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Abstract
We present a new tool for the calculation of Denef and Loeser’s motivic nearby
fiber and motivic Milnor fiber: a motivic Fubini theorem for the tropicalization map,
based on Hrushovski and Kazhdan’s theory of motivic volumes of semialgebraic sets.
As applications, we prove a conjecture of Davison and Meinhardt on motivic nearby
fibers of weighted homogeneous polynomials, and give a very short and concep-
tual new proof of the integral identity conjecture of Kontsevich and Soibelman, first
proved by Lê Quy Thuong. Both of these conjectures emerged in the context of motivic
Donaldson–Thomas theory.

1. Introduction
Let k be a field of characteristic 0 that contains all roots of unity. Denef and Loeser’s
motivic nearby fiber, motivic vanishing cycles, and motivic Milnor fiber are subtle
invariants of hypersurface singularities over k. They were defined as elements of
M

b!
k D Kb!.Vark/ŒL!1!, the Grothendieck ring of k-varieties with an action of the

profinite group b" of roots of unity, localized with respect to the class L of the affine
line (or a suitable relative variant of this ring) (see [7, Definition 3.5.3]). These invari-
ants should be viewed as motivic incarnations of the nearby and vanishing cycles
complexes and the topological Milnor fiber, respectively, where the b"-action reflects
the monodromy. They play a central role in various applications in birational geom-
etry and singularity theory, for instance in the calculation of the Hodge spectrum
(see [9]). They are also central tools in motivic Donaldson–Thomas theory, where the
motivic vanishing cycles and the motivic Milnor fiber appear as geometric upgrades
of the virtual Euler characteristic and the Behrend function.

1.1. The tropical motivic Fubini theorem
We present a new tool for the calculation of these invariants, based on tropical geom-
etry and Hrushovski and Kazhdan’s theory of motivic integration in [10]. The motivic
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vanishing cycles are defined by subtracting the class of the hypersurface from the
motivic nearby fiber, so we restrict our attention to the other two invariants. The
theory of Hrushovski and Kazhdan assigns to every semialgebraic set S over the
field K0 D k..t// a motivic volume Vol.S/ in Kb!.Vark/, and we give natural inter-
pretations of the motivic nearby fiber and the motivic Milnor fiber as motivic vol-
umes of semialgebraic sets (see Corollary 2.6.2). One advantage of this approach is
that the invariants are well defined already in Kb!.Vark/, without inverting L (see
Remark 2.6.3). Another more striking advantage is that we can use semialgebraic
decompositions of these semialgebraic sets to compute their motivic volumes, and
thereby exploit natural connections to tropical geometry. In particular, we present a
new method to compute such motivic volumes: a motivic Fubini theorem for the trop-
icalization map (Theorem 3.1.3), which we state as follows.

THEOREM

Let Y be aK0-variety. Let n be a positive integer, and let S be a semialgebraic subset
of Gn

m;K0
!K0 Y . Denote by

# WGn
m;K0

!K0 Y !Gn
m;K0

the projection morphism. Then the function

.tropı#/"1S WQn!Kb!.Vark/ Ww 7!Vol
!
S \ .tropı#/!1.w/

"

is constructible, and

Vol.S/D
Z

Qn
.tropı#/"1S d$0

in Kb!.Vark/.

Here trop is the tropicalization map and $0 is the so-called bounded Euler charac-
teristic, the unique additive invariant on the Boolean algebra generated by polyhedra
in Qn that assigns the value 1 to every closed polyhedron. In many situations, one
can show that the function .tropı#/"1S is constant on polyhedral subsets of Qn with
trivial bounded Euler characteristic. The Fubini theorem then allows us to discard the
contribution of these pieces to Vol.S/ without knowing anything about the motivic
volumes of the fibers of the tropicalization map, which may be difficult to control.

This approach seems to be surprisingly effective. Indeed, in each of our appli-
cations below, we prove the desired identity of motivic volumes by first giving an
inclusion of semialgebraic sets. We then tropicalize the complement and use a Gm-
action to show that the volumes of the fibers are constant on polyhedral subsets of Qn

with trivial bounded Euler characteristic.
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1.2. Applications
We use our motivic Fubini theorem to solve the Davison–Meinhardt conjecture
on motivic nearby fibers of weighted homogeneous polynomials (see [6, Conjec-
ture 5.5]). We also give a very short and conceptual proof of the integral identity
conjecture of Kontsevich and Soibelman in [12, Section 4.4], which was first proved
by Lê Quy Thuong in [13]. Both of these conjectures emerged in motivic Donaldson–
Thomas theory; let us recall their statements.

CONJECTURE A (Davison–Meinhardt, 2011)
Let Y be a smooth k-variety with the trivial Gm;k-action, and let Gm;k act on Ank
with weights w1; : : : ;wn > 0. Let

f WAnk !k Y !A1k

be a Gm;k-equivariant function, where Gm;k acts on A1k with weight d > 0. Then the

motivic nearby fiber of f is equal to Œf !1.1/! in M
b!
k

, where the b"-action on f !1.1/
factors through "d .k/ and is given by

"d .k/! f !1.1/! f !1.1/ W
!
%; .x1; : : : ; xn; y/

"
7! .%w1x1; : : : ; %

wnxn; y/:

Our formulation is equivalent with the one in [6, Conjecture 5.5] except that they
ask for an equality in the localized Grothendieck ring of varieties over the base Y ;
we will discuss this refinement in Proposition 5.1.5. Davison and Meinhardt proved
their conjecture in the special case where wi D 1 for all i (see [5, Theorem 5.9]),
extending an earlier result of Behrend, Bryan, and Szendrői, who handled the case
where also d D 1 (see [1, Proposition 2.12]). We prove the general case in Theo-
rem 4.1.1. Our argument also yields a natural generalization, in which An

k
is replaced

by a Gm;k-invariant subvariety of a circle compact toric variety (see Theorem 5.3.1).
The following statement was conjectured by Kontsevich and Soibelman in [12], who
described it as crucial to their theory of motivic Donaldson–Thomas invariants.

CONJECTURE B ([12, Section 4.4])
Let d1, d2, and d3 be nonnegative integers, and let Gm;k act diagonally on

U DAd1k !k Ad2k !k Ad3k

with weight 1 on the first factor, with weight "1 on the second factor, and trivially on
the third factor. Let

f W U !A1k

be a Gm;k-equivariant function, where Gm;k acts trivially on the target A1k , and such

that f .0; 0; 0/D 0. Denote by f jAd3
k

the restriction of f to Ad3
k

via the embedding
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Ad3k ! U W z 7! .0; 0; z/. Then the restriction of the motivic nearby fiber of f to

Ad1k # f !1.0/ equals Ld1 times the motivic Milnor fiber of f jAd3
k

at 0, where we

view both objects as elements of M
b!
k .

This statement, widely known as the integral identity conjecture, was proved by
Lê Quy Thuong [13] in a further localization of M

b!
k , inverting all the elements 1"Li

with i $ 1. His proof also uses Hrushovski–Kazhdan motivic integration. Our tropical
motivic Fubini theorem allows us to substantially simplify the proof, and to generalize
it in the following way: we allow arbitrary positive weights on Ad1k and arbitrary

negative weights on Ad2k , and we replace the factor Ad3k by any k-variety with trivial
Gm;k-action (see Theorem 4.2.1). Our argument also gives a further generalization, in
which Ad1k is replaced by a connected Gm;k-invariant subvariety of a circle compact

toric variety, and Ad2k is replaced by an affine toric variety with repelling fixed point
(see Theorem 5.4.2). In all of these applications, we prove equalities in Kb!.Vark/,
without inverting L. The resulting statements are stronger, because L is a zero divisor
(see [3]).

1.3. Plan of the paper
In Section 2, we explain the construction of the motivic volume of Hrushovski and
Kazhdan, which is based on the model theory of algebraically closed valued fields.
We have made an effort to present the results in geometric terms in Theorem 2.5.1.
We have given a similar presentation in [17] in the setting where the base field is
an algebraic closure of K0, rather than K0 itself. For the applications in this paper
it is essential to keep track of the Galois action of b" on the motivic volume, which
requires the more careful analysis given here. We then prove an explicit formula for
the motivic volume in terms of a strict normal crossings model (Theorem 2.6.1), and
show how to realize the motivic nearby fiber and motivic Milnor fiber as motivic
volumes of semialgebraic sets (Corollary 2.6.2).

In Section 3, we prove the tropical motivic Fubini theorem (Theorem 3.1.3). The
proof proceeds in two steps. We first consider the schön case, where one can con-
struct an explicit semialgebraic decomposition of the semialgebraic set into elemen-
tary pieces. We then use a result of Luxton and Qu [14] to decompose an arbitrary
semialgebraic set into schön pieces. In Section 4, we present two applications: the
proofs of Conjectures A and B (Theorems 4.1.1 and 4.2.1). Finally, in Section 5, we
explain how to refine the constructions relatively over a base scheme, and how to gen-
eralize Conjectures A and B to invariant subvarieties of toric varieties equipped with
a Gm-action.
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1.4. Notation
Let k be field of characteristic 0 that contains all roots of unity.1 We set K0 D k..t//
and R0 D k❏t❑. We denote by K the field of Puiseux series

K D
[
n>0

k..t1=n//;

and we fix an algebraic closure K ofK . The t -adic valuation on K0 extends uniquely
to a valuation

val WK#!Q

on K . We further extend it to K by setting val.0/D1, and we extend the natural
order on Q to Q [ ¹1º by declaring that q &1 for all q in Q [ ¹1º. We write R
for the valuation ring in K , and bR for its t -adic completion. We also write R for the
valuation ring in K; its residue field is an algebraic closure k of k.

The Galois group Gal.K=K0/ is canonically isomorphic to the profinite group

b"D lim
 !
n

"n.k/

of roots of unity in k. This isomorphism also defines a splitting of the short exact
sequence

1!b"!Gal.K=K0/!Gal.k=k/! 1:

The group b" acts continuously on K from the left by means of the rule: % ' t1=n D
%t1=n for % 2 "n.k/, n > 0. We will consider the inverse right action of b" on K so
that b" acts on SpecK and SpecR from the left. This convention will be important for
the comparison results in Section 2.6.

Let M be a free Z-module of finite rank, and let T be the split R-torus with
character lattice M . Then we can consider the tropicalization map

trop W T.K/!Hom.M;Q/ W x 7!
!
m 7! val

!
$m.x/

""
:

Let w be an element of Hom.M;Q/, and write w D v=d for some positive integer d
and some element v in M_. Consider the left "d .k/-action on Tk with weight vector
v; that is, each element % in "d .k/ acts on the character $m by multiplication with
%hv;mi, for every m 2M . This induces a left b"-action on Tk that we call the b"-action
with weight vector w. The k-variety Tk endowed with this action will be denoted by

1We do not want to assume that k is algebraically closed: even if one is ultimately interested in the case kDC,
one needs to consider finitely generated extensions of C to study relative motivic invariants over a base variety
in Section 5.1.
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Twk , and we will write Tw and TwK for the varieties Twk !k R and Twk !k K endowed
with the diagonal b"-actions. Then multiplication with t hw;$i defines a b"-equivariant
bijection between Tw.R/DHom.M;R

#
/ and trop!1.w/#Hom.M;K

#
/.

For every R-scheme X, we denote by spX the specialization map

spX WX.R/!X.k/

defined by reducing coordinates modulo the maximal ideal in R. For every scheme
Y over R0 (resp., R), we will also write spY instead of spY#R0R (resp., spY#RR).

If C is a constructible subset of Yk , then we will usually write sp!1Y .C / instead of
sp!1Y .C.k// to simplify the notation.

If X is a K-scheme of finite type, then an R-model of X is a flat R-scheme of
finite type X endowed with an isomorphism XK !X . By a variety over a field, we
mean a scheme of finite type.

2. Motivic volumes with Galois action

2.1. Good Galois actions on schemes
Let X be an R-scheme of finite type equipped with a left action of b" such that the
morphism X! SpecR is equivariant. We say that the b"-action on X is good if we
can cover X with b"-stable affine open subschemes U such that b" acts continuously
on O.U/, where we consider the profinite topology on b" and the discrete topology
on O.U/. The continuity of this action is equivalent to the property that the action on
each element of O.U/ factors through "n.k/ for some n > 0.

If the b"-action on X is good, then by Galois descent, X0 DXK=b" is a variety
over K0 and the natural map of K-varieties

XK!X0 !K0 K

is a b"-equivariant isomorphism. Conversely, let X0 be a variety over K0, and set
X D X0 !K0 K , endowed with the Galois action of b". Let X be an R-model of X
such that the b"-action on X extends to X, and assume that we can cover X with
b"-stable affine open subschemes. Then the b"-action on X is good.

If the structure map X! SpecR factors through Speck, then the b"-action on X

is good if and only if it factors through a finite quotient "n.k/ and we can cover X

with b"-stable affine open subschemes. Thus, in this case, our definition is equivalent
to the one in [7, Section 2.4].

2.2. Polyhedra and constructible sets
Let V be a finite-dimensional affine space over Q, that is, a torsor under a finite-
dimensional Q-vector space. A polyhedron in V is a finite intersection of closed
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rational half-spaces in V . In other words, it is a set of the form

®
v 2 V

ˇ̌
fi .v/$ 0 for i D 1; : : : ; r

¯
;

where f1; : : : ; fr are affine linear maps from V to Q. A constructible subset & of V
is a finite Boolean combination of polyhedra.

There exists a unique Z-valued invariant $0 on the Boolean algebra of con-
structible subsets in V that is additive on disjoint unions and that assigns the value
1 to every nonempty polyhedron. This invariant $0 is called the bounded Euler
characteristic. It is clear from the definition that it is invariant under affine linear
automorphisms of V . One can compute $0.&/ for every constructible subset & of
V in the following way. We choose an isomorphism of affine spaces V ! Qn for
some n$ 0. There is a canonical subset &R of Rn associated with & , defined by the
same system of Q-linear inequalities as & . Then one can show that the compactly
supported Euler characteristic of &R \ Œ"r; r !n stabilizes for sufficiently large r 2R;
the limit value is precisely $0.&/.

Constructible sets with vanishing bounded Euler characteristic will play an
important role in the applications in Sections 4 and 5. Typical examples include half-
open line segments and open half-lines, as well as products of these with arbitrary
constructible sets.

2.3. Semialgebraic sets
Let X be a variety over K . A semialgebraic subset of X is a finite Boolean combina-
tion of subsets of X.K/ of the form

®
x 2 U.K/

ˇ̌
val
!
f .x/

"
& val

!
g.x/

"¯
#X.K/; (2.3.1)

where U is an affine open subvariety of X and f , g are regular functions on U . If
X is of the form X0 !K0 K , for some variety X0 over K0, then we say that S is
defined over K0 if we can write it as a finite Boolean combination of sets of the form
(2.3.1) such that U , f , and g are defined over K0. Note that this property depends
on the choice of X0; if we want to make this choice explicit, we will also call S a
semialgebraic subset of X0 (even though it is not an actual subset of X0).

Example 2.3.2
Let T0 be a split K0-torus with cocharacter lattice N . Then for every constructible
subset & of NQ, the set

trop!1.&/# T0.K/

is a semialgebraic subset of T0.
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Example 2.3.3
Let X be an R-scheme of finite type, and let C be a constructible subset of Xk . Then
sp!1X .C / is a semialgebraic subset of XK . To see this, it suffices to consider the case
where X is affine and C is closed in Xk . If .z1; : : : ; zr/ is a tuple of generators of the
R-algebra O.X/, and .f1; : : : ; fs/ is a tuple of elements of O.X/ such that C is the
set of common zeros of the functions fi , then

sp!1X .C /D
®
x 2X.K/

ˇ̌
val
!
zi .x/

"
$ 0;val

!
fj .x/

"
> 0 for all i; j

¯
:

This is a finite Boolean combination of sets of the form (2.3.1). The same argument
shows that, if X0 is an R0-scheme of finite type and C0 is a constructible subset of
.X0/k , then sp!1X0.C0/ is a semialgebraic subset of .X0/K0 .

If X and X 0 are varieties over K and S and S 0 are semialgebraic subsets of X
and X 0, respectively, then a morphism of semialgebraic sets f W S ! S 0 is a map
whose graph is semialgebraic in X !K X 0. If X D X0 !K0 K and X 0 D X 00 !K0 K
and S and S 0 are defined over K0, then we say that f is defined over K0 if its graph
has this property. It follows from Robinson’s quantifier elimination for algebraically
closed valued fields that the image of a morphism of semialgebraic sets is again a
semialgebraic set. If the morphism is defined over K0, then the same holds for its
image.

We denote by VFK0 the category of semialgebraic sets defined overK0; it comes
equipped with a base change functor VFK0 !VFK to the category of semialgebraic
sets over K . For every object S in VFK0 , there is a natural action of the Galois group
b" on the set S , and K0-morphisms of semialgebraic sets are equivariant with respect
to this action.

PROPOSITION 2.3.4
Let X0 be a variety over K0, and let S be a semialgebraic subset of X DX0 !K0 K .
Then S is defined over K0 if and only if S is stable under the Galois action of G D
Gal.K=K0/ on X0.K/.

Proof
The condition is clearly necessary; we will prove that it is also sufficient. Suppose that
S is stable under the G-action. We may assume that X0 is affine; then S is a finite
Boolean combination of sets of the form

®
x 2X.K/

ˇ̌
val
!
f .x/

"
& val

!
g.x/

"¯

with f;g 2 O.X/. We can find a finite extension K 0 of K0 in K such that all the
functions f and g that appear in these expressions are defined over K 0. Set X 0 D
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X0 !K0 K 0. We view X 0 as a variety over K0 by forgetting the K 0-structure. Let S 0

be the semialgebraic subset of X 0.K/ defined by the same formulas as S ; this is a
semialgebraic subset of X 0 defined over K0. Since S is stable under the G-action on
X0.K/, the image of S 0 under the projection map X 0.K/! X0.K/ is equal to S .
Now it follows from quantifier elimination that S is defined over K0.

Example 2.3.5
We will use Proposition 2.3.4 in the following way. Let X0 be a variety over K0,
and let X be an R-model of X D X0 !K0 K such that the Galois action of b" on X
extends to an action on X. Let C be a constructible subset of Xk that is stable under
the action of b". Then sp!1X .C / is stable under the G-action on X0.K/. Hence, it is
a semialgebraic subset of X0. If the b"-action on X is good, this can also be seen
directly: we can form the quotient X0 DX=b" in the category of schemes. This is an
R0-scheme of finite type whose generic fiber is canonically isomorphic with X0. If
we denote by C0 the image of C under the projection morphism X!X0, then C0
is a constructible subset of .X0/k and sp!1X .C /D sp!1X0.C0/.

2.4. Grothendieck rings of varieties and semialgebraic sets
The piecewise geometry of varieties and semialgebraic sets is encoded in various
Grothendieck rings. We first consider the Grothendieck ring Kb!.Vark/ of k-varieties
with b"-action. As an abelian group, it is defined by the following presentation:
% Generators: isomorphism classes of k-varieties X endowed with a good b"-

action. Isomorphism classes are taken with respect to b"-equivariant isomor-
phisms.

% Relations: we consider two types of relations.
(1) Scissor relations: if X is a k-variety with a good b"-action and Y is a

b"-stable closed subvariety of X , then

ŒX !D ŒY !C ŒX n Y !:

(2) Trivialization of linear actions: let X be a k-variety with a good b"-
action, and let V be a k-vector space of dimension d with a good linear
action of b". Then

ŒX !k V !D ŒX !k Adk !;

where the b"-action on X !k V is the diagonal action and the action on
Adk is trivial.

The group Kb!.Vark/ has a unique ring structure such that ŒX ! ( ŒX 0! D ŒX !k X 0!
for all k-varieties X , X 0 with good b"-action. Here the b"-action on X !k X 0 is the
diagonal action. The identity element in Kb!.Vark/ is the class of the point Speck. We
write L for the class of A1k (with the trivial b"-action) in the ring Kb!.Vark/.
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Remark 2.4.1
The trivialization of linear actions is a standard operation in the theory of motivic
integration, in order to obtain well-defined motivic measures and a change of vari-
ables formula (see, e.g., [7, Section 2.4]). All of the standard cohomological realiza-
tions respect this trivialization. In the context of Hrushovski and Kazhdan’s theory of
motivic integration, this relation naturally appears when one identifies all of the fibers
of the tropicalization map

trop W .K#/n!Qn

in the definition of the motivic volume (see Theorem 2.5.1).

Now, we define the Grothendieck ring K.VFK0/ of semialgebraic sets over K0.
The underlying group is the free abelian group on isomorphism classes ŒS ! of semi-
algebraic sets S over K0 modulo the relations

ŒS !D ŒS 0!C ŒS ! S 0!

for all semialgebraic sets S 0 # S . Here isomorphism classes are taken in the category
VFK0 , that is, with respect to semialgebraic bijections defined over K0. The group
K.VFK0/ has a unique ring structure such that

ŒS ! ( ŒS 0!D ŒS ! S 0!

in K.VFK0/ for all semialgebraic sets S and S 0. The identity element in K.VFK0/ is
the class of the point, that is, the semialgebraic set ŒX0.K/! with X0 D SpecK0.

Example 2.4.2
Let

B D
®
x 2K

ˇ̌
val.x/ > 0

¯

be the open unit ball in K . This is a semialgebraic set defined over K0. We can write
the class of B in K.VFK0/ as

ŒB!D 1C
#
trop!1.Q>0/

$

(the class of the point ¹0º plus the class of the punctured ball).

2.5. A refinement of the motivic volume
In [10], Hrushovski and Kazhdan have defined the motivic volume of a semialgebraic
set over K . More precisely, they constructed a ring morphism
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Vol WK.VFK/!K.Vark/

from the Grothendieck ring of semialgebraic sets over K to the Grothendieck ring of
varieties over k. Their construction is based in an essential way on the model theory
of algebraically closed valued fields. The main lines are presented from a geometric
perspective in [17] and [16]. If the semialgebraic set is defined over the subfieldK0 of
K , then the motivic volume can be refined in order to reflect the action of the Galois
group Gal.K=K0/. We will now explain this refinement, again presenting the results
of Hrushovski and Kazhdan [10] in a more geometric language.

THEOREM 2.5.1 (Hrushovski and Kazhdan [10])
There exists a unique ring morphism

Vol WK.VFK0/!Kb!.Vark/

that satisfies the following properties.
(1) Let X0 be a smooth variety over K0, and let X be a smooth R-model of

X D X0 !K0 K such that the Galois action of b" on X extends to a good
action on X. Then S D X.R/ is defined over K0, and Vol.ŒS !/ D ŒXk! in
Kb!.Vark/.

(2) Let & be a constructible subset of Qn, for some n$ 0, and set S 0 D trop!1.&/.
Then S 0 is defined over K0, and

Vol
!
ŒS 0!

"
D $0.&/.L" 1/n

in Kb!.Vark/.

Proof
We unravel some of the central results in [10]. We will not explain all the notation, as
this is not strictly necessary to follow the argument, but we provide precise references
for the reader.

Hrushovski and Kazhdan constructed a surjective morphism of rings

‚ WK
!
RESŒ'!

"
˝Z K

!
QŒ'!

"
!K.VFK0/

and gave an explicit description of its kernel (see Theorem 8.8 and Corollary 10.3 of
[10]). Here K.RESŒ'!/ and K.QŒ'!/ are certain graded Grothendieck rings of vari-
eties with b"-action and constructible sets in Q-affine spaces, respectively. Informally
speaking, the relations that generate the kernel express that the fibers of the tropi-
calization map are Gn

m;R.R/-torsors, and that the open unit ball in K from Exam-
ple 2.4.2 can also be described as sp!1A1R0

.0/. In Theorem 10.5(4) of [10] and its proof,

Hrushovski and Kazhdan also defined a ring morphism



1854 NICAISE and PAYNE

E 0 WK.VFK0/!Kb!.Vark/:

To be precise, in [10] the target of E 0 is a quotient of K.RESŒ'!/, which they denote
by ŠK.RES/, but this ring is canonically isomorphic to Kb!.Vark/ by [11, Proposi-
tion 4.3.1] (there it was assumed that k is algebraically closed, but the proof remains
valid if we only assume that k contains all the roots of unity). We set VolD E 0 and
we will prove that it satisfies, and is uniquely determined by, the properties in the
statement.

The ring K.QŒ'!/ is generated by the classes of pairs .&; n/, where n is a nonneg-
ative integer and & is a constructible subset of Qn. The image of the class of .&; n/
under E 0 ı‚ is precisely $0.&/.L" 1/n. Thus it suffices to prove the following two
claims:
(a) The ring K.VFK0/ is generated by elements of the form ŒS ! trop!1.&/!,

where S is as in the statement of Theorem 2.5.1 and & is a polyhedron in Qn

for some n$ 0.
(b) The morphism E 0 sends the class of S in K.VFK0/ to the class of Xk in

Kb!.Vark/.
These statements imply the existence and uniqueness of the morphism Vol.

Let us prove these claims. The ring K.RESŒ'!/ is generated by equivalence
classes of pairs .Y;n/, where n is a nonnegative integer and Y is a k-variety of pure
dimension d & n endowed with a good action of b" (here we are implicitly using the
identifications explained in [11, Section 4.3]). Partitioning Y into subvarieties, we
may assume that Y is smooth. We set

Y D Y !k R

and we endow it with the diagonal b"-action. We write B for the open unit ball in K
as in Example 2.4.2. It follows easily from the constructions in [10] that the image of
the class of .Y;n/ under ‚ is

#
Y.R/

$
ŒBn!d ! 2K.VFK0/:

This proves claim (a).
It remains to prove claim (b). Let X and S be as in the statement of Theo-

rem 2.5.1. We set

X0 DXk !k R

and we endow it with the diagonalb"-action. By definition, the image of ŒX.R/! under
E 0 is

ŒXk! 2Kb!.Vark/:
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Thus it suffices to show that there exists a semialgebraic bijection between X.R/ and
X0.R/ that is defined over K0. Working locally on X and X0, we may assume that
there exist étale R-morphisms X! AnR and X0! AnR that coincide on the special
fibers (we are not requiring anyb"-equivariance here). Set ZDX!AnR X0, and denote
by ( the image of the diagonal morphism Xk ! Zk . Using the Henselian property
forR, we see that S 0 D sp!1Z .(/ is the graph of a bijection between X.R/ and X0.R/.
We will prove that S 0 is defined over K0.

The set S 0 is stable under the Galois action of Gal.k=k/ by construction. Thus
by Proposition 2.3.4, it is enough to prove that S 0 is stable under the action of b" on
X.R/ !X0.R/, that is, the bijection defined by S 0 is b"-equivariant. Denote by X
and X0 the formal t -adic completions of X and X0, and denote by Z the open formal
subscheme of the formal t -adic completion of Z supported on the open subscheme (
of Zk . Then Z is the graph of an isomorphism of formal bR-schemes h WX!X0. The
induced isomorphism hk between the special fibers is b"-equivariant by construction.
This implies that h is b"-equivariant, because every continuous action of b" on X or X0

by bR-automorphisms that are trivial on the special fiber, is trivial (to see this, linearize
the action on the completed local rings).

If S is a semialgebraic set defined over K0, then we will write Vol.S/ for
Vol.ŒS !/. If X is a variety over K0, then we can view X.K/ as a semialgebraic
set defined over K0; we will usually write Vol.X/ instead of Vol.X.K//. It follows
immediately from the definitions that the motivic volume has the following properties
with respect to extensions of the base field K0. Let K 00 be a finite extension of K0 in
K . Denote by k0 the residue field of K 00, and let b"0 be the inertia group of K 00; this is
an open subgroup of b". Let

Resb!b!0 WK
b!.Vark/!Kb!0.Vark0/

be the morphism defined by base change to k0 and restricting theb"-action tob"0. Then
the diagram

K.VFK0/
Vol

Kb!.Vark/

Resb!b!0

K.VFK00/ Vol
Kb!0.Vark0/

commutes, where the left vertical morphism is the base-change morphism. Likewise,
the diagram



1856 NICAISE and PAYNE

K.VFK0/
Vol

Kb!.Vark/

Resb!¹1º

K.VFK/
Vol

K.Vark/

commutes, where the left vertical morphism is the base-change morphism and Resb!¹1º
is the morphism that performs base change to k and forgets the b"-action.

Example 2.5.2
If B is the open unit ball in K from Example 2.4.2, then Vol.B/D 1 in Kb!.Vark/
because $0.Q>0/D 0.

2.6. Comparison with the motivic nearby fiber of Denef and Loeser
Let X be a R0-scheme of finite type. Assume that X is regular and that its special
fiber Xk is a divisor with strict normal crossings support. In this section, we will
establish an explicit formula for the motivic volume Vol.X.R// 2 Kb!.Vark/ of the
semialgebraic set X.R/. This formula will then allow us to compare the motivic
volume with the motivic nearby fiber of Denef and Loeser.

We write

Xk D
X
i2I

NiEi ;

where Ei , i 2 I are the irreducible components of Xk and the coefficients Ni are
their multiplicities in Xk . For every nonempty subset J of I , we set

EJ D
\
j2J

Ej ; EoJ DEJ n
%[
i…J

Ei

&
:

The sets EoJ and EJ are locally closed subsets of Xk , and we endow them with their
induced reduced subscheme structure. By the definition of a strict normal crossings
divisor, all of the schemes EJ and EoJ are regular. As J ranges through the nonempty
subsets of I , the subschemes EoJ form a partition of Xk .

Set eD lcm¹Ni j i 2 I º. Let eX be the normalization of X !k❏t❑ k❏t1=e❑, and set

eEoJ D .eX !X EoJ /red

for every nonempty subset J of I . Then the group "e.k/ acts on eEoJ , and this action
factors through a free action of "NJ .k/ where NJ D gcd¹Nj j j 2 J º. This makes
eEoJ into a "NJ .k/-torsor over EoJ (see [15, Section 2.3] and [4, Lemma 4.1.2]). We
denote by h W eX!X the projection morphism from eX to X.
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THEOREM 2.6.1
Let C be a locally closed subset of Xk , and set S D sp!1X .C /. Then we have

Vol.S/D
X
;¤J'I

.1"L/jJ j!1
#eEoJ \ h!1.C /

$

in Kb!.Vark/.

Proof
Our proof follows similar lines as that of claim (b) in the proof of Theorem 2.5.1,
but we need to replace the étale-local model AnR to take the singularities of Xk into
account. By additivity, we may assume that C is a closed subset of the stratum EoJ
for some nonempty subset J of I . We set Mj DNj =NJ for every j 2 J . Set R0 D
k❏t1=NJ ❑, and denote by Y the normalization of X !R0 R0. The scheme Y carries a
natural "NJ .k/-action that is compatible with the Galois action onR0. It follows from
[4, Lemma 4.1.2] that the natural morphism eX! Y induces a "NJ .k/-equivariant
isomorphism of EoJ -schemes,

eEoJ ! Y !X EoJ :

We write eC for the inverse image of C in Y !X EoJ . Under the above isomorphism,
it corresponds to the closed subset h!1.C / of eEoJ .

Working locally on X, we may assume that X is affine, that I D J , and that Ej
is defined by a global equation fj D 0 on X for every j 2 J . Then we can write

t D u
Y
j2J

f
Nj
j

with u an invertible function on X. The proof of [15, Proposition 2.3.2] reveals that
there exists a "NJ .k/-equivariant isomorphism of X-schemes,

Y! Spec O.X/ŒT !=.1" uT NJ /;

where "NJ .k/ acts on the target by multiplication on T and such that t1=NJ 2
O.Y/ is identified with T !1

Q
j2J f

Mj
j . We choose integers aj , j 2 J such thatP

j2J ajMj D 1, and we set gj D T !aj fj for every j 2 J . Then

t1=NJ D
Y
j2J

g
Mj
j

and the functions gj give rise to a smooth morphism,

g W Y!UD SpecR0Œuj ; j 2 J !=
%
t1=NJ "

Y
j2J

u
Mj
j

&
;
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such that eEoJ is the inverse image of the origin O in Uk . We endow U with the left
"NJ .k/-action induced by the Galois action on R0 and the rule that uj ' % D %!aj uj
for every % 2 "NJ .k/. Then the morphism g is "NJ .k/-equivariant. Shrinking X if
necessary, we can further arrange that g lifts to an étale morphism,

Y!U!R0 AmR0

for some m $ 0 (which is not necessarily "NJ -equivariant). Corestricting this mor-
phism over O !k Amk we obtain an étale morphism eEoJ ! Amk . If we set Y0 DU !k
eEoJ , then this morphism gives rise, at its turn, to an étale morphism,

Y0!U!R0 AmR0 :

We endow Y0 with the diagonal "NJ .k/-action.
We consider the fibered product

ZD Y !.U#R0AmR0 / Y0:

Denote by( the image of eC under the diagonal map eEoJ !Zk . The Henselian prop-
erty for R implies that sp!1Z .(/ is the graph of a semialgebraic bijection ˛ between
sp!1Y .eC/ and

sp!1Y0 .eC/D sp!1U .O/! sp!1eEoJ#kR0.
eC/:

Now we make the following claims.
(a) The bijection ˛ is defined over K0.
(b) The volume of sp!1eEoJ#kR0

.eC/ is equal to ŒeC ! in Kb!.Vark/.

(c) The volume of sp!1U .O/ is equal to .1"L/jJ j!1.
These claims together yield the desired formula for Vol.sp!1X .C //.

In order to prove claim (a) it suffices to show that ˛ is b"-equivariant, by Propo-
sition 2.3.4 (applied to the graph of ˛). We denote by Y and Y0 the formal comple-
tions of Y and Y0 along eC , respectively. Then, once again, the formal completion of
Z along ( is the graph of an isomorphism ˛0 W Y! Y0. The bijection ˛ is a map
induced by ˛0 on R-points. By construction, both Y and Y0 come equipped with a
smooth "NJ .k/-equivariant morphism to U, the formal completion of U at O , and
˛0 is an isomorphism of formal U-schemes. Now the result follows from the fact that
every finite-order automorphism of Y or Y0 over U that acts trivially on the fiber over
O is the identity (this can again be seen by linearizing the action on the completed
local rings).

Next, we prove claim (b). By additivity, we may assume that C is a smooth closed
subvariety ofEoJ . Then, locally onEoJ , we can find an étale morphismEoJ !Ark such
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that C is the inverse image of the linear subspace Ask , for some r $ s $ 0. Now both
eEoJ !k R0 and eC !k Ar!sR0 are equivariant étale covers of ArR0 . Denote by V their fiber
product over ArR0 and by (0 the image of eC in Vk under the diagonal embedding. We
denote by B the open unit ball in K; it has motivic volume 1 by Example 2.5.2. Then
sp!1V .(0/ is the graph of a semialgebraic bijection,

sp!1eEoJ#kR0.
eC/! sp!1eC#kAr!s

R0
.eC/D eC.R/!Br!s;

that is defined over K0 because it is b"-equivariant. Claim (b) now follows from the
definition of the motivic volume.

Finally, we prove claim (c). We denote by K 0 the fraction field of R0, and we set
r D jJ j and v1 D .Mj ; j 2 J /. Since the entries Mj are coprime, v1 can be extended
to a basis v1; : : : ; vr of ZJ . For every i in ¹2; : : : ; rº, we set bi D

P
j2J aj vi;j . The

.r " 1/-tuple of "NJ .k/-invariant invertible functions
%
t!b2=NJ

Y
j2J

u
v2;j
j ; : : : ; t!br=NJ

Y
j2J

u
vr;j
j

&

defines an isomorphism UK0!Gr!1
m;K0 that descends to K0. This isomorphism iden-

tifies sp!1U .O/ with

trop!1.&/# .K#/n;

where & is an open .r " 1/-simplex in Qr!1. Since the bounded Euler characteristic
of an open .r " 1/-simplex is equal to ."1/r!1, the definition of the motivic volume
now implies that sp!1U .O/D .1"L/jJ j!1.

Using Theorem 2.6.1, one can compare the motivic volume to other motivic
invariants that appear in the literature. We are mainly interested in the motivic nearby
fiber of Denef and Loeser in [7, Definition 3.5.3]. The motivic nearby fiber was
defined as a motivic incarnation of the complex of nearby cycles associated with a
morphism of k-varieties f W U ! A1k with smooth generic fiber. It is an object  mot

f

that lies in the localized Grothendieck ring of varieties with b"-action over the zero
locus f !1.0/ of f . For every subvariety C of f !1.0/, we can restrict  mot

f
over

C by base change and then view the result as an element in M
b!
k D Kb!.Vark/ŒL!1!

by forgetting the C -structure. In particular, if x is a closed point on U such that
f .x/D 0, then by restricting  mot

f over x we obtain an element in M
b!
k that is called

the motivic Milnor fiber of f at x and denoted by  mot
f;x

.

COROLLARY 2.6.2
Let f W U ! SpeckŒt ! be a morphism of varieties over k, with smooth generic
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fiber, and denote by X the base change of U from kŒt ! to R0 D k❏t❑. Let C be
a subvariety of the zero locus f !1.0/ D Xk of f . Then sp!1X .C / is a semialge-
braic set defined over K0. It consists of the points u in U.R/ that satisfy f .u/D t
and such that the reduction of u modulo the maximal ideal in R belongs to C .
The image of Vol.sp!1X .C // in the localized Grothendieck ring M

b!
k is equal to the

restriction of Denef and Loeser’s motivic nearby fiber of f over C . In particular,
 mot
f D Vol.X.R// and, for every closed point x on Xk ,  mot

f;x D Vol.sp!1X .x// in

M
b!
k .

Proof
The motivic nearby fiber can be computed on a log resolution for the pair .U;f !1.0//
by means of Denef and Loeser’s formula in [7, Definition 3.5.3]. The desired equali-
ties then follow immediately from a comparison with the formula in Theorem 2.6.1.

Remark 2.6.3
Corollary 2.6.2 implies, in particular, that the motivic nearby fiber and the motivic
Milnor fiber are well defined already without inverting L. This can also be proved
directly: one can take Denef and Loeser’s formula in terms of a log resolution as a
definition and use weak factorization to check that it does not depend on the choice of
the log resolution. Corollary 2.6.2 also provides a natural extension of the definitions
of the motivic nearby fiber and motivic Milnor fiber to the case where the generic
fiber of f is singular. This extension coincides with the constructions of Bittner [2]
and Guibert, Loeser, and Merle [9] after inverting L. We will discuss a refinement
of Corollary 2.6.2 to an equality in the relative Grothendieck ring over f !1.0/ in
Corollary 5.1.4.

Corollary 2.6.2 is closely related to similar comparison results by Hrushovski
and Loeser in [11] for the motivic zeta function, but our approach is more direct if
one only wants to retrieve the motivic nearby fiber; in particular, we do not need
to consider the more complicated measured version of Hrushosvki and Kazhdan’s
motivic integration theory, and we avoid inverting L.

3. A motivic Fubini theorem for the tropicalization map
The aim of this section is to develop a flexible tool to compute the motivic volume for
a large and interesting class of examples. The basic idea is to calculate the volume of a
semialgebraic subset S of an algebraic torus Gn

m;K0
by first integrating over the fibers

of the tropicalization map trop W .K#/n!Qn and then integrating the resulting func-
tion on Qn with respect to the bounded Euler characteristic $0. As mentioned in the
Introduction, an important advantage of this approach is that $0 vanishes on bounded
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half-open intervals and half-bounded open intervals, which allows us in certain cases
to discard the contribution of pieces of S that are difficult to control directly. Concrete
applications will be discussed in Section 4.

3.1. The calculus of constructible functions

Definition 3.1.1
Let A be an abelian group, and let V be a finite-dimensional affine space over Q. We
say that a function

' W V !A

is constructible if there exists a partition of V into finitely many constructible subsets
)1; : : : ;)r such that ' takes a constant value ai 2A on )i for each i in ¹1; : : : ; rº. In
that case, we define the integral of ' with respect to the bounded Euler characteristic
$0 by means of the formula

Z
V

' d$0 D
rX
iD1

ai$
0.)i / 2A:

If & is a constructible subset of V , then we also write
Z
"

' d$0 D
Z
V

.' ( 1"/ d$0;

where 1" is the characteristic function of & .

Integrals of constructible functions satisfy the following elementary Fubini prop-
erty.

PROPOSITION 3.1.2
Let A be an abelian group, and let f W V ! W be an affine linear map of finite-
dimensional affine spaces over Q. Let ' W V ! A be a constructible function. Then
the function

f"' WW !A Ww 7!
Z
f !1.w/

' d$0

is constructible, and
Z
V

' d$0 D
Z
W

f"' d$0:

Proof
By A-linearity of the integral, we may assume that ' is the characteristic function of
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a polyhedron & in V . Then the result follows at once from the fact that f .&/ and the
fibers of f are polyhedra in W , and that $0 assigns the value 1 to every nonempty
polyhedron.

We can now formulate the main result of this paper.

THEOREM 3.1.3 (Motivic Fubini theorem for the tropicalization map)
Let Y be a variety over K0. Let n be a positive integer, and let S be a semialgebraic
subset of Gn

m;K0
!K0 Y . Denote by

# WGn
m;K0

!K0 Y !Gn
m;K0

the projection morphism. Then the function

.tropı#/"1S WQn!Kb!.Vark/ Ww 7!Vol
!
S \ .tropı#/!1.w/

"

is constructible, and

Vol.S/D
Z

Qn
.tropı#/"1S d$0

in Kb!.Vark/.

We will split up the proof of Theorem 3.1.3 into two main steps. We can immedi-
ately make a first reduction. By additivity and Noetherian induction, we may assume
that Y is a closed subvariety of a split K0-torus T . Denote by N the cocharacter
lattice of T . Applying Proposition 3.1.2 to the function

' WQn !NQ!Kb!.Vark/ Ww 7!Vol
!
S \ trop!1.w/

"

and the projection f WQn !NQ!Qn, we see that it suffices to prove Theorem 3.1.3
for the function trop" 1S on Qn !NQ, replacing Gn

m;K0
by its product with T . Thus

we may assume that Y D SpecK0. We split up the remainder of the proof into two
steps.

3.2. Step 1: The schön case
We first consider the case of a schön integral closed subvariety X0 of Gn

m;K0
. The

schönness condition means thatX DX0!K0K satisfies the following nondegeneracy
condition: for every a 2 .K#/n, the schematic closure of a!1X in Gn

m;R is smooth
over R. We denote this schematic closure by Xa. In [17, Corollary 3.12] we have
given a tropical formula for Vol.X/ without taking the b"-action into account. We will
now explain how to refine this formula to keep track of the b"-action. Actually, we
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will prove a slightly more general result, which applies to any semialgebraic subset S
of X0 of the form X.K/\ trop!1.&/, where & is a constructible subset of Qn.

Let a 2 .K#/n, and set w D trop.a/. Recall from Section 1.4 that we denote by
Gw
m;k the k-torus Gn

m;k endowed with the left b"-action with weight vector w. Then
Xa
k is stable under the "d .k/-action on Gw

m;k and thus inherits a good action of b".
It follows immediately from the definition that Xa

k , with its b"-action, depends only
on w, and not on a. It is called the initial degeneration of X at w and is denoted by
inwX .

Let † be a Q-admissible tropical fan for X in Rn ! R(0 in the sense of [8,
Definition 12.1] (henceforth, we will simply speak of a tropical fan). It defines a toric
scheme P.†/ over R. If we write X for the schematic closure of X in P.†/, then X

is proper over R and the multiplication map

m W T!R X! P.†/

is faithfully flat. The condition that X is schön is equivalent to the property that m is
smooth. The Galois action of b" on Gn

m;K extends uniquely to P.†/, and X is stable
under this action.

Intersecting the cones of † with Qn ! ¹1º, we obtain a Q-rational polyhedral
complex in Qn that we denote by †1. The support of †1 is equal to trop.X.K//, by
[8, Proposition 12.5]. For every cell * in †1, we denote its relative interior by V* . We
write X# for the semialgebraic subset

X.K/\ trop!1. V*/

of X . As * ranges over the cells in †1, the sets X# form a partition of X.K/. We
denote by Xk.*/ the intersection of Xk with the torus orbit of P.†/k corresponding
to the cell * . Then we can also write X# as

X# D sp!1X
!
Xk.*/

"
\X.K/:

LEMMA 3.2.1
Let X0 be a schön integral closed subvariety of Gn

m;K0
, and let † be a tropical fan

for X0 in Rn !R(0. Let * be a cell of †1. Then Xk.*/ is smooth over k. If w 2 V* ,
then the class of inwX in Kb!.Vark/ is equal to ŒXk.*/!.L" 1/dim.#/. In particular, it
only depends on * , and not on w.

Proof
Let V be the Q-linear subspace of Qn generated by vectors of the form w "w0 with
w, w0 in * . We denote byeT the split R0-torus with cocharacter lattice V \Zn. Let a
be a point of .K#/n such that trop.a/Dw.
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It is explained in the proof of [17, Proposition 3.11] that Xa
k is a trivialeTk-torsor

over Xk.*/ in a natural way. Thus smoothness of Xk.*/ follows from that of Xa
k .

Moreover, an inspection of the proof reveals that the torsor structure is b"-equivariant,
where b" acts trivially on eTk . This means that we can write Xa

k as a product of line
bundles on Xk.*/ with the zero sections removed such that b" acts linearly on each
factor (see [4, Proposition 7.1.1]). The triviality of linear actions on vector spaces in
Kb!.Vark/ now implies that

ŒinwX !D
#
Xk.*/

$
.L" 1/dim.#/:

Thus if * is a cell of †1, no ambiguity arises from writing Œin#X ! for the class of
inwX in Kb!.Vark/, where w is any point in V* .

PROPOSITION 3.2.2
Let X0 be a schön integral closed subvariety of Gn

m;K0
, and let † be a tropical fan

for X0 in Rn ! R(0. Let & be a constructible subset of Qn, and set S D X.K/ \
trop!1.&/. Then

Vol.S/D
X
#

$0.& \ V*/Œin#X ! (3.2.3)

in Kb!.Vark/, where * runs through the set of cells in †1. In particular,

Vol.X0/D
X

# bounded

."1/dim.#/Œin#X !

in Kb!.Vark/, where the sum is taken over the bounded cells * of †1.

Proof
In order to deduce the formula for Vol.X0/ from equation (3.2.3), it suffices to observe
that $0. V*/D ."1/dim.#/ when * is bounded, and $0. V*/D 0 otherwise (see the proof
of [17, Corollary 3.12]).

Therefore, we only need to prove the validity of (3.2.3). Since both sides are
additive in & and invariant under refinement of the fan †, we may assume that & D V*
for some cell * in †1. Then we must show that Vol.X# / D $0. V*/Œin#X !. We will
follow a construction similar to that in the proof of [17, Proposition 3.11], but we will
need to refine it to take the b"-action into account.

We fix a point w in V* and set tw D .tw1 ; : : : ; twn/ 2 .K#/n. Let TDGn
m;R and

T D Gn
m;K . We denote by Tw the torus T endowed with the b"-action with weight

vector w, and by T w its generic fiber. Set

V*w D ¹v 2Qn jwC v 2 V*º;
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and let V be the Q-linear subspace of Qn generated by V*w . We denote by eT the split
R-torus with cocharacter lattice V \ Zn. This is a subtorus of T. We write eT for the
generic fiber of eT, and eT# for the inverse image of V*w under the tropicalization map
eT .K/! V \Qn. The quotient Tk=eTk acts freely and transitively on the torus orbit
O.*/ of P.†/k corresponding to the cell * . If we take the specialization of tw as base
point, then we obtain ab"-equivariant isomorphism betweenO.*/ and Tw

k
=eTk , where

we leteT act on Tw by multiplication.
The action ofb" on Twk =eTk factors through a free action of"d .k/ for some d > 0.

Thus we can find locally on Tw
k
=eTk a b"-equivariant étale morphism to Ar

k
equipped

with the trivial b"-action, for some r $ 0. Taking the base change to R, this implies
that there exists around each point of Xk.*/ a b"-stable open neighborhood U in
Tw=eT that admits an étale b"-equivariant morphism,

h WU!ArR:

Moreover, since Xk.*/ is smooth, we can arrange that Xk.*/ \UD h!1.As
k
/ for

some 0& s & r . We set Y DU!ArR AsR and we endow it with the diagonal action of
b". We will construct a semialgebraic bijection,

 W sp!1X .Yk/\X.K/! eT# !Y.R/;

that is defined over K0 and commutes with the specialization maps to Yk . The result
then follows from the fact that Vol.Y.R//D ŒU\Xk.*/! and Vol.eT# /D $0. V*/.L"
1/dim.#/ by Theorem 2.5.1.

By the Henselian property of R, the linear projection # W ArR ! AsR induces a
semialgebraic retraction,

+ W sp!1U .Yk/! Y.R/;

which can be described in the following way. Let Z be the inverse image in U!R Y

of the graph of # . Let( be the image of the diagonal embedding of Yk into Uk !Yk .
Then the graph of + is equal to sp!1Z .(/. Thus + is defined overK0, by Example 2.3.5.
We also choose a Z-linear retraction of .V \Zn/! Zn, and we denote by p0 W T ! eT
the morphism of tori associated with the morphism of cocharacter lattices Zn! .V \
Zn/. We write

p W T w! eT
for the composition of the morphism T w ! T given by multiplication by t!w , and
the projection morphism p0. Then p is b"-equivariant, and thus defined over K0.
Finally, we write q for the projection map Tw ! Tw=eT.
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Now we consider the semialgebraic map

 W sp!1X .Yk/\X.K/! eT# !Y.R/ W x 7!
!
p.x/;+

!
q
!
p.x/!1 ( x

"""
:

It is defined overK0. Note that p.x/ indeed lies in eT# because trop.p.x// is the image
of trop.x/"w under the projection Qn! .V \Qn/. We claim that  is bijective. To
prove this, it suffices to show that the map

'a W .Xa !T=eT U/.R/!eT.R/!Y.R/ W x 7!
!
p0.x/;+

!
q.x/

""

is bijective for every a in eT# . This can be done in the same way as in the proof of [17,
Proposition 3.11]: the morphism p0 induces a splitting TŠeT !R .T=eT/, and under
this splitting the restriction of the morphism

.p0;# ı h ı q/ WXa !T=eT U!eT!R AsR

to the special fibers coincides with the étale morphism

Id! hk WeTk !k Yk!eTk !k Ask :

Now the Henselian property of R implies that 'a is a bijection.

COROLLARY 3.2.4
Let X0 be a schön integral closed subvariety of Gn

m;K0
, and let & be a constructible

subset of Qn. Then Theorem 3.1.3 holds for S DX0.K/\ trop!1.&/.

Proof
Let a be an element in .K#/n, and write trop.a/Dw. We have trop!1.w/DXa.R/.
Thus Theorem 2.5.1 implies that Vol.trop!1.a// D ŒXa

k
!. If we denote by * the

unique cell of†1 that contains a in its relative interior, then we know by Lemma 3.2.1
that ŒXa

k ! D Œin#X !. Thus the function w 7! Vol.trop!1.w// is constant with value
Œin#X ! on the relative interior V* of each cell * of †1. Hence, Theorem 3.1.3 follows
from formula (3.2.3).

3.3. Intrinsic torus embeddings
Before we prove the general case of Theorem 3.1.3, we collect some results on intrin-
sic tori that will be used in the proof.

Definition 3.3.1
Let F be a field. If T and T 0 are split F -tori, then a monomial morphism T 0! T is
a morphism of F -varieties that can be written as the composition of a morphism of
tori followed by a translation by an element in T .F /.
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Let T 0! T be a monomial morphism of K0-tori. If we denote by N and N 0 the
cocharacter lattices of T and T 0, respectively, then there exists a unique integral affine
linear map , WN 0!N such that the following diagram commutes:

T 0.K/
trop""""! N 0Q??y

??y$Q

T .K/ """"!
trop

NQ

Let F be a field. A variety U over F is called very affine if it admits a closed
embedding into a split F -torus. Then the group MU D O.U /#=F # is a free Z-
module of finite rank. The corresponding split F -torus T 0 D SpecF ŒMU ! is called
the intrinsic torus of U . The choice of a section s W MU ! O.U /# determines a
closed embedding f W U ! T 0, which we call an intrinsic torus embedding. Chang-
ing s amounts to composing this embedding with a translation by a point in T 0.F /.
Now let h W U ! T be a locally closed embedding into a split F -torus T , with char-
acter latticeM . This embedding induces a morphism of lattices M !MU and hence
a morphism of tori g W T 0! T . The morphisms h and h0 D g ı f correspond to two
homomorphisms  ; 0 WM ! O.U /# that coincide after composition with the pro-
jection map O.U /#!MU . This means that the image of the quotient  = 0 is con-
tained in F ", and h and h0 coincide up to translation by the point a in T .F / defined
by  = 0. Composing the morphism T 0! T with the translation by a, we obtain a
monomial morphism of tori T 0! T such that the restriction to U is an isomorphism
onto U .

3.4. Step 2: The general case
We will now prove Theorem 3.1.3 by reducing it to the case that was treated in Propo-
sition 3.2.2. We will achieve this reduction by partitioning any semialgebraic set into
pieces to which Proposition 3.2.2 can be applied.

LEMMA 3.4.1
Let T be a split algebraic torus over K0, and let X be a subvariety of T . Then we
can find:
% a partition of X into subvarieties U1; : : : ;Ur ,
% for every i in ¹1; : : : ; rº, a schön closed embedding Ui ! Ti where Ti is a

split torus over K0,
% for every i in ¹1; : : : ; rº, a monomial morphism of tori Ti ! T such that the

restriction of Ti .K/! T .K/ to Ui .K/ is a bijection onto Ui .K/ for every i .
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Proof
By [14, Theorem 7.10], we can find a very affine nonempty open subvariety U of X
such that every intrinsic torus embedding of U is schön. We choose such an intrinsic
embedding U ! T 0. As explained in Section 3.3, the embedding U ! T gives rise to
a monomial morphism of tori T 0! T such that the restriction to U is an isomorphism
onto U . Now the result follows from Noetherian induction on X .

PROPOSITION 3.4.2
Let T be a split K0-torus, and let S be a semialgebraic subset of T . Then there exists
a finite partition of S into semialgebraic subsets S 0 such that, for each S 0, there exist:
% a subvariety U of T such that S 0 is contained in U.K/,
% a schön closed embedding of U into a split K0-torus T 0 with cocharacter

latticeN 0 such that S 0 is of the form U.K/\ trop!1.&/ for some constructible
subset & in N 0Q,

% a monomial morphism T 0! T such that the restriction of T 0.K/! T .K/ to
S 0 # T 0.K/ is a bijection onto S 0 # T .K/.

Proof
Let N be the cocharacter lattice of T . Partitioning S , we may assume that there exist
a subvariety X of T and invertible regular functions

f1; g1; : : : ; fr ; gr

on X such that S is given by

S D
®
x 2X.K/

ˇ̌
val
!
fi .x/

"
!i val

!
gi .x/

"
for each i

¯
;

where !i is either & or <. If we re-embed X via the morphism

X! T !K0 G2r
m;K0

W x 7!
!
x;f1.x/; g1.x/; : : : ; fr .x/; gr.x/

"
;

then S is of the form X.K/\ trop!1.&/, where & is a constructible subset of NQ !
Q2r . Thus we may assume that S is of the form X.K/ \ trop!1.&/, where & is a
constructible subset of NQ.

Let U be a subvariety of X , and let U ! T 0 be a schön closed embedding into a
splitK0-torus T 0. Assume that there exists a monomial morphism of tori T 0! T such
that the restriction of T 0.K/! T .K/ to U.K/ is a bijection onto U.K/. Then the
restriction of T 0.K/! T .K/ to U.K/\ S is a bijection onto U.K/\ S . Moreover,
if we denote by , W N 0 ! N the integral affine linear map of cocharacter lattices
associated with T 0! T , then

S \U.K/D trop!1
!
,!1Q .&/

"
:
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The result now follows from the fact that we can partition X into subvarieties U of
this form, by Lemma 3.4.1.

Now we can finish the proof of Theorem 3.1.3. By additivity, we may assume
that there exist U , T 0, and & as in Proposition 3.4.2 for S 0 D S . Let , W N 0 ! N

be the integral affine linear map of cocharacter lattices associated with the monomial
morphism T 0! T . We consider the commutative diagram

T 0.K/
trop0""""! N 0Q??y

??y$Q

T .K/ """"!
trop

NQ

where we write trop0 to distinguish between the two tropicalization maps. By the
schön case of the Fubini theorem (Proposition 3.2.2), we know that Theorem 3.1.3
holds for the embedding of S \ .trop0/!1.& 0/ into T 0.K/, for every constructible
subset & 0 of N 0Q. Taking & 0 DN 0Q, we see that trop0" 1S is constructible and

Vol.S/D
Z
N 0Q

trop0" 1S d$0:

Taking for & 0 a fiber of the affine linear map ,Q, we also find that

trop" 1S D .,Q/" trop0" 1S :

Now it follows from Proposition 3.1.2 that trop" 1S is constructible and

Vol.S/D
Z
NQ

trop" 1S d$0:

This concludes the proof of Theorem 3.1.3.

3.5. Properties of the volumes of tropical fibers
In order to apply Theorem 3.1.3 to concrete problems, it is useful to have some infor-
mation about the shape of the constructible decomposition of Qn on which the tropi-
cal fibers have piecewise constant volumes. We will prove two statements that will be
important in the proofs of Conjectures A and B. We start with a basic proposition on
torus-equivariance.

PROPOSITION 3.5.1
We keep the notation of Theorem 3.1.3. Let K

#
act on .K

#
/n with weight vector
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w 2 Zn, and trivially on Y.K/. Assume that S is stable under this action. Then the
function

' WQn!Kb!.Vark/ W v 7!Vol
!
S \ .tropı#/!1.v/

"

is constant along the line vCQw for every v in Qn.

Proof
The function ' is constructible, by Theorem 3.1.3, and it is periodic with period w
because of the semialgebraic bijection

S \ .tropı#/!1.v/! S \ .tropı#/!1.vCw/

defined by the action of t 2K#0 , for every v in Qn. Thus the restriction of ' to every
line of the form v C Qw in Qn is both constructible and periodic, which is only
possible if it is constant.

To formulate the second result, we need to make some preparations. Let n be
a positive integer, and let w be an element of Qn. We denote by Gw

m;k the k-torus
Gn
m;k endowed with the left b"-action with weight vector w (see Section 1.4). We set

Gw
m;K DGw

m;k !k K , endowed with the diagonal b"-action. We define the tropicaliza-
tion map

trop WGw
m;K.K/!Qn

by ignoring the b"-action on Gw
m;K . Let Y be a k-variety with trivial b"-action. We say

that a semialgebraic subset S of Gw
m;K !k Y is defined over k if we can write it as a

finite Boolean combination of sets of the form

®
x 2 .Gw

m;K !k U /.K/
ˇ̌

val
!
f .x/

"
& val

!
g.x/

"¯
;

where U is an affine open subvariety of Y and f and g are regular functions on
Gw
m;k !k U that are invariant under the b"-action. Then S is also defined over K0;

that is, it is a semialgebraic subset of the K0-scheme of finite type .Gw
m;K=b"/!k Y .

The torus Gn
m;K acts on Gw

m;K by multiplication from the left, and the multiplication
morphism

Gn
m;K !K Gw

m;K!Gw
m;K

is b"-equivariant and descends to a morphism

Gn
m;K0

!K0 .Gw
m;K=b"/!Gw

m;K=b"
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that makes Gw
m;K=b" into a Gn

m;K0
-torsor. We can trivialize this torsor by means of the

b"-equivariant isomorphism

Gn
m;K!Gw

m;K W .x1; : : : ; xn/ 7! .tw1x1; : : : ; t
wnxn/

that maps the identity of Gn
m;K to the b"-fixed point .tw1 ; : : : ; twn/ of Gw

m;K .

Remark 3.5.2
The expression “defined over k” is a slight abuse of terminology; more precisely,
what we are considering here are twisted forms over K0 of semialgebraic sets in
Gn
m;K !k Y defined over k.

PROPOSITION 3.5.3
Let w be an element of Qn, for some n > 0. Let Y be a k-variety with trivialb"-action,
and let S be a semialgebraic subset of Gw

m;K !k Y that is defined over k. Denote by

# WGw
m;K !k Y !Gw

m;K

the projection morphism. Then there exists a complete fan in Qn such that the function

' WQn!Kb!.Vark/ W v 7!Vol
!
S \ .tropı#/!1.v/

"

is constant on the relative interior of each cone.

Proof
We can make a similar reduction as at the beginning of the proof of Theorem 3.1.3:
by additivity we may assume that Y is a closed subvariety of a k-torus with trivial
b"-action, and by absorbing this torus into Gw

m;k we can reduce to the case where
Y D Speck. We first deal with the schön case. An integral closed subvariety X of
Gn
m;k is called schön if X !k K is schön in Gn

m;K . Let X be a schön integral closed
subvariety of Gn

m;k that is stable under the b"-action. Let & be a constructible subset
of Qn that is stable under scalar multiplication with elements in Q>0, and let S D
X.K/ \ trop!1.&/. Let †01 be a tropical fan for X in Rn in the sense of [19]. We
may assume that & is a union of relatively open cones in †01. Set †1 D "w C†01,
and let † be the fan over †1 ! ¹1º in Rn !R(0. This is a tropical fan for the schön
subvariety X 0 D t!wX of Gn

m;K , and X 0 is defined over K0. Multiplication with t!w

yields an isomorphism between X and X 0 defined over K0 that commutes with the
tropicalization maps up to translation by w. Thus we can deduce Proposition 3.5.3 for
S by applying Proposition 3.2.2 to the semialgebraic subset t!wS of X 0.

To prove the general case, we can proceed in a similar way as in step 2 of the proof
of Theorem 3.1.3. It is sufficient to show that, for every b"-stable integral subvariety
X of Gw

m;k , we can find a b"-stable dense subvariety U of X , a b"-equivariant schön
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closed embedding U ! Gw0
m;k for some w0 2 Qn0 , and a b"-equivariant monomial

morphism of tori Gw0
m;k!Gw

m;k that induces an isomorphism U ! U . Then the rest
of the proof of Theorem 3.1.3 immediately carries over to our setting.

We set T DGw
m;k . The quotient of T by the action of b" is a split k-torus eT , and

the quotient map T ! eT is a Kummer finite étale cover of degree d , the smallest
positive integer such that d ( w lies in Zn. Let eX be the image of X in eT . By [14,
Theorem 1.4], we can find a dense very affine open subvariety eU in eX such that every
intrinsic torus embedding of eU is schön. We choose such an intrinsic embedding eU !
eT 0. By the discussion in Section 3.3, the embedding of eU into eT 0 induces a monomial
morphism of tori f W eT 0! eT that restricts to an isomorphism from eU onto eU . Let
U D eU !eT T be the inverse image of eU in T ; it is a b"-stable dense open subvariety
of X . Set T 0 D eT 0 !eT T ; then we can endow T 0 with the structure of a split k-torus
such that T 0! eT 0 is a morphism of tori and T 0! T is a monomial morphism. The
torus T 0 inherits a good b"-action from T DGw

m;k such that eT 0 D T 0=b", and T 0 is of

the form Gw0
m;k

for some finite tuple w0 of rational numbers.
The closed embedding eU ! eT 0 induces a b"-equivariant closed embedding g W

U ! T 0 by base change. The projection morphism T 0 ! eT 0 induces a finite étale
morphism of split R-tori h W T 0 !k R! eT 0 !k R by base change. For every point a
of T .K/, the closure of a!1.U !k K/ in T 0 !k R is the inverse image under h of the
closure of .h.a//!1.eU !k K/ in eT 0 !k R because h is finite and flat. Restricting h
to the special fibers, we see that the initial degeneration of U !k K with respect to a
is a finite étale cover of the initial degeneration of eU !k K with respect to h.a/. The
latter is smooth because eU is schön, and it follows that all the initial degenerations of
the embedding U !k K! T 0 !k K are smooth, as well. In other words, the closed
embedding U ! T 0 is schön. This concludes the proof.

Remark 3.5.4
A more intuitive explanation for the fan structure in Proposition 3.5.3 is that we can
reparameterize points in S by substituting t by tq for any positive rational number q.
Since we need to keep track of the b"-action, writing down a proof along these lines is
somewhat tedious, which is why we have opted for the cleaner argument in the proof
of Proposition 3.5.3.

4. Proofs of Conjectures A and B

4.1. The conjecture of Davison and Meinhardt
As a first application, we prove Conjecture A from the Introduction. Using the com-
parison result in Corollary 2.6.2, the following theorem is a strengthening of Conjec-
ture A (the strengthening being that we do not invert L).
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THEOREM 4.1.1
Let Y be a smooth k-variety endowed with the trivial Gm;k-action, and let Gm;k act
on Ank with weights w1; : : : ;wn > 0. Set U DAnk !k Y , and let

f W U !A1k D SpeckŒt !

be a morphism of k-varieties that is Gm;k-equivariant, where Gm;k acts on A1k with
weight d > 0. If we set V DU !kŒt% R0, then

Vol
!
V.R/

"
D
#
f !1.1/

$

in Kb!.Vark/, where the b"-action on f !1.1/ factors through "d .k/ and is given by

"d .k/! f !1.1/! f !1.1/ W
!
%; .x1; : : : ; xn; y/

"
7! .%w1x1; : : : ; %

wnxn; y/:

Proof
Set W D f !1.1/ !k R and endow it with the diagonal b"-action. Then W is smooth
over R and Vol.W.R// D Œf !1.1/! in Kb!.Vark/ by the definition of the motivic
volume. The map

V.K/!W.K/ W .x1; : : : ; xn; y/ 7! .t!w1=dx1; : : : ; t!wn=dxn; y/

is a semialgebraic bijection that is defined over K0, and identifies V.R/ with a subset
of W.K/ that contains W.R/. It suffices to show that the motivic volume of the
complement of W.R/ in the image of V.R/ vanishes. This complement is given by

S D
®
.x1; : : : ; xn; y/ 2W.K/

ˇ̌
y 2 Y.R/;val.xi /$"wi=d for all i;

val.xi / < 0 for some i
¯
:

By induction on n, it is enough to prove that

So D S \
!
.K
#
/n ! Y.R/

"

has motivic volume 0.
We can view W.K/\ ..K#/n ! Y.R// as a semialgebraic subset of Gw

m;K !k Y
that is defined over k, in the sense of Section 3.5. We denote by # the projection map

# W .K#/n ! Y.R/! .K
#
/n;

and we consider the function

' WQn!Kb!.Vark/ W v 7!Vol
!
W.K/\ .tropı#/!1.v/

"
:

Set
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& D ¹v 2Qn j vi $"wi=d for all i; vi < 0 for some iº:

By Theorem 3.1.3, the function ' is constructible, and we can compute the motivic
volume of So as

Vol.So/D
Z
"

' d$0:

By Proposition 3.5.3, we can find a complete fan in Qn such that ' is constant
on every relatively open cone ) in this fan. If we denote by .) \ &/R the sub-
set of Rn associated with ) \ & , then the intersection of .) \ &/R with any box
Œ"r; r !n, r 2 R>0, is homeomorphic to Œ0; 1/ ! @, where @ denotes the boundary of
.) \&/R\ Œ"r; r !n. Since the compactly supported Euler characteristic of Œ0; 1/ van-
ishes, it follows that $0.) \ &/D 0 for all ) , so that Vol.So/D 0.

4.2. The integral identity of Kontsevich and Soibelman
As a second application, we give a short proof of the integral identity conjecture of
Kontsevich and Soibelman (Conjecture B in the Introduction). Lê Quy Thuong proved
this conjecture in [13, Theorem 1.2], also using Hrushovski–Kazhdan motivic inte-
gration. Our comparison statement in Corollary 2.6.2 and our Fubini theorem for the
tropicalization map allow us to substantially simplify the proof and avoid the inver-
sion of L. We also generalize the statement by allowing arbitrary positive weights
on Ad1k and arbitrary negative weights on Ad2k , and replacing the factor Ad3k by any
k-variety with trivial Gm;k-action. By Corollary 2.6.2, the following theorem is a
generalization of Conjecture B.

THEOREM 4.2.1
Let Z be a k-variety with trivial Gm;k-action, and let p be a closed point in Z. Let
d1 and d2 be nonnegative integers, and let Gm;k act diagonally on

U DAd1k !k Ad2k !k Z

with positive weights on the first factor, with negative weights on the second factor,
and trivially on Z. Let

f W U !A1k D SpeckŒt !

be a dominant morphism that is Gm;k-equivariant, where Gm;k acts trivially on the
target A1k , and such that f .0; 0;p/D 0. We view Ad1k and Z as closed subvarieties of
U via the embeddings x 7! .x; 0;p/ and z 7! .0; 0; z/, respectively. Then f vanishes
on Ad1k . We set V DU !kŒt% R0 and W DZ !kŒt% R0. Then

Vol
!
sp!1V .Ad1k /

"
D Ld1 Vol

!
sp!1W .p/

"

in Kb!.Vark/.
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Proof
The vanishing of f on Ad1k follows from Gm;k-equivariance, together with the fact

that f .0; 0;p/D 0. We partition S DVol.sp!1V .Ad1k // into the semialgebraic sets

S0 D
®
vD .x; y; z/ 2 V.R/

ˇ̌
spV .v/ 2Ad1k and y ¤ 0

¯
;

S1 D
®
vD .x; y; z/ 2 V.R/

ˇ̌
spV .v/ 2Ad1

k
and y D 0

¯
:

We first compute the volume of S1. By the Gm;k-equivariance of f , the value of

f .x; 0; z/ only depends on z, and we can write S1 D sp!1W .p/ ! Rd1 . The second
factor has motivic volume Ld1 , so that

Vol.S1/D Ld1 Vol
!
sp!1W .p/

"
:

Therefore, it suffices to show that the motivic volume of S0 vanishes. By addi-
tivity, it is enough to prove this after replacing S0 by S 00 D S0 \ .O !Z.R//, where

O is any .K
#
/d1Cd2 -orbit in K

d1 !Kd2 . If O is contained in K
d1 ! ¹0º, then S 00 is

empty. Thus, by induction on d1C d2, we may assume that d2 > 0 and

O D .K#/d1 ! .K#/d2 :

We write

# W U !Ad1
k
!Ad2

k

for the projection onto the first two factors. Consider the semialgebraic set

S 0 D
®
.x; y; z/ 2 V.K/

ˇ̌
.x; y/ 2O;z 2Z.R/; spZ#kR0.z/D p

¯

and the function

' WQd1 !Qd2!Kb!.Vark/ W v 7!Vol
!
S 0 \ .tropı#/!1.v/

"
:

The set S 00 is the subset of S 0 defined by the conditions val.xi / $ 0 and val.yj / >
0 for i 2 ¹1; : : : ; d1º and j 2 ¹1; : : : ; d2º. Let & D .Q(0/d1 ! .Q>0/

d2 . By Theo-
rem 3.1.3 we can compute Vol.S 00/ by means of the constructible integral

Vol.S 00/D
Z
"

' d$0:

Let w 2 Zd1>0 !Zd2<0 be the weight vector of the Gm;k-action on Ad1
k
!Ad2

k
, and let

, WQd1 !Qd2!Qd1 !Qd2!1
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be the projection in the direction of w onto the product of Qd1 with any coordinate
hyperplane in Qd2 . Since S 0 is stable under the Gm;k.K/-action onO!Z.K/, Propo-
sition 3.5.1 implies that the function ' is constant on every fiber of ,. Moreover, the
intersection of & with any fiber of , is either a half-open bounded line segment (if
d1 > 0) or an open half-line (if d1 D 0). In both cases, its bounded Euler characteristic
vanishes. Thus Vol.S 00/D 0 by Proposition 3.1.2.

4.3. Comparison with Lê Quy Thuong’s proof of the integral identity conjecture
Together with the groundbreaking work by Hrushovski and Loeser in [11], the origi-
nal proof of the integral identity conjecture by Lê Quy Thuong in [13] constitutes the
first demonstration of the power of Hrushovski–Kazhdan motivic integration in the
study of motivic zeta functions and motivic nearby fibers. Our proof compares to the
one in [13] in the following ways.

A first important difference is that, in [13], the motivic nearby fiber of f is
expressed in terms of Hrushovski–Kazhdan motivic integration by means of a variant
of Corollary 8.5.3 in [11]. The strategy consists of first establishing an expression for
the so-called motivic zeta function of f and then passing to the limit as in Denef and
Loeser’s definition of the motivic nearby fiber. The drawback of this method is that
the motivic zeta function cannot be defined without inverting the class L of the affine
line; on the Hrushovski–Kazhdan side, it involves motivic volumes of semialgebraic
sets equipped with volume forms, whose definition also requires the inversion of L.
In our approach, we interpret the motivic nearby fiber directly as the motivic volume
of the semialgebraic nearby fiber, which does not involve any volume forms and does
not require the inversion of L. Instead of passing through the motivic zeta function,
we made an explicit calculation on a log resolution for f and invoked Denef and
Loeser’s formula for the motivic nearby fiber (see Corollary 2.6.2).

The calculations in [13] require a further localization M
b!
k;loc of M

b!
k , obtained

by inverting all the elements 1 " Li with i $ 1, which is needed to compute limits
of motivic zeta functions of semialgebraic sets with volume forms. It is not known
whether the elements 1 " Li are zero divisors in M

b!
k . Our computation in the proof

of Theorem 4.2.1 is more straightforward because we work directly with motivic
volumes of semialgebraic subsets of the nearby fiber.

Finally, the arguments are simplified and expressed in a conceptual way by mak-
ing systematic use of our tropical Fubini property in Theorem 3.1.3. In retrospect,
a manifestation of the Fubini property in a particular case can be found already in
Lemma 4.2 of [13], where the motivic volume of a generalized annulus is computed
by integrating over the radius. Again, the motivic volume is considered in the local-
ization M

b!
k;loc, and the proof of the lemma in [13] is specific to that particular semi-

algebraic set. Moreover, the argument still requires the calculation of the values of
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the constructible function , (i.e., motivic volumes of subsets of the generalized annu-
lus); the vanishing of the constructible integral is then deduced from the vanishing of
the integrand ,. In our approach, we exploit the homogeneity to argue that a suitable
constructible function is constant (without further calculations) and then use the van-
ishing of the bounded Euler characteristic on the domain of the integral, which is an
elementary combinatorial problem.

5. Further generalizations

5.1. Relative Grothendieck rings
We can refine the preceding constructions by working relatively over a base variety
instead of over k. Let B be a Noetherian k-scheme with trivial b"-action. When we
speak of a B-schemeX withb"-action, we will always assume that the structural mor-
phism X ! B is b"-equivariant. The Grothendieck group Kb!.VarB/ of B-varieties
with b"-action is the abelian group characterized by the following presentation.
% Generators: isomorphism classes ofB-schemes of finite typeX endowed with

a good b"-action. Here “good” means that the action factors through "n.k/ for
some n > 0 and that every orbit is contained in an affine open subscheme of
X . Isomorphism classes are taken with respect tob"-equivariant isomorphisms
over B .

% Relations: we consider two types of relations.
(1) Scissor relations: if X is a B-scheme of finite type with a good b"-

action and Y is a b"-stable closed subscheme of X , then

ŒX !D ŒY !C ŒX n Y !:

(2) Trivialization of linear actions: let X be a B-scheme with a good b"-
action, and let V be a k-vector space of dimension d with a good linear
action of b". Then

ŒX !k V !D ŒX !k Adk !

where the b"-action on X !k V is the diagonal action, the action on Ad
k

is trivial, and the B-structures are induced by the one on X .
The group Kb!.VarB/ has a unique ring structure such that ŒX ! ( ŒX 0!D ŒX !B X 0! for
allB-schemes of finite typeX ,X 0 with goodb"-action. Here theb"-action onX!BX 0
is the diagonal action. The identity element in Kb!.VarB/ is ŒB!, the class of the base
scheme B . With a slight abuse of notation, we continue to write L for the class of A1B
(with the trivial b"-action) in the ring Kb!.VarB/.

Every morphism p W B 0 ! B of Noetherian k-schemes induces a base change
morphism of rings,
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p" WKb!.VarB/!Kb!.VarB0/ W ŒX ! 7! ŒX !B B 0!;

and, if p is of finite type, a pushforward morphism of groups,

pŠ WKb!.VarB0/!Kb!.VarB/ W ŒX ! 7! ŒX !;

that forgets the B 0-structure. The pullback morphism p" sends L to L; the pushfor-
ward morphism pŠ sends L to ŒB 0! (L.

The construction of the motivic volume can be refined to a relative setting by
means of the following results.

LEMMA 5.1.1
Let B be a Noetherian k-scheme. For every point b of B , we denote by -.b/ the
residue field of B at b and by .b W Spec-.b/! B the inclusion map. Then the mor-
phism

.D
Y
b2B

."b WKb!.VarB/!
Y
b2B

Kb!.Var'.b//

is injective.

Proof
Let b be a point of B , and let Z be its Zariski closure in B , endowed with its reduced
induced structure. Then one can copy the proof of [18, Proposition 3.4] to show that
Kb!.Var'.b// is the direct limit of the rings Kb!.VarU /, where U runs through any
fundamental system of open neighborhoods of b in Z. Now the result follows from
Noetherian induction and the scissor relations in the Grothendieck ring.

Let Y be aK-scheme of finite type, and let T be a semialgebraic subset of Y . For
every algebraically closed valued field extension L of K , the formulas that define T
in Y.K/ also define a semialgebraic subset of Y.L/, which we will denote by T .L/.
This set does not depend on the choice of the formulas defining T , by quantifier
elimination for algebraically closed valued fields.

PROPOSITION 5.1.2
Let Y be an R0-scheme of finite type, and let S be a semialgebraic subset of Y.R/

defined over K0. For every point y in Yk we denote by -.y/ the residue field of Yk at
y. We set Ry D -.y/❏t❑ and Ky D -.y/..t//, and we fix an algebraic closure Ky of
Ky . We denote by .y the inclusion map Spec-.y/! Yk . Then there exists a unique
element ˛ in Kb!

0 .VarYk / such that, for every point y of Yk , we have

."y.˛/DVol
!
S.Ky/\ sp!1Y#RRy .y/

"
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in Kb!.Var'.y//. This element satisfies pŠ.˛/DVol.S/ in Kb!.Vark/, where p denotes
the projection Yk! Speck.

Proof
Rather than going through all the constructions in [10], we will give a proof based on
our computation of the motivic volume in the schön case (Proposition 3.2.2). Unique-
ness of ˛ follows immediately from Lemma 5.1.1, so it suffices to prove existence.

Step 1: The schön case. We first prove the assertion in the following special case.
Let Y be a schön closed subvariety of Gn

m;K0
, for some n > 0. SetX D Y !K0K , and

let † be a tropical fan for X in Rn !R(0. This fan defines a toric R0-scheme P0.†/
as well as a toric R-scheme P.†/; the latter is the normalization of P0.†/!R0 R. Let
Y be the schematic closure of Y in P0.†/, and let X be the schematic closure of X
in P.†/. For every cell * in †1, we denote by Xk.*/ the intersection of Xk with the
torus orbit of P.†/k corresponding to * . The natural R0-morphism P.†/! P0.†/
induces a morphism of k-schemes h WXk ! Yk . Let C be a constructible subset of
Yk , and set S D sp!1Y .C /\ Y.K/. We set

˛D
X

# bounded

#
Xk.*/\ h!1.C /

$
.1"L/dim.#/

in Kb!.VarYk /, where * runs through the set of bounded cells in †1. We claim that
˛ satisfies all the properties in the statement. To prove this, we may assume that
h!1.C / is contained in a unique stratum Xk.*/, by additivity. Then the claim follows
immediately from the fact that the construction of the pairs .P0.†/;Y/ and .P.†/;X/
is compatible with extensions of the residue field k, and the semialgebraic bijection
 constructed in the proof of Proposition 3.1.2 commutes with specialization.

Step 2: The general case. By additivity, we may assume that Y is a subscheme
of a split R0-torus T with cocharacter lattice N . By Proposition 3.4.2, we can fur-
ther reduce to the case where there exist a monomial morphism of K0-tori ' W T 0!
T D TK0 , a schön closed subvariety U of T 0, and a constructible subset & of N 0Q
(where N 0 is the cocharacter lattice of T 0) such that ' maps S 0 D U.K/\ trop!1.&/
bijectively onto S . Let , W N 0! N be the affine map of cocharacter lattices associ-
ated with '. Since S is contained in T.R/, we know that trop.S 0/ is contained in the
affine subspace AD ,!1Q .0/ of N 0Q. Intersecting & with A, we may assume that & is
contained in A.

Let † be a tropical fan for U in N 0R ! R(0. Every refinement of † is still a
tropical fan for U , so that we may assume that A \ †1 and & are unions of cells
in the polyhedral complex †1. By additivity, we can then further reduce to the case
where & is a relatively open cell in †1. The morphism ' W T 0! T extends on an
R0-morphism,
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e' W !P0.†/ nD"! T;

where D is the union of the irreducible components in P0.†/k corresponding to
vertices of †1 that do not lie in A. If we denote by U the schematic closure of U
in P0.†/, then S 0 is contained in .U nD/.R/ because trop.S 0/ is contained in A.
Moreover, we can write S 0 as sp!1U .C / \ U.K/, where C is the intersection of Uk

with the torus orbit of P0.†/k corresponding to the cell & .
We can apply step 1 of the proof to the R0-scheme U and the semialgebraic set

S 0. This yields an element ˛0 in Kb!.VarUo
k
/, where Uo

k DUk nD. Let / WUo
k! Yk

be the morphism obtained from e' by restriction. Then ˛ D /Š.˛0/ satisfies all the
properties in the statement: we have

pŠ.˛/D .p ı //Š.˛0/DVol.S 0/DVol.S/:

Furthermore, let y be a point of Yk , write Z D Uk !Yk y, and denote by .Z the
projection morphism Z!Uk and by q the projection Z! Spec-.y/. Then

."y/Š.˛
0/D qŠ."Z.˛0/DVol

!
S 0.Ky/\ sp!1U#R0Ry .Z/

"
DVol

!
S.Ky/\ sp!1Y#R0Ry .y/

"

in Kb!.Var'.y//, where the second equality again follows from step 1, applied to the
Ry -scheme V DU!R0 Ry and the semialgebraic set

S 0.Ky/\ sp!1V .Z/D sp!1V
!
Z \

!
C !k -.y/

""
\U.Ky/:

Let Y be an R0-scheme of finite type, and let S be a semialgebraic subset of
Y.R/ defined overK0. Then we will continue to denote the unique object ˛ in Propo-
sition 5.1.2 by

Vol.S/ 2Kb!.VarYk /:

This is a harmless abuse of notation: this object is mapped to the motivic volume
Vol.S/ 2Kb!.Vark/ from Theorem 2.5.1 by the pushforward morphism

pŠ WKb!.VarYk /!Kb!.Vark/

associated with the projection p W Yk ! Speck. If . W Z! Y is an immersion, then
the definition of Vol.S/ implies at once that

Vol
!
S \ sp!1Y .Z/

"
D .Š."Vol.S/

in Kb!.VarYk /. With these refinements at hand, we can now upgrade the comparison
result with Denef and Loeser’s motivic nearby fiber and prove the relative version of
the Davison–Meinhardt conjecture.
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PROPOSITION 5.1.3 (Motivic volume of a strict normal crossings model)
With the notation and assumptions of Theorem 2.6.1, we have

Vol
!
X.R/

"
D

X
;¤J'I

.1"L/jJ j!1ŒeEoJ !

in Kb!.VarXk /.

Proof
This follows immediately from Theorem 2.6.1 and the fact that the property of being a
strict normal crossings model is preserved under extensions of the residue field k.

COROLLARY 5.1.4 (Comparison with the motivic nearby fiber)
Let f W U ! SpeckŒt ! be a morphism of varieties over k, with smooth generic fiber,
and denote by X the base change of U from kŒt ! to R0 D k❏t❑. Then the image
of Vol.X.R// 2 Kb!.VarXk / in the localized Grothendieck ring Kb!.VarXk /ŒL!1! is
equal to Denef and Loeser’s motivic nearby fiber of f .

Proof
This follows from a direct comparison of the formula in Proposition 5.1.3 with Denef
and Loeser’s formula for the motivic nearby fiber in [7, Definition 3.5.3].

PROPOSITION 5.1.5 (Relative Davison–Meinhardt conjecture)
With the notations and assumptions of Theorem 4.1.1, the equality

Vol
!
V.R/

"
D
#
f !1.1/

$

is valid already in Kb!.VarY /, where we view both sides of the equation as objects
over Y via the projection p W U ! Y .

Proof
The special fiber Vk is canonically isomorphic to the closed subscheme U0 of U
defined by f D 0. Let y be a point of Y with residue field -.y/, and setRy D -.y/❏t❑.
We must show that

Vol
!
sp!1V#RRy .U0 !Y y/

"
D
#
f !1.1/!Y y

$

in Kb!.Var'.y//. Performing a base change from k to -.y/, we can reduce to the case
where y is k-rational. Now one can simply copy the proof of Theorem 4.1.1, replacing
Y.R/ by sp!1Y#kR0.y/.

We now state and prove further natural generalizations of Theorems 4.1.1
and 4.2.1, replacing the affine spaces on which Gm acts with positive weights by
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invariant subvarieties of circle compact toric varieties with Gm-action, as explained
below. The proofs are essentially identical to those in Section 4. Rather than repeating
the details verbatim, we briefly indicate the minor changes that need to be made in
each case.

5.2. Circle compactness
Let F be a field. Following [1], we say that a variety X over F with Gm;F -action is
circle compact if the limit of s (x, as s goes to zero in Gm;F , exists for every point x in
X . Note that circle compactness depends on the choice of the Gm;F -action, not just
the underlying variety. For instance, if Gm;F acts on AnF with weights w1; : : : ;wn,
then AnF is circle compact if and only if each weight wi is nonnegative. We charac-
terize circle compact toric varieties as follows.

LEMMA 5.2.1
Let TF be a split torus over F with cocharacter lattice N . Let † be a rational poly-
hedral fan in NR, and let X.†/ be the corresponding toric variety. We choose a point
w in N , and we let Gm;F act on X.†/ via the cocharacter *w WGm;F ! TF . Then
the following are equivalent.
(1) The toric variety X.†/ is circle compact.
(2) The support j†j of the fan † is star-shaped around w.
(3) The support j†j of the fan † contains j†j Cw.

Proof
Note that X.†/ is circle compact if and only if the limit of s ( x exists for one point x
in each orbit of the dense torus. Let x( be a point in the orbit corresponding to a cone
0 2 †. Then the limit of s ( x( exists if and only if the image of w in N= span.0/ is
contained in jStar†.0/j.

Now, if j†j is star-shaped around w, then the image of w is contained in
jStar†.0/j for all 0 . On the other hand, if j†j is not star-shaped around w, then there
is a closed ray starting from w whose intersection with j†j is disconnected. Let w0

be the point closest to w in a connected component that does not contain w, and let
0 2† be the cone that contains w0 in its relative interior. Then the limit of s ( x( does
not exist. This shows that the first two conditions are equivalent.

We now show that the second and third conditions are equivalent. First, if j†j is
star shaped around w, then it is a union of convex cones that contain w, and hence it
contains j†j Cw. On the other hand, suppose that j†j contains j†j Cw, and let w0

be any point in j†j. Then j†j contains rw0 for all positive real numbers r , and hence
it contains rw0 Cw. Rescaling again shows that j†j contains rw0Cw

rC1 for all positive
real numbers r , and hence it contains the open interval .w;w0/. This shows that j†j
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is star-shaped around w, and therefore the second and third conditions are equivalent,
as claimed.

5.3. A generalization of Theorem 4.1.1
We generalize Theorem 4.1.1, replacing the affine space Adk on which Gm;k acts with
positive weights by a Gm;k-invariant subvariety of a circle compact toric variety.

THEOREM 5.3.1
Let X.†/ be a toric variety over k, with Gm;k acting by a cocharacter *w WGm;k!
Tk of the dense torus Tk . Suppose that X.†/ is circle compact, and let

X #X.†/

be a Gm;k-invariant subvariety. Let Y be a k-variety endowed with the trivial Gm;k-
action, let U DX !k Y , and let

f W U !A1k D SpeckŒt !

be a Gm;k-equivariant function, where Gm;k acts on A1k with weight d > 0. We set
V DU !kŒt%R0, and we endow f !1.1/ with the b"-action that factors through "d .k/
and is given by

"d .k/! f !1.1/! f !1.1/ W
!
%; .x; y/

"
7!
!
*w.%/x; y

"
:

We view Vk and f !1.1/ as Y -schemes via the projection U ! Y . Then

Vol
!
V.R/

"
D
#
f !1.1/

$

in Kb!.VarY /.

Proof
The proof is similar to that of Theorem 4.1.1 and Proposition 5.1.5, using the fact that
j†j is star-shaped around w=d and contains j†j C w=d , by Lemma 5.2.1, to show
that the relevant constructible subsets of NQ have bounded Euler characteristic 0.

5.4. A generalization of Theorem 4.2.1
As in the generalization of Theorem 4.1.1, we replace the affine space Ad1k on which
Gm;k acts with negative weights by a Gm;k-invariant subvariety of a circle compact
toric variety. Let X.†/ be a toric variety over k, with Gm;k acting by a cocharacter
*w W Gm;k ! Tk of the dense torus. Suppose that X.†/ is circle compact, and let
X # X.†/ be a connected Gm;k-invariant closed subvariety, with x0 2 X a closed
point.
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We also replace the affine space Ad2k on which Gm;k acts with negative weights
by a Gm;k-invariant subvariety of an affine toric variety with repelling fixed point, as
follows. Let U) 0 be the affine toric variety over k corresponding to a rational poly-
hedral cone ) 0, equipped with the Gm;k-action given by a cocharacter *w0 , where
"w0 is a lattice point in the interior of ) 0. Let X 0 # U) 0 be a Gm;k-invariant closed
subvariety. Since "w0 is in the interior of ) 0, the fixed point

x00 D lim
s0!1

*w0.s
0/

is repelling, and hence X 0 is connected and contains x00.

Remark 5.4.1
The statement we are going to prove depends only on a Gm;k-invariant affine neigh-
borhood of the repelling fixed point, so there is no loss of generality in assuming that
this factor is affine.

With the notation above, we have the following generalization of Theorem 4.2.1.

THEOREM 5.4.2
LetZ be a variety over k, equipped with the trivial Gm;k-action, and let p be a closed
point on Z. Let U DX !X 0 !Z, and let

f W U !A1k

be a Gm;k-invariant function such that f .x0; x00; p/D 0. We view X and Z as closed
subvarieties of U via the embeddings x 7! .x; x00; p/ and z 7! .x0; x

0
0; z/, respec-

tively, and set V D U !kŒt% R0 and W DZ !kŒt% R0. Then f vanishes on X , and

Vol
!
sp!1V .X/

"
D ŒX !Vol

!
sp!1W .p/

"

in Kb!.Vark/.

Proof
The proof is similar to that of Theorem 4.2.1, using the fact that j†j is star-shaped
around w, by Lemma 5.2.1, and that ) 0 is convex with "w0 in its interior to show that
the nonempty intersections of j†j ! V) 0 with lines parallel to .w;w0/ are half-open
intervals or open rays.
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