), u2; θ)du2

+
∫︂∫︂

Ω00

cθjθk(H0
1(c1), H0

2(c2); θ)w00(H0
1(c1), H0

2(c2); θ)du1du2,

where w11(u1, u2; θ) = c0(u1, u2)/c(u1, u2; θ), w10(u1, u2; θ) = c0
1(u1, u2)/c1(u1, u2; θ),

w01(u1, u2; θ) = c0
2(u1, u2)/c2(u1, u2; θ), and w00(u1, u2; θ) = C0(u1, u2)/C(u1, u2; θ).

By Definition 1, when the assumed copula is misspecified, there exists some (u1, u2)
such that wd1,d2(u1, u2; θ∗) ̸= 1 for some d1, d2 = 0, 1. Thus, for some j, k = 1, · · · , p,

E
0
(Y1,Y2)

[∆jk(θ
∗, U0

1, U0
2)|C1, C2] ̸=

∂2

∂θjθk

∫︂∫︂
[0,1]2

c(u1, u2; θ∗)du1du2.

Consequently, Ajk(θ
∗) ̸= 0 for some j, k = 1, · · · , p.

B Proof of Theorem 2
To show

⃓⃓
Rn − tr

[︁
S∗(θ∗)−1V∗(θ∗)

]︁⃓⃓
= op(1), we need to first prove the consis-

tency of ˆ︁Sn(ˆ︁θn) and ˆ︁Vn(ˆ︁θn). Chen et al. (2010) has shown the consistency of ˆ︁Sn(ˆ︁θn)
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which requires conditions A2 and A4 (i) & (ii) listed in their paper. To prove the con-
sistency of ˆ︁Vn(ˆ︁θn), our conditions R5 and C5 are analogous to Chen et al.’s those two
conditions, respectively. Thus, following the same arguments in their paper, we can
show that supθ∈Θ n−1 ∑n

i=1 ∥ℓθ(θ, ˆ︁Ui1, ˆ︁Ui2)ℓθ(θ, ˆ︁Ui1, ˆ︁Ui2)
′ I(Xir ≤ η)∥ is asymptotically

ignorable as η → 0. This together with the continuity of ℓθ(θ, u1, u2) (our condition
R5), and the consistency of the Kaplan-Meier estimate ˆ︁Hr and the PMLE ˆ︁θn, leads to
∥ˆ︁Vn(ˆ︁θn)− V∗(θ∗)∥ = op(1).

Our condition C3 (ii) (which is equivalent to Condition A1 (ii) of Chen et al. (2010))
ensures that S∗(θ∗n) is finite and non-singular. Thus, by Slutsky’s Theorem, it implies
tr
[︂ˆ︁Sn(ˆ︁θn)−1ˆ︁Vn(ˆ︁θn)

]︂
converges tr

[︁
S∗(θ∗)−1V∗(θ∗)

]︁
in probability as n → ∞.

The proof of Theorem 2 ends.

C Proof of Theorem 3
To prove this theorem, we need to prove the following lemma:

Lemma 1 Under Conditions R1 - R6 and C1 - C7,

(1)
√

n
{︂ˆ︁Sn(ˆ︁θn)− S∗(θ∗)

}︂
= 1√

n ∑n
i=1 hS(θ

∗, Xi1, Xi2, δi1, δi2)+ op(1), where hS(θ
∗, Xi1,

Xi2, δi1, δi2) is a p × p matrix with the (j, k)-th element hSjk(θ
∗, Xi1, Xi2, δi1, δi2) given

in Equation (24) being independent random variables with mean 0.

(2)
√

n
{︂ˆ︁Vn(ˆ︁θn)− V∗(θ∗)

}︂
= 1√

n ∑n
i=1 hV(θ

∗, Xi1, Xi2, δi1, δi2), where hV(θ
∗, Xi1, Xi2,

δi1, δi2) is a p × p matrix with the (j, k)-th element hVjk(θ
∗, Xi1, Xi2, δi1, δi2) given in

Equation (25) being independent random variables with mean 0.

Proof of Lemma 1. Let S∗
jk(θ

∗) = E0
[︂
−ℓθjθk(θ

∗, U1, U2)
]︂

denote the (j, k)-th ele-

ment of S∗(θ∗). Similarly, let ˆ︁Sn,jk(ˆ︁θn) = −n−1 ∑n
i=1 ℓθjθk(

ˆ︁θn, ˆ︁Ui1, ˆ︁Ui2) denote the (j, k)-
th element of ˆ︁Sn(ˆ︁θn), j, k = 1, · · · , p. By the mean-value theorem, we have

ˆ︁Sn,jk(ˆ︁θn) = −n−1
n

∑
i=1

ℓθjθk(θ
∗, ˆ︁Ui1, ˆ︁Ui2) +

[︄
−n−1

n

∑
i=1

ℓθjθk ,θ(θ̃, ˆ︁Ui1, ˆ︁Ui2)

]︄′

(ˆ︁θn − θ∗),

where θ̃ lies on the linear segment between θ∗ and ˆ︁θn.
Using the same arguments for the consistency of ˆ︁Sn(ˆ︁θn), by condition C6 (i) (anal-

ogous to Chen et al.’s condition A2) and condition C6 (ii) & (iii) (analogous to Chen
et al.’s Condition A4), we can show supθ∈Θ n−1 ∑n

i=1 ∥ℓθjθk ,θ(θ, ˆ︁Ui1, ˆ︁Ui2)I(Xir ≤ η)∥
is asymptotically ignorable as η → 0. This together with the continuity of ℓθjθk ,θ (in
our condition C6 (i)) and the consistency of the Kaplan-Meier estimate and PMLE ˆ︁θn,
we can show that ∥n−1 ∑n

i=1 ℓθjθk ,θ(θ̃, ˆ︁Ui1, ˆ︁Ui2)−E0
[︂
ℓθjθk ,θ(θ

∗, U0
1, U0

2)
]︂
∥ = op(1). Let

Mjk(θ
∗) = E0

[︂
ℓθjθk ,θ(θ

∗, U0
1, U0

2)
]︂

(a p × 1 vector). Because ˆ︁θn is
√

n-consistent, we
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have

ˆ︁Sn(ˆ︁θn)jk = −n−1
n

∑
i=1

ℓθjθk(θ
∗, ˆ︁Ui1, ˆ︁Ui2)− Mjk(θ

∗)′(ˆ︁θn − θ∗) + op(n−1/2). (19)

Again applying the mean-value theorem on Equation (19), we have

ˆ︁Sn,jk(ˆ︁θn)− S∗
jk(θ

∗)

=n−1
n

∑
i=1

[︂
−ℓθjθk(θ

∗, U0
i1, U0

i2)− S∗
jk(θ

∗)
]︂
− n−1

2

∑
r=1

n

∑
i=1

ℓθjθk ,ur(θ
∗, Ũi1, Ũi2)( ˆ︁Uir − U0

ir)

− Mjk(θ
∗)′(ˆ︁θn − θ∗) + op(n−1/2) (20)

where (Ũi1, Ũi2) lies on the linear segment between ( ˆ︁Ui1, ˆ︁Ui2) and (U0
i1, U0

i2).
Based on the expansion of ˆ︁θn around θ∗ in Chen et al. (2010), we have

ˆ︁θn − θ∗

=S∗(θ∗)−1 1
n

n

∑
i=1

[ℓθ(θ
∗, U0

i1, U0
i2) + W1(θ

∗, Xi1, δi1) + W2(θ
∗, Xi2, δi2)] + op(n−1/2)

(21)

where for r = 1, 2,

Wr(θ
∗, Xir, δir) = E

0 [ℓθ,ur(θ
∗, U0

1, U0
2)Iir(Xr) | Xir, δir] (22)

with

Iir(Xr) = −Hr(Xr)

[︃∫︂ Xr

−∞

dNir(u)
Pn,r(u)

−
∫︂ Xr

−∞

I(Xir ≥ u)dΛ0
r(u)

Pn,r(u)

]︃
with Λ0

r(u) = − log H0
r(u), the true cumulative hazard function of Tir, Nir(u) =

δir I(Xir ≤ u), dNir(u) = Nir(u)− Nir(u−), and Pn,r(u) = n−1 ∑n
k=1 Pr(Xkr ≥ u). Us-

ing similar arguments for obtaining Equation (21), under our condition R6 (iii) and C7
(i) (analogous to Chen et al.’s condition A3 (i) & (ii)) and condition C6 (ii) (analogous
to Chen et al.’s Condition A4 (i)), we can show that

n−1
n

∑
i=1

ℓθjθk ,ur(θ
∗, Ũi1, Ũi2)( ˆ︁Uir − U0

ir) = n−1
n

∑
i=1

hSjk ,r(θ
∗, Xir, δir) + op(n−1/2), (23)

where hSjk ,r(θ
∗, Xir, δir) = E0

[︂
ℓθjθk ,ur(θ

∗, U0
1, U0

2)Iir(Xr) | Xir, δir

]︂
.

From Equations (20), (21), and (23), we have

√
n
{︂ˆ︁Sn,jk(ˆ︁θn)− S∗

jk(θ
∗)
}︂
=

1√
n

n

∑
i=1

hSjk(θ
∗, Xi1, Xi2, δi1, δi2) + op(1),
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where

hSjk(θ
∗, Xi1, Xi2, δi1, δi2)

=
[︂
−ℓθjθk(θ

∗, U0
i1, U0

i2)− S∗
jk(θ

∗)
]︂
− hSjk ,1(θ

∗, Xi1, δi1)− hSjk ,2(θ
∗, Xi2, δi2)

− Mjk(θ
∗)′S∗(θ∗)−1 [ℓθ(θ

∗, Ui1, Ui2) + W1(θ
∗, Xi1, δi1) + W2(θ

∗, Xi2, δi2)] (24)

Let V∗
jk(θ

∗) and ˆ︁Vn,jk(θ
∗) denote the (j, k)-th element of V∗(θ∗) and ˆ︁Vn(θ

∗). We
apply the same techniques above, with our condition C5 (i) (analogous to Chen et
al.’s condition A4 (i)) and condition C7 (ii) & (iii) (analogous to Chen et al.’s condition
A3 (i) & (ii)), we can show

√
n
{︂ˆ︁Vn,jk(ˆ︁θn)− V∗

jk(θ
∗)
}︂
=

1√
n

n

∑
i=1

hVjk(θ
∗, Xi1, Xi2, δi1, δi2) + op(1),

where

hVjk(θ
∗, Xi1, Xi2, δi1, δi2)

=
[︂
ℓθj(θ

∗, U0
i1, U0

i2)ℓθk(θ
∗, U0

i1, U0
i2)

′ − V∗
jk(θ

∗)
]︂
+ hVjk ,1(θ

∗, Xi1, δi1) + hVjk ,2(θ
∗, Xi2, δi2)

+ Pjk(θ
∗)′S∗(θ∗)−1 [ℓθ(θ

∗, U0
i1, U0

i2) + W1(θ
∗, Xi1, δi1) + W2(θ

∗, Xi2, δi2)] (25)

with

hVjk ,r(θ
∗, Xir, δir) = E

0
{︂[︂

ℓθj,ur(θ
∗, U0

1, U0
2)ℓθk(θ

∗, U0
1, U0

2)

+ ℓθk ,ur(θ
∗, U0

1, U0
2)ℓθj(θ

∗, U0
1, U0

2)
]︂
∗ Iir(Xr) | Xir, δir

}︂
and Pjk(θ

∗) = E0[ℓθj,θ(θ
∗, U0

1, U0
2)ℓθk(θ

∗, U0
1, U0

2) + ℓθk ,θ(θ
∗, U0

1, U0
2)ℓθj(θ

∗, U0
1, U0

2)].

The proof of Lemma 1 ends.

Proof of Theorem 3: Under the null hypothesis that the assumed copula function
is correctly specified, R∗(θ∗) = S∗(θ∗)−1V∗(θ∗) = Ip due to Theorem 1, and conse-
quently, by Theorem 2, Rn → p = tr

[︁
Ip
]︁

in probability as n → ∞. In addition, Rn − p
can be expressed as Rn − p = tr[ˆ︁Sn(ˆ︁θn)−1ˆ︁Vn(ˆ︁θn)− S∗(θ∗)−1V∗(θ∗)]. With algebraic
derivations, we have

√
n(Rn − p) =

√
ntr

[︂ˆ︁Sn(ˆ︁θn)
−1ˆ︁Vn(ˆ︁θn)− S∗(θ∗)−1V∗(θ∗)

]︂
=tr

[︂
S∗(θ∗)−1√n

{︂ˆ︁Vn(ˆ︁θn)− V∗(θ∗)
}︂]︂

+ tr
[︂
S∗(θ∗)−1V∗(θ∗)S∗(θ∗)−1√n

{︂
S∗(θ∗)− ˆ︁Sn(ˆ︁θn)

}︂]︂
+ tr

[︂{︂ˆ︁Sn(ˆ︁θn)
−1ˆ︁Vn(ˆ︁θn)− S∗(θ∗)−1V∗(θ∗)

}︂
S∗(θ∗)−1√n

{︂
S∗(θ∗)− ˆ︁Sn(ˆ︁θn)

}︂]︂
(26)

Under the null hypothesis, S∗(θ∗) = V∗(θ∗), the second term in Equation (26) be-
comes tr[S∗(θ∗)−1√n

{︂
S∗(θ∗)− ˆ︁Sn(ˆ︁θn)

}︂
]. The third term in Equation (26) is op(1)
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because ∥ˆ︁Sn(ˆ︁θn)−1ˆ︁Vn(θ
∗) − S∗(θ∗)−1 V∗(θ∗)∥ = op(1) shown in the proof of Theo-

rem 2 (Appendix B) and ∥ˆ︁Sn(ˆ︁θn)− S∗(θ∗)∥ = Op(n−1/2) by Lemma 1. Thus, we can
write

√
n(Rn − p) =

1√
n

n

∑
i=1

hR(Xi1, Xi2, δi1, δi2, θ) + op(1),

where

hR(θ
∗, Xi1, Xi2, δi1, δi2) = tr

[︂
S∗(θ∗)−1 {hV(θ

∗, Xi1, Xi2, δi1, δi2)− hS(θ
∗, Xi1, Xi2, δi1, δi2)}

]︂
.

(27)

By Central Limit Theorem for independent random variables, we can show that
√

n(Rn −
p) converges in distribution to a normal random variable with mean 0 and variance
σ2 = Var[hR(Xi1, Xi2, δi1, δi2, θ)].
The proof of Theorem 3 ends.

D Proof of Theorem 4
To prove this theorem, we need to first prove the following lemma:

Lemma 2 Under Condition R1 - R6 and C1 - C4, sup1≤i≤n ∥ˆ︁θn − ˆ︁θ(−i)∥ = Op(n−1).

Proof of Lemma 2 The "out-of-sample" PMLE ˆ︁θ(−i) is obtained by maximizing
∑n

s=1,s ̸=i ℓ(θ, ˆ︁Us1, ˆ︁Us2), i.e., ∑n
s=1,s ̸=i ℓθ(ˆ︁θ−(i), ˆ︁Us1, ˆ︁Us2) = 0. Apply the mean-value the-

orem, we have

0 =
n

∑
s=1,s ̸=i

ℓθ(ˆ︁θ−(i), ˆ︁Us1, ˆ︁Us2) =
n

∑
s=1,s ̸=i

ℓθ(ˆ︁θn, ˆ︁Us1, ˆ︁Us2) +
n

∑
s=1,s ̸=i

ℓθθ(˜︁θ, ˆ︁Us1, ˆ︁Us2)(ˆ︁θ(−i) − ˆ︁θn)

=
n

∑
s=1

ℓθ(ˆ︁θn, ˆ︁Us1, ˆ︁Us2)− ℓθ(ˆ︁θn, ˆ︁Ui1, ˆ︁Ui2) +
n

∑
s=1,s ̸=i

ℓθθ(˜︁θ, ˆ︁Us1, ˆ︁Us2)(ˆ︁θ(−i) − ˆ︁θn)

where ˜︁θ lies in the linear segment between ˆ︁θ(−i) and ˆ︁θn. Since ∑n
s=1 ℓθ(ˆ︁θn, ˆ︁Us1, ˆ︁Us2) = 0

(ˆ︁θn is the PMLE using all the observations), we have

ˆ︁θn − ˆ︁θ(−i) = ˆ︁S(−i)(˜︁θ)−1n−1ℓθ(ˆ︁θn, ˆ︁Ui1, ˆ︁Ui2) (28)

where ˆ︁S(−i)(˜︁θ) = −n−1 ∑n
s=1,s ̸=i ℓθθ(˜︁θ, ˆ︁Us1, ˆ︁Us2). Thus,

sup
1≤i≤n

∥ˆ︁θn − ˆ︁θ(−i)∥ ≤ n−1 sup
1≤i≤n

⃦⃦⃦ˆ︁S(−i)(˜︁θ)−1
⃦⃦⃦
× sup

1≤i≤n

⃦⃦⃦
ℓθ(ˆ︁θn, ˆ︁Ui1, ˆ︁Ui2)

⃦⃦⃦
.

Using the same arguments for proving the consistency of ˆ︁Sn(ˆ︁θ), we can prove that
as n → ∞, ˆ︁S(−i)(˜︁θ) → S∗(θ∗) in probability. Our condition C3 (ii) (equivalent to Chen
et al.’s Condition A1 (ii)) assumes the boundedness for the eigenvalues of S∗(θ∗),
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which ensures that sup1≤i≤n

⃦⃦⃦ˆ︁S(−i)(˜︁θ)−1
⃦⃦⃦
< ∞. In addition, our condition R6 (i) & (ii)

(equivalent to Chen et al.’s Condition A3) ensures that sup1≤i≤n ∥ℓθ(ˆ︁θn, ˆ︁Ui1, ˆ︁Ui2)∥ =

Op(1), and thus, sup1≤i≤n ∥n−1ℓθ(ˆ︁θn, ˆ︁Ui1, ˆ︁Ui2)∥ = Op(1). It leads to sup1≤i≤n ∥ˆ︁θn −ˆ︁θ(−i)∥ = Op(n−1).

The proof of Lemma 2 ends.

Proof of Theorem 4. Recall that the PIOS test statistic is defined as

Tn =
n

∑
i=1

ℓ(ˆ︁θn, ˆ︁Ui1, ˆ︁Ui2)−
n

∑
i=1

ℓ(ˆ︁θ(−i), ˆ︁Ui1, ˆ︁Ui2).

Applying the mean value theorem on ℓ(ˆ︁θ(−i), ˆ︁Ui1, ˆ︁Ui2), we have

Tn = −
n

∑
i=1

ℓθ(ˆ︁θn, ˆ︁Ui1, ˆ︁Ui2)
′
(︂ˆ︁θ(−i) − ˆ︁θn

)︂
− 1

2

n

∑
i=1

ℓθθ(θ̆, ˆ︁Ui1, ˆ︁Ui2)
(︂ˆ︁θ(−i) − ˆ︁θn

)︂2
,

where θ̆ lies on the linear segment between ˆ︁θ(−i) and ˆ︁θn. Plugging in Equation (28),
we have

Tn = n−1
n

∑
i=1

ℓθ(ˆ︁θn, ˆ︁Ui1, ˆ︁Ui2)
′
{︂ˆ︁S(−i)(˜︁θ)}︂−1

ℓθ(ˆ︁θn, ˆ︁Ui1, ˆ︁Ui2)

− 1
2

n

∑
i=1

ℓθθ(θ̆, ˆ︁Ui1, ˆ︁Ui2)
(︂ˆ︁θ(−i) − ˆ︁θn

)︂2

= tr

[︄ˆ︁S(−i)(˜︁θ)−1

{︄
n−1 ∑

i=1
ℓθ(ˆ︁θn, ˆ︁Ui1, ˆ︁Ui2)ℓθ(ˆ︁θn, ˆ︁Ui1, ˆ︁Ui2)

′
}︄]︄

− 1
2

{︄
n−1

n

∑
i=1

ℓθθ(θ̆, ˆ︁Ui1, ˆ︁Ui2)

}︄
n
(︂ˆ︁θ(−i) − ˆ︁θn

)︂2
.

Thus,

Tn − Rn

=tr
[︂{︂ˆ︁S(−i)(˜︁θ)−1 − ˆ︁Sn(ˆ︁θn)

−1
}︂ ˆ︁Vn(ˆ︁θ)]︂− 1

2

{︄
n−1

n

∑
i=1

ℓθθ(θ̆, ˆ︁Ui1, ˆ︁Ui2)

}︄
n
(︂ˆ︁θ(−i) − ˆ︁θn

)︂2
.

(29)

In the proof of Lemma 2, we have shown that ∥ˆ︁S(−i)(˜︁θ) − S∗(θ∗)∥ = op(1). In ad-
dition, because ∥ˆ︁Sn(ˆ︁θn) − S∗(θ∗)∥ = op(1), we have ∥ˆ︁S(−i)(˜︁θ) − ˆ︁Sn(ˆ︁θn)∥ = op(1),
and consequently, the first term in Equation (29) is op(1). For the second term, fol-
lowing similar arguments, we can show ∥n−1 ∑n

i=1 ℓθθ(θ̆, ˆ︁Ui1, ˆ︁Ui2)− S∗(θ∗)∥ = op(1).
Together with sup1≤i≤n ∥ˆ︁θn − ˆ︁θ(−i)∥ = Op(n−1), the second term is Op(n−1). Com-
bining the two terms, we have |Tn − Rn| = op(1).
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The proof of Theorem 4 ends.
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