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We study the weight 11 part of the compactly supported cohomology of the moduli space of curves
Mg, using graph complex techniques, with particular attention to the case n = 0. As applications, we
prove new nonvanishing results for the cohomology of My, and exponential growth with g, in a wide
range of degrees.

1 Introduction

The weight 0 and weight 2 graded parts of the compactly supported cohomology of the moduli spaces of
curves M, are naturally identified with the cohomology of combinatorially defined graph complexes
[7, 8, 16] that resemble graph complexes arising in algebraic topology. Meanwhile, the graded parts in
weights 1, 3, 5, 7, and 9 all vanish, because the rational cohomology groups of the Deligne-Mumford
compactifications Mg, vanish in these degrees [4]. This paper is devoted to studying the lowest
nontrivial odd weight graded part of the cohomology of M, ,, in weight 11. Our main technical result
(Proposition 1.7) identifies gr; Hs (M) with the cohomology of another combinatorial graph complex
resembling those arising in the embedding calculus [11]. This is similar in spirit to the aforementioned
results in weights 0 and 2, and yet the details are substantially different in each weight.

As an application of this construction, we give new nonvanishing results for the cohomology of M,
by showing that the 11th weight graded piece is nonzero. These results are proved by relating the weight
11 cohomology to the weight 0 cohomology. Let A := H''(M3 11), which we view as a 2-dimensional Q-
vector space with its Hodge structure or ¢-adic Galois representation of weight 11. It follows from [5]
that gr,, H2 (My,,) is isomorphic to a direct sum of copies of A.

Theorem 1.1. Let V;’k denote the degree k and genus g part of the r-fold symmetric product

Sym’ (EB WOH;(Mh)).
h>3
Then there is an injective map
= R k- k- =
(VA 0 VI 0 VIS 0 VI 0 V2) 0 a - g HAMy). o

It was previously known that dimg WoH™ (My) grows at least exponentially with g for k € {0, 3} and
is nonzero for k = 7 and g = 10 [7]. From this, together with previously known nonvanishing results in
weights 0 and 2, we have the following corollary.
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Corollary 1.2. The dimension of Hf“k(./vlg) grows at least exponentially with g for each fixed
0 < k < 53, except possibly for k € {1,4,7,20,51}.

This corollary is proved using only what is already known about the nonvanishing and growth of
WoHg (My); it is expected that the weight zero cohomology is much larger than what is currently
known. By [16] and Theorem 1.1, each improvement in our understanding in weight zero will lead to
corresponding improvements in weights 2 and 11, respectively. Even a single new nonvanishing weight
zero cohomology group could significantly extend the range of k in which H2 (My) is known to grow
at least exponentially with g.

Conjecture 1.3. The dimension of H29** (My) grows atleast exponentially with g for all but finitely
many non-negative integers k.

For k = 4 and 20, we note that H°(M3) and H3*(Mj5) are nonzero. Each is Poincaré dual to a
corresponding H?, which contains a nonzero class «. For k = 7, as noted above, HY (M) is nonzero
in weight 0. However, there is no g for which Hfgﬂ(./\/lg) is known to be nonzero.

Question 1.4. Does ch-“’“(/vlg) vanish for all g?

Remark 1.5. The cohomology group H9+1(GCZ'°P) of the loop order g part of Kontsevich’s graph
complex injects into H?“l(Mg) [7], so a positive answer to Question 1.4 would imply that this
cohomology group vanishes for all g. This is equivalent to the vanishing of H'(GC,), the first
cohomology group of a degree shifted version of GCy. The vanishing of this cohomology group is
a well-known open problem in homological algebra and algebraic topology; it is of significant
interest because H*(GCy) is the space of obstructions to a variety of problems, including
the existence of Drinfeld associators [10], the existence of formality maps in deformation
quantization [15], and the rational intrinsic formality of the little disks operad [12].

We now explain how Corollary 1.2 follows from Theorem 1.1 before discussing the graph complexes
that arise in our study of the weight 11 cohomology.

Proof of Corollary 1.2. Recall that dimg Wonwk(Mg) grows at least exponentially with g for k € {0, 3}
and is equal to 1 for k =7 and g = 10 [7, 16]. It then follows from Theorem 1.1 that, for fixed k and r > 2,
dimg V;'z-q*k grows at least exponentially with g whenever k is in the set

U, =1{0,3,6,...,3r}U{7,10,13,...,4 + 31}

Note that, by the sign conventions for graded vector spaces recalled in §2.1, below, the image of v@ v in
Sym2 V is zero when deg(v) is odd. In particular, since WoH?” (M) is 1-dimensional and of odd degree,
its symmetric powers vanish.

Taking into account the degree shifts, the injection (1) yields at least exponential growth of

dimg H2otk (My) for kin the set

(194 U10) U (18 + U10) U (16 + Ug) U (12 + Ug) U (8 4 Us) .

Similarly, from [16], we know that the weight 2 cohomology contributes at least exponential growth of
dimg HZ9* (My) for kin the set

B+ Uz)U(2+Uy),

and the result follows. |
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The following picture illustrates the values of k for which dimg H (My) is now known to grow at

least exponentially with k, with dark grey boxes for the previously known cases (from weight 0 and 2)
and light grey boxes for the new contributions from weight 11.

Ft-:q:-]]]]]w]]]]]]]]]i]]]]]]]]]]i]]]]]]]]]]i‘HHHHW

0 10 20 30 40 50 60

Remark 1.6. Corollary 1.2 is only a rough summary of what one can deduce from Theorem 1.1
and previous known nonvanishing results in weights 0 and 2. One also gets specific bounds
on the genera for which H§9+k(M9) is nonzero, and lower bounds on the dimensions of these

groups.

The results above are proved by identifying the weight 11 compactly supported cohomology of Mg,
with the tensor product of A = HY@(Mjy;) with the cohomology of a graph complex that we now
describe. The graph complex By, is a differential graded vector space generated by genus g graphs
with n legs numbered 1,...,n, at least 11 legs labeled w, and an arbitrary number of legs labeled e.
Each connected component contains at least one e- or w-labeled leg. The genus of a generating graph
is the loop order of the connected graph obtained by gluing together all e- and w-legs, plus one. The
cohomological degree is:

22 — #w + #edges — n.

For example, the following graph is a degree 22 generator of By ;.

e NN

wWwwwwwwwwww w
The differential § on By, is a sum of three pieces,
8 =28,+8+8.

The piece §, changes one w- to an e-label, the piece §¢ splits vertices, and the piece §¢ joins together a
subset of the e-legs with either 0 or 1 of the w-legs, and attaches a new leg labeled ¢ or w, respectively.
See §3.3 for details.

Proposition 1.7. The weight 11 compactly supported cohomology of My, is isomorphic to the
tensor product of A with the cohomology of By, :

gr Hi (M) = HBgp, 8) ® A.

When E(g,n) := 3g+2n—25 is small, the graph complex By , is sufficiently simple that its cohomology,
and hence gr,,H(My,), can be computed by hand. We carry this through for E(g,n) < 3 in §4. We show
thatgr,,H2 (M, ) vanishes when E(g, n) < 0.In particular, gr,; H (My) = 0 for g < 8.1In the first nontrivial
case without marked points, we find that

A fork=22,

k ~
gruflc(Mo) = 0 otherwise.
We also find large families of nontrivial graph cohomology classes forn = 0 that give rise to Theorem 1.1.
These families are constructed in §§5-6.
As another application of Proposition 1.7, we give a formula for a generating function for the S,-
equivariant Euler characteristic of gr,, (H2(M,n)), analogous to the formulas in weights 0 and 2 proved
in [6] and [17], respectively. This formula, along with numerical results for a range of g, n, are presented
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in §7.For g =2 and 3 and n < 14, our results agree with data obtained independently by Bergstrém and
Faber using local systems and the trace of Frobenius [3]. For g = 3, the computations of Bergstrom and
Faber are conditional on a conjectural list of motives of weight at most 22 that can appear in moduli
spaces of curves, based on the work of Chenevier and Lannes [9]. Our results confirm the weight 11 part
of these computations unconditionally.

2 Preliminaries
2.1 Graded vector spaces, symmetric products, and differentials

Let V = @,.; V" denote a graded vector space over Q, with V" the subspace of degree n. We write |[v| =n
for the degree of a homogeneous element v € V™.

We follow the usual Koszul sign convention. In other words, the preferred isomorphism exchanging
the factors in the tensor product of graded vector spaces V and W

VWS WeV
is given on homogeneous elements v € Vand w € W by
vew— (- @ u.
This convention induces an action of the symmetric group Sy on the tensor power

VR VRV
———
k

of a graded vector space V. We define
Sym* V = Vo /S,

to be the space of coinvariants. For vy, ..., Uy € V we write vy - - - Uy for the equivalence class of V1 ®- - -®ug
in Symk V. Note that, by the Koszul sign convention, when k = 2 and vi,v; € V are homogeneous
elements

v1v; = (=D)Mlyyuy.

In particular, if v is homogeneous of odd degree, then v2 = 0 in Sym? V.

Many of the graded vector spaces that we consider are also equipped with a differential. Throughout,
we follow cohomological conventions for these dg vector spaces, that is, the differentials increase the
cohomological degree by 1.

2.2 The Getzler-Kapranov graph complex

The cohomology of the Deligne-Mumford compactifications H*(M,,) of the moduli spaces of curves
assemble to form a modular cooperad H(M). The modular cooperad structure encapsulates the
symmetric group actions and the boundary-pullback operations

£ H.(Mgwg;,nﬁn;) — H.(mgq,ﬂ]+1) ® H.(mg7,n7+1)
n*: H.(mg+1,n) g H.(mg,HJrZ)y

together with the natural compatibility relations among these pullbacks and group actions.

For any modular cooperad, one can define its Feynman transform, following Getzler and Kapranov
[13], see also [16, §2.4]. We define the Getzler-Kapranov complex GK to be the Feynman transform of
the modular cooperad H(M)

GK := FHM),
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and write GKy, for the part of genus g and arity n, as in [16, §2.5]. Generators of GK,, are dual graphs of
stable curves of genus g with n numbered external legs, each of whose vertices v is decorated by a copy
of Hk (Mg, ), where g, and n, are the genus and valence of the vertex v, respectively. The genus g is the
loop order of the graph plus the sum of the numbers g,. The cohomological degree of a generator is the
number of structural edges (not counting numbered legs) plus the sum of the degrees of decorations
>, ku; the differential § on GK,, is defined using the modular cooperad operations &*, n* and increases
the cohomological degree by 1.

There is an additional grading of GK;, by weight. The weight of a generator is >’ ky, the sum of
the degrees of the decorations, and the weight is preserved by the differential. We write GKS,H for the
subcomplex generated by graphs of weight k, so (GKg, 8) splits as a direct sum

GKgn = P GK; .,
k

The cohomology of the weight k part of GK,, is identified with the weight k graded part of the
compactly supported cohomology of the open moduli space

H*(GKE ,,, 8) = gr,H: (Mg ).

g.n’

In this paper, we study the weight 11 part GK;}H, whose cohomology computes gr;;H: (Mg ).

2.3 The weight 11 Getzler-Kapranov complex

! has a relatively simple description because H*(M,,) vanishes for all odd k < 9, by

The complex GK;},
[4, Theorem 1.1]. It follows that, in each generator for GK;?W there is one vertex v, which we call the
“special vertex” with k, = 11, and all other vertices are decorated by H°. Since Ho(ﬂgmv) = Q, these
latter decorations are essentially trivial and can be ignored.

The possibilities for the decoration at the special vertex are as follows [5]. Let Wy, := V(,_10)110 be the
irreducible S,-representation corresponding to the Young diagram (n — 10)1%°, and let A = H (M3 11).

Then

_ W,®A forg=1landn>11;
HM(MW) ~ n g . =
0 otherwise.

In particular, the special vertex v in each generator for GK;}H has genus g, = 1 and valence n, > 11.
The following figure depicts a typical generator; the special vertex is indicated by a double circle, and
x € H' (M) is the decoration at the special vertex.

The genus g, of each vertex v is inscribed in the corresponding node. Note that generators can have
tadpoles, that is, edges connecting a vertex to itself.

3 A Combinatorial Graph Complex for Weight 11

In this section, we give a more precise description of the combinatorial graph complex By, discussed in
the introduction and prove Proposition 1.7. The proof is a zig-zag of quasi-isomorphisms between GK;?"
and By, ® A. The first step in our zig-zag is a surjective quasi-isomorphism from GKél}q to a quotient
complex whose generators do not have tadpoles, except at the special vertex, and whose non-special
vertices are all of genus 0.
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Definition 3.1. Letl;, C GK;1 be the dg subspace spanned by graphs with at least one non-special

n
vertex v that carries a tadpole or a positive genus g, > 1. Then we define

GKjh = GKg /Ign.
In other words, in @;1” we set to zero all generators with tadpoles or positive genera at non-special
vertices. The special vertex nevertheless always has genus 1, and may also have tadpoles.
Proposition 3.2. The quotient map
11 ral’a
GKg;, — GK,,
is a quasi-isomorphism of dg vector spaces.

Proof. We endow both sides with the descending filtration on the number of vertices. The differential
11 is zero, while that on GKj}, is given by the part that reduces the genus

on the associated graded of @9
0
PoNS S

of a non-special vertex and adds a tadpole:
The cohomology of this differential is given by graphs in which every non-special vertex has genus 0
and no tadpoles. The proof is similar to (and simpler than) the arguments in [16, §4]. |

In pictures of generators for @éln we omit the genus of the vertices. The special vertex is indicated

by a double circle and has genus 1. All other vertices are of genus 0. For instance, the following depicts
a generator for GKE%.

To summarize, each generator of @% has the following form:

e A connected graph I of loop order g — 1 with one special vertex v and n numbered legs, in which
all non-special vertices have valence at least 3.

e The special vertex has valence n, > 11 and is decorated by an element x € H(Mj,,). (The
markings in My, are implicitly identified with the half-edges at the special vertex.)

e There are no tadpoles at non-special vertices.

e The graph is equipped with an orientation o given by an ordering on the set of structural edges
(i.e., all edges other than the numbered legs).

We suggestively denote the orientation by o = e A--- A e, with ey, ..., e the structural edges of I'. We
impose two relations on these generators.

e First, we identify isomorphic graphs. Thatis, if ¢: I’ — I'" is an isomorphism, we set
(Te1 A Aep,X) =T, 1) A Adler), d(X), 2

with ¢ (x) relabeling the punctures in M, according to the isomorphism ¢.
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¢ Second, we identify orderings up to sign. That is, for a permutation o € S, we set

(T, e1 A Aep,X) =SgNO) (T, Er1) A+ A gy, X) - (3)

The differential acts by splitting vertices. The vertex split of the special vertex uses the map
£ HE (M) —» HY (Miy-si1) ® HO (Mogsi1)-
Recall that the special vertex is decorated by W,,, ® A, and A = H'1(M} 11) is a Q-vector space of rank
2. This vector space does not have a canonical basis, but it does have a canonical Hodge structure of
weight 11. Its complexification A ® C splits canonically as
A® C~ All,O Iy AO,ll
where A% is the complex conjugate of A0 and A0 is spanned by a canonical element w correspond-

ing to the weight 12 cusp form for SL,(Z). The pullback maps & and » respect complex conjugation. We
can then decompose @;1” as a tensor product

CRIL =TRlr @ 4,
where @;1{’ is a simpler and more combinatorial complex in which the special vertex is decorated by
W, . To make the differential on @éln" explicit, we recall the description of generators, relations, and
boundary pullback maps for H** (M), from [5, §2].

The symmetric group Sy acts by the sign representation on H0(Mj 11). For n > 11, H'XO(My,) is
generated by the pullbacks

WA = Go
of the canonical generator w of H'*%(Mj 1) under the forgetful maps
A ﬂl,n - ml,n,

given by forgetting all punctures except those in the set A c {1,...,n} of cardinality 11. Moreover, the
pullbacks {wa : 1 € A} form a basis.

Let &c: Mipup) x Mocug — Mauc be the boundary inclusion and let

g8 H (Mupuc) — H (M supy) ® HOMocug) = H* (Mo pup)

be the corresponding pullback operation. Then

wA ifCNA=9¢
SéwA = 1@@)\0up ifCNA= {c}. (4)
0 otherwise.

The differential on GKj»° hence has the form
§=082+6,
with 85 splitting non-special vertices and §7 splitting the special vertex. Concretely, we have

ST, e1 A Aep,X) = Z Z(I‘/,eo/\el/\---/\ek,x) (5)

veV,TI split v
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with the outer sum running over non-special vertices of I'. The inner sum is over all admissible ways of
replacing the vertex v by two vertices connected by a new edge ey, distributing the incident half-edges
at v on the new vertices, thus forming a graph I''. Pictorially:

X <

Similarly, the operation §¢ splits the special vertex,

8(C,er A+ Aep,X) = Z (splitgI", eo A €1 A --- Aep, §5X), (6)
BCH,,|B|>2

where the sum is running over subsets B of the set of half-edges at the special vertex, and split;I is

the graph obtained by adding an additional non-special vertex to the graph, to which we connect the
half-edges in B, and a new edge to the special vertex. Pictorially:

5::;{H§§§Z—<}B

To compute the pullback for the decoration at the special vertex one uses (4). In the definitions of both
8¢ and &2, the newly added edge ey comes first in the edge ordering, and the relative order of the other
edges is preserved.

Remark 3.3. Note that the formal linear combinations of expressions ws for A c {1,...,n} with
|A| = 11 form a representation of the symmetric group S, of the form

Sy
Indg], s, ,, 58011 ®Q,
that is, the induced representation from the product of the sign representation sgn,, = Vin
of S11 and the trivial representation Q@ = V,_1; of Sy_11. By Pieri’s rule (or the more general
Littlewood-Richardson rule), this representation decomposes into irreducibles as
Vin—1010 ® V11

The image of the subspace V,_11yu in H'*0(Ma,) is zero, so HY0(My ) = Vi 10)10. A complete
set of relations spanning V,_11)111 1s

12
j+1
Z(_l)}Jr P, B] ----- b1} (7)
j=1
with B = {bs,...,b12} C {1,...,n} running over subsets of cardinality 12.

3.1 An acyclic auxiliary graph complex
We now describe an auxiliary graph complex X, », in which each generator has a special vertex decorated
by an arbitrary subset of its incident half-edges (not necessarily of size 11). We include an ordering of
these half-edges as part of the orientation, so permuting these half-edges induces a sign representation,
consistent with the antisymmetric properties of the generators wa discussed above. The resulting graph
complex is acyclic, and hence gives rise to two resolutions of ﬁ;ln" by truncating according to the
number of marked half-edges at the special vertex.

The generators of X, are of the following form:

e A connected graph T of loop order g — 1, with one distinguished special vertex, a distinguished
subset of r half-edges at the special vertex, and n numbered legs.
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¢ All non-special vertices have valence at least 3, the special vertex has valence at least one, and
there are no tadpoles at the non-special vertices.

e The cohomological degree of a generator is #structural edges — #marked half-edges.

e The graph is equipped with an orientation o consisting of a total ordering of the set
{e1,..., ek, ha,..., h} of structural edges ey,...,e of I and the distinguished subset of half-edges
incident to the special vertex hs, ..., hy.

Here, again, the structural edges are all edges other than the numbered legs. We suggestively write
0 = a1A- - -Alryr toindicate the order on the set of edges and the distinguished half-edges, with as, . . ., ar.r
being some ordering of the elements of the set {e1, ..., e, h1, ..., h/}. We impose two relations.

e First, we identify isomorphic graphs: if ¢: I' — I'" is an isomorphism, we set

(C,er A= Aeg Ahy Ao nhy) =T, ge1) A--- Ager) Ap(h) A+ Ag(hy). (8)

¢ Second, we identify orderings up to sign: for a permutation o € S, we set

(T,a1 A Aleyr) = 8gN(O) T, Aoty A+ A o) - ©)

This second relation allows one to put the edges before the half-edges,e; A<~ Aex Ay A+ Ay,
The following figure depicts a generator for Xs 1. The special vertex is indicated by a double ring, and
the marked half-edges at the special vertex are indicated by arrows:

—XX
The differential on Xg, is the sum of two pieces

8 =85+ 8-

The piece §,, simply removes one distinguished half-edge from the orientation.
r - A
So(Cer A---Aeg ANy A---Ahy) :Z“(—l)kﬂ‘l(r‘,el/\---/\e;E AhpA--hys ARy

j=1

Pictorially:

aw:%ﬁzi% .

The piece & acts by splitting vertices. For convenience, we shall further decompose §; = §¢ + 8 into
a piece §¢ splitting the special vertex and §¢ splitting the other vertices. Concretely, the operation §¢ is
defined analogously to (5),

Ss(C,ea A~ AepAhiA---Ahy) = Z Z(I",eoAelx\---/\ek/\hl/\---/\hr). (10)
veV,T split v

The outer sum is again over all non-special vertices v of I'. The inner sum is over all admissible ways
of replacing the vertex v by two vertices connected by an edge, distributing the incident half-edges at v
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on the new vertices, thus forming a graph I''. Pictorially:

D
Similarly, we define §¢ analogously to (6),

8(C,erAn-—-AepAhiA---Ahy) = Z(sphtBF,eo/\ei/\---/\ekAhl/\---Ahr), (11)

BCHx
IB|=2

with the sum running over subsets B of the set H, of half-edges incident at the special vertex, such
that |B| > 2 and B contains at most one of the distinguished half-edges. The graph split;I" is built by
adding a new non-special vertex v to the graph I', with an edge to the special vertex, and reconnecting
the half-edges B to v. If B contains a marked half-edge, then the marking is removed and put on the
half-edge connecting the special vertex to v instead. Pictorially:

dg - %@{ — ZW + Z %cw—'{ .
Lemma 3.4. The differential § satisfies 82 = 0, and the dg vector space (X, 8) is acyclic.

Proof. The verification that §2 = 0 is by direct computation, as follows. Expand 8% as
(82 485 +80)" = (827 + (87 + (Bu)” + [83, 851 + [82,8,] + [82, 8],

with [—, —] denoting the anticommutator.

It is clear that (8,)? = 0 since the operations of removing two different markings commute, and
the terms come with opposite sign. Similarly, [83,8,] = O since the markings at the special vertex
do not interfere with the edge splitting operation, and matching terms again come with opposite
sign.

To check that (87)? = 0 consider a graph I € X and compute 835:T. Say the first application of 87 splits
a vertex v into vertices v/, v”, and the second application split a vertex w. Clearly, if w # v’,v”, then the
splittings of first v then w cancels the similar term corresponding to first splitting w and then v. There
remain the terms for which w = v’ and w = v”, schematically depicted as follows:

/ 1
v 5° v v 5°
Z 1 Z 1 2 + 2 1

The numbers below the edges indicate the position of the edge in the ordering that makes up the
orientation of the graph. The two terms on the right (from splitting v’ and v”) are the same, up to the
sign from swapping the edge order, and hence cancel.

By essentially the same argument, with one of the vertices replaced by the special vertex,

(82)% 4 [82,82] = 0.

§*7s

It remains to check that [§2,8,] = 0. To this end, fix a graph I' € X and look at those terms in (82, 8,,]X
in which a subset B of the half-edges at the special vertex is split off, and the marking of half-edge h is
removed. Such terms can potentially be produced twice, corresponding to the two paths from top left
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to bottom right in the following diagram:

h } B split g } B

lremove h lremove h

}B split g }B

e If the half-edge h is notin B, as in the picture above, the two terms produced from §26,,I" and §,8T
are isomorphic but come with opposite signs and hence cancel.
e If h € B, and B contains exactly one marked half-edge, then the two terms again cancel:

}B splitg }B

lremove h ltemove h

}B splitg }B

e If h € B and B contains at least 3 marked half-edges, then none of the splitting terms yields a
contribution (i.e., those B do not appear in the sum (11)).

e Finally, if h € B and B contains exactly two marked half-edges, say h and I, then the terms
corresponding to removing h and h’ match and cancel:

We distinguish 4 cases.

\/} B splitg

lremove h,h!

0
_N ity (+1—1).>@—>—<:0

To show acyclicity, we consider the filtration on X by the number of vertices. The E°-page of the
associated spectral sequence may be identified with the complex (X4, 8,). Hence, it suffices to check
that H(Xy, 8,) = 0. To this end, consider the degree —1-operation h: X4, — Xy, that sums over all ways
of adding a half-edge to the distinguished set,

1
[H.l

h(T,e1 A---Aeg AR A---Ahy) = (=1)k Z h(T,e;1 A---Aeg AhAhL A--- Ahy).

Then §,h + hé,, is the identity map. It follows that h is a contracting homotopy for é,, and H(Xy, 8,) = 0.
Since X, is finite dimensional, the filtration is bounded and our spectral sequence converges to the
cohomology. Hence, H(Xg, 8s + 8.,) = 0 as claimed. [ |

3.2 Blown-up picture

We now introduce an alternative graphical depiction of generators for X,, that we call the blown-
up picture. This equivalent encoding of the same information is obtained by “blowing-up” the special
vertex, thatis, removing the special vertex and making the incident half-edges into external legs, which
we label by a special symbol w (resp. €) according to whether the half-edges are marked or not. For
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1 - 1jw<w —

Note that the graph on the right may be disconnected, though every connected component must contain
atleast one e- or w-leg. When we talk about the blown-up components of a graph in X, , below, we refer
to the connected components of the blown-up picture.

The differential has an equivalent description in the blown-up picture, as follows. The piece

bt D )

replaces one w-decoration by e. The piece §3 joins together a subset S of the e- and w-legs, containing at
most one w-leg, and attaches a new leg that is decorated by w if S contains an w leg and € otherwise:

52@\_;

example,

€ Or W

3.3 Truncations of X,, and resolutions of GK!’°

We now show that two truncations of X;, give natural resolutions of @éln"

Definition 3.5. Let éw C Xgn be the dg subspace spanned by graphs that have at most 10
distinguished half-edges at the special vertex, and define

Eg,n = Xg,n/ag,n,
to be the quotient complex. We also denote appropriate degree shifted versions by

Bgn = Byn[—22]

Cyn = Cgn[-21].

We now show that By, and Cyn are resolutions of @;1{’ Consider P: By, — @éln" given by

(T,e1 A A, @y, hyyy) LfT=11,

otherwise;

PT,ey A---Aep ANy A---Ahy) =

and I: GK; 5 — Cy, given by

1
KT e1 A A€k, Wphy. hy) = Z(—l)kﬂ‘l(l“, er A Al AN ARy AN,

j=1

Proposition 3.6. The maps P and I above are well-defined maps of dg vector spaces and induce
isomorphisms on cohomology.

Proof. We start by checking that P intertwines the differentials. First, we show that P(§,I') = 0. If I" has
11 or more than 12 distinguished half-edges then this is clear by degree reasons. If I has exactly 12
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distinguished half-edges, then P(5,I') = 0 by Remark 3.3, since §,, produces expressions of the form (7),
which vanish in @éln" Next, we have P(§;T") = §3P(I'), since the splitting of the non-special vertices
is the same on both sides; see (5) and (10). Finally, comparing (6) and (11) we see that P(6;T") = §2(I'),
because the handling of the marked half-edges in 85 on By, reflects the pullback operation &; of (4). It
follows that P intertwines the differentials, as required.

Next, note that the maps P and I fit into a commutative diagram

P el
Byn —— GKy”

e

g.n

Since P is surjective and both P and §,, intertwine the differentials, so does I.

It remains to show that P and I are quasi-isomorphisms. Since Xy, is acyclic, 8,: Bgn — Cgn 1s @
quasi-isomorphism. Since the above diagram commutes, it therefore suffices to show that P is a quasi-
isomorphism. To this end, we first note that by Remark 3.3

GK!'e = Bg,n/(Bg,n,zmm D 8mBg,‘n,12w)y

where By 12, (resp. By >120) is the subspace of By, spanned by graphs with 12 (resp. > 12) w-legs. We
hence need to show that the projection

Bg,n - Bg,n/(Bg,n,zﬂw (&) 5ng,n,12w) (12)

is a quasi-isomorphism. To this end, we follow the argument for acyclicity of X, , in the proof of Lemma
3.4. We consider on both sides of (12) the spectral sequences from the filtration by the numbers of
vertices in graphs. On the first page of the spectral sequence, the differential on the left-hand side of
(12)is given by §,,, and on the right-hand side it is zero. Since (Xg, 8,,) is acyclic and By , is the a truncation
at 11 w-legs, we have

. 8o ~
H(Bg,m 81») = Bg,ﬂ,llm/lm(Bg,HJQw - Bg,n,lw) = Bg,n/(Bg,n,zﬂw (&) 5ng,n,12w)<

Hence, (12) induces an isomorphism on the E'-page of the spectral sequence, and is a quasi-
isomorphism by the spectral sequence comparison lemma. |

Corollary 3.7. There are natural isomorphisms

H*(By) ® A = gry HE (Mg ) = HY(Cyn) ® A.

4 Explicit Computations in Low Excess

In order to study the cohomology of B, », we introduce a statistic on graph generators that we call excess.
Most importantly, for our purposes, the excess is non-negative, additive on blown-up components, and
graphs with small excess are relatively simple and easy to classify.
Definition 4.1. The excess of a generator I' of X, is
ET)=3(g—1) + 2n — 2#o,
where #w is the number of w-legs of .

We also define

E(g,n) :=3g+ 2n — 25.
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Any generator I' for By, has #w > 11, and hence
EI) <E@g,n).

Note that E(I") = E(g,n) mod 2, so all generators for By, have even or odd excess, when g is odd or even,
respectively. Also, for each fixed k, there are only finitely many pairs (g, n) such that E(g,n) = k.
Write each generator I' for By, as a union of its blown-up components:

r=Cu---UcC.
Let g; be the contribution of C; to the genus of I'. More precisely,
gi = h'(C)) + #e + #o — 1,

that is, the loop order of C; plus the number of its € and w labeled legs minus one. Then the excess
of C;is

E(C) :=3g; + 2n; — 2#w

Lemma 4.2. The excess is additive over blown-up components, that is,
ET)=EC1U---UC) =E(C1) +---+ECp), (13)

and the excess of each blown-up component is nonnegative.

Proof. The formula (13) for E(I') is evident since the genus of I is the sum over the genus contributions
of the blown-up components, plus one to take into account that the special vertex has genus one.
If either h'(C;) > 1 or #¢ > 1, then

E(C)) = 3hY(C)) + 3#e + 2n; + #w — 3 > 0.

It remains to show that E(C;) > 0 when h'(g;) = #e = 0. Suppose C; is a tree with m leaves that can be
either numbered or w-decorated. If the tree has at least 3 leaves, then E(C)) is at least 2n; + #w — 3 > 0.
Any tree has at least two leaves, and the remaining cases are:

w—w or w—]

The first graph vanishes by symmetry and for the second we have E(C;) = 0. u
Corollary 4.3. If E(g,n) < 0, then gry;Ht(My,) = 0.

Proof. By Lemma 4.2, if E(g, n) is negative, the complex By, is 0. |

Lemma 4.4. If h’(C;) > 1, then E(C;) > 5.

Proof. The argument is similar to the proof of Lemma 4.2. First, note that if h*(C;) > 3 then E(C;) > 5. If
h*(C;) = 2, then the only graphs that would produce E(C;) < 5 need to have #¢ = 2n; = 0 and #» = 1. But
there is no such (non-vanishing) loop order 2 graph. Finally, suppose h'(C;) = 1. The general loop order
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one graph has the form

with the ? representing an ¢, o, 2 numbered leg or a tree or forest to be attached. Clearly, if the graph
has > 5 legs, then E(C;) > 5. Also note that the length of the inner loop must be at least three, otherwise
the graph has a double edge and vanishes. If the graph has loop length 4, the only case to be considered
is that of all 4 legs being w-legs.

This graph has an odd symmetry and vanishes in By . For loop length three, we have the graph

and its variants in which one w is replaced by a number or a forest with 2 w-legs. In each case, the graph
has an odd symmetry and vanishes in By . |

Using Lemma 4.4, the cohomology of By, can be computed relatively easily as long as E(g,n) < 4,
since the generating graphs are forests. We now carry through the details for E(g,n) < 3.

41 ExcessO

By Lemma 4.2, the blown-up picture of a graph of excess zero is a union of connected components of
excess zero. The only such components are of the form

ww w '’

Thus, if E(g,n) = 0, the generators of By, have the following form:

MO 1w—n /AN N

w W w w W w

Note that there are n (w —j)-edges and % tripods with three w-legs each. The cohomological degree of
such a generatoris k= 11+ 2(g — 1).
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One hence arrives at the following list of cases in which gr,;H¥(Myn) is concentrated in a single
degree k, and isomorphic to A. The S,-action is by the sign representation in each case.

% V111 fork=11 % V15 fork =14
H*(By11) = ) H*(Bsg) = )

0 otherwise 0 otherwise

k Vs fork =17 k V2 fork =20
H¥(Bss) = . H*(B72) = )

0 otherwise 0 otherwise

4.2 Excess 1

Suppose E(g,n) = 1. Each generator for By, has all connected components of excess 0, except for one of
excess 1. The connected graphs of excess 1 are of the form:

w—e€ or /I\ o A or  / N (14)

- T
) ww wwww w w w w

The third graph maps to the fourth under the vertex splitting differential, and hence graphs with these
components do not contribute to cohomology; we may simplify By, by killing these terms.
The remaining excess 1 graphs are of the form

F(l):w—l-uw—n /’\ w—€

w W w w W w

or

F;l):w—l---w—n /’\ /'\ /’\

wow w wwwj oww’

with the understanding that there is no (w —j)-edge in Fjﬂf Modulo terms involving the fourth graph in
(14), which we ignore, the differential is given by

n
r® e £ r?. (15)
j=1

It follows that the cohomology of By, (with E(g,n) = 1) is one copy of the irreducible S,-representation
Va1 in degree k = 10 + 39, given by the cokernel of (15). Concretely, this applies to the cases:

\ fork =13 \ fork =16
218 or Hk(B4y7) _ 215 or

H*(By10) = . .
otherwise 0 otherwise

Vo2 fork=19

H*(Bsa) = .
otherwise

H*Bg1) = 0.

4.3 Excess 2

Suppose E(g,n) = 2. A generator for By, of excess 2 has either two connected components of excess 1,
or one of excess 2. The connected components of excess 2 are

AN

Cww i w or trees with at least 4 leaves. (16)
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As in the case E(g,n) = 1, one readily checks that trees with at least 4 leaves do not contribute to the
cohomology of By, and can be killed by a chain homotopy. Thus, we ignore such terms. The remaining
reduced version of By, is generated by the single graph I'® of excess 0 in degree 10 + 3(g — 1), along
with the following graphs of excess 2:

FEQ)::wf1~~~w—n /I\ A\ ﬂ\

w W w W w w e ww

M- e—jw—1.w—n /L\

€]

|
Z
>

-

() ._
Iy

F(‘z) —w—1 - w—n /‘L\ /I\ W—€ W—¢€

wWewe w

F(Q)__wil.,.wi'n A\ A Aw\ w—€

wej T Cwow w W w w j

Fg?j)-—w—1~~w—n A /(L\

After killing terms involving trees with at least 4 leaves, the differential maps I'®, F{f), and I“i(f) to 0.0n
the remaining generators, it is given by:

2 2 2
ro Z:tl";.) + (const)I'? r§j> - Zirfj)
j i

2 2 2
LD, > £T2 + > 417 e BE=
j i

W wej wej ij
J

Here one needs to take care that whenn = O or g = 1, some of these generators are absent. More precisely,
@ @ p@ p@ @ @

the generators I',”, I\, T';7 are not present when n = 0, nor are I'?, I, I'(J,,, T, when g = 1.

When all of the generators are present, the cohomology consists of one copy of the sign representation

Vin Of Sy, represented by I'® + ..., and two copies of the irreducible representation Vs;u-s, represented

by linear combinations of graphs of the form I‘i‘f’ and l"i(_}?), respectively. Taking into account the special

cases n =0 and g = 1, we arrive at the following:

Ve fork =14
X V319 fork =12 k
H*(B112) = X H*(Bso) = V316 ® Va6 fork =15
0 otherwise )
0 otherwise
Vis fork =17 \ZE fork =20
H*(Bsg) = { Vaps @ Vaps  fork =18 H*B73) = {Vs@ Vs fork=21
0 otherwise 0 otherwise
Q fork=22
H*(Bs o) = .
0 otherwise.
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4.4 Excess 3

Suppose E(g,n) = 3. Then each generator I' for By, has excess 1 or 3, and the contributions of the blown
up components determine a partition A of E(I'). We filter By, according to the lexicographic ordering on
these partitions, and consider the associated spectral sequence. On the first page, the differential only
relates generators with the same partition.

e ) = 1. The graphs of excess 1 and the complex that they generate on the first page are exactly as
in §4.2. In particular, the cohomology is one copy of V,y.-2 in degree 3(g — 4) + 15, represented by
linear combinations of the graphs of type Fj(l).

¢ ) = 13.The contribution of graphs with the blown-up components of excess 1is similar to the excess
2 case computed in §4.3. The resulting cohomology on the first page is one copy of V.-« in degree
3(g — 3) + 17 represented by linear combinations of graphs

M, e w1 N N NN N

iijsk w w wwwzwijwkww

* ) =21. Here we have 6 types of graphs to consider, coming from 3 types of components of excess 2
(16) and 2 types of components of excess 1 (14). The cohomology consists of:

1. A copy of Vyqes @ Vappns in degree 3 (g — 4) + 17 represented by linear combinations of graphs

ween /N N NN

w W w wwwz]wkww

T®
1]k_w 1.

2. Two copies of Vpin2 in degree 3 (g — 4) + 16 one represented by graphs of the form

F(g):w—l-nu.)—n /L\ /{\ /y\ /'\

€ w w WWwwj owwe ww

and another by graphs of the form:

F(3)7w—1~-~w—n /!\ /!\ /J)\

€hg ww w www J

e ) =3 The relevant trees of excess 3 are:

A or

€——¢ or . . .
€ 7 W 7 W w 7

The cohomology of the resulting 3-term complex is Vsy-s in degree 2(g — 4) + 17 represented by
linear combinations of graphs of the form

w w Twww i ow

The only possible cancellations on later pages of the spectral sequence are between the copies of
Vyyn-2. And indeed §,I'" = p ﬁ:FS‘j +(---), and thus the two corresponding copies of Vy;.» do cancel on
the second page of the spectral sequence. Taking into account the cases of low g < 2 and low n < 3 one
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arrives at the following expressions for the cohomology of By :

HE (Boa1) = Va7 @ Ve @ V3pe fork = .14
0 otherwise
Vare fork =16
Hk(BAL,S) = 1 V412 ® Vg4 & V3p13 @ V3qs fork = 17
0 otherwise
Vars fork =19
Hk(B6,5) =1V ®Vy & V3 @ V317 fork — 20
0 otherwise
k V, fork=22
H*(Bg2) = ‘
0 otherwise.

5 The Case n = 0: First Injection

We now restrict attention to the special case where n = 0, allowing the genus g (and hence the excess
E) to be arbitrarily large. Following the standard notational convention for moduli of curves, we write:

Xg = Xg,Ov Bg = Bg,Oy Cg = ngo.

In this section and the next, we identify several nontrivial families of cohomology classes in C4 and By,
respectively, built from the weight 0 compactly supported cohomology of M, for h < g.

Let GCp be the graph complex generated by connected graphs without tadpoles in which every vertex
has valence at least 3. Each generator comes with an orientation, which is a total ordering of the edges.
As before, we identify isomorphic graphs, and we identify two orientations up to sign, cf. (2) and (3), and
(8) and (9). The cohomological degree of a generator is the number of edges, and the differential § is
given by vertex splitting, as in (10). The differential preserves the loop order (first Betti number) and we
write GCég) for the part of loop order g.

Recall that GCE?) is quasi-isomorphic to the Feynman transform of the modular co-operad H°(M),
evaluated at (g, 0); more precisely, it is the quotient of FH°(M)(g, 0) by the acyclic subcomplex generated
by graphs with tadpoles or vertices of positive genus [/]. As a consequence, there is a canonical
isomorphism

WoH? (My) = H*(GCY).

The symmetric product Sym®(GCp) inherits a loop order grading from GC, and we denote by
Sym*(GCp)@ ¢ Sym*(GCo) the part of loop order g.

Theorem 5.1. There is a map of complexes
F: Sym'%(GC)~V[-21] ® Sym™'*(GCy)¥=2[-22] — C,
that induces an injective map on the level of cohomology

H*21(Sym™®(GC)9Y) @ H*22(Sym™*(GC0)9~?) — HY(Cy).
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Corollary 5.2. There is a natural injection

(H*?Y(Sym'%(GCo)9 ) @ H*?2(Sym'%(GC0)9?)) ® A — gry;H (M).

5.1 A homotopy trivial Lie bracket on GC,

The graph complex GCp is a dg Lie algebra with the Lie bracket [—, —] defined by inserting one graph
into a vertex of the other. This primary Lie bracket has degree 0; it leaves the number of edges invariant
and removes one vertex.

There is also a secondary Lie bracket of degree +1 on GCy, which, we denote {—, —}, defined by gluing
two graphs together by attaching a new edge between them:

{172} = Z (v, w)Um Uy = Z

VeV
weVyy

To fix the sign, the newly added edge comes first in the ordering, followed by the edges of y1, and then
those of y,. This secondary Lie bracket {—, —} is homotopy trivial.

Proposition 5.3 ([20]). There is an Lo-isomorphism
(GCo,8,0) — (GCo,8,{—, -}

between the abelian Lie algebra GCy and the dg Lie algebra GCy equipped with the Lie bracket
{—, —}. This L-isomorphism preserves the grading by loop order on both sides.

The Chevalley-Eilenberg complex of the dg Lie algebra GCy with the homotopy trivial Lie bracket
{—, —} of degree +1 is the graded vector space

CE(GCo, 8, {—, =) = Sym(GCo)
with the differential § + §;, such that

Sy ) = z(_l)w(m\+~-»+m,u)+|y,um\+-~+\y],m—m|m|{m’ Y P Be ne

i<j

Combinatorially, if we think of the product y;---» as the union of the graphs yi,..., %, then §,
adds a new edge between any pair of vertices that belong to different connected components. Any
Le-morphism induces a morphism on the Chevalley-Eilenberg complexes. Hence we obtain from
Proposition 5.3 the following result.

Corollary 5.4. There is an isomorphism between the Chevalley-Eilenberg complexes of the
abelian dg Lie algebra GCy and the dg Lie algebra GC, with the bracket {—, —}.

®@: CE(GCo, 8,0) = (Sym(GCo), ) — CE(GCo, 8, {—, =} = (Sym(GCo), § + 8.

5.2 Some combinatorial operations

We consider the tadpole-free version of the Kontsevich graphical operad Graphs, [14]. As for any operad,
its unary operations G := Graphs,(1) form a dg associative algebra with the operadic composition o as
the product. Concretely, elements of G, are linear combinations of pairs (T, 0) with I' a connected graph
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with one special “external” vertex, and an orientation o = e1 A --- A e given by ordering the edges.

The external vertex may have any valence; all other vertices must have valence at least 3.
The product (i.e., the operadic composition) is defined by inserting one graph into the other and
summing over all ways of reconnecting the incident edges to vertices of I'y.

2955

The differential § on G is given by splitting vertices of graphs, as in (10), (11).
K S K T34

Next, we define the vector space

X=Qs 0 PX,

g=1

It is generated by the generators of the X, of arbitrary genus, plus an additional generator ¢. We think
of @ as the empty graph in the blown-up picture, or the graph with a single special vertex in the original
picture.

There is a left action of the dg algebra G, on the complex X defined as follows:

GioX—-X

(F,V)HFOV:Z @lj (17)

Here again one inserts the graph v into the external vertex of I', and reconnects the incident half-edges
in all possible ways to vertices of v. If a half-edge of T is reconnected to the special vertex of v, then the
rule is that the half-edge becomes non-marked. Equivalently, in the blown-up picture, each half-edge
of I' incident to the special vertex is either reconnected to an internal vertex of v or else decorated by e.
In particular, if v = @, then one just labels all of the half-edges of I' incident to the external vertex by e.

Lemma 5.5. The operation o above is a well defined left action of the dg associative algebra G,
on the dg vector space X.
Proof. First, let us check that for graphs I'1, I’ € G1 and v € X we have
Flo(FQov):(Florz)OU.
Each side is the sum of graphs obtained by reconnecting the half-edges incident at the external vertex

of I't to internal vertices of I'; or vertices of v, and half-edges incident to the external vertex of I'; to
vertices of v. Hence, both sides agree.
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Next, we have to check compatibility with the differentials, that is,
8(Tov) =@M ov+ (=DM osv.
This verification is straightforward. We outline the argument. First, note that
8T ov) = (=DM 08,v,
since I' o (—) does not interact with the decorations € or w. It remains to show that
8s(Tov) = @M ov+ (=1MT o0 &w. (18)

The terms appearing on either side are of one of four types:

* (A) Terms arising from splitting an internal vertex of I'. Those are the same on both sides and can
be ignored.

e (B) Terms arising from splitting a non-special vertex v of v. On the left-hand side of (18) the splitting
is performed after (possibly) some edges of I' have been connected to v. Pictorially,

e

with the new edges drawn dotted. The same terms are produced on the right-hand side of (18),
except for graphs for which there are 0 (say type (B0)) or 1 (say type (B1)) old edges incident to one

of the vertices.
(BO) : >—< (B1) :/—<

e (C) There are terms arising from splitting the special vertex of v on the left- and right-hand side of
(18). They are handled just as those of type (B) above, and match except for terms of types

(Co) : >—< (C1) :/—<

that appear on the left-hand side of (18), but (a priori) not on the right.

¢ (D) Finally, we have terms on the right-hand side of (18) from splitting the external vertex of I'. Those
are of course absent from the left-hand side, because the operation I' o (—) removes the external
vertex of I'. However, upon inspection, these terms of type (D) on the right-hand side exactly match
the terms of type (BO) and (CO) above on the left-hand side.

[t remains to show that the yet unmatched terms (B1) and (C1) on the left-hand side of (18) all cancel
in pairs. To see this mind that each such term appears twice, once from either side of the “old” edge
attached to the vertex that was split off:

S T
U D =

The two terms cancel in each case. To see this, recall that the newly produced edge from the splitting
is always the first in the ordering. From this, one deduces that the two terms have opposite signs, and
the lemma follows. ]

or
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Next, let y € GCp be a graph. Then we define the element y* € G; by summing over all ways of making
one vertex of y external. For example,

PP

We also define y° € G; by attaching one edge and the external vertex. Similarly, we define y¢ € X by
adding one e-leg and y“ € X by adding one w-leg. For example, with y as above:

=2
o

Il
IS

=2
oy

Il
~

)
€

Il
IS

To fix the signs, the newly added edge becomes the first in the ordering of edges. In the case of y the
new (distinguished half-edge) w stands right after the newly added edge in the ordering of edges and
ws. Note that §,y? = —y*¢.

Lemma 5.6. The above operations satisfy the following compatibility relations for y, v € GCo:

syhH—-6Bnt=y° (19)

Ay Dt =y oys + (=1Mnlyp oyl (20)

Proof. For (19) note that marking one vertex commutes with vertex splitting, except that splittings of
the external vertex can be such that the external vertex has valence 1 or 2 afterwards. The terms with
valence 1 are y°. The terms of valence 2 cancel by an argument similar to that at the end of the proof
of Lemma 5.5.

For (20) note that ({y1,})! is a linear combination of graphs obtained by connecting y; and y; by
one edge, and marking one vertex of y; or y, as external. The terms in which the external vertex isin y,
are the same as oy, and the terms in which the external vertex is in y; are the same as (= 1)1y oyl

For graphs x1,..., X € X, let us denote by x; U--- U x; their union. For y € GCp and x € X define the
operation

Ay,X) =y°ox—y UX.

Concretely, this operation connects y and x by an edge (v, w), summing over all vertices of v and all
non-special vertices w of x.

A(%96)=Z ?f

©

Lemma 5.7. The operation A(y, —) is a derivation, that is,

k
Ay, xaU - UXp) = > #X3 U UMY, X) U+ U (21)
j=1
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Furthermore, for y,v € GCy

{y,v) = =2, v) = (D", y), and (22)

v, v} =1y, v + (D", ). (23)

Proof. The derivation property (21) is clear from the pictorial description of A above the lemma.
We hence focus on (22), (23). The element {y, v}¢ is obtained by connecting y and v by one edge and
adding an e-leg at a vertex of either y or v.

{“/,V}€:®—<lf+<?—®

To fix the sign, note that in the implicit ordering of edges, the e-edge is first, then the horizontal edge,
then the edges of y, then those of v. On the other hand,

N

€

with the ordering of edges such that the horizontal edge is first and the e-edge second, then the edges
of y, then those of v. Finally,

s =7

€

with the analogous ordering of edges. Hence, (22) follows. Equation (23) is shown similarly, with the
caveat that there is an extra sign due to the w-decoration being of odd degree, that is, the assignment
y > y© is of even degree zero. |

5.3 Themap G

Let] = {j1,...,jr} denote an ordered subset of {1,...,n}, that is, with indices chosen so thatj; < --- < jg.
We define a linear map

G: (Sym(GCo),8 +68()) = X

by the formula

Goa-eyn) = D0 DLy, 0oy, o Vg
=k o€Sk

n
= Ulnzlyiw + Ziyél ° (Uy}: Y+
=1 '

The sign reflects the permutation of the symbols y; in the formula. The term withJ = {1,...,k} and o the
identity comes with sign +. This, together with the conventions on permuting factors in the symmetric

product discussed in §2.1, determines all of the other signs.

Proposition 5.8. The linear map G is a map of dg vector spaces, that is, (6 +8,) 0 G = G o (§ + &;)).
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Proof. We have that §,y® = —y€ and hence

BuG1- ) =80 D Dy 0ne oy, o Uigry”

[|=k oSk
_ 1 . 1 € 2
- Z Z :l:yjnu) ° ° y)nrk) ° Zy[ U\‘z v
J|=k o€Sy 143

On the other hand, using (19) above
n k
8GO yn) = D GO0y oy) = D DL E Dy 0oyl oo, o Vg

r=1 U=k 0€Sy =1

Next, using (20) and (23), we have

k-1
1 w
GOy =520 D D 0 0 Wy e} 70 Wy, 0 Vi,

U=k r=1 ceSy
1 1 1 w 1)
+5 2 2 A oo, 0 2 el U v,
J|=k o€y a,bg]
- 1 o 1 1 ,
=20 2 O Wy W O Wi, O Vi
=k oSk
1 o
+ z Z :I:)/)-m) © " %Vw ° Uigy”
J|=k oS
1 1
=2 D E 0N, 0 2% Uy
Jl=k oeSg ag]
The proposition follows by summing the expressions above. |
5.4 Operation V
Consider the degree +1 operation
V:X[-1]—-X

defined by summing over all ways of attaching one new edge to the graph v, between an arbitrary pair
of vertices. Comparing to (17), this can be identified as the extension of the action o to the tadpole graph

o
so that
Vv=1"ov.
As in Lemma 5.5, we then have that
§Vv 4+ Vv = (8t')ov =0,

since §7/ = | has a tadpole at an internal vertex and thus acts as zero. Hence, the operation V anti-

commutes with the differential on X and is a map of complexes.
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5.5 Construction of the map F of Theorem 5.1

We define a map Sym(GCp) — X as the composition of the isomorphism @ of Corollary 5.4 and the map
G above:

(Sym(GCo), 8) 2 (Sym(GCo), 8 +6()) = X.

Note that if the argument on the left-hand side is in the subspace S'°(GCy), then the image lies in
the subspace C[21] c X spanned by graphs with at most 10 w-legs. We hence can define the map F of
Theorem 5.1 by restricting G o ®. More precisely, F is the composition

(Go®)B(God) id+v
—_—

F: Sym'%(GCo)9 Y [-11] @ Sym™®(GCp)9-2[-12] Cy ® Cyr[~1] = Cy.

5.6 Hairy graph complex and (X, §)
Our final goal is to show the injectivity claim of Theorem 5.1. To this end, it will be necessary to study
the cohomology of the complex (X, &). This can equivalently be identified with the associated graded
complex of (X, 8, + &) under the filtration by number of w-legs.

We consider a graph complex fHGC generated by linear combinations of pairs (I, 0) with " a possibly
disconnected tadpole-free graph with (non-numbered) external legs.

P

We require that each vertex has valence > 3. The orientation o = e; A --- A e is an ordering of the set of
structural (i.e., non-leg) edges, and we again identify isomorphic graphs and orderings up to sign, cf. (2),
(3). By convention, we allow the graph I' to be the empty graph for convenience, but we forbid connected
components that are just a single edge and do not contain a vertex. The differential § on fHGC is again
given by vertex splitting

6:><HZ>—<.

The degree of a graph is the number of structural edges. The graph complex (fHGC, §) is well known in
the literature. By [8], the cohomology of the connected part of loop order g with n legs (for 2g + n > 3)
computes the symmetric weight 0 part of the compactly supported cohomology of the moduli spaces of
curves WoH2 (Mg)s, . Closely related complexes also compute the rational homology of spaces of long
knots [2].

We then define a map of dg vector spaces

K: (Q® Qu @ QB ® Qup) ® fHGC — (X, §y), (24)

with « representing an (e — €)-edge and B representing an (e — w)-edge. More concretely, the map K acts
on the four summands as follows:

¢ On the first summand fHGC the map K just acts as the natural inclusion:

NS
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* On Qu ® fHGC the map K applies the natural inclusion followed by V:

A o w/i)\w

¢ On QB ® fHGC the map K adds one (¢ — w)-edge, plus connects an additional w-leg.

w L w
/, \\
/ \
— w—€ +E w— !
. ,
\\;7/
w w
w w w W w
= w—¢€ +2 + 2
w w w

Here the sum is over all ways of connecting a new w-leg to an internal vertex.
¢ On the summand QeB ® fHGC the map K acts as above, followed by V:

,
V| w—c¢ +E w%\/ !
.

Proposition 5.9. The map K is a quasi-isomorphism of dg vector spaces.

Proof. First one checks that K commutes with the differentials. For the summands fHGC and Q8 ®
fHGC, this is straightforward. For the other two summands, one uses the fact that V commutes with
the differentials.

It remains to check that the dg map K is a quasi-isomorphism. That is, we want to check that the
mapping cone of K is acyclic. We filter both domain and target, and hence also the mapping cone by
the number of connected components of graphs. On the associated graded we see only those parts
of the differential that leave the number of connected components the same. A close variant of the
resulting complex has been studied by Turchin and the second author [19]. We recall their main result
in Appendix A below, along with a slight variation (Corollary A.2) that implies that the E* page of our
spectral sequence has the form

E' = (QT ® Sym=° QL & Sym=’ QL*) ® (Q ® QL*) ® H(fHGC) = H(cone(K)),
with T,L¢, L the graphs of Appendix A. The differential on the E' page corresponds to those terms of
s that reduce the number of connected components by exactly one. The key observation is that the
component mapping the first tensor factor above to itself,

Sym=’ QL® — QT ® Sym=° QL®

has the form

L*U---ULY > —(k)L‘“U---UL"’UT.
[ —— 2) ————
k k-2
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This obviously makes the first tensor factor acyclic. By a simple spectral sequence argument, it then
follows that H(E') = 0 and hence H(cone(K)) = 0 as desired. [ ]

5.7 Injectivity on cohomology and proof of Theorem 5.1

The projection to the subspace Cy10, C Cyq spanned by graphs with exactly 10 w-legs is a map of dg
vector spaces

T (Cg, Is +3w) = (Cg,lomy 3s).

To show that F induces an injective map on cohomology, it hence suffices to show that = o F induces an
injective map on cohomology. But r o F is precisely the same as the map K from the previous section
restricted to a subspace of the 10-hair part of the summand (Q @ Q) ® fHGC. More precisely, x o F fits
into a commutative diagram

Sym!%(GCy)[~11] @ Sym'°(GCo)[—12] ol @, Cy 100
LB K

(fHGC[-11] & Qo ® fHGC[—12]) g yir

with the map ¢ sending y; - - - y10 € Sym'%(GCy) to the hairy graph

@. . @ S (fHGC)lo-hair

The map ¢ induces an injection on cohomology by [18, Theorem 1].
But by Proposition 5.9, the (restriction of the) map K is also an injection on cohomology, and hence
soismoF.

6 Case n =0 - Second Injection

In this section, we shall describe a second family of nontrivial cohomology classes in gr; Ht(My) that
are built from cocycles in GCy. More concretely, we will show the following result.

Theorem 6.1. There is a map of dg vector spaces
E: Sym®(GCo)9>[-22] ® Sym°®(GCo)“~>[~22] ® Sym*(GC)9~"[~22] — B,
that gives rise to an injective map on cohomology

E: H*22(Sym®(GC0))9™? @ H22(Sym°®(GCy)) 9™ @ H*?2(Sym*(GCy)) 9" — H*(By).

The remainder of this section is concerned with the construction of the map E and the proof that it
induces an injection on cohomology.

Since the construction is fairly technical and ad hoc, we shall first describe the idea here. Recall that
in the previous section we were able to construct explicit cocycles (say x € C;) in the graph complex
(Cy, 85 + 8,,) consisting of graphs with at most ten w-legs. The idea to show that x indeed represents a
non-trivial cohomology class was to consider the projection # : (Cy, 8 + 8,) — (Cg,100, 8s), and use that
the cohomology of the latter complex is computable. Concretely,by Proposition 5.9, it agrees with the
genus g- and 10-hair part of

Qo Qu & QB & Qup) ® H(FHGC), (25)
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and we know many non-trivial classes in the hairy graph cohomology H(fHGC) from previous work in
the literature.

Let us split x = Z}fo X; into components x; with j many -legs, then the top piece xio represents a
non-trivial cohomology class in Cy 10, (i.€.,1n (25)). Conversely, we may ask for a given cocycle x10 € Cg 100
whether it can be extended into a cocycle x10 + X9 + - - - 4+ X0 € (Cg, 8s + 8,). Unfortunately, this extension
problem is non-trivial, and we could only provide a solution for specific types of xio in the previous
section above, and these come from the summand Q @ Qu in (25). The idea underlying Theorem 6.1 is
to consider the summand Qug instead. In that case, the most natural approach turned out to not try
to construct the xo, ..., X9, but rather construct a cocycle x5 + x11 € (By, 8 + 8,) Whose image under
the map §, : B; — Cy is the required xy0. This is the idea of the construction of the present section.
The advantage is that we only need to consider two summands, x1» and x11, and they will have a more
natural combinatorial form than §,(x12 + X11).

6.1 Some combinatorial constructions

Our map E will be a linear combination of several pieces, that we shall introduce next. First, for k =
0,1,... we consider the maps

@ Sym(GCo) — X

k

with

the tripod graph. Since the differential §; distributes over the operation U as long as there are no e-legs
we have that

.
8sPr(yr--- ) = D (=Dl Dy (s - By ). (26)
j=1

On the other hand, we have

0u®r(y1- ) = 3k

/AL\UJ w @P@@? (27)

€

We also define the similar operation

®p: Sym(GCo) — X

A AN

Q)= LY e W w w
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It satisfies

T

SsDp(m - yp) = D (=)l (g (5y5) -+ )
=1
AN AN NP P =
_lowwwwwwww W ww w

k

Next we define the degree zero operation

U: X - X

Iy w-0-w,

where we sum over all ways of attaching two w-legs to the graph I, in the blown-up picture. This means
that the half-edges are attached to an internal vertex, or become an e-leg. (This can be seen as attaching
to the special vertex.)

Lemma 6.2. If a graph I' € X does not contain any e-legs, then we have that

35 0(T) — =3 g

where on the right-hand side we again sum over all ways of attaching the leg to I', with the
attachment to the special vertex being the same as introducing an e-marking at the leg.

[I]

Proof. The computation is similar to the proof of Lemma 5.6. |

Furthermore, we use the pre-Lie product e on GCy. For y1,y, € GCo
V1 ey = Z é € GG,

where the sum is over all ways of inserting y, into a vertex of y;. We shall only need to use the following
property of e, which is a special case of Proposition 5.3 (proved in [20]):

S(yrey2) — By e yo — (=1)y1 0 872) = {y1,12). (29)

Finally, we define the operation

o Sym(GCp) — X

T):iiw/ju\w w/:L\ @P ng 6}

w w

In other words, @ is defined similarly to @, except that we attach 3 w-legs to one of the y; instead
of one.
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Lemma 6.3. The expression 8s®y(y1 ---yr) — z}zl(—l)‘yl‘*"*‘% Udp(yr -+ (8%) - ) equals:

iim CA® i Ba AL AP K D e

w W w W w w w w W w W w w w

Proof. The verification is a similar graphical computation to those above. We omit the details. |

6.2 Definition of the map E

We then define the maps of graded vector spaces
Ep: Sym(GCo) - X

- 3k .
Vi Qe v) FR®e (1 y) + et (v ) + 3R (Pt (1 W)

10

.
D A oDy D E By (i) )

i<j

The map E; is not a morphism of dg vector spaces; it does not commute with the differentials. However,
we have the following result:

Lemma 6.4. For yi, ...,y € GCp, the commutator of E; with the differential

SEr(yi-yn) — D EE(yr--8y -+ )
J

is a linear combination of graphs with at most r + 3k — 2 legs decorated by w.
Proof. First note that ®p(y;---y) is the only term in the definition of E, that has r + 3k w-legs. The

remaining terms, call them X(y; - - - ) temporarily, all have r+-3k—1 many w-legs. Given (26) the assertion
of the lemma hence is equivalent to the statement that

85, X] (1 -+ ) 1= 8sX(y1 -+ y) = D X1+ 8y ) = =8, Di(yr - ). (31)
J

To show this, we investigate the terms contributing to [§;, X] separately. First, by Lemma 6.2,
[6s, W o Dp1](y1- - ) = —E(Pr1(y1-- ).
The terms contributing to E(®r_1(y1 - - - ) are of three sorts: (21) the terms for which there is a new

e-leg and (&) the terms for which the new leg is connected to a vertex of one y and (Zs3) the terms for
which the new leg is connected to a vertex of another tripod.

N S A

€ W W w ww W w w w
wgw
waw w w w
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The terms &; cancel the left-hand terms of §®i(---) in (27), in which one € is put on a tripod leg. The
terms &3 cancel with the terms [és, <i>k,1](y1 -y by (28).
Next denote temporarily

r
YOr-v) =D o ey o).
i=1

Then we use (19) to compute that

.
(85, V(- vy = D7 0 Drlya - Pie - ).
i=1

The terms on the right-hand side may be again split into terms (Y1) in which y; is attached to an e-leg
and terms (Y») for which y; is attached to a vertex of some other y; and (Y3) terms for which y; is attached
to a vertex of some tripod.

ZA,..A@@@

w W w ww w w

A A@:@

w W w ww w w
wwwwww w W w w w

The terms Y; cancel the remaining terms of §®,(---), see (27), in which one e-leg is attached to y;. The
terms Y, cancel the terms arising from the commutator of ij Or(y1- - (v;o¥;) - - - vr) with the differential
by (29).

The commutator Z := [, ®¢|(y1-- - ) is computed in (30) and we denote by Z; the first summand
and by Z, the second summand on the right-hand side of (30). Then the second summand Z, cancels
the terms E; above. At the same time the terms Z; cancel the terms Y3 above. Thus, all terms have been
taken care of and (31) and the lemma is proved. |

As an immediate consequence, we can finally define the map E of Theorem 6.1.

Corollary 6.5. The map
E: Sym’(GCo)9~¥[~22] ® Sym®(GCo)9~>[~22] ® Sym*(GCo) 9~ [~22] — By
defined such that
(1 79) ® (1 -+ - e) @ (V1vov3) > 7 (E1(y1 -+ v0) + Ea(p1 -+ - we) + Es(vivpv3)) € By,

with 7 : X4[—22] — B, the projection, is a map of dg vector spaces.

Proof. By Lemma 6.4, the commutator of E; with the differential only has terms with < 10 w-legs, and
these are killed by =. |
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6.3 Proof of Theorem 6.1

It remains to check that the cohomology map of the map E of Theorem 6.1 (see the definition in
Corollary 6.5) is in fact injective. Similarly to the proof of Theorem 5.1 above, it suffices to check that the
composition 7 08,,0E of E with the map 7 : H(Cy, §) = H(Cy.10s, §) and the quasi-isomorphism §,: By — Cy
is injective. However, in contrast with the proof of Theorem 5.1, the composition = o §, o E does not
factorize through the cohomology isomorphism K of Proposition 5.9. Hence, we need to trace through
the proof of Proposition 5.9, in which the cohomology H(Cy 104, 8s) is computed, and identify the subspace
of the cohomology that is in the image of 7 0§, o E. As in that proof, we hence consider the filtration by
the number of connected components in graphs, and the corresponding spectral sequence. We need to
trace our images m o8, 0 E(y1 - - - y») through this spectral sequence. Hence, we consider the leading order
term of 7 0§, o E(y1---y), that is, the term with the most connected components. This is easily seen
to be

e e N ANO D

w W w W w w w

But this leading order term is the same as produced by the map K of Proposition 5.9, acting on the
summand QB ® fHGC on the left-hand side of (24), and specifically on the element

A AP O

(- 7")'_www Wwww w

But since the map ¢ is an injection on cohomology, and the map K is an injection on cohomology, so
must be 7 0§, o E. Hence also E is an injection on cohomology as claimed.

6.4 Proof of Theorem 1.1

To show Theorem 1.1 of the introduction we need to check that the images of the maps E and F of
Theorems 6.1 and Theorem 5.1 inside the cohomology of (Cy, s + §,,) are linearly independent. As in
the preceding proof, it suffices to check that the images of = o E and = o F are linearly independent in
H(Cy 100, 85). But the latter cohomology is computed in Proposition 5.9 and identified with the genus g
part of

H(fHGC)lo-hair & Q ® H(fHGC)lo-hairQ,B ® H(fHGC)9-hair & Qo ® H(fHGC)9-hair-

Under this identification, we saw in the proof of Theorem 5.1 that the image of the map 7 oF is a subspace
of the first two summands

H(fHGC)10-hair ® Qo ® HEHGC)10-hair-

Likewise, we saw in the proof of Theorem 6.1 that the composition of = o E with a projection to the
summand Quf ® H(fHGC)q.nair i an injection. Hence, since the two previous subspaces are linearly
independent by Proposition 5.9, so must be the images of r o Eand 7 o F.

7 Euler Characteristic

The Sp-equivariant Euler characteristic of a complex very similar to X;, was computed in [17]; the
difference here is that the w-legs are odd instead of even. We recall the results from [17] and then apply
the necessary modifications to account for this degree shift.
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First, we introduce the functions

. 1 1 . 14 ¢
E, = Z%M(ﬁ/d)ﬁ, re = uf(1—ude,

By 1
B@ =2, rr—1z-1

=2
and U, (X, u) such that

)T (=
logU,(X, u) = log W

=X (log(aE) = 1) + (=E¢ + X — ) log(1 — £) + B(~=E¢ + X) — B(=E0).

Denote by f(g?n a graded vector space defined in the same manner as X;, but with even w-decorations
instead of odd, and with all edges (structural or not) odd. Let X;?nm C f(g}’n be the subspace with r legs
decorated by w. By [17, §4.3], the generating function for the equivariant Euler characteristic is (We

subtract 1 relative to loc. cit. since we do not include the empty graph in our complex.)

~ U, (% ¢/d 1 d
Zungn,lw,XSH (Xgljnyrw) _ H /é(e Zd‘zlllv( / )(pd +1+wh,u -1,
Ul(? Zdw M(f/d)pd, u)

g.nr ¢

with w the formal variable taking care of the number of w-legs and u the formal variable counting
genus plus the number of punctures. Looking at the derivation in loc. cit. one sees that the only change
required from even to odd w decorations is the sign in front of the term w?. We obtain

- U,(3 ¢/d 1—wt
Zugﬂl—lwaSn Xgnrw) = H ((Z Zd\l WD+ w0 -1
Ue(F g €/ d)pg, u)

g.nr t

with Xy, being a slightly modified version of X, in which all edges, are considered odd, not just
structural ones. This mistreatment of non-structural edges may be undone by replacing pg — —pa,
which is the equivalent on the character of multiplying the underlying representation of the symmetric
group by a degree shifted sign representation. We hence obtain:

Ue(E g0 €/ D) (=pa + 1 —wh), w)
g+n—=1, 1 X ) = € 3 _1
2, W W Clanee) = [ | Ue(3 >4 (/D) (=Pa), U)

g.n,r e

We are interested in the truncation of the complex X ,, concretely in the subcomplex

10
Cg,n = @Xg,n,m[_Zl]

r=0

spanned by graphs with at most ten w-legs. Let

00 10
T<10 (z ajwj> = Zaj
j=0 j=0
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be the operator that sums the first 10 coefficients of a formal power series in w. Thus, we find:

Z:ungﬂXSyl (Cg,n) =—-uT<po
gn

1l Vel Sae pE/DCpat 1-whw
¢ Up(3 34y m(€/d)(—pa), w) ’

with the factor —u accounting for the overall degree and genus shift due to the special vertex.

Theorem 7.1. The equivariant Euler characteristic of the weight 11 compactly supported coho-
mology of the moduli space of curves is computed by the following generating function:

1
5 2 W s, @ He M) = 3 uxs, (Con)

gn=0 n
2g+n=3 9

=-uT<
710(@21 Ul(% > aie /A (=pa), w)

Specializing to n = 0, we obtain:

1
5 > ulx(gry HeMyg)) = v — 2u™ + 2u™ + 8u™ — 17u™ — 14u’ — 20u’ + 29u" + 85u'®
9>2

+178u® + 123u® — 311u?! — 1049u?® — 2443u?® — 776U* + 6027u”° + 7200u’® — 34892u%’

+ 196735u® + 1215236u° — 3230856u°0 — 26415680u°! + O(u>?)

The following graphs show log(%|x(gran(M9))|) and sgn(x (gr;,Hc(My))) for g up to 70.

100

I Ue (G S n&/D(pa +1 —wh,w) 1)'

1.0+
80
0.5
60 |-
I L I L I L
40+ 20 30 40 50 60 70
20} ot -051
s T ‘ s s ‘ s 10
20 30 40 50 60 70 - r

We also obtain interesting numerical data for n > 0. Recall that gr,;H?(M,,) vanishes for g < 4 and
n < 6, by Corollary 4.3. In Figure 1, we present the S,-equivariant Euler characteristic for 5 < g < 16
and n < 6, expressed in the Schur polynomial basis for symmetric functions. As mentioned in the
introduction, our computations agree with those of Bergstrom and Faber for g = 2 and 3. In Figure 2, we
present the Euler characteristic for g =4 and 7 < n < 15. More extensive data, for g +n < 24 is available

at https://github.com/wilthoma/weight11mgn.
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Fig. 1. The Sy-equivariant Euler characteristic of Cgn.
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Fig. 2. The Sy-equivariant Euler characteristic of Cyn for g=4andn < 15.
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Appendix A. Recollection and variant of [19]

We denote by X“"™ c X the subcomplex spanned by graphs that are connected in the blown-up picture.
We denote by X' a graph complex defined just like X, just allowing tadpoles at all vertices, and by X"
its connected subcomplex. Similarly, we denote by HGC ¢ fHGC the connected part, so that

fHGC = Sym(HGC)

is a symmetric product. We denote by HGC? the variant of the hairy graph complex HGC generated by
graphs that may have tadpoles at vertices. We shall recall the following result:

Theorem A.1 (Theorem 3.1 of [19]). The mapping cone of the inclusion HGC? — (XP“™ §.) has
two-dimensional cohomology, spanned by one class whose projection on HGCY is

- 1

and by one class whose projection to (X" &) is

AN

T=¢"w w-

From this we can easily deduce the following tadpole-free variant:

Corollary A.2. The mapping cone of the inclusion HGC — (X“™ &) has three-dimensional
cohomology, spanned by three classes whose projections to (X®", &) are T as above, and

Y= € —w L= €e—c¢ .

respectively.
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Proof. We first compare the tadpole-free and tadpole-carrying versions of our complexes, that is, we
study the mapping cones of the projections

HGC® — HGC Xtpconn _, xeonn,

in each case the map is surjective, so the mapping cone is quasi-isomorphic to the kernel, which is
spanned by graphs that have at least one tadpole. Following the arguments of [1, Lemma 5] one sees
that this complex has cohomology spanned by graphs that have a single vertex, carrying a tadpole, of
valence 3. The complete list of such graphs is as follows:

D= —VN D= w—V o p—

The cocycle D is not exact in HGC™. Hence the cohomology of HGC? is one dimension larger than that
of HGC, with the additional dimension spanned by the class of D.

The cocycles D® and D¢ are both exact in XP“™ since D® = 8,1 and D¢ = &;L¢. Hence the cohomology
of HGC is two dimensions larger than that of HGC?, with the additional generators L* and L¢, which are
closed elements in X“™ but not in X%,

Accounting for these (small) differences the corollary then follows easily from Theorem A.1. |
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