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We study the weight 11 part of the compactly supported cohomology of the moduli space of curves
Mg,n, using graph complex techniques, with particular attention to the case n = 0. As applications, we
prove new nonvanishing results for the cohomology of Mg, and exponential growth with g, in a wide
range of degrees.

1 Introduction
The weight 0 and weight 2 graded parts of the compactly supported cohomology of the moduli spaces of
curves Mg,n are naturally identified with the cohomology of combinatorially defined graph complexes
[7, 8, 16] that resemble graph complexes arising in algebraic topology. Meanwhile, the graded parts in
weights 1, 3, 5, 7, and 9 all vanish, because the rational cohomology groups of the Deligne–Mumford
compactifications Mg,n vanish in these degrees [4]. This paper is devoted to studying the lowest
nontrivial odd weight graded part of the cohomology of Mg,n, in weight 11. Our main technical result
(Proposition 1.7) identifies gr11H•

c (Mg,n) with the cohomology of another combinatorial graph complex
resembling those arising in the embedding calculus [11]. This is similar in spirit to the aforementioned
results in weights 0 and 2, and yet the details are substantially different in each weight.

As an application of this construction, we give new nonvanishing results for the cohomology of Mg

by showing that the 11th weight graded piece is nonzero. These results are proved by relating the weight
11 cohomology to the weight 0 cohomology. Let ! := H11(M1,11), which we view as a 2-dimensional Q-
vector space with its Hodge structure or ℓ-adic Galois representation of weight 11. It follows from [5]
that gr11H•

c (Mg,n) is isomorphic to a direct sum of copies of !.

Theorem 1.1. Let Vr,k
g denote the degree k and genus g part of the r-fold symmetric product

Symr
(⊕

h≥3

W0H•
c (Mh)

)
.

Then there is an injective map

(
V10,k−21

g−1 ⊕ V10,k−22
g−2 ⊕ V9,k−22

g−3 ⊕ V6,k−22
g−5 ⊕ V3,k−22

g−7

)
⊗ ! → gr11Hk

c (Mg). (1)

It was previously known that dimQ W0H2g+k
c (Mg) grows at least exponentially with g for k ∈ {0, 3} and

is nonzero for k = 7 and g = 10 [7]. From this, together with previously known nonvanishing results in
weights 0 and 2, we have the following corollary.
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Corollary 1.2. The dimension of H2g+k
c (Mg) grows at least exponentially with g for each fixed

0 ≤ k ≤ 53, except possibly for k ∈ {1, 4, 7, 20, 51}.

This corollary is proved using only what is already known about the nonvanishing and growth of
W0H•

c (Mg); it is expected that the weight zero cohomology is much larger than what is currently
known. By [16] and Theorem 1.1, each improvement in our understanding in weight zero will lead to
corresponding improvements in weights 2 and 11, respectively. Even a single new nonvanishing weight
zero cohomology group could significantly extend the range of k in which H2g+k

c (Mg) is known to grow
at least exponentially with g.

Conjecture 1.3. The dimension of H2g+k
c (Mg) grows at least exponentially with g for all but finitely

many non-negative integers k.

For k = 4 and 20, we note that H10
c (M3) and H34

c (M7) are nonzero. Each is Poincaré dual to a
corresponding H2, which contains a nonzero class κ. For k = 7, as noted above, H27

c (M10) is nonzero
in weight 0. However, there is no g for which H2g+1

c (Mg) is known to be nonzero.

Question 1.4. Does H2g+1
c (Mg) vanish for all g?

Remark 1.5. The cohomology group H2g+1(GCg-loop
0 ) of the loop order g part of Kontsevich’s graph

complex injects into H2g+1
c (Mg) [7], so a positive answer to Question 1.4 would imply that this

cohomology group vanishes for all g. This is equivalent to the vanishing of H1(GC2), the first
cohomology group of a degree shifted version of GC0. The vanishing of this cohomology group is
a well-known open problem in homological algebra and algebraic topology; it is of significant
interest because H1(GC2) is the space of obstructions to a variety of problems, including
the existence of Drinfeld associators [10], the existence of formality maps in deformation
quantization [15], and the rational intrinsic formality of the little disks operad [12].

We now explain how Corollary 1.2 follows from Theorem 1.1 before discussing the graph complexes
that arise in our study of the weight 11 cohomology.

Proof of Corollary 1.2. Recall that dimQ W0H2g+k
c (Mg) grows at least exponentially with g for k ∈ {0, 3}

and is equal to 1 for k = 7 and g = 10 [7, 16]. It then follows from Theorem 1.1 that, for fixed k and r ≥ 2,
dimQ Vr,2g+k

g grows at least exponentially with g whenever k is in the set

Ur = {0, 3, 6, . . . , 3r} ∪ {7, 10, 13, . . . , 4 + 3r}.

Note that, by the sign conventions for graded vector spaces recalled in §2.1, below, the image of v ⊗ v in
Sym2 V is zero when deg(v) is odd. In particular, since W0H27

c (M10) is 1-dimensional and of odd degree,
its symmetric powers vanish.

Taking into account the degree shifts, the injection (1) yields at least exponential growth of
dimQ H2g+k

c (Mg) for k in the set

(19 + U10) ∪ (18 + U10) ∪ (16 + U9) ∪ (12 + U6) ∪ (8 + U3) .

Similarly, from [16], we know that the weight 2 cohomology contributes at least exponential growth of
dimQ H2g+k

c (Mg) for k in the set

(3 + U2) ∪ (2 + U2),

and the result follows. !
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7062 | S. Payne and T. Willwacher

The following picture illustrates the values of k for which dimQ H2g+k
c (Mg) is now known to grow at

least exponentially with k, with dark grey boxes for the previously known cases (from weight 0 and 2)
and light grey boxes for the new contributions from weight 11.

Remark 1.6. Corollary 1.2 is only a rough summary of what one can deduce from Theorem 1.1
and previous known nonvanishing results in weights 0 and 2. One also gets specific bounds
on the genera for which H2g+k

c (Mg) is nonzero, and lower bounds on the dimensions of these
groups.

The results above are proved by identifying the weight 11 compactly supported cohomology of Mg,n

with the tensor product of ! = H11(M1,11) with the cohomology of a graph complex that we now
describe. The graph complex Bg,n is a differential graded vector space generated by genus g graphs
with n legs numbered 1, . . . , n, at least 11 legs labeled ω, and an arbitrary number of legs labeled ϵ.
Each connected component contains at least one ϵ- or ω-labeled leg. The genus of a generating graph
is the loop order of the connected graph obtained by gluing together all ϵ- and ω-legs, plus one. The
cohomological degree is:

22 − #ω + #edges − n.

For example, the following graph is a degree 22 generator of B9,1.

The differential δ on Bg,n is a sum of three pieces,

δ = δω + δ•
s + δ◦

s .

The piece δω changes one ω- to an ϵ-label, the piece δ•
s splits vertices, and the piece δ◦

s joins together a
subset of the ϵ-legs with either 0 or 1 of the ω-legs, and attaches a new leg labeled ϵ or ω, respectively.
See §3.3 for details.

Proposition 1.7. The weight 11 compactly supported cohomology of Mg,n is isomorphic to the
tensor product of ! with the cohomology of Bg,n :

gr11H•
c (Mg,n) ∼= H(Bg,n, δ) ⊗ !.

When E(g, n) := 3g+2n−25 is small, the graph complex Bg,n is sufficiently simple that its cohomology,
and hence gr11H•

c (Mg,n), can be computed by hand. We carry this through for E(g, n) ≤ 3 in §4. We show
that gr11H•

c (Mg,n) vanishes when E(g, n) < 0. In particular, gr11H•
c (Mg) = 0 for g ≤ 8. In the first nontrivial

case without marked points, we find that

gr11Hk
c (M9) ∼=

⎧
⎨

⎩
! for k = 22,

0 otherwise.

We also find large families of nontrivial graph cohomology classes for n = 0 that give rise to Theorem 1.1.
These families are constructed in §§5–6.

As another application of Proposition 1.7, we give a formula for a generating function for the Sn-
equivariant Euler characteristic of gr11(H

•
c (Mg,n)), analogous to the formulas in weights 0 and 2 proved

in [6] and [17], respectively. This formula, along with numerical results for a range of g, n, are presented
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in §7. For g = 2 and 3 and n ≤ 14, our results agree with data obtained independently by Bergström and
Faber using local systems and the trace of Frobenius [3]. For g = 3, the computations of Bergström and
Faber are conditional on a conjectural list of motives of weight at most 22 that can appear in moduli
spaces of curves, based on the work of Chenevier and Lannes [9]. Our results confirm the weight 11 part
of these computations unconditionally.

2 Preliminaries
2.1 Graded vector spaces, symmetric products, and differentials
Let V = ⊕

n∈Z Vn denote a graded vector space over Q, with Vn the subspace of degree n. We write |v| = n
for the degree of a homogeneous element v ∈ Vn.

We follow the usual Koszul sign convention. In other words, the preferred isomorphism exchanging
the factors in the tensor product of graded vector spaces V and W

V ⊗ W ∼−→ W ⊗ V

is given on homogeneous elements v ∈ V and w ∈ W by

v ⊗ w +→ (−1)|v||w|w ⊗ v.

This convention induces an action of the symmetric group Sk on the tensor power

V⊗k = V ⊗ · · · ⊗ V︸ ︷︷ ︸
k

of a graded vector space V. We define

Symk V := V⊗k/Sk

to be the space of coinvariants. For v1, . . . , vk ∈ V we write v1 · · · vk for the equivalence class of v1 ⊗· · ·⊗vk

in Symk V. Note that, by the Koszul sign convention, when k = 2 and v1, v2 ∈ V are homogeneous
elements

v1v2 = (−1)|v1 ||v2 |v2v1.

In particular, if v is homogeneous of odd degree, then v2 = 0 in Sym2 V.
Many of the graded vector spaces that we consider are also equipped with a differential. Throughout,

we follow cohomological conventions for these dg vector spaces, that is, the differentials increase the
cohomological degree by 1.

2.2 The Getzler–Kapranov graph complex
The cohomology of the Deligne–Mumford compactifications H•(Mg,n) of the moduli spaces of curves
assemble to form a modular cooperad H(M). The modular cooperad structure encapsulates the
symmetric group actions and the boundary-pullback operations

ξ∗ : H•(Mg1+g2,n1+n2 ) → H•(Mg1,n1+1) ⊗ H•(Mg2,n2+1)

η∗ : H•(Mg+1,n) → H•(Mg,n+2),

together with the natural compatibility relations among these pullbacks and group actions.
For any modular cooperad, one can define its Feynman transform, following Getzler and Kapranov

[13], see also [16, §2.4]. We define the Getzler–Kapranov complex GK to be the Feynman transform of
the modular cooperad H(M)

GK := FH(M),
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7064 | S. Payne and T. Willwacher

and write GKg,n for the part of genus g and arity n, as in [16, §2.5]. Generators of GKg,n are dual graphs of
stable curves of genus g with n numbered external legs, each of whose vertices v is decorated by a copy
of Hkv (Mgv ,nv ), where gv and nv are the genus and valence of the vertex v, respectively. The genus g is the
loop order of the graph plus the sum of the numbers gv. The cohomological degree of a generator is the
number of structural edges (not counting numbered legs) plus the sum of the degrees of decorations∑

v kv; the differential δ on GKg,n is defined using the modular cooperad operations ξ∗, η∗ and increases
the cohomological degree by 1.

There is an additional grading of GKg,n by weight. The weight of a generator is
∑

v kv, the sum of
the degrees of the decorations, and the weight is preserved by the differential. We write GKk

g,n for the
subcomplex generated by graphs of weight k, so (GKg,n, δ) splits as a direct sum

GKg,n ∼=
⊕

k

GKk
g,n,

The cohomology of the weight k part of GKg,n is identified with the weight k graded part of the
compactly supported cohomology of the open moduli space

H•(GKk
g,n, δ) ∼= grkH•

c (Mg,n).

In this paper, we study the weight 11 part GK11
g,n, whose cohomology computes gr11H•

c (Mg,n).

2.3 The weight 11 Getzler–Kapranov complex
The complex GK11

g,n has a relatively simple description because Hk(Mg,n) vanishes for all odd k ≤ 9, by
[4, Theorem 1.1]. It follows that, in each generator for GK11

g,n, there is one vertex v, which we call the
“special vertex” with kv = 11, and all other vertices are decorated by H0. Since H0(Mgv ,nv ) = Q, these
latter decorations are essentially trivial and can be ignored.

The possibilities for the decoration at the special vertex are as follows [5]. Let Wn := V(n−10)110 be the
irreducible Sn-representation corresponding to the Young diagram (n − 10)110, and let ! = H11(M1,11).
Then

H11(Mg,n) ∼=

⎧
⎨

⎩
Wn ⊗ ! for g = 1 and n ≥ 11;

0 otherwise.

In particular, the special vertex v in each generator for GK11
g,n has genus gv = 1 and valence nv ≥ 11.

The following figure depicts a typical generator; the special vertex is indicated by a double circle, and
x ∈ H11(M1,n) is the decoration at the special vertex.

The genus gv of each vertex v is inscribed in the corresponding node. Note that generators can have
tadpoles, that is, edges connecting a vertex to itself.

3 A Combinatorial Graph Complex for Weight 11
In this section, we give a more precise description of the combinatorial graph complex Bg,n discussed in
the introduction and prove Proposition 1.7. The proof is a zig-zag of quasi-isomorphisms between GK11

g,n

and Bg,n ⊗ !. The first step in our zig-zag is a surjective quasi-isomorphism from GK11
g,n to a quotient

complex whose generators do not have tadpoles, except at the special vertex, and whose non-special
vertices are all of genus 0.
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Definition 3.1. Let Ig,n ⊂ GK11
g,n be the dg subspace spanned by graphs with at least one non-special

vertex v that carries a tadpole or a positive genus gv ≥ 1. Then we define

GK11
g,n = GK11

g,n/Ig,n.

In other words, in GK11
g,n we set to zero all generators with tadpoles or positive genera at non-special

vertices. The special vertex nevertheless always has genus 1, and may also have tadpoles.

Proposition 3.2. The quotient map

GK11
g,n → GK11

g,n

is a quasi-isomorphism of dg vector spaces.

Proof. We endow both sides with the descending filtration on the number of vertices. The differential
on the associated graded of GK11

g,n is zero, while that on GK11
g,n is given by the part that reduces the genus

of a non-special vertex and adds a tadpole:

The cohomology of this differential is given by graphs in which every non-special vertex has genus 0
and no tadpoles. The proof is similar to (and simpler than) the arguments in [16, §4]. !

In pictures of generators for GK11
g,n, we omit the genus of the vertices. The special vertex is indicated

by a double circle and has genus 1. All other vertices are of genus 0. For instance, the following depicts
a generator for GK11

8,6.

To summarize, each generator of GK11
g,n has the following form:

• A connected graph ) of loop order g − 1 with one special vertex v and n numbered legs, in which
all non-special vertices have valence at least 3.

• The special vertex has valence nv ≥ 11 and is decorated by an element x ∈ H11(M1,nv ). (The
markings in M1,nv are implicitly identified with the half-edges at the special vertex.)

• There are no tadpoles at non-special vertices.
• The graph is equipped with an orientation o given by an ordering on the set of structural edges

(i.e., all edges other than the numbered legs).

We suggestively denote the orientation by o = e1 ∧ · · · ∧ ek with e1, . . . , ek the structural edges of ). We
impose two relations on these generators.

• First, we identify isomorphic graphs. That is, if φ : ) → )′ is an isomorphism, we set

(), e1 ∧ · · · ∧ ek, x) = ()′, φ(e1) ∧ · · · ∧ φ(ek), φ(x)), (2)

with φ(x) relabeling the punctures in M1,nv according to the isomorphism φ.
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7066 | S. Payne and T. Willwacher

• Second, we identify orderings up to sign. That is, for a permutation σ ∈ Sk we set

(), e1 ∧ · · · ∧ ek, x) = sgn(σ )(), eσ (1) ∧ · · · ∧ eσ (k), x) . (3)

The differential acts by splitting vertices. The vertex split of the special vertex uses the map

ξ∗ : H11(M1,r) → H11(M1,r−s+1) ⊗ H0(M0,s+1).

Recall that the special vertex is decorated by Wnv ⊗!, and ! = H11(M1,11) is a Q-vector space of rank
2. This vector space does not have a canonical basis, but it does have a canonical Hodge structure of
weight 11. Its complexification ! ⊗ C splits canonically as

! ⊗ C ∼= !11,0 ⊕ !0,11,

where !0,11 is the complex conjugate of !11,0, and !11,0 is spanned by a canonical element ω correspond-
ing to the weight 12 cusp form for SL2(Z). The pullback maps ξ and η respect complex conjugation. We
can then decompose GK11

g,n as a tensor product

GK11
g,n

∼= GK11,◦
g,n ⊗ !,

where GK11,◦
g,n is a simpler and more combinatorial complex in which the special vertex is decorated by

Wnv . To make the differential on GK11,◦
g,n explicit, we recall the description of generators, relations, and

boundary pullback maps for H11(Mg,n), from [5, §2].
The symmetric group S11 acts by the sign representation on H11,0(M1,11). For n > 11, H11,0(M1,n) is

generated by the pullbacks

ωA := ι∗Aω

of the canonical generator ω of H11,0(M1,11) under the forgetful maps

ιA : M1,n → M1,11,

given by forgetting all punctures except those in the set A ⊂ {1, . . . , n} of cardinality 11. Moreover, the
pullbacks {ωA : 1 ∈ A} form a basis.

Let ξC : M1,B∪{p} × M0,C∪{q} → M1,B∪C be the boundary inclusion and let

ξ∗
C : H11(M1,B∪C) → H11(M1,B∪{p}) ⊗ H0(M0,C∪{q}) ∼= H11(M1,B∪{p})

be the corresponding pullback operation. Then

ξ∗
CωA =

⎧
⎪⎪⎨

⎪⎪⎩

ωA if C ∩ A = ∅
ω(A\c)∪p if C ∩ A = {c}.
0 otherwise.

(4)

The differential on GK11,◦
g,n hence has the form

δ = δ•
s + δ◦

s ,

with δ•
s splitting non-special vertices and δ◦

s splitting the special vertex. Concretely, we have

δ•
s (), e1 ∧ · · · ∧ ek, x) =

∑

v∈V•)

∑

split v

()′, e0 ∧ e1 ∧ · · · ∧ ek, x) (5)
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with the outer sum running over non-special vertices of ). The inner sum is over all admissible ways of
replacing the vertex v by two vertices connected by a new edge e0, distributing the incident half-edges
at v on the new vertices, thus forming a graph )′. Pictorially:

Similarly, the operation δ◦
s splits the special vertex,

δ◦
s (), e1 ∧ · · · ∧ ek, x) =

∑

B⊂H∗ ,|B|≥2

(splitB), e0 ∧ e1 ∧ · · · ∧ ek, ξ∗
B x), (6)

where the sum is running over subsets B of the set of half-edges at the special vertex, and splitB) is
the graph obtained by adding an additional non-special vertex to the graph, to which we connect the
half-edges in B, and a new edge to the special vertex. Pictorially:

To compute the pullback for the decoration at the special vertex one uses (4). In the definitions of both
δ•

s and δ◦
s , the newly added edge e0 comes first in the edge ordering, and the relative order of the other

edges is preserved.

Remark 3.3. Note that the formal linear combinations of expressions ωA for A ⊂ {1, . . . , n} with
|A| = 11 form a representation of the symmetric group Sn of the form

IndSn
S11×Sn−11

sgn11 ⊗Q,

that is, the induced representation from the product of the sign representation sgn11
∼= V111

of S11 and the trivial representation Q ∼= Vn−11 of Sn−11. By Pieri’s rule (or the more general
Littlewood–Richardson rule), this representation decomposes into irreducibles as

V(n−10)110 ⊕ V(n−11)111 .

The image of the subspace V(n−11)111 in H11,0(M1,n) is zero, so H11,0(M1,n) ∼= V(n−10)110 . A complete
set of relations spanning V(n−11)111 is

12∑

j=1

(−1)j+1ω{b1,...,b̂j ,...,b12}, (7)

with B = {b1, . . . , b12} ⊂ {1, . . . , n} running over subsets of cardinality 12.

3.1 An acyclic auxiliary graph complex
We now describe an auxiliary graph complex Xg,n in which each generator has a special vertex decorated
by an arbitrary subset of its incident half-edges (not necessarily of size 11). We include an ordering of
these half-edges as part of the orientation, so permuting these half-edges induces a sign representation,
consistent with the antisymmetric properties of the generators ωA discussed above. The resulting graph
complex is acyclic, and hence gives rise to two resolutions of GK11,◦

g,n , by truncating according to the
number of marked half-edges at the special vertex.

The generators of Xg,n are of the following form:

• A connected graph ) of loop order g − 1, with one distinguished special vertex, a distinguished
subset of r half-edges at the special vertex, and n numbered legs.
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• All non-special vertices have valence at least 3, the special vertex has valence at least one, and
there are no tadpoles at the non-special vertices.

• The cohomological degree of a generator is #structural edges − #marked half-edges.
• The graph is equipped with an orientation o consisting of a total ordering of the set

{e1, . . . , ek, h1, . . . , hr} of structural edges e1, . . . , ek of ) and the distinguished subset of half-edges
incident to the special vertex h1, . . . , hr.

Here, again, the structural edges are all edges other than the numbered legs. We suggestively write
o = a1∧· · ·∧ak+r to indicate the order on the set of edges and the distinguished half-edges, with a1, . . . , ak+r

being some ordering of the elements of the set {e1, . . . , ek, h1, . . . , hr}. We impose two relations.

• First, we identify isomorphic graphs: if φ : ) → )′ is an isomorphism, we set

(), e1 ∧ · · · ∧ ek ∧ h1 ∧ · · · ∧ hr) = ()′, φ(e1) ∧ · · · ∧ φ(ek) ∧ φ(h1) ∧ · · · ∧ φ(hr)). (8)

• Second, we identify orderings up to sign: for a permutation σ ∈ Sk+r, we set

(), a1 ∧ · · · ∧ ak+r) = sgn(σ )(), aσ (1) ∧ · · · ∧ aσ (k+r)) . (9)

This second relation allows one to put the edges before the half-edges, e1 ∧ · · · ∧ ek ∧ h1 ∧ · · · ∧ hr.
The following figure depicts a generator for X5,1. The special vertex is indicated by a double ring, and

the marked half-edges at the special vertex are indicated by arrows:

The differential on Xg,n is the sum of two pieces

δ = δs + δω.

The piece δω simply removes one distinguished half-edge from the orientation.

δω(), e1 ∧ · · · ∧ ek ∧ h1 ∧ · · · ∧ hr) =
r∑

j=1

(−1)k+j−1(), e1 ∧ · · · ∧ ek ∧ h1 ∧ · · · ĥj · · · ∧ hr)

Pictorially:

The piece δs acts by splitting vertices. For convenience, we shall further decompose δs = δ•
s + δ◦

s into
a piece δ◦

s splitting the special vertex and δ•
s splitting the other vertices. Concretely, the operation δ•

s is
defined analogously to (5),

δ•
s (), e1 ∧ · · · ∧ ek ∧ h1 ∧ · · · ∧ hr) =

∑

v∈V•)

∑

split v

()′, e0 ∧ e1 ∧ · · · ∧ ek ∧ h1 ∧ · · · ∧ hr) . (10)

The outer sum is again over all non-special vertices v of ). The inner sum is over all admissible ways
of replacing the vertex v by two vertices connected by an edge, distributing the incident half-edges at v

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2024/8/7060/7560588 by U
niversity of Texas - Austin user on 04 July 2024



Weight 11 Cohomology of Moduli of Curves | 7069

on the new vertices, thus forming a graph )′. Pictorially:

Similarly, we define δ◦
s analogously to (6),

δ◦
s (), e1 ∧ · · · ∧ ek ∧ h1 ∧ · · · ∧ hr) =

∑

B⊂H∗
|B|≥2

(splitB), e0 ∧ e1 ∧ · · · ∧ ek ∧ h1 ∧ · · · ∧ hr) , (11)

with the sum running over subsets B of the set H∗ of half-edges incident at the special vertex, such
that |B| ≥ 2 and B contains at most one of the distinguished half-edges. The graph splitB) is built by
adding a new non-special vertex v to the graph ), with an edge to the special vertex, and reconnecting
the half-edges B to v. If B contains a marked half-edge, then the marking is removed and put on the
half-edge connecting the special vertex to v instead. Pictorially:

Lemma 3.4. The differential δ satisfies δ2 = 0, and the dg vector space (Xg,n, δ) is acyclic.

Proof. The verification that δ2 = 0 is by direct computation, as follows. Expand δ2 as

(δ•
s + δ◦

s + δω)2 = (δ•
s )

2 + (δ◦
s )

2 + (δω)2 + [δ•
s , δ◦

s ] + [δ•
s , δω] + [δ◦

s , δω],

with [−, −] denoting the anticommutator.
It is clear that (δω)2 = 0 since the operations of removing two different markings commute, and

the terms come with opposite sign. Similarly, [δ•
s , δω] = 0 since the markings at the special vertex

do not interfere with the edge splitting operation, and matching terms again come with opposite
sign.

To check that (δ•
s )

2 = 0 consider a graph ) ∈ X and compute δ•
s δ

•
s ). Say the first application of δ•

s splits
a vertex v into vertices v′, v′′, and the second application split a vertex w. Clearly, if w ̸= v′, v′′, then the
splittings of first v then w cancels the similar term corresponding to first splitting w and then v. There
remain the terms for which w = v′ and w = v′′, schematically depicted as follows:

The numbers below the edges indicate the position of the edge in the ordering that makes up the
orientation of the graph. The two terms on the right (from splitting v′ and v′′) are the same, up to the
sign from swapping the edge order, and hence cancel.

By essentially the same argument, with one of the vertices replaced by the special vertex,

(δ◦
s )

2 + [δ•
s , δ◦

s ] = 0.

It remains to check that [δ◦
s , δω] = 0. To this end, fix a graph ) ∈ X and look at those terms in [δ◦

s , δω]X
in which a subset B of the half-edges at the special vertex is split off, and the marking of half-edge h is
removed. Such terms can potentially be produced twice, corresponding to the two paths from top left
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to bottom right in the following diagram:

We distinguish 4 cases.

• If the half-edge h is not in B, as in the picture above, the two terms produced from δ◦
s δω) and δωδ◦

s )

are isomorphic but come with opposite signs and hence cancel.
• If h ∈ B, and B contains exactly one marked half-edge, then the two terms again cancel:

• If h ∈ B and B contains at least 3 marked half-edges, then none of the splitting terms yields a
contribution (i.e., those B do not appear in the sum (11)).

• Finally, if h ∈ B and B contains exactly two marked half-edges, say h and h′, then the terms
corresponding to removing h and h′ match and cancel:

To show acyclicity, we consider the filtration on X by the number of vertices. The E0-page of the
associated spectral sequence may be identified with the complex (Xg,n, δω). Hence, it suffices to check
that H(Xg,n, δω) = 0. To this end, consider the degree −1-operation h : Xg,n → Xg,n that sums over all ways
of adding a half-edge to the distinguished set,

h(), e1 ∧ · · · ∧ ek ∧ h1 ∧ · · · ∧ hr) = 1
|H∗|

(−1)k
∑

h∈H∗\{h1,...,hr}
h(), e1 ∧ · · · ∧ ek ∧ h ∧ h1 ∧ · · · ∧ hr).

Then δωh + hδω is the identity map. It follows that h is a contracting homotopy for δω, and H(Xg,n, δω) = 0.
Since Xg,n is finite dimensional, the filtration is bounded and our spectral sequence converges to the
cohomology. Hence, H(Xg,n, δs + δω) = 0 as claimed. !

3.2 Blown-up picture
We now introduce an alternative graphical depiction of generators for Xg,n that we call the blown-
up picture. This equivalent encoding of the same information is obtained by “blowing-up” the special
vertex, that is, removing the special vertex and making the incident half-edges into external legs, which
we label by a special symbol ω (resp. ϵ) according to whether the half-edges are marked or not. For
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example,

Note that the graph on the right may be disconnected, though every connected component must contain
at least one ϵ- or ω-leg. When we talk about the blown-up components of a graph in Xg,n below, we refer
to the connected components of the blown-up picture.

The differential has an equivalent description in the blown-up picture, as follows. The piece

replaces one ω-decoration by ϵ. The piece δ◦
s joins together a subset S of the ϵ- and ω-legs, containing at

most one ω-leg, and attaches a new leg that is decorated by ω if S contains an ω leg and ϵ otherwise:

3.3 Truncations of Xg,n and resolutions of GK11,◦
g,n

We now show that two truncations of Xg,n give natural resolutions of GK11,◦
g,n .

Definition 3.5. Let C̃g,n ⊂ Xg,n be the dg subspace spanned by graphs that have at most 10
distinguished half-edges at the special vertex, and define

B̃g,n := Xg,n/C̃g,n,

to be the quotient complex. We also denote appropriate degree shifted versions by

Bg,n = B̃g,n[−22]

Cg,n = C̃g,n[−21].

We now show that Bg,n and Cg,n are resolutions of GK11,◦
g,n . Consider P : Bg,n → GK11,◦

g,n , given by

P(), e1 ∧ · · · ∧ ek ∧ h1 ∧ · · · ∧ hr) =

⎧
⎨

⎩
(), e1 ∧ · · · ∧ ek, ω{h1,...,h11}) if r = 11,

0 otherwise;

and I : GK11,◦
g,n → Cg,n, given by

I(), e1 ∧ · · · ∧ ek, ω{h1,...,h11}) =
11∑

j=1

(−1)k+j−1(), e1 ∧ · · · ∧ ek ∧ h1 ∧ · · · ĥj · · · ∧ h11).

Proposition 3.6. The maps P and I above are well-defined maps of dg vector spaces and induce
isomorphisms on cohomology.

Proof. We start by checking that P intertwines the differentials. First, we show that P(δω)) = 0. If ) has
11 or more than 12 distinguished half-edges then this is clear by degree reasons. If ) has exactly 12
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distinguished half-edges, then P(δω)) = 0 by Remark 3.3, since δω produces expressions of the form (7),
which vanish in GK11,◦

g,n . Next, we have P(δ•
s )) = δ•

s P()), since the splitting of the non-special vertices
is the same on both sides; see (5) and (10). Finally, comparing (6) and (11) we see that P(δ◦

s )) = δ◦
s ()),

because the handling of the marked half-edges in δ◦
s on Bg,n reflects the pullback operation ξ∗

B of (4). It
follows that P intertwines the differentials, as required.

Next, note that the maps P and I fit into a commutative diagram

Since P is surjective and both P and δω intertwine the differentials, so does I.
It remains to show that P and I are quasi-isomorphisms. Since Xg,n is acyclic, δω : Bg,n → Cg,n is a

quasi-isomorphism. Since the above diagram commutes, it therefore suffices to show that P is a quasi-
isomorphism. To this end, we first note that by Remark 3.3

GK11,◦ ∼= Bg,n/(Bg,n,≥12ω ⊕ δωBg,n,12ω),

where Bg,n,12ω (resp. Bg,n,≥12ω) is the subspace of Bg,n spanned by graphs with 12 (resp. ≥ 12) ω-legs. We
hence need to show that the projection

Bg,n → Bg,n/(Bg,n,≥12ω ⊕ δωBg,n,12ω) (12)

is a quasi-isomorphism. To this end, we follow the argument for acyclicity of Xg,n in the proof of Lemma
3.4. We consider on both sides of (12) the spectral sequences from the filtration by the numbers of
vertices in graphs. On the first page of the spectral sequence, the differential on the left-hand side of
(12) is given by δω, and on the right-hand side it is zero. Since (Xg,n, δω) is acyclic and Bg,n is the a truncation
at 11 ω-legs, we have

H(Bg,n, δω) = Bg,n,11ω/im(Bg,n,12ω
δω−→ Bg,n,1ω) ∼= Bg,n/(Bg,n,≥12ω ⊕ δωBg,n,12ω).

Hence, (12) induces an isomorphism on the E1-page of the spectral sequence, and is a quasi-
isomorphism by the spectral sequence comparison lemma. !

Corollary 3.7. There are natural isomorphisms

Hk(Bg,n) ⊗ ! ∼= gr11Hk
c (Mg,n) ∼= Hk(Cg,n) ⊗ !.

4 Explicit Computations in Low Excess
In order to study the cohomology of Bg,n, we introduce a statistic on graph generators that we call excess.
Most importantly, for our purposes, the excess is non-negative, additive on blown-up components, and
graphs with small excess are relatively simple and easy to classify.

Definition 4.1. The excess of a generator ) of Xg,n is

E()) = 3(g − 1) + 2n − 2#ω,

where #ω is the number of ω-legs of ).

We also define

E(g, n) := 3g + 2n − 25.
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Any generator ) for Bg,n has #ω ≥ 11, and hence

E()) ≤ E(g, n).

Note that E()) ≡ E(g, n) mod 2, so all generators for Bg,n have even or odd excess, when g is odd or even,
respectively. Also, for each fixed k, there are only finitely many pairs (g, n) such that E(g, n) = k.

Write each generator ) for Bg,n as a union of its blown-up components:

) = C1 ∪ · · · ∪ Ck.

Let gi be the contribution of Ci to the genus of ). More precisely,

gi = h1(Ci) + #ϵ + #ω − 1,

that is, the loop order of Ci plus the number of its ϵ and ω labeled legs minus one. Then the excess
of Ci is

E(Ci) := 3gi + 2ni − 2#ω

Lemma 4.2. The excess is additive over blown-up components, that is,

E()) = E(C1 ∪ · · · ∪ Ck) = E(C1) + · · · + E(Ck), (13)

and the excess of each blown-up component is nonnegative.

Proof. The formula (13) for E()) is evident since the genus of ) is the sum over the genus contributions
of the blown-up components, plus one to take into account that the special vertex has genus one.

If either h1(Ci) ≥ 1 or #ϵ ≥ 1, then

E(Ci) = 3h1(Ci) + 3#ϵ + 2ni + #ω − 3 ≥ 0.

It remains to show that E(Ci) ≥ 0 when h1(gi) = #ϵ = 0. Suppose Ci is a tree with m leaves that can be
either numbered or ω-decorated. If the tree has at least 3 leaves, then E(Ci) is at least 2ni + #ω − 3 ≥ 0.
Any tree has at least two leaves, and the remaining cases are:

The first graph vanishes by symmetry and for the second we have E(Ci) = 0. !

Corollary 4.3. If E(g, n) < 0, then gr11H•
c (Mg,n) = 0.

Proof. By Lemma 4.2, if E(g, n) is negative, the complex Bg,n is 0. !

Lemma 4.4. If h1(Ci) ≥ 1, then E(Ci) ≥ 5.

Proof. The argument is similar to the proof of Lemma 4.2. First, note that if h1(Ci) ≥ 3 then E(Ci) ≥ 5. If
h1(Ci) = 2, then the only graphs that would produce E(Ci) < 5 need to have #ϵ = 2ni = 0 and #ω = 1. But
there is no such (non-vanishing) loop order 2 graph. Finally, suppose h1(Ci) = 1. The general loop order
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one graph has the form

with the ? representing an ϵ, ω, a numbered leg or a tree or forest to be attached. Clearly, if the graph
has ≥ 5 legs, then E(Ci) ≥ 5. Also note that the length of the inner loop must be at least three, otherwise
the graph has a double edge and vanishes. If the graph has loop length 4, the only case to be considered
is that of all 4 legs being ω-legs.

This graph has an odd symmetry and vanishes in Bg,n. For loop length three, we have the graph

and its variants in which one ω is replaced by a number or a forest with 2 ω-legs. In each case, the graph
has an odd symmetry and vanishes in Bg,n. !

Using Lemma 4.4, the cohomology of Bg,n can be computed relatively easily as long as E(g, n) ≤ 4,
since the generating graphs are forests. We now carry through the details for E(g, n) ≤ 3.

4.1 Excess 0
By Lemma 4.2, the blown-up picture of a graph of excess zero is a union of connected components of
excess zero. The only such components are of the form

Thus, if E(g, n) = 0, the generators of Bg,n have the following form:

Note that there are n (ω − j)-edges and g−1
2 tripods with three ω-legs each. The cohomological degree of

such a generator is k = 11 + 3
2 (g − 1).

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2024/8/7060/7560588 by U
niversity of Texas - Austin user on 04 July 2024



Weight 11 Cohomology of Moduli of Curves | 7075

One hence arrives at the following list of cases in which gr11Hk
c (Mg,n) is concentrated in a single

degree k, and isomorphic to !. The Sn-action is by the sign representation in each case.

Hk(B1,11) =

⎧
⎨

⎩
V111 for k = 11

0 otherwise
Hk(B3,8) =

⎧
⎨

⎩
V18 for k = 14

0 otherwise

Hk(B5,5) =

⎧
⎨

⎩
V15 for k = 17

0 otherwise
Hk(B7,2) =

⎧
⎨

⎩
V12 for k = 20

0 otherwise

4.2 Excess 1
Suppose E(g, n) = 1. Each generator for Bg,n has all connected components of excess 0, except for one of
excess 1. The connected graphs of excess 1 are of the form:

(14)

The third graph maps to the fourth under the vertex splitting differential, and hence graphs with these
components do not contribute to cohomology; we may simplify Bg,n by killing these terms.

The remaining excess 1 graphs are of the form

or

with the understanding that there is no (ω − j)-edge in )
(1)

j . Modulo terms involving the fourth graph in
(14), which we ignore, the differential is given by

)(1) +→ ±
n∑

j=1

(−1)j)
(1)

j . (15)

It follows that the cohomology of Bg,n (with E(g, n) = 1) is one copy of the irreducible Sn-representation
V21n−2 in degree k = 10 + 3

2 g, given by the cokernel of (15). Concretely, this applies to the cases:

Hk(B2,10) =

⎧
⎨

⎩
V218 for k = 13

0 otherwise
Hk(B4,7) =

⎧
⎨

⎩
V215 for k = 16

0 otherwise

Hk(B6,4) =

⎧
⎨

⎩
V212 for k = 19

0 otherwise
Hk(B8,1) = 0.

4.3 Excess 2
Suppose E(g, n) = 2. A generator for Bg,n of excess 2 has either two connected components of excess 1,
or one of excess 2. The connected components of excess 2 are

(16)
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As in the case E(g, n) = 1, one readily checks that trees with at least 4 leaves do not contribute to the
cohomology of Bg,n, and can be killed by a chain homotopy. Thus, we ignore such terms. The remaining
reduced version of Bg,n is generated by the single graph )(0) of excess 0 in degree 10 + 3

2 (g − 1), along
with the following graphs of excess 2:

After killing terms involving trees with at least 4 leaves, the differential maps )(2)
ϵ , )

(2)

ij , and )
(2)

i;j to 0. On
the remaining generators, it is given by:

)(0) +→
∑

j

±)
(2)

ϵj + (const))(2)
ϵ )

(2)

ϵj +→
∑

i

±)
(2)

ij

)(2)
ωϵωϵ +→ ±)(2)

ϵ +
∑

j

±)
(2)

ωϵj )
(2)

ωϵj +→
∑

i

±)
(2)

i;j .

Here one needs to take care that when n = 0 or g = 1, some of these generators are absent. More precisely,
the generators )

(2)

ϵj , )
(2)

ωϵj,)
(2)

ij , )
(2)

i;j are not present when n = 0, nor are )(2)
ϵ , )

(2)

i;j , )(2)
ωϵωϵ , )

(2)

ωϵj when g = 1.
When all of the generators are present, the cohomology consists of one copy of the sign representation
V1n of Sn, represented by )(2)

ϵ + · · · , and two copies of the irreducible representation V31n−3 , represented
by linear combinations of graphs of the form )

(2)

ij and )
(2)

i;j , respectively. Taking into account the special
cases n = 0 and g = 1, we arrive at the following:

Hk(B1,12) =

⎧
⎨

⎩
V319 for k = 12

0 otherwise
Hk(B3,9) =

⎧
⎪⎪⎨

⎪⎪⎩

V19 for k = 14

V316 ⊕ V316 for k = 15

0 otherwise

Hk(B5,6) =

⎧
⎪⎪⎨

⎪⎪⎩

V16 for k = 17

V313 ⊕ V313 for k = 18

0 otherwise

Hk(B7,3) =

⎧
⎪⎪⎨

⎪⎪⎩

V13 for k = 20

V3 ⊕ V3 for k = 21

0 otherwise

Hk(B9,0) =

⎧
⎨

⎩
Q for k = 22

0 otherwise.
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4.4 Excess 3
Suppose E(g, n) = 3. Then each generator ) for Bg,n has excess 1 or 3, and the contributions of the blown
up components determine a partition λ of E()). We filter Bg,n according to the lexicographic ordering on
these partitions, and consider the associated spectral sequence. On the first page, the differential only
relates generators with the same partition.

• λ = 1. The graphs of excess 1 and the complex that they generate on the first page are exactly as
in §4.2. In particular, the cohomology is one copy of V21n−2 in degree 3

2 (g − 4) + 15, represented by
linear combinations of the graphs of type )

(1)

j .
• λ = 13. The contribution of graphs with the blown-up components of excess 1 is similar to the excess

2 case computed in §4.3. The resulting cohomology on the first page is one copy of V41n−4 in degree
3
2 (g − 3) + 17 represented by linear combinations of graphs

• λ = 21. Here we have 6 types of graphs to consider, coming from 3 types of components of excess 2
(16) and 2 types of components of excess 1 (14). The cohomology consists of:

1. A copy of V41n−4 ⊕ V321n−5 in degree 3
2 (g − 4) + 17 represented by linear combinations of graphs

2. Two copies of V21n−2 in degree 3
2 (g − 4) + 16 one represented by graphs of the form

and another by graphs of the form:

• λ = 3 The relevant trees of excess 3 are:

The cohomology of the resulting 3-term complex is V31n−3 in degree 3
2 (g − 4) + 17 represented by

linear combinations of graphs of the form

The only possible cancellations on later pages of the spectral sequence are between the copies of
V21n−2 . And indeed δω)

(1)

i = ∑
j ±)

(3)

ϵi;j + (· · · ), and thus the two corresponding copies of V21n−2 do cancel on
the second page of the spectral sequence. Taking into account the cases of low g ≤ 2 and low n ≤ 3 one
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arrives at the following expressions for the cohomology of Bg,n:

Hk(B2,11) =

⎧
⎨

⎩
V417 ⊕ V3216 ⊕ V318 for k = 14

0 otherwise

Hk(B4,8) =

⎧
⎪⎪⎨

⎪⎪⎩

V216 for k = 16

V414 ⊕ V414 ⊕ V3213 ⊕ V315 for k = 17

0 otherwise

Hk(B6,5) =

⎧
⎪⎪⎨

⎪⎪⎩

V213 for k = 19

V41 ⊕ V41 ⊕ V32 ⊕ V312 for k = 20

0 otherwise

Hk(B8,2) =

⎧
⎨

⎩
V2 for k = 22

0 otherwise.

5 The Case n = 0: First Injection
We now restrict attention to the special case where n = 0, allowing the genus g (and hence the excess
E) to be arbitrarily large. Following the standard notational convention for moduli of curves, we write:

Xg := Xg,0, Bg := Bg,0, Cg := Cg,0.

In this section and the next, we identify several nontrivial families of cohomology classes in Cg and Bg,
respectively, built from the weight 0 compactly supported cohomology of Mh for h < g.

Let GC0 be the graph complex generated by connected graphs without tadpoles in which every vertex
has valence at least 3. Each generator comes with an orientation, which is a total ordering of the edges.
As before, we identify isomorphic graphs, and we identify two orientations up to sign, cf. (2) and (3), and
(8) and (9). The cohomological degree of a generator is the number of edges, and the differential δ is
given by vertex splitting, as in (10). The differential preserves the loop order (first Betti number) and we
write GC(g)

0 for the part of loop order g.
Recall that GC(g)

0 is quasi-isomorphic to the Feynman transform of the modular co-operad H0(M),
evaluated at (g, 0); more precisely, it is the quotient of FH0(M)(g, 0) by the acyclic subcomplex generated
by graphs with tadpoles or vertices of positive genus [7]. As a consequence, there is a canonical
isomorphism

W0H•
c (Mg) ∼= H•(GC(g)

0 ).

The symmetric product Symk(GC0) inherits a loop order grading from GC0 and we denote by
Symk(GC0)

(g) ⊂ Symk(GC0) the part of loop order g.

Theorem 5.1. There is a map of complexes

F : Sym10(GC0)
(g−1)[−21] ⊕ Sym10(GC0)

(g−2)[−22] → Cg

that induces an injective map on the level of cohomology

Hk−21(Sym10(GC0)
(g−1)) ⊕ Hk−22(Sym10(GC0)

(g−2)) → Hk(Cg).
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Corollary 5.2. There is a natural injection

(
Hk−21(Sym10(GC0)

(g−1)) ⊕ Hk−22(Sym10(GC0)
(g−2))

)
⊗ ! → gr11Hk(Mg).

5.1 A homotopy trivial Lie bracket on GC0

The graph complex GC0 is a dg Lie algebra with the Lie bracket [−, −] defined by inserting one graph
into a vertex of the other. This primary Lie bracket has degree 0; it leaves the number of edges invariant
and removes one vertex.

There is also a secondary Lie bracket of degree +1 on GC0, which, we denote {−, −}, defined by gluing
two graphs together by attaching a new edge between them:

To fix the sign, the newly added edge comes first in the ordering, followed by the edges of γ1, and then
those of γ2. This secondary Lie bracket {−, −} is homotopy trivial.

Proposition 5.3 ([20]). There is an L∞-isomorphism

(GC0, δ, 0) → (GC0, δ, {−, −})

between the abelian Lie algebra GC0 and the dg Lie algebra GC0 equipped with the Lie bracket
{−, −}. This L∞-isomorphism preserves the grading by loop order on both sides.

The Chevalley–Eilenberg complex of the dg Lie algebra GC0 with the homotopy trivial Lie bracket
{−, −} of degree +1 is the graded vector space

CE(GC0, δ, {−, −}) = Sym(GC0)

with the differential δ + δ{,} such that

δ{,}(γ1 · · · γk) =
∑

i<j

(−1)|γi |(|γ1 |+···+|γi−1 |)+|γj |(|γ1 |+···+|γj−1 |)−|γi ||γj |{γi, γj}γ1 · · · γ̂i · · · γ̂j · · · γk.

Combinatorially, if we think of the product γ1 · · · γk as the union of the graphs γ1, . . . , γk, then δ{,}
adds a new edge between any pair of vertices that belong to different connected components. Any
L∞-morphism induces a morphism on the Chevalley–Eilenberg complexes. Hence we obtain from
Proposition 5.3 the following result.

Corollary 5.4. There is an isomorphism between the Chevalley–Eilenberg complexes of the
abelian dg Lie algebra GC0 and the dg Lie algebra GC0 with the bracket {−, −}.

/ : CE(GC0, δ, 0) = (Sym(GC0), δ) → CE(GC0, δ, {−, −}) = (Sym(GC0), δ + δ{,}).

5.2 Some combinatorial operations
We consider the tadpole-free version of the Kontsevich graphical operad Graphs0 [14]. As for any operad,
its unary operations G1 := Graphs0(1) form a dg associative algebra with the operadic composition ◦ as
the product. Concretely, elements of G1 are linear combinations of pairs (), o) with ) a connected graph
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with one special “external” vertex, and an orientation o = e1 ∧ · · · ∧ ek given by ordering the edges.

The external vertex may have any valence; all other vertices must have valence at least 3.
The product (i.e., the operadic composition) is defined by inserting one graph into the other and

summing over all ways of reconnecting the incident edges to vertices of )2.

The differential δ on G1 is given by splitting vertices of graphs, as in (10), (11).

Next, we define the vector space

X := Q ∅ ⊕
⊕

g≥1

Xg.

It is generated by the generators of the Xg of arbitrary genus, plus an additional generator ∅. We think
of ∅ as the empty graph in the blown-up picture, or the graph with a single special vertex in the original
picture.

There is a left action of the dg algebra G1 on the complex X defined as follows:

(17)

Here again one inserts the graph ν into the external vertex of ), and reconnects the incident half-edges
in all possible ways to vertices of ν. If a half-edge of ) is reconnected to the special vertex of ν, then the
rule is that the half-edge becomes non-marked. Equivalently, in the blown-up picture, each half-edge
of ) incident to the special vertex is either reconnected to an internal vertex of ν or else decorated by ϵ.
In particular, if ν = ∅, then one just labels all of the half-edges of ) incident to the external vertex by ϵ.

Lemma 5.5. The operation ◦ above is a well defined left action of the dg associative algebra G1

on the dg vector space X.

Proof. First, let us check that for graphs )1, )2 ∈ G1 and ν ∈ X we have

)1 ◦ ()2 ◦ ν) = ()1 ◦ )2) ◦ ν.

Each side is the sum of graphs obtained by reconnecting the half-edges incident at the external vertex
of )1 to internal vertices of )2 or vertices of ν, and half-edges incident to the external vertex of )2 to
vertices of ν. Hence, both sides agree.
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Next, we have to check compatibility with the differentials, that is,

δ() ◦ ν) = (δ)) ◦ ν + (−1)|)|) ◦ δν.

This verification is straightforward. We outline the argument. First, note that

δω() ◦ ν) = (−1)|)|) ◦ δων,

since ) ◦ (−) does not interact with the decorations ϵ or ω. It remains to show that

δs() ◦ ν) = (δ)) ◦ ν + (−1)|)|) ◦ δsν. (18)

The terms appearing on either side are of one of four types:

• (A) Terms arising from splitting an internal vertex of ). Those are the same on both sides and can
be ignored.

• (B) Terms arising from splitting a non-special vertex v of ν. On the left-hand side of (18) the splitting
is performed after (possibly) some edges of ) have been connected to v. Pictorially,

with the new edges drawn dotted. The same terms are produced on the right-hand side of (18),
except for graphs for which there are 0 (say type (B0)) or 1 (say type (B1)) old edges incident to one
of the vertices.

• (C) There are terms arising from splitting the special vertex of ν on the left- and right-hand side of
(18). They are handled just as those of type (B) above, and match except for terms of types

that appear on the left-hand side of (18), but (a priori) not on the right.
• (D) Finally, we have terms on the right-hand side of (18) from splitting the external vertex of ). Those

are of course absent from the left-hand side, because the operation ) ◦ (−) removes the external
vertex of ). However, upon inspection, these terms of type (D) on the right-hand side exactly match
the terms of type (B0) and (C0) above on the left-hand side.

It remains to show that the yet unmatched terms (B1) and (C1) on the left-hand side of (18) all cancel
in pairs. To see this mind that each such term appears twice, once from either side of the “old” edge
attached to the vertex that was split off:

The two terms cancel in each case. To see this, recall that the newly produced edge from the splitting
is always the first in the ordering. From this, one deduces that the two terms have opposite signs, and
the lemma follows. !
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Next, let γ ∈ GC0 be a graph. Then we define the element γ 1 ∈ G1 by summing over all ways of making
one vertex of γ external. For example,

We also define γ ◦ ∈ G1 by attaching one edge and the external vertex. Similarly, we define γ ϵ ∈ X by
adding one ϵ-leg and γ ω ∈ X by adding one ω-leg. For example, with γ as above:

To fix the signs, the newly added edge becomes the first in the ordering of edges. In the case of γ ω the
new (distinguished half-edge) ω stands right after the newly added edge in the ordering of edges and
ωs. Note that δωγ ω = −γ ϵ .

Lemma 5.6. The above operations satisfy the following compatibility relations for γ , ν ∈ GC0:

δ(γ 1) − (δγ )1 = γ ◦ (19)

({γ1, γ2})1 = γ ◦
1 ◦ γ 1

2 + (−1)|γ1 ||γ2 |γ ◦
2 ◦ γ 1

1 (20)

Proof. For (19) note that marking one vertex commutes with vertex splitting, except that splittings of
the external vertex can be such that the external vertex has valence 1 or 2 afterwards. The terms with
valence 1 are γ ◦. The terms of valence 2 cancel by an argument similar to that at the end of the proof
of Lemma 5.5.

For (20) note that ({γ1, γ2})1 is a linear combination of graphs obtained by connecting γ1 and γ1 by
one edge, and marking one vertex of γ1 or γ2 as external. The terms in which the external vertex is in γ2

are the same as γ ◦
1 ◦γ 1

2 , and the terms in which the external vertex is in γ1 are the same as (−1)|γ1 ||γ2 |γ ◦
2 ◦γ 1

1 .
!

For graphs x1, . . . , xk ∈ X, let us denote by x1 ∪ · · · ∪ xk their union. For γ ∈ GC0 and x ∈ X define the
operation

λ(γ , x) := γ ◦ ◦ x − γ ϵ ∪ x.

Concretely, this operation connects γ and x by an edge (v, w), summing over all vertices of v and all
non-special vertices w of x.

Lemma 5.7. The operation λ(γ , −) is a derivation, that is,

λ(γ , x1 ∪ · · · ∪ xk) =
k∑

j=1

±x1 ∪ · · · ∪ λ(γ , xj) ∪ · · · ∪ xk. (21)
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Furthermore, for γ , ν ∈ GC0

{γ , ν}ϵ = −λ(γ , νϵ) − (−1)|γ ||ν|λ(ν, γ ϵ), and (22)

{γ , ν}ω = λ(γ , νω) + (−1)|γ ||ν|λ(ν, γ ω) . (23)

Proof. The derivation property (21) is clear from the pictorial description of λ above the lemma.
We hence focus on (22), (23). The element {γ , ν}ϵ is obtained by connecting γ and ν by one edge and

adding an ϵ-leg at a vertex of either γ or ν.

To fix the sign, note that in the implicit ordering of edges, the ϵ-edge is first, then the horizontal edge,
then the edges of γ , then those of ν. On the other hand,

with the ordering of edges such that the horizontal edge is first and the ϵ-edge second, then the edges
of γ , then those of ν. Finally,

with the analogous ordering of edges. Hence, (22) follows. Equation (23) is shown similarly, with the
caveat that there is an extra sign due to the ω-decoration being of odd degree, that is, the assignment
γ +→ γ ω is of even degree zero. !

5.3 The map G
Let J = {j1, . . . , jk} denote an ordered subset of {1, . . . , n}, that is, with indices chosen so that j1 < · · · < jk.
We define a linear map

G : (Sym(GC0), δ + δ{,}) → X

by the formula

G(γ1 · · · γn) =
∑

|J|=k

∑

σ∈Sk

±γ 1
jσ (1)

◦ · · · ◦ γ 1
jσ (k)

◦ ∪i/∈Jγ
ω
i

= ∪n
i=1γ

ω
i +

n∑

ℓ=1

±γ 1
ℓ ◦ (∪n

i=1
i̸=ℓ

γ ω
i ) + · · · .

The sign reflects the permutation of the symbols γj in the formula. The term with J = {1, . . . , k} and σ the
identity comes with sign +. This, together with the conventions on permuting factors in the symmetric
product discussed in §2.1, determines all of the other signs.

Proposition 5.8. The linear map G is a map of dg vector spaces, that is, (δs + δω) ◦ G = G ◦ (δ + δ{,}).
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Proof. We have that δωγ ω = −γ ϵ and hence

δωG(γ1 · · · γn) = δω

∑

|J|=k

∑

σ∈Sk

±γ 1
jσ (1)

◦ · · · ◦ γ 1
jσ (k)

◦ ∪i/∈Jγ
ω
i

= −
∑

|J|=k

∑

σ∈Sk

±γ 1
jσ (1)

◦ · · · ◦ γ 1
jσ (k)

◦
∑

ℓ/∈J

γ ϵ
ℓ ∪ i/∈J

i̸=ℓ

γ ω
i .

On the other hand, using (19) above

δsG(γ1 · · · γn) −
n∑

r=1

±G(γ1 · · · δγr · · · γn) =
∑

|J|=k

∑

σ∈Sk

±
k∑

ℓ=1

±γ 1
jσ (1)

◦ · · · γ ◦
jσ (ℓ)

· · · ◦ γ 1
jσ (k)

◦ ∪i/∈Jγ
ω
i .

Next, using (20) and (23), we have

G(δ{,}(γ1 · · · γn)) = 1
2

∑

|J|=k

k−1∑

r=1

∑

σ∈Sk

±γ 1
jσ (1)

◦ · · · {γjσ (r) , γjσ (r+1)
}1 · · · ◦ γ 1

jσ (k)
◦ ∪i/∈Jγ

ω
i

+ 1
2

∑

|J|=k

∑

σ∈Sk

±γ 1
jσ (1)

◦ · · · ◦ γ 1
jσ (k)

◦
∑

a,b/∈J

{γa, γb}ω ∪ i/∈J
i̸=a,b

γ ω
i

=
∑

|J|=k

∑

σ∈Sk

±γ 1
jσ (1)

◦ · · · γ ◦
jσ (r)

◦ γ 1
jσ (r+1)

· · · ◦ γ 1
jσ (k)

◦ ∪i/∈Jγ
ω
i

+
∑

|J|=k

∑

σ∈Sk

±γ 1
jσ (1)

◦ · · · ◦ γ ◦
jσ (k)

◦ ∪i/∈Jγ
ω
i

−
∑

|J|=k

∑

σ∈Sk

±γ 1
jσ (1)

◦ · · · ◦ γ 1
jσ (k)

◦
∑

a/∈J

γ ϵ
a ∪ i/∈J

a ̸=i
γ ω

i .

The proposition follows by summing the expressions above. !

5.4 Operation ∇
Consider the degree +1 operation

defined by summing over all ways of attaching one new edge to the graph ν, between an arbitrary pair
of vertices. Comparing to (17), this can be identified as the extension of the action ◦ to the tadpole graph

so that

∇ν = τ ′ ◦ ν.

As in Lemma 5.5, we then have that

δ∇ν + ∇δν = (δτ ′) ◦ ν = 0,

since has a tadpole at an internal vertex and thus acts as zero. Hence, the operation ∇ anti-

commutes with the differential on X and is a map of complexes.
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5.5 Construction of the map F of Theorem 5.1
We define a map Sym(GC0) → X as the composition of the isomorphism / of Corollary 5.4 and the map
G above:

(Sym(GC0), δ)
/−→ (Sym(GC0), δ + δ{,})

G−→ X.

Note that if the argument on the left-hand side is in the subspace S10(GC0), then the image lies in
the subspace C[21] ⊂ X spanned by graphs with at most 10 ω-legs. We hence can define the map F of
Theorem 5.1 by restricting G ◦ /. More precisely, F is the composition

F : Sym10(GC0)
(g−1)[−11] ⊕ Sym10(GC0)

(g−2)[−12]
(G◦/)⊕(G◦/)−−−−−−−→ Cg ⊕ Cg−1[−1] id+∇−−→ Cg.

5.6 Hairy graph complex and (X, δs)

Our final goal is to show the injectivity claim of Theorem 5.1. To this end, it will be necessary to study
the cohomology of the complex (X, δs). This can equivalently be identified with the associated graded
complex of (X, δω + δs) under the filtration by number of ω-legs.

We consider a graph complex fHGC generated by linear combinations of pairs (), o) with ) a possibly
disconnected tadpole-free graph with (non-numbered) external legs.

We require that each vertex has valence ≥ 3. The orientation o = e1 ∧ · · · ∧ ek is an ordering of the set of
structural (i.e., non-leg) edges, and we again identify isomorphic graphs and orderings up to sign, cf. (2),
(3). By convention, we allow the graph ) to be the empty graph for convenience, but we forbid connected
components that are just a single edge and do not contain a vertex. The differential δ on fHGC is again
given by vertex splitting

The degree of a graph is the number of structural edges. The graph complex (fHGC, δ) is well known in
the literature. By [8], the cohomology of the connected part of loop order g with n legs (for 2g + n ≥ 3)
computes the symmetric weight 0 part of the compactly supported cohomology of the moduli spaces of
curves W0H•

c (Mg,n)Sn . Closely related complexes also compute the rational homology of spaces of long
knots [2].

We then define a map of dg vector spaces

K : (Q ⊕ Qα ⊕ Qβ ⊕ Qαβ) ⊗ fHGC → (X, δs), (24)

with α representing an (ϵ − ϵ)-edge and β representing an (ϵ − ω)-edge. More concretely, the map K acts
on the four summands as follows:

• On the first summand fHGC the map K just acts as the natural inclusion:
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• On Qα ⊗ fHGC the map K applies the natural inclusion followed by ∇:

• On Qβ ⊗ fHGC the map K adds one (ϵ − ω)-edge, plus connects an additional ω-leg.

Here the sum is over all ways of connecting a new ω-leg to an internal vertex.
• On the summand Qαβ ⊗ fHGC the map K acts as above, followed by ∇:

Proposition 5.9. The map K is a quasi-isomorphism of dg vector spaces.

Proof. First one checks that K commutes with the differentials. For the summands fHGC and Qβ ⊗
fHGC, this is straightforward. For the other two summands, one uses the fact that ∇ commutes with
the differentials.

It remains to check that the dg map K is a quasi-isomorphism. That is, we want to check that the
mapping cone of K is acyclic. We filter both domain and target, and hence also the mapping cone by
the number of connected components of graphs. On the associated graded we see only those parts
of the differential that leave the number of connected components the same. A close variant of the
resulting complex has been studied by Turchin and the second author [19]. We recall their main result
in Appendix A below, along with a slight variation (Corollary A.2) that implies that the E1 page of our
spectral sequence has the form

E1 = (QT ⊗ Sym≥0 QLω ⊕ Sym≥2 QLω) ⊗ (Q ⊕ QLϵ) ⊗ H(fHGC) ⇒ H(cone(K)),

with T, Lϵ , Lω the graphs of Appendix A. The differential on the E1 page corresponds to those terms of
δs that reduce the number of connected components by exactly one. The key observation is that the
component mapping the first tensor factor above to itself,

Sym≥2 QLω → QT ⊗ Sym≥0 QLω

has the form

Lω ∪ · · · ∪ Lω

︸ ︷︷ ︸
k

+→ −
(

k
2

)
Lω ∪ · · · ∪ Lω

︸ ︷︷ ︸
k−2

∪T.
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This obviously makes the first tensor factor acyclic. By a simple spectral sequence argument, it then
follows that H(E1) = 0 and hence H(cone(K)) = 0 as desired. !

5.7 Injectivity on cohomology and proof of Theorem 5.1
The projection to the subspace Cg,10ω ⊂ Cg spanned by graphs with exactly 10 ω-legs is a map of dg
vector spaces

π : (Cg, δs + δω) → (Cg,10ω, δs).

To show that F induces an injective map on cohomology, it hence suffices to show that π ◦ F induces an
injective map on cohomology. But π ◦ F is precisely the same as the map K from the previous section
restricted to a subspace of the 10-hair part of the summand (Q ⊕ Qα) ⊗ fHGC. More precisely, π ◦ F fits
into a commutative diagram

with the map ι sending γ1 · · · γ10 ∈ Sym10(GC0) to the hairy graph

The map ι induces an injection on cohomology by [18, Theorem 1].
But by Proposition 5.9, the (restriction of the) map K is also an injection on cohomology, and hence

so is π ◦ F.

6 Case n = 0 – Second Injection
In this section, we shall describe a second family of nontrivial cohomology classes in gr11H•

c (Mg) that
are built from cocycles in GC0. More concretely, we will show the following result.

Theorem 6.1. There is a map of dg vector spaces

E : Sym9(GC0)
(g−3)[−22] ⊕ Sym6(GC0)

(g−5)[−22] ⊕ Sym3(GC0)
(g−7)[−22] → Bg

that gives rise to an injective map on cohomology

E : Hk−22(Sym9(GC0))
(g−3) ⊕ Hk−22(Sym6(GC0))

(g−5) ⊕ Hk−22(Sym3(GC0))
(g−7) → Hk(Bg).

The remainder of this section is concerned with the construction of the map E and the proof that it
induces an injection on cohomology.

Since the construction is fairly technical and ad hoc, we shall first describe the idea here. Recall that
in the previous section we were able to construct explicit cocycles (say x ∈ Cg) in the graph complex
(Cg, δs + δω) consisting of graphs with at most ten ω-legs. The idea to show that x indeed represents a
non-trivial cohomology class was to consider the projection π : (Cg, δs + δω) → (Cg,10ω, δs), and use that
the cohomology of the latter complex is computable. Concretely,by Proposition 5.9, it agrees with the
genus g- and 10-hair part of

(Q ⊕ Qα ⊕ Qβ ⊕ Qαβ) ⊗ H(fHGC), (25)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2024/8/7060/7560588 by U
niversity of Texas - Austin user on 04 July 2024



7088 | S. Payne and T. Willwacher

and we know many non-trivial classes in the hairy graph cohomology H(fHGC) from previous work in
the literature.

Let us split x = ∑10
j=0 xj into components xj with j many ω-legs, then the top piece x10 represents a

non-trivial cohomology class in Cg,10ω (i.e., in (25)). Conversely, we may ask for a given cocycle x10 ∈ Cg,10ω

whether it can be extended into a cocycle x10 + x9 + · · · + x0 ∈ (Cg, δs + δω). Unfortunately, this extension
problem is non-trivial, and we could only provide a solution for specific types of x10 in the previous
section above, and these come from the summand Q ⊕ Qα in (25). The idea underlying Theorem 6.1 is
to consider the summand Qαβ instead. In that case, the most natural approach turned out to not try
to construct the x0, . . . , x9, but rather construct a cocycle x12 + x11 ∈ (Bg, δs + δω) whose image under
the map δω : Bg → Cg is the required x10. This is the idea of the construction of the present section.
The advantage is that we only need to consider two summands, x12 and x11, and they will have a more
natural combinatorial form than δω(x12 + x11).

6.1 Some combinatorial constructions
Our map E will be a linear combination of several pieces, that we shall introduce next. First, for k =
0, 1, . . . we consider the maps

with

the tripod graph. Since the differential δs distributes over the operation ∪ as long as there are no ϵ-legs
we have that

δs/k(γ1 · · · γr) =
r∑

j=1

(−1)|γ1 |+···+|γj−1 |/k(γ1 · · · (δγj) · · · γr). (26)

On the other hand, we have

(27)

We also define the similar operation
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It satisfies

(28)

Next we define the degree zero operation

where we sum over all ways of attaching two ω-legs to the graph ), in the blown-up picture. This means
that the half-edges are attached to an internal vertex, or become an ϵ-leg. (This can be seen as attaching
to the special vertex.)

Lemma 6.2. If a graph ) ∈ X does not contain any ϵ-legs, then we have that

where on the right-hand side we again sum over all ways of attaching the leg to ), with the
attachment to the special vertex being the same as introducing an ϵ-marking at the leg.

Proof. The computation is similar to the proof of Lemma 5.6. !

Furthermore, we use the pre-Lie product • on GC0. For γ1, γ2 ∈ GC0

where the sum is over all ways of inserting γ2 into a vertex of γ1. We shall only need to use the following
property of •, which is a special case of Proposition 5.3 (proved in [20]):

δ(γ1 • γ2) − (δγ1) • γ2 − (−1)|γ1 |γ1 • (δγ2) = {γ1, γ2}. (29)

Finally, we define the operation

In other words, /̃k is defined similarly to /k, except that we attach 3 ω-legs to one of the γj instead
of one.
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Lemma 6.3. The expression δs/̃k(γ1 · · · γr) − ∑r
j=1(−1)|γ1 |+···+|γj−1 |/̃k(γ1 · · · (δγj) · · · γr) equals:

(30)

Proof. The verification is a similar graphical computation to those above. We omit the details. !

6.2 Definition of the map E
We then define the maps of graded vector spaces

Ek : Sym(GC0) → X

γ1 · · · γr +→ /k(γ1 · · · γr) + k/̃k−1(γ1 · · · γr) + 3k
10

/̂k−1(γ1 · · · γr) + 3k5(/k−1(γ1 · · · γr))

−
r∑

i=1

γ 1
i ◦ /k(γ1 · · · γ̂i · · · γr) +

∑

i<j

±/k(γ1 · · · (γi • γj) · · · γr).

The map Ek is not a morphism of dg vector spaces; it does not commute with the differentials. However,
we have the following result:

Lemma 6.4. For γ1, . . . , γr ∈ GC0, the commutator of Ek with the differential

δEk(γ1 · · · γr) −
∑

j

±Ek(γ1 · · · δγj · · · γr)

is a linear combination of graphs with at most r + 3k − 2 legs decorated by ω.

Proof. First note that /k(γ1 · · · γr) is the only term in the definition of Ek that has r + 3k ω-legs. The
remaining terms, call them X(γ1 · · · γr) temporarily, all have r+3k−1 many ω-legs. Given (26) the assertion
of the lemma hence is equivalent to the statement that

[δs, X](γ1 · · · γr) := δsX(γ1 · · · γr) −
∑

j

±X(γ1 · · · δγj · · · γr) = −δω/k(γ1 · · · γr). (31)

To show this, we investigate the terms contributing to [δs, X] separately. First, by Lemma 6.2,

[δs, 5 ◦ /k−1](γ1 · · · γr) = −6(/k−1(γ1 · · · γr)).

The terms contributing to 6(/k−1(γ1 · · · γr)) are of three sorts: (61) the terms for which there is a new
ϵ-leg and (62) the terms for which the new leg is connected to a vertex of one γj and (63) the terms for
which the new leg is connected to a vertex of another tripod.
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The terms 61 cancel the left-hand terms of δ/k(· · · ) in (27), in which one ϵ is put on a tripod leg. The
terms 63 cancel with the terms [δs, /̂k−1](γ1 · · · γr) by (28).

Next denote temporarily

Y(γ1 · · · γr) :=
r∑

i=1

γ 1
i ◦ /k(γ1 · · · γ̂i · · · γr).

Then we use (19) to compute that

[δs, Y](γ1 · · · γr) =
r∑

i=1

γ ◦
i ◦ /k(γ1 · · · γ̂i · · · γr).

The terms on the right-hand side may be again split into terms (Y1) in which γi is attached to an ϵ-leg
and terms (Y2) for which γi is attached to a vertex of some other γj and (Y3) terms for which γi is attached
to a vertex of some tripod.

The terms Y1 cancel the remaining terms of δ/k(· · · ), see (27), in which one ϵ-leg is attached to γi. The
terms Y2 cancel the terms arising from the commutator of

∑
i<j /k(γ1 · · · (γi•γj) · · · γr) with the differential

by (29).
The commutator Z := [δs, /̃k](γ1 · · · γr) is computed in (30) and we denote by Z1 the first summand

and by Z2 the second summand on the right-hand side of (30). Then the second summand Z2 cancels
the terms 62 above. At the same time the terms Z1 cancel the terms Y3 above. Thus, all terms have been
taken care of and (31) and the lemma is proved. !

As an immediate consequence, we can finally define the map E of Theorem 6.1.

Corollary 6.5. The map

E : Sym9(GC0)
(g−3)[−22] ⊕ Sym6(GC0)

(g−5)[−22] ⊕ Sym3(GC0)
(g−7)[−22] → Bg

defined such that

(γ1 · · · γ9) ⊕ (µ1 · · · µ6) ⊕ (ν1ν2ν3) +→ π (E1(γ1 · · · γ9) + E2(µ1 · · · µ6) + E3(ν1ν2ν3)) ∈ Bg ,

with π : Xg[−22] → Bg the projection, is a map of dg vector spaces.

Proof. By Lemma 6.4, the commutator of Ek with the differential only has terms with ≤ 10 ω-legs, and
these are killed by π . !
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6.3 Proof of Theorem 6.1
It remains to check that the cohomology map of the map E of Theorem 6.1 (see the definition in
Corollary 6.5) is in fact injective. Similarly to the proof of Theorem 5.1 above, it suffices to check that the
composition π ◦δω◦E of E with the map π : H(Cg, δ) → H(Cg.10ω, δs) and the quasi-isomorphism δω : Bg → Cg

is injective. However, in contrast with the proof of Theorem 5.1, the composition π ◦ δω ◦ E does not
factorize through the cohomology isomorphism K of Proposition 5.9. Hence, we need to trace through
the proof of Proposition 5.9, in which the cohomology H(Cg,10ω, δs) is computed, and identify the subspace
of the cohomology that is in the image of π ◦ δω ◦ E. As in that proof, we hence consider the filtration by
the number of connected components in graphs, and the corresponding spectral sequence. We need to
trace our images π ◦ δω ◦E(γ1 · · · γr) through this spectral sequence. Hence, we consider the leading order
term of π ◦ δω ◦ E(γ1 · · · γr), that is, the term with the most connected components. This is easily seen
to be

But this leading order term is the same as produced by the map K of Proposition 5.9, acting on the
summand Qαβ ⊗ fHGC on the left-hand side of (24), and specifically on the element

But since the map ι is an injection on cohomology, and the map K is an injection on cohomology, so
must be π ◦ δω ◦ E. Hence also E is an injection on cohomology as claimed.

6.4 Proof of Theorem 1.1
To show Theorem 1.1 of the introduction we need to check that the images of the maps E and F of
Theorems 6.1 and Theorem 5.1 inside the cohomology of (Cg, δs + δω) are linearly independent. As in
the preceding proof, it suffices to check that the images of π ◦ E and π ◦ F are linearly independent in
H(Cg,10ω, δs). But the latter cohomology is computed in Proposition 5.9 and identified with the genus g
part of

H(fHGC)10-hair ⊕ Qα ⊗ H(fHGC)10-hairQβ ⊗ H(fHGC)9-hair ⊕ Qαβ ⊗ H(fHGC)9-hair.

Under this identification, we saw in the proof of Theorem 5.1 that the image of the map π◦F is a subspace
of the first two summands

H(fHGC)10-hair ⊕ Qα ⊗ H(fHGC)10-hair.

Likewise, we saw in the proof of Theorem 6.1 that the composition of π ◦ E with a projection to the
summand Qαβ ⊗ H(fHGC)9-hair is an injection. Hence, since the two previous subspaces are linearly
independent by Proposition 5.9, so must be the images of π ◦ E and π ◦ F.

7 Euler Characteristic
The Sn-equivariant Euler characteristic of a complex very similar to Xg,n was computed in [17]; the
difference here is that the ω-legs are odd instead of even. We recall the results from [17] and then apply
the necessary modifications to account for this degree shift.
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First, we introduce the functions

Eℓ := 1
ℓ

∑

d|ℓ
µ(ℓ/d)

1
ud

, λℓ := uℓ(1 − uℓ)ℓ,

B(z) :=
∑

r≥2

Br

r(r − 1)

1
zr−1 ,

and Uℓ(X, u) such that

log Uℓ(X, u) = log
(−λℓ)

X)(−Eℓ + X)

)(−Eℓ)

= X
(
log(λℓEℓ) − 1

)
+ (−Eℓ + X − 1

2 ) log(1 − X
Eℓ

) + B(−Eℓ + X) − B(−Eℓ).

Denote by X̃ev
g,n a graded vector space defined in the same manner as Xg,n but with even ω-decorations

instead of odd, and with all edges (structural or not) odd. Let X̃ev
g,n,rω ⊂ X̃ev

g,n be the subspace with r legs
decorated by ω. By [17, §4.3], the generating function for the equivariant Euler characteristic is (We
subtract 1 relative to loc. cit. since we do not include the empty graph in our complex.)

∑

g,n,r

ug+n−1wrχSn (X̃
ev
g,n,rω) =

∏

ℓ

Uℓ(
1
ℓ

∑
d|ℓ µ(ℓ/d)(pd + 1 + wd), u)

Uℓ(
1
ℓ

∑
d|ℓ µ(ℓ/d)pd, u)

− 1 ,

with w the formal variable taking care of the number of ω-legs and u the formal variable counting
genus plus the number of punctures. Looking at the derivation in loc. cit. one sees that the only change
required from even to odd ω decorations is the sign in front of the term wd. We obtain

∑

g,n,r

ug+n−1wrχSn (X̃g,n,rω) =
∏

ℓ

Uℓ(
1
ℓ

∑
d|ℓ µ(ℓ/d)(pd + 1 − wd), u)

Uℓ(
1
ℓ

∑
d|ℓ µ(ℓ/d)pd, u)

− 1,

with X̃g,n being a slightly modified version of Xg,n in which all edges, are considered odd, not just
structural ones. This mistreatment of non-structural edges may be undone by replacing pd → −pd,
which is the equivalent on the character of multiplying the underlying representation of the symmetric
group by a degree shifted sign representation. We hence obtain:

∑

g,n,r

ug+n−1wrχSn (Xg,n,rω) =
∏

ℓ

Uℓ(
1
ℓ

∑
d|ℓ µ(ℓ/d)(−pd + 1 − wd), u)

Uℓ(
1
ℓ

∑
d|ℓ µ(ℓ/d)(−pd), u)

− 1.

We are interested in the truncation of the complex Xg,n, concretely in the subcomplex

Cg,n =
10⊕

r=0

Xg,n,rω[−21]

spanned by graphs with at most ten ω-legs. Let

T≤10

⎛

⎝
∞∑

j=0

ajwj

⎞

⎠ =
10∑

j=0

aj
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be the operator that sums the first 10 coefficients of a formal power series in w. Thus, we find:

∑

g,n

ug+nχSn (Cg,n) = −u T≤10

(
∏

ℓ

Uℓ(
1
ℓ

∑
d|ℓ µ(ℓ/d)(−pd + 1 − wd), u)

Uℓ(
1
ℓ

∑
d|ℓ µ(ℓ/d)(−pd), u)

− 1

)

,

with the factor −u accounting for the overall degree and genus shift due to the special vertex.

Theorem 7.1. The equivariant Euler characteristic of the weight 11 compactly supported coho-
mology of the moduli space of curves is computed by the following generating function:

1
2

∑

g,n≥0
2g+n≥3

ug+nχSn (gr11Hc(Mg,n)) =
∑

g,n

ug+nχSn (Cg,n)

= −u T≤10

( ∏

ℓ≥1

Uℓ(
1
ℓ

∑
d|ℓ µ(ℓ/d)(−pd + 1 − wd), u)

Uℓ(
1
ℓ

∑
d|ℓ µ(ℓ/d)(−pd), u)

− 1
)

.

Specializing to n = 0, we obtain:

1
2

∑

g≥2

ugχ(gr11Hc(Mg)) = u9 − 2u10 + 2u11 + 8u13 − 17u14 − 14u15 − 20u16 + 29u17 + 85u18

+ 178u19 + 123u20 − 311u21 − 1049u22 − 2443u23 − 776u24 + 6027u25 + 7200u26 − 34892u27

+ 196735u28 + 1215236u29 − 3230856u30 − 26415680u31 + O(u32)

The following graphs show log( 1
2 |χ(gr11Hc(Mg))|) and sgn(χ(gr11Hc(Mg))) for g up to 70.

We also obtain interesting numerical data for n > 0. Recall that gr11H•
c (Mg,n) vanishes for g ≤ 4 and

n ≤ 6, by Corollary 4.3. In Figure 1, we present the Sn-equivariant Euler characteristic for 5 ≤ g ≤ 16
and n ≤ 6, expressed in the Schur polynomial basis for symmetric functions. As mentioned in the
introduction, our computations agree with those of Bergström and Faber for g = 2 and 3. In Figure 2, we
present the Euler characteristic for g = 4 and 7 ≤ n ≤ 15. More extensive data, for g + n ≤ 24 is available
at https://github.com/wilthoma/weight11mgn.
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Fig. 1. The Sn-equivariant Euler characteristic of Cg,n.
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Fig. 2. The Sn-equivariant Euler characteristic of Cg,n for g = 4 and n ≤ 15.
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Appendix A. Recollection and variant of [19]
We denote by Xconn ⊂ X the subcomplex spanned by graphs that are connected in the blown-up picture.
We denote by Xtp a graph complex defined just like X, just allowing tadpoles at all vertices, and by Xtp,conn

its connected subcomplex. Similarly, we denote by HGC ⊂ fHGC the connected part, so that

fHGC = Sym(HGC)

is a symmetric product. We denote by HGCtp the variant of the hairy graph complex HGC generated by
graphs that may have tadpoles at vertices. We shall recall the following result:

Theorem A.1 (Theorem 3.1 of [19]). The mapping cone of the inclusion HGCtp → (Xtp,conn, δs) has
two-dimensional cohomology, spanned by one class whose projection on HGCtp is

and by one class whose projection to (Xtp,conn, δs) is

From this we can easily deduce the following tadpole-free variant:

Corollary A.2. The mapping cone of the inclusion HGC → (Xconn, δs) has three-dimensional
cohomology, spanned by three classes whose projections to (Xconn, δs) are T as above, and

respectively.
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Proof. We first compare the tadpole-free and tadpole-carrying versions of our complexes, that is, we
study the mapping cones of the projections

HGCtp → HGC Xtp,conn → Xconn.

in each case the map is surjective, so the mapping cone is quasi-isomorphic to the kernel, which is
spanned by graphs that have at least one tadpole. Following the arguments of [1, Lemma 5] one sees
that this complex has cohomology spanned by graphs that have a single vertex, carrying a tadpole, of
valence 3. The complete list of such graphs is as follows:

The cocycle D is not exact in HGCtp. Hence the cohomology of HGCtp is one dimension larger than that
of HGC, with the additional dimension spanned by the class of Dω.

The cocycles Dω and Dϵ are both exact in Xtp,conn since Dω = δsLω and Dϵ = δsLϵ . Hence the cohomology
of HGC is two dimensions larger than that of HGCtp, with the additional generators Lω and Lϵ , which are
closed elements in Xconn but not in Xtp,conn.

Accounting for these (small) differences the corollary then follows easily from Theorem A.1. !
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