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Resolutions of local face modules,
functoriality, and vanishing of local

h-vectors

Matt Larson, Sam Payne & Alan Stapledon

Abstract We study the local face modules of triangulations of simplices, i.e. the modules

over face rings whose Hilbert functions are local h-vectors. In particular, we give resolutions

of these modules by subcomplexes of Koszul complexes as well as functorial maps between

modules induced by inclusions of faces. As applications, we prove a new monotonicity result for

local h-vectors and new results on the structure of faces in triangulations with vanishing local

h-vectors.

1. Introduction
In this paper, we study the modules over face rings, introduced by Athanasiadis and
Stanley, whose Hilbert functions are the relative local h-vectors of quasi-geometric
homology triangulations of simplices, a broad class of formal subdivisions that includes
all geometric triangulations and is natural from the point of view of combinatorial
commutative algebra. See Section 2.1 for the precise definition and further references.

Fix an infinite field k. Let ‡ : � æ 2V be a quasi-geometric homology triangulation
of a simplex, and let E be a face of �. Say that a face G œ � is interior if ‡(G) = V ,
and let I be the ideal in the face ring k[lk�(E)] generated by the faces that are interior
relative to E, i.e.

I = (xF : F Û E is interior).
Let d = |V | ≠ |E|, which is the Krull dimension of k[lk�(E)], and let ◊1, . . . , ◊d be a
special l.s.o.p., as in [14, 1]. See also Section 2.2, where we recall the definition and
construction of special l.s.o.p.s.

Definition 1.1. The local face module L(�, E) is defined as the image of I in
k[lk�(E)]/(◊1, . . . , ◊d).

Note that L(�, E) is a finite dimensional graded k-vector space. The local h-vector
is its Hilbert function:

¸(�, E) := (¸0, . . . , ¸d), where ¸i := dim L(�, E)i.

The local face module L(�, E) depends on the choice of a special l.s.o.p., but ¸(�, E)
is an invariant of the triangulation with the symmetry ¸i = ¸d≠i. See Section 2.1
for details and references. In the past few years, there has been significant research
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activity on the combinatorics of local h-vectors and relations to intersection homology
[3, 10, 16, 4]. Recent advances include a proof that every non-negative integer vector
satisfying ¸0 = 0 and ¸i = ¸d≠i is the local h-vector of a quasi-geometric triangulation
for E = ? [8], and a relative hard Lefschetz theorem that yields unimodality of local
h-vectors for regular subdivisions in a more general setting (for regular nonsimplicial
polyhedral subdivisions that are not necessarily rational) [9].

Here, we investigate the local face modules L(�, E) using methods of combinatorial
commutative algebra. In particular, we describe natural combinatorial resolutions of
these modules as well as natural maps of k[lk�(E)]-modules, L(�, E) æ L(�, E

Õ), for
E µ E

Õ. Our first theorem gives explicit generators for the kernel of the natural map
I æ k[lk�(E)]/(◊1, . . . , ◊d). Moreover, we extend this to an exact sequence of graded
k[lk�(E)]-modules in which each term is a direct sum of degree-shifted monomial
ideals.

Label the vertices of the simplex V = {v1, . . . , vn}. For a subset U µ V , let
U

c := V r U . After relabeling, we may assume that ‡(E)c = {v1, . . . , vb}. Given
S µ {v1, . . . , vd}, we define the ideal IS µ k[lk�(E)] by

IS := (xF : ‡(F Û E)c µ S).
Note that ISÕ µ IS for S

Õ µ S, and IS depends only on S fl {v1, . . . , vb}. For instance,
I? = I and IS = k[lk�(E)] if {v1, . . . , vb} µ S. By the definition of a special l.s.o.p.
(Definition 2.3), after reordering, we may assume

supp(◊i) µ {w œ lk�(E) : vi œ ‡(w)},

for 1 6 i 6 b. As a consequence, for any vi œ S, multiplication by ◊i induces a degree
1 map ⁄i : IS æ ISr{vi}.

Theorem 1.2. There is an exact sequence of graded k[lk�(E)]-modules
0 æ k[lk�(E)][≠d] æ

m
|S|=d≠1

IS [≠(d ≠ 1)] æ · · · æ
m

|S|=1
IS [≠1] æ I æ L(�, E) æ 0,

where, for S = {vi0 , . . . , vik }, with i0 < · · · < ik, the di�erential restricted to IS is
ük

j=0(≠1)j
⁄ij .

Corollary 1.3. The kernel of the surjection I æ L(�, E) is the ideal J generated by
)

◊i · x
F : F Û E is interior

*
fi

)
◊j · x

G : ‡(G Û E) = {vj}c
, for 1 6 j 6 b

*
.

We also construct maps between local face modules, as follows. For faces E µ E
Õ

in �, let Star(EÕ r E) denote the closed star of E
Õ r E in lk�(E). We have a natural

inclusion of complexes lk�(EÕ) µ lk�(E).

Theorem 1.4. Let E µ E
Õ be faces of �, with

d = n ≠ |E|, d
Õ = n ≠ |EÕ|, and b

Õ = n ≠ |‡(EÕ)|.
Let {◊1, . . . , ◊d} be a special l.s.o.p. for k[lk�(E)], and let ◊

Õ
i

:= ◊i|Star(EÕrE). Then
there is a unique homomorphism of graded k-algebras

„ : k[lk�(E)]/(◊1, . . . , ◊d) æ k[lk�(EÕ)]/(k[lk�(EÕ)] fl (◊Õ
1, . . . , ◊

Õ
d
))

whose kernel contains {[xF ] : F ”œ Star(EÕ r E)} and satisfies „(xF ) = x
F for all

F œ lk�(EÕ). Moreover, there is a special l.s.o.p. ’1, . . . , ’dÕ for k[lk�(EÕ)] such that
(’1, . . . , ’dÕ) = k[lk�(EÕ)] fl (◊Õ

1, . . . , ◊
Õ
d
) and, up to reordering, we have ◊i|lk�(EÕ) = ’i,

for 1 6 i 6 b
Õ. With this choice of special l.s.o.p., „(L(�, E)) µ L(�, E

Õ).
Remark 1.5. Theorem 1.4 may be viewed as a functoriality statement for local face
modules. Start by fixing the special l.s.o.p. ◊1, . . . , ◊d. Then L(�, E) is well-defined.
For E

Õ ∏ E the special l.s.o.p. ’1, . . . , ’dÕ depends on some choices, but the ideal that
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it generates does not, nor does the map „ : L(�, E) æ L(�, E
Õ). Moreover, for E

ÕÕ ∏
E

Õ, one readily checks that the maps „
Õ : L(�, E

Õ) æ L(�, E
ÕÕ) and „

ÕÕ : L(�, E) æ
L(�, E

ÕÕ) are independent of all choices and satisfy „
ÕÕ = „

Õ ¶ „. Thus one obtains a
functor from the poset of faces of � that contain E to graded vector spaces, given by
E

Õ ‘æ L(�, E
Õ).

We now give two applications of the above theorems. The first is a monotonicity
property for local h-vectors.
Theorem 1.6. Let E µ E

Õ be faces of � such that ‡(E) = ‡(EÕ). Then ¸(�, E) >
¸(�, E

Õ).
The inequality in Theorem 1.6 is term by term, i.e. dim L(�, E)i > dim L(�, E

Õ)i

for all i. The proof is by showing that the map „ : L(�, E) æ L(�, E
Õ) given by

Theorem 1.4 is surjective.
Our second application of the above theorems is to a decades old problem posed by

Stanley, who introduced and studied local h-vectors in the special case where E = ?
and asked for a characterization of triangulations for which they vanish [14, Prob-
lem 4.13]. This problem remains open, and is of enduring interest [3, Problem 2.12].
The extension to the case where E is not empty is particularly relevant for appli-
cations to the monodromy conjecture [7, 6, 16]. In [11], we prove a theorem on the
structure of geometric triangulations with vanishing local h-vectors that is tailored
to this purpose, and we use it to prove the monodromy conjectures for all singu-
larities that are nondegenerate with respect to a simplicial Newton polyhedron. See
Theorems 1.1.1, 1.4.5, and 4.1.3 in loc. cit..

Here, we apply Theorem 1.2 to prove another theorem on the structure of faces
in triangulations with vanishing local h-vectors. Let F œ lk�(E) be a face such that
F Û E is interior. Following terminology from the monodromy conjecture literature
(see, e.g. [12]), we say that F is a pyramid with apex w œ F if (F Û E) r w is not
interior. Let

AF := {w œ F : F is a pyramid with apex w}, and Vw := ‡((F Û E) r w)c
.

The elements of Vw correspond to the base directions of F , i.e. the facets of 2V that
contain the base of F , when viewed as a pyramid with apex w. We say F is a U -
pyramid if there is an apex w œ AF such that |Vw| = 1. In other words, a U -pyramid
is a pyramid with a unique base direction, for some choice of apex.
Definition 1.7. Let F œ lk�(E) be a face. An interior partition of F is a decompo-
sition

F = F1 Û F2 Û AF

such that F1 Û AF Û E and F2 Û AF Û E are both interior.
Theorem 1.8. Suppose ¸(�, E) = 0 and F œ lk�(E) has an interior partition F =
F1 Û F2 Û AF such that |F1| 6 2. Then F is a U -pyramid.

See Remark 3.2 for a short proof in a special case that illustrates the naturality
of the U -pyramid condition. The method of proof breaks down when |Fi| > 3. See
Example 5.3.
Remark 1.9. The analogous theorem in [11] requires that the triangulation be geo-
metric and that the interior partition satisfies the additional condition ‡(F2 Û E)c =t

wœAF
Vw. But then the hypothesis that |F1| 6 2 is dropped entirely. So, even for geo-

metric triangulations, there are cases of Theorem 1.8 that are not necessarily covered
by [11, Theorem 4.1.3]. It should be interesting to look for a common generalization
of these vanishing results, and to pursue further progress on Stanley’s problem of
characterizing triangulations with vanishing local h-vector more generally.
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Remark 1.10. To the best of our knowledge, all of the theorems stated in the intro-
duction are new even for regular triangulations. The reader who prefers to do so may
safely restrict attention to geometric or even regular triangulations. However, while
the structure results for triangulations with vanishing local h-vectors in [5] and [11]
rely on special properties of geometric triangulations, the proofs presented here work
equally well for quasi-geometric homology triangulations, and we find it natural to
work in this level of generality.

We conclude the introduction with an example illustrating the above theorems.

Example 1.11. Let � be the triforce triangulation, which figures prominently in [5]
and in the adventures of hero protagonist Link in the video game series The Legend
of Zelda.

u

vw

c

a

b�

Let xa := x
{a}, xb := x

{b}, xc := x
{c}, xu := x

{u}, xv := x
{v}, xw := x

{w}. Consider
first E = ?. The face ring is

k[lk�(E)] = k[xa, xb, xc, xu, xv, xw]/(xaxu, xbxv, xcxw, xuxv, xuxw, xvxw),
and its ideal of interior faces is

I = (xaxb, xaxc, xbxc).
A special l.s.o.p. is of the form ◊1, ◊2, ◊3, with

supp(◊1) = {b, c, u}, supp(◊2) = {a, c, v}, supp(◊3) = {a, b, w},

subject to the condition that the restrictions (of the corresponding a�ne linear func-
tions) to the face {a, b, c} are linearly independent. Our resolution of the local face
module L(�, E) also involves the monomial ideals

Iu = (xa, xbxc), Iv = (xb, xaxc), Iw = (xc, xaxb),
Iuv = (xa, xb, xw), Iuw = (xa, xc, xv), Ivw = (xb, xc, xu).

The resolution given by Theorem 1.2 is then

0 æ k[lk�(E)]

5
◊1

≠◊2
◊3

6

≠≠≠≠≠æ Ivw ü Iuw ü Iuv

5
0 ≠◊3 ≠◊2

≠◊3 0 ◊1
◊2 ◊1 0

6

≠≠≠≠≠≠≠≠≠≠≠æ Iu ü Iv ü Iw

[ ◊1 ◊2 ◊3 ]≠≠≠≠≠≠æ I æ L(�, E) æ 0

In particular, we have L(�, E) ≥= I/J , where
(◊1 · xa, ◊2 · xb, ◊3 · xc) µ J.

Since ◊1, ◊2, and ◊3 restrict to linearly independent functions on {a, b, c}, the elements
{◊1 ·xa, ◊2 ·xb, ◊3 ·xc} span the 3-dimensional subspace Èxaxb, xaxc, xbxcÍ of k[lk�(E)].
Hence I = J and L(�, E) = 0.

Next, consider E
Õ = {c}. Then

k[lk�(EÕ)] = k[xa, xb, xu, xv]/(xaxu, xbxv, xuxv).
A special l.s.o.p. is any l.s.o.p. of the form ’1, ’2, where supp(’1) µ {a, b}. The ideal
of interior faces in this case is I

Õ = (xa, xb), and the resolution given by Theorem 1.2
is

0 æ k[lk�(EÕ)]

Ë
≠’2
’1

È

≠≠≠≠≠æ k[lk�(EÕ)] ü I
Õ [ ’1 ’2 ]≠≠≠≠æ I

Õ æ L(�, E
Õ) æ 0.
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Note, in particular, that L(�, E
Õ) ≥= I

Õ
/J

Õ, where J
Õ = (’1, ’2xa, ’2xb). Thus one sees

that L(�, E
Õ) has dimension 1 in degree 1, i.e. ¸(�, E

Õ) = (0, 1, 0).
Let us now consider Theorem 1.4 in this example. Let ◊

Õ
i

denote the restriction of
◊i to k[Star(EÕ r E)]. Note that ’1 := ◊

Õ
3 is supported on lk�(EÕ). Extend {’1} to

a basis for k[lk�(E)] fl (◊Õ
1, ◊

Õ
2, ◊

Õ
3), e.g. by choosing ’2 to be a linear combination of

◊
Õ
1 and ◊

Õ
2 in which the coe�cient of xc vanishes. Then ’1, ’2 is a special l.s.o.p. for

k[lk�(EÕ)], and the map „ in Theorem 1.4 is given as follows. First, we set
„(xa) = xa, „(xb) = xb, „(xu) = xu, „(xv) = xv, „(xw) = 0.

Then, writing ◊2 = ⁄cxc + ⁄axa + ⁄vxv, with all three coe�cients nonzero, we set

„(xc) = ≠1
⁄c

(⁄axa + ⁄vxv).

Note that there is no subset of {◊1, ◊2, ◊3} whose restrictions to k[lk�(EÕ)] form an
l.s.o.p. This explains and motivates our two-step process for constructing the map:
first restricting to Star(EÕ r E) and then intersecting with k[lk�(EÕ)] to produce the
special l.s.o.p. that yields the functorial map „ : L(�, E) æ L(�, E

Õ).
Let also describe how Theorems 1.6 and 1.8 manifest in this example. For The-

orem 1.8, observe that the face F = {a, b} in lk�(EÕ) has an interior partition
F = {a} Û {b}. The proof in this case shows that the classes of both xa and xb

are nonzero in L(�, E
Õ), for any choice of special l.s.o.p.

Finally, note that L(�, E) = 0 and L(�, E
Õ) ”= 0, so there is no surjective map of

graded vector space L(�, E) æ L(�, E
Õ). In this case, ‡(E) ”= ‡(EÕ). Thus, we see

that the hypothesis ‡(E) = ‡(EÕ) cannot be dropped in Theorem 1.6.

2. Preliminaries
We begin by recalling definitions and background results that will be used throughout,
following [15, Chapter III] and [3]. We work over a field k. In particular, all rings are
commutative k-algebras and singular homology is computed with coe�cients in k.

2.1. Triangulations of simplices. In this section only, for the purposes of provid-
ing context, we allow that the field k may be finite, and the triangulation ‡ : � æ 2V

is not necessarily quasi-geometric.
We recall the notion of a homology triangulation, following [2]. A d-dimensional

simplicial complex � with trivial reduced homology is a homology ball of dimension d

if there is a subcomplex ˆ� µ � such that
• ˆ� is a homology sphere of dimension d ≠ 1,
• lk�(F ) is a homology sphere of dimension d ≠ |F | for F ”œ ˆ�.
• lk�(F ) is a homology ball of dimension d ≠ |F | for all nonempty F œ ˆ�.

The interior faces of a homology ball � are the faces not contained in ˆ�. A homology
triangulation of the simplex 2V is a finite simplicial complex � and a map ‡ : � æ 2V

such that for every non-empty U µ V ,
• the simplicial complex �U := ‡

≠1(2U ) is a homology ball of dimension |U |≠1.
• ‡

≠1(U) is the set of interior faces of the homology ball ‡
≠1(2U ).

Note that the Betti numbers of a simplicial complex, and hence the property of
being a homology ball, depend only on the characteristic of the field k. Homology
triangulations are a special case of the (strong) formal subdivisions of Eulerian posets
considered in [14, Section 7] and [10, Section 3].

The carrier of a face F œ � is ‡(F ). A homology triangulation ‡ : � æ 2V is
quasi-geometric if there is no face F œ � and U µ V such that the dimension of
�U is strictly smaller than the dimension of F and the carrier of every vertex in F
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is contained in U . A homology triangulation is geometric if it can be realized in Rn

as the subdivision of a geometric simplex into geometric simplices. Every geometric
homology triangulation is quasi-geometric.

The local h-vector, which we have defined in the introduction as the Hilbert func-
tion of the local face module, can be expressed in terms of h-vectors of subcomplexes
of links of faces in the homology balls �U :

(1) ¸(�, E) =
ÿ

U∏‡(E)
(≠1)|V |≠|U |

h(lk�U (E)).

Note that (1) makes sense even when k is finite or ‡ : � æ 2V is not quasi-geometric,
and should be taken as the definition of the local h-vector in this broader context.

Theorem 2.1 ([14, 2, 10]). Let ‡ : � æ 2V be a homology triangulation, let E be a
face of � and let d = |V | ≠ |E|. Then the local h-vector (¸0, . . . , ¸d) satisfies:

• (symmetry) ¸i = ¸d≠i;
• (non-negativity) if � is quasi-geometric, then ¸i > 0;
• (unimodality) if � is regular, then ¸0 6 ¸1 6 · · · 6 ¸Âd/2Ê.

Note that the proof of non-negativity for quasi-geometric triangulations, due to
Stanley and Athanasiadis, is via the identification with the Hilbert function of the
local face module. It su�ces to consider the case where k is infinite, since (1) is
invariant under field extensions.

2.2. Face rings and special l.s.o.p.s. Here, and for the remainder of the paper,
the field k is fixed and infinite, and all triangulations are quasi-geometric homology
triangulations.

Given a finite simplicial complex � with vertex set V = {v1, . . . , vn}, let k[�] denote
the face ring. In other words, for each subset F µ V , let x

F be the corresponding
squarefree monomial in the polynomial ring k[x1, . . . , xn], i.e. x

F :=
r

viœF
xi. Then

the face ring is

k[�] := k[x1, . . . , xn]/(xF : F is not a face in �).

Given a subcomplex �Õ of �, we have a natural restriction map k[�] æ k[�Õ], taking
x

F to x
F if F œ �Õ and to 0 otherwise. Given ◊ œ k[�], let ◊|�Õ denote the image of ◊

in k[�Õ]. In particular, each F in � may be viewed as a subcomplex, and we write ◊|F
for the restriction of ◊ to this subcomplex.

Note that k[�] is graded by degree. By definition, a linear system of parameters
(l.s.o.p.) for a finitely generated graded k-algebra R of Krull dimension d is a se-
quence of elements ◊1, . . . , ◊d in R1 such that R/(◊1, . . . , ◊d) is a finite-dimensional
k-vector space. If � is a Cohen-Macaulay complex (i.e. if k[�] is a Cohen-Macaulay
ring) and ◊1, . . . , ◊d is an l.s.o.p. for k[�], then (◊1, . . . , ◊d) is a regular sequence and
the h-polynomial of � is the Hilbert series of k[�]/(◊1, . . . , ◊d). Links of faces in tri-
angulations of simplices are Cohen-Macaulay [13].

Suppose � has dimension d ≠ 1, so k[�] has Krull dimension d. Then a sequence of
elements ◊1, . . . , ◊d in k[�]1 is an l.s.o.p. for k[�] if and only if the following condition
is satisfied [15, Lemma 2.4(a)]:

(*) For every face F œ � (or equivalently, for every facet F œ �), the restrictions
◊1|F , . . . , ◊d|F span a vector space of dimension |F |.

This characterization provides flexibility in constructing l.s.o.p.s in which the linear
functions have specified support, where the support of ◊ =

q
aixi is supp(◊) := {vi :

ai ”= 0}.
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Lemma 2.2. Let S1, . . . , Sd be subsets of the vertices of �. Then there is an l.s.o.p.
◊1, . . . , ◊d for k[�] such that supp(◊i) = Si for 1 6 i 6 d if and only if, for every face
F œ �,
(2) |{Si : Si fl F ”= ?}| > |F |.

Proof. The argument is similar to that given by Stanley in [14, Corollary 4.4]. The
necessity of (2) follows immediately from (*). We now prove its su�ciency. Suppose
S1, . . . , Sd are chosen such that (2) holds for every F œ �. Let N = |S1| + · · · + |Sd|,
and consider the space k

N parametrizing tuples (◊1, . . . , ◊d) with supp(◊i) µ Si. Fix
F = {v1, . . . , vk} œ �. Let XF µ k

N parametrize the tuples whose restrictions to F

span a vector space of dimension |F |. Note that XF is Zariski open. By Hall’s Marriage
Theorem, there is a permutation ‡ œ Sd such that vi œ S‡(i). If we set ◊‡(i) = xi for
1 6 i 6 k, and ◊‡(i) = 0 for i > k, then ◊ œ XF , and hence XF is nonempty. Also, the
subset of k

N where all coordinates are nonzero is Zariski open and nonempty. Since k

is infinite, the intersection of these nonempty Zariski open subsets of k
N is nonempty,

and hence there is an l.s.o.p. ◊1, . . . , ◊d with supp(◊i) = Si. ⇤

Let ‡ : � æ 2V be a quasi-geometric homology triangulation, and let E œ � be
a face.

Definition 2.3 ([14, 1]). A linear system of parameters ◊1, . . . , ◊d for k[lk�(E)] is
special if, for each vertex v œ V with v ”œ ‡(E), there is an element ◊v of the l.s.o.p.
such that supp(◊v) consists of vertices in lk�(E) whose carrier contains v, and such
that ◊v ”= ◊vÕ for v ”= v

Õ.

In other words, after reordering so that ‡(E)c = {v1, . . . , vb}, an l.s.o.p. for
k[lk�(E)] is special if we can order it ◊1, . . . , ◊d such that

supp(◊i) µ {w œ lk�(E) : vi œ ‡(w)},

for 1 6 i 6 b. The existence of special l.s.o.p.s is well-known to experts and the proof
is similar to Stanley’s argument in the case E = ?. For completeness, we provide a
short proof.

Proposition 2.4. Suppose k is infinite. Let ‡ : � æ 2V be a quasi-geometric homology
triangulation of a simplex, and let E be a face of �. Then there is a special l.s.o.p.
for k[lk�(E)].

Proof. Let V = {v1, . . . , vn}. After renumbering, we may assume that ‡(E)c =
{v1, . . . , vb}. Fix d = n ≠ |E|. Note that b 6 d. We define subsets S1, S2, . . . , Sd

of the vertices in lk�(E), as follows. For i 6 b, let Si be the set of vertices w such
that vi œ ‡(w). For i > b, let Si be the set of all vertices of lk�(E). Because ‡

is quasi-geometric, for each face F of lk�(E), the union of the sets ‡(w) µ V ,
as w ranges over vertices of E Û F , has size at least |E| + |F |. It follows that
|{i 6 b : Si fl F ”= ?}| > |F | ≠ (d ≠ b). Since Sj fl F ”= ? for j > b, we conclude
that |{i : Si fl F ”= ?}| > |F |. Hence, by Lemma 2.2, there is an l.s.o.p. ◊1, . . . , ◊d for
k[lk�(E)] with supp(◊i) = Si. ⇤

3. A resolution of the local face module
In this section, we prove Theorem 1.2, giving an explicit resolution of the local face
module L(�, E) by a subcomplex of the Koszul resolution of k[lk�(E)]/(◊1, . . . , ◊d).
We continue to use the notation established above. In particular, ‡ : � æ 2V is a quasi-
geometric homology triangulation of the simplex with vertex set V = {v1, . . . , vn}. We
consider a face E œ � with d = n≠|E| and b = n≠|‡(E)|. After reordering, we assume
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‡(E)c = {v1, . . . , vb}. For S µ {v1, . . . , vd}, we consider the ideal IS µ k[lk�(E)] given
by

IS := (xF : ‡(F Û E)c µ S).
Let ◊1, . . . ◊d be a special l.s.o.p. for k[lk�(E)]. We may assume that

supp(◊i) µ {w œ lk�(E) : vi œ ‡(w)},

for 1 6 i 6 b. For any vi œ S, multiplication by ◊i gives a map ⁄i : IS æ ISr{vi}, and
we consider the complex of graded k[lk�(E)]-modules

(3) 0 æ k[lk�(E)][≠d] æ
m

|S|=d≠1
IS [≠(d ≠ 1)] æ · · · æ I æ L(�, E) æ 0,

in which the di�erential restricted to IS , for S = {vi0 , . . . , vik }, with i0 < · · · < ik, is
ük

j=0(≠1)j
⁄ij .

Example 3.1. If E is an interior face of � then every l.s.o.p. is special, IS = k[lk�(E)]
for all S, and (3) is the Koszul resolution of L(�, E) = k[lk�(E)]/(◊1, . . . , ◊d).

Proof of Theorem 1.2. We must show (3) is exact. We begin by considering two com-
plexes of k[lk�(E)]-modules studied by Stanley and Athanasiadis. Recall that, for
U µ V , we write �U := ‡

≠1(2U ).
Say U ∏ ‡(E) and U r ‡(E) = {vi0 , . . . , vik }, with i0 < · · · < ik. For 0 6 j 6 k,

let flj : k[lk�U (E)] æ k[lk�Ur{vij
}(E)] be the restriction map. The first complex we

consider is

(4) k[lk�(E)]
m

U∏‡(E)
|U|=n≠1

k[lk�U (E)]
m

U∏‡(E)
|U|=n≠2

k[lk�U (E)] · · · k[lk�‡(E) (E)] 0,

in which the di�erential restricted to k[lk�U (E)] is
m

j
(≠1)j

flj . Next, we consider its
quotient by (◊1, . . . , ◊d):

(5) k[lk�(E)]
(◊1,...,◊d)

m
U∏‡(E)
|U |=n≠1

k[lk�U
(E)]

(◊1,...,◊d)
m

U∏‡(E)
|U |=n≠2

k[lk�U
(E)]

(◊1,...,◊d) · · ·
k[lk�‡(E) (E)]

(◊1,...,◊d) 0.

For any U µ V , with U ∏ ‡(E), let SU be defined as

SU := (U fl {v1, . . . , vb}) fi {vb+1, . . . , vd}.

Then dim k[lk�U (E)] = |SU | and it follows that the restriction of ◊i to lk�U (E) is
nonzero if and only if vi œ SU . Furthermore, {◊i|lk�U

(E) : vi œ SU } is a special l.s.o.p.
for k[lk�U (E)]. Stanley and Athanasiadis proved that both (4) and (5) are exact, and
the kernel of the first arrow in (5) is L(�, E). (We will recall the proofs below.) Using
the additivity of Hilbert functions in exact sequences, they deduced that the Hilbert
function of L(�, E) satisfies (1) [14, 2].

With the goal of proving that (3) is exact, we take Koszul resolutions of each term
in (5) to build a double complex of k[lk�(E)]-modules. Since k[lk�U (E)] is Cohen-
Macauley, the special l.s.o.p. {◊i|lk�U

(E) : vi œ SU } is a regular sequence. Hence the
corresponding Koszul complex K

•
U

0 k[lk�U (E)]SU

m
SµSU

|S|=|SU |≠1

k[lk�U (E)]S · · · k[lk�U (E)] k[lk�U
(E)]

(◊1,...,◊d) 0,
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is exact. Here, for a graded module M and a finite set S, we write MS := M [≠|S|].
Replacing each term in (5) with its corresponding Koszul resolution, gives a complex
of complexes

(6) K
•
V

m
U∏‡(E)
|U |=n≠1

K
•
U

m
U∏‡(E)
|U |=n≠2

K
•
U

· · · K
•
‡(E) 0,

which may be expanded as the commuting double complex shown in Figure 1. The

0 0 0 · · · 0

k[lk�(E)]
(◊1,...,◊d)

m
U∏‡(E)
|U |=n≠1

k[lk�U
(E)]

(◊1,...,◊d)
m

U∏‡(E)
|U |=n≠2

k[lk�U
(E)]

(◊1,...,◊d) · · ·
k[lk�‡(E) (E)]

(◊1,...,◊d) 0

k[lk�(E)]
m

U∏‡(E)
|U |=n≠1

k[lk�U (E)]
m

U∏‡(E)
|U |=n≠2

k[lk�U (E)] · · · k[lk�‡(E)(E)] 0

m
|S|=1

k[lk�(E)]S
m

U∏‡(E)
|U |=n≠1

m
SµSU
|S|=1

k[lk�U (E)]S
m

U∏‡(E)
|U |=n≠2

m
SµSU
|S|=1

k[lk�U (E)]S · · ·
m

SµS‡(E)
|S|=1

k[lk�‡(E)(E)]S 0

m
|S|=2

k[lk�(E)]S
m

U∏‡(E)
|U |=n≠1

m
SµSU
|S|=2

k[lk�U (E)]S
m

U∏‡(E)
|U |=n≠2

m
SµSU
|S|=2

k[lk�U (E)]S · · ·
m

SµS‡(E)
|S|=2

k[lk�‡(E)(E)]S 0.

...
...

... · · ·
...

m
|S|=d≠1

k[lk�(E)]S
m

U∏‡(E)
|U |=n≠1

k[lk�(E)]SU 0

k[lk�(E)]{v1,...,vd} 0

0
Figure 1. The double complex obtained by taking the Koszul reso-
lution of (5).

columns of this complex are exact by construction. We claim that the rows are also
exact, and prove this using ideas from [14, Theorem 4.6]. First, we show that all rows
except for the top row are exact. Choose a subset S of {v1, . . . , vd}, and consider the
piece of the complex indexed by S:

(7) k[lk�(E)]S
m

SµSU
|U |=n≠1

k[lk�U (E)]S
m

SµSU
|U |=n≠2

k[lk�U (E)]S · · · 0.

When S = ?, we obtain (4). Observe that the complex (7) is multigraded by
Nm, where m is the number of vertices of lk�(E). Explicitly, deg x

–1
1 · · · x

–m
m

=
(–1, . . . , –m). Therefore it su�ces to show exactness on graded pieces. Fix – =
(–1, . . . , –m). By the definition of the face ring, every term of (7) will have 0 in
the graded piece corresponding to – unless the set of vertices with –i ”= 0 forms a
face F , in which case the –-graded part can be identified with the augmented cochain
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complex of a simplex, indexed by all U that contain ‡(E) fi ‡(F ) fi S, and hence is
exact.

We now recall the proof that the top row of the double complex, (5), is exact.

k[lk�(E)]
(◊1,...,◊d)

m
U∏‡(E)
|U |=n≠1

k[lk�U
(E)]

(◊1,...,◊d)
m

U∏‡(E)
|U |=n≠2

k[lk�U
(E)]

(◊1,...,◊d) · · ·
k[lk�‡(E) (E)]

(◊1,...,◊d) 0

The proof involves showing that the quotients of (4) by (◊d, . . . , ◊d≠(r≠1)) is exact by
induction on r. The case of r = 0 is the exactness of the second row.

Now assume that (4) remains exact after quotienting by (◊d, . . . , ◊d≠(r≠1)). Let C
i

denote the ith term of (4) tensored with k[lk�(E)]/(◊d, . . . , ◊d≠(r≠1)). By the induction
hypothesis, we have an exact sequence

C
• : C

0 æ C
1 æ · · · æ C

b æ 0.

Set m = d ≠ r. Recall that ◊i = 0 œ k[lk�U (E)] if vi /œ SU , and that {◊i|lk�U
(E) : vi œ

SU } is a special l.s.o.p. for k[lk�U (E)]. Also, for ‡(E) µ U , vm /œ SU if and only if
vm /œ U . Hence, we have an exact sequence

(8) 0 æ B
• æ C

• ◊m≠≠æ C
• æ C

•
/(◊m) æ 0,

where
B

i =
m

U∏‡(E), |U |=n≠i

vm ”œU

k[lk�U (E)]/(◊d, . . . , ◊m+1).

For example, when m > b, vm œ ‡(E) and B
• = 0. Up to signs and a degree shift, we

can then identify B
• with the complex (4) for �|{vm}c quotiented by (◊d, . . . , ◊m+1).

Then B
• is exact by the induction hypothesis applied to �|{vm}c . By breaking (8) up

into two short exact sequences we see that H
i(C•

/(◊m)) ≥= H
i+2(B•) = 0 as desired.

Now that we know the exactness of (6), let

A
• = ker

A
K

•
V

æ
m

U∏‡(E)
|U |=n≠1

K
•
U

B
.

Then, by construction, we have an exact sequence of complexes

0 A
•

K
•
V

m
U∏‡(E)
|U |=n≠1

K
•
U

m
U∏‡(E)
|U |=n≠2

K
•
U

· · · K
•
‡(E) 0.

As above, we repeatedly apply the long exact sequence on cohomology to see that A
•

is exact. We may then identify A
• with the exact sequence

0 æ k[lk�(E)][≠n] æ ü|S|=d≠1IS [≠(n ≠ 1)] æ · · · æ ü|S|=1IS [≠1] æ I æ A
0 æ 0.

Since I surjects onto A
0 and A

0 µ k[lk�(E)]/(◊1, . . . , ◊d), we conclude that A
0 =

L(�, E), as required. ⇤

Remark 3.2. Let ‡ : � æ 2V be a quasi-geometric homology triangulation of a sim-
plex, and let E be a face of �. Let F œ lk�(E) such that F ÛE is interior, and suppose
that F = AF is an interior partition of F , i.e. with F1 = F2 = ?. Suppose that F

is not a U -pyramid. By Corollary 1.3, J is generated by elements of the form ◊i · x
F

for F Û E interior or ◊j · x
G for some G with ‡(G Û E) = {vj}c. Because F is not a

U -pyramid, no monomial appearing in any of these generators divides x
F , so x

F is
nonzero in L(�, E). This proves Theorem 1.8 in the special case when F1 = F2 = ?.
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4. Functorial properties of local face modules
In this section, we prove Theorem 1.4, giving natural maps between local face modules.
Consider a quasi-geometric homology triangulation ‡ : � æ 2V , and let E µ E

Õ be
faces of �.

Lemma 4.1. Let R be a graded k-algebra with R0 = k. Let {◊1, . . . , ◊n} be an l.s.o.p.
for R[x1, . . . , xm], where each xj has degree 1. Then there is a unique graded R-algebra
isomorphism

„ : R[x1, . . . , xm]/(◊1, . . . , ◊n) æ R/R fl (◊1, . . . , ◊n).

Moreover, any k-basis for R1 fl (◊1, . . . , ◊n) is an l.s.o.p. for R and generates R fl
(◊1, . . . , ◊n).

Proof. Consider the exact sequence of k-linear maps

0 æ R1 æ R[x1, . . . , xm]1 æ (x1, . . . , xm)1 æ 0,

where the right hand map takes r +
q

i
–ixi to

q
i
–ixi, for any r œ R1 and –i œ k.

This restricts to an exact sequence of k-linear maps

0 æ R1 fl (◊1, . . . , ◊n)1 æ (◊1, . . . , ◊n)1 æ (x1, . . . , xm)1 æ 0,

where the surjectivity of the right-hand map follows from the fact that ◊1, . . . , ◊n

is an l.s.o.p. Hence, for 1 6 i 6 m, we can write xi = ri + si, for some ri œ
R1 and si œ (◊1, . . . , ◊n)1. For any R-algebra map „ : R[x1, . . . , xm]/(◊1, . . . , ◊n) æ
R/R fl (◊1, . . . , ◊n), we must have that „(xi) = ri, so there is a unique such map. On
the other hand, the R-algebra homomorphism defined by „(xi) = ri is well-defined,
since if xi = r

Õ
i

+ s
Õ
i
, for some r

Õ
i

œ R1 and s
Õ
i

œ (◊1, . . . , ◊n)1, then ri ≠ r
Õ
i

œ R1 fl
(◊1, . . . , ◊n)1. Note that the unique R-algebra homomorphism from R/Rfl(◊1, . . . , ◊n)
to R[x1, . . . , xm]/(◊1, . . . , ◊n) is the inverse of „.

Since „ is an isomorphism and factors through R/(R1 fl (◊1, . . . , ◊n)1), we conclude
that the R-ideal R fl (◊1, . . . , ◊n) is generated in degree 1 and hence any k-basis for
R1 fl (◊1, . . . , ◊n) is an l.s.o.p. for R. ⇤

Proof of Theorem 1.4. Note that Star(EÕrE) is the join of E
ÕrE with lk�(EÕ). The

face ring k[Star(EÕrE)] is therefore a polynomial ring over k[lk�(EÕ)]. Its Krull dimen-
sion is equal to d = dim k[lk�(E)], and hence the restrictions ◊

Õ
1, . . . , ◊

Õ
d

form an l.s.o.p.,
where ◊

Õ
i

:= ◊i|Star(EÕrE). By Lemma 4.1, there is a unique graded k[lk�(EÕ)]-algebra
homomorphism k[Star(EÕ r E)]/(◊Õ

1, . . . , ◊
Õ
d
) æ k[lk�(EÕ)]/(k[lk�(EÕ)] fl (◊Õ

1, . . . , ◊
Õ
d
)),

which lifts to the unique homomorphism „ in the statement of the theorem. It remains
to construct a special l.s.o.p. for k[lk�(EÕ)] with the specified properties.

After reordering, we may assume that ‡(E)c = {v1, . . . , vb}, supp(◊i) µ {w :
vi œ ‡(w)} for 1 6 i 6 b, and ‡(EÕ)c = {v1, . . . , vbÕ}. Note, in particular, that
◊

Õ
i

is supported on vertices in the link of E
Õ, for 1 6 i 6 b

Õ. By Lemma 4.1, any
k-basis for k[lk�(EÕ)] fl (◊Õ

1, . . . , ◊
Õ
d
) is an l.s.o.p. for k[lk�(EÕ)]. Set ’i = ◊i|lk�(EÕ),

for 1 6 i 6 b
Õ, and note that {’1, . . . , ’bÕ} is linearly independent. Extending this

independent set to a basis produces a special l.s.o.p. for k[lk�(EÕ)]. It remains to
verify that „(L(�, E)) µ L(�, E

Õ). Let F œ lk�(E) be a face with F Û E interior. If F

is not in Star(EÕ r E), then „(xF ) = 0. Otherwise, F can be written uniquely as the
join of possibly empty faces F1 µ E

Õ r E and F2 œ lk�(EÕ). Then F2 Û E
Õ is interior,

and „(xF ) = „(xF1)xF2 œ (xF2). Hence „(xF ) œ L(�, E
Õ), as required. ⇤

Proof of Theorem 1.6. Let E µ E
Õ be faces of a quasi-geometric homology triangu-

lation � of a simplex, and assume that ‡(E) = ‡(EÕ). It is enough to show that the
induced map „ : L(�, E) æ L(�, E

Õ) given by Theorem 1.4 is surjective. Note that
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L(�, E
Õ) is generated by the monomials x

F such that F œ lk�(EÕ) and F Û E
Õ is inte-

rior. If F is such a face, then it is also in the link of E and, since ‡(E) = ‡(EÕ), the face
(F Û E) < (F Û E

Õ) is also interior. Then „(xF ) = x
F , and the theorem follows. ⇤

5. Restrictions of local face modules
In this section, we use the resolution found in Theorem 1.2 to show that the vanishing
of a local face module L(�, E) implies the vanishing of a restricted local face module
L(�, AF Û E)|F1ÛF2 , for certain interior partitions F1 Û F2 Û AF . We then develop
algebraic arguments, inspired by ideas from [5], to show that F being a U -pyramid
is necessary for the vanishing of the restricted local face module when |F1| 6 2 and
thus prove Theorem 1.8.

We use the notation introduced in the introduction. Let � be a subcomplex of
lk�(E). For any k[lk�(E)]-module M , the restriction of M to � is M |� := M¢k[lk�(E)]
k[�], where k[�] is a k[lk�(E)]-module via the restriction map. By the resolution of
L(�, E) in Theorem 1.2 and the right exactness of tensoring with k[�], we have an
exact sequence
(9)

m
|S|=1

IS |�[≠1] æ I|� æ L(�, E)|� æ 0.

Recall from Corollary 1.3 that L(�, E) ≥= I/J , where J is the ideal generated by
{◊ix

F : F Û E is interior} and {◊jx
G : ‡(G Û E) = {vj}c}. Hence, L(�, E)|� ≥=

I|�/J |�, where I|�, J |� are the k[�]-ideals

(10) I|� = (xH : H µ �, ‡(H Û E) = V ),

(11) J |� = (◊1|�, . . . , ◊d|�) · I|� + (◊j |�x
G : G µ �, ‡(G Û E) = {vj}c).

For example, if F is a face of lk�(E), then k[F ] is a polynomial ring with variables
indexed by the vertices of F , and L(�, E)|F is identified with a quotient of ideals in
this polynomial ring.

Lemma 5.1. Let ‡ : � æ 2V be a quasi-geometric homology triangulation of a simplex,
and let E be a face of �. Let F œ lk�(E) be a face with F Û E interior. Assume that
F is not a U -pyramid. Then there is a surjective graded k[F ]-module homomorphism

L(�, E)|F æ L(�, AF Û E)|FrAF [≠|AF |],
where the second term is a k[F ]-module via the restriction map k[F ] ‘æ k[F r AF ].

Proof. If � is a subcomplex of lk�(E) contained in the closed star of AF , then x
AF

is a non-zero divisor in k[�]. In particular, x
AF is a non-zero divisor in k[F ] (this

is also clear since k[F ] is a polynomial ring). Note that every face of F with carrier
codimension at most 1 contains AF . Thus I|F = x

AF · M and J |F = x
AF · N , where

M and N are the ideals in k[F ]

M = (xH : H µ F r AF , ‡(H Û AF Û E) = V ),

N = (◊1|F , . . . , ◊d|F ) · M + (◊j |F x
G : G µ F r AF , ‡(G Û AF Û E) = {vj}c).

Then we have surjective graded k[F ]-module homomorphisms
I|F /J |F æ M/N [≠|AF |] æ M |FrAF /N |FrAF [≠|AF |],

where the first map is the isomorphism taking x
AF x

H ‘æ x
H and the sec-

ond map is restriction. Finally the right hand term can be identified with
L(�, AF Û E)|FrAF [≠|AF |]. ⇤

We will derive Theorem 1.8 from the following more technical statement.
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Theorem 5.2. Let ‡ : � æ 2V be a quasi-geometric homology triangulation, and let
E be a face. Let F œ lk�(E) be a face with F Û E interior. Suppose AF = ? and F

admits an interior partition F = F1 Û F2. Assume that F has no faces G with G Û E

interior and |G| < |F1|. If |F1| 6 2, then L(�, E)|F is non-zero in degree |F1|.
Example 5.3. The conclusion of Theorem 5.2 can fail when |F1| > 3, even for AF =
E = ?. Consider a geometric triangulation ‡ : � æ 2V , where V = {v1, . . . , v6} with
a face F = {w1, . . . , w6} such that

‡(w1) = {v1, v3, v6} ‡(w2) = {v1, v4, v5} ‡(w3) = {v2, v3, v5}
‡(w4) = {v2, v4, v6} ‡(w5) = {v3, v4, v5} ‡(w6) = {v3, v5, v6}

Then AF = ?, and F admits an interior partition given by F1 = {w1, w4, w5},
F2 = {w2, w3, w6}. Then (9) gives generators and relations for L(�,?)|F , and a linear
algebra computation shows that L(�,?)|F = 0.

Before proceeding with the proof of Theorem 5.2, we show how Theorem 1.8 follows
from it.

Proof of Theorem 1.8. We may assume that F = F
Õ
1 ÛF

Õ
2 ÛAF is an interior partition

of F with |F Õ
1| minimal among all possible interior partitions of F . In particular, if

|F Õ
1| = 2, then there is no vertex v œ F r AF such that {v} Û AF Û E is interior, as

then {v} Û (F Õ
1 Û F

Õ
2 r {v}) Û AF would be an interior partition. Hence there are no

faces G of F r AF with G Û AF Û E interior and with cardinality smaller than |F Õ
1|.

By Theorem 5.2, L(�, AF Û E)|F Õ
1ÛF

Õ
2

is non-zero in degree |F Õ
1|. Then, by Lemma 5.1,

L(�, E) is nonzero in degree |F Õ
1| + |AF |. ⇤

We now proceed with the proof of Theorem 5.2. We begin with a series of three
lemmas. Inspired by the results of [5] in the case E = ?, we consider the internal edge
graph of a subcomplex � µ lk�(E). This is the graph contained in the 1-skeleton of
lk�(E) consisting of edges e µ � with e Û E interior.

Lemma 5.4. Assume ‡(E) has codimension at least 2. Let � be a subcomplex of
lk�(E), and assume � has no vertices v with {v} Û E interior. If L(�, E)|� is zero
in degree 2, then each connected component of the internal edge graph of � satisfies
one of the following.

(1) The component is a tree, and it has at most one vertex v with {v} Û E having
carrier codimension more than 1.

(2) The component has a unique cycle, and the carrier codimension of {w} Û E

is equal to 1 for every vertex w in the component.
Proof. From (9), we have the following exact sequence for the degree 2 part of
L(�, E)|�.

m
|S|=1

(IS)1 ¢k[lk�(E)] k[�] æ I2 ¢k[lk�(E)] k[�] æ (L(�, E)|�)2 æ 0.

Because (L(�, E)|�)2 = 0, the first map in the above complex is surjective. As � has
no vertices v with {v} Û E interior, we see that

(12) (xe : e µ �, e Û E is interior )2 = (x{v}
◊i : v µ �, ‡({v} Û E) = {vi}c)2.

Thus the number of edges e with e Û E interior is less than or equal to the number of
vertices w with the carrier codimension of {w} Û E equal to 1. If ‡({v} Û E) = {vi}c

and ◊i =
q

wj
ai,jx

{wj}, then

x
{v}

◊i =
ÿ

{v,wj}ÛE interior
ai,jx

{v,wj}
.
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In particular, both vector spaces in (12) naturally decompose into a direct sum of vec-
tor spaces indexed by the connected components of the internal edge graph. Therefore,
in each connected component of the internal edge graph, the number of edges e with
e Û E interior is less than or equal to the number of vertices v with {v} Û E of carrier
codimension 1. As the only connected graphs (V, E) where |E| 6 |V | are either trees
or contain a unique cycle, the result follows. ⇤
Lemma 5.5. Assume ‡(E) has codimension at least 2. Let F µ lk�(E) be a face.
Assume F has no vertices v with {v} Û E interior. If L(�, E)|F is zero in degree 2,
then no component of the internal edge graph of F contains a cycle of length 4.
Proof. Suppose a component of the internal edge graph contains a 4-cycle of vertices
F = {t1, t2, u1, u2}. By Lemma 5.4, this is the unique cycle in this component and
every vertex w œ F has {w} Û E of carrier codimension 1. Because F is a face and
there are no 3-cycles in this component of the internal edge graph, we may assume
that ‡({ti} Û E) = {v1}c and ‡({ui} Û E) = {v2}c. Restricting to F and using that
(L(�, E)|F )2 = 0, we have that

(x{t1,u1}
, x

{u1,t2}
, x

{t2,u2}
, x

{u2,t1}) = (x{t1}
◊2, x

{t2}
◊2, x

{u1}
◊1, x

{u2}
◊1).

The relation ◊1◊2 ≠ ◊2◊1 = 0 expands into a relation between the generators of the
right-hand side. But the left-hand side is 4-dimensional, a contradiction. ⇤
Lemma 5.6. Assume ‡(E) has codimension 1. Let � µ lk�(E) be a subcomplex. Then

dim(L(�, E)|�)1 > |{v œ � : {v} Û E interior}| ≠ 1.

Proof. By considering the degree 1 part of (9), as the codimension of ‡(E) is 1, we
get the following exact sequence.

k
m

wœ�
{w}ÛE interior

k · x
w (L(�, E)|�)1 0,

and the result follows. ⇤
Proof of Theorem 5.2. We must show that L(�, E)|F is non-zero in degree |F1|. Recall
that L(�, E)|F is isomorphic to I|F /J |F , where I|F and J |F are described in (10) and
(11) respectively. First we handle the cases when |F1| 6 1. If F1 = ?, then E is interior
and x

? = 1, but J |F is a proper ideal as it is generated by elements of positive degree,
so x

F1 ”œ J |F . If F1 = {v}, then we assume that E is not an interior face. Then J |F
is generated by elements of degree at least 2, so x

F1 ”œ J |F .
Suppose |F1| = 2. We assume that there are no vertices v with {v} Û E interior

and E is not interior. If ‡(E) has codimension 1, then both F1 and F2 must have a
vertex v with {v} Û E interior. Then by Lemma 5.6, we see that dim L(�, E)|F > 1.
Hence we may assume that ‡(E) has codimension at least 2.

Let F1 = {u, t} and assume that L(�, E)|F has no non-zero elements in degree
2. Consider the connected component of the internal edge graph containing F1. By
Lemma 5.4, we may assume that ‡({u} Û E) = {v1}c. Note that v1 œ ‡(t). There is a
vertex t

Õ œ F2 such that v1 œ ‡(tÕ), so {u, t
Õ} Û E is interior. Therefore either {t} Û E

or {t
Õ} Û E has carrier codimension 1.

If ‡({t} Û E) = {v2}c, then there is a vertex u
Õ œ F2 such that v2 œ ‡(uÕ). First

assume u
Õ and t

Õ are distinct. Since at least one of {u
Õ} Û E and {t

Õ} Û E has carrier
codimension 1, it follows that {u

Õ
, t

Õ}ÛE is interior. Then {u, t, u
Õ
, t

Õ} forms a 4-cycle,
contradicting Lemma 5.5.

If u
Õ = t

Õ, then the internal edge graph contains a cycle and hence every vertex w

in it (including t) has {w}ÛE of carrier codimension 1. As F2 is interior and {u
Õ}ÛE
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has carrier codimension 1, there is a vertex w œ F2 such that {u
Õ
, w} Û E is interior.

But then either {u, w} Û E or {t, w} Û E is interior, contradicting the uniqueness of
the cycle in Lemma 5.4.

If {t} Û E does not have carrier codimension 1, then we may assume that ‡({t
Õ} Û

E) = {v2}c. Choose a vertex u
Õ œ F2 with v2 œ ‡(uÕ). Then {t

Õ
, u

Õ} Û E is interior,
so {u

Õ} Û E has carrier codimension 1. If v1 œ ‡(uÕ), then {u, u
Õ} Û E is interior. If

v1 ”œ ‡(uÕ), then {t, u
Õ}ÛE is interior. In either case, there is a cycle and a vertex v with

{v} Û E of carrier codimension more than 1 in the internal edge graph, contradicting
Lemma 5.4. ⇤

Remark 5.7. One can use the same overall strategy more generally to show that
other combinatorial types of faces cannot appear in triangulations with vanishing
local h-vectors. For instance, suppose V = {v1, . . . , v6} and ‡ : � æ 2V is a geometric
triangulation with a facet F = {w1, . . . , w6} such that

‡(w1) = {v1} ‡(w2) = {v2} ‡(w3) = {v3}
‡(w4) = {v1, v4, v5} ‡(w5) = {v2, v4, v6} ‡(w6) = {v3, v5, v6}

Then the interior 2-faces of F are {w1, w5, w6}, {w2, w4, w6}, {w3, w4, w5}, and
{w4, w5, w6}. But F has no interior vertices or edges, and it has only three edges with
carrier codimension one, namely {w4, w5}, {w4, w6}, and {w5, w6}. Thus L(�,?)|F
is non-zero in degree three. Note that F is not a pyramid and does not admit an
interior partition.
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