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Tropical refined curve counting via motivic integration

JOHANNES NICAISE
SAM PAYNE
FRANZISKA SCHROETER

We propose a geometric interpretation of Block and Gottsche’s refined tropical curve
counting invariants in terms of virtual y_, specializations of motivic measures of
semialgebraic sets in relative Hilbert schemes. We prove that this interpretation is
correct for linear series of genus 1, and in arbitrary genus after specializing from
X—y—genus to Euler characteristic.

14E18, 14G22, 14T05

1 Introduction

Geometers have developed an array of sophisticated techniques for counting special
curves in linear series, from degenerations and cobordism to stability conditions on
derived categories. Our paper examines the relationship between two relatively naive
approaches to curve counting in toric surfaces, one using Euler characteristics of relative
compactified Jacobians and Hilbert schemes, and the other using tropical geometry. We
are especially motivated by “refined” versions of these curve counts, in which Euler
characteristics are replaced with )(_y—genera1 and combinatorially defined tropical
multiplicities are replaced with polynomials, or Laurent polynomials, in a variable y that
specialize to the ordinary multiplicities by setting y = 1. Our aim is to give a geometric
interpretation for the refined tropical multiplicities of Block and Géttsche [7], which,
on a few specific toric surfaces and conjecturally much more generally, can be used to
express the refined curve counting invariants of Gottsche and Shende [16] as a sum over

I'The X—y—genus of a smooth projective complex variety X is the polynomial y—,(X) =
2 (DI x(X, Qf,]() y?. This definition extends uniquely to an invariant y—, for arbitrary complex
varieties that is additive with respect to finite partitions into subvarieties, and which specializes to the
Euler characteristic by setting y = 1. Some authors instead use a “normalized” y—y—genus, given by
y‘dim(X)/z)(_y (X), which is a Laurent polynomial in yl/2 that is symmetric under yl/2 > y_l/z.
Beware that this normalized y—y—genus is not additive and, hence, does not extend to arbitrary varieties
in any direct way. See Section 3.8 for further details.
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tropical curves. We expect that our geometric interpretation will be useful to prove the
conjectured refined correspondence theorem; we will outline the strategy in Section 1.3.

Our approach is inspired by the growing web of connections between tropical geometry,
Berkovich spaces, and motivic integration. We associate a semialgebraic set in the
relative compactified Jacobian or relative Hilbert scheme of points to each tropical
curve, and relate combinatorially defined tropical multiplicities to motivic invariants
of these semialgebraic sets, using the theory of motivic integration of Hrushovski
and Kazhdan [21], together with recent results of Hrushovski and Loeser [22] and
Martin [33] on the £—adic cohomology of locally closed semialgebraic sets.

1.1 Block and Gottsche’s refined tropical multiplicities

Let Y(A) be the projective toric surface associated to a lattice polygon A, and denote
by |L(A)| the corresponding complete linear series. Suppose that A has g interior lat-
tice points and 7 + 1 total lattice points. Then the linear series | L(A)| has dimension 7,
its general member is a smooth projective curve of genus g, and the locus of irreducible
§—nodal curves in |L(A)| has codimension &, for 0 < § < g. We write n-% for the
corresponding toric Severi degree, the number of integral é—nodal curves in |L(A)|
that pass through n — § points in general position.

These toric Severi degrees can be computed tropically, as the number of plane tropical
curves I' of degree A and genus g — § passing through n — § points in general
position, counted with combinatorially defined integer multiplicities n(I"). These
ordinary tropical multiplicities may be interpreted geometrically through the tropical—
nonarchimedean correspondence theorems — see Gross [17], Nishinou [39], Nishinou
and Siebert [40] and Tyomkin [46] — as follows. Let K = C{{t}} be the field of Puiseux
series, fix n — § algebraic points over K whose tropicalizations are the given n —§
tropical points in general position, and let |L| C |L(A)| be the linear series of curves
over K passing through these points. Then n(I") is the number of §—nodal curves
in |L| whose tropicalization is I".

The ordinary tropical multiplicity n(I") can also be expressed combinatorially as a
product over the trivalent vertices in the tropical curve, with positive integer factors.
Recently, Block and Gottsche have introduced a refined tropical multiplicity N(I'),
which is a Laurent polynomial in a single variable y, and which is expected to form the
tropical counterpart of the refined curve counting invariants of Gottsche and Shende [16].
It may be expressed similarly to the ordinary tropical multiplicity, as a product over
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trivalent vertices, and specializes to n(I") by setting y = 1; see Block and Géttsche [7].
We will recall the precise definition in Section 2.3. As mentioned above, our goal is to
give a geometric interpretation for these combinatorial invariants N(I"), generalizing
the tropical-nonarchimedean correspondence theorems for ordinary multiplicities. Our
approach relies on a suitable generalization of the refined curve counts of Gottsche
and Shende to families of curves over a semialgebraic base. This requires us to
define the y—y—genus of a semialgebraic set, for which we use the theory of motivic
integration developed by Hrushovski and Kazhdan [21]. Other interpretations of the
Block—Géttsche invariants in terms of wall-crossings and geometry of real curves are
presented in Filippini and Stoppa [12] and Mikhalkin [35], respectively; it would be
interesting to understand the precise relation with the construction that we present here.

1.2 The refined curve counts of Gottsche and Shende

We begin with rational curve counting invariants (the case where 6 = g), following
the well-known approach via Euler characteristics of relative compactified Jacobians.
Recall that if ¥ — U is a family of integral curves on a smooth surface with finitely
many rational fibers, and if all rational fibers have only nodal singularities, then the
number of rational fibers is equal to eu(_# (%)), the Euler characteristic of the relative
compactified Jacobian; see Beauville [3], Fantechi, Gottsche and van Straten [11] and
Yau and Zaslow [47]. This follows easily from the fact that the compactified Jacobian
of each rational fiber has Euler characteristic 1, and the compactified Jacobian of each
of the other fibers has Euler characteristic 0.

There is an analogous approach to counting §—nodal curves via Euler characteristics
when § is not necessarily equal to g, using the relative Hilbert scheme of points
rather than the relative compactified Jacobian. Given family of curves ¥ — U and a
nonnegative integer i, let Hilb’ (¥') be the associated relative Hilbert scheme of points,
parametrizing families of zero-dimensional subschemes of length i in the fibers. There
exists a unique sequence of integers (1,(%)),>o satisfying

o0 ()
q'"¢ Zeu(Hilbi (©))q' = Z ne(€)g" 18 (1 —¢q)2872 2,
i=0 r=0

It was shown by Gopakumar and Vafa [14; 15], Kool, Shende and Thomas [31] and
Pandharipande and Thomas [42] that if ¥ — U is a family of reduced curves of
arithmetic genus g on a smooth surface with finitely many §—nodal fibers, in which all
other fibers have geometric genus greater than g — §, then n,(%) vanishes for r > §,
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and the number of §—nodal curves is equal to 7n5(%¢).> The geometric hypotheses on
the fibers of the family are satisfied in many natural situations, eg for §—dimensional
families of integral curves satisfying mild positivity conditions on a smooth rational
surface, as in Harris [20, Proposition 2.1], and for a general linear series of dimension &
in the complete linear series of a 6—very ample line bundle on any smooth projective
surface, as in Kool, Shende and Thomas [31, Proposition 2.1].

In [16], Gottsche and Shende have proposed refined curve counting invariants using a
similar generating series approach, replacing Euler characteristics with y_,—genera.
They observe that the generating series

o0
q' 78 x—y(Hilb (%)) ¢’
i=0
can be expressed uniquely as a sum

o0

S ON@) T TEA =)t T A =gy,

r=0
where each coefficient N, (%) is a polynomial in y that specializes to n, (%) by setting
y = 1. Gottsche and Shende show that N,(%) vanishes for r > g when € — U
is a family of integral curves on a smooth surface and Hilb’ (¥) is smooth for all i
[16, Proposition 42]. They conjecture that N, (%) also vanishes for » > § under the
additional assumptions that U = P4 and ¢ is the universal family of a linear system
of curves on a smooth projective surface [16, Conjecture 5]. The main complication
in working with y_, instead of the Euler characteristic is that the y_,—genus of a
family cannot be computed by integrating over the base, because of the monodromy
action on the induced variation of Hodge structures. This is apparent, for instance, in
Example 1.3, below.

1.3 Linear series on toric surfaces

We return to the setup of Section 1.1. Let A be a lattice polygon in R? with n + 1
lattice points and g interior lattice points. We denote by (Y(A), L(A)) the associated
polarized toric surface over the field of Puiseux series C{{t}}. The complete linear
series |L(A)| has dimension 7, and its general member is a smooth projective curve
of genus g. We fix an integer &, with 0 <§ < g. Let S be a set of n —§ closed points

2Be aware that in the references cited above, the indices are permuted by r — g —r. We follow the

notation of Gottsche and Shende [16], in which n, is, roughly speaking, a virtual count of curves of
cogenus 7.
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on the dense torus in Y(A) whose tropicalization trop(S) C R? is in general position,
and let |L| C |L(A)| be the linear series of curves passing through S. We denote
by € — |L| the universal curve over |L| = P?.

First, assume that § = g, and let I’ C R? be a rational tropical curve of degree A through
the points of trop(S). As we will explain in Section 2.2, the curves in |L| whose tropi-
calizations are equal to I' form a semialgebraic set |L|r in |L|. Let 4T be the universal
curve over |L|r and let ¢ (%¢T) be the relative compactified Jacobian. In other words,
%T is the preimage of |L|r in the universal curve ¥ — |L| and, similarly, #(%T)
is the preimage of |L|r in the relative compactified Jacobian # (¢ x| U) — U,
where U C |L| is the open subvariety parametrizing integral curves (in Section 4.2, we
show that |L|r is contained in U ). We define the Euler characteristic and y_,—genus
of these semialgebraic sets as specializations of the motivic volume of Hrushovski and
Kazhdan [21] (see Definitions 3.25 and 3.28). We conjecture the following geometric
interpretation of the Block—Gottsche multiplicity N(I') for counting rational curves.

Conjecture 1.1 Assume that § = g and let ' C R? be a rational tropical curve of
degree A through the points of trop(S). Then the Block—Gottsche refined tropical
multiplicity N(I") is equal to y~8 y_y,(_# (¢T)).

As evidence in favor of this conjecture, we prove that it is correct when g = 1 (see
Theorem 5.1). The proof is based on a tropical formula for the Hrushovski—Kazhdan
motivic volume of schén subvarieties of tori, which is of independent interest. See
Section 3. We will also prove that our conjecture holds after specialization to ordinary
Euler characteristic: if § = g then n(I') =eu(_# (4T)) (see Theorem 4.6). This gives a
new geometric interpretation of the classical tropical multiplicity #(I"). Our argument
uses a comparison result for the motivic Euler characteristic of a semialgebraic set and
Berkovich’s £—adic cohomology for nonarchimedean analytic spaces (Proposition 3.26);
this allows us to prove that the motivic Euler characteristic satisfies some standard
cohomological properties (see in particular Corollary 3.33).

We now drop the assumption that § = g and state analogous conjectures and results for
counting nodal curves of arbitrary genus. Let I' C R? be a tropical curve of genus g —§
and degree A through the points of trop(S). Adapting the approach of Gottsche and
Shende to families of curves over a semialgebraic base, we define polynomials N, (4T)
in Z[y], for r > 0, by means of the equality

0 o
ql_g Z X_Y(Hllbl (%F))ql = Z Nr((gr)qr"_l_g(l _q)g_r_l(l _qy)g—r—l.
i=0 r=0
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Here, the relevant geometric object Hilb’ (4T) is the preimage of the semialgebraic set
|L|r C |L| in the relative Hilbert scheme Hilb’ (¥') — |L|. Note that the r™ term in
the right-hand side is a Laurent series in ¢ with leading exponent r + 1 — g, leading to
a recursive formula for the N, (4T) with a unique solution.

Conjecture 1.2 For any value of § in {0,..., g}, let T' C R? be a tropical curve of
genus g — 6 and degree A through the points of trop(S). Then the Block—Gottsche
refined tropical multiplicity N(T') is equal to y~% N5(41).

We prove that this conjecture, also, is correct for g = 1 (Theorem 5.1), for § <1
(Theorem 6.1), and after specialization to y = 1 (Theorem 4.6). Moreover, we will
show that Conjecture 1.2 implies Conjecture 1.1; see Corollary 4.4 for a more precise
statement. Note that Conjecture 1.2 also implies that the evaluation of y“g Ns(6T)
at y = —1 is equal to the tropical Welschinger invariant of I', as studied by Itenberg,
Kharlamov and Shustin [25].

Conjectures 1.1 and 1.2 provide a strategy to prove the correspondence conjecture
between tropical and geometric refined curve counts; see Block and Gottsche [7,
Remark 2.12]. The correspondence conjecture states that the tropical and geometric
counts agree under a suitable positivity condition on the line bundle L(A) (namely,
d—very ampleness). Assume that ¢ = § and that Conjecture 1.1 holds. In order to
prove the correspondence conjecture, it would be sufficient to show that the locus
of curves in 4 whose tropicalizations are not rational has y_,—genus equal to zero.
The correspondence conjecture then follows from the additivity of the y—,—genus on
finite semialgebraic partitions. A similar strategy can be applied to the case where § is
arbitrary, starting from Conjecture 1.2 and proving the vanishing of the contribution of
the curves whose tropicalization has genus larger than g —§.

We conclude the introduction with an illustration of Conjecture 1.1 in the genus 1 case.

Example 1.3 Let ¥ — P! be the pencil of cubics through eight general points in P2.
This pencil contains twelve rational fibers. This can be seen by noting that the total
space % is isomorphic to the blowup of P2 at the nine basepoints of the pencil, and
hence has Euler characteristic 12. It is straightforward to check that cuspidal curves,
reducible curves, and nonreduced curves all have codimension greater than 1 in the
space of all cubics, and hence a general pencil contains only smooth curves of genus 1
and nodal rational curves. Since genus 1 curves have Euler characteristic O and rational
nodal cubics have Euler characteristic 1, it follows that there must be exactly twelve
rational fibers.
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This count can also be performed tropically. There are two possibilities for the collection
of tropical rational curves through eight general points in R?. Either there are nine such
curves, of which eight contain a loop and one contains no loop but has a bounded edge
of weight 2, or there are ten such curves, of which nine contain a loop and one contains
no loop, but has a vertex whose outgoing edge directions span a sublattice of index 3.
Each tropical curve I' containing a loop counts with tropical multiplicity n(I") = 1,
the curve T with a bounded edge of weight 2 counts with multiplicity n(I'") = 4, and
the curve I'”” with a vertex of multiplicity 3 counts with multiplicity n(I""") = 3. The
refined tropical multiplicities, as defined combinatorially by Block and Gottsche, are

NI)=1, NI)=y'+2+y, and NI")=y'+1+y,

respectively. The following figure illustrates examples of tropical rational curves of
degree 3 in P2 with a loop and a node, an edge of weight 2, and a vertex of multiplicity 3;
the node, the edge of weight 2, and the vertex of multiplicity 3 are marked in blue:

- S
PR

Let us briefly explain how we confirm Conjecture 1.1 in these cases, postponing the

details of the computations to Section 5.

Each of the tropical curves I" with a loop also has a node where the images of two
different edges in the rational parametrization cross. We write IP’II- C P! for the
semialgebraic subset parametrizing curves with tropicalization I', and 4T for the
preimage of Pll in the universal curve ¢’. Then 6T — IP’Il contains exactly one rational
fiber, which is nodal, and it follows that the Euler characteristic of 4T is 1. The
tropicalization of the node in the rational fiber is the tropical node v, because the initial
degeneration of each fiber at any other point of I' is necessarily smooth. We will show
in Section 5 that the motivic volume of 4T is IL (the class of the affine line in the
Grothendieck group of varieties over the residue field), and hence

X—y(%r) = yv

as predicted by Conjecture 1.1. Note that this value is also equal to the y—,—genus of
the rational fiber, so that the y—,—genus of the union of all smooth fibers is 0.
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Next, we consider the tropical curve I'” with a bounded edge of weight 2. The universal
curve 61 — Pll, contains exactly four rational fibers, each of which is nodal, and the
tropicalization of each node lies in the interior of the edge of weight 2, because the
initial degeneration of each fiber at any other point of I'’ is necessarily smooth. We
will show in Section 5 that

X—y(Cr) =1+2y +y2,

which is equal to yN(I'"), in agreement with Conjecture 1.1. Note that the y_,—genus
of each rational fiber is y, so that the y_,—genus of the union of the smooth fibers is
1 —2y + y2, even though the X—y—genus of each smooth fiber is 0. This illustrates the
crucial complication that, unlike the Euler characteristic, the y—y,—genus of a family
cannot be computed by integration on the base, because of the monodromy action on
the induced variation of Hodge structures. In particular, to compute y—_y (%), it is
not sufficient to add up the y_,—genera of the singular fibers.

Similarly, for the tropical curve I'” with a vertex of multiplicity 3, the universal
curve 6t~ — IP’ll,, has exactly three rational fibers, each of which is nodal, and the
tropicalization of each node is the vertex of multiplicity 3. In this case, our computations
yield

x-y(@rn) =14y +y%,
which is equal to yN(I'”’), again confirming Conjecture 1.1. Once more, we find that

the y—_y—genus of the union of all smooth fibers is 1 —2y + y2, even though the
X—y—genus of each smooth fiber is 0.
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2 Tropical preliminaries

2.1 Tropicalizations of curves

Here we recall a few basic notions from tropical curve counting that are essential for
our purposes, including the definition of the Block—Gottsche multiplicities. For further
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details and references related to tropicalization and analytification of curves, we refer
the reader to [2].

Throughout, we fix a rank two lattice M with dual lattice N and a lattice polygon A
in Mr with n + 1 lattice points ug,...,u,, of which g lie in the interior of A.
We denote by Y(A) the corresponding toric surface over the field of Puiseux series
K = C{t}}. Let f € K[M] be a Laurent polynomial with Newton polygon A. In
other words,

f :aoxu0+...+anxu”’

with coefficients a; € K, and a; is nonzero when u; is a vertex of A. The vanishing
locus of f isacurve X inthe torus T = Spec K[M]. Moreover, since A is the Newton
polygon of £, the closure X in Y(A) is a curve in the complete linear series |L(A)]
that does not contain any of the 7T—fixed points of Y(A). Conversely, any curve
in |L(A)| that does not contain any of the T—fixed points is the closure in Y(A) of
the vanishing locus of a Laurent polynomial with Newton polygon A.

We associate to f the piecewise linear function ¥/¢: Ngr — R defined by
Vr(v) = min{(ug, v) + val(ao), . .., (un, v) + val(an)}.

The tropicalization of the curve X, denoted Trop(X), can be characterized, in three
equivalent ways, as

(1) the corner locus of ¥f;

(2) the image of the Berkovich analytification X", which is a closed subset of 72",
under the proper map 7" — N defined by coordinatewise valuation;

(3) the closure in N of the image of X(K) under coordinatewise valuation.
It is a rational polyhedral complex of pure dimension 1.

We also associate to f* the Newton subdivision of A, defined by taking the lower convex
hull of the points (u;, val(a;)) in Mg xR, for a; # 0, and projecting onto A. Note that
the vertices of the Newton subdivision form a subset of the lattice points in A, and that
this may be a proper subset. There is a natural order-reversing, incidence-preserving
bijection in which the maximal faces of the Newton subdivision correspond to the
vertices of Trop(X), the edges of the Newton subdivision correspond to the edges
of Trop(X), and the vertices of the Newton subdivision correspond to the chambers
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of Ngr ~ Trop(X). This bijection takes a positive-dimensional face F of the Newton
subdivision to the face yr of Trop(X) given by

YF =1{v € NR | ¥ ¢ (v) = (u;, v) + val(a;) for some u; € F}.

In particular, the unbounded edge directions of Trop(X) are the inner normals to edges
of A, and the bounded edge directions are orthogonal to the interior edges of the
Newton subdivision.

The edges of Trop(X) come with positive integer weights that satisfy a balancing
condition at each vertex, as follows. If e is an edge of Trop(X) then the weight w(e)
is the lattice length of the corresponding edge of the Newton subdivision. Let v be
a vertex of Trop(X), let e,...,es be the edges of Trop(X) that contain v, and
let v; € N be the primitive lattice vector parallel to e; in the outgoing direction starting
from v. Then the balancing condition at v may be expressed as

w(er)vy + -+ w(es)vg =0.

Conversely, any rational polyhedral complex of pure dimension 1 in Ny, with positive
integer weights assigned to each edge that satisfy the balancing condition at every
vertex, can be realized as the tropicalization of a curve X C 7', and these balanced,
weighted complexes are called tropical curves. We say that a tropical curve in Nr has
degree A if it is the tropicalization of a curve defined by a Laurent polynomial with
Newton polygon A. Equivalently, to each tropical curve, we can associate the multiset
of outgoing directions of its unbounded edges, in which the direction of an unbounded
edge e is counted w(e) times. Then a tropical curve has degree A if and only if this
multiset consists of the inner normals of A, and the number of times that the inner
normal of each edge of A appears is the lattice length of that edge.

2.2 The space of curves with a given tropicalization

Let T" be a tropical curve of degree A. We now describe the locus |L(A)|r in
the complete linear series |L(A)| parametrizing curves whose intersection with the
dense torus T has tropicalization I', as a semialgebraic subset. The complete linear
series |L(A)| is a projective space of dimension n, with homogeneous coordinates
[ag :---:ay] corresponding to the lattice points ug, ..., u, in A. The homogeneous
coordinate a; corresponding to a vertex u; of A must be nonzero for any curve
in |L(A)| whose intersection with T has tropicalization I'. In particular, we may
assume that ug is a vertex of A and restrict attention to the affine space where ag
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is nonzero, and normalize so that ag = 1. Then aq,...,a, are coordinates on this
affine space. Note that there is a unique concave function ¢: A N Z2? — Q such
that ¢(uo) = 0 and the corner locus of the corresponding concave piecewise linear
function ¥ on R? given by

Y(v) = min (u,v)+@u)
ueANZ?2

is exactly I', with its given edge weights. Then, the tropicalization of the curve X
in T defined by the equation x*° 4+ a1 x¥! + .-+ a,x*" = 0 is equal to I" if and
only if val(a;) = ¢ (u;) for each vertex u; of the Newton subdivision dual to I', and
val(aj) > ¢(u;) for each lattice point u; in A that is not a vertex of the Newton
subdivision. These conditions define a closed semialgebraic subset of the complete
linear series |L(A)|. See Section 3.1 for further details on semialgebraic sets and
[28; 27] for a more general treatment of realization spaces for tropical varieties.

2.3 Tropical curve counting

Tropical curves of degree A in Nr can be used to count algebraic curves in |L(A)],
using the well-known correspondence theorems. To explain the statement of these
theorems, it is helpful first to define the genus of a tropical curve using parametrizations.

Let T" be a tropical curve of degree A in Nr. A parametrization of I' is a metric
graph I'" with a continuous surjective map p: I'" — T such that the restriction of p to
each edge of T is linear with derivative in the lattice N . These slopes are required
to satisfy the balancing condition at each vertex of I'”, meaning that the sum of the
outgoing slopes at each vertex is zero. Finally, the parametrization must be compatible
with the edge weights on I'. This means that there is some subdivision of I" in which
each edge is the homeomorphic image of finitely many edges of I/, and each of these
homeomorphisms is a dilation by a positive integer factor (with respect to the lattice
metric on '), such that the sum of these dilation factors is the edge weight in I". Note
that parametrizations may contract some edges of I'’. We identify two parametrizations
if a subdivision of one is isomorphic to a subdivision of the other. The genus of a
tropical curve I'" in NR is defined to be the smallest first Betti number of a metric
graph I' that admits a parametrization p: I’ — I'. It follows easily from the theory of
skeletons of Berkovich analytifications of curves, as discussed in [2], that the genus of
the tropicalization of a curve X C T is less than or equal to the geometric genus of X .

Fix 0 <§ < g, and choose a set S of n — § rational points in general position in Ng.
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Note that we do not require S to be in vertically or horizontally stretched position, or
to lie on a line of irrational slope, we just require that it be general with respect to the
appropriate evaluation map, as in [13]. This condition is satisfied on an open dense
subset of Nﬁ_s. One of the essential and foundational combinatorial facts underlying
tropical curve counting is that there are only finitely many parametrized tropical curves
of genus g—& and degree A passing through S. Each of these tropical curves is simple,
meaning that the parametrizing curve is connected and trivalent, the parametrization is an
immersion, the image has only trivalent and 4—valent vertices, and the preimage of each
4—valent vertex has exactly two points. Moreover, each unbounded edge has weight 1.

Now, choose a collection S of 7 —§ points in 7'(K) whose tropicalization is S'. There
are finitely many curves of geometric genus g —§ in |L(A)| that contain S, and the
tropicalization of each of these is one of the finitely many tropical curves of genus g—3§
that contains S'. Let I' be one of these tropical curves. The tropical-nonarchimedean
correspondence theorems tell us that the number of algebraic curves of genus g — &
that contain S and tropicalize to I' can be expressed combinatorially as a product over
trivalent vertices,

n(T) =] [m),

where the factor m(v) corresponding to a vertex v is the index of the sublattice of N
generated by the vectors w(e1)vy, ..., w(es)vs, where v; is the primitive lattice vector
in the outgoing direction along the edge e¢;, and w(e;) is the weight of this edge.

The Block—Gottsche multiplicities are defined similarly, by the combinatorial formula
NT) =[] M@).
v
where M (v) is the Laurent polynomial in y'/2 given by

ym(v)/Z _y—m(v)/2
y1/2_y—1/2

— ym@)=D/2 | m@)=3)/2 . |y~ (m@)=1)/2

Each tropical curve of genus g —§ containing S has an even number of vertices such
that m(v) is even. To see this, note that the multiplicity of a trivalent vertex in the
embedded tropical curve is twice the area of the corresponding triangle in the Newton
subdivision. Pick’s formula then implies that the multiplicity of the vertex is congruent
to the lattice perimeter of the corresponding triangle, modulo 2. Therefore, if every
edge of Gamma has odd weight, then every triangle has odd perimeter. Each bounded
edge of even weight in the tropical curve corresponds to an interior edge of even length
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in the Newton subdivision, which changes the parity of the lattice perimeter of two
triangles. It follows that N(I") is a Laurent polynomial in y, even though it is expressed

1/2

as a product of Laurent polynomials in y*/<. This Laurent polynomial specializes

to n(I") by setting y = 1, since M (v) specializes to m(v) by setting y/2 = 1.

3 Motivic volumes of semialgebraic sets

An essential tool in this paper is a motivic Euler characteristic for definable sets
in the language of valued fields over C{{¢}}, which was constructed by Hrushovski
and Kazhdan [21] using deep results from model theory. It assigns a value in the
Grothendieck ring Ko(Varc) of complex varieties to any semialgebraic set in an
algebraic C{{t}}—variety, and it is additive with respect to disjoint unions. We will use
this motivic Euler characteristic to define the y_,—genus of semialgebraic sets such
as Jac(%r).

Hrushovski and Kazhdan’s theory works over any henselian valued field of equal char-
acteristic zero. We will review the main statements in the special case we need, where
the field is real-valued and algebraically closed. The latter assumption substantially
simplifies a part of the construction, by collapsing the generalized residue field structure.
Although the proofs of these results use the model theory of algebraically closed valued
fields in an essential way, we have tried to present the statements, as much as possible,
in a geometric language.

Unless explicitly stated otherwise, the results in this section are valid for any height
one valuation ring R of equal characteristic zero with algebraically closed quotient
field K. We denote by k the residue field of R, and by G the value group of K. The
assumption that K is algebraically closed implies that k is algebraically closed and G
is divisible. The valuation map is denoted by val: K* — G. We fix an embedding of
the ordered group G in (R, +, <), extend the ordering to G U {oco} by declaring that
x < oo for every x in G U{oo}, and extend the valuation to K by setting val(0) = oo.

A polyhedron in G" is an intersection of finitely many half-spaces of the form
{ueG" |ayuy+---+ayun <ao}

B

with aq,...,a, in Q and ag in G. We will also use the term “G-rational polyhedron’
to denote subsets of R” defined by the same type of formulas. This should not lead
to confusion, since a G-rational polyhedron in R” is completely determined by its
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intersection with the dense subset G" of R”. For every integer n > 0, we denote by
trop the tropicalization map

trop: (K*)" — G", (x1,....xn) = (v(x1),...,v(xn)).

More generally, for any algebraic torus 7" over K with cocharacter lattice N, we
denote by
trop: T(K) — NRr

the map defined by coordinatewise valuation.

3.1 Semialgebraic subsets of algebraic K-varieties

Let n be a positive integer. A semialgebraic subset of K” is a finite Boolean combina-
tion of subsets of the form

{x € K" | val(f(x)) = val(g(x))},

where f and g are polynomials in K[x1, ..., x,]. More generally, if X isa K—-scheme
of finite type, then a subset S of X(K) is called a semialgebraic subset of X if we
can cover X by affine open subschemes U such that there exists a closed immersion
i: U — A%, for some n > 0, with the property that i (S N U(K)) is a semialgebraic
subset of K”. Tt is easy to check that if S is a semialgebraic subset of X, then
i(SNU(K)) is a semialgebraic subset of K" for every open subscheme U of X
and every closed immersion i: U — A% . Robinson’s quantifier elimination theorem
for algebraically closed valued fields [43] implies that if f: X — Y is a morphism
of K—schemes of finite type and S is a semialgebraic subset of X, then f(S) C Y(K)
is a semialgebraic subset of Y .

Examples (1) If X is a K—scheme of finite type, then every constructible subset
of X(K) is semialgebraic. Indeed, locally on X, it is a Boolean combination of subsets
of the form

x € X(K) | f(x) =0} = {x € X(K) [ val(f(x)) = val(0);

with f a regular function.

(2) Let X be an R—scheme of finite type and set X = Xk . The specialization map
spy: X(R) — X (k)

is defined by reducing coordinates modulo the maximal ideal of R. If C is a con-
structible subset of X'(k), then sp;(1 (C) is a semialgebraic subset of X . To prove this,
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it suffices to consider the case where X is affine and C is closed in X' (k). If t1,...,t,
generate the R-algebra O(X) and C is the set of closed points of the zero locus of an
ideal (f1,..., fy) in O(X), then

sp}l(C) = {x € X(K) | val(t;(x)) > 0 and val( f;(x)) > O forall i, j}.

When C is a constructible subset of X} (rather than X (k)) we will write sp}1 (C)
instead of sp}l(C NnXx(k)).

(3) Ifay,...,a, are elements of Q and c is an element of G, then
{x € (K*)" | ayval(x1) +--- + ay val(x,) < c}

is a semialgebraic subset of K”. More generally, if S is a finite Boolean combination
of G-rational polyhedra in R”, then trop~!(S) is a semialgebraic subset of K.
Conversely, it follows from Robinson’s quantifier elimination for algebraically closed
valued fields that the image of every semialgebraic subset of (K*)" under trop is a
finite Boolean combination of G-rational polyhedra in G”.

We will now discuss some less obvious examples that are of interest in tropical geometry.

Proposition 3.1 Let Y be a K—scheme of finite type and let X be a subscheme of
Y xg an,K’ for some n > 0. We denote by f: X(K) — Y(K) the restriction of the
projection morphism Y xg an,K — Y. Let I be a finite Boolean combination of G—
rational polyhedra in R™ . Then the set of points y in Y (K) such that trop(f ~!(y))=T

is a semialgebraic subset of Y .

Proof This is an immediate consequence of Robinson’s quantifier elimination theorem
for algebraically closed valued fields. |

Proposition 3.2 Let Y be a K—scheme of finite type and let X be a hypersurface in
Y xx an,K for some n > 0. We denote by f: X(K) — Y(K) the restriction of the
projection morphism Y Xg qu x — Y. Let T be any topological space. Then the set
of points y in Y(K) such that the closure of trop( f ~!(y)) in R” is homeomorphic
to T is a semialgebraic subset of Y .

Proof Given a family of hypersurfaces in the torus G ., after stratifying the base

by the Newton polytope of the defining equation, we may assume that the Newton
polytope is constant.
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Now, the tropicalization of a hypersurface in an’ x has the structure of a regular
polyhedral complex, which is dual to the Newton subdivision of the Newton polytope.
In particular, the homeomorphism type of the tropical hypersurface is determined
by the Newton subdivision. There are finitely many possibilities for the Newton
subdivision, and the condition of the defining equation having fixed Newton subdivision
is semialgebraic, given simply by linear inequalities on the valuations of the coefficients
of the defining equation. a

Remark 3.3 Although we will not need it in this paper, we want to point out a
related result involving Berkovich skeletons of stable marked curves over K. Let
f: X — Y be amorphism of K—schemes of finite type, and let 01,...,0,: Y —> X
be sections of f whose images are disjoint. Assume that f~!(y), marked with the
points (a1(y),...,0,(y)) is a stable curve over K, for every y in Y(K). Then for
every graph T, the set of points y in Y(K) such that the skeleton of f~1(y) is
homeomorphic to I' is a semialgebraic subset of Y . This can be deduced from (2) on
page 3188 and the fact that the combinatorial types of Berkovich skeletons of stable
genus g curves with n marked points correspond to the boundary strata of Mg , [1].

3.2 The Grothendieck ring of semialgebraic sets

We define the category VFg of semialgebraic sets over K as follows. The objects in this
category are the pairs (X, S) with X a K—scheme of finite type and S a semialgebraic
subset of X . A morphism (X, S) — (Y, T) in this category is a map S — T whose
graph is a semialgebraic subset of X xg Y . It is clear that a composition of two such
maps is again a morphism in VFg. We will often denote an object (X,.S) in the
category VFg simply by §, leaving X implicit. The image and inverse image of a
semialgebraic set under a morphism in VFg are again semialgebraic.

The Grothendieck group Ko(VFg) of semialgebraic sets over K is the free abelian
group on isomorphism classes [S] of semialgebraic sets S over K modulo the relations

[S]=[T]+[S~T]

for all K—schemes of finite type X and all semialgebraic subsets 7" C S of X. Note
that, in particular, [&] = 0. The group Ko(VFg) has a unique ring structure such that

[ST-[ST=[Sx "]

in Ko(VFg) for all semialgebraic sets S and S’.
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3.3 The Grothendieck ring of algebraic varieties

For every field F, the Grothendieck ring of F—varieties K¢o(Varg) is the free abelian
group on isomorphism classes [X] of F—schemes X of finite type modulo the scissor
relations [X] = [Y] + [X ~ Y] for all F-schemes of finite type X and all closed
subschemes Y of X . The ring structure on Ko(Var ) is determined by the property that

[X]-[XT=[X xr X']

for all F—schemes of finite type X and X’. We set IL = [A},] If F is algebraically
closed and of characteristic zero, which is the only case we will need, then Ko(Varg)
is canonically isomorphic to the Grothendieck ring of definable sets over the field F
(see [38, Sections 3.7 and 3.8]). It is clear from the definitions that there exists a unique
ring morphism

Ko(Varg) — Ko(VFk)

that sends the class of a K—scheme of finite type X in Ko(Varg) to the class of X(K)
in Ko(VFg) (where we view X(K) as a semialgebraic subset of X).

For every integer n > 0, we define the Grothendieck group Ko (Varg[n]) in the same
way as Ko(Varg), except that we only consider F—schemes of finite type X and Y
of dimension at most 7 in the definition of the generators and the scissor relations.

For every F-scheme of finite type X of dimension at most n, we will denote by [X],
its class in Ko(Varg[n]). We give the direct sum

Ko(Varr [+]) = @ Ko(Varg [n])
n>0
the structure of a graded ring by setting
[XTm - [XTn = [X xF X'Im+n

for all integers m,n > 0 and all F—schemes of finite type X and X’ of dimension at
most m, respectively n.

3.4 The Grothendieck ring of G-rational polyhedra

For every nonnegative integer n, we write G[n] for the category of definable subsets
in G" with integral affine transformations. A definable subset of G” is a finite Boolean
combination of G-rational polyhedrain G". A morphism S — T in G[n] is a bijective
map f: S — T such that there exists a finite partition of S into definable subsets S;
satisfying the property that the restriction of f to S; can be written as x — M x + b
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with M € GL,(Z) and b € G". In particular, every morphism in this category is an
isomorphism. Now the Grothendieck group Ko(G[n]) is the free abelian group on
isomorphism classes [S], of definable subsets S of G" modulo the relations

[S]n =[Tln +[S~Tln
for all definable subsets 7 C S of G". We again give the direct sum
Ko(G[#)) = B Ko(GIn))
n>0

the structure of a graded ring by setting

[SIm - [T]n =[S X T|m+n

for all definable subsets S and 7 of G™ and G", respectively. The class of a point
in G" will be denoted by [1],.

Every definable subset of G” has a natural dimension by the theory of o—minimal
structures. It is equal to the smallest nonnegative integer d such that S lies in a finite
union of spaces of the form

(V®eR+¢) NG,

where V' is a d—dimensional linear subspace of Q" and g is an element of G”. This
notion of dimension agrees with the topological dimension of the closure of S in R”.
By convention, the empty set has dimension —oco. If S is a definable subset of G” of
dimension at most m1, it is not difficult to see that there exists a finite partition of S into
definable subsets Si, ..., Sy such that, for each i, there exists an isomorphism in G [n]
between S; and a definable subset 7; of G™ C G". The element [T1] + --- + [T7]
of Ko(G[m]) does not depend on the choice of the partition or the sets 7;, and will be
denoted by [S];,.

Beware that a homothety with factor different from =1 is not a morphism in G[n] for
n > 0. Still, we can make the following identifications in the Grothendieck group.

Proposition 3.4 For every positive integer n and every element g >0 in G, we denote
by A, . the open simplex

n
le- <gand x; >0forall i;.

o _ n
Ay g = ;x €G
i=1

Then
[Az,g]n = (=D"[1], in Ko(G[n]).
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Proof We will proceed by induction on n. For n = 1, the intervals [0, 00) and
[g,00) in G are isomorphic in G[1] (via the translation over g), so that the class of
their difference [0, g) vanishes in Ko(G[1]). Hence, the class in Ko(G[1]) of every
semiopen bounded interval with endpoints in G is equal to zero. Thus the class of any
bounded open interval with endpoints in G is equal to minus [1];, the class of a point.

Now assume that n > 1 and that the result holds for all strictly smaller values of .
We consider the definable subsets

n—1
So={xeG” le-<gandx,->0fori=1,...,n},
i=1

n
Slz{xeG” Zx,-=gandx,->0fori=l,...,n},

i=1

n
Szz{xeSo‘in>g}

i=1

of G". Then {Az,g, S1, 82} is a partition of S, and Sy and S, are isomorphic
in G[n]. Thus,

(A7 ¢ln = —[S1]n

in Ko(G|[n]). But Sy is isomorphic to A7_; , x {0} in G[n], so that

[Siln =[1]1- [Afl—l,g]n—l = (_l)n_l[l]n

by the induction hypothesis. This concludes the proof. a

3.5 The motivic volume of Hrushovski and Kazhdan

We now recall how the theory of motivic integration of Hrushovski and Kazhdan [21]
gives rise to a ring morphism

Vol: Ko(VFg) — Ko(Varg).

If S is a semialgebraic set over K, then we will write Vol(S) for Vol([S]) and we
call this object the motivic volume of S'. If X is a K—scheme of finite type, then we
write Vol(X) instead of Vol(X(K)). In order to keep our presentation accessible to
readers with a background in algebraic geometry, we will state the construction in
slightly different terms than those used in [21], but it is not difficult to see that it yields
the same result.
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One of the central results of Hrushovski and Kazhdan’s theory is the construction of a
ring isomorphism

(3.5 ®": Ko(VFg) — (Ko(RESk[*]) ®27[c] Ko(G[%]))/Isp.

Let us explain the notation, as well as the main ingredients of this construction. Since,
in our setting, the value group of K is divisible and k has characteristic zero, the
Grothendieck ring Ko (RESg [*]) is simply the graded ring

Ko (Varg []) = €D Ko(Varg [n]).

n>0
We view Ko(RESg[*]) and Ko(G|[x*]) as graded Z[t]-algebras via the morphisms
Z[t] > Ko(G[*]), T (11,
Z[t] - Ko(RESk[#]). 7+ [Gp il
Hrushovski and Kazhdan defined a ring morphism

0: Ko(RESk[*]) ®z[7) Ko(G[*]) — Ko(VFk)

that is characterized by the following properties. If S is a definable subset of G”, then
the morphism ® maps [S], € Ko(G[n]) to the class in Ko(VFg) of the semialgebraic
subset trop—!(S) of K". By Noether normalization, we can write every element
in Ko(RESk|[n]) as a Z-linear combination of classes of k—schemes of finite type X
that admit a quasifinite morphism f: X — A} with locally closed image. Since k
has characteristic zero, we can assume that X is étale over f(X) (endowed with its
reduced induced structure). Then by [18, 18.1.1], we can even suppose that there
exists an étale A’p—scheme of finite type A" and a closed immersion X — A} such
that the restriction of X — A7 to X coincides with f. The morphism © maps
[X]n € Ko(Varg[n]) to the class in Ko(VFg) of the semialgebraic set spy!(X). This
definition is independent of the choice of X', because R is henselian.

Hrushovski and Kazhdan proved in [21, Theorem 8.8 and Corollary 10.3] that the
morphism O is surjective, and that its kernel is the ideal /5, generated by the element

[Spec k]o + [G>0]1 — [Speck];.

Note that this element indeed belongs to the kernel of ® since the image of [Spec k]
is the class of a point in Ko(VFg), the image of [G~¢]; is the class of the punctured
open unit disc

{x € K* | val(x) > 0},
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and the image of [Spec k]; is the class of the open unit disc spg} (0) in K. Thus the
morphism ® factors through an isomorphism :

(Ko(RESk[*]) ®z[z] Ko(G[*]))/ Iy — Ko(VFk),

and O’ is, by definition, the inverse of this isomorphism.

The morphism
Vol: Ko(VFg) — Ko(Vary)

is now obtained by composing ®” with the ring morphism
U (Ko(RESk[]) ®z[7) Ko(G[%]))/Isp — Ko(Varg)

defined in [21, Theorem 10.5(4)] (we implicitly make use of the isomorphism in
[21, Corollary 10.3]). Let us unravel its construction. For each n > 0 we have an
obvious group morphism

Ko(Varg[n]) - Ko(Varg), [X]n — [X],
and these give rise to a ring morphism
3.6) Ko(RESg[*]) = Ko(Varg).
On the other hand, we can consider the Euler characteristic
X't Ko(G[+]) - Z
from [21, Lemma 9.6] sending the class in Ko(G[n]) of a definable subset S of G” to
((S)= lim y(SO=r.r"),

where y(-) is the usual o—minimal Euler characteristic [10, Chapter 4, Section 2]. The
value of y(S N[—r,r]") stabilizes for sufficiently large r.

Equivalently, the ring morphism y’ is characterized by the property that it sends the
class of any closed polyhedron to 1; the image of the class of an arbitrary definable set
can then be computed by cell decomposition, using the additivity of y’.

Proposition 3.7 Let y be a nonempty G-rational polyhedron in R", for some n > 0,
and denote by y its relative interior. Then

X (NG = (—1)dm»)

if y is bounded; y’'(y NG™) =1 if y is an affine subspace of R"; and y'(y NG™) =0
in all other cases.
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Proof In the bounded case, y'(y N G™) coincides with the usual Euler characteristic
(with compact supports) of , and the assertion is obvious.

In the unbounded case,
X FNG™) =y N[-r, 1m0

whenever r is sufficiently large. If y is an affine subspace of R”, then y = y
and y N [—r, r]9%) is homeomorphic to [0, 1]9™() | so that the Euler characteristic
equals 1. Otherwise, for large r, the space y N (—r, r)dim() g homeomorphic to
RYmY) while the relative boundary of p N [—r, r]%™¥) is homeomorphic to R4mM¥)—1
so that

2 0 [=r, 140 =0, u|

We use y’ to define a group morphism

(3.8 Ko(G[n]) — Ko(Vark), a+> x'(@)(L—1)",

for every n > 0. The morphisms (3.6) and (3.8) together induce a ring morphism
Ko(RESk[+]) ®z[7] Ko(G[*]) — Ko(Varg),

whose kernel contains Iy, because y'(G>g) = 0. Thus it factors through a ring
morphism
: (Ko(RESk []) ®z(r) Ko(GI¥)) /Iy — Ko(Varg).

It will be useful to consider the behavior of the motivic volume under extensions of the
valued field K. Let K’ be an algebraically closed valued extension of K of rank 1.
The case of most interest to us will be the case where K’ is the completion of K. For
every semialgebraic set S over K, we can consider its base change S xx K’ to K,
which is defined by the same formulas (this construction is well defined because of
quantifier elimination).

Proposition 3.9  Vol(S xx K’) = Vol(S) for every semialgebraic set S over K .

Proof This follows easily from the definition of the motivic volume, since the mor-
phism © is compatible with base change from K to K’. a

3.6 Tropical computation of the motivic volume

In this section, we will prove some properties that can be used to compute the motivic
volume in concrete cases. The most basic example is the following.
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Proposition 3.10 If X' is a smooth R—scheme of finite type of pure relative dimen-
sion d and Y is a constructible subset of X}, then

[spx' (V)] = O([Y]s) in Ko(VFk),
and
Vol(sp}1 (Y))=[Y] in Ko(Varg).

In particular, [X(R)] = O([X]q) in Ko(VFg), and Vol(X(R)) = [X] in Ko(Varg).

Proof By additivity, we may assume that Y is closed in X} and that X admits an
étale morphism to A% for some d > 0. Then, by construction, the morphism ® maps
the class of Y in Ko(Varg[d]) to the class of sp3!(Y) in Ko(VFk), and it follows
from the definition of the morphism Vol that Vol(sp3!(Y)) = [Y]. O

The definition of the motivic volume also makes it well adapted to tropical computations.
Let X be a reduced closed subscheme of dimension d of a torus T = G,’;, x» for
some n > 0. We denote by M and N the character lattice and cocharacter lattice
of T, respectively, and by Trop(X) C NR the tropicalization of X . We denote by T
the split R—torus with character lattice M. Let ¥ be a G—admissible tropical fan
for X in Nr @ R>¢ in the sense of [19, Definition 12.1] (henceforth, we will simply
speak of a fropical fan). It defines a toric scheme P (X) over R. If we write X’ for the
schematic closure of X in P(X), then X is proper over R and the multiplication map

m: TxpX —P(X)
is faithfully flat. Recall that X is called schon if the initial degeneration iny, (X) is
smooth over k for every w € N this is equivalent to saying that m is smooth.

Intersecting the cones of ¥ with Ng x {1}, we obtain a G-rational polyhedral com-
plex in Nr that we denote by X;. The support of X; is equal to Trop(X), by
[19, Proposition 12.5]. For every cell ¥ in X1, we denote its relative interior by 7.
By [19, Corollary 12.9], all the points w in y give rise to the same initial degeneration
iny, X, which we will denote by in, X'. We write X,, for the semialgebraic subset

X(K) Ntrop™ ' (7)

of X. As y ranges over the cells in Xy, the sets X, form a partition of X(K). We
denote by X (y) the intersection of X} with the torus orbit of P(X); corresponding
to the cell y. Then we can also write X, as

Xy, = sp! (X (y)) N X(K).
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Proposition 3.11 Let X be a reduced closed subscheme of dimension d of a K—
torus T and let ¥ be a tropical fan for X . Then, with the above notation, we have

[Xy] = O([X% ()] d—dim(y) ® [V]aim(y)) in Ko(VFk)

for every cell y in the polyhedral complex X1 such that in, X is smooth over k. In
particular, it X is schon, then

[X(K)] = Z O ([Xx (M]d—dim@y) ® [V ]aim())-
Y€EZ]

Proof Lety beacellin X. Translating X by a point of T(K), we can assume that y
contains the origin of Ng. Let V' be the linear subspace of N generated by y and
let T be the R—subtorus of T with cocharacter lattice V N N . Its generic fiber will be
denoted by T, and we write Ty for the inverse image of y under the tropicalization map

trop: T(K) — V.

Step 1 Let gg be any point of Ty. Since trop(gk) lies in the support of X, the
point gg extends to an R—point in P(X), which we denote by g. We write X& for the
schematic closure of gl_(lX in T. By definition, the special fiber (X8); is isomorphic
to the initial degeneration iny X .

Next, we consider the multiplication morphism
m: TxgX —P(X).

We denote by m~!(g) the base change of m to g € P(Z)(R). We can consider m~!(g)
as a T—scheme via the composition of the closed embedding m~!(g) — T xg X, the
projection T xg X — T and the morphism T — T that sends a point of the torus
to its multiplicative inverse. Then the structural morphism m~1(g) — T is a proper
monomorphism, and thus a closed embedding. It follows that m~!(g) coincides with
the closed subscheme X& of T, since m~!(g) is flat over R and its generic fiber
coincides with g71X .

The point g € P(X)(k) does not depend on the choice of g, because T & acts trivially
on the torus orbit of P(X); containing g; (that is, the orbit corresponding to y).
If we let Ty act on gi by multiplication, then we can identify this orbit in P(X);
with Ty /T, and the fiber of m over g with Ty X1, /T, X (y), which is a trivial
T g—torsor over X% (y). Thus, we find that /'\,’]f and Ty X, T, Xx (y) are equal as
closed subschemes of Ty . In particular, X,f does not depend on g, and Xy (y) is
smooth over k if and only if in, X is smooth over k.
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Step 2 Now, assume that in, X is smooth over k. We will cover Xy (y) by open
subschemes U such that

[spx" (U") N X(K)] = O([U"la—dim(y) ® [Plaimy)) in Ko(VFk)

for every open subscheme U’ of U . Then the statement of the proposition follows by
additivity and the fact that X, = sp}1 (X (y) N X(K).

Since X (y) is smooth over k and T /T is smooth over R, every point of X (y)
has an open neighborhood ¢/ in T/ T such that there exists an étale morphism of
R—schemes h: U — A’ with

U N X (y) =h1(AY),

where r =n—dim(y) and s =d —dim(y). Then ) = Uxpr, A% is a closed subscheme
of U, smooth over R, with special fiber Vi = X (y) NU.

We will construct a semialgebraic bijection
spx' (V) N X(K) = Ty x Y(R)

that commutes with the specialization maps to Yy . This suffices to finish the proof, since

[sp5" (U)] = O([U]4—dim(y))

in Ko(VFk) for every open subset U of Yy, by Proposition 3.10, and

[Ty] = ©([PNaim(r)
in Ko(VFg) by construction.

We choose a sphttmg T~Txg (T/ T) of the K—torus T . It induces a projection
morphism p: T — T,aswellasa T—equlvarlant isomorphism

T x U= TXRZ/{

T,T
that restricts to an isomorphism
TXT/TygTXRy.

By the henselian property of R, the linear projection 7: A — A% lifts to a semi-
algebraic retraction sp;, (V) = Y(R). By base change, this retraction induces a
semialgebraic map

p: T(R) xsp;" k) = T(R) x V(R).
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By restricting p we obtain, for every point gx of Ty, a semialgebraic map
pg: (X8 X /F U)(R) — 'T(R) x V(R).
This is a bijection: the morphism

Idx (woh): T xgtd > T xRg AR
restricts to a morphism
T s
X8 xp g > T xpAj
which is étale because its restriction to the special fibers coincides with the étale
morphism
Idxhg: T ¥ Ve > Ty XkAi

(see Step 1). The henselian property of R now implies that pg is bijective.
Finally, we consider the map
Yo spx! W) N X(K) > Ty x Y(R), x> (p(x). ),

where y is the image of p(p(x)~'x) under the projection to ). The map ¥ is
semialgebraic and commutes with specialization to ) . Moreover, v is bijective: its
inverse is given by

(g.7) > g*pg (1, ).

This concludes the proof. a

Corollary 3.12 Let X be a reduced closed subscheme of T and let t be a definable
setin N @z G =~ G". Assume that iny, (X) is smooth over k for all points w in T,
and that the class [iny, X| in Ko(Var) does not depend on w ; we denote it by [iny X].
Then we have

Vol(X(K) Ntrop~ (1)) = ' (v)[ing X]
in Ko(Vary).
In particular, if X is a tropical fan for X and y is a cell of X1 such that in, X is

smooth over k, then Vol(X,) = (—1)%™®[ing X] if y is bounded, and Vol(X,) = 0
if y is unbounded. If X is schon, then

Vol(X) = > (=)™ Pfin, X] in Ko(Varg),
Y

where the sum is taken over the bounded cells y of .
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Proof We can refine the fan ¥ in such a way that v becomes a union of relative
interiors of cells in ;. Thus, by additivity, we may assume that 7 is the relative
interior of a cell y of 3. As we have seen in the proof of Proposition 3.11, the initial
degeneration in, X is isomorphic to Xy (y) X T & » Where T  1s a k—torus of dimension
equal to dim(X)—dim(y). Now the result follows from Propositions 3.7 and 3.11, and
the definition of the motivic volume (note that y is not an unbounded affine subspace
of NRr because the cones in the tropical fan X are strictly convex by definition). O

By an additivity argument, we can also obtain an expression for the motivic volume
of the schematic closure X of X in P(X)g. For every cell y of X1, we set X y =
sp/}1 (X (y)). Equivalently, X y 1s the closure of X, in X (K) with respect to the
valuation topology. These sets form a semialgebraic partition of X (K). We have
X, = X(K)NX,,and X, = X, if and only if y is bounded.

Proposition 3.13 Let X be a reduced closed subscheme of T, let ¥ be a tropical fan
for X and denote by X the schematic closure of X in P(X)g . Then for every cell y
of X1 such that in, (X) is smooth over k, we have

Vol(X ) = (1 = L) =amCe=t g )],
where rec(y) denotes the recession cone of y. In particular, if X is schon, then

Vol(X) = ) | (1 =)=t ()] in Ko(Varg).
yEX

Proof We denote by rec(X) the recession fan of X in Ng. It consists of the recession
cones rec(y) of the cells y of X;. The toric variety associated with rec(X) is canoni-
cally isomorphic with P(X)g . Let o be a cone of rec(X). We denote by T (o) the
torus orbit of P(X)g corresponding to 0. We can view 7' (o) as a quotient K—torus
of T of dimension n —dim(o) with cocharacter lattice

N(o) =N/(N N V).

where V; is the subspace of Nr spanned by o. We denote by p the projection
morphism
p: Ng = N(0)r,

and we write T (o) for the split R—torus with the same cocharacter lattice as 7' (o).

Let S(o) be the set of cones in X whose recession cones contain o . By projecting the
cones in S(o) to N(o)r ® R, we get a G—admissible fan that we denote by X (o).
The associated toric R—scheme P (X (o)) is canonically isomorphic to the schematic
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closure of T'(0) in P(X). We denote by X (o) the intersection of X with T'(o), with
its reduced induced structure, and by X' (o) the schematic closure of X (o) in P(X(0)).
Then the multiplication morphism

m': X(0)xg T — P(Z(0))
is the base change of the multiplication morphism
m: X xg T — P(X).

Indeed, this is obviously true over the dense torus orbit of P(X(0))k , but then it holds
over the whole of IP (X (o)) by flatness of m. Since the action of T on P(X(0)) factors
through the quotient torus T (o), the morphism m’ factors through the multiplication
morphism

me: X(0)xg T (o) = P(Z(0)).

It follows that m, is still faithfully flat, so that ¥ (o) is a tropical fan for X (o).

Our description of my also implies that, for every cell y of ¥; whose recession
cone contains ¢, the stratum X% (y) of the special fiber of X coincides with the

stratum X (o) (p(y)) of the special fiber of X (o). It then follows from Step 1 in the
dim(o)

mk In

particular, iny (X) is smooth if and only if in,,)(X(0)) is smooth. Moreover, p(y)

proof of Proposition 3.11 that iny, (X) is isomorphic to in,,)(X(0)) xx G

is bounded if and only if rec(y) = o ; in that case, the dimension of p(y) is equal to
dim(y) —dim(rec(y)). Since we can write

(X)]= ) [X(©)pp)]

o€rec(X)
o Crec(y)

in Ko(VFg), the formula in Corollary 3.12 now yields

Vol(Xy) = (1 - L)W=y ()] in Ko(Varg)
whenever in,(X) is smooth over k. The expression for Vol(X) then follows by
additivity. a

Remark 3.14 In the statement of Proposition 3.13, the recession cone of y has
dimension zero if y is bounded, so that we get the same formula for the motivic volume
of X y = Xy as in Corollary 3.12 for bounded cells y.

We also record the following variant of Proposition 3.13 that will be used in the
calculations in Section 5. Let us emphasize that in the statement of Proposition 3.15,
we do not assume that X is a tropical fan for X .
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Proposition 3.15 Let X be an integral closed subscheme of T, let ¥ be a G—
admissible fan in Ng @ R, and denote by X the schematic closure of X in P(Z)g.
Let t be a G-rational polyhedron in Ngr whose recession cone rec(t) belongs to the re-
cession fan rec(X). Assume that iny, X is smooth over k for every G-rational point w
in 7, and that its class in Ko(Vary) does not depend on w; we denote it by [iny X].

We denote by X the closure of X(K) N trop~'(?) in X(K) with respect to the
valuation topology. Then we have

[in; X]
(]L _ l)dim(rec(r))

Vol(X ;) = (—1)dim(D)—dim(rec(z))
in Ko(Varg)[(L —1)~'].

Proof The argument is similar to the proof of Proposition 3.13; we adopt the notation
of that proof. We may assume that every G-rational point w of 7 is contained
in trop(X(K)), since otherwise, all the initial degenerations in,, X are empty, and
there is nothing to prove. Let o be a cone in rec(X). Let 7’ be the set of points w’
in N(o)r such that w 4+ o C t for some w in p~!(w’). Then 7’ is a G-rational
polyhedron in N(o)g, and its relative interior is equal to p(7). Since we are assuming
that the recession cone of t belongs to the fan rec(X), the polyhedron 7’ is empty
unless o is a face of rec(t); it is bounded of dimension dim(t) — dim(rec(7)) if o
coincides with rec(t), and it is unbounded if ¢ is a strict face of rec(t). Moreover,

X.NT(0)(K)= X(0)(K)Ntrop~ 1 (7).

Thus it suffices to show that if o is a face of rec(r) and w’ is a G-rational point
in 7/, then there exists a G—rational point w in ¢ N p~!(w’) such that the initial
degeneration iny, X is isomorphic to iny, ) X(0) Xg GST;C(U). Smoothness of iny, X
then implies smoothness of in, ) X(0), and the result follows from Corollary 3.12
and the additivity of the motivic volume.

So assume that o is a face of rec(t), and let w’ be a G-rational point in ¢’. Let X’
be a tropical fan in Ng @& R>o for X such that 7 is a union of cells in E/l. Then we
can find

(1) acell y in X} contained in 7;

(2) a G-rational point w in the relative interior of y such that p(w) = w’;

(3) aface o’ of the recession cone of y such that ¢’ is contained in o and of the
same dimension as o .
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We denote by T'(¢”) the torus orbit of P(X/)g corresponding to ¢’. The inclusion
of ¢’ in ¢ induces an isomorphism of tori 7 (¢’) — T'(¢0'). Let &’ be the closure of X
in P(X’), and denote by X(o’) the intersection of X with 7'(¢”), with its reduced
induced structure. Since X’ is a tropical fan for X, the multiplication morphism
X' xT — P(X’) is faithfully flat. This property is preserved by base change to K ;
thus the recession fan of X’ is a tropical fan for X with respect to the trivial absolute
value on K. We can choose X’ in such a way that rec(X’) is a refinement of a fan
that contains o as a cone. Then it follows from [32, Theorem 4.4] that X (¢”) is equal
to the inverse image of X (o) in T(0”). Therefore, the initial degeneration of X(c”)
at w’ is isomorphic to iny X (o). On the other hand, since ¥’ is a tropical fan for X,
the proof of Proposition 3.13 shows that iny, X is isomorphic to iny,’ X(o”) X Ggir’r;((a/).
This concludes the proof. a

3.7 Comparison with the motivic nearby fiber

Another situation where we can explicitly compute the motivic volume is the following.
We say that a flat R—scheme of finite type is strictly semistable if it can be covered
with open subschemes that admit an étale morphism to an R—scheme of the form

Sd.r.a = Spec R[xo, ..., xq]/(x0---xr —a),

where r < d and « is a nonzero element of the maximal ideal of R. Let X be a strictly
semistable R—scheme of pure relative dimension d . We denote by E;, for i € I, the
irreducible components of X} . For every nonempty subset J of I, we set

E;j=()E; and E3:EJ\(UE1-).
jeJ i¢J

The sets £ form a stratification of X into locally closed subsets.

Proposition 3.16 For every nonempty subset J of I, we have

[spx' (E9] = (=D O(EGaq1-171 © [1]171-1)

in Ko(VFg). In particular,

AR = Y DY OE N ari— @ [1]171-1)
og#JCI
in Ko(VFg).
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Proof By additivity, it suffices to prove the first assertion, and we may assume that
there exists an étale morphism

h: X — S4.rq =Spec R[xo,...,xq]/(x0" X —a),

with r = [J|—1 and a a nonzero element of the maximal ideal of R, such that £9
is the inverse image under & of the zero locus of (xo,...,x;) in the special fiber
of Sq 4. We write

Sd,r,a = Srr.a XR Aiie_r

and we denote by O the origin of the special fiber of S;,,. We choose a point y
in spgrlr ,(0) and we denote by ) the inverse image of {y} x A‘I’e_' under /. Then Y
is an étale A‘Ii{’ —scheme with special fiber £9. Now we consider the map

(3.17) spy (E9) — spErl'm(O) xY(R), ut> (v1(u),va2(u)),

where v1(u) is the projection of h(u) € Sg ,4(R) onto Sy r4(R) and va(u) is the
unique point in Y(R) such that sp (u) = spy,(v2(u)), and such that 2(v2(u)) is the
projection of h(u) onto A%_’ (R). Tt is clear from the construction that the map (3.17)
is a semialgebraic bijection, and thus an isomorphism in the category VFg . The class
of Y(R) in Ko(VFg) is precisely ©([E]4+1-|7|), by Proposition 3.10. By projection
on the last r coordinates, we can identify the semialgebraic set spgirqa (0) with

.
Z val(x;) < val(a) and val(x;) > O for all i ;.

i=1

{x e (K*)

Thus, with the notation from Proposition 3.4,

[sps, ., (0)] = O(AY ) = (=D O(1],)

in Ko(VFg) by the definition of the morphism ®. The result now follows from the
multiplicativity of ®. a

Corollary 3.18 With the notation of Proposition 3.16, we have

Vol(X(R) = Y [ESJ(1—L)YI7! in Ko(Vary).
o#JCI

Proof This follows at once from Proposition 3.16. a

Using Corollary 3.18, we can compare the motivic volume to other motivic invari-
ants that appear in the literature: the motivic nearby fiber of Denef and Loeser [9,
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Definition 3.8] and the motivic volume of smooth rigid varieties defined by Nicaise
and Sebag [37, Definition 8.3]. The motivic nearby fiber was defined as a motivic
incarnation of the complex of nearby cycles associated with a flat and generically
smooth morphism of k—varieties f: Z — Al and the motivic volume of a smooth
rigid variety extends this construction to formal schemes over k[[¢].

Corollary 3.19 Assume that K is an algebraically closed valued field extension
of k().

(1) Let f: Z — Speck|t] be a flat and generically smooth morphism of k—schemes
of finite type, and denote by Z the base change of Z to the valuation ring R
of K. Then the image of Vol(Z(R)) in the localized Grothendieck ring My =
Ko(Vary)[L™!] is equal to Denef and Loeser’s motivic nearby fiber of f (for-
getting the [i—action).

(2) Let X be a generically smooth flat k[[t]|-scheme of finite type of pure relative
dimension d , and denote by X its formal t-adic completion. Then the image of
L~=?Vol(X(R)) in My is equal to the motivic volume of the generic fiber of X
(which is a quasicompact smooth rigid k (¢ ))—variety).

Proof The first assertion is a special case of the second, by the comparison result in [37,
Theorem 9.13]. The second follows from the explicit formula in [36, Theorem 6.11]. O

This result shows, in particular, that the motivic nearby fiber is well defined as an
element of Ko(Vary), without inverting IL.. This is not at all obvious: inverting IL. is an
essential step in the definition of the motivic zeta function (which is used to construct
the motivic nearby fiber), and it was recently proved by Borisov that I is a zero divisor
in Ko(Varg) [8].

Remark 3.20 Combining Corollary 3.12, Proposition 3.13 and Corollary 3.19, we
recover the formulas of Katz and Stapledon for motivic nearby fibers of schon va-
rieties over the field of meromorphic germs at the origin of the complex plane; see
[29, Theorem 5.1] and [30, Corollary 2.4]. Their method was entirely different: they
first showed that the desired tropical formula for the motivic nearby fiber was indepen-
dent of the choice of a tropical fan, and used this to reduce to the case where X is a
strictly semistable model, where one can use the explicit formula for the motivic nearby
fiber. Corollary 3.19 is also closely related to similar comparison results by Hrushovski
and Loeser for the motivic zeta function [22], but our approach is more direct if one
only wants to retrieve the motivic nearby fiber; in particular, we avoid inverting L.
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3.8 The x_,—genus of a semialgebraic set

We can use the motivic volume to define the limit y_,—genus of a semialgebraic set
over K. Recall that, for every field F' of characteristic zero, there exists a unique ring
morphism

X—y: Ko(Varp) — Z[y]

that maps the class of every smooth and proper F—scheme Z to

A—y(Z) =D (=DPHRPAZ)yT = (=) x(Z.Q%)y?.
p,9=0 q=0

For each F—scheme of finite type Z, we denote by y—, (Z) the image of [Z] under y—, .
This invariant is called the y_,—genus of Z.

Definition 3.21 We define the limit y_y,—genus of a semialgebraic set S over K by
2(S) = -y (Vol(S)) in Z[y].

By specializing our tropical formulas for the motivic volume (Corollary 3.12 and
Proposition 3.13) with respect to y—, , we immediately obtain the following expressions.

Proposition 3.22 Let X be a schon reduced closed subscheme of T and let ¥ be a
tropical fan for X . Denote by X the schematic closure of X in P(X)g . Then

(XK = Y (DD (iny X) i Z[)
14

where the sum is taken over the bounded cells y of ¥;. Moreover,

X (K) = Y (1= )i =aimbeeDy (2 (1))

12D
— Z (_1)dim(y)—dim(rec(y)) (y . 1)—dim(rec(y))X_y (iny X)
V€D
in Z[y].
Proof This follows at once from Corollary 3.12 and Proposition 3.15. |

For every K—scheme of finite type X, we can consider both its y_,—genus y_,(X)
lim
-y
unfortunately, we do not know how to prove this without assuming a suitable form a

and the limit y_,—genus 7 (X(K)). We expect that these invariants always coincide;

resolution of singularities for schemes over R. Therefore, we limit ourselves to the
following partial result, which is sufficient for the applications in this paper.
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Proposition 3.23 Assume that K is an algebraic closure of a henselian discretely
valued field. Then for every algebraic K—scheme of finite type X , we have

X (X (K)) = y—yp(X).

Proof By our assumption on K, the scheme X is defined over some henselian
discretely valued subfield K’ of K. We denote by R’ and k’ the valuation ring and
residue field of K’, respectively. By additivity, we may assume that X is smooth and
proper over K’. Passing to a finite extension of K’ if necessary, we can moreover
suppose that X has a regular strictly semistable model X over R’. Recall that this
means that X" is regular flat proper R’~model and that its special fiber X/ is a reduced
strict normal crossings divisor. Then writing

Xy = Z E;,
iel
we can use Corollary 3.18 to compute the motivic volume of X, and we find that
PEXEK) = Y xy(EHA-pH
o#JCl
(using the notation of Corollary 3.18). We need to show that this expression is also

equal to y—y(X).

We will apply Hodge theory for logarithmic R’-schemes; see [24, Section 7] and
[45, Section 2.2]. The weight spectral sequence for de Rham cohomology of the
model X has Ej—sheet

+2p-2i . +
El'= P EB HEZPHED(p—i) = HE ),
i,i—p=>0
|J|= 2l—p+1

where X,:; is the special fiber of A with its induced log structure (this is a proper
log smooth log scheme over the standard log point (Spec k’)*). This weight spectral
sequence degenerates at E5, and it is compatible with the respective Hodge filtrations.
The flags of the Hodge filtration on H 2 +q( ]j ) have the same dimension as those
on H(ﬁ;rq (X), by [24, Corollary 7.2]. It follows that the y_,—genus of X is equal to

>, Z A=y (EDEDPY P = 3y (EH(A -t
i,i—p>0 o+JCI
|J|= 21 p—H

as required (here we used that the sets E9, with J C J’ form a partition of Ey). O
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Remark 3.24 Our proof shows, in fact, that the Hodge—Deligne polynomial of Vol(X)
is equal to the Hodge—Deligne polynomial of the limit mixed Hodge structure associated
with X, but we will not need this property.

Definition 3.25 If K is as in Proposition 3.23 (for instance, K = C{{¢}}) and S is a
semialgebraic set over K, we will write y_(S) instead of Xli“y‘ (S), and we simply
call this invariant the y_y,—genus of S.

Proposition 3.23 guarantees that this definition does not lead to ambiguities.

3.9 The Euler characteristic of a semialgebraic set

To conclude this section, we establish some properties of the specialization of the
motivic volume with respect to the Euler characteristic, and we compare it to the Euler
characteristic of Berkovich’s étale cohomology for nonarchimedean analytic spaces [4].
We endow K with the nonarchimedean absolute value given by |x| = exp(— val(x))
for every x € K*, and we denote by K the completion of K. For every K—scheme of
finite type X, we denote by X" the K —analytic space associated with X xg K.

If Y is a K—analytic space and T is a subset of Y, then the germ (Y,T) of Y at T
is defined in [4, Section 3.4]. If f: Y’ — Y is an isomorphism from Y’ onto an
open subspace of Y containing T, and 7’ = f~!(T), then the morphism of germs
(Y',T') — (Y, T) induced by f is declared to be an isomorphism in the category
of germs. The étale topology on a germ (Y, T) is defined in [4, Section 4.2]. We
say that T is an analytic subspace of Y if there exist a K—analytic space Z and a
morphism f: Z — Y such that f is a homeomorphism onto its image, f(Z) =T,
and the induced morphism of residue fields 57 ( f(z)) — 5#(z) is an isomorphism for
every z € Z. Such a morphism is called a quasi-immersion [4, 4.3.3], and it induces an
equivalence between the étale topoi of the germ (Y, T') and the K-analytic space Z
by [4, 4.3.4]. Thus (Y, T) and Z have the same étale cohomology spaces.

Now let X be a K—scheme of finite type. To every semialgebraic subset S of X,
one can attach a subset $?" of X?" that is defined by the same formulas as §S; see
[22, Section 5.2]. Subsets of X?" of this form will again be called semialgebraic.
If S*" is locally closed in X", we will call S a locally closed semialgebraic subset
of X . Then the germ (X?", §?") has finite-dimensional {—adic cohomology spaces
with compact supports concentrated in degrees < 2dim(X), by [33, Theorem 5.14],
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so that we can consider its {—adic Euler characteristic
eu(S™) =Y (=1 dim HI((X™. $™)¢. Qy).
i>0
It follows from Proposition 5.2.2 in [22] that eu(S*") only depends on the isomorphism

class of the semialgebraic set S, which justifies the omission of the ambient space X
from the notation.

For every field F, there exists a unique ring morphism
euw: Ko(Varg) — Z

that sends the class [Y'] of every F—scheme of finite type Y to eu(Y'), the £—adic Euler
characteristic with compact supports of Y, where £ is any prime number invertible
in F. If F has characteristic zero, then eu(Y') is the value of y_,(Y)at y =1.If F
is a subfield of C, then eu(Y') is equal to the singular Euler characteristic with compact
supports of Y (C) with respect to its complex analytic topology.

Proposition 3.26 Let X be a K—scheme of finite type and let S be a locally closed
semialgebraic subset of X . Then eu(Vol(S)) = eu(S?").

Proof By Proposition 3.9, we may assume K is complete. By [22, Proposition 5.2.2],
there exists a unique ring morphism
e Ko (VFK) —>7Z

that maps [S] to eu(S?") for every locally closed semialgebraic set S. We will show
that ¢ = euoVol. This equality can be tested on the elements of Ko(VFg) of the
form O([y]n), with y a closed polyhedron in G”, and ®([X],), with X a subscheme
of the special fiber of a smooth R—scheme X of relative dimension 7. Indeed, these
elements generate the Grothendieck ring Ko(VFg) by the results in Section 3.5.

Since the Euler characteristic of the torus G, ; vanishes,
(euoVol)(O([y]n)) =eu((L —1)") =0
when 1 > 0. On the other hand, since trop~!(y) is a closed semialgebraic subset of K",
e(@([y]n)) = eu((trop™" (y)™),
which also vanishes by Lemma 5.4.2 in [22]. As for ®([X],), we have
(euoVol)(O([X]n)) = eu(X)
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by the definition of the motivic volume, and

£(O([X]n)) = eu((spx' (X)™).

The K-analytic space (spy!(X))™ is precisely the inverse image of X under the
specialization map Xk — X, where X' denotes the formal completion of X and X
denotes its generic fiber in the category of K—analytic spaces. The equality

eu(X) = eu((spx' (X))™)
now follows from Berkovich’s theory of nearby cycles for formal schemes; see

[22, Lemma 5.4.3]. m|

Corollary 3.27 If X is a K—scheme of finite type, then
eu(Vol(X)) = eu(X).

Proof This follows at once from Proposition 3.26 and the comparison theorem for
étale cohomology with compact supports for analytifications of K-schemes of finite
type [4, 7.1.1]. a

Thanks to Corollary 3.27, the following definition is unambiguous.

Definition 3.28 Define the Euler characteristic of a semialgebraic subset S over K by
eu(S) = eu(Vol(S)).

Using the comparison result in Proposition 3.26, we can show that the Euler charac-
teristic of a semialgebraic set satisfies some of the standard cohomological properties.
In particular, we will prove that the Euler characteristic of a proper family over a
semialgebraic base can be computed by integrating the Euler characteristics of the fibers
over the base (Corollary 3.31). This will be essential for the applications in Section 4.

Proposition 3.29 Assume that K = C{t}}. Let X be a K—scheme of finite type, and
let . be a constructible sheaf of Fy—vector spaces on X . Let S be a locally closed
semialgebraic subset of X . We denote the pullback of .# to the germ (X*", S*") again
by .% . Then the étale cohomology spaces

H (X, §)g, F)

are finite-dimensional for all i > 0, and vanish for i > 2dim(X). Moreover, if .F is
lisse of rank n on X, then

(3.30) > (=1 dim HL((X™, S™) ¢, ) = n-eu(S™).

>0
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Proof The finiteness and vanishing of the cohomology spaces can be proven in
exactly the same way as Theorem 5.14 in [33], using Berkovich’s finiteness result in
[6, Theorem 1.1.1]. So let us assume that .% is lisse of rank n on X, and prove (3.30).
If S is a subscheme of X, this equality was proven by Deligne for algebraic étale
cohomology [23, 2.7]. We will adapt the proof of [23, 2.7] to K—analytic spaces.

To start with, we observe that

eu(S™) =Y (=) dim H (X", 5™, Fy)
i>0

because the complex RI'¢((X?", S*)g, Zy) is perfect, by [33, Proposition 5.10]. Now
let us go through the different steps of the proof of [23, 2.1] (from which [23, 2.7]
immediately follows), and check that they apply to our setup, as well. Let ¥ — X be
a connected finite Galois covering with Galois group G such that the pullback of .7
to Y is trivial. We denote by T the inverse image of S in Y'; this is a locally closed
semialgebraic subset of Y. The morphism of germs f: (Y, T%") — (X", §%") is
still a Galois cover with Galois group G .

The complex of Fy[G]-modules
RT (Y™, T™)&. Fe) = RU((X™, S™)¢. fxFe)

is perfect (the proof of [4, 5.3.10] also applies to [Fy[G]—coefficients, so that we can
use the same arguments as in [33, Proposition 5.10]). Moreover,

RT((X™, 8™, 7) = RTO(RT (Y™, T™) ¢, Fy) ®F, Fx),

where x is any point of S(K) and G acts diagonally on the tensor product in the
right-hand side (by the same arguments as in [23]). Thus we can use formula (2.3.1)
in [23] to compute the left-hand side of (3.30). Now it suffices to show that, for
every element g # 1 in G, the trace of g on RI'.((Y*", T?)¢, Q) vanishes. This
is automatic when the order of g in G is divisible by £, by [44, I11.3.2]. Hence, it is
enough to prove that the trace of g lies in Z and is independent of £.

By an additivity argument, we may assume that X is normal. Let X be a normal
compactification of X and let Y be the integral closure of X in Y ; this is a ramified
Galois cover with Galois group G. We will prove the following more general claim:
let U be a locally closed semialgebraic subset of X , and denote by V its inverse image
in Y. Then for every element g of G, the trace of g on RT (Y, V)., Qy) lies
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in Z, and it is independent of £. If U is a compact analytic subspace of X" defined
over some finite extension of C((¢)), then V2" has the same properties with respect
to Y by finiteness of the morphism ¥ — X, and the result is a direct consequence
of Berkovich’s theory of étale cohomology with Z—coefficients; see Theorem 7.1.1
and Corollary 7.1.2 in [5]. Now the general case follows from the same induction
argument as in Lemmas 3.1 and 3.2 and Proposition 4.1 in [33], using the additivity
of the trace with respect to semialgebraic decompositions in X . More precisely, the
proofs of Lemmas 3.1 and 3.2 show that the property holds whenever U?" is contained
in an affinoid domain inside the analytification of an affine open subscheme of X, and
then the proof of Proposition 4.1 yields the general result. |

Corollary 3.31 Assume that K = C{t}}. Let f: Y — X be a morphism of K-
schemes of finite type. Let y be an integer and let S be a semialgebraic subset of X
such that eu( f ~1(s)) = y forevery s in S. Then

eu(f71(S)) = eu(S) - 1.

Proof By Lemma 5.2.1 in [22], the set S has a finite partition into locally closed
semialgebraic subsets (in [22] it is assumed that the base field K is complete, but the
proof remains valid for K = C{{t}}). Thus, we may assume that S" is locally closed.
We need to show that

(3.32) eu((f*™)~H(S™) = eu(S™) -1,

where f2": Y® — X is the analytification of the morphism f. Because the
sheaves R’ f1(IF;) are constructible on X, we may assume that they are lisse on X
for all i > 0, by further partitioning S and replacing X by a suitable subscheme
containing S. Now (3.32) follows from Proposition 3.29 and the Leray spectral
sequence with compact supports for the morphism f" (see [4, 5.2.2]). a

Corollary 3.33 Assume that K = C{t}}. Let f: Y — X be a morphism of K-
schemes of finite type. Let S be a semialgebraic subset of X and let Sy be a finite
subset of S such that eu( f ~1(s)) =0 forevery s in S ~So. Then

eu(f71(S) =D eu(f ().

SE€So

Proof This follows from Corollary 3.31 and additivity of Euler characteristics. O
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4 A geometric interpretation of the refined tropical
multiplicities

4.1 Main conjectures

We recall the setup of Section 1.3. Let A be a lattice polygon in R? with n + 1
lattice points and g interior lattice points. We denote by (Y (A), L(A)) the associated
polarized toric surface over the field of Puiseux series C{t}}. The complete linear
series | L(A)| has dimension 7, and its general member is a smooth projective curve of
genus g. We fix an integer § satisfying 0 <§ < g. Let S be a set of n—§ closed points
in the dense torus in Y(A), and let |L| C |L(A)]| be the linear series of curves passing
through these points. We assume that the points in the tropicalization trop(S) C R?
lie in general position. We denote by ¢ — |L| 2 P? the universal curve of |L|. In
Section 1.3, we have conjectured the following geometric interpretations of Block and
Gottsche’s refined tropical multiplicities.

Conjecture 1.1 Assume that § = g and let ' C R? be a rational tropical curve of
degree A through the points of trop(S). Then the Block—Goéttsche refined tropical
multiplicity N(I") is equal to y~8 y_y(_# (¢T)).

Conjecture 1.2 For any value of § in {0,..., g}, let T' C R? be a tropical curve of
genus g —§ and degree A through the points of trop(S). Then the Block—Gottsche
refined tropical multiplicity N(T') is equal to y~% N5(¢t).

In this section, we show that Conjecture 1.2 implies Conjecture 1.1, and that both
conjectures are true after specializing from y_, to Euler characteristic and setting

y=1.

Recall that the definition of N(I") ensures that its evaluation at y =1 is the classical
tropical multiplicity nr of the tropical curve I'. Thus, we will prove that the classical
tropical curve counting multiplicities are determined by the Euler characteristics of
suitable semialgebraic sets in the relative compactified Jacobian, for rational curve
counting, and in the relative Hilbert schemes of points, in general. One of the key
ingredients in our proof is Corollary 3.31, which allows us to compute the Euler
characteristic of a semialgebraic family of varieties by integrating with respect to Euler
characteristic on the base. As a first step, we need to show that every curve in the
semialgebraic family |L|r is integral.
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4.2 Integrality of curvesin |L|r

Let v1,...,v,_g be points in trop(S) C R? in general position. We recall from [34,
Section 4] that there are only finitely many parametrized tropical curves of genus g —§
of degree A through vy, ..., v,_g, and each of these tropical curves is simple, meaning
that the parametrizing curve is trivalent, the parametrization is an immersion, the image
has only trivalent and 4—valent vertices, and the preimage of each 4—valent vertex has
exactly two points. Furthermore, each unbounded edge has weight 1.

Proposition 4.1 Let I" be one of the finitely many tropical curves of degree A and
genus g — 8 through vy, ...,v,_g. Then every curve in |L|r is integral and contained
in the smooth locus of Y (A).

Proof We have already explained in Section 2.1 that every curve with tropical-
ization I' avoids all the O—dimensional orbits of Y(A), and thus, in particular, is
contained in the smooth locus of Y(A). Suppose X € |L|r is not integral. Then
the associated cycle of [X] decomposes nontrivially as a sum of effective cycles
[X] = [X1] + [X2]. It follows that the associated tropical cycle [Trop(X)] decomposes
nontrivially as [Trop(X1)] + [Trop(X2)], by [41, Corollary 4.4.6]. Since the unbounded
edges of Trop(X) have weight 1, the unbounded edges of Trop(X;) and Trop(X>)
partition the edges of Trop(X) nontrivially. We now prove that this is impossible.

Say e is an edge in Trop(X1). We will show that Trop(X>) has no unbounded edges,
and hence is empty. Let v be a vertex of e. If v is trivalent in Trop(X) then Trop(X;),
being balanced, must contain the other two edges as well. On the other hand, if v
is 4—valent then Trop(X) must contain the continuation of e through v. Therefore,
Trop(X1) contains the image of all edges of the parametrizing tropical curve that share
a vertex with the edge parametrizing e. The parametrizing curve is connected, so this
means that Trop(X) is equal to Trop(X1), set-theoretically. It follows that Trop(X)
contains all of the unbounded edges of Trop(X), and hence Trop(X>) has none, as
required. a

4.3 Conjecture 1.2 implies Conjecture 1.1

Let T be a tropical curve of genus g —§ and degree A through the points of trop(S).
Mimicking Definition 16 in [16], we define the motivic Hilbert zeta function of T" by

Zr(g) = Y _[Hilb' (¢r)lg' 7% in Ko(VFg)[g].

i>0
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It has been observed by several authors [26; 42; 16] that, if we replace 4T by an
integral Gorenstein curve over a field F and Ko(VFg) by the Grothendieck ring
of F—varieties, this zeta function shares many of the properties of the Hasse—Weil
zeta function for curves over finite fields. We will now explain that this remains true
for Zr(q), and deduce that Conjecture 1.2 implies Conjecture 1.1. We denote by LL
the class of A}< in Ko(VFg).

Theorem 4.2 (1) The product

fr@) =¢*"1(1-¢)(1-qL)Zr(q)
is a polynomial of degree at most 2g over Ko(VFg), and satisfies the functional
equation ¢* L8 fr(1/(qLL)) = fr(q) over Ko(VFx)[L™'].
(2) There exist unique elements N (¢t),..., N ;‘0‘(‘5p) in the image of the local-
ization morphism Ko(VFg) — Ko(VFg)[L™!] such that

g

t q r+l—g
@.3) b@=ZM(WGﬁﬁﬁﬁﬂ

r=0
in Ko(VFg)[L™1][[g]]. Moreover,
No™'(6r) = [IL]r],
N"(%r) = [¢r] + (g — D(L + D[|L|r],
NG (6r) = [ 7 (61)).

Proof We denote by U C |L| the open subscheme parametrizing the curves in |L|
that are integral and do not meet the singular locus of Y(A). Then |L|r is contained
in U, by Proposition 4.1. We write ¥y — U for the restriction of ¢ over U ; this
is a flat projective family of integral Gorenstein curves of arithmetic genus g. Since
our family 4 — |L| has a section by construction, the compactified relative Picard
schemes Pic’ (¢y) are all isomorphic to Pic’ (¢u) = 7 (vu).

Now, we can copy the proofs of Proposition 15, Corollary 17 and Remark 18 in [16],
using the Abel-Jacobi maps

AJ;: Hilb! (¢y) — Pic’ (4p),

Riemann—Roch and Serre duality to prove all the properties in the statement. The
proof of (1) is identical to that of Proposition 15 in [16]. Since the transformation
g+ q/(1—q)(1—glL) defines an automorphism of the ring Ko(VFg)[¢]], there exists
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a unique sequence of elements N5 (4T), N[™'(¢T). ... in Ko(VFg) such that

o0

q r+1—g
Z = N mot B .
r0= 386 ()

r=0

Comparing the terms of degree 1—g and 2—g yields the displayed values for NJ*'(4T)
and N{"'(%r). By the result in (1), the series

mot q i
P(g)=q Z g+z(%)(W)

i=1
must be a polynomial over Ko(VFg) of degree at most 2g in ¢. It also follows
from (1) that P(q) satisfies the functional equation g?61L& P(1/(qL)) = P(q) over
Ko(VFg)[LL™1], and this can only happen when P(g) vanishes in Ko(VFg)[L™!,q],

because P(q) is divisible by g&*!. Thus N;,n_?_tl vanishes in Ko(VFg)[L™!] for

all i > 0. This means that the degree > g part of the Laurent expansion the right-
hand side of (4.3) only depends on the r = g term. For large i, the Abel-Jacobi
morphism AlJ; is a projective bundle, so that

[Hilb' (47)] = [7 (¢p)][Pg *]-
It follows that Ng*'(¢T) = [ 7 (¢1)]. O

Corollary 4.4 The invariant N, (éT) vanishes for r > g, and furthermore

Ng (1) = x—y (7 (%1)).

In particular, Conjecture 1.2 implies Conjecture 1.1.
Proof By definition, N, (¢T) = y—y (N;"'(¢T)) for every r > 0. a

4.4 Unrefined tropical multiplicities

Here we prove one of the two main partial results toward Conjectures 1.2 and 1.1
mentioned in the introduction, that the conjectures are true after setting y = 1 and
specializing from y_, to Euler characteristic.

Lemma 4.5 The linear series |L| contains only finitely many integral curves of

geometric genus g — § that do not meet the singular points of Y (A), and these curves
have only nodal singularities.
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Proof Taking a resolution of singularities, we can reduce to the case where Y (A)
is smooth. Let V' C [L(A)| = P¢ be the closure of the locus of integral curves of
geometric genus g—3&. Then the dimension of V' is at most n—4&, so that the intersection
with the general linear subspace |L| of dimension § is finite. By [20, Proposition 2.1],
the general member of each (n—&)—dimensional component of V' has only nodal
singularities. a

Theorem 4.6 We denote by n®® the toric Severi degree associated with (A, ), that
is, the number of integral 6—nodal curves in |L|.

(1) Let U C |L| be the open subset parametrizing integral curves that are disjoint

AS

from the singularities of Y (A). Then the number n=-° is equal to the coefficient

ng(6y) in the generating series

o )
q'¢ Zeu(Hilbi (€ XL U)q' = Z nr(Cy)q TI8 (1 — )28 22,
i=0 r=0

For § = g, we have n®8 = eu( 7 (¢ x 1 U)).

(2) Let I' C R? be a tropical curve of genus g —§ and degree A through the points
of trop(S). Then the tropical multiplicity n(I') of T is equal to

ng(er) := Ns(¢r)ly=1-

In particular, when g = 8, we have n(I') =eu(_7 (%1)).

Proof (1) Lemma 4.5 tells us that ¢ x| U — U has finitely many §-nodal
fibers, and all other fibers have geometric genus greater than g —§. We can compute
eu(Hilb’ (¢ x ) U)) by integrating with respect to Euler characteristic on the base.
Each fiber of geometric genus greater than g —§ contributes O to ng(%y) and each
$—nodal fiber contributes 1. It follows that ng(4y) equals the toric Severi degree n% .
The statement for g = 6 now follows from the fact that ng (¢y) = eu( 7 (¢ %1 U))

by the same arguments as in the proof of Theorem 4.2.

(2) All the curves in |L|p are integral and contained in the smooth locus of Y(A), by
Proposition 4.1. Thus we can copy the proof of (1), using Corollary 3.31 to compute
eu(Hilb’ (1)) by integrating with respect to Euler characteristic on the base. This
shows that ng(%T) is the number of é—nodal fibers in 4T — |L|r, which is the
ordinary tropical multiplicity of I', by the classical correspondence theorems. The
statement for g = § again follows from Theorem 4.2, since ng (¢T) = eu(N, ;’Ot(‘ﬁr))
by definition. a
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S Refined multiplicities for genus 1

In this section, we prove Conjectures 1.1 and 1.2 for g = 1. We keep the notation from
Section 4.1.

Theorem 5.1 Assume that g = 1, and let § be either 0 or 1. Let I' C R? be a
tropical curve of genus g — & and degree A through the points of trop(S). Then the
Block-Géttsche refined tropical multiplicity N(I') is equal to y 8 Ns(%1). If § =1,
then we also have N(I') = y~'y_, (4T).

The case § =0 is straightforward: ¢ is a single elliptic curve and N(I") = No(4T) = 1.
Thus, we may assume that § = 1. Since g = 1, the relative compactified Jacobian _# (%)
is simply the family % itself. By Corollary 4.4, it is enough to show that y~! X—y(%T)
is equal to the Block—Gottsche multiplicity N(T") of T.

In the remainder of this section, we will compute y_,(%T) by considering the natural
embedding of ¥ in the toric variety Y(A) x P” and realizing 4T as the preimage of a
polyhedral subset of Trop(%’) along which all initial degenerations are smooth. We
then apply Proposition 3.13 to compute the motivic volume of 4T in terms of its initial
degenerations, and confirm that N(T') = y~1y_, (%1).

5.1 Initial degenerations of the universal curve

Let P” = |L(A)| be the projective space over K with homogeneous coordinates a,, for
lattice points u in A NZ2. The universal curve of the complete linear series |L(A)] is
the hypersurface in Y(A) x P” defined by the vanishing locus of the universal equation

(5.2) f= > aux".

ueANZ2
Let a,, and X" be the leading coefficients of a, and x¥, respectively. We assume
that g =1, so A contains a unique interior lattice point.

Let vy, ...,v,_1 be rational points in general position in R?, let x; be a point in T
whose tropicalization is v; , and let | L| be the linear series of dimension 1 parametrizing
curves in L(A) that contain x1, ..., X,—1, with € — |L| its universal curve.

There are finitely many parametrized tropical rational curves of degree A that contain
X1,...,Xp—1. Fix one such tropical curve I". Recall that |L|r C |L| is the semial-
gebraic subset parametrizing curves with tropicalization I', and 4T — |L|r is the
restriction of the universal curve.

Geometry & Topology, Volume 22 (2018)



3220 Johannes Nicaise, Sam Payne and Franziska Schroeter

We consider four cases in our computation of y_,(%T), similar to the cases in
Example 1.3, according to whether I" contains a loop, a bounded edge of multiplicity 2
(with or without a marked point on that edge), or a vertex of multiplicity 3. In each
case, we decompose 4T into smaller semialgebraic sets, given by preimages of faces
of Trop(4T), determine the contributions of preimages of different combinatorial types
of faces of the tropicalization to y_,(4T), and take a sum over faces to produce the
desired result.

5.2 Case 1: The tropical curve I' contains a loop

We observe that 4T is the preimage in ¢ of a polyhedral subset of Trop(Y(A) x P*)
of the form T x pt, where T is the closure of I' in Trop(Y(A)). To see this, first note
that there is a unique concave function ¢: A N Z? — Q whose value at the interior
point is 0 and such that the corner locus of the corresponding concave piecewise linear
function ¥ on R? given by

Y(v)= min (u,v)+¢u)
uEANZ?2

is exactly I'. Since I' contains a loop, the interior point 0 must be a vertex of the
Newton subdivision, and it follows that all edges of I" have weight 1 and every lattice
point in A is a vertex of the Newton subdivision. Therefore, if C C Y(A) is the curve

fe= ) aux",

ueANz?2

cut out by the equation

with coefficients a, € K such that Trop(C) = T, then each a, is in K*. Indeed,
if we normalize so that a9 = 1, then Trop(C N T) is equal to I' if and only if
val(ay) = ¢(u) for all u. Therefore %t is the preimage in ¢ of ' x pt, where pt is
the point in R” C Trop(P") whose u™ coordinate is ¢ (u).

For simplicity, we identify a face (vertex or edge) y of I' with the corresponding face
of I" x pt. We will consider the initial degenerations in,, % at Q-rational points w € y,
and show that they are all smooth and isomorphic. Since rec(y) is a cone in the fan
associated with A for each face y, this will put us in position to apply Proposition 3.15
(with X = %) to compute y—_y(%T). Indeed, with the notation from Section 3.6, 4T
decomposes as a disjoint union of the semialgebraic sets %), , and hence

Ay (ET) =) x—y(%).
Y
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Moreover, Proposition 3.15 says that
A=y (Gy) = (_l)dim y—dimrec(y)[iny %]/ (L — 1)dimrec(y).

Each face of I' is dual to a positive-dimensional face of the Newton subdivision. Let y
be the face of I dual to F. Then the initial form of the universal equation f in (5.2)
at any rational point w in the interior of y is given by

iny f= Y a5

ueFnz?2

The linear point conditions that cut out the codimension-(n—1) linear series |L| in the
complete linear series |L(A)| involve only the coefficients a,, and not the variables x*.
Thus their initial forms do not depend on the choice of y and w. Our computations
will show that in,, (') together with the initial forms of the point conditions define a
smooth closed subvariety of dimension two in the reduction of the torus 7'. Then this
subvariety must be the initial degeneration of ¢” at w, for any rational point w in the
interior of y, by [41, Theorem 1.4]. In particular, in,, ¥ does not depend on w; we
denote it by iny ¢". The same observation applies in all the further cases.

5.2.1 The linear relations imposed by point conditions Recall that S is a set of
n — 1 points in T (K) whose tropicalizations are in general position in R”. Say s is
a point in S whose tropicalization lies in the edge y dual to the edge [u, u’] of the
Newton subdivision. Then the initial form of the linear relation imposed by vanishing
at s is simply ca, + ¢’a,s = 0, where ¢ and ¢’ are the leading coefficients of the
monomials x* and x*', respectively, evaluated at the point s. It follows that if u and u’
are any two vertices of the Newton subdivision connected by a series of edges that are
dual to edges of I' containing marked points, then the linear relations force a, to be a
fixed nonzero scalar multiple of a,, .

We observe that the set of edges in the Newton subdivision dual to edges of I" that
contain marked points form a disjoint union of two trees that together contain all lattice
points in A. To see this, note that there are n — 1 such edges among the n + 1 lattice
points in A, and these edges cannot form a loop, due to the genericity of the marked
points. Normalizing so that a,, is 1 for one vertex of A and choosing a variable z = a,,/
for some fixed u’ in the tree that does not contain u, we see that the initial forms of the
linear relations determine @, for all lattice points in u” as either a fixed element of C*
or a fixed element of C* times z, according to which of the two trees contains u” .

We now compute iny, ¢ and y—, (%)) for all faces y of I' and all rational points w
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in y. We divide these computations into subcases, according to the combinatorial
possibilities for y.

5.2.2 Subcase 1a: y is a bounded edge of I' The face of the Newton subdivision
dual to y is an edge of lattice length 1. Therefore, after a change of coordinates on
the dense torus in Y (A), the initial form in, (/) is a linear function in one coordinate,
with coefficients in the set {a, }. Since the linear relations imposed by point conditions
allow us to identify each a, with a monomial of degree O or 1 in z, we see that in), ¢
is isomorphic to a hypersurface in a three-dimensional torus whose Newton polytope is
an edge of length 1. It follows that in, ¢ = Gfmk, and y_y (%) =—y>+2y—1.

5.2.3 Subcase 1b: y is an unbounded edge of I' Just as in the previous subcase,
we have in, ¢ = an - The only difference in this subcase is that dimrec(y) = 1,
and hence y_, (%)) =y —1.

5.2.4 Subcase 1c: y is a 3—valent vertex After a change of coordinates, we may
assume that the face dual to y is the standard unit triangle, so in,, f is a linear combina-
tion of 1, x, and y, with coefficients in the set {a,,}. After using the linear relations to
identify each a, with either a fixed element of C* or a fixed element of C*z, we see
that iny, ¢ is isomorphic to a hypersurface in the torus with coordinates x, y, and z,
whose Newton polytope is a unimodular triangle. It follows that in), € is smooth,
[in, €] = (L —1)(L —2), and y—y(%,) = y>—3y +2.

5.2.5 Subcase 1d: y is the 4—valent vertex v After a change of coordinates, we
may assume that the face dual to y is the standard unit square, so in, f is a linear
combination of 1, x, y, and xy with coefficients in C* LU C*z.

We claim that the number of these coefficients that are in C* is odd. Let I'” denote
the boundary between the union of the closed regions where the coefficients are in C*
and those where the coefficients are in C*z. To prove the claim, we will show that T’
makes a turn at v, as shown in (a)—(d) of the following figure. Each marked point is

/

C*

denoted by a x and the 4—valent vertex v is depicted as a black dot.

(a) (b) (©
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If T/ is bounded, then there is only one region where the coefficient is in C*z, and it
is the bounded region, whose boundary bends at v as shown in (a). If ' is unbounded
then it is homeomorphic to R, with two unbounded directions. If T does not bend
at v, then it lifts to a string, in the sense of [13, Definition 3.5(a)], in the rational
parametrizing curve [ - I'. However, the rational parametrizing curve cannot contain
any strings, by [13, Remark 3.7]. Therefore, I’ bends at v, as shown in (b)—(d), and
hence the number of coefficients in in, f that are in C* is either 1 or 3, and the
remaining coefficients are in C*z. It follows that in, f is a polynomial in x, y, and z
whose Newton polytope is a unimodular simplex of dimension 3. We conclude that
iny (¢) is isomorphic to the intersection of a generic plane in P3 with the dense torus.
Therefore [in, ] = L? —3L + 3 and y—,(%,) = y>—3y + 3.

5.2.6 Final computation in Case 1 We now use the computations in the four sub-
cases above to compute y_,(%T) and show that it is equal to y.

Say A has euclidean area A/2. The Newton subdivision has one parallelogram of
area 1, so it must contain A — 2 unimodular triangles. Therefore, I" has a unique
4—valent vertex and A — 2 vertices that are 3—valent. Since the union of the bounded
edges has Euler characteristic zero, it follows that I" has A —1 bounded edges. Finally,
using Pick’s formula and the fact that A has a unique interior lattice point, we see
that I" has A unbounded edges.

By the computations above, we conclude that
X=y(@r) = (A=1)(=y> +2y =)+ Ay =)+ (A=2)(y> =3y +2) + y* =3y +3.
Collecting terms gives x—,(%4T) =y, as required.

5.3 Case 2: The tropical curve I' contains an edge of multiplicity 2 with
a marked point

We begin by observing that 4T is the preimage in ¢ of a polyhedral subset of
Trop(Y(A) x P?) of the form T x {Rx¢ U oco}. To see this, first note that there
is a unique concave function ¢: A N Z? — Q whose value at a fixed vertex ug is
zero and such that the corner locus of the corresponding concave piecewise-linear
function ¥ on R? given by

Y(v)= min (u,v)+¢(u)
ueANZ?

isexactly I". Since I contains a bounded edge of multiplicity 2, the Newton subdivision
must contain an edge of length 2 that contains the interior point in its relative interior.
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Therefore, if C C Y(A) is the curve cut out by the equation

with coefficients a, € K, then each a, other than the interior point must be in K*
and if we normalize so that a,, = 1, then Trop(C N T) is equal to I' if and only
if val(ay) > ¢ (u) for all u, with equality everywhere except possibly at the interior
point. In particular, 4T is the preimage in ¢ of I' x {R>o U 0o}, where R U oo is

h

identified with the set of points in Trop(IP") whose u'™ coordinate is at least ¢ (u),

with equality for all except the interior point.

We identify a face y of I' with the corresponding face y x {0} in Trop(%T) and write
Yy =7 xRxo.

Just as in the previous case, we note that 4T is the disjoint union, over all faces y of I"
of the semialgebraic sets 4 LI 6. We will show that iny, ¢ is smooth for all rational
points w in I", and that its isomorphic class is constant on the relative interiors of all the
cells y and y. Then we can apply Proposition 3.13 to compute y—, (%)) and y—,(%5).

5.3.1 The linear relations imposed by point conditions In this case, the edges of
the Newton subdivision dual to the edges of I' that contain the marked points form a
tree, whose vertices are all of the lattice points in A except the interior lattice point.

Since the edge of weight 2 contains a marked point, the tree contains the edge of lattice
length 2. In this case, the initial forms of the linear relations are different for y and
for y. In ¥, the coefficient of the interior lattice point vanishes in the initial form of
the linear relations, which force all of the coefficients a,,, for u other than the interior
point, to be fixed elements of C*. In y, the coefficient of the interior lattice point does
not vanish. The linear relations force a, to be a fixed nonzero scalar multiple of a,,
whenever u is connected to u’ in this tree by a path that does not contain the edge of
length 2. In this case, we normalize so that the coefficient of the interior lattice point
is 1, and the coefficients for the endpoints of the edge of length 2 are z and w. The
linear relation imposed by the marked point on the edge of multiplicity 2 imposes a
condition of the form 1+ az + bw = 0, for some constants a and b in C*.

We compute the contribution to y—, from each face of I' x R, according to combi-
natorial type.

5.3.2 Subcase 2a: y is bounded edge of weight 1 After a change of coordinates, we
may assume iny (/) is a linear combination of 1 and y with coefficients in C*zLIC*w.
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This equation, together with the linear relation 1 + az + bw from the point conditions,
cuts out iny (%) in the torus with coordinates x, y, z, and w. It then follows that
[iny ()] = (L — DL —2) and () = —y*+ 3y 2.

Similarly, we find that inz (%) is cut out by a linear combination of 1 and y with
coefficients in C*, in the torus with coordinates x, y, and z. We conclude that
[iny(€)] = (L — 1)2 and y—y(¢5) = —y + L.

5.3.3 Subcase 2b: y is an unbounded edge All unbounded edges have weight 1
and, just as in the case of bounded edges, we find [in, (%¢)] = (L — 1)(IL. —2) and
[in; ()] = (L — 1)2. Since dimrec(y) = 1 and dimrec(¥) = 2, we then have
X=y(@y) =y =2 and gy (€5) = 1.

5.3.4 Subcase 2c: y is a vertex that is not contained in the edge of weight 2
After a change of coordinates, we may assume that in,, () is a linear combination of
1, x, and y with coefficients in C*z LU C*w. It follows that [iny (%)] = (L —2)? and
K-y (€)= y? —4y + 4.

Similarly, we find that iny (%) is cut out by a linear combination of 1, x, and y, with
coefficients in C*. We conclude that [iny(%)] = (L —1)(IL—2) and y—(%5) =y —2.

5.3.5 Subcase 2d: y is a vertex of the edge of weight 2 After choosing coordinates,
we may assume iny () =z +x+wx2+ay, where a € C*z. We make the substitution
w = (—1—az)/b to get an equation in x, y, and z, whose Newton polytope is a
pyramid over a trapezoid with height 1 and parallel edges of lengths 1 and 2. The
class of such a hypersurface is L2 — 3L 4+ 5. Then we need to subtract off the
contribution from the locus where z = —1/a, which has class IL. —2. We conclude that
[in, (¥)] = L2 —4L +7 and y—,(%)) = y2 —4y + 7.

Similarly, we find that in;( f) is alinear combination of 1, x2, and v, with coefficients

in C*. We conclude that [ing(¢)] = (L —1)(IL. —3) and y—y (%) =y —3.

5.3.6 Subcase 2e: y is the edge of weight 2 After choosing coordinates, we may
assume that

iny (f) =z 4+x+wxZ
An explicit computation then shows that [in, (%)] = L? — 6L + 5 and therefore
X-y(€y) =—y>+6y 5.
Similarly, we find iny( ) is a linear combination of 1 and x? with coefficients in C*.
We conclude that [in5(¢)] = 2(L — 1)? and A=y (€5) =2y +2.
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5.3.7 Final computation in Case 2 As in the previous case, Pick’s formula and an
Euler characteristic computation determine the number of faces of each type in terms of
the euclidean area of A. Say A has euclidean area A/2. Then I' has A — 4 bounded
edges of weight 1, A unbounded edges, A—4 vertices that are not contained in the edge
of weight 2, and two vertices on that edge, in addition to the single edge of weight 2.
Applying Proposition 3.11 and combining terms for y and ¥ in each case gives

X—y(%ﬂl")
=B(—y2 42y —1)+A(y—1)+B(?> =3y +2)+2(y> =3y +4) + (—y% + 4y —3),

where B = A — 4. This simplifies to y2 + 2y + 1, as required.

5.4 Case 3: The tropical curve I' contains an edge of multiplicity 2 that
does not contain a marked point

Suppose the edge of weight 2 does not contain a marked point. Then the tree of edges
in the Newton subdivision dual to edges with marked points does not contain the edge
of lattice length 2. In this case, the linear relations force all of the coefficients a,, for u
other than the interior point, to be fixed scalar multiples of each other. In this case, we
fix one of these to be 1, and let z be a variable for the coefficient of the interior lattice
point. The computations are then similar to the case above, but simpler.

5.4.1 Subcase 3a: y is bounded edge of weight 1 In this case, we find [in, (¢)]
and [iny(%)] are both equal to (L — 1)2. Hence y—y(¢y) = —y? +2y —1 and
X-y(€5) =—y +1.

5.4.2 Subcase 3b: y is an unbounded edge Again, [in, (4)] and [in5(¢)] are both
equal to (L — 1)2. Accounting for the dimensions of the recession cones then gives

X—y(€y) =y—1land y_,(%5) =1.

5.4.3 Subcase 3c: y is a vertex that is not contained in the edge of weight 2 In
this case, we compute that [in), (¢)] and [in5(%)] are both equal to (IL — 1)(IL —2).
Hence x—y (%)) = y*>—3y +2 and X—y(E5) =y —2.

5.4.4 Subcase 3d: y is a vertex of the edge of weight 2 In this case, [iny,(%)]

and [iny(%)] are equal to L2 —3L + 4 and (L — 1)(L — 3), respectively. Hence
A=y (Ey) = y2 =3y +4 and 1—y(€5) =y —3.
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5.4.5 y is the edge of weight 2 Here, we find that [in,, (¢)] and [iny(%)] are equal
to (L —3)(IL — 1) and 2(L — 1)2, respectively. Hence y—_y(%,) = —y? +4y —3 and
Xy (E5) = =2y +2.

5.4.6 Final computation in Case 3 The numbers of faces of each type do not depend
on the location of the marked points, and hence are the same as in the previous case.
Summing over faces and combining terms for y and ) produces

X—y(6T) = (A=) (—y*+y)+ Ay +(A—4)(»* —2y) +2(»* -2y + 1) —y>+2y—1.

This again simplifies to yZ + 2y + 1, as required.

5.5 Case 4: The tropical curve I' has a vertex of multiplicity 3

The computations in this case are similar to the previous two cases. One minor
difference is that some of the classes that appear as [in, (¢')] are not polynomials in L.
Nevertheless, the formulas for y_, are relatively simple to obtain.

We begin by observing that 4T is again the preimage in % of a polyhedral subset
of Trop(Y(A) x P™) of the form I" x {R>o U oo}, and we write y and ¥ for the faces
y x{0} and y x R>¢ of Trop(%T), respectively.

5.5.1 The linear relations imposed by point conditions The edges of the Newton
subdivision dual to edges that contain marked points form a tree on all vertices other
than the interior vertex. Therefore, the linear relations force all of the coefficients a,
for u other than the interior point, to be fixed scalar multiples of each other. In this
case, we fix one of these to be 1, and let z be a variable for the coefficient of the
interior lattice point.

5.5.2 The initial degenerations In this case, I" has four combinatorial types of

faces: bounded edges, unbounded edges, ordinary vertices of multiplicity 1 (dual to

unimodular triangles in the Newton subdivision), and one special vertex (dual to a
3

triangle of area 5 )

5.5.3 Subcase 4a: y is a bounded edge If y is an edge, then [in) (%)] and [in; (%)]
are both (IL — 1)2. When the edge is bounded, this gives y—_y(%,) = —y? +2y —1
and y—(¢5) =—y +1.

5.5.4 Subcase 4b: y is an unbounded edge Again, [in, (%)] and [iny(%)] are both
(L —1)>. When the edge is unbounded this gives y—,(%;) =y —1 and x—y(%5) = 1.
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5.5.5 Subcase 4c: y is an ordinary vertex In this case, [in, (%)] and [in5(¢')] are
both equal to (L —1)(IL—2). This gives y—,(%}) = y?—3y+2 and y_, (¢5)=y—2.

5.5.6 Subcase 4d: y is the special vertex In this case, iny, (%) is isomorphic to the
complement in C* x C* of a smooth genus 1 curve minus three points. The class
of this variety is not a polynomial in L, but since y—, is additive and vanishes on
smooth genus 1 curves, we find that y—, (%)) = y—y(iny (%)) = y?>—2y +4. Similarly,
in5 (%) is isomorphic to the product of C* with a smooth genus 1 curve minus three
points, and x—y(%5) = —3.

5.5.7 Final computation in Case 4 As in the previous cases, Pick’s formula tells us
the number of faces of I" of each combinatorial type in terms of the area of A. In this
case, if A has area A/2 then I" has A — 3 bounded edges, A unbounded edges, and
A — 3 ordinary vertices in addition to the one special vertex. Summing over faces and
combining terms for y and ¥ then produces

X—y(@T) = (A=3)(=y*+ )+ Ay + (A=3)(y*> —2y) + y* =2y + 1,

which simplifies to give y—, (4T) = y2 4y + 1, as required. This completes the proof
of Theorem 5.1.

Remark 5.3 The Block—Gottsche refined multiplicity associated to a tropical curve
is always symmetric under the transformation y > y~!. Therefore, Conjecture 1.1
implies that y_,(_# (4T)) is invariant under the transformation f(y) > y& f(y~!),
and we have confirmed that this is true for g = 1. However, in our proof of Theorem 5.1,
we have expressed y—,(_#(4T)) as a sum of pieces that do not have this symmetry,
and we do not know how to show that y_,(_# (4T)) has this symmetry in general.

6 Refined multiplicities for § <1

In this section, we extend the computations from Section 5 to prove Conjecture 1.2
for § <1, in arbitrary genus.

Theorem 6.1 Assume that § is 0 or 1. Let I' C R? be a tropical curve of genus g —§
and degree A through the points of trop(S). Then the Block—Gottsche refined tropical
multiplicity N(T) is equal to y~% N5 (%t).

The case 6§ = 0 is straightforward: % is a single smooth curve of genus g and
N(T') = No(%éT) = 1. Thus, we may assume that § = 1.
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We recall from Theorem 4.2 that N{"'(¢T) = [¢1] + (¢ —1)(L + 1)[|L|r], and hence
Ni(r) = x—y (%) + (g — Dy + D(x—y(ILIr)).

As in the case g = 1, we consider four cases, according to whether I'" contains a
4—valent vertex, an edge of multiplicity 2 (with or without a marked point), or a vertex
of multiplicity 3. The computations are very similar to those in the corresponding cases
for g = 1; the only differences are that the number of faces of each combinatorial
type in I' depend on the genus g as well as the area of A, and we must also com-
pute y—y(|L|r). (The term in our expression for N1(%T) that involves y—,(|L|r)
vanishes when g = 1, since it appears with coefficient divisible by (g —1).)

6.1 Case 1: The tropical curve I' contains a 4—valent vertex

Our computations in this case are very similar to those in Section 5.2. Every lattice point
in A is a vertex of the Newton subdivision, and the set of edges in the Newton subdivi-
sion dual to edges of I that contain marked points form a disjoint union of two trees that
together contain all lattice points. As in Section 5.2, this means that every coefficient
of f must be nonzero, and normalizing so that one coefficient is 1 determines the valua-
tion of all of the others. These valuations determine a point in Trop(|L|), and the base of
the family |L|r is the preimage of this point under tropicalization. The initial degenera-
tion of |L| at this point is cut out by the initial forms of the linear relations imposed by
point conditions, as discussed in Section 5.2.1. These initial forms cut out a translate of a
one parameter subgroup in the dense torus in P” . In particular, the initial degeneration is
smooth and isomorphic to G, . Applying Proposition 3.11 then shows Vol(|L|r)=L—1
and hence y—y(|L|r)=y—1. It remains to show that y_,(¢1)=y—(g—1)(y*-1).

Just as in Section 5.2, 4T is the preimage under tropicalization of I' and all initial
degenerations in, (4T ) are smooth. Moreover, the computation of the classes of the
initial degenerations in each combinatorial subcase are exactly the same. The only
remaining difference is the number of faces of each combinatorial type.

Applying Pick’s formula and using the fact that A has g interior lattice points, we find
that I' has A —2 + g bounded edges, A + 2 —2g unbounded edges, A —2 vertices of
valence 3, and one vertex of valence 4. This gives

X—y(¢T)
= (A=2+8)(=y*+2y =D+ (A+2-28) (y =D+ (A=) (> =3y +2) +y? =3y +3,

which simplifies to y — (g — 1)(y% — 1), as required.

Geometry & Topology, Volume 22 (2018)



3230 Johannes Nicaise, Sam Payne and Franziska Schroeter

6.2 Case 2: The tropical curve I' contains an edge of weight 2 with a
marked point

Our computations in this case are very similar to those in Section 5.3. The base of the
family is the preimage under tropicalization of the closure of a ray R>¢ in Trop(P")
(ie the projection of the space I' x R>o considered in Section 5.3). The initial de-
generation of |L| at the vertex of this ray is isomorphic to the subvariety of G2
(with coordinates z and w) cut out by an equation 1 4+ az 4+ bw = 0 for some
nonzero scalars a and b (see the discussion of linear relations imposed by the point
conditions in Section 5.3.1). In particular, the class of this degeneration is L — 2.
The initial degeneration along the interior of the ray is isomorphic to G,,. Applying
Proposition 3.13 then gives Vol(|L|r) =L —1 and hence y_y,(|L|r) =y —1. It
remains to show that y_,(¢1) = y2 +2y +1—(g— D)(y>—1).

We find that I" contains 4 —5 4 g bounded edges of weight 1, A 42 —2g unbounded
edges, and A — 4 vertices that are not in the edge of weight 2, in addition to the
two vertices on the edge of weight 2, and the edge of weight 2. The computations of
the initial degenerations in each combinatorial subcase are unchanged. This gives

X—y(@ET) = (A=5+g)(—y*+2y — 1)+ (A+2-2g)(y — 1)
+(A=HO2=3y+2)+20* =3y +4) + (—y2 + 4y —3).

This formula simplifies to y? 42y + 1 — (g — 1)(y? — 1), as required.

6.3 Case 3: The tropical curve I' contains an edge of weight 2 without a
marked point

In this case again, |L|r is the preimage under tropicalization of the closure of a ray.
However, now the initial degeneration at every point, including the vertex, is isomorphic
to Gy, . Applying Proposition 3.13 gives Vol(|L|r) =L and y_,(|L|r) =y . It remains
to show that y—,(¢1) = y2 +2y + 1—(g— D2 + ).

As in the previous case I' contains A —5 + g bounded edges of weight 1, A 42 —2g
unbounded edges, and A — 4 vertices that are not in the edge of weight 2, in addition
to the two vertices on the edge of weight 2, and the edge of weight 2. The initial
degenerations in each combinatorial subcase are just as in Section 5.4. This gives

A=y (Er) = (A=5+) (> +y)+(A+2-29)y
FA-HO*-2y)+2(* -2y + D) —y*+2y—1,

which simplifies to y2 +2y +1— (g — 1)(y? + ), as required.
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6.4 Case 4: The tropical curve I' contains a vertex of multiplicity 3

In this case, a computation identical to that in the previous case shows y—,(|L|r) =y.
It remains to show that y_, (4T) = Y24+y+1—(g—1D)(H%+y).

We find that T" contains A —4+ g bounded edges, A +2—2g unbounded edges, A —3
ordinary vertices, and the one special vertex. The initial degenerations are exactly as in
Section 5.5. This gives

X—y(@T) = (A—4+g)(—y*+y) +(A+2-28)y +(A=3)(»>—2y)+y> =2y +1,

which simplifies to y2 4+ y + 1 — (g — 1)(y% + ), as required. This completes the
proof of Theorem 6.1.
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