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Abstract

We prove that the rational cohomology group H 1 (Mg,,,) vanishes unless g = 1 and n > 11. We show further-
more that H¥ (ﬂg,n) is pure Hodge-Tate for all even k < 12 and deduce that #Hg,n(]Fq) is surprisingly well
approximated by a polynomial in ¢. In addition, we use H “(ﬂm) and its image under Gysin push-forward
for tautological maps to produce many new examples of moduli spaces of stable curves with nonvanishing odd
cohomology and nontautological algebraic cycle classes in Chow cohomology.

1. Introduction

The Langlands program makes a number of striking predictions about the Hodge structures and Galois
representations that appear in the cohomology of moduli spaces of stable curves; see [8, Section 1.2]
and [4, 3]. While the conjectured correspondence with algebraic cuspidal automorphic representations
of conductor 1 remains out of reach, these representations have been classified up to weight 22 [7], and
some of the resulting predictions can now be verified unconditionally. Bergstrom, Faber and the third
author recently proved that H* (ﬂg,n) vanishes for all odd k¥ < 9 and all g and n [4]. For k = 11,
the conjectural correspondence predicts that H'! (ﬂg,n) is isomorphic to a direct sum of copies of
H! (ﬂ] .11) and hence should vanish in all cases where Mg,n is unirational. We confirm this prediction
unconditionally and show that A'! (./\_/lg,n) vanishes in an even wider range of cases.

Theorem 1.1. The cohomology group H'! (/Vg,n) is nonzero ifand only if g = 1 and n > 11.

Forg =landn > 11, H''(M,_,) is isomorphic to a direct sum of (”1_01) copies of H''(M_11) [14];
in particular, it decomposes as H'"0 (M ,,) ® H*'' (M ,,). We show that H''-O(M ) is generated by
the pullbacks of the distinguished generator of H'1-0 (M, .11), which corresponds to the weight 12 cusp
form A for SL,(Z), under the (l"l) forgetful maps and describe the relations among these generators.

In this way, we show that H'-O(M ) is an irreducible S,-representation isomorphic to the Specht
module V,,_jo 1.

Next, we address the Hodge structures and Galois representations that appear in other low degrees.
The Langlands program predicts that the cohomology of /\_/lg,n should be pure Hodge-Tate in all even
degrees less than or equal to 20. This prediction was previously confirmed only in the cases where these
cohomology groups are known to be generated by tautological classes, for example, for g < 2 [18, 14,
23], for k < 2 [1], and for k = 4 and g > 8 [25]. Our second result extends the confirmation of this
prediction to a much wider range of cases. The proof is a double induction on g and n. The base cases
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are given by recent results of the first two authors, who showed that H* (ﬂg,n) is tautological for g > 3
and 2g +n < 14 [5].

Theorem 1.2. For any even k < 12, the cohomology group H* (./\_/lg,n) is pure Hodge—Tate.

It remains an open problem whether H* (Mg,n) is generated by algebraic cycle classes for even
4<k<12.

As an application of these two theorems, we show that the point count #ﬂg,n (Fy) is surprisingly
well approximated by a polynomial in q.

Corollary 1.3. Assume g > 2, and let d = dim ﬂg,n. Then

6
#Mgn(Fy) = > W (Mg )g?™ +0(g" /%),
i=0

Remark 1.4. The point count #M_, (F,) is a polynomial in g, for all n, as is #M (Fy) for n < 10.

Forn > 11, #M, ,(F,) was determined by Getzler [14]; it has an approximation to order O(q"~'3/?)

by a polynomial in ¢ minus the correction term (”151)7'(4]), where 7(g) denotes the coefficient of g in

the Fourier expansion of the weight 12 cusp form A for SL, (Z).

Unlike the cohomology groups in smaller odd degrees, H'3 (Mg,n) is nonvanishing in a wide range
of cases, including for large g, as are all higher degree odd cohomology groups. Indeed, Pikaart showed
that H 13(Mg,n) is nonvanishing for n > 10 and g sufficiently large, as is H3? (Mg) [24]. Similar
nonvanishing statements in higher degrees follow immediately, by Hard Lefschetz. The bounds on g
that come from Pikaart’s method are large, typically in the thousands. For instance, van Zelm computes
that Pikaart’s method yields H3? (ﬂg,l) # 0 for g > 8069. The bounds for H 13(Mg, 10) and A3 (Mg)
are not explicitly stated in the literature, but there is substantial evidence that such bounds should be
far from optimal. While Pikaart’s constructions prove the existence of nontautological algebraic cycle
classes on M, for g > 16192, van Zelm proved that this holds for g > 12 [28]. Also, Bergstrom and
Faber have recently shown that H 13(ﬂ2,n) # 0 for n > 10. They also prove that the nonvanishing of
H" (ﬂg,,,) for n > 10 follows from conjectural parts of the Langlands correspondence. Here, we prove
the latter statement unconditionally, extend it to all higher genera, and also improve Pikaart’s bound for
the nonvanishing of H33(M,).

Theorem 1.5. Assume k < 11. Let g1, . . ., gk be distinct positive integers, and set g = 1+ g+ - - + gk.
Then

H'" 2 (Mg ) 20 forn > 11 —k.

In particular, H*(My ) # 0 for g > 2 and n > 10, and H¥(My) # 0 for g > 67.

As a further application, we prove the existence of nontautological classes in the Chow rings
A" (M, ) in a number of cases where this was not previously known.

Corollary 1.6. Consider ﬂg,” as a stack over C. For any (g,n) as in Theorem 1.5, the quotient
A* (Mg,n) /R* (Mg,n) is uncountable, as is the subgroup of A* (ﬂg,n) generated by cycles algebraically
equivalent to zero.

This provides many new examples of (g, n) for which A* (Mg,n) is not tautological. In particular, the
existence of nontautological Chow classes is new for (4, n) with9 < n < 16; for (5,n) with9 < n < 13;
for (6,n) with9 < n < 11 and for (7, 8) and (7,9).

Existence results for nontautological classes come in two flavors. There are cases where one can
write down explicit examples of nontautological Chow classes. Graber and Pandharipande gave the first
such example when (g,n) = (2,20) [17]. Van Zelm generalized their example to show the existence
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of explicit nontautological Chow classes on ﬂg,n for 2¢g +n > 24 and g > 2 [28]. A nice feature
of these examples is that they are nontautological in both Chow and cohomology. There are also the
inexplicit nontautological Chow classes, which arise from the existence of odd cohomology. The first
such_examples are for g = 1,n > 11, where the existence of a holomorphic 11-form implies that
Ap(M ) is infinite dimensional [26]. Bergstrom and Faber showed that there is odd cohomology
on mz,” for n > 10 [3], implying that there are nontautological Chow classes as well, by results of
Kimura and Totaro [19, 27]; see Theorem 7.1. The examples provided by Corollary 1.6 are also of this
inexplicit form. We do not know whether all of the nontautological classes in these inexplicit cases are
homologically equivalent to zero.

1.1. Methods

Arbarello and Cornalba introduced an inductive method for studying cohomology groups of Mg,,, and
applied this to prove the vanishing of H¥ (ﬂg,n) for k € {1,3,5} [1]. The same method was used to
prove vanishing for k € {7,9} after establishing the additional base cases needed to run the induction,
via point counting over finite fields [4]. Our proof of Theorems 1.1 and 1.2 start from the observation that
the same induction can be used to control the Hodge structures and Galois representations that appear
in H¥ (Hg,n) even when these groups do not vanish. The first two authors recently established the base
cases needed for k¢ < 12 [5]. Running this induction when k is even leads directly to Theorem 1.2. Doing
so for k = 11 shows that H'! (M, ,) injects into a direct sum of copies of H''(M 1;) (Proposition
3.5). This is enough to confirm the prediction that H 1 (Mg,n) vanishes whenever ./\_/lg,n is unirational,
but a different argument is needed to prove that it vanishes whenever g > 2.

The Arbarello-Cornalba induction uses the excision sequence for the pair of Mg,n with its boundary

Mg = Mgy \ Mgy, along with the map
H* (M) — H*(0Mg.n) (1.1)

given by pullback to the normalization of the boundary. Our proof of Theorem 1.1 uses the observation
that the map (1.1) is the first arrow in a natural chain complex whose jth term may be identified with the
cohomology of the normalization of the closure of the codimension j boundary strata with coefficients
in a natural local system, the determinant of the permutation representation on the branches of the
boundary divisor. This complex has several natural interpretations: It is the kth weight-graded piece of
the Feynman transform of the modular operad that takes the value Q for every (g, n) [16]. It is also the
weight k row in the E|-page of a natural spectral sequence obtained via Poincaré duality from Deligne’s
weight spectral sequence for the pair (Mg,,,, 0Mg ) and has a natural interpretation as a decorated
graph complex [20, Section 2.3].

For k = 11, we examine the first two maps in this complex. Assuming that H!! (Mz,,,) vanishes for
all n, a double induction on g and n shows that H'! (mg,,,) vanishes whenever g > 2. In Section 4.3,
we prove the needed base cases, that is, the vanishing of H “(/Vz,n) for all n, by explicit calculations
using the generators and relations for H'! (/\_/ll,n). It should also be possible to deduce these base cases
from results of Petersen [23, 22]; see Remark 4.3.

1.2. Structure of the paper

In Section 2, we recall how to extract H!! (ﬂl,n) with its Hodge structure or Galois representation
from the work of Getzler [14]. We then describe generators and relations for this group and describe the
Sy, -action and the pullback under tautological morphisms in terms of these generators. In Section 3, we
recall the inductive method of Arbarello and Cornalba and use it to prove Theorem 1.2. In Section 4,
we present the inductive argument for vanishing of H'' (M ¢.n) for g > 2, using the weight spectral
sequence, assuming the vanishing for g = 2. We then prove the vanishing in the necessary base cases,
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for g = 2, using the explicit generators and relations for g = 1. In Sections 5, 6 and 7, we prove
Corollary 1.3, Theorem 1.5 and Corollary 1.6, respectively.

1.3. Notations and conventions

We denote by H* (ﬂg,n) either the Q-Hodge structure H* ((Mg, n)c, Q) or the absolute Galois repre-
sentation H é‘t((mg,n)@, Q). We write L for the Tate motive. We say that H¥ (ﬂg,n) is pure Hodge—Tate
if it is isomorphic to a direct sum of the Betti or £-adic realizations of powers of L. We write Si for the
motive associated to the weight 12 modular form A, whose Betti and £-adic realizations are H'' (M 11).
We denote by A*(X) the Chow ring with rational coefficients of a variety or Deligne-Mumford stack X.

2. Genus 1

In this section, we give explicit generators and relations for H 1 (ﬂl,n) and describe the S,,-action
and the pullback to boundary divisors in terms of these generators. These formulas will be used in
Section 4.3.2, in our proof that H'' (M, ,) = 0.

2.1. Dimension and Hodge structure

We start by explaining how to extract H “(ﬂ],n) with its Hodge structure or Galois representation
from [14]. Getzler gives generating functions that determine the cohomology groups H* (/\_/ll,n) with
their S,,-actions. These formulas simplify substantially when forgetting the S,,-action, so we begin by
using Getzler’s formula to extract H 1 (Ml,n) nonequivariantly. Below, as in [14], we write L for the
Tate motive and Sy, for the Hodge structure associated to the space of cusp forms of weight 2k + 2
(see [14, p. 489] for definition). We note that Syx4» = 0 for k < 4.

Lemma 2.1. The cohomology group H'! (./\_/11,,1) is a direct sum of ("1_01) copies of S13.

Proof. Let (M) denote the S,-equivariant Euler characteristic of M in the Grothendieck ring
of equivariant mixed Hodge structures. Getzler defines two families of generating functions a; =
S e (M;,)and b; = 3 e (M, ). Fori = 0 or 1, these generating functions are power series in the
Hodge structures L and Syx.» whose coefficients are symmetric functions.

To get to the ordinary Euler characteristic generating function e(M) from e (M), we apply
Getzler’s rk functor, which is defined by setting the power sums to p; = x and p,, = 0 for n > 0. It sends
eSn (/\_/li,n) to e(Mi,n)% [14, p. 484]. We shall write a; = rk(a;) and b; = rk(b;), which are power
series in L and Sy» when i = 0 or 1. For example,

bo = rk(bg) = Z e(ﬂo,n)%-

n>3

Important for us is that

1 +x+ by = e +terms divisible by L.

For by, we are interested in the coefficient of fl—';Su, which is equal to the negative of the multiplicity

of Si5 in H'(M,_,) by construction. Applying rk to [14, Theorem 2.5] relates b; to a;. Note that
the symbol o in [14, Theorem 2.5] denotes plethysm of symmetric functions; applying rk turns this
plethysm into composition of functions, as can be seen from the properties characterizing plethysm in
[13, Section 5.2]. In particular, we find

by = ay(x + b)) + terms built from . 2.1)
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The terms built from ag cannot contribute to the coefficient of S;;. (We note that there is a small error
in [14, Theorem 2.5], which is corrected in [9, p. 306], but it occurs in these terms built from ag, and
thus will not affect the outcome of our calculation.)

To expand the right-hand side of equation (2.1), apply rk to the equation for a; in [14, p. 489], and
then plug in x + b for x (so substitute p = x + b, and p,, = 0 for n > 1):

(L+x+b))mert/wst

ai(x +b() =resy

l-w-L/w+L
o [ Soksz + 1

X (Z(%)ka - 1)(a) - L/w)dwl.
k=1

In the middle parenthesized term, Sy, is multiplied by w!®/L!!. Since we need to take the residue at 0
with respect to w, the coefficient of S}, appears when the other terms combine to give L!' /w!!. To get
L' /w'!, we must use the —L/w piece of the (w — L/w) term. Similarly, when we expand the first term,
only the powers of L/w are relevant. From this, we see that the coefficient of Sy in the above display is
the negative of the coefficient of y'° in

(1 +)c+b(’))ler ex(1+y)

ooxn .
TR U= D ),

n=1
In conclusion, H'' (M ,,) consists of ("]_01) copies of Sy5. m]

Getzler’s formulas also encode the S,,-action on H “(ﬂl,n). We recover this information in a
different way, by describing generators on which the S, -action is evident, as follows.

2.2. Generators and their pullbacks

To begin, in the case n = 11, Lemma 2.1 tells us

H"Mi11)®C=H""M; 1) @ H*'' (M 11).

The weight 12 cusp form of SL,(Z) gives rise to a distinguished generator w € H “’O(HU 1); see [12,
p. 14] for an explicit geometric construction. It is evident from this construction (or from [14]) that Sy
acts by the sign representation. e

We now describe a natural collection of forms in H''**( M) ,,), which we will soon see are generators.
These forms come from pulling back the distinguished generator of H “’O(ml,n) under the various
forgetful maps ﬂl,n — ﬂl,“. Precisely, given an ordered subset A C {1, ...,n} with |A| = 11, write
fa: ﬂl’n — ﬂl,A = /71,11 for the projection map and define wx := fiw € Hll’o(ml,n).

The pullbacks of these forms to boundary divisors follow a simple rule. By the Kiinneth formula, the
only boundary divisors of M, with nonzero H!! are those of the form

Dp = M pup X Mo geug, (2.2)

where |B| > 10and tp: D — ﬂl,n is the map that glues p to g. In this case, projection onto the first
factor pr; : Dp — M pup induces an isomorphism

pri: H'' (M, gup) > H' (Dp). (2.3)

Given ordered subsets A and B of {1,...,n} with |A| = 11 and |A N B| = 10, there is a unique element
i € Asuchthati ¢ B. Let €(A) denote the ordered set obtained from A by replacing i with p, so €(A) is
a subset of B. If |A N B| = 11 so that A is already contained in B, then we set €(A) = A.
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Lemma 2.2. Given a boundary divisor ig: Dg — ml,n, and A C {1,...,n} with |A| = 11, we have

N prTwe(A) if|[ANB| > 10
LBu)A = .
0 otherwise.

Proof. First, suppose |A N B| <9, s0|A N B°| > 2. Then there is a commutative diagram

LB

Dpg

l 1 2.4)

ml,(AﬂB)Up X /\_AO,(AOB")Uq — /\_/ll,A,

where the horizontal maps glue p to ¢ and the vertical maps forget markings not in A. In this case, the
image of f4 o tp is a proper boundary divisor in /\_/ll, A, which has no holomorphic 11-forms. Hence,
the pullback of the generator of H 11’0(M1,A) to D g vanishes.

Now, suppose |A N B| > 10, so |A N B°| < 1. Then, the lower left hand term in diagram (2.4) must
be replaced by M (anp)up- Thus, there is another commutative diagram

Dy —=— M,

prll lfA 2.5)

ﬂ],BUp ? Ml,A»

where if |A N B| = 10, we identify p with the unique symbol of A not contained in B. O

2.3. Relations and the S,,-action

The group S,, acts on the subsets A C {1, ...,n} and correspondingly on the subspace of H ”’O(ﬂl,n)
generated by the w4. Note that, for any permutation o in the subgroup of S, fixing A, we have
W (a) = sign(o)wa.

To identify our representation, we briefly recall some of the combinatorial objects that arise in the
representation theory of S,,.

A tabloid is an equivalence class of tableaux, which identifies tableaux up to reordering rows. Given
a tableau T, we write {T'} for the corresponding tabloid. Given a partition A of n, we denote by M,
the vector space with basis given by tabloids of shape A. The Specht module generator associated to a
tableau T is the vector

Z sign(o){o(T)} € My, (2.6)

oeCr

where Cr C S,, is the subgroup that preserves the columns of 7 setwise. The subspace of M, generated
by the vectors (2.6) as T runs over all tableaux is an irreducible representation called the Specht module
V. The Specht module generators associated to the standard tableaux on A form a basis for V.

To each ordered subset A C {1,...,n} of size 11, we associate a tableau T4 of shape (n — 10, 110)
which has the symbols of A in order down the first column and the rest of the first row filled in increasing
order.

Proposition 2.3. There is an S,,-equivariant isomorphism H 11’0(/\_/11,,1) = Vu—10,110 taking wa to the
Specht module generator associated to T .
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Proof. The dimension of the Specht module V,,_( j10 is the number of standard tableaux of shape
(n — 10,1'9), which is ("1_01). Therefore, by Lemma 2.1, it will suffice to give a S,-equivariant map
from the subspace of H''-%(M|_,,) generated by {w4} to Vu—10,110 that takes w4 to the Specht module
generator associated to A.

We are going to study the image of subspace generated by {w 4} under the pullback map

H'" (M) —» @5 H'(Dp), @.7)

|B|=10

where B is an ordered subset of {1,...,n} and Dp is as in equation (2.2). Let Wg be the element in
the target of the map (2.7) which has component prijw € H 1.0(D ) and 0 in all other components. The
collection of ordered subsets B of size 10 is in bijection with tabloids on (n — 10, 1'°), where B¢ fills
the row and B (in order) fills the column. Thus, the right-hand side is identified with the vector space of
tabloids M, _j, j10; given a tabloid {T'} corresponding to B we write W7, = Wp.

Fix A c {1,...,n} with |A| = 11.If B C A, with |B| = 10, then A is a permutation of i U B for some
i¢ B.Letoa—p:iUB — A denote the corresponding permutation. By Lemma 2.2, the image of w4
under the map (2.7) is

wa Z sign(op_A)Wp = Z Sign(a—)W{G'(TA)}’
BCA o€eSa

which is the Specht module generator defined in the expression (2.6), and the proposition follows. O

Corollary 2.4. The forms {wx : 1 € A, A increasing} form a basis for H'! (ﬂlyn).
Corollary 2.5. The pullback map H”’O(./\_/ll,n) — @|B|=10 H'"O(Dp) is injective.

Remark 2.6. Dan Petersen suggested an alternate method to obtain several of the results in this section,
which avoids the manipulations with generating functions in Lemma 2.1. We sketch his argument here.
Let f! : &€ — M denote the universal elliptic curve and £" denote the n-fold fiber product of £ with
itself over M 1. Note that M, is an open substack of £"~!. By the long exact sequences for the pairs
(Ml,n, M) and (5”_1, M ), we see that there are natural isomorphisms

Wi HMN(EY) = Wi HY (M) = H' (M ,).

One can then study the Leray spectral sequence for the smooth morphism £~ : %=1 — M |. Let V
denote the local system R' £/ Q. Then by the Kiinneth formula,

RfIT'Q= (RAIQ® = (QoV[-1] e Q(-1)[-2)*"".

The pure cohomology Wiy H'! (£"~") arises from the ("};) summands V[-1]®'°, each of which gives

a copy of Sy;. This gives Lemma 2.1. To identify the S, representation as in Proposition 2.3, one first
notes that as an S,,_; representation, we have

Wi H" (Eno1) 2812 ® IndSn! (sgn ® triv).

S10XSp-11

By the Pieri formula and the branching rule for the symmetric group, it follows that as an S,, represen-
tation,

Wi H" (E,21) = S12® Vg, 110
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3. Applying the Arbarello-Cornalba induction

We start by recalling the inductive method of Arbarello and Cornalba [1], by excision of the boundary
and pullback to its normalization. We then apply this method to prove Theorem 1.2 and a preliminary
proposition about the degree 11 cohomology of Mg .

3.1. Restricting to boundary divisors

Consider the excision long exact sequence associated to the boundary M, , = Mg,n \ Mg
M Hf(Mg,n) - Hk (A_/lg,n) - Hk(aMg,n) - H§+1(Mg,n) —

Note that this sequence is in fact a long exact sequence of mixed Hodge structures or £-adic Galois
representations. In particular, when H, f (Mg.n) =0, there is an injective morphism

HY(My.) — H* (Mg ). (3.1)
Let M ¢.n denote the normalization of Mg ,,. Arbarello and Cornalba improve on the injectivity of
the map (3.1), as follows.
Lemma 3.1 (Lemma 2.6 of [1]). Suppose H* (M, ,) = 0. Then the pullback

H*(Mg,n) = HY (9 Mg,n)
is injective.
For fixed k, the following proposition gives vanishing of compactly supported cohomology in all but
an explicit finite collection of cases.
Proposition 3.2 (Proposition 2.1 of [4]). Assume g > 1.

k<2gandn=0,1

HY (M, ) = 0 for
cMgn) =0 {k<2g—2+nandn22.

3.2. The case of even degrees k < 12

Let RH* (Mg,n) c H* (ﬂg,n) be the tautological cohomology ring. Tautological classes are algebraic

and defined over Z, so if H* (ﬂg,n) = RH* (ﬂg,n), then H* (Mg,n) is pure Hodge-Tate. The next
lemma provides the necessary base cases for the inductive argument.

Lemma 3.3. I[f2g —2+n < 12 and k < 12 is even, then H* (ﬂg,,) is pure Hodge-Tate.

Proof. For g = 0 and any n, all cohomology is tautological [18], as is all even cohomology for g = 1
[21], and for g = 2 and n < 20 [23]. Finally, for g > 3, all cohomology is tautological for 2g—2+n < 12
[5, Theorem 1.4]. |

Proof of Theorem 1.2. We induct on g and n. By Lemma 3.3, we can assume 2g —2+n > k. By Lemma
3.2, we have an injection

HY (Mg ) < H*(0Mg.p). (3.2)

Each component of oM ¢,n 18 @ quotient by a finite group of /Vg_l,nﬂ or Mgl,nlu X_Mgz,nzﬂ, where
g1 +8 =g,n +ny =n,and 2g; — 2 + n; > 0. By induction on g, we know Hk(./\/lg,l,mz) is pure
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Hodge-Tate. Meanwhile, note that H/ (Mg/,n/) =0forall (g’,n") and odd j < k/2 < 6 by [1]. Hence,
the Kiinneth formula shows that

k/2
H (Mg, im0 X Mgy mys1) = ED) B (Mg, 1) @ HY 2 (Mg ). (3.3)
i=0

Inductively, we know that the right-hand side of equation (3.3) is pure Hodge-Tate. Thus, the map (3.2)
is an injection of H*(M ¢,n) into a Hodge structure or Galois representation that is pure Hodge-Tate,
and it follows that H* (./\_/lg,n) is pure Hodge—Tate as well. O

3.3. The case of degree k = 11

The base cases required to run an analogous induction for k = 11 are those where H'! (Mg,n) does not
inject into H'' (.M 11). Recent results of the first two authors rule out any such bases cases with g > 2.

Lemma 3.4. If g > 2, then H'' (M,.,) — H'' (0 M, ) is injective.

Proof. 1f 2g —2+n > 11, this follows by combining Lemma 3.1 and Proposition 3.2. If 2¢g =2 +n < 11
and g > 2, then [5, Theorem 1.4] shows H''(M, ,) = 0. O

Proposition 3.5. For any g, there is an injection
H" (Mg,n) & @Hll(ml,n)-
Proof. The result is known for g < 1, so we may assume g > 2. By Lemma 3.4, we have an injection
H" (M) = H" (0Mg.n).

Each component of W ¢.n 18 a quotient by a finite group of /\_/lg_ 1,n+2 OF /\_/lgl,nlﬂ X Mgz,nzﬂ, where
ki +ky =n,2g; —2+n; > 0. Because Hk(ﬂg,,n,) =0 forall (¢g’,n’)and k = 1,3,5,7,9 [1, 4], the
Kiinneth formula shows that

H“(ﬂgl,nﬁl X Mgz,n2+l) = Hll(/vgl,nﬁl) @ H“(ﬂgz,nﬁl)- (3~4)

Note that either g; < gorg; =gandn; +1 < n, @ analogously for (g3, ny). Therefore, there is an
injective morphism of Hodge structures from H'' (M ¢.n) into a direct sum of Hodge structures of the

form H “(ﬂw), where y < g or y = g and v < n. By double induction on g and n and using that

H"(My,,) = 0and H''(M,,) = 0 for n < 10, we conclude that there is an injective morphism of
Hodge structures or £-adic Galois representations

H" (Mg.0) = @ H" M), o

4. An induction via the weight spectral sequence

In this section, we prove the vanishing of H'! (./\_/lg,n) for g > 2. We do so by identifying the injection
H'" (M) «— H" (OM ¢.n) (Lemma 3.4) as the first map in a complex and showing that the next map
in the complex is injective. The complex we use is obtained from the E7-page in the weight spectral
sequence associated to the compactification M, ,, of M, , [10], via Poincaré duality. It is also the
weight 11 summand of the Feynman transform of the modular operad H* (/Vg,n) [16], and therefore
has a natural graph complex interpretation [20, Section 2.3].
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4.1. The first two maps in the weight k complex

Let I" denote a stable n-marked graph of genus g; the underlying graph is connected, each vertex v is
labeled by an integer g, and the valence of the vertex v is denoted n,. The stability condition is that
2gy +n, =2 > 0.Set Mr =[], My, ,, . There is the natural gluing map

ér: mr - ﬂg,n.

The normalization of &- (M) is isomorphic to Mr/Aut(I"). Thus, the first map in the weight k complex,
the pullback of H k to the normalization of the boundary, can be rewritten as:

H (Mgn) = P H MM (@.1)
|E@)|=1

The target of the jth map in the weight k complex is @IE(F)H' (H*(Mr) ® det E(I'))A"T" Here,
det E(I") denotes the determinant of the permutation representation of Aut(I") acting on the set of
edges. We will only need the first and second maps.

Let us describe the second map. We define

D v ™MD L B (M) ® det E(ID)A D “2)

|E()=1] |E()=2]

as follows. For each graph I with two edges, choose an ordering of the edges E(I") = {e, e2} and say
e; corresponds to the node obtained by gluing the marked points p; and g;. Let ¢;(T") denote the graph
with one edge obtained by contracting e;. Gluing p; and g; induces a map &;: Mr — M 4, (1), which

in turn gives a map &; : H* (m@(r)) — H*(Mr). This induces

— & —
H'" (Mg, ) = H'(Mp). (4.3)

If E(T) is a nontrivial representation of Aut(I'), then & = & o o, where o-: Mr — M is the
automorphism that simultaneously swaps p; with p, and ¢; with g, (corresponding to the automorphism
of I that swaps the two edges). In particular, it follows that the image of £} — &7 lies in the subspace
(H*(Mr)®@det E(I'))A"M) ¢ H*(Mr). Then 8 is defined by taking the sum over all two-edge graphs.
Then S o @ = 0 because each component is the difference of the pullbacks under two copies of the same
gluing maps.

4.2. Proof of Theorem 1.1, assuming it holds for g = 2

We first give a short inductive proof of Theorem 1.1, assuming that H'! (/\_/lz,n) =O0foralln. Fix k =11
and g > 3. By Lemma 3.4, the map « in (4.1) is injective. We claim that the map S in (4.2) is also
injective. The theorem follows from this claim since S o a = 0.

Consider the domain of 8, which is @, (-, H* (M)A If T has a single vertex with a loop

edge, then H'!' (Mp)A"™) = H'(M,_1 ,42)2, which vanishes by induction on g.

Suppose I" has two vertices joined by an edge. Then Mr = Ma, Aup X Mb’ Acug- By the Kiinneth
formula and the vanishing of lower degree odd cohomology,

H'" (M, aup X M acug) = H'' (M avp) & H' (M acug)- (4.4)

Assume a > b. By induction on g and n, H'"'(Mr) vanishes unless » = 1 and |A€| > 10, in which case
itis H'1 (M acuq). Note that, in this case, Aut(I) is trivial.
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qg P

Figure 1. The graph T on the left and T’ on the right.

Let I'” be the graph obtained by attaching a loop to the vertex of genus g — 1 (and decreasing its
genus accordingly), as shown in Figure 1. As in equation (4.4), we know that H " (Mp) contains
H" (M, Acug) as a summand. Then 8 maps H'! (M) injectively into this summand of H'' (M),
and it follows that g is injective, as claimed.

4.3. Proof of Theorem 1.1 for g =2

The proof that H'! (/\_/lg,n) = 0 for all n follows a similar strategy to the inductive argument for g > 3.
By Lemma 3.4, we know that « is injective, and we claim that § is also injective. The theorem follows
from this claim. However, the proof that S is injective is more involved in this case.

We begin by describing some of the components of 8 as concretely as possible.

Example 4.1. Suppose I is the leftmost graph in Figure 3. In this case, ¢;(I") and ¢,(I") are not
isomorphic, so each component of S|, 1, (My) is one of the usual restriction maps, up to sign.

Example 4.2. Suppose I is the rightmost graph in Figure 3. In this case, ¢; (') = ¢,(T'). Leto: Mp —
M be the automorphism that simultaneously swaps p; with p, and g; with g, (corresponding to
the automorphism of I'" swapping the two edges). Then & = &) o 0. By Proposition 2.3, we know
o*: H'"(Mr) — H'"(Mr) is multiplication by —1. It follows that 8|1, (7, 1§ again one of the usual
restriction maps, up to rescaling.

We will show that, for each 1-edge graph I' there is a collection of 2-edge graphs {I';} such that 3
maps H'!(Mp)*"T) injectively into 0;(H'' (Mr,) ® det(Er,))A""I"). Moreover, we order the one-
edge graphs in such a way that, at each step, none of the two-edge graphs {I';} admit edge contractions
to any of the one-edge graphs that came earlier in the order. In this way, we see that S can be represented
by a block upper diagonal matrix with injective blocks, and hence is injective, as required.

For n < 9, the cohomology H*(M> ,) is tautological [5], and hence H”(Mz,n) = 0, as required.
The cases n = 10 and 11 can be handled by an argument similar to that used for the cases n > 12,
below, but the details are more involved. Instead, we note that M ,, is rational in these cases [6], and
hence, H 11’0(M2,n) = 0. By Proposition 3.5, it follows that H'! (/\_/lz,n) = 0. For the remainder of this
subsection, we therefore assume n > 12.

There are three types of 1-edge graphs to consider: those with a vertex of genus 2, those with a unique
vertex of genus 1 and a self-edge and those with two vertices of genus 1.

4.3.1. Graphs with a genus 2 vertex . . .
Let I' be a graph with one edge and a genus 2 vertex. Then Mr = My aup X Mo acuq. Because

|A U p| < n, we see that H'! (M3, au,) = 0 by induction. By the Kiinneth formula and the vanishing of
lower degree odd cohomology, H'' (M) = 0.

4.3.2. Graphs with a single genus 1 vertex

Let I" be the graph with one vertex of genus 1, n legs and one self-edge. Consider Mr =M, .n+2 labeled
{1,...,n,p1,q1}, where p1, q; are glued together to get curves with dual graph I'. As in Section 2.2,
given a subset B C {1,...,n, py,q1} of cardinality 10, we let Dp = /\_/ll,Bupz X MO,BCU%_ (This is
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a, P 9 p, PG 9 P

Figure 2. The four flavors of Dp.

nonempty because n > 12.) There are four flavors of subsets B: both of py, g are in B; neither p; nor
q1 isin B; only p; is in B; or only ¢ is in B. These correspond to 4 types of codimension 1 strata under
the map Dp — /Vl,mz that glues p, and g, (see Figure 2).

For each subset B, let I'p be the two-edge graph obtained by further gluing p; and g1 (see Figure 3).
Note that Mr, = Dp. We want to show that

Hll(ﬂF)Aut(F) N @ Hll(mrB ®detE(1—~B))Aut(F3)
|B|=10

is injective.
When we glue p; and g, the last two types of subsets B give the same type of two-edge graph ['p:

P, 9 P, P,

q, ! % Py

Figure 3. Gluing py and q.

Swapping p; and g; preserves the first two maps Dp — Ml,mz but exchanges the other two.
Correspondingly, the edge representation is trivial in the first two cases and nontrivial in cases three and
four.

By Corollary 2.5, we have an injection

H"' (Mi2) = € H" (D).

|B]=10

Now, S; acts on both sides by swapping p; and q;. Taking S;-invariants of both sides, we have an
injection from H'!' (M ,42)%? into

H'(Dp)> e P [H"(Dp)® H"(Dspug)]™

{pr.q1}cBor {pi,q1}cB p1€Band q1¢B
|B|=10 |B|=10

The first collection of terms is (H''(Mr,) ® det E(I'g))%2 for the graphs I'z of the first and second
flavor in Figure 3, which have trivial edge representation. For the terms in square brackets, we have
H''(Dp) = H“(D(B\pl)uql) and the S,-action switches the two factors. Hence, the space of S;-
invariants is H “(HFB). When p; € B and g1 ¢ B, note that I'p is the type of graph considered in
Example 4.2. In particular Aut(I'g) acts by the sign representation, so (H!! (mr3)®det E(I'g))Auds) =
H" (/VFB). In summary, we have given an injection

HY' (M) = B (M) ,40)™ = @ (' (Mr,) @ det E(Tp)M ™). (45)
|B|=10

https://doi.org/10.1017/fms.2023.59 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2023.59

Forum of Mathematics, Sigma 13

Figure 4. The graphs in Cases 1, 2 and 3.

4.3.3. Graphs with two genus 1 vertices
Suppose I has two genus 1 vertices, so

Mr = MI,AUp XMl’Ach.

We may assume |A€| < |A|. Figure 4 shows three types of graphs that will be used in the three cases
of the argument. Note that none of them have a loop, so none admit edge contractions to the one-edge
graphs of Section 4.3.2.

Case 1: |A°| = 0. By Corollary 2.5, there is an injection
HY (Mr) = H"' (Mi,a0p) = @D H" (Mipup) = H' (M),
BCA
|B|=10
where Wp is the first graph in Figure 4, which has
My, = Mipup X Mo,as)ute.py X Miig)-

Case 2: |A¢| = 1. Again, by Corollary 2.5, there is an injection

H' (Mr) = H" (M a0p) = € H' (M pop) = H' (M),
BcA
|B|=10

where this time ¥ is the second graph in Figure 4, which has

./V\P;g = ml,Bup/ XHO,(A\B)u{q',p} Xml,Acuq.

Note that our assumptions n > 12 and |A€| = 1 ensure |A \ B| > 1, so the middle genus O vertex has at
least 3 markings. Note that no edge contraction of ¥}, gives a one-edge graph I" of the type in Case 1
or a different I" of the type in Case 2.

Case 3: |A€| = 2. Choose any i, j € A€ and k, £ € A and define
Xacug = Mi e\ nuta.ry X Moiq.iy
and
Xaop = Muavk.enuip.py X Mo, (g e
Associated to these are two-edge graphs @4 and @ 4 so that
Meo, = My avp X Xacug and Ma e = Xaup X Mi acug

and contracting the edge connecting p’ and ¢’ gives I'. See the last graph in Figure 4 for a picture of
@ 4. Notice that no edge contraction of @4 or @4 gives a one-edge graph appearing in Cases 1 or 2
above or a different one-edge graph of the type in Case 3.
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By the Kiinneth formula,
H"(Mr) = H'" (M aup) ® H'" (M) acug),
H" (Ma,) = H" (Mi,a0p) ® H' (M (a\ (i, )utg.p))5
and
H'" (Ma,.) = H" (M acug) ® H' (M (a\ke)oip.p))-
It follows that H'! (M) injects into the sum
H'" (Mo,) ® H" (Mo,.).

Remark 4.3. It should also be possible to deduce the vanishing of H'!(M,_,) from the work of Dan
Petersen as follows. There are exact sequences

H 2 (M i) (<1) = H (Ma,) = WieHY (M) — 0.
Specializing to k = 11, we see that
H" (M>,,) = W11H11(M§tn .
By [23, Theorem 2.1 and Remark 2.2], there is an isomorphism
H' (MS,) = @) HP(MS, A7) @ HP (Sym® M, 1, BY),
p+q=11

where A9 and B4 are certain direct sums of Tate twists of symplectic local systems. The cohomology
of these local systems has been determined by Petersen in [22]. Petersen’s work makes significant use
of high-powered machinery, including mixed Hodge modules, perverse sheaves, the decomposition
theorem for the map M;t , — M and the Eichler-Shimura isomorphism concerning modular forms.
The proof we present here is relatively elementary and highlights a combinatorial perspective on the
vanishing of H''(M3_,,).

5. Application to point counting
The weighted count of F,; points on a Deligne-Mumford stack X is
#X(F,) = Z _ 1
v # Aut(x)’
x€|X(Fq)l

where |X(F,)| denotes the set of isomorphism classes of the groupoid X (F,). This point count is
related to the trace of the Frobenius map @, on cohomology by Behrend’s Grothendieck-Lefschetz
trace formula [2, Theorem 3.1.2]:

#X(Fy) = "% Y (=)  r @, |HE (Xg, , Qo).
k>0

Using this formula in the case X = ﬂg,n leads to the proof of Corollary 1.3.

Proof of Corollary 1.3. Let d = dimmg,n = 3g — 3 + n. The eigenvalues of Frobenius acting on
Hé‘t((mg,n)ﬁq, Q) are Weil numbers of weight k, meaning that under any embedding Q, < C they

have absolute value g¥/2 [11]. Thus, the point count #mg,n(]Fq) is determined up to O (g%~'3/) by the
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eigenvalues of Frobenius on H>4~* (./\_/lg,,,) for k < 12. Theorem 1.2 and Poincaré duality tells us that
Frobenius acts on the even cohomology H>?~* (/Vg,n) for k < 12 by g% */2. Moreover, the groups
H?d7K(My_,) vanish for odd k < 9 by [1, 4]. Thus, up to O(g?~'*/2), the only other contribution

to #Mg ,(F,) is from H??"''(M, ), which vanishes when g > 2 by Theorem 1.1 and Poincaré
duality. O

6. Higher odd cohomology groups

In this section, we prove Theorem 1.5. The main tool is the push-pull formula. This formula is proven
for manifolds in [29, Corollary 2.2]. The proof for orbifolds or smooth Deligne—-Mumford stacks goes
through analogously.

Lemma 6.1. Suppose i: X <— Y is a closed embedding of codimension d between smooth Deligne—
Mumford stacks. Let Nx jy denote the normal bundle. Then for any cohomology class a € H* (X)

i*i,(a) = ca(Nxy) U c.

Proof of Theorem 1.5. Setg =1+ fozl gi. Assume {g;} is ordered so that g; < --- < gg. It suffices to
prove the result for /\_/lg,l 1-k» as the pull back maps

Hi(-/vg,n) - Hi('ﬂg,l‘t+l)
are injective for all n. Consider the gluing morphism
é: ./\_/11,11 xﬂgl,l XX /\_/lgk,l — ﬂg,n_k

attaching the marked point on the /\_/lgl.,l component to the ith marked point on ﬂl,n. Let
@ € H'"( M 11) be a nonzero holomorphic 11-form. We will show that

E@®1®---01)#0e H' (Mg 11-1).
It suffices to show that £*¢, (e ® 1 ® - -- ® 1) is nonzero. If g; # 1, set
U:i=Mijiit X Mg 1 X+ X Mg, 1.
If g =1, set
U= M X Mg X Mgy 1 X+ Mg, 1.
We will show that
Eé(a®l®---0 1)y #0.

Let I'y 11—« denote the stable graph with k + 1 vertices as follows. One vertex is of genus 1 with 11 -k
half-edges, and the rest of the vertices are of genus g;. There is exactly one edge between the first vertex
and each of the latter vertices, and no other edges, unless g; = 1 in which case we allow ourselves to
replace the g; vertex with a genus 0 vertex with a self-edge (see Figure 5).

Let Vg 11—« denote the open substack of /\_/lg 11-k parametrizing curves whose dual graphs are
obtained from I'y ;1% by edge contraction. Then

Elu: U — Mg 11—k
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& ® FORNNO

Figure 5. The graphs I'g 11_.

factors through the open substack V, 11—x. The induced map
i: U — Vg,ll—k

is a closed embedding between smooth stacks of codimension k. Here, we are using that the genera
g1,-..,8k are distinct. Let 8 denote the restriction of @ to M 11, which is nonzero (for example, by
[15]). By Lemma 6.1

M. (BR1® @) =c,  (NHU(BR1I®---®1).

Let ¢, denote the (unique) ¢ class on the (j + 1)st component of U. Let i ; denote the jth ¢ class on
M 11. It is well-known that

k
ck(Ni)zl—[(—wjeal@--o@l—1®--~®¢//gj®-~-®1).
j=1

See, for example, the discussion in [17, Section A.4]. Because H”(/\/ll,n) = 0 [15], all products of the
form By ; vanish. Therefore,

k(NDU(Be1®--01) = (D (BO Yy ® - ®yy,) #0. m

7. Application to Chow rings
We denote by A*(X) the Chow ring of X with Q-coefficients.

Theorem 7.1 (Kimura [19], Totaro [27]). Suppose that X is a smooth, proper Deligne—Mumford stack
over C. If A*(X) is a countable Q-vector space, then the cycle class map

A*(X) = H*(X)

is an isomorphism.

Proof. First, note that X is defined over a subfield E c C that is finitely generated over Q and
hence countable. Suppose A*(X) is countable. Then there is a countable extension F of E such that
A*(XF) — A*(X) is surjective. Let G be a finitely generated extension of F. Then G can be embedded
in C, so we have a morphism
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Each of the maps above is injective by [19, Proposition 3.2]. Because the composite is surjective, it
follows that the first morphism is also surjective. By [27, Theorem 4.1], it follows that the motive of
X is pure Hodge—Tate, and thus the motive of X is as well. Note that [27, Theorem 4.1] is stated for
schemes, but the same proof goes through for Deligne—Mumford stacks. In particular, the cycle class
map is an isomorphism. o

Proof of Corollary 1.6. The tautological ring R*(ﬂg’n) is a finite-dimensional Q-vector space by
[17, Corollary 1]. By Theorem 7.1, we know that A*(M, ,) is uncountable whenever there is odd
cohomology. Therefore, the quotient A*(Mgn)/ R* (ﬂ“) is uncountable for the values of (g, n) in

Theorem 1.5. It follows that the subgroup of A* (ﬂg,n) generated by cycles algebraically equivalent to
zero is also uncountable since the Hilbert scheme has only countably many connected components. O
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