A TROPICAL MOTIVIC FUBINI THEOREM WITH
APPLICATIONS TO DONALDSON-THOMAS THEORY

JOHANNES NICAISE and SAM PAYNE

Abstract

We present a new tool for the calculation of Denef and Loeser’s motivic nearby
fiber and motivic Milnor fiber: a motivic Fubini theorem for the tropicalization map,
based on Hrushovski and Kazhdan’s theory of motivic volumes of semialgebraic sets.
As applications, we prove a conjecture of Davison and Meinhardt on motivic nearby
fibers of weighted homogeneous polynomials, and give a very short and concep-
tual new proof of the integral identity conjecture of Kontsevich and Soibelman, first
proved by Lé Quy Thuong. Both of these conjectures emerged in the context of motivic
Donaldson—Thomas theory.

1. Introduction

Let k be a field of characteristic O that contains all roots of unity. Denef and Loeser’s
motivic nearby fiber, motivic vanishing cycles, and motivic Milnor fiber are subtle
invariants of hypersurface singularities over k. They were defined as elements of
QM;CL = K*(Varg)[L™!], the Grothendieck ring of k-varieties with an action of the
profinite group [t of roots of unity, localized with respect to the class L of the affine
line (or a suitable relative variant of this ring) (see [7, Definition 3.5.3]). These invari-
ants should be viewed as motivic incarnations of the nearby and vanishing cycles
complexes and the topological Milnor fiber, respectively, where the ft-action reflects
the monodromy. They play a central role in various applications in birational geom-
etry and singularity theory, for instance in the calculation of the Hodge spectrum
(see [9]). They are also central tools in motivic Donaldson-Thomas theory, where the
motivic vanishing cycles and the motivic Milnor fiber appear as geometric upgrades
of the virtual Euler characteristic and the Behrend function.

1.1. The tropical motivic Fubini theorem
We present a new tool for the calculation of these invariants, based on tropical geom-
etry and Hrushovski and Kazhdan’s theory of motivic integration in [10]. The motivic
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vanishing cycles are defined by subtracting the class of the hypersurface from the
motivic nearby fiber, so we restrict our attention to the other two invariants. The
theory of Hrushovski and Kazhdan assigns to every semialgebraic set S over the
field Ko = k((¢)) a motivic volume Vol(S) in K#(Vary), and we give natural inter-
pretations of the motivic nearby fiber and the motivic Milnor fiber as motivic vol-
umes of semialgebraic sets (see Corollary 2.6.2). One advantage of this approach is
that the invariants are well defined already in K% (Vary), without inverting I (see
Remark 2.6.3). Another more striking advantage is that we can use semialgebraic
decompositions of these semialgebraic sets to compute their motivic volumes, and
thereby exploit natural connections to tropical geometry. In particular, we present a
new method to compute such motivic volumes: a motivic Fubini theorem for the trop-
icalization map (Theorem 3.1.3), which we state as follows.

THEOREM
Let Y be a Ky-variety. Let n be a positive integer, and let S be a semialgebraic subset
ofG:’n,KO XK, Y. Denote by

. n n
7 Gy ko Xko ¥ = Gy

the projection morphism. Then the function
(tropor)s1g : Q" — K*(Vary) : w — Vol (S N (tropor) ™! (w))

is constructible, and
Vol(S) = / (tropom)1sdy’
Q)’l
in K" (Vary).

Here trop is the tropicalization map and y’ is the so-called bounded Euler charac-
teristic, the unique additive invariant on the Boolean algebra generated by polyhedra
in Q" that assigns the value 1 to every closed polyhedron. In many situations, one
can show that the function (trop o). 1g is constant on polyhedral subsets of Q" with
trivial bounded Euler characteristic. The Fubini theorem then allows us to discard the
contribution of these pieces to Vol(S) without knowing anything about the motivic
volumes of the fibers of the tropicalization map, which may be difficult to control.

This approach seems to be surprisingly effective. Indeed, in each of our appli-
cations below, we prove the desired identity of motivic volumes by first giving an
inclusion of semialgebraic sets. We then tropicalize the complement and use a G-
action to show that the volumes of the fibers are constant on polyhedral subsets of Q"
with trivial bounded Euler characteristic.
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1.2. Applications

We use our motivic Fubini theorem to solve the Davison—Meinhardt conjecture
on motivic nearby fibers of weighted homogeneous polynomials (see [6, Conjec-
ture 5.5]). We also give a very short and conceptual proof of the integral identity
conjecture of Kontsevich and Soibelman in [12, Section 4.4], which was first proved
by L& Quy Thuong in [13]. Both of these conjectures emerged in motivic Donaldson—
Thomas theory; let us recall their statements.

CONJECTURE A (Davison—Meinhardt, 2011)
Let Y be a smooth k-variety with the trivial Gy, g-action, and let Gy, y act on A7
with weights wq, ..., w, > 0. Let

fiAl X Y — AL

be a Gy, i -equivariant function, where Gy, y acts on A}{ with weight d > 0. Then the
motivic nearby fiber of f is equal to [ f ~1(1)] in MY, where the [i-action on f~1(1)
factors through g (k) and is given by

pa (k) x 71 = I (G R x, ) = € x e 0 x, p).

Our formulation is equivalent with the one in [6, Conjecture 5.5] except that they
ask for an equality in the localized Grothendieck ring of varieties over the base Y';
we will discuss this refinement in Proposition 5.1.5. Davison and Meinhardt proved
their conjecture in the special case where w; = 1 for all i (see [5, Theorem 5.9]),
extending an earlier result of Behrend, Bryan, and Szendr6i, who handled the case
where also d = 1 (see [, Proposition 2.12]). We prove the general case in Theo-
rem 4.1.1. Our argument also yields a natural generalization, in which A is replaced
by a G, x-invariant subvariety of a circle compact toric variety (see Theorem 5.3.1).
The following statement was conjectured by Kontsevich and Soibelman in [12], who
described it as crucial to their theory of motivic Donaldson—Thomas invariants.

CONJECTURE B ([12, Section 4.4])
Let dy, da, and d3 be nonnegative integers, and let G, . act diagonally on

U= AZI Xk Azz Xk AZ3
with weight 1 on the first factor, with weight —1 on the second factor, and trivially on
the third factor. Let
f:U—A;
be a Gy, i -equivariant function, where G, . acts trivially on the target Al and such
that £(0,0,0) = 0. Denote by f| A? the restriction of f to AZ3 via the embedding
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A,‘? — U :z+ (0,0,z). Then the restriction of the motivic nearby fiber of f to
AZI C f~H0) equals L2 times the motivic Milnor fiber of flAaz3 at 0, where we
K

view both objects as elements of ,M,l: .

This statement, widely known as the integral identity conjecture, was proved by
L& Quy Thuong [13] in a further localization of M]’: , inverting all the elements 1 — L
with i > 1. His proof also uses Hrushovski—Kazhdan motivic integration. Our tropical
motivic Fubini theorem allows us to substantially simplify the proof, and to generalize
it in the following way: we allow arbitrary positive weights on Ail and arbitrary
negative weights on Agz, and we replace the factor AZ3 by any k-variety with trivial
Gim k-action (see Theorem 4.2.1). Our argument also gives a further generalization, in
which AZI is replaced by a connected G,, k-invariant subvariety of a circle compact
toric variety, and AZZ is replaced by an affine toric variety with repelling fixed point
(see Theorem 5.4.2). In all of these applications, we prove equalities in K*(Varg),
without inverting IL. The resulting statements are stronger, because L is a zero divisor
(see [3)]).

1.3. Plan of the paper

In Section 2, we explain the construction of the motivic volume of Hrushovski and
Kazhdan, which is based on the model theory of algebraically closed valued fields.
We have made an effort to present the results in geometric terms in Theorem 2.5.1.
We have given a similar presentation in [17] in the setting where the base field is
an algebraic closure of Ky, rather than K| itself. For the applications in this paper
it is essential to keep track of the Galois action of ji on the motivic volume, which
requires the more careful analysis given here. We then prove an explicit formula for
the motivic volume in terms of a strict normal crossings model (Theorem 2.6.1), and
show how to realize the motivic nearby fiber and motivic Milnor fiber as motivic
volumes of semialgebraic sets (Corollary 2.6.2).

In Section 3, we prove the tropical motivic Fubini theorem (Theorem 3.1.3). The
proof proceeds in two steps. We first consider the schon case, where one can con-
struct an explicit semialgebraic decomposition of the semialgebraic set into elemen-
tary pieces. We then use a result of Luxton and Qu [14] to decompose an arbitrary
semialgebraic set into schon pieces. In Section 4, we present two applications: the
proofs of Conjectures A and B (Theorems 4.1.1 and 4.2.1). Finally, in Section 5, we
explain how to refine the constructions relatively over a base scheme, and how to gen-
eralize Conjectures A and B to invariant subvarieties of toric varieties equipped with
a G,,-action.



A TROPICAL MOTIVIC FUBINI THEOREM 1847

1.4. Notation
Let k be field of characteristic 0 that contains all roots of unity.! We set Ko = k((¢))
and Ry = k[t]. We denote by K the field of Puiseux series

K= Jk@"m,

n>0

and we fix an algebraic closure K of K. The ¢-adic valuation on K¢ extends uniquely
to a valuation

val: K —Q

on K. We further extend it to K by setting val(0) = oo, and we extend the natural
order on Q to Q U {oo} by declaring that g < oo for all ¢ in Q U {oo}. We write R
for the valuation ring in K, and R for its -adic completion. We also write R for the
valuation ring in K its residue field is an algebraic closure k of k.

The Galois group Gal(K/Ky) is canonically isomorphic to the profinite group

= lim pu,, (k)
“n
of roots of unity in k. This isomorphism also defines a splitting of the short exact
sequence

1 - 1 — Gal(K/Ko) — Gal(k/k) — 1.

The group ji acts continuously on K from the left by means of the rule: ¢ s ¢/ =

et'/n for ¢ € wn(k), n > 0. We will consider the inverse right action of /7 on K so
that 1 acts on Spec K and Spec R from the left. This convention will be important for
the comparison results in Section 2.6.

Let M be a free Z-module of finite rank, and let T be the split R-torus with
character lattice M. Then we can consider the tropicalization map

trop : T(K) — Hom(M, Q) : x > (m + val(x™ (x))).

Let w be an element of Hom(M, ), and write w = v/d for some positive integer d
and some element v in M. Consider the left p 4 (k)-action on Ty with weight vector
v; that is, each element ¢ in ug (k) acts on the character y™ by multiplication with
¢fvm) for every m € M. This induces a left fi-action on T} that we call the [i-action
with weight vector w. The k-variety Ty endowed with this action will be denoted by

"We do not want to assume that k is algebraically closed: even if one is ultimately interested in the case k = C,
one needs to consider finitely generated extensions of C to study relative motivic invariants over a base variety
in Section 5.1.
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Ty , and we will write T* and T% for the varieties T}’ xx R and T} X; K endowed
with the diagonal ji-actions. Then multiplication with ¢(*>) defines a fi-equivariant
bijection between T% (R) = Hom(M, R ) and trop™! (w) C Hom(M,K ).

For every R-scheme X, we denote by spy the specialization map

spy 1 X(R) — X (k)

defined by reducing coordinates modulo the maximal ideal in R. For every scheme
Y over Ry (resp., R), we will also write spy instead of SPYx gy R (resp., SPy . R)-
If C is a constructible subset of ¥, then we will usually write sp;l(C ) instead of
spy! (C(k)) to simplify the notation.

If X is a K-scheme of finite type, then an R-model of X is a flat R-scheme of
finite type X endowed with an isomorphism X g — X. By a variety over a field, we
mean a scheme of finite type.

2. Motivic volumes with Galois action

2.1. Good Galois actions on schemes
Let X be an R-scheme of finite type equipped with a left action of & such that the
morphism X — Spec R is equivariant. We say that the fi-action on X is good if we
can cover X, with ji-stable affine open subschemes U such that [t acts continuously
on O(U), where we consider the profinite topology on [ and the discrete topology
on @ (U). The continuity of this action is equivalent to the property that the action on
each element of @(U) factors through w, (k) for some n > 0.

If the fi-action on X is good, then by Galois descent, Xo = X g /L is a variety
over Ky and the natural map of K-varieties

XK—>X0XKOK

is a [t-equivariant isomorphism. Conversely, let Xy be a variety over Ky, and set
X = Xy xg, K, endowed with the Galois action of fi. Let X be an R-model of X
such that the fi-action on X extends to X, and assume that we can cover X with
[i-stable affine open subschemes. Then the fi-action on X is good.

If the structure map X — Spec R factors through Spec &, then the ji-action on X
is good if and only if it factors through a finite quotient i, (k) and we can cover X
with ji-stable affine open subschemes. Thus, in this case, our definition is equivalent
to the one in [7, Section 2.4].

2.2. Polyhedra and constructible sets
Let V' be a finite-dimensional affine space over QQ, that is, a torsor under a finite-
dimensional Q-vector space. A polyhedron in V 1is a finite intersection of closed
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rational half-spaces in V. In other words, it is a set of the form
{v eV | fi(v)=0fori = 1,...,r},

where f1,..., f; are affine linear maps from V' to Q. A constructible subset I" of V
is a finite Boolean combination of polyhedra.

There exists a unique Z-valued invariant y’ on the Boolean algebra of con-
structible subsets in V' that is additive on disjoint unions and that assigns the value
1 to every nonempty polyhedron. This invariant y’ is called the bounded Euler
characteristic. It is clear from the definition that it is invariant under affine linear
automorphisms of V. One can compute y’(T") for every constructible subset " of
V' in the following way. We choose an isomorphism of affine spaces V — Q" for
some 7 > 0. There is a canonical subset ' of R” associated with I, defined by the
same system of Q-linear inequalities as I". Then one can show that the compactly
supported Euler characteristic of I'r N [—r, ]" stabilizes for sufficiently large r € R;
the limit value is precisely y'(T").

Constructible sets with vanishing bounded Euler characteristic will play an
important role in the applications in Sections 4 and 5. Typical examples include half-
open line segments and open half-lines, as well as products of these with arbitrary
constructible sets.

2.3. Semialgebraic sets
Let X be a variety over K. A semialgebraic subset of X is a finite Boolean combina-
tion of subsets of X(K) of the form

{x € U(K) | val(f(x)) < val(g(x))} C X(K), (2.3.1)

where U is an affine open subvariety of X and f, g are regular functions on U. If
X is of the form Xy xg, K, for some variety Xy over Ky, then we say that S is
defined over K if we can write it as a finite Boolean combination of sets of the form
(2.3.1) such that U, f, and g are defined over K. Note that this property depends
on the choice of Xj; if we want to make this choice explicit, we will also call S a
semialgebraic subset of X (even though it is not an actual subset of Xj).

Example 2.3.2
Let Ty be a split Ko-torus with cocharacter lattice N. Then for every constructible
subset I' of Ng, the set

trop” (") C To(K)

is a semialgebraic subset of Tj.
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Example 2.3.3

Let X be an R-scheme of finite type, and let C be a constructible subset of Xz Then
sp;c1 (C) is a semialgebraic subset of Xz. To see this, it suffices to consider the case
where X is affine and C is closed in Xz. If (z1,...,z,) is a tuple of generators of the
R-algebra O(X), and (f1,..., f;) is a tuple of elements of @ (X) such that C is the
set of common zeros of the functions f;, then

spx (C) = {x € X(K) | val(zi (x)) = 0, val(fj(x)) > O forall i, j}.

This is a finite Boolean combination of sets of the form (2.3.1). The same argument
shows that, if X is an Ry-scheme of finite type and Cj is a constructible subset of
(Xo)k, then sp;&) (Co) is a semialgebraic subset of (Xo) g,

If X and X' are varieties over K and S and S’ are semialgebraic subsets of X
and X', respectively, then a morphism of semialgebraic sets f : S — S’ is a map
whose graph is semialgebraic in X xg X'. If X = Xo xk, K and X' = X xg, K
and S and S’ are defined over Ky, then we say that f is defined over K| if its graph
has this property. It follows from Robinson’s quantifier elimination for algebraically
closed valued fields that the image of a morphism of semialgebraic sets is again a
semialgebraic set. If the morphism is defined over Ky, then the same holds for its
image.

We denote by VF, the category of semialgebraic sets defined over Kopj; it comes
equipped with a base change functor VFg, — VF to the category of semialgebraic
sets over K. For every object S in VF K, there is a natural action of the Galois group
1 on the set S, and Ko-morphisms of semialgebraic sets are equivariant with respect
to this action.

PROPOSITION 2.3.4

Let X¢ be a variety over Ky, and let S be a semialgebraic subset of X = X Xk, K.
Then S is defined over Ky if and only if S is stable under the Galois action of G =
Gal(K/Kp) on Xo(K).

Proof

The condition is clearly necessary; we will prove that it is also sufficient. Suppose that
S is stable under the G-action. We may assume that X is affine; then § is a finite
Boolean combination of sets of the form

{x € X(K) | val(f(x)) < val(g(x))}

with f.g € O(X). We can find a finite extension K’ of K in K such that all the
functions f and g that appear in these expressions are defined over K’. Set X’ =
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Xo xk, K'. We view X’ as a variety over Ko by forgetting the K'-structure. Let S’
be the semialgebraic subset of X’(K) defined by the same formulas as S this is a
semialgebraic subset of X’ defined over K. Since S is stable under the G-action on
Xo(K), the image of S’ under the projection map X’(K) — Xo(K) is equal to S.
Now it follows from quantifier elimination that S is defined over Kj. ([

Example 2.3.5

We will use Proposition 2.3.4 in the following way. Let X be a variety over Ko,
and let X be an R-model of X = X xg, K such that the Galois action of [ on X
extends to an action on X.. Let C be a constructible subset of X that is stable under
the action of fi. Then spy! (C) is stable under the G-action on X, (K). Hence, it is
a semialgebraic subset of Xg. If the [i-action on X is good, this can also be seen
directly: we can form the quotient Xo = X /& in the category of schemes. This is an
Ry-scheme of finite type whose generic fiber is canonically isomorphic with Xg. If
we denote by Cy the image of C under the projection morphism X — X, then Cy
is a constructible subset of (Xo) and spy! (C) = sp;ct (Co).

2.4. Grothendieck rings of varieties and semialgebraic sets

The piecewise geometry of varieties and semialgebraic sets is encoded in various
Grothendieck rings. We first consider the Grothendieck ring K™ (Varg) of k-varieties
with [i-action. As an abelian group, it is defined by the following presentation:

. Generators: isomorphism classes of k-varieties X endowed with a good [i-
action. Isomorphism classes are taken with respect to fi-equivariant isomor-
phisms.

. Relations: we consider two types of relations.

(1) Scissor relations: if X is a k-variety with a good fi-action and Y is a
i1-stable closed subvariety of X, then

[X]=[Y]+[X\Y].

2) Trivialization of linear actions: let X be a k-variety with a good i-
action, and let V' be a k-vector space of dimension d with a good linear
action of [i. Then

[X i V]=[X i AL,

where the [i-action on X x V is the diagonal action and the action on
Af is trivial.
The group K#(Varg) has a unique ring structure such that [X]-[X'] = [X x; X']
for all k-varieties X, X’ with good ji-action. Here the ji-action on X xj X' is the
diagonal action. The identity element in K (Vary) is the class of the point Spec k. We
write IL for the class of A}c (with the trivial f-action) in the ring K (Varg).
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Remark 2.4.1

The trivialization of linear actions is a standard operation in the theory of motivic
integration, in order to obtain well-defined motivic measures and a change of vari-
ables formula (see, e.g., [7, Section 2.4]). All of the standard cohomological realiza-
tions respect this trivialization. In the context of Hrushovski and Kazhdan’s theory of
motivic integration, this relation naturally appears when one identifies all of the fibers
of the tropicalization map

trop: (K*)" — Q"
in the definition of the motivic volume (see Theorem 2.5.1).

Now, we define the Grothendieck ring K(VFk,) of semialgebraic sets over Kj.
The underlying group is the free abelian group on isomorphism classes [S] of semi-
algebraic sets S over Ky modulo the relations

[S]=[S"T+[S ~ 8]

for all semialgebraic sets S’ C S. Here isomorphism classes are taken in the category
VFk,, that is, with respect to semialgebraic bijections defined over Ko. The group
K(VFk,) has a unique ring structure such that

[S]-[S"]=1[S x S']

in K(VFg,) for all semialgebraic sets S and S’. The identity element in K(VFg,) is
the class of the point, that is, the semialgebraic set [Xo(K)] with X¢ = Spec K.

Example 2.4.2
Let

B={xef}val(x)>0}

be the open unit ball in K. This is a semialgebraic set defined over K. We can write
the class of B in K(VFg,) as

[B] =1+ [trop™ (Q>0)]

(the class of the point {0} plus the class of the punctured ball).

2.5. A refinement of the motivic volume
In [10], Hrushovski and Kazhdan have defined the motivic volume of a semialgebraic
set over K. More precisely, they constructed a ring morphism
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Vol : K(VFg) — K(Varg)

from the Grothendieck ring of semialgebraic sets over K to the Grothendieck ring of
varieties over k. Their construction is based in an essential way on the model theory
of algebraically closed valued fields. The main lines are presented from a geometric
perspective in [17] and [16]. If the semialgebraic set is defined over the subfield K of
K, then the motivic volume can be refined in order to reflect the action of the Galois
group Gal(K /Ko). We will now explain this refinement, again presenting the results
of Hrushovski and Kazhdan [10] in a more geometric language.

THEOREM 2.5.1 (Hrushovski and Kazhdan [10])
There exists a unique ring morphism

Vol : K(VFg,) — K” (Vary)

that satisfies the following properties.

(D Let X be a smooth variety over Ky, and let X be a smooth R-model of
X = Xo Xk, K such that the Galois action of [t on X extends to a good
action on X. Then S = X (R) is defined over Ko, and Vol([S]) = [Xk] in
KA (Var).

(2)  Let T be a constructible subset of Q", for some n > 0, and set S’ = trop™ 1 (T").
Then S’ is defined over Kg, and

Vol([S']) = ¥’ (D)L —1)"

in K*(Vary).

Proof
We unravel some of the central results in [10]. We will not explain all the notation, as
this is not strictly necessary to follow the argument, but we provide precise references
for the reader.

Hrushovski and Kazhdan constructed a surjective morphism of rings

© : K(RES[*]) ®z K(Q[+]) — K(VFk,)

and gave an explicit description of its kernel (see Theorem 8.8 and Corollary 10.3 of
[10]). Here K(RES[*]) and K(Q[x]) are certain graded Grothendieck rings of vari-
eties with fi-action and constructible sets in Q-affine spaces, respectively. Informally
speaking, the relations that generate the kernel express that the fibers of the tropi-
calization map are G%’ g (R)-torsors, and that the open unit ball in K from Exam-
ple 2.4.2 can also be described as spgi (0). In Theorem 10.5(4) of [10] and its proof,

0
Hrushovski and Kazhdan also defined a ring morphism
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&' : K(VFg,) — K*(Vary).

To be precise, in [10] the target of &’ is a quotient of K(RES[*]), which they denote
by 'K(RES), but this ring is canonically isomorphic to K% (Vary) by [11, Proposi-
tion 4.3.1] (there it was assumed that k is algebraically closed, but the proof remains
valid if we only assume that k& contains all the roots of unity). We set Vol = &’ and
we will prove that it satisfies, and is uniquely determined by, the properties in the
statement.

The ring K(Q[*]) is generated by the classes of pairs (I, n), where n is a nonneg-
ative integer and I" is a constructible subset of Q”. The image of the class of (I',n)
under &’ o © is precisely x'(I")(IL — 1)". Thus it suffices to prove the following two
claims:

(a) The ring K(VFk,) is generated by elements of the form [S x trop™!(T")],
where S is as in the statement of Theorem 2.5.1 and I is a polyhedron in Q"
for some n > 0.

(b) The morphism &’ sends the class of S in K(VFg,) to the class of Xj in
KH (Varg).

These statements imply the existence and uniqueness of the morphism Vol.

Let us prove these claims. The ring K(RES[*]) is generated by equivalence
classes of pairs (Y,n), where n is a nonnegative integer and Y is a k-variety of pure
dimension d < n endowed with a good action of i (here we are implicitly using the
identifications explained in [11, Section 4.3]). Partitioning Y into subvarieties, we
may assume that ¥ is smooth. We set

Y=Y xx R

and we endow it with the diagonal ji-action. We write B for the open unit ball in K
as in Example 2.4.2. It follows easily from the constructions in [10] that the image of
the class of (Y, n) under @ is

[Y(R)][B" 9] e K(VFk,).

This proves claim (a).
It remains to prove claim (b). Let X and S be as in the statement of Theo-
rem 2.5.1. We set

X’:kakR

and we endow it with the diagonal ji-action. By definition, the image of [ (R)] under
&' is

[Xk] € KX (Var).
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Thus it suffices to show that there exists a semialgebraic bijection between X (R) and
X'(R) that is defined over K. Working locally on X and X, we may assume that
there exist étale R-morphisms X' — A% and X’ — A’ that coincide on the special
fibers (we are not requiring any fi-equivariance here). Set Z = X x AT, X', and denote
by A the image of the diagonal morphism X; — Z. Using the Henselian property
for R, we see that §' = spi1 (A) is the graph of a bijection between X (R) and X'(R).
We will prove that S’ is defined over Kj.

The set S’ is stable under the Galois action of Gal(k/k) by construction. Thus
by Proposition 2.3.4, it is enough to prove that S’ is stable under the action of it on
X(R) x X'(R), that is, the bijection defined by S’ is Ji-equivariant. Denote by X
and X’ the formal 7-adic completions of X and X’, and denote by 3 the open formal
subscheme of the formal ¢-adic completion of Z supported on the open subscheme A
of Z. Then 3 is the graph of an isomorphism of formal R-schemes h : X — X'. The
induced isomorphism /. between the special fibers is [i-equivariant by construction.
This implies that / is fi-equivariant, because every continuous action of t on X or X’
by I/Q\—automorphisms that are trivial on the special fiber, is trivial (to see this, linearize
the action on the completed local rings). U

If S is a semialgebraic set defined over Ky, then we will write Vol(S) for
Vol([S]). If X is a variety over Ky, then we can view X(K) as a semialgebraic
set defined over Ky; we will usually write Vol(X) instead of Vol(X(K)). It follows
immediately from the definitions that the motivic volume has the following properties
with respect to extensions of the base field K. Let K|, be a finite extension of Ky in
K. Denote by k' the residue field of K}, and let 7’ be the inertia group of Kj; this is
an open subgroup of 1. Let

Resg, - K” (Varg) — K¥ (Varg/)

be the morphism defined by base change to k’ and restricting the fi-action to i’. Then
the diagram

Vol ~
K(VFg,) — K¥*(Vary)

\L \L Resg ’

K(VFg;) — K (Var:)
Vol

commutes, where the left vertical morphism is the base-change morphism. Likewise,
the diagram



1856 NICAISE and PAYNE

Vol ~
K(VFg,) — K& (Varg)

M
l \L Res“}

K(VFK) E—— K(Val‘g)
Vol

commutes, where the left vertical morphism is the base-change morphism and Res? 1)

is the morphism that performs base change to k and forgets the ji-action.

Example 2.5.2
If B is the open unit ball in K from Example 2.4.2, then Vol(B) = 1 in K% (Vary)
because y'(Qso) = 0.

2.6. Comparison with the motivic nearby fiber of Denef and Loeser
Let X be a Ryp-scheme of finite type. Assume that X is regular and that its special
fiber X is a divisor with strict normal crossings support. In this section, we will
establish an explicit formula for the motivic volume Vol(X (R)) € K/ (Varg) of the
semialgebraic set X (R). This formula will then allow us to compare the motivic
volume with the motivic nearby fiber of Denef and Loeser.

We write

Xr = Z Ni E;,
iel
where E;, i € I are the irreducible components of X and the coefficients N; are
their multiplicities in X . For every nonempty subset J of 1, we set

E;=()E) E3=EJ\(UE,-).

jeJ i¢J

The sets E9 and E are locally closed subsets of X, and we endow them with their
induced reduced subscheme structure. By the definition of a strict normal crossings
divisor, all of the schemes E; and E are regular. As J ranges through the nonempty
subsets of 7, the subschemes E'¢ form a partition of X.

Sete =lcm{N; |i € [}. Let X be the normalization of X Xk[e] k[t'/¢], and set

E,‘; = (fxx Eg)red

for every nonempty subset J of 1. Then the group s, (k) acts on £9, and this action
factors through a free action of py, (k) where Ny = gcd{N; | j € J}. This makes
Eg into a uy, (k)-torsor over EG (see [15, Section 2.3] and [4, Lemma 4.1.2]). We
denote by £ : X — X the projection morphism from X to X.
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THEOREM 2.6.1
Let C be a locally closed subset of X, and set S = sp;c1 (C). Then we have

Vol($)= Y (1—L)EF N~ (0)]
g#£JCI

in K™ (Vary).

Proof

Our proof follows similar lines as that of claim (b) in the proof of Theorem 2.5.1,
but we need to replace the étale-local model A’; to take the singularities of Xy into
account. By additivity, we may assume that C is a closed subset of the stratum E¢
for some nonempty subset J of /. We set M; = N; /Ny forevery j € J. Set R’ =
k[t'/N7], and denote by ¥ the normalization of X x g, R’. The scheme ¥ carries a
natural 1, (k)-action that is compatible with the Galois action on R’. It follows from
[4, Lemma 4.1.2] that the natural morphism X — ¥ induces a wn, (k)-equivariant
isomorphism of E 3-schemes,

Eg%yXx E;.

We write C for the inverse image of C in ¥ xx E¢. Under the above isomorphism,
it corresponds to the closed subset 27! (C) of Eg

Working locally on X, we may assume that X is affine, that / = J, and that E;
is defined by a global equation f; =0 on X for every j € J. Then we can write

t:ul_[ijj

with ¥ an invertible function on X . The proof of [15, Proposition 2.3.2] reveals that
there exists a uy, (k)-equivariant isomorphism of X-schemes,

Y — Spec O(X)[T]/(1 —uT™),

where sy, (k) acts on the target by multiplication on 7' and such that /¥ ¢

O(Y) is identified with T~ ] jeJ f ij . We choose integers aj, j € J such that
> jesajMj=1,and wesetg; =T"% f; forevery j € J. Then

1/Nj _ M;
=TT
jeJ
and the functions g; give rise to a smooth morphism,

. M;
g:Y—>U=SpecR'[uj,j eJ]/(tl/NJ — nuj ’),
jeJ
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such that E g is the inverse image of the origin O in Uy. We endow U with the left
WUN, (k)-action induced by the Galois action on R and the rule that u; * { = (™% u;
for every ¢ € un, (k). Then the morphism g is uy, (k)-equivariant. Shrinking X if
necessary, we can further arrange that g lifts to an étale morphism,

y%uXR/A’;/

for some m > 0 (which is not necessarily py,-equivariant). Corestricting this mor-
phism over O x; A" we obtain an étale morphism EG — A7 If we set ¥’ = U xi
E;, then this morphism gives rise, at its turn, to an €tale morphism,

y/—> u X R/ Arg/

We endow ¥’ with the diagonal uy, (k)-action.
We consider the fibered product

=Y X(uxR,AI};/) Y.

Denote by A the image of C under the diagonal map E 9 — Zj. The Henselian prop-
erty for R implies that spi1 (A) is the graph of a semialgebraic bijection o between
spy' (C) and

py! () = 503/ (0) x5p3h 1 (C).

Now we make the following claims.

(a) The bijection « is defined over Kj.

(b)  The volume of spTE{, R (C) isequal to [C] in KA (Vary).
0%k

(c)  The volume of spy,! (0) is equal to (1 —L)/I=1.
These claims together yield the desired formula for Vol(spgc1 (C)).

In order to prove claim (a) it suffices to show that « is {i-equivariant, by Propo-
sition 2.3.4 (applied to the graph of o). We denote by 2) and 2)’ the formal comple-
tions of ¥ and ¥’ along C, respectively. Then, once again, the formal completion of
Z along A is the graph of an isomorphism o’ : ) — 2)’. The bijection « is a map
induced by o’ on R-points. By construction, both ) and )’ come equipped with a
smooth py, (k)-equivariant morphism to , the formal completion of U at O, and
o’ is an isomorphism of formal ${-schemes. Now the result follows from the fact that
every finite-order automorphism of ) or )’ over 4l that acts trivially on the fiber over
O is the identity (this can again be seen by linearizing the action on the completed
local rings).

Next, we prove claim (b). By additivity, we may assume that C is a smooth closed
subvariety of E9. Then, locally on £, we can find an étale morphism E'¢ — A} such
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that C is the inverse image of the linear subspace Ai, for some r > 5 > 0. Now both

E 9 Xk R and C x x A'R° are equivariant étale covers of A%,. Denote by V their fiber
product over A%, and by A’ the image of C in Vi under the diagonal embedding. We
denote by B the open unit ball in K; it has motivic volume 1 by Example 2.5.2. Then
sp{,1 (A) is the graph of a semialgebraic bijection,

PEy & (©)— Spam?{,f (C)=C®x B,

that is defined over K because it is ji-equivariant. Claim (b) now follows from the
definition of the motivic volume.

Finally, we prove claim (c). We denote by K’ the fraction field of R’, and we set
r=|J|and v; = (M;, j € J). Since the entries M are coprime, v; can be extended
to a basis vy, ..., v, of Z7. For every i in{2,...,r}, weset b; = Zjejajv,-,j. The
(r — 1)-tuple of uy, (k)-invariant invertible functions

(sz/zv, 1—[ uljf_z.j“_.’[fb,-/NJ 1—[ u;r’j)

jeJ jeJ

defines an isomorphism U g’ — G:n_,}(, that descends to K. This isomorphism iden-
tifies spy,! (O) with

trop~ (") € (K )",

where I is an open (r — 1)-simplex in Q" L. Since the bounded Euler characteristic
of an open (r — 1)-simplex is equal to (—1)" !, the definition of the motivic volume
now implies that spg!(0) = (1 —L)/I=1. O

Using Theorem 2.6.1, one can compare the motivic volume to other motivic
invariants that appear in the literature. We are mainly interested in the motivic nearby
fiber of Denef and Loeser in [7, Definition 3.5.3]. The motivic nearby fiber was
defined as a motivic incarnation of the complex of nearby cycles associated with a
morphism of k-varieties f : U — A}c with smooth generic fiber. It is an object 1//?0‘
that lies in the localized Grothendieck ring of varieties with [i-action over the zero

locus f~1(0) of f. For every subvariety C of f~!(0), we can restrict \//?0‘ over

C by base change and then view the result as an element in ME = K7 (Varg)[L™1]
by forgetting the C-structure. In particular, if x is a closed point on U such that
f(x) =0, then by restricting 1//?‘” over x we obtain an element in M;: that is called
the motivic Milnor fiber of f at x and denoted by w?‘;

COROLLARY 2.6.2
Let f : U — Speck|[t] be a morphism of varieties over k, with smooth generic
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fiber, and denote by X the base change of U from k[t] to Ry = k[t]. Let C be
a subvariety of the zero locus f~1(0) = Xi of f. Then sp;c1 (C) is a semialge-
braic set defined over K. It consists of the points u in U(R) that satisfy f(u) =t
and such that the reduction of u modulo the maximal ideal in E belongs to C.
The image of Vol(sp;c1 (C)) in the localized Grothendieck ring 'MII: is equal to the
restriction of Denef and Loeser’s motivic nearby fiber of f over C. In particular,
1//?0t = Vol(X (R)) and, for every closed point x on X, W?‘jc‘ = Vol(sp;cl (x)) in
ML

Proof
The motivic nearby fiber can be computed on a log resolution for the pair (U, f~1(0))
by means of Denef and Loeser’s formula in [7, Definition 3.5.3]. The desired equali-

ties then follow immediately from a comparison with the formula in Theorem 2.6.1.
O

Remark 2.6.3

Corollary 2.6.2 implies, in particular, that the motivic nearby fiber and the motivic
Milnor fiber are well defined already without inverting L. This can also be proved
directly: one can take Denef and Loeser’s formula in terms of a log resolution as a
definition and use weak factorization to check that it does not depend on the choice of
the log resolution. Corollary 2.6.2 also provides a natural extension of the definitions
of the motivic nearby fiber and motivic Milnor fiber to the case where the generic
fiber of f is singular. This extension coincides with the constructions of Bittner [2]
and Guibert, Loeser, and Merle [9] after inverting .. We will discuss a refinement
of Corollary 2.6.2 to an equality in the relative Grothendieck ring over f~!(0) in
Corollary 5.1.4.

Corollary 2.6.2 is closely related to similar comparison results by Hrushovski
and Loeser in [11] for the motivic zeta function, but our approach is more direct if
one only wants to retrieve the motivic nearby fiber; in particular, we do not need
to consider the more complicated measured version of Hrushosvki and Kazhdan’s
motivic integration theory, and we avoid inverting L.

3. A motivic Fubini theorem for the tropicalization map

The aim of this section is to develop a flexible tool to compute the motivic volume for
a large and interesting class of examples. The basic idea is to calculate the volume of a
semialgebraic subset S of an algebraic torus an, Ko by first integrating over the fibers
of the tropicalization map trop : (fx)” — " and then integrating the resulting func-
tion on Q" with respect to the bounded Euler characteristic y’. As mentioned in the
Introduction, an important advantage of this approach is that y’ vanishes on bounded
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half-open intervals and half-bounded open intervals, which allows us in certain cases
to discard the contribution of pieces of § that are difficult to control directly. Concrete
applications will be discussed in Section 4.

3.1. The calculus of constructible functions

Definition 3.1.1
Let A be an abelian group, and let I/ be a finite-dimensional affine space over Q. We
say that a function

p:V—>A

is constructible if there exists a partition of V' into finitely many constructible subsets
o1,...,0p such that ¢ takes a constant value a; € A on g; foreachi in {1,...,r}. In
that case, we define the integral of ¢ with respect to the bounded Euler characteristic
x' by means of the formula

,
/ pdy' =Y aix(oi) € A.
v i=1

If ' is a constructible subset of V', then we also write

/sodx’=/(<p-1r)dxﬂ
T Vv

where 1t is the characteristic function of I".

Integrals of constructible functions satisfy the following elementary Fubini prop-
erty.

PROPOSITION 3.1.2

Let A be an abelian group, and let f : V — W be an affine linear map of finite-
dimensional affine spaces over Q. Let ¢ : V — A be a constructible function. Then
the function

f*ga:W—>A:w|—>/ ody
S~ w)

/sodx’=/ fepdy'.
14 w
Proof

By A-linearity of the integral, we may assume that ¢ is the characteristic function of

is constructible, and
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a polyhedron I' in V. Then the result follows at once from the fact that f(I") and the
fibers of f are polyhedra in W, and that y’ assigns the value 1 to every nonempty
polyhedron. O

We can now formulate the main result of this paper.

THEOREM 3.1.3 (Motivic Fubini theorem for the tropicalization map)
Let Y be a variety over K. Let n be a positive integer, and let S be a semialgebraic
subset of G}, Ko %Ko Y. Denote by

. n n
7 : Gy, ko Xko ¥ = G,

the projection morphism. Then the function
(tropormr)s1g : Q" — K (Varg) : w — Vol(S N (trop omr)~! (w))

is constructible, and
Vol(S) = / (tropom)1sdy’
Qﬂ
in K™ (Vary).

We will split up the proof of Theorem 3.1.3 into two main steps. We can immedi-
ately make a first reduction. By additivity and Noetherian induction, we may assume
that Y is a closed subvariety of a split Ko-torus 7. Denote by N the cocharacter
lattice of T'. Applying Proposition 3.1.2 to the function

¢ :Q" x Ng — K" (Varg) : w — Vol(S N trop_l(w))

and the projection f : Q" x Ng — Q", we see that it suffices to prove Theorem 3.1.3
for the function trop, 15 on Q" x Ng, replacing G, K, DY its product with 7'. Thus
we may assume that ¥ = Spec Ky. We split up the remainder of the proof into two
steps.

3.2. Step 1: The schon case

We first consider the case of a schon integral closed subvariety Xy of G”m’ Ko The
schonness condition means that X = X X g, K satisfies the following nondegeneracy
condition: for every a € (K*)", the schematic closure of a~'X in Gy, g is smooth
over R. We denote this schematic closure by X¢. In [17, Corollary 3.12] we have
given a tropical formula for Vol(X) without taking the fi-action into account. We will
now explain how to refine this formula to keep track of the f-action. Actually, we
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will prove a slightly more general result, which applies to any semialgebraic subset S
of X of the form X(K) N trop~!(I"), where T is a constructible subset of Q.

Let a € (K*)", and set w = trop(a). Recall from Section 1.4 that we denote by
Gz’ « the k-torus G, k endowed with the left fi-action with weight vector w. Then
Xy is stable under the 14 (k)-action on G;ﬁ, « and thus inherits a good action of 1.
It follows immediately from the definition that X¢, with its ji-action, depends only
on w, and not on a. It is called the initial degeneration of X at w and is denoted by
ing, X.

Let ¥ be a Q-admissible tropical fan for X in R" x R>¢ in the sense of [8,
Definition 12.1] (henceforth, we will simply speak of a tropical fan). It defines a toric
scheme P(X) over R. If we write X for the schematic closure of X in P(X), then X
is proper over R and the multiplication map

m:T xgp X —P(X)

is faithfully flat. The condition that X is schon is equivalent to the property that m is
smooth. The Galois action of [ on G"m x extends uniquely to P(X), and X is stable
under this action.

Intersecting the cones of ¥ with Q" x {1}, we obtain a QQ-rational polyhedral
complex in Q" that we denote by X ;. The support of X is equal to trop(X(K)), by
[8, Proposition 12.5]. For every cell y in X, we denote its relative interior by y. We
write X, for the semialgebraic subset

X(K) N trop™'(7)

of X. As y ranges over the cells in X, the sets X, form a partition of X (K). We
denote by X (y) the intersection of X with the torus orbit of P(X)x corresponding
to the cell y. Then we can also write X, as

Xy = spx (%)) 1 X(E).

LEMMA 3.2.1

Let X be a schon integral closed subvariety of G;’L Ko’ and let ¥ be a tropical fan
for Xo in R" x Rs. Let y be a cell of 1. Then Xy (y) is smooth over k. If w € y,
then the class of iny X in K*(Vary) is equal to [ X (y)](L — D)™ In particular, it
only depends on y, and not on w.

Proof

Let V be the Q-linear subspace of Q" generated by vectors of the form w — w’ with
w, w’ in y. We denote by T the split Ry-torus with cocharacter lattice V N Z". Let a
be a point of (K*)" such that trop(a) = w.
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Itis explained in the proof of [17, Proposition 3.11] that X7 is a trivial Tk -torsor
over X (y) in a natural way. Thus smoothness of X (y) follows from that of X.
Moreover, an inspection of the proof reveals that the torsor structure is [i-equivariant,
where [t acts trivially on Tk. This means that we can write X! as a product of line
bundles on X (y) with the zero sections removed such that & acts linearly on each
factor (see [4, Proposition 7.1.1]). The triviality of linear actions on vector spaces in
K” (Vary) now implies that

[inw X] = [ Xk (y)](@L — D@, O

Thus if y is a cell of X1, no ambiguity arises from writing [in, X for the class of
iny, X in K#(Vary), where w is any point in .

PROPOSITION 3.2.2

Let Xo be a schon integral closed subvariety of G”m’ Ko and let ¥ be a tropicci fan
for Xo in R* x Rxg. Let I' be a constructible subset of Q"*, and set S = X(K) N
trop~ 1 (T"). Then

Vol(S) =Y " x'(T' N )[iny X] (3.2.3)
Y

in K" (Vary), where y runs through the set of cells in ¥1. In particular,

Vol(Xo) = ) (=D)*Pin, X]
y bounded

in K* (Vary ), where the sum is taken over the bounded cells y of ¥1.

Proof

In order to deduce the formula for Vol(X¢) from equation (3.2.3), it suffices to observe
that y'(y) = (—1)%™®) when y is bounded, and y’(y) = 0 otherwise (see the proof
of [17, Corollary 3.12]).

Therefore, we only need to prove the validity of (3.2.3). Since both sides are
additive in I' and invariant under refinement of the fan X, we may assume that I’ = y
for some cell y in £;. Then we must show that Vol(X,) = x'(y)[in, X]. We will
follow a construction similar to that in the proof of [17, Proposition 3.11], but we will
need to refine it to take the ji-action into account.

We fix a point w in y and set t¥ = (t*1,...,t¥") € (K*)". Let T = G, g and
T =G}, . We denote by T* the torus T endowed with the [-action with weight
vector w, and by T its generic fiber. Set

jw={veQ"|w+veyp}
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and let V be the Q-linear subspace of Q" generated by },,. We denote by T the split
R-torus with cocharacter lattice ¥V N Z". This is a subtorus of T. We write T for the
generic fiber of "Tf, and ﬁ, for the inverse image of y,, under the tropicalization map
T(f) — V' NQ". The quotient Ty / ﬁ:k acts freely and transitively on the torus orbit
O(y) of P(2); corresponding to the cell y. If we take the specialization of % as base
point, t’Een we obtain a fi-equivariant isomorphism between O(y) and T} / ﬁk, where
we let T act on T* by multiplication.

The action of fi on T} / Ty factors through a free action of 114 (k) for some d > 0.
Thus we can find locally on T}’ /T a ji-equivariant étale morphism to A} equipped
with the trivial [i-action, for some r > 0. Taking the base change to R, this implies
that there exists around each point of Xy (y) a Ji-stable open neighborhood U in
™ /:}lv“ that admits an étale ji-equivariant morphism,

h:U— A%.

Moreover, since X (y) is smooth, we can arrange that Xy (y) N U = h_l(Ai) for
some 0 <s<r.WesetYy = U x AL A% and we endow it with the diagonal action of
1. We will construct a semialgebraic bijection,

¥ spx (%) N X(K) — Ty x Y(R),

that is defined over Ky and commutes with the specialization maps to Y. The result
then follows from the fact that Vol(¥(R)) = [U N X (y)] and Vol(ﬁ,) =y () (L-
1)4m() by Theorem 2.5.1.

By the Henselian property of R, the linear projection 7 : A’ — A% induces a
semialgebraic retraction,

p:spy (Yk) = Y(R),

which can be described in the following way. Let Z be the inverse image in U xg ¥
of the graph of . Let A be the image of the diagonal embedding of ¥y into Uy x Y.
Then the graph of p is equal to spZ' (A). Thus p is defined over Ko, by Example 2.3.5.
We also choose a Z-linear retraction of (V NZ") — Z", and we denote by po : T — T
the morphism of tori associated with the morphism of cocharacter lattices Z" — (V' N
Z™). We write

p:TY >T

for the composition of the morphism 7% — T given by multiplication by =%, and
the projection morphism pg. Then p is [i-equivariant, and thus defined over Kj.
Finally, we write ¢ for the projection map T* — T% /T.
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Now we consider the semialgebraic map

¥ 1spy (%) N X(K) = Ty x Y(R) - x > (p(x), p(g(p(x) " - x))).

It is defined over Ky. Note that p(x) indeed lies in ﬁ, because trop(p(x)) is the image
of trop(x) — w under the projection Q" — (V N Q™"). We claim that v is bijective. To
prove this, it suffices to show that the map

Pa : (X xp5 U(R) = T(R) x Y(R) : x > (po(x). p(q(x)))

is bijective for every a in i, This can be done in the same way as in the proof of [17,
Proposition 3.11]: the morphism pq induces a splitting T == T xg (’]I’/T), and under
this splitting the restriction of the morphism

(po.mohogq): X xﬂ-ﬁ‘u—>A’]1‘J><RA§e
to the special fibers coincides with the étale morphism
1d x hy ZTYk Xk Yy —>ﬁ:k X Ai.

Now the Henselian property of R implies that ¢, is a bijection. O

COROLLARY 3.2.4
Let Xo be a schon integral closed subvariety of G, Ko’ and let T be a constructible

subset of Q". Then Theorem 3.1.3 holds for S = Xo(K) N trop~1(T").

Proof

Let a be an element in (K*)", and write trop(a) = w. We have trop~! (w) = X%(R).
Thus Theorem 2.5.1 implies that Vol(trop~'(a)) = [X¢]. If we denote by y the
unique cell of X; that contains a in its relative interior, then we know by Lemma 3.2.1
that [X}] = [iny X]. Thus the function w > Vol(trop~!(w)) is constant with value
[in, X] on the relative interior y of each cell y of ¥;. Hence, Theorem 3.1.3 follows
from formula (3.2.3). O

3.3. Intrinsic torus embeddings
Before we prove the general case of Theorem 3.1.3, we collect some results on intrin-
sic tori that will be used in the proof.

Definition 3.3.1

Let F be a field. If T and T’ are split F-tori, then a monomial morphism T' — T is
a morphism of F-varieties that can be written as the composition of a morphism of
tori followed by a translation by an element in T'(F).
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Let 7" — T be a monomial morphism of Ky-tori. If we denote by N and N’ the
cocharacter lattices of T and T”, respectively, then there exists a unique integral affine
linear map v : N’ — N such that the following diagram commutes:

trop

T'(K) —— N},

l lv@

T(K) — Ng
rop

Let F be a field. A variety U over F is called very affine if it admits a closed
embedding into a split F-torus. Then the group My = O(U)*/F* is a free Z-
module of finite rank. The corresponding split F-torus 7’/ = Spec F[My] is called
the intrinsic torus of U. The choice of a section s : My — @(U)* determines a
closed embedding f : U — T’, which we call an intrinsic torus embedding. Chang-
ing s amounts to composing this embedding with a translation by a point in 7’(F).
Now let 4 : U — T be a locally closed embedding into a split F'-torus T, with char-
acter lattice M . This embedding induces a morphism of lattices M — My and hence
a morphism of tori g : T’ — T. The morphisms % and &’ = g o f correspond to two
homomorphisms ¥, ' : M — @(U)* that coincide after composition with the pro-
jection map @ (U)* — My . This means that the image of the quotient ¥/’ is con-
tained in F*, and & and A’ coincide up to translation by the point @ in T(F) defined
by ¥/¢’. Composing the morphism T’ — T with the translation by a, we obtain a
monomial morphism of tori 7’ — T such that the restriction to U is an isomorphism
onto U.

3.4. Step 2: The general case

We will now prove Theorem 3.1.3 by reducing it to the case that was treated in Propo-
sition 3.2.2. We will achieve this reduction by partitioning any semialgebraic set into
pieces to which Proposition 3.2.2 can be applied.

LEMMA 3.4.1
Let T be a split algebraic torus over Ky, and let X be a subvariety of T. Then we

can find:
. a partition of X into subvarieties Uy, ..., Uy,
. for every i in {1,...,r}, a schon closed embedding U; — T; where T; is a

split torus over Ky,
. for every i in {1,...,r}, a monomial morphism of tori T; — T such that the
restriction of T; (K) — T(K) to U; (K) is a bijection onto U; (K) for every i.
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Proof

By [14, Theorem 7.10], we can find a very affine nonempty open subvariety U of X
such that every intrinsic torus embedding of U is schon. We choose such an intrinsic
embedding U — T'. As explained in Section 3.3, the embedding U — T gives rise to
amonomial morphism of tori 7" — T such that the restriction to U is an isomorphism
onto U. Now the result follows from Noetherian induction on X. O

PROPOSITION 3.4.2

Let T be a split Ky-torus, and let S be a semialgebraic subset of T. Then there exists

a finite partition of S into semialgebraic subsets S’ such that, for each S’, there exist:

. a subvariety U of T such that S’ is contained in U(K),

. a schon closed embedding of U into a split Ko-torus T’ with cocharacter
lattice N’ such that S is of the form U(K) Ntrop~ (") for some constructible
subset T in N@,

. a monomial morphism T’ — T such that the restriction of T'(K) — T(K) to
S’ c T'(K) is a bijection onto S’ C T(K).

Proof
Let N be the cocharacter lattice of 7. Partitioning S, we may assume that there exist
a subvariety X of 7" and invertible regular functions

f]agls'-'sfr9gr

on X such that S is given by
S = {x € X(K) | val( f; (x))0; val(g; (x)) for each i},
where [J; is either < or <. If we re-embed X via the morphism

X = T xky Gl gy x> (% f1(20). 810 r(0). ().

then S is of the form X(K) N trop~'(T"), where T is a constructible subset of Ng x
Q?". Thus we may assume that S is of the form X(K) N trop~!(I"), where T is a
constructible subset of Ng.

Let U be a subvariety of X, and let U — T’ be a schon closed embedding into a
split Ko-torus T’. Assume that there exists a monomial morphism of tori 7 — T such
that the restriction of 7/(K) — T(K) to U(K) is a bijection onto U(K). Then the
restriction of T/(K) — T(K) to U(K) N S is a bijection onto U(K) N S. Moreover,
if we denote by v : N’ — N the integral affine linear map of cocharacter lattices
associated with 77 — T, then

S NU(K) =trop™ ' (vg'(I)).
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The result now follows from the fact that we can partition X into subvarieties U of
this form, by Lemma 3.4.1. O

Now we can finish the proof of Theorem 3.1.3. By additivity, we may assume
that there exist U, T’, and T" as in Proposition 3.4.2 for S’ = S.Letv: N' - N
be the integral affine linear map of cocharacter lattices associated with the monomial
morphism 7’ — T'. We consider the commutative diagram

trop”

T'(K) —— N}

l lv@

T(K) —— Ng
trop

where we write trop’ to distinguish between the two tropicalization maps. By the
schon case of the Fubini theorem (Proposition 3.2.2), we know that Theorem 3.1.3
holds for the embedding of S N (trop’)~1(I'") into T’(K), for every constructible
subset I'" of Nj). Taking I = N, we see that trop, 15 is constructible and

Vol(S) = / trop, 1s dy’.
Ng
Taking for I'” a fiber of the affine linear map Vg, we also find that
trop, 1s = (vg)« trop, 1s.

Now it follows from Proposition 3.1.2 that trop,, 1 is constructible and
Vol(S) = / trop, 15 dy’.
Ne
This concludes the proof of Theorem 3.1.3. O

3.5. Properties of the volumes of tropical fibers

In order to apply Theorem 3.1.3 to concrete problems, it is useful to have some infor-
mation about the shape of the constructible decomposition of Q" on which the tropi-
cal fibers have piecewise constant volumes. We will prove two statements that will be
important in the proofs of Conjectures A and B. We start with a basic proposition on
torus-equivariance.

PROPOSITION 3.5.1
We keep the notation of Theorem 3.1.3. Let K™ act on (fx)” with weight vector
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w € Z", and trivially on Y(K). Assume that S is stable under this action. Then the
function

¢ : Q" > KA (Varg) : v — Vol (S N (troporr) ™! (v))

is constant along the line v + Qw for every v in Q".

Proof
The function ¢ is constructible, by Theorem 3.1.3, and it is periodic with period w
because of the semialgebraic bijection

S N (troporr) 1 (v) = S N (tropor) 1 (v + w)

defined by the action of ¢ € K, for every v in Q". Thus the restriction of ¢ to every
line of the form v + Qw in Q" is both constructible and periodic, which is only
possible if it is constant. O

To formulate the second result, we need to make some preparations. Let n be
a positive integer, and let w be an element of Q". We denote by G, , the k-torus
G}, , endowed with the left 1i-action with weight vector w (see Section 1.4). We set
Gr’ﬁ, K= G}ft, « %k K, endowed with the diagonal ii-action. We define the tropicaliza-
tion map

trop: G, g (K) - Q"

by ignoring the fi-action on G¥ .. Let Y be a k-variety with trivial ji-action. We say
that a semialgebraic subset S of G, X Y is defined over k if we can write it as a
finite Boolean combination of sets of the form

{xe (G x ¥k U)(K) } val(f(x)) < val(g(x))},

where U is an affine open subvariety of ¥ and f and g are regular functions on
G, , Xk U that are invariant under the ii-action. Then S is also defined over Ky;
that is, it is a semialgebraic subset of the Ko-scheme of finite type (G /it) X Y.
The torus an, x acts on G,“r’l, x by multiplication from the left, and the multiplication
morphism

n w w
Gm,K XK Gm,K - Gm,K
is Ji-equivariant and descends to a morphism

Gnm,Ko XKo (Grur;,K/ﬁ) — G;Z,K/ﬁ
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that makes (G,"jl’ x/ 1 into a an, K, -torsor. We can trivialize this torsor by means of the
Ji-equivariant isomorphism

an,K—>G,“,;,K (g, xn) e (@, )

that maps the identity of G}, ¢ to the p-fixed point (z%1,...,t%") of Gk

Remark 3.5.2
The expression “defined over k” is a slight abuse of terminology; more precisely,

what we are considering here are twisted forms over Ky of semialgebraic sets in
Gl x Xk Y defined over k.

PROPOSITION 3.5.3
Let w be an element of Q", for some n > 0. Let Y be a k-variety with trivial [i-action,
and let S be a semialgebraic subset of G} . X Y that is defined over k. Denote by

Gy g kY =Gy g
the projection morphism. Then there exists a complete fan in Q" such that the function
@ : Q" — KF(Vary) : v Vol(S N (trop o) 1 (v))

is constant on the relative interior of each cone.

Proof
We can make a similar reduction as at the beginning of the proof of Theorem 3.1.3:
by additivity we may assume that Y is a closed subvariety of a k-torus with trivial
[-action, and by absorbing this torus into Gr’fl, « We can reduce to the case where
Y = Speck. We first deal with the schon case. An integral closed subvariety X of
G}, 1s called schin if X xj K is schon in G}, ;. Let X be a schon integral closed
sub{/ariety of G}, * that is stable under the fi-action. Let ' be a constructible subset
of Q" that is stable under scalar multiplication with elements in Q¢, and let S =
X(K) N trop~!(T). Let X be a tropical fan for X in R” in the sense of [19]. We
may assume that I" is a union of relatively open cones in X. Set ¥ = —w + X/,
and let ¥ be the fan over ¥; x {1} in R” x R. This is a tropical fan for the schon
subvariety X' =17 X of G}, r, and X" is defined over K. Multiplication with 1™
yields an isomorphism between X and X' defined over Ky that commutes with the
tropicalization maps up to translation by w. Thus we can deduce Proposition 3.5.3 for
S by applying Proposition 3.2.2 to the semialgebraic subset 1~ .S of X’.

To prove the general case, we can proceed in a similar way as in step 2 of the proof
of Theorem 3.1.3. It is sufficient to show that, for every Ji-stable integral subvariety
X of an1,k’ we can find a [i-stable dense subvariety U of X, a ji-equivariant schon
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closed embedding U — Gw/ for some w’ € Q"', and a [i-equivariant monomial

morphism of tori G P mk that induces an isomorphism U — U. Then the rest
of the proof of Theorem 3.1. 3 immediately carries over to our setting.

WesetT = Gfr)l, - The quotient of 7' by the action of [ is a split k-torus T, and
the quotient map T — T is a Kummer finite étale cover of degree d, the smallest
positive integer such that d - w lies in Z”. Let X be the image of X in 7. By [14,
Theorem 1.4], we can find a dense very affine open subvariety U in X such that every
intrinsic torus embedding of U is schon. We choose such an intrinsic embedding U—
T By the discussion in Section 3.3, the embedding of U into T’ induces a monomial
morphism of tori f : T' — T that restricts to an isomorphism from U onto U. Let
U=U x5 T be the inverse image of UinT;itisa L-stable dense open subvariety
of X.SetT' =T x#z T'; then we can endow T’ with the structure of a split k-torus
such that T/ — 7" is a morphism of tori and 7" — T is a monomial morphism. The
torus 7" inherits a good [i-action from T = G, s such that T'=T'/{t, and T’ is of
the form G:fl/ i for some finite tuple w’ of rational numbers.

The closed embedding U — T’ induces a [i-equivariant closed embedding g :
U — T’ by base change. The projection morphism 7’/ — T’ induces a finite étale
morphism of split R-tori & : T’ x; R — T’ x r R by base change. For every point a
of T'(K), the closure of a~! (U x; K) in T’ x; R is the inverse image under & of the
closure of (h(a))_l(ﬁ X K) in T’ x) R because h is finite and flat. Restricting /
to the special fibers, we see that the initial degeneration of U x; K with respect to a
is a finite étale cover of the initial degeneration of U x x K with respect to /i(a). The
latter is smooth because U is schdn, and it follows that all the initial degenerations of
the embedding U x; K — T’ x; K are smooth, as well. In other words, the closed
embedding U — T is schon. This concludes the proof. O

Remark 3.5.4

A more intuitive explanation for the fan structure in Proposition 3.5.3 is that we can
reparameterize points in S by substituting ¢ by ¢4 for any positive rational number g.
Since we need to keep track of the fi-action, writing down a proof along these lines is
somewhat tedious, which is why we have opted for the cleaner argument in the proof
of Proposition 3.5.3.

4. Proofs of Conjectures A and B

4.1. The conjecture of Davison and Meinhardt

As a first application, we prove Conjecture A from the Introduction. Using the com-
parison result in Corollary 2.6.2, the following theorem is a strengthening of Conjec-
ture A (the strengthening being that we do not invert LL).
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THEOREM 4.1.1
Let Y be a smooth k-variety endowed with the trivial G, y-action, and let G,y y act
on AZ with weights wy,...,w, > 0. Set U = AZ X Y, and let

f:u —>A}c = Speck|t]

be a morphism of k-varieties that is Gy, i -equivariant, where G, ;. acts on A}{ with
weight d > 0. If we set V = U xg[;] Ro, then

Vol(V(R)) = [f~'(1)]
in K" (Vary), where the [-action on f~1(1) factors through g4 (k) and is given by
wa(k)yx 1) — £ (& (X1 Xn ) > (E x1, e 8 i, ).

Proof

Set W = f~!(1) xx R and endow it with the diagonal [i-action. Then ‘W is smooth
over R and Vol(W(R)) = [f~1(1)] in K#(Varg) by the definition of the motivic
volume. The map

V(K) > W(EK) : (x1....oxn, y) > (70 70, y)

is a semialgebraic bijection that is defined over Ky, and identifies 'V(R) with a subset
of W(K) that contains W(R). It suffices to show that the motivic volume of the
complement of W(R) in the image of 'V(R) vanishes. This complement is given by

S ={(x1,....xn,y) € W(K) | y € Y(R),val(x;) > —w; /d forall i,
val(x;) < 0 for some i}.
By induction on n, it is enough to prove that
§°=5n((K)"xY(R))

has motivic volume 0.
We can view W(K) N ((fx)” x Y(R)) as a semialgebraic subset of G,",’l’ x Xk Y
that is defined over k, in the sense of Section 3.5. We denote by 7 the projection map

7 (K xY(R)— (K",
and we consider the function
¢ : Q" — KA (Vary) : v > Vol(W(K) N (trop o)~ (v)).

Set
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I={veQ"|v; >—w;/d foralli,v; <0 for some i}.

By Theorem 3.1.3, the function ¢ is constructible, and we can compute the motivic
volume of S? as

Vol(S”)=f¢dx’.
r

By Proposition 3.5.3, we can find a complete fan in Q" such that ¢ is constant
on every relatively open cone o in this fan. If we denote by (o N I')r the sub-
set of R" associated with o N I, then the intersection of (¢ N I')g with any box
[—r,r]", r € R.p, is homeomorphic to [0, 1) x d, where d denotes the boundary of
(o NT)r N [—r,r]". Since the compactly supported Euler characteristic of [0, 1) van-
ishes, it follows that y’(c N T") = 0 for all o, so that Vol($?) = 0. O

4.2. The integral identity of Kontsevich and Soibelman

As a second application, we give a short proof of the integral identity conjecture of
Kontsevich and Soibelman (Conjecture B in the Introduction). Lé Quy Thuong proved
this conjecture in [13, Theorem 1.2], also using Hrushovski—-Kazhdan motivic inte-
gration. Our comparison statement in Corollary 2.6.2 and our Fubini theorem for the
tropicalization map allow us to substantially simplify the proof and avoid the inver-
sion of L. We also generalize the statement by allowing arbitrary positive weights
on AZ‘ and arbitrary negative weights on A% and replacing the factor AZ3 by any
k-variety with trivial G,, g-action. By Corollary 2.6.2, the following theorem is a
generalization of Conjecture B.

THEOREM 4.2.1
Let Z be a k-variety with trivial G,, i-action, and let p be a closed point in Z. Let
dy and d, be nonnegative integers, and let G, i act diagonally on

d d
U=A"xx A2 xx Z
with positive weights on the first factor, with negative weights on the second factor,
and trivially on Z. Let
f:U— A}c = Speck|t]
be a dominant morphism that is G, i -equivariant, where G, ;. acts trivially on the
target A}, and such that (0,0, p) = 0. We view AZ‘ and Z as closed subvarieties of

U via the embeddings x — (x,0, p) and z — (0,0, z), respectively. Then f vanishes
on AZ‘. We set 'V = U Xgp;] Ro and W = Z Xgpe) Ro. Then

Vol(sp;1 (AZ‘ )) =14 VO](SIJ;v1 (P))

in K™ (Vary).
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Proof
The vanishing of f on AZ' follows from Gy, x-equivariance, together with the fact

that £(0,0, p) = 0. We partition S = Vol(sp;1 (AZ' )) into the semialgebraic sets
So ={v=1(x,y.2) € V(R) | spy(v) € AZI and y # 0},
Si={v=(x,y.2) € V(R) | spy(v) € Azl and y = 0}.

We first compute the volume of S;. By the G, x-equivariance of f, the value of

. —d
f(x,0,z) only depends on z, and we can write S; = spa} (p) x R™". The second
factor has motivic volume 9! , so that

Vol(S1) = L¥ Vol (spy (p)).

Therefore, it suffices to show that the motivic volume of Sy vanishes. By addi-
tivity, it is enough to prove this after replacing So by S}, = Sp N (O x Z(R)), where
O is any (fx)lerd2 _orbitin K*' x K. 1f O is contained in K" x {0}, then S is
empty. Thus, by induction on d; + d>, we may assume that d> > 0 and

0 = (K )% x (K%,
We write
7:U— Azl X Azz
for the projection onto the first two factors. Consider the semialgebraic set
S"={(x.y.2) e V(K) | (x.y) € 0.z € Z(R).5pzx, g, (2) = P}
and the function
@ : Q9 x Q% — K*(Vary) : v > VoI(S’ N (troporr) "' ().

The set Sj is the subset of S” defined by the conditions val(x;) > 0 and val(y;) >
0forie{l,....d}and j € {1,....d>}. Let T = (Qx0)%' x (Q=0)?2. By Theo-
rem 3.1.3 we can compute Vol(S;) by means of the constructible integral

Vol(Sé)z/ pdy'.
r

Letw € Zi‘o X Zizo be the weight vector of the G,, x-action on AZ' x A% and let

p:Q% x Q%2 — Q% x Q%!
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be the projection in the direction of w onto the product of Q%! with any coordinate
hyperplane in Q42. Since S is stable under the Gm .k (K)-action on O x Z(K), Propo-
sition 3.5.1 implies that the function ¢ is constant on every fiber of v. Moreover, the
intersection of I' with any fiber of v is either a half-open bounded line segment (if
dy > 0) or an open half-line (if d; = 0). In both cases, its bounded Euler characteristic
vanishes. Thus Vol(Sg) = 0 by Proposition 3.1.2. O

4.3. Comparison with Lé Quy Thuong’s proof of the integral identity conjecture
Together with the groundbreaking work by Hrushovski and Loeser in [11], the origi-
nal proof of the integral identity conjecture by L& Quy Thuong in [13] constitutes the
first demonstration of the power of Hrushovski—-Kazhdan motivic integration in the
study of motivic zeta functions and motivic nearby fibers. Our proof compares to the
one in [13] in the following ways.

A first important difference is that, in [13], the motivic nearby fiber of f is
expressed in terms of Hrushovski—Kazhdan motivic integration by means of a variant
of Corollary 8.5.3 in [11]. The strategy consists of first establishing an expression for
the so-called motivic zeta function of f and then passing to the limit as in Denef and
Loeser’s definition of the motivic nearby fiber. The drawback of this method is that
the motivic zeta function cannot be defined without inverting the class L. of the affine
line; on the Hrushovski—Kazhdan side, it involves motivic volumes of semialgebraic
sets equipped with volume forms, whose definition also requires the inversion of L.
In our approach, we interpret the motivic nearby fiber directly as the motivic volume
of the semialgebraic nearby fiber, which does not involve any volume forms and does
not require the inversion of L. Instead of passing through the motivic zeta function,
we made an explicit calculation on a log resolution for f and invoked Denef and
Loeser’s formula for the motivic nearby fiber (see Corollary 2.6.2). R

The calculations in [13] require a further localization M;:JOC of eM]’; , obtained
by inverting all the elements 1 — ! with i > 1, which is needed to compute limits
of motivic zeta functions of semialgebraic sets with volume forms. It is not known
whether the elements 1 — 7 are zero divisors in M;; . Our computation in the proof
of Theorem 4.2.1 is more straightforward because we work directly with motivic
volumes of semialgebraic subsets of the nearby fiber.

Finally, the arguments are simplified and expressed in a conceptual way by mak-
ing systematic use of our tropical Fubini property in Theorem 3.1.3. In retrospect,
a manifestation of the Fubini property in a particular case can be found already in
Lemma 4.2 of [13], where the motivic volume of a generalized annulus is computed
by integrating over the radius. Again, the motivic volume is considered in the local-
ization :M,‘;,IOC, and the proof of the lemma in [13] is specific to that particular semi-
algebraic set. Moreover, the argument still requires the calculation of the values of
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the constructible function v (i.e., motivic volumes of subsets of the generalized annu-
lus); the vanishing of the constructible integral is then deduced from the vanishing of
the integrand v. In our approach, we exploit the homogeneity to argue that a suitable
constructible function is constant (without further calculations) and then use the van-
ishing of the bounded Euler characteristic on the domain of the integral, which is an
elementary combinatorial problem.

5. Further generalizations

5.1. Relative Grothendieck rings

We can refine the preceding constructions by working relatively over a base variety

instead of over k. Let B be a Noetherian k-scheme with trivial [i-action. When we

speak of a B-scheme X with [i-action, we will always assume that the structural mor-
phism X — B is ji-equivariant. The Grothendieck group K~ (Varp) of B-varieties
with [i-action is the abelian group characterized by the following presentation.

. Generators: isomorphism classes of B-schemes of finite type X endowed with
a good [i-action. Here “good” means that the action factors through u, (k) for
some n > 0 and that every orbit is contained in an affine open subscheme of
X . Isomorphism classes are taken with respect to [i-equivariant isomorphisms
over B.

. Relations: we consider two types of relations.

(1) Scissor relations: if X is a B-scheme of finite type with a good ji-
action and Y is a [i-stable closed subscheme of X, then

[X]=[Y]+[X\Y]

2) Trivialization of linear actions: let X be a B-scheme with a good ji-
action, and let V' be a k-vector space of dimension d with a good linear
action of ft. Then

[X x¢ V]=[X x¢ Af]

where the i-action on X x V is the diagonal action, the action on Ag
is trivial, and the B-structures are induced by the one on X.
The group K (Varg) has a unique ring structure such that [X]-[X’] = [X x g X'] for
all B-schemes of finite type X, X’ with good jz-action. Here the [-action on X x g X’
is the diagonal action. The identity element in K#(Varp) is [B], the class of the base
scheme B. With a slight abuse of notation, we continue to write I for the class of A}g
(with the trivial [i-action) in the ring K% (Varp).
Every morphism p : B’ — B of Noetherian k-schemes induces a base change
morphism of rings,
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p* :KA(Varg) — K" (Varg') : [X] — [X x5 B'],
and, if p is of finite type, a pushforward morphism of groups,
D Kﬁ(VarB/) — Kﬁ(VarB) X [X],

that forgets the B’-structure. The pullback morphism p* sends L to LL; the pushfor-
ward morphism p, sends LL to [B'] - LL.

The construction of the motivic volume can be refined to a relative setting by
means of the following results.

LEMMA 5.1.1

Let B be a Noetherian k-scheme. For every point b of B, we denote by k(b) the
residue field of B at b and by tp, : Speck(b) — B the inclusion map. Then the mor-
phism

L= l_[ l K”(Varg) — 1_[ Kﬁ(VarK(b))
beB beB

is injective.

Proof

Let b be a point of B, and let Z be its Zariski closure in B, endowed with its reduced
induced structure. Then one can copy the proof of [18, Proposition 3.4] to show that
Kﬁ(VarK(b)) is the direct limit of the rings K”(Vary), where U runs through any
fundamental system of open neighborhoods of » in Z. Now the result follows from
Noetherian induction and the scissor relations in the Grothendieck ring. O

Let Y be a K-scheme of finite type, and let 7 be a semialgebraic subset of ¥ . For
every algebraically closed valued field extension L of K, the formulas that define T
in Y(K) also define a semialgebraic subset of Y (L), which we will denote by 7'(L).
This set does not depend on the choice of the formulas defining 7', by quantifier
elimination for algebraically closed valued fields.

PROPOSITION 5.1.2

Let Y be an Ro-scheme of finite type, and let S be a semialgebraic subset of Y(R)
defined over K. For every point y in Yy we denote by k(y) the residue field of Yy at
y. We set Ry =«(y)[t] and K, = k(y)((t)), and we fix an algebraic closure fy of
K. We denote by 1 the inclusion map Speck(y) — Yi. Then there exists a unique
element o in Kg (Vary, ) such that, for every point y of Y, we have

(3 (@) = VoI (S(Ky) Nspys r, (1)
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in K~ (Vare(y)). This element satisfies py(a) = Vol(S) in K™ (Vary), where p denotes
the projection ¥y — Speck.

Proof
Rather than going through all the constructions in [10], we will give a proof based on
our computation of the motivic volume in the schon case (Proposition 3.2.2). Unique-
ness of o follows immediately from Lemma 5.1.1, so it suffices to prove existence.
Step 1: The schon case. We first prove the assertion in the following special case.
Let Y be a schon closed subvariety of an, Ko’ forsomen > 0.Set X =Y xg, K, and
let X be a tropical fan for X in R” x R>¢. This fan defines a toric Ry-scheme Py(X)
as well as a toric R-scheme P(X); the latter is the normalization of Po(X) x g, R. Let
Y be the schematic closure of Y in Py(X), and let X be the schematic closure of X
in P(X). For every cell y in ¥, we denote by X (y) the intersection of X with the
torus orbit of P(X); corresponding to y. The natural Ry-morphism P(X) — Py(X)
induces a morphism of k-schemes 4 : Xy — Y. Let C be a constructible subset of
Y, and set S = spy'(C) N Y(K). We set

“= Z [Xe(y) NAH(C)] (1 - L)dm)

y bounded

in Kﬁ(Varyk), where y runs through the set of bounded cells in ¥;. We claim that
o satisfies all the properties in the statement. To prove this, we may assume that
h~1(C) is contained in a unique stratum X (y), by additivity. Then the claim follows
immediately from the fact that the construction of the pairs (Py(X), ¥) and (P(X), X)
is compatible with extensions of the residue field k, and the semialgebraic bijection
Y constructed in the proof of Proposition 3.1.2 commutes with specialization.

Step 2: The general case. By additivity, we may assume that ¥ is a subscheme
of a split Ry-torus T with cocharacter lattice N. By Proposition 3.4.2, we can fur-
ther reduce to the case where there exist a monomial morphism of Ky-tori ¢ : T" —
T = Tk,, a schon closed subvariety U of T’, and a constructible subset I" of N@
(where N’ is the cocharacter lattice of T”) such that ¢ maps S’ = U(K) N trop~'(I)
bijectively onto S. Let v : N — N be the affine map of cocharacter lattices associ-
ated with ¢. Since S is contained in T(R), we know that trop(S’) is contained in the
affine subspace A = vg, 1(0) of N@. Intersecting I' with A, we may assume that I" is
contained in A.

Let X be a tropical fan for U in N}, x R>0. Every refinement of X is still a
tropical fan for U, so that we may assume that A N £; and I" are unions of cells
in the polyhedral complex X;. By additivity, we can then further reduce to the case
where T is a relatively open cell in X;. The morphism ¢ : T/ — T extends on an
Ro-morphism,
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?:(Po(2)\ D) —>T,

where D is the union of the irreducible components in Po(X); corresponding to
vertices of X; that do not lie in A. If we denote by U the schematic closure of U
in Py(X), then S’ is contained in (U \ D)(R) because trop(S’) is contained in A.
Moreover, we can write S’ as sp{’l1 (C) NU(K), where C is the intersection of Uy
with the torus orbit of Py(X)s corresponding to the cell T'.

We can apply step 1 of the proof to the Rop-scheme U and the semialgebraic set
S’. This yields an element o’ in Kﬁ(VaruZ), where U = Ug \ D. Let ¢ : U — Y
be the morphism obtained from ¢ by restriction. Then o = ¢ (') satisfies all the
properties in the statement: we have

pir(@) = (p o @)i(e) = Vol(S') = Vol(S).

Furthermore, let y be a point of ¥, write Z = Uy xy, y, and denote by (7 the
projection morphism Z — Uy and by ¢ the projection Z — Speck(y). Then

Gou(@) = quy (@) = Vol(S'(Ky) NPy, r, (£)) = Vol(S(Ky) Nspys,, g, ()

in K& (Var(y)), where the second equality again follows from step 1, applied to the
Ry-scheme V = U xg, R, and the semialgebraic set

S"(Ky) Nspy'(Z) = spy’ (Z N (C xk k() NU(Ky). O

Let ¥ be an Rp-scheme of finite type, and let S be a semialgebraic subset of
Y(R) defined over K. Then we will continue to denote the unique object & in Propo-
sition 5.1.2 by

Vol(S) € K*(Vary, ).

This is a harmless abuse of notation: this object is mapped to the motivic volume
Vol(S) € K~ (Varg ) from Theorem 2.5.1 by the pushforward morphism

)2 K‘A‘(Varyk) — K‘A‘(Vark)

associated with the projection p : ¥, — Speck. If 1 : Z — ¥ is an immersion, then
the definition of Vol(.S) implies at once that

Vol(S Nspy'(Z)) = ut* Vol(S)

in K# (Vary, ). With these refinements at hand, we can now upgrade the comparison
result with Denef and Loeser’s motivic nearby fiber and prove the relative version of
the Davison—Meinhardt conjecture.
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PROPOSITION 5.1.3 (Motivic volume of a strict normal crossings model)
With the notation and assumptions of Theorem 2.6.1, we have

Vol(X(R)) = > (1-L)Y[EY]
d#JCI

in Kﬁ(Varxk).

Proof
This follows immediately from Theorem 2.6.1 and the fact that the property of being a
strict normal crossings model is preserved under extensions of the residue field k. [

COROLLARY 5.1.4 (Comparison with the motivic nearby fiber)

Let f : U — Speck|[t] be a morphism of varieties over k, with smooth generic fiber,
and denote by X the base change of U from k[t] to Ry = k[t]. Then the image
of Vol(X(R)) € Kﬁ(Varxk) in the localized Grothendieck ring K* (Varxk)[IL_l] is
equal to Denef and Loeser’s motivic nearby fiber of f.

Proof
This follows from a direct comparison of the formula in Proposition 5.1.3 with Denef
and Loeser’s formula for the motivic nearby fiber in [7, Definition 3.5.3]. O

PROPOSITION 5.1.5 (Relative Davison—Meinhardt conjecture)
With the notations and assumptions of Theorem 4.1.1, the equality

Vol("V(ﬁ)) = [f_l (1)]

is valid already in K’A‘(Vary), where we view both sides of the equation as objects
over Y via the projection p: U — Y.

Proof

The special fiber Vi is canonically isomorphic to the closed subscheme Uy of U
defined by f = 0.Let y be a point of Y with residue field k (), and set R, = «(y)[¢].
We must show that

Vol(spy) o &, (Uo xy ¥)) = [f (1) xy y]

in K# (Vary(y)). Performing a base change from & to «(y), we can reduce to the case
where y is k-rational. Now one can simply copy the proof of Theorem 4.1.1, replacing

Y(R) by spy, r,(»)- O

We now state and prove further natural generalizations of Theorems 4.1.1
and 4.2.1, replacing the affine spaces on which G, acts with positive weights by
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invariant subvarieties of circle compact toric varieties with G,,-action, as explained
below. The proofs are essentially identical to those in Section 4. Rather than repeating
the details verbatim, we briefly indicate the minor changes that need to be made in
each case.

5.2. Circle compactness

Let F be a field. Following [1], we say that a variety X over F' with G, f-action is
circle compact if the limit of s - x, as s goes to zero in G, F, exists for every point x in
X . Note that circle compactness depends on the choice of the G, r-action, not just
the underlying variety. For instance, if G, F acts on A%, with weights wy, ..., wy,
then A’ is circle compact if and only if each weight w; is nonnegative. We charac-
terize circle compact toric varieties as follows.

LEMMA 5.2.1

Let T be a split torus over F with cocharacter lattice N. Let X be a rational poly-
hedral fan in Ny, and let X(X) be the corresponding toric variety. We choose a point
w in N, and we let G, F act on X(X) via the cocharacter yy, : Gy, p — TF. Then
the following are equivalent.

(1) The toric variety X(X) is circle compact.

(2)  The support |X| of the fan X is star-shaped around w.

(3)  The support |X| of the fan X contains |Z| + w.

Proof

Note that X(X) is circle compact if and only if the limit of s - x exists for one point x
in each orbit of the dense torus. Let x; be a point in the orbit corresponding to a cone
7 € X. Then the limit of s - x; exists if and only if the image of w in N/ span(t) is
contained in | Stary (7).

Now, if |X| is star-shaped around w, then the image of w is contained in
| Stary; (7)| for all z. On the other hand, if |X| is not star-shaped around w, then there
is a closed ray starting from w whose intersection with |X| is disconnected. Let w’
be the point closest to w in a connected component that does not contain w, and let
T € X be the cone that contains w’ in its relative interior. Then the limit of s - x, does
not exist. This shows that the first two conditions are equivalent.

We now show that the second and third conditions are equivalent. First, if |X] is
star shaped around w, then it is a union of convex cones that contain w, and hence it
contains || + w. On the other hand, suppose that |X| contains || + w, and let w’
be any point in |X|. Then | X| contains rw’ for all positive real numbers r, and hence
it contains rw’ 4+ w. Rescaling again shows that || contains "2+ for all positive

r+1
real numbers r, and hence it contains the open interval (w, w’). This shows that |X|
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is star-shaped around w, and therefore the second and third conditions are equivalent,
as claimed. O

5.3. A generalization of Theorem 4.1.1
We generalize Theorem 4.1.1, replacing the affine space A,‘f on which G,, x acts with
positive weights by a G,, x-invariant subvariety of a circle compact toric variety.

THEOREM 5.3.1
Let X(X) be a toric variety over k, with G, . acting by a cocharacter yy, : Gy o —
Ty of the dense torus Ty. Suppose that X(X) is circle compact, and let

XCcX®)

be a Gy, i -invariant subvariety. Let Y be a k-variety endowed with the trivial G, j -
action, let U = X x; Y, and let

f:U— A}C = Speck|t]

be a G, i-equivariant function, where G, ;. acts on A}c with weight d > 0. We set
V = U xgs] Ro, and we endow Y1) with the [i-action that factors through 14 (k)
and is given by

pa(k)yx fH 1) = f7HD) (L (x0) = (ru @)X, ).

We view Vi and f~'(1) as Y -schemes via the projection U — Y . Then

Vol(V(R)) = [/~ (1]

in K" (Vary).

Proof

The proof is similar to that of Theorem 4.1.1 and Proposition 5.1.5, using the fact that
| 3| is star-shaped around w/d and contains |X| 4+ w/d, by Lemma 5.2.1, to show
that the relevant constructible subsets of Ng have bounded Euler characteristic 0. [

5.4. A generalization of Theorem 4.2.1

As in the generalization of Theorem 4.1.1, we replace the affine space AZ‘ on which
Gk acts with negative weights by a G,, x-invariant subvariety of a circle compact
toric variety. Let X(X) be a toric variety over k, with G, x acting by a cocharacter
Yw : G x — Tx of the dense torus. Suppose that X(X) is circle compact, and let
X C X(X) be a connected Gy, ,-invariant closed subvariety, with xo € X a closed
point.
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We also replace the affine space AZZ on which G,, x acts with negative weights
by a G,, -invariant subvariety of an affine toric variety with repelling fixed point, as
follows. Let U, be the affine toric variety over k corresponding to a rational poly-
hedral cone o’, equipped with the G, x-action given by a cocharacter y,,, where
—w’ is a lattice point in the interior of ¢’. Let X’ C Uy’ be a G, g -invariant closed
subvariety. Since —w’ is in the interior of ¢’, the fixed point

AT /
xp = lim yu(s')
§T—>00
is repelling, and hence X’ is connected and contains x;.

Remark 5.4.1

The statement we are going to prove depends only on a G,, x-invariant affine neigh-
borhood of the repelling fixed point, so there is no loss of generality in assuming that
this factor is affine.

With the notation above, we have the following generalization of Theorem 4.2.1.

THEOREM 5.4.2
Let Z be a variety over k, equipped with the trivial G, x-action, and let p be a closed
pointon Z. Let U = X x X' x Z, and let

f:U—)A,lc

be a G,y k-invariant function such that f(xo,x, p) =0. We view X and Z as closed
subvarieties of U via the embeddings x — (x,x, p) and z — (X9, X, z), respec-
tively, and set 'V = U xgp) Ro and W = Z Xg[;) Ro. Then f vanishes on X, and

Vol(sp{,1 (X)) =[X] Vol(sp;v1 (»))

in K™ (Vary).

Proof

The proof is similar to that of Theorem 4.2.1, using the fact that |X| is star-shaped
around w, by Lemma 5.2.1, and that ¢’ is convex with —w’ in its interior to show that
the nonempty intersections of || x &’ with lines parallel to (w,w’) are half-open
intervals or open rays. U
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