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A B S T R A C T

Terrestrial LiDAR scanning (TLS) data can be used to efficiently estimate plant canopy structural variables
including leaf area density (LAD). This is done by estimating the transmission probability of LiDAR beams
through a canopy, which is directly related to the local LAD. Advancements in TLS technology have enabled
instruments that can record multiple object intersection points along a single laser pulse path, but whether
this additional information can improve LAD estimation from TLS is not fully understood. Several methods
for incorporating multiple returns per beam into transmission probability and LAD estimations have been
previously suggested, including the use of corrected relative intensity to weight multiple returns more precisely.
Intensity-based weighting is complicated by unknown variation in surface reflectance and orientation.

Synthetic multiple-return TLS simulations were performed for virtual homogeneous voxels and hetero-
geneous tree cases with known properties (LAD, leaf angle distribution, reflectivity) in order to evaluate
LAD estimates using intensity-based weighting in comparison to first-hits and equal-weighting approaches.
An idealized intensity-based weighting, where the fraction of beam energy hitting every surface is known, and
an exact weighting, where the impact of partial misses is also accounted for were also analyzed.

Intensity-based weighting of multiple-return TLS data did not necessarily improve transmission probability
and LAD estimates compared with the more simple equal-weighting method. Both methods had relatively
similar performance, with the intensity-weighting method tending towards slightly lower transmission and
higher LAD. There could be significant errors for all methods, including when weighting of hit points was
exact. The error in LAD caused by choice of weighting method was therefore sometimes overshadowed by a
combination of other errors due to clumping, partial misses, voxel occlusion, and limitations of Beer’s law for
dense canopies, which could have substantial impacts. Given the small, but inconsistent potential improvements
in accuracy of the intensity-based methods that were tested in this work, the equal-weighting method appears
an acceptable choice.
1. Introduction

Remotely-sensed data describing plant canopy structure are used
to provide inputs for a spectrum of models ranging from large-scale
weather and climate models (e.g., Lu and Shuttleworth, 2002; Yuan
et al., 2011) to detailed 3D leaf-resolving functional-structural plant
models (e.g., Sievänen et al., 2018; Bailey, 2019; Perez et al., 2022).
anual measurements of canopy structure are usually time consum-
ng, sometimes destructive, and infeasible for most applications in-
olving scales larger than that of individual plants. Remote sensing,
ncluding laser scanning (LS) has become an increasingly prevalent
eans for rapidly quantifying vegetation structure. While passive re-
ote sensing platforms have been used for many decades to measure
wo-dimensional (2D) variation in vegetation structure, active sensing
pproaches such as airborne and terrestrial laser scanning (ALS and
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TLS, respectively) have been more recently used to quantify two- or
three-dimensional (3D) variation in canopy gap fraction (e.g., Danson
et al., 2007; Ramirez et al., 2013), leaf angle distributions (e.g., Bailey
and Mahaffee, 2017a; Itakura and Hosoi, 2019), and leaf area (e.g., Ri-
ano et al., 2004; Hosoi and Omasa, 2006; Jupp et al., 2009; Béland
et al., 2011; Halubok et al., 2022), among other parameters. Using TLS
to estimate LAD, defined here as the one-sided leaf area per unit volume
(i.e., leaf area density), is the focus of the present article.

The typical approach for extracting LAD information from raw
LiDAR data is to divide a plant or canopy into discrete 3D volumes
called voxels. Intersection of the laser pulses (also referred to as ‘beams’
in this work) emitted by the scanner with plant matter inside the voxels
is used to statistically estimate the density of leaves (or plant surfaces
in general) within each voxel. Previous work has done so using a point
034-4257/© 2024 Elsevier Inc. All rights are reserved, including those for text and
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quadrant analogy (e.g., Radtke and Bolstad, 2001; Hosoi and Omasa,
2006; Béland et al., 2014; Bailey and Mahaffee, 2017b) or inversion of
Beer’s Law (e.g., Bailey and Mahaffee, 2017b; Pimont et al., 2018) to
estimate LAD within voxels. Much previous work has only considered
a single aggregated return per laser pulse (e.g., Pimont et al., 2015;
Bailey and Mahaffee, 2017b; Soma et al., 2018). Current generation
scanners typically have the capability of recording multiple returns
(also referred to as ‘hits’, ‘hit points’, and ‘echos’ in this work) along a
single beam when the beam cross-section partially intersects multiple
surfaces along its path. This extra information pertaining to multiple
hits per laser pulse could potentially improve LAD estimates, but how
to best incorporate it into current processing of LS data is an active area
of research.

Previous studies explored a simple method in which multiple simu-
lated LS returns in a single beam are weighted equally and each beam is
weighted equally (e.g., Armston et al., 2013; Grau et al., 2017). This
method is easy to apply because only the number of returns in each
laser pulse is needed, which is typically recorded by the LS instrument
for each data point. Other work has used intensity values associated
with individual returns in their weighting schemes to calculate canopy
gap fraction and/or LAD with ALS data (e.g., Hopkinson and Chasmer,
2007; Armston et al., 2013; Heiskanen et al., 2015; Hancock et al.,
2017, 2019) or TLS data (e.g., Hancock et al., 2015b, 2017). In these
type of approaches, for example, a weak return resulting from the beam
barely glancing the edge of a leaf would be weighted much less than
a strong return resulting from most of a beam being intercepted by
another leaf. In practice, corrected intensity-based weighting is difficult
because it requires knowledge of other factors affecting return intensity
such as the distances, angles and reflectivities of the different objects
generating the returns, as well as information about the methods used
by instruments to convert full-waveform data into returns, which is
often proprietary.

Yin et al. (2020) recently conducted a comparison of several meth-
ods, including equal-weighting and intensity-based methods for simula-
tions of ALS data, but comparisons of different multi-return weighting
methods have not been previously explored for LAD estimation with
TLS data. TLS and ALS data differ in several respects including the
cross-sectional or ‘‘footprint’’ area of the laser beams, the typical size
of the voxels, the scan density, and the positioning of the scanner
relative to the voxels. In the case of ALS, the scanner is always above
the voxels and any beams transmitted through all voxels encounter
the ground. In the case of TLS data, the scanner can be below, at the
level of, or above any given voxel. When measuring taller vegetation
such as orchards or forests, the scanner is typically below most of
the voxels of interest. Beams transmitted through any given voxel
may encounter other vegetation or surfaces, or may not encounter
any surfaces (i.e., misses). Based on the specified scan pattern or by
using gap-filling, beams that are not associated with any echoes can be
accounted for in estimations of LAD. Beams that only partially miss,
however, remain unaccounted for, and this causes an underestimation
of transmittance through the voxel and an overestimation of LAD (Grau
et al., 2017).

The goal of this study was to evaluate several methods of incor-
porating multiple return information into LAD estimates using TLS
data. Of particular interest were potential improvements of intensity-
based weighting methods over equal-weighting methods, as well as
the impact of partial misses. Simulations were used to investigate the
methods for homogeneous voxels and heterogeneous trees in which
canopy geometry and the exact fraction of beam energy hitting each
surface in a scene (or not hitting any surface) were known.

2. Materials and methods

2.1. Simulated multi-return TLS

Simulations provide an invaluable tool for investigating and eval-
2

uating TLS data processing methods since parameters that are fixed
or unknown in real-world situations can be systematically varied. This
work adapts GPU ray-tracing-based discrete TLS scanning simulations
used by Bailey and Mahaffee (2017b) and Bailey and Ochoa (2018)
to incorporate the additional information provided by multiple-return
TLS. The multiple-return synthetic TLS data generation and data pro-
cessing methods presented herein were implemented as a plug-in for
the Helios modeling framework (Bailey, 2019). As in previous single-
return simulations, the locations of the scan(s), the range of azimuthal
(𝜙) and zenithal (𝜃) angles over which to scan, the number of beams
to send out in each direction, and the location, size, and subdivisions
of the voxels for which LAD is to be calculated are provided by the
user. In the multiple-return version, the user also specifies the effective
beam diameter at exit, beam divergence angle, the number of rays used
to represent a single beam, and a bin size (𝐵𝑠) over which rays are
aggregated for the purpose of peak detection.

The user-specified number of rays is sent out for each beam (i.e., 𝜙
and 𝜃 combination) according to the specified scan pattern. 500 rays
per beam were used in this study, following Grau et al. (2017). The
rays are sent out from locations on the beam cross-section randomly
sampled from a Gaussian distribution. The distribution is defined such
that the probability a ray is launched at the user-specified beam diam-
eter is 1∕𝑒2 of the probability at the beam center. Each ray is sent out
at the beam 𝜙 and 𝜃 angle with a random perturbation between zero
and the user-defined beam divergence.

The geometry being scanned (e.g., leaves and branches) is repre-
sented by a polygon mesh (rectangles or triangles) and ray-polygon
intersection tests are performed for each ray to determine the hit
location. All the rays in a given beam are ordered by the distance at
which they intersected an object. Individual rays are binned from zero
to the maximum scanner range into bins of 𝐵𝑠 width (set to 1 cm in
this study). The scanner range was set to 1000 m for simulations in
this study, which is in the range of maximum measurement ranges
reported for the RIEGL VZ-1000 scanner (RIEGL Laser Measurement
Systems GmbH; Horn, Austria). The sum of intensities is calculated for
all rays within each bin. A peak detection algorithm is used to find
peaks in intensity and a hit point is created at each peak. The minimum
bin intensity between adjacent peaks was used as a break point to
determine which bins belonged to which peaks. The intensity of the hit
point was then determined by the sum of the intensities for the relevant
group of bins. This method could result in hit points in close proximity
to each other, unlike for actual TLS data where there is a multi-target
resolution, a minimum distance between two hit points within one
beam. This minimum distance is specified as a pulse distance threshold
parameter, 𝑇𝑝𝑑 . Hit points within 𝑇𝑝𝑑 of each other were merged into
single hit points. Merging began with the nearest hit point to the scan-
ner and any other hit points within 𝑇𝑝𝑑 were merged into a single point
with a distance from the scanner determined by the intensity-weighted
distance of the constituent hit points. This process continued with the
next closest hit point that was not already merged. 𝑇𝑝𝑑 was set to 11 cm
based on the smallest distance between echoes within the same beam
observed in TLS datasets acquired with a RIEGL VZ-1000 scanner in an
almond orchard. The approach employed here is similar to, but may be
more simplified than, approaches used by actual TLS scanners, which
are usually based on proprietary Gaussian fitting techniques in order
to extract echoes from TLS waveform data. The simulations used in
this work also do not attempt to accurately represent instrument system
specifics related to sensor triggering, signal-to-noise levels, and dead-
time, which can impact estimated vegetation parameters with actual
sensors (e.g., Disney et al., 2010; Hancock et al., 2015a; Anderson
et al., 2016; Hancock et al., 2019). These instrument system proper-
ties/limitations may introduce additional uncertainties compared to the
simplified/idealized simulations performed in this study.

In this work, three different combinations of beam diameter and
beam divergence values were tested. The reference case consisted of a
7 mm exit diameter beam with divergence of 0.3 mrad, corresponding

to the values for the RIEGL VZ-1000 TLS scanner. A smaller beam with
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one half the diameter and divergence of the reference case, as well as a
larger beam with double the diameter and divergence of the reference
case were also tested. Scan resolutions were 0.06◦ and 0.0667◦ in the
azimuthal and zenithal directions, respectively.

2.2. Estimation of leaf area density from TLS data

Inversion of the Beer–Lambert Law to estimate leaf area density
within a voxel is the preferred method for LAD estimation used in
recent TLS work (e.g., Bailey and Mahaffee, 2017b; Grau et al., 2017;
ailey and Ochoa, 2018) and is adopted here. The Beer–Lambert Law
escribes the probability of radiation interception by a participating
edium, and can be written in the context of a laser pulse traveling
hrough vegetation as (Bailey and Mahaffee, 2017b):

𝑃 = 1
𝐵𝑡𝑜𝑡

𝐵𝑡𝑜𝑡
∑

𝑘=1
exp(−𝐿𝐴𝐷 ⋅ 𝐺 ⋅ 𝑟𝑘), (1)

where 𝑃 is the average probability of a beam passing through a voxel
without intersecting a leaf, 𝐵𝑡𝑜𝑡 is the number of beams entering the
oxel, 𝐿𝐴𝐷 is the one-sided leaf area per unit volume (i.e., leaf area
ensity) in the voxel, 𝐺 is the voxel average fraction of projected leaf
area in the direction of beam propagation, and 𝑟𝑘 is the 𝑘th beam path
length through the entire voxel (irrespective of whether there was a
hit inside the voxel). This equation is an aggregation of Beer’s law
over multiple beams and is based on the assumption of homogeneous
vegetation within the voxel.

Eq. (1) is solved iteratively for 𝐿𝐴𝐷 since an explicit analytical
olution is not possible given its functional form. In instances where
he iterative solution does not converge or converges to an unrealistic
alue, a simplified method with an algebraic solution which uses the
ean value of 𝑟𝑘 instead of performing the calculation for each beam
an be used. Bailey and Mahaffee (2017b) showed that the simplified
nalytical solution using average ray path length always underestimates
he iterative form, and Grau et al. (2017) provide an approximate
xpression for the magnitude of error involved. In the present study,
he impact of using the analytical solution to gap-fill the iterative
ne had a negligible impact on estimated leaf area. The analytical
olution was required for only a small fraction (less than 5%) of 𝐿𝐴𝐷
alculations and was predicted to underestimate the total leaf area with
he iterative solution for these cases by a fraction of a percent. 𝐺 may
be estimated from TLS data using triangulation of hit points (Bailey
and Mahaffee, 2017a), or is assumed to follow some known distribution
(e.g., uniform or spherical). To isolate the impact of different methods
for estimating 𝑃 on 𝐿𝐴𝐷, this work used the exact value of 𝐺 known
for each virtual canopy from the geometric model, 𝐺𝑟𝑒𝑓 . In actual
TLS measurements of real-world canopies, estimating 𝐺 would create
additional uncertainty in the estimation of 𝐿𝐴𝐷. 𝑟𝑘 was calculated
based on the beam direction and the locations of the scanner and the
voxel.

A reference value of transmission probability, 𝑃 𝑟𝑒𝑓 , was calculated
sing Eq. (1) and the known values of leaf area density (𝐿𝐴𝐷𝑟𝑒𝑓 ) and
𝐺𝑟𝑒𝑓 for each canopy. Comparisons were made against 𝑃 𝑟𝑒𝑓 to evaluate
he other methods for estimating 𝑃 tested in this work, which had the
ame functional form:

𝑃 𝑥 =
∑𝐵𝑡𝑜𝑡
𝑘=1 𝑇

𝑥
𝑘 ⋅ 𝐵𝑊 𝑥

𝑘
∑𝐵𝑡𝑜𝑡
𝑘=1 𝐵𝑊

𝑥
𝑘

, (2)

here 𝑥 denotes a label for a given method, 𝑇𝑘 is the transmission
stimated from the 𝑘th beam, and 𝐵𝑊𝑘 is a beam weighting term
hat may incorporate one or more factors as discussed below. In the
quations for each individual method (Eqs. (6), (8), (11), (9), and (12))
the transmission term is written out, but the beam weighting term is not
expanded for brevity. Table 1 provides a summary of all terms for each
ethod tested in this work.
3

Table 1
Methods of estimating transmission probability tested, and definitions of transmission
and beam weighting terms in Eq. (2). 𝑤𝑘 is 1 if the first echo of the 𝑘th LiDAR beam
it something after the voxel and zero otherwise. 𝐸𝑎𝑓𝑡𝑒𝑟

𝑘 and 𝐸𝑖𝑛𝑠𝑖𝑑𝑒
𝑘 are the number of

choes (hit points) after the voxel and inside the voxel associated with the 𝑘th beam,
espectively. 𝐼𝑘𝑎𝑓𝑡𝑒𝑟 and 𝐼

𝑘
𝑖𝑛𝑠𝑖𝑑𝑒 are the simulated intensities of the echoes from after the

oxel and inside the voxel for the 𝑘th beam, respectively. 𝑅𝑎𝑓𝑡𝑒𝑟𝑘 and 𝑅𝑖𝑛𝑠𝑖𝑑𝑒𝑘 are the
umber of simulated rays in the 𝑘th beam that intersect objects after the voxel and
nside the voxel, respectively.
𝑃 method Transmission term (𝑇𝑘) Beam weighting term (𝐵𝑊𝑘)

𝑃 𝑓𝑖𝑟𝑠𝑡
first-hits

𝑤𝑘 1

𝑃 𝑒𝑞𝑢𝑎𝑙
equal-weighting

𝐸𝑎𝑓𝑡𝑒𝑟
𝑘

𝐸𝑖𝑛𝑠𝑖𝑑𝑒
𝑘 + 𝐸𝑎𝑓𝑡𝑒𝑟

𝑘

𝐸𝑖𝑛𝑠𝑖𝑑𝑒
𝑘 + 𝐸𝑎𝑓𝑡𝑒𝑟

𝑘

𝐸𝑏𝑒𝑓𝑜𝑟𝑒
𝑘 + 𝐸𝑖𝑛𝑠𝑖𝑑𝑒

𝑘 + 𝐸𝑎𝑓𝑡𝑒𝑟
𝑘

𝑃 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦
intensity-weighting

𝐼𝑎𝑓𝑡𝑒𝑟𝑘

𝐼 𝑖𝑛𝑠𝑖𝑑𝑒𝑘 + 𝐼𝑎𝑓𝑡𝑒𝑟𝑘

𝐼 𝑖𝑛𝑠𝑖𝑑𝑒𝑘 + 𝐼𝑎𝑓𝑡𝑒𝑟𝑘

𝐼𝑏𝑒𝑓𝑜𝑟𝑒𝑘 + 𝐼 𝑖𝑛𝑠𝑖𝑑𝑒𝑘 + 𝐼𝑎𝑓𝑡𝑒𝑟𝑘

𝑃 𝑖𝑑𝑒𝑎𝑙
ideal intensity-weighting

𝑅𝑎𝑓𝑡𝑒𝑟𝑘

𝑅𝑖𝑛𝑠𝑖𝑑𝑒𝑘 + 𝑅𝑎𝑓𝑡𝑒𝑟𝑘

𝑅𝑖𝑛𝑠𝑖𝑑𝑒𝑘 + 𝑅𝑎𝑓𝑡𝑒𝑟𝑘

𝑅𝑏𝑒𝑓𝑜𝑟𝑒𝑘 + 𝑅𝑖𝑛𝑠𝑖𝑑𝑒𝑘 + 𝑅𝑎𝑓𝑡𝑒𝑟𝑘

𝑃 𝑒𝑥𝑎𝑐𝑡
exact-weighting

𝑅𝑎𝑓𝑡𝑒𝑟𝑘 + 𝑅𝑚𝑖𝑠𝑠𝑘

𝑅𝑖𝑛𝑠𝑖𝑑𝑒𝑘 + 𝑅𝑎𝑓𝑡𝑒𝑟𝑘 + 𝑅𝑚𝑖𝑠𝑠𝑘

𝑅𝑖𝑛𝑠𝑖𝑑𝑒𝑘 + 𝑅𝑎𝑓𝑡𝑒𝑟𝑘 + 𝑅𝑚𝑖𝑠𝑠𝑘

𝑅𝑏𝑒𝑓𝑜𝑟𝑒𝑘 + 𝑅𝑖𝑛𝑠𝑖𝑑𝑒𝑘 + 𝑅𝑎𝑓𝑡𝑒𝑟𝑘 + 𝑅𝑚𝑖𝑠𝑠𝑘

Beam weighting terms for all methods originally contained a term
to weight by the sine of the beam zenith angle based on the idea
that there was a greater density of beams at lower zenith angles
for spherical scan patterns typically employed with TLS (Bailey and
Mahaffee, 2017b). Questions from one anonymous reviewer led to our
retesting of this term. While the term had little impact on estimated
transmission probability with the scan configurations typical of TLS,
it had non-negligible impact for extreme cases where the scanner was
positioned very close to relatively large voxels (not shown). In these
cases, more accurate transmission probability was estimated without
the sine weighting term. Consequently, the term was removed from the
calculations reported in this article.

For the purposes of quantifying agreement between reference val-
ues (i.e., 𝑃 𝑟𝑒𝑓 and 𝐿𝐴𝐷𝑟𝑒𝑓 ) and estimates calculated with the differ-
nt weighting methods, three statistics also employed by Bailey and
ahaffee (2017b) were used. Mean bias was calculated as:

𝑖𝑎𝑠 = 1
𝑁

𝑁
∑

𝑖=1
(𝑥𝑖 − 𝑟𝑒𝑓𝑖), (3)

index of agreement was calculated as:

𝑑 = 1 −
∑𝑁
𝑖=1(𝑟𝑒𝑓𝑖 − 𝑥𝑖)

2

∑𝑁
𝑖=1(|𝑟𝑒𝑓𝑖 − 𝑟𝑒𝑓 | + |𝑥𝑖 − 𝑟𝑒𝑓 |)2

, (4)

and normalized root-mean-squared error (nRMSE) was calculated as:

𝑛𝑅𝑀𝑆𝐸 =

√

1
𝑁

∑𝑁
𝑖=1(𝑟𝑒𝑓𝑖 − 𝑥𝑖)2

𝑟𝑒𝑓
, (5)

where 𝑁 is the number of voxels, 𝑥𝑖 is the value of 𝑃 or 𝐿𝐴𝐷 estimated
or the 𝑖th voxel, and 𝑟𝑒𝑓𝑖 is 𝑃 𝑟𝑒𝑓 or 𝐿𝐴𝐷𝑟𝑒𝑓 for the 𝑖th voxel. 𝑟𝑒𝑓 is
the mean value of 𝑃 𝑟𝑒𝑓 or 𝐿𝐴𝐷𝑟𝑒𝑓 over all voxels in the calculation.
nRMSE is expressed here and in the figures as a fraction, but is also
expressed as a percentage in text by multiplying by 100.

2.3. First-hits method

The first-hits method is based on applying single-return methods
to the first echo (hit point) of each beam of multi-return TLS data,
essentially ignoring everything but the first echo. Using single-return
TLS data, Bailey and Mahaffee (2017b) estimated 𝑃 as follows:

𝑃 𝑓𝑖𝑟𝑠𝑡 =

∑𝐵𝑎𝑓𝑡𝑒𝑟
𝑗=1 𝐵𝑊 𝑓𝑖𝑟𝑠𝑡

𝑗
∑𝐵𝑡𝑜𝑡 𝑓𝑖𝑟𝑠𝑡

=
∑𝐵𝑡𝑜𝑡
𝑘=1𝑤𝑘 ⋅ 𝐵𝑊

𝑓𝑖𝑟𝑠𝑡
𝑘

∑𝐵𝑡𝑜𝑡 𝑓𝑖𝑟𝑠𝑡
, (6)
𝑘=1 𝐵𝑊𝑘 𝑘=1 𝐵𝑊𝑘



Remote Sensing of Environment 311 (2024) 114229E.R. Kent and B.N. Bailey

c
t
r
e
e
t
t
c

w
o
o
t
r
L
b
c
w

where the sequence 𝑗 = 1...𝐵𝑎𝑓𝑡𝑒𝑟 corresponds to beams that traversed
the entire voxel without intersecting an object, the sequence 𝑘 =
1...𝐵𝑡𝑜𝑡𝑎𝑙 represents all beams that entered the voxel, 𝑤𝑘 is 1 if the
beam (or first beam echo in the case of multiple-return TLS) first hit
something after the voxel (i.e., was transmitted through the voxel) and
zero otherwise.

The implicit assumption of Eq. (6) is that beams are infinitely
small in diameter so that they are either associated with a single echo
(hit point), or produce no echo (misses). Some TLS instruments do
not record information about beams that produce a very weak echo
(i.e., there is no corresponding hit point), but these beams still need to
be considered in the calculation of 𝐵𝑡𝑜𝑡. They can be estimated from the
locations of the scanner and voxel as well as the scan resolution in the
zenithal and azimuthal directions (e.g., Grau et al., 2017), or they can
be estimated by gap-filling the hit point data set. The latter approach
may theoretically be more accurate than a simplified calculation based
on scan resolution since it can account for the influence of scanner tilt
and azimuthal movement of the scanner as the full range in the zenithal
directions is sampled.

In reality, beams are of a small, but finite diameter and can partially
hit multiple objects before, inside, or after traversing a voxel, and a
portion of the beam can also produce no hit (partial misses). Multiple-
return TLS can provide information about these partial hits so that a
given beam can produce multiple echoes. Yin et al. (2020) tested sev-
eral similar methods using the first or last echo per beam or averaging
the first and last echoes for each beam. These approaches do not take
full advantage of the information provided by multiple-return LiDAR
and may lead to errors in estimating probability of transmission and
leaf area density.

2.4. Equal-weighting method

To incorporate multiple-return LS information into the calculation
of 𝑃 , one simple and easy to use method is to apply equal weighting
of each echo within a given a pulse (e.g., Armston et al., 2013; Grau
et al., 2017). The corresponding calculation of average probability of
transmission is:

𝑃
∗
𝑒𝑞𝑢𝑎𝑙 =

1
𝐵𝑡𝑜𝑡

𝐵𝑡𝑜𝑡
∑

𝑘=1

𝐸𝑎𝑓𝑡𝑒𝑟𝑘

𝐸𝑖𝑛𝑠𝑖𝑑𝑒𝑘 + 𝐸𝑎𝑓𝑡𝑒𝑟𝑘

, (7)

where 𝐸𝑎𝑓𝑡𝑒𝑟𝑘 and 𝐸𝑖𝑛𝑠𝑖𝑑𝑒𝑘 are the number of echoes (hit points) after the
voxel and inside the voxel associated with the 𝑘th pulse, respectively.
Eq. (7) incorporates multi-return TLS data into the estimation of trans-
mission through a voxel without any additional information besides the
hit coordinate. Each echo produced inside or after a given voxel for a
given beam is weighted equally, and all beams are weighted equally.

An improvement to Eq. (7) proposed in the current work is to weight
each beam by the fraction of echoes in a beam that that occurred
after entering the voxel. Fig. 1 shows a simplified example of this with
two beams that interact with a voxel. Each beam is represented by
200 rays and the number of rays intersecting each object is labeled.
The probabilities of transmission based on individual beams shown
are 0.667 (80/120) and 0.5 (100/200) for first and second beams,
respectively. The mean of the results for each individual beam (i.e., the
result of Eq. (7)) yields an overall probability of transmission of 0.583.
This is different from the result when the probability is calculated based
on all rays (entering the voxel) together (180/320 = 0.563). In the
ase of the first beam, which interacts with objects before reaching
he voxel, the energy entering the voxel is reduced (i.e., 120/200
ays entering) compared with the second beam that hit nothing before
ntering the voxel (200/200 rays entering). The second beam in this
xample should, therefore, be weighted proportionally greater than
he first beam in calculating the average probability of transmission
hrough the voxel. Doing so reproduces the same overall probability
alculated directly from all the rays together. This change yields a more
4

f

Fig. 1. Diagram illustrating the need to weight beams by fraction of energy entering
the voxel. An example voxel (black outlined rectangle) is traversed by two beams
from left to right, where individual rays within each beam are represented by blue
lines. Individual leaves are shown as thick green lines and the associated echoes (hit
points) are labeled with the number of rays intercepted. Each beam initially consists
of 200 rays, but only a fraction of this energy enters the voxel for beam 1 due to
intersections before reaching the voxel. Beam 1 has a transmission probability of 0.667
(80/120) and beam 2 has a transmission probability of 0.5 (100/200). Weighting the
two beams equally results in a transmission probability estimate of 0.583, which is
different from the estimate based on weighting the beams proportionally to the number
of rays entering the voxel (0.563). See text for additional discussion. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version
of this article.)

theoretically consistent transmission probability than 𝑃
∗
𝑒𝑞𝑢𝑎𝑙 (Eq. (7)), is

still relatively simple, and only uses information readily available from
multi-return TLS point clouds:

𝑃 𝑒𝑞𝑢𝑎𝑙 =

∑𝐵𝑡𝑜𝑡
𝑘=1

𝐸𝑎𝑓𝑡𝑒𝑟𝑘

𝐸𝑖𝑛𝑠𝑖𝑑𝑒𝑘 + 𝐸𝑎𝑓𝑡𝑒𝑟𝑘

⋅ 𝐵𝑊 𝑒𝑞𝑢𝑎𝑙
𝑘

∑𝐵𝑡𝑜𝑡
𝑘=1 𝐵𝑊

𝑒𝑞𝑢𝑎𝑙
𝑘

. (8)

2.5. Intensity-weighting method

Improvements in calculating the probability of transmission may be
possible if the proportion of energy hitting the object associated with
each echo can be estimated instead of assuming equal energy across all
echoes within a given beam (Grau et al., 2017). Using simulated inten-
sity values recorded by the virtual TLS scanner to weight echoes rather
than weighting echoes equally, the beam transmission probability for
‘‘intensity-weighting’’ is

𝑃 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 =

∑𝐵𝑡𝑜𝑡
𝑘=1

𝐼𝑎𝑓𝑡𝑒𝑟𝑘

𝐼 𝑖𝑛𝑠𝑖𝑑𝑒𝑘 + 𝐼𝑎𝑓𝑡𝑒𝑟𝑘

⋅ 𝐵𝑊 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦
𝑘

∑𝐵𝑡𝑜𝑡
𝑘=1 𝐵𝑊

𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦
𝑘

, (9)

where 𝐼𝑘𝑎𝑓𝑡𝑒𝑟 and 𝐼
𝑘
𝑖𝑛𝑠𝑖𝑑𝑒 are the simulated intensities of the echoes from

after the voxel and inside the voxel for the 𝑘th beam, respectively.
Simulated intensities are calculated as:

𝐼 = 𝑅 ∗ 𝑐𝑜𝑠(𝜓) ∗ 𝜌, (10)

here 𝑅 is the number of rays representing a given beam hitting an
bject, 𝜓 is the angle between the beam direction and the normal
f the object surface, and 𝜌 is the reflectance factor of the object at
he wavelength of the LiDAR scanner (referred to as reflectivity in the
emainder of this article). Transmittance and multiple scattering of the
iDAR beam were assumed negligible and were not simulated, though
oth are incorporated in the radiation model plugin of Helios and
ould potentially be included in future LiDAR simulations in situations
here they are more likely to have an impact (e.g., with larger beam

ootprints).
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2.6. Ideal intensity-weighting method

Intensities measured by actual LiDAR scanners are not direct mea-
sures of the fraction of emitted beam energy associated with each hit
point, but rather a measure of how much of that energy was reflected
back to the scanner. Distance between the hit point and the scanner,
the reflectivity of the hit object in the wavelength of the scanner, and
the angle of the hit object relative to the beam direction all contribute
to differences between energy intercepted by an object and scattered
energy measured by the scanner (Béland et al., 2011). The distance
effect can easily be removed since the distance between the scanner
and object is measured by the LiDAR itself. Reflectivity of the various
objects in the scene (e.g., leaves, branches, the ground surface) is often
not known, but may be measured using a spectroradiometer. Angles
of object surfaces at the point of beam intersection are also usually
not known. Although in some cases they may be estimated by fitting
surfaces to adjacent hit points (e.g., Bailey and Mahaffee, 2017a), a
unique surface normal estimation is usually not available for all hit
points due to unsuccessful surface fitting. The method used to convert
the energy detected by the scanner into intensity values of discrete
hit-points can also impact resulting intensity values and vegetation
parameters (Hancock et al., 2015a).

The ideal intensity-weighting method described here weights echoes
directly by the fraction of simulated rays intercepting objects, which
represents the fraction of beam energy intercepted rather than the
fraction reflected back to the scanner as in the ‘‘intensity-weighting’’
method described in Section 2.5. This eliminates the impacts of reflec-
tivity and surface angles and thus represents a best-case scenario for
actual TLS measurements in which the beam energy hitting any given
surface is known perfectly and corrected for. In the simulations for this
work, the angle between the beam direction and object is the term
driving differences between 𝑃 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 and 𝑃 𝑖𝑑𝑒𝑎𝑙. Transmission using this
deal intensity-weighting method is

𝑃 𝑖𝑑𝑒𝑎𝑙 =

∑𝐵𝑡𝑜𝑡
𝑘=1

𝑅𝑎𝑓𝑡𝑒𝑟𝑘

𝑅𝑖𝑛𝑠𝑖𝑑𝑒𝑘 + 𝑅𝑎𝑓𝑡𝑒𝑟𝑘

⋅ 𝐵𝑊 𝑖𝑑𝑒𝑎𝑙
𝑘

∑𝐵𝑡𝑜𝑡
𝑘=1 𝐵𝑊

𝑖𝑑𝑒𝑎𝑙
𝑘

, (11)

here 𝑅𝑎𝑓𝑡𝑒𝑟𝑘 and 𝑅𝑖𝑛𝑠𝑖𝑑𝑒𝑘 are the number of rays in the 𝑘th beam that
ntersect objects after the voxel and inside the voxel, respectively.

.7. Exact-weighting method

The ‘‘exact-weighting’’ method for calculating transmission in this
aper is identical to the ‘‘ideal intensity-weighting method’’ except that
t also accounts for partial misses:

𝑃 𝑒𝑥𝑎𝑐𝑡 =

∑𝐵𝑡𝑜𝑡
𝑘=1

𝑅𝑎𝑓𝑡𝑒𝑟𝑘 + 𝑅𝑚𝑖𝑠𝑠𝑘

𝑅𝑖𝑛𝑠𝑖𝑑𝑒𝑘 + 𝑅𝑎𝑓𝑡𝑒𝑟𝑘 + 𝑅𝑚𝑖𝑠𝑠𝑘

⋅ 𝐵𝑊 𝑒𝑥𝑎𝑐𝑡
𝑘

∑𝐵𝑡𝑜𝑡
𝑘=1 𝐵𝑊

𝑒𝑥𝑎𝑐𝑡
𝑘

, (12)

where 𝑅𝑚𝑖𝑠𝑠𝑘 is the number of rays in the 𝑘th beam that hit nothing.
𝑃 𝑖𝑑𝑒𝑎𝑙 will always equal or underestimate 𝑃 𝑒𝑥𝑎𝑐𝑡, which is the best
stimate of the mean probability of transmission possible since 100%
f the energy of each beam is accounted for. This method is used for
omparison in these simulations, but would be difficult to apply with
ctual LiDAR data since, in practice, information about partial misses
s not generally known and is difficult to estimate.
Fig. 2 illustrates another example and the resulting probabilities

f transmission estimated using Eqs. (6), (8), (9), and (12). For
implicity, each beam has the same zenith angle and the same energy
ntering the voxel so that only the transmission terms in the equations
re relevant (e.g., the result using Eq. (8) is the same as the result using
Eq. (7)). In this simple example, probabilities of transmission differ
5

substantially across the four methods.
2.8. Virtual homogeneous voxels

The first set of simulations run for this study was based on three
isolated homogeneous volumes of leaves. Three 1 m3 voxels contain-
ing square ‘leaves’ with random spatial distribution were constructed
(Fig. 3a). The widths of these leaves were set at 2, 4, and 8 cm in
different simulations and the number of leaves varied so that voxels
had leaf area density of approximately 0.1, 0.5, 1, and 2 m2 m−3.
Leaves were positioned randomly inside the voxels and leaf orientations
were sampled from a spherical distribution. The center of the middle
voxel was positioned at 2 m above the ground surface, which was
represented by a 1000 m × 1000 m patch. The patch dimension was
chosen to correspond to the maximum scanner range set for simula-
tions in this study. Reflectivity was constant at a value of 1 for all
leaves and the ground surface. Variation in reflectivity would introduce
additional uncertainty to the intensity values reported in actual LiDAR
measurements, but was kept constant here for simplicity. The simulated
TLS instrument was positioned at a height of 2 m and at a horizontal
distance of 6 m from the voxel centers. This positioning was chosen
so that the virtual scanner was above the lower voxel and below the
upper voxel; beams sent from the scanner would hit the ground surface
after passing through the lower voxel (no partial misses possible),
and would intersect nothing after passing through the upper voxel
(partial misses possible). The middle voxel represented an intermediate
situation in which partial misses were possible in part of the voxel. Ten
randomly generated sets of leaves within the voxels were simulated for
all combinations of LAD and leaf size, resulting in a total of 120 unique
canopy configurations simulated.

2.9. Virtual trees

Three separate cases were considered using virtual almond trees:
one using only a single isolated tree (Fig. 3b), the second considering
the same tree, but in the context of an orchard (Fig. 3c), and the
third distributing the same leaves in each voxel of the isolated tree
case uniformly across the voxel to eliminate sub-voxel-scale clumping
(Fig. 3d). The isolated tree case was expected to have an increased
probability of partial misses, whereas other trees outside the voxel in
the orchard case were expected to intercept more rays and lead to less
partial misses.

The orchard case was set up to represent a sub-section of an actual
almond orchard block where physical LiDAR scans were previously
collected. This block was 9 years old at the time of scanning and
was located at Nickels Soil Laboratory near Arbuckle, California. Row
spacing in the block was 6.096 m (20 ft) and the within-row tree
spacing was 4.572 m (15 ft). The subsection that was scanned consisted
of 11 trees in each of four adjacent rows planted with the Aldrich,
Nonpareil, Sonora, and Independence varieties. Tree heights ranged
from approximately 4.9 to 7.2 m, with the main tree having a height
of 5.7 m.

The branching structures of the isolated tree (one of the Nonpareil
trees near the center of the block) and its eight immediate neighbors
were reconstructed using leaf-off LiDAR scans. The collected point
clouds were pre-processed manually to segment each individual tree
and then reconstructions were performed using TreeQSM (Raumonen
et al., 2013). Reconstructions consisted of adjacent cylinders that were
then converted into Helios tube objects. Leaves were added for each
tree on spurs that were inserted at a constant spacing on branching
segments with radius less than 2 cm. This threshold was chosen to
avoid spurs on the trunk and largest branches of the tree. The spacing
between spurs was set by experimentation such that resulting total leaf
area for the tree would exceed the highest LAI case of 4. Individual
spurs were then randomly removed until the desired LAI for each case
was achieved. Reconstructed branches were not included in simula-
tions; they were deleted after using them to distribute the leaves. This
was done to reduce computational expense of the simulations and to
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Fig. 2. Diagram illustrating differences between weighting approaches for an example voxel (black outlined rectangle) traversed by two beams from left to right, where individual
rays within each beam are represented by blue lines. Each beam initially consists of 200 rays and all rays enter the voxel. Individual leaves are shown as thick green lines. (a)
echoes (hit points) associated with a beam hitting each leaf are labeled with the number of rays intercepted. (b-e) Diagrams identical to (a) except echoes are labeled with the
fraction of beam energy corresponding to (b) 𝑃 𝑒𝑥𝑎𝑐𝑡, (c) 𝑃 𝑖𝑑𝑒𝑎𝑙 , (d) 𝑃 𝑒𝑞𝑢𝑎𝑙 , and (e) 𝑃 𝑓𝑖𝑟𝑠𝑡. (For interpretation of the references to color in this figure legend, the reader is referred
o the web version of this article.)
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implify the generation of the homogeneously distributed case. Leaves
ere given a realistic leaf shape using a PNG image as a transparency
ask and individual leaf area was approximately 15.85 cm2. Leaves
hat intersected the faces of the voxel grid were sliced into triangles to
nsure accurate reference leaf area for each voxel. Leaves outside the
oxel grid were cropped out for the isolated tree case. In the distributed
ase, leaves within each voxel were randomly re-positioned within the
oxel.
Separate reconstructions were performed to set the main tree LAI

one sided leaf surface area per unit ground area, where the ground
rea is the row spacing × tree spacing) to 1, 2.5, and 4. 𝐿𝐴𝐷𝑟𝑒𝑓 and
𝐺𝑟𝑒𝑓 for individual voxels in these 3 cases are shown in Fig. 4. 𝐺𝑟𝑒𝑓
tended to be close to 0.5 (matching a spherical angle distribution)
except at very low values of 𝐿𝐴𝐷𝑟𝑒𝑓 where it varied greatly because
there were not many leaves in those voxels. The LAI of each of the
trees surrounding the main tree was kept at 2.5 for consistency.

Additional trees in the simulation were represented by a triangu-
lar mesh bounding envelope constructed using the alphashape3D R
package (Lafarge and Pateiro-Lopez, 2020) and the TreeQSM cylinder
nodes (red envelopes in Fig. 3). The triangular mesh had the same
reflective properties as the leaves and ground: a reflectivity of 1 and
transmissivity of 0. This was done to reduce the number of primitives
represented in the simulations and reduce simulation time while still
representing trees beyond the scanners that could generate hit points.
In total, the orchard simulations represented 9 rows of 11 trees each. A
1000 m × 1000 m patch representing the ground was also included in
all simulations. As with the isolated homogeneous voxel simulations,
the reflectivity of all surfaces was set to constant value of one for
6

simplicity. i
In all cases a 6 × 5 × 6 voxel grid was horizontally centered on
he trunk of the main tree, with horizontal dimensions matching the
ow and tree spacing and a vertical dimension of 6 m. This resulted
n an overall voxel grid volume of 27.87 m3 and individual voxel
olumes of 0.929 m3. This voxel size was used for all analysis in
this work unless otherwise noted and was near the 1 m3 size found
by Grau et al. (2017) to produce the most accurate LAD estimates
compared with other smaller voxel sizes tested. Other studies have
used somewhat smaller voxel sizes that may reduce the impact of
vegetation clumping (e.g., Béland et al., 2011). Additional simulations
were run with smaller voxels that had dimensions one-half and one-
fourth the length of the main voxels described above, referred to
as ‘‘medium’’, ‘‘small’’, and ‘‘large’’ voxels, respectively. Virtual TLS
scanners were positioned at four locations around the voxel grid where
leaf-on LiDAR scans had previously been collected in the field. These
positions were approximately 4.9 m from the main tree’s trunk at a
height of approximately 1.8 m. These simulations all used the reference
beam size that matched the specifications of the VZ-1000 scanner.

3. Results

3.1. Isolated homogeneous voxels

Several basic expectations of the different methods were confirmed
based on the isolated homogeneous voxel simulations. First, 𝑃 𝑒𝑥𝑎𝑐𝑡 was
in close agreement with 𝑃 𝑟𝑒𝑓 (Fig. 5). This means that perfect beam-
eighting of TLS data (including accounting for partial misses) resulted
n transmission probability that closely matched the expected reference
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Fig. 3. Visualizations of example virtual canopy geometries used in this study. (a) isolated homogeneous voxels with LAD = 1 m2 m−3 and leaf dimension = 4 cm, (b) isolated
almond tree with LAI = 4, (c) overhead view of almond tree within an orchard, and (d) almond tree with leaf area distributed uniformly within each voxel (no sub-voxel-scale
clumping). Blue spheres in all panels show the location of virtual TLS scanners.
b
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value calculated using known 𝐿𝐴𝐷, known 𝐺, and Eq. (1) for these
omogeneous isolated voxel cases, which suggests that the assumptions
nherent in Beer’s Law were generally satisfied and the number of beam
amples was sufficient. Median and mean differences between 𝑃 𝑒𝑥𝑎𝑐𝑡
nd 𝑃 𝑟𝑒𝑓 over these simulations were within 0.25% and all differences
ere within about 3.5% of the reference value. In terms of estimated
𝐴𝐷, mean and median differences between 𝐿𝐴𝐷𝑒𝑥𝑎𝑐𝑡 and 𝐿𝐴𝐷𝑟𝑒𝑓
ere within about 0.5%, most differences were within 5%, and the
aximum difference observed was about 12.5% (which occurred for
ery small leaf area density of 𝐿𝐴𝐷𝑟𝑒𝑓 = 0.1; Fig. 6). Some error can
e expected in applying Eq. (1) to canopies that do not perfectly satisfy
he assumptions of Beer’s Law, primarily that radiation-intercepting
lements are uniformly distributed and much smaller than the beam
ean free path (Ponce de León and Bailey, 2019).
A second basic expectation that was confirmed was that 𝑃 𝑖𝑑𝑒𝑎𝑙

losely agreed with 𝑃 for the lower voxel case (Fig. 5). This was
7

𝑒𝑥𝑎𝑐𝑡
expected because the only difference between the two methods is the
inclusion of partial misses in 𝑃 𝑒𝑥𝑎𝑐𝑡. Since all transmitted portions of
eams intercepted the ground surface, there were no partial misses and
hus the two methods should be identical.
The third basic expectation was that all methods that did not

ccount for partial misses (i.e., all methods aside from 𝑃 𝑒𝑥𝑎𝑐𝑡) would
perform identically for the upper voxel case. They indeed did perform
identically and resulted in substantial underestimations of 𝑃 𝑟𝑒𝑓 and
over-estimations of 𝐿𝐴𝐷𝑟𝑒𝑓 in the upper voxel case. They yielded
identical underestimations of 𝑃 𝑟𝑒𝑓 because there were no surfaces to
intercept beams behind the upper voxel in these simulations. In other
words, any part of a beam that was transmitted through the voxel
would be considered a partial miss and thus was not taken into account
by these methods. Only beams that did not hit any surface within
the voxel would be considered transmitted and thus transmission was

underestimated substantially. Translated into terms of 𝐿𝐴𝐷, errors
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Fig. 4. Plots showing known properties of the virtual trees used in this work. (a) Fraction of tree leaf area in each 𝐿𝐴𝐷𝑟𝑒𝑓 category for the three simulations differing in tree
AI. The number of voxels falling into each category are indicated. (b) Total reference leaf area in each of the six vertical voxel layers. The number of voxels falling into each
ayer are indicated and the horizontal dashed line shows the average height of the virtual LiDAR scanners. (c) 𝐿𝐴𝐷𝑟𝑒𝑓 plotted against 𝐺𝑟𝑒𝑓 . Individual points represent individual
voxels. Cases with different tree LAI are shown in different panels horizontally. The horizontal dashed line shows 𝐺𝑟𝑒𝑓 = 0.5 and the vertical dashed lines show breaks between
the 𝐿𝐴𝐷𝑟𝑒𝑓 categories shown in (a).
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could be greater than 250% for the highest value of 𝐹𝑟 (the ratio of
the beam footprint diameter to the leaf dimension) tested. The greater
magnitude percentage differences in 𝐿𝐴𝐷 compared to percentage
differences in P occur given the negative and exponential relationship
between the two variables (i.e., Eq. (1)). This is especially noticeable
at low values of 𝐿𝐴𝐷𝑟𝑒𝑓 (high 𝑃 𝑟𝑒𝑓 ) since even small differences are
large relative to low values of 𝐿𝐴𝐷𝑟𝑒𝑓 (e.g., this leads to relatively
similar percentage differences in 𝐿𝐴𝐷 across the horizontal panels of
Fig. 6, whereas the percentage differences in 𝑃 in Fig. 5 vary more
across the panels). On a related note, 𝑃 𝑓𝑖𝑟𝑠𝑡 performed similarly for all
hree voxels since it disregards partial hits after the voxel and thus only
ccounts for fully transmitted beams, regardless of if there is actually
surface after the voxel that intercepts the beams. Thus, 𝑃 𝑓𝑖𝑟𝑠𝑡 had
he greatest underestimates of 𝑃 𝑟𝑒𝑓 and overestimates of 𝐿𝐴𝐷𝑟𝑒𝑓 of all
ethods tested.
The last basic expectation was that errors should generally increase

ith 𝐿𝐴𝐷𝑟𝑒𝑓 and 𝐹𝑟. As 𝐿𝐴𝐷𝑟𝑒𝑓 increases and as the beam footprint
ncreases in size relative to the dimension of leaves in the voxel, beams
re more likely to hit more than one surface, whether multiple leaves
ithin the voxel or ground after the voxel. This situation makes the
hoice of weighting approach more important. When beams are very
mall relative to objects in the voxel, they are most likely to hit entirely
n a single object in the voxel or hit entirely on the ground after the
oxel. In these cases the choice of weighting method has little impact
nd errors due to weighting method are reduced.
While higher errors were expected with larger values of 𝐿𝐴𝐷𝑟𝑒𝑓

nd 𝐹𝑟, it is not immediately obvious why these errors bias towards
nderestimation of transmission and thus overestimation of LAD for
ll these methods. For 𝑃 𝑓𝑖𝑟𝑠𝑡, this bias is clear since for beams that hit
partially inside and partially after a voxel, transmission is considered

𝑃 , 𝑃 , and 𝑃 , partial misses may explain part
8

zero. For 𝑒𝑞𝑢𝑎𝑙 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑖𝑑𝑒𝑎𝑙 d
of the transmission underestimate bias in the upper and middle voxels.
However the bias persists for 𝑃 𝑒𝑞𝑢𝑎𝑙 and 𝑃 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 even in the lower voxel
where no partial misses are possible.

For the equal-weighting approach, this means that beams tend to
have a greater number of hit points inside the voxel compared with
after the voxel as 𝐹𝑟 increases. This makes sense because larger beams
re more likely to hit multiple objects. In the voxel there are many
otential objects that can generate multiple hit points. If there is only
flat ground surface after the voxel, the number of hit points will
epend on the angle of the ground relative to the beam (how spread out
he beam is over the surface) and the pulse distance threshold which
etermines how close multiple hit points can be to each other before
hey are merged. Given the 𝑇𝑝𝑑 value of 11 cm used in this study, a
aximum of 12 hit points per beam could be generated assuming the
eam direction corresponded to opposite corners of the 1 m2 voxel and
hat parts of the beam hit leaves every 11 cm. On the other hand, a
eam would need to be at a very oblique angle to the ground in order
or that many hit points to be generated after the voxel. So for a beam
hat is half intercepted by leaves in the voxel and half intercepted by the
round, more hit points are likely to be generated by the leaves inside
han the ground after, leading to an underestimation of transmission
y the equal-weighting approach.
For the intensity-weighting approach, the negative bias in transmis-

ion in the lower voxel is due to greater returned intensities within
he voxel compared with after the voxel. This occurred because of
ifferences in the mean angle of the leaves inside the voxel and the
round surface relative to the beam direction. In these isolated ho-
ogeneous voxel cases, leaves in the voxel had a spherical angle
istribution, while the ground had just one angle relative to a given
eam. In the former case, the fraction of area projected in the scanner
irection (i.e., the cos(𝜓) term in Eq. (10)) was always approximately
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Fig. 5. Comparison of beam weighting methods for the isolated voxel simulations. Ratio of beam diameter at voxel center to leaf dimension (𝐹𝑟) is on the 𝑥-axis and error in
estimated transmission probability, 𝑃 , between each method and the reference expressed as a percentage of the reference is on the 𝑦-axis. Simulations with varying nominal
values of 𝐿𝐴𝐷𝑟𝑒𝑓 are shown as different panels horizontally and the results for the three voxel heights are shown in different panels vertically. Lines connect the median value
corresponding to each simulation with the same 𝐹𝑟 value. The horizontal dashed line indicates zero difference.
t
f

3

0.5, which corresponds to an angle of 60◦ between a beam and the
ground. The fraction of ground area projected in the scanner direction
for a set of beams traversing a voxel will vary depending on voxel
size, scan pattern, scan position relative to the voxel, and the slope
of the ground. For the lower voxel in this case, the ground was at
an angle of approximately 79◦ relative to the beam directions, which
orresponds to a fraction of ground area projected in the beam direction
f approximately 0.19. This results in lower simulated intensities for
round hit points after the voxel compared with leaf hit points inside
he voxel and an underestimation of 𝑃 𝑟𝑒𝑓 by 𝑃 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦. Scanner locations
ith beams more perpendicular to the ground surface (i.e., cos(𝜓) >

0.5) would be expected to result in overestimation of transmission in
these cases. Additional simulations where the scanner position relative
to the ground was varied confirmed this (not shown).

Although not used in this study, differences between the reflectivity
of leaves and ground in the wavelength of the LiDAR scanner would
also impact the accuracy of 𝑃 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦. If the ground was less reflective
han the leaves, this would tend to lower 𝑃 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 compared with 𝑃 𝑖𝑑𝑒𝑎𝑙.
f the ground was more reflective than the leaves, 𝑃 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 would tend
o be higher than 𝑃 𝑖𝑑𝑒𝑎𝑙 (all else being equal).
With these basic expectations verified, the remainder of this sec-

ion focuses on differences between the idealized intensity-weighting
𝑃 𝑖𝑑𝑒𝑎𝑙), non-idealized intensity-weighting (𝑃 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦), and the equal-
weighting (𝑃 𝑒𝑞𝑢𝑎𝑙) approaches.

𝑃 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 was lower than 𝑃 𝑖𝑑𝑒𝑎𝑙 in the lower and middle voxels. In
he lower voxel this corresponded to the bias towards higher intensities
ithin the voxel compared with after the voxel on the ground which
as due to a more oblique angle on average between the ground and
he beams compared with between leaves and beams. In the middle
oxel, half of the voxel is above the height of the scanner and half
9

elow. Beams traversing the upper half of the voxel encounter no d
surfaces after the voxel and thus can produce partial misses, which
causes an underestimation of 𝑃 𝑒𝑥𝑎𝑐𝑡 by both 𝑃 𝑖𝑑𝑒𝑎𝑙 and 𝑃 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦. Beams
transmitted through the lower half of the voxel are intercepted at an
even more oblique angle by the ground than in the lower voxel, causing
relatively lower intensities for echoes after the voxel than inside the
voxel. 𝑃 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 thus underestimates 𝑃 𝑒𝑥𝑎𝑐𝑡 more than 𝑃 𝑖𝑑𝑒𝑎𝑙.

In the lower voxel, 𝑃 𝑒𝑞𝑢𝑎𝑙 is very close to 𝑃 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 in the lower
𝐿𝐴𝐷𝑟𝑒𝑓 simulations, but tended to have less error compared with
𝑃 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 as 𝐿𝐴𝐷𝑟𝑒𝑓 increased. There is a greater chance of the entire
beam being intercepted within fewer hit points for more densely packed
leaves. In other words, at a certain point, as 𝐿𝐴𝐷𝑟𝑒𝑓 is increased the
beam is more likely to be fully intercepted by closely spaced leaves near
the face of the voxel, rather than intercepted by multiple leaves spaced
throughout the voxel that would generate multiple echoes. This tends to
increase the transmission estimated by the equal-weighting approach,
but does not impact the intensity-weighting approach.

In the middle voxel, 𝑃 𝑒𝑞𝑢𝑎𝑙 tended to be close to 𝑃 𝑖𝑑𝑒𝑎𝑙, with smaller
errors. Improvements of 𝑃 𝑒𝑞𝑢𝑎𝑙 over 𝑃 𝑖𝑑𝑒𝑎𝑙 increased as 𝐿𝐴𝐷𝑟𝑒𝑓 and
𝐹𝑟 increased. It was initially hypothesized that 𝑃 𝑒𝑞𝑢𝑎𝑙 would always
have higher errors than 𝑃 𝑖𝑑𝑒𝑎𝑙 since the equal-weighting method is a
simplified approximation of the latter, but this was not the case. This
result indicates that for some beams, the fraction of echoes transmitted
through the voxel was greater than the fraction of beam energy (rays)
transmitted. This causes an overestimation of transmission by 𝑃 𝑒𝑞𝑢𝑎𝑙
hat compensates for the underestimation caused by partial misses
or both methods. On the other hand, 𝑃 𝑖𝑑𝑒𝑎𝑙 will never overestimate
transmission compared with 𝑃 𝑒𝑥𝑎𝑐𝑡.

.2. Virtual tree cases

Comparisons of 𝑃 values between the orchard, isolated tree, and
istributed leaves cases indicated consistency in the design of these
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Fig. 6. Comparison of beam weighting methods for the isolated voxel simulations. Ratio of beam diameter at voxel center to leaf dimension (𝐹𝑟) is on the 𝑥-axis and error in
estimated leaf area density, 𝐿𝐴𝐷, between each method and the reference expressed as a percentage of the reference is on the 𝑦-axis. Simulations with varying nominal values of
𝐿𝐴𝐷𝑟𝑒𝑓 are shown as different panels horizontally and the results for the three voxel heights are shown in different panels vertically. Lines connect the median value corresponding
to each simulation with the same 𝐹𝑟 value. The horizontal dashed line indicates zero difference.
Fig. 7. Transmission (𝑃 ) estimated for the isolated tree case plotted against 𝑃 for the orchard and distributed cases. The dashed black line is the 1:1 line. The different weighting
ethods are shown in different panels horizontally. Each point represents a single voxel and voxels for simulations with varying reference 𝐿𝐴𝐼 are included in each panel.
c
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cases. 𝑃 𝑒𝑥𝑎𝑐𝑡 and 𝑃 𝑓𝑖𝑟𝑠𝑡 showed negligible differences between the
isolated tree case and orchard case (Fig. 7), since neither were impacted
by partial misses. 𝑃 𝑖𝑑𝑒𝑎𝑙, 𝑃 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦, and 𝑃 𝑒𝑞𝑢𝑎𝑙 all tended to be higher for
the orchard case than for the isolated tree case, since the additional
surrounding trees reduced partial misses and therefore increased es-
timated transmission. All methods for estimating 𝑃 resulted in lower
ransmission estimates for the distributed leaves case compared with
he isolated tree case (Fig. 7). This makes sense, since the sub-voxel
cale clumping in the isolated tree case would tend to cause higher
stimates of transmission compared with the case where leaves were
istributed randomly within each voxel.
10
Comparisons of 𝑃 for each method against 𝑃 𝑟𝑒𝑓 are shown in Fig. 8.
𝑃 𝑒𝑥𝑎𝑐𝑡 tended to be greater than 𝑃 𝑟𝑒𝑓 in the orchard and isolated tree
ases, and less than 𝑃 𝑟𝑒𝑓 in the distributed leaves case. The other meth-
ods overestimated 𝑃 𝑟𝑒𝑓 in some voxels and underestimated it in others
for the orchard and isolated tree cases, and always underestimated 𝑃 𝑟𝑒𝑓
in the distributed leaves case.

The index of agreement between 𝑃 for all the beam-weighting
methods and 𝑃 𝑟𝑒𝑓 was 96 to 99% for the isolated tree and orchard cases
ndicating good agreement (Fig. 9). 𝑁𝑅𝑀𝑆𝐸 was 2 to 9% and mean
bias was −0.018 to 0.052 for these cases. Agreement was lower for the
distributed leaves case, with indices of agreement ranging 78 to 99%,
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Fig. 8. Reference transmission (𝑃 𝑟𝑒𝑓 ) plotted against 𝑃 for the different tree cases. The dashed black line is the 1:1 line. The different weighting methods are shown in different
anels horizontally. The different canopy cases are shown in panels vertically. Each point represents a single voxel and voxels for simulations with varying reference 𝐿𝐴𝐼 are
included in each panel.
Fig. 9. Voxel level transmission statistics. Mean bias, index of agreement, and normalized root-mean-square error are shown in separate panels vertically. The different canopy
cases are shown in separate panels horizontally. The 𝑦-axis scale is different for some panels to show more detail.
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𝑁𝑅𝑀𝑆𝐸 ranging 2 to 23%, and mean bias ranging −0.149 to −0.012
always negative).
In terms of 𝐿𝐴𝐷, the indices of agreement ranged 94 to 99%,
𝑅𝑀𝑆𝐸 ranged 24 to 53%, and mean bias ranged −0.31 to 0.09

m2m−3 for the isolated tree and orchard cases (Fig. 10). Again, agree-
ment was lower for the distributed leaves case with indices of agree-
ment ranging 56 to 98%, 𝑁𝑅𝑀𝑆𝐸 ranging 34 to 358%, and mean
biases ranging 0.059 to 2.14 m2m−3.

Given the importance of scanner height relative to voxel height
n partial misses and performance of the different beam-weighting
11

ethods for the isolated homogeneous voxel cases, height impacts were I
lso visualized for the tree cases (Fig. 11). The lowest and highest voxel
evels had little leaf area (Fig. 4) and little bias in 𝐿𝐴𝐷. For the other
vertical levels, biases tended to increase in magnitude with tree LAI.
Bias of 𝐿𝐴𝐷𝑒𝑥𝑎𝑐𝑡 was negative for the orchard and isolated tree cases,
nd positive for the distributed case. This reflected the impact of leaf
lumping in the orchard and isolated tree cases which increased esti-
ated transmission and reduced estimated leaf area density compared
o the distributed leaves case.
In all three canopy cases, biases in 𝐿𝐴𝐷𝑖𝑑𝑒𝑎𝑙, 𝐿𝐴𝐷𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦, and

𝐿𝐴𝐷𝑒𝑞𝑢𝑎𝑙 were closer to biases seen in 𝐿𝐴𝐷𝑒𝑥𝑎𝑐𝑡 for the lower levels.

n the upper voxel levels these methods tended to be more positive
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Fig. 10. Voxel level 𝐿𝐴𝐷 statistics. Mean bias, index of agreement, and normalized root-mean-square error are shown in separate panels vertically. The different canopy cases
are shown in separate panels horizontally. The 𝑦-axis scale is different for some panels to show more detail.
than at lower levels and overestimate 𝐿𝐴𝐷𝑒𝑥𝑎𝑐𝑡. This was due to more
artial misses at these levels which decreased transmission estimates
nd increased 𝐿𝐴𝐷 estimates. Comparing the orchard and isolated tree
ases, the impact of the surrounding trees in the orchard case was
bserved as more negative biases in the lower and middle levels, while
here was little difference in bias at the higher levels. Biases in 𝐿𝐴𝐷𝑖𝑑𝑒𝑎𝑙
nd 𝐿𝐴𝐷𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 tended to be very similar, while 𝐿𝐴𝐷𝑒𝑞𝑢𝑎𝑙 tended to
ave slightly more negative bias at lower levels. At upper levels all
hree methods agreed closely.
Total LiDAR-estimated tree leaf area varied by canopy case, sim-

lation tree LAI, weighting method, and voxel size (Fig. 12). The
verall pattern of estimated total leaf area for the different weighting
ethods in relation to each other was similar across canopy cases and
oxel sizes. The first-hits method always had the highest estimates, the
xact-weighting method always had the lowest values, and the equal-
eighting, intensity-weighting, and ideal intensity-weighting methods
ll had similar and intermediate leaf area estimates.
The orchard and isolated tree cases had a similar range of errors

cross methods. The first-hits method always overestimated reference
eaf area by 1 to 62% for these two canopy cases. The exact beam-
eighting method tended to underestimate reference leaf area with dif-
erences ranging −29 to 3%. The equal-weighting, intensity-weighting,
nd ideal intensity-weighting methods all had similar intermediate es-
imates and could over- or underestimate reference leaf area depending
n the tree LAI, canopy case, and voxel size. Differences between 𝐿𝐴𝐷
estimated with these methods and 𝐿𝐴𝐷𝑟𝑒𝑓 ranged −22 to 24% and −17
to 42% for the orchard and isolated tree cases, respectively. The more
positive differences for the isolated tree case were consistent with the
impact of more partial misses and the more positive bias mid-canopy
shown in Fig. 11. The equal-weighting method generally estimated
12

about 1 to 7% lower total leaf area with respect to the reference area
than the ideal and intensity-weighting methods did for the isolated tree
and orchard cases.

In the distributed leaves cases, all methods substantially overesti-
mated total leaf area for all voxel sizes. The exact-weighting method
had the lowest errors, but overestimated reference leaf area by 22 to
72%. This contrasts with the close agreement between 𝐿𝐴𝐷𝑒𝑥𝑎𝑐𝑡 and
𝐿𝐴𝐷𝑟𝑒𝑓 in the isolated homogeneous voxel cases (Fig. 6). These tree-
level differences tended to be dominated by differences in the interior
of the canopy where 𝐿𝐴𝐷𝑟𝑒𝑓 was also relatively high (not shown).

In the distributed leaves case, the first-hits method had the most
error, overestimating reference leaf area by 149 to 266%. The other
methods had intermediate errors overestimating reference leaf area by
80 to 109%, 93 to 121%, and 94 to 122% for the equal-weighting, ideal
intensity-weighting, and intensity-weighting methods respectively. The
equal-weighting method estimated leaf area about 0.7 to 17% lower
with respect to the reference than the ideal and intensity-weighting
methods. The higher estimated leaf area in the distributed leaves
canopy case compared to the isolated tree and orchard cases was con-
sistent with the expected impact of within-voxel clumping and known
limitations of Beer’s law when applied to clumped canopies (Ponce de
León and Bailey, 2019; Bailey et al., 2020). In the isolated tree and
orchard cases, the effect of leaf clumping on branches partially offset
overestimation in leaf area due to the impact of partial misses. This
offsetting effect was absent in the distributed leaves simulation.

Differences between leaf area estimates with each method and
reference leaf area became more positive as voxel size was decreased
(Fig. 13). Total leaf area estimates for the medium-sized voxels (i.e.,
with dimension near 0.5 m) were 2%–27% greater than those for the
large voxels. Estimates for the small voxels (i.e., with dimension near
0.25 m) were 5 to 60% greater. In each case, estimated leaf area

increased less with decreasing voxel size for the distributed canopy case
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Fig. 11. Mean bias in 𝐿𝐴𝐷 for different beam-weighting methods plotted against voxel height. The different canopy cases are shown in separate panels horizontally and the
different tree LAI cases are shown in separate panels vertically. The dashed blue line indicates the mean height of the virtual LiDAR scanners. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 12. Percentage difference between total tree leaf area estimated with synthetic LiDAR using different beam weighting methods and total known tree leaf area for each
simulation (𝐿𝐴𝑟𝑒𝑓 ). Tree LAI of the simulation is on the 𝑥-axis. The orchard, isolated tree, and distributed voxel cases are shown in separate panels. Dashed horizontal lines indicate
zero difference.
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Fig. 13. Percentage difference between total tree leaf area estimated with synthetic LiDAR for the largest voxel size tested and for medium and small voxel sizes shown in separate
anels. Tree LAI of the simulation is on the 𝑥-axis. The orchard, isolated tree, and distributed voxel cases are shown with different point shapes and different beam-weighting
ethods are shown with different colors. Dashed horizontal lines indicate zero difference. (For interpretation of the references to color in this figure legend, the reader is referred
o the web version of this article.)
han it did for the isolated tree and orchard cases. This was expected
iven that smaller voxels have the tendency to reduce within-voxel
lumping which was more prevalent in the isolated tree and orchard
ases than in the distributed case. The change in leaf area with voxel
ize for the distributed canopy case may be indicative of clumping at
he leaf level. As individual leaves get smaller, voxel leaf area would
e less clumped and smaller differences in estimated leaf area with
hanges in voxel size would be expected.

. Discussion

Exact weighting of all energy in a beam was expected to yield
he most accurate results since partial misses were accounted for, but
his did not occur for most of the tree cases. Although there was
ery close agreement between 𝐿𝐴𝐷𝑒𝑥𝑎𝑐𝑡 and 𝐿𝐴𝐷𝑟𝑒𝑓 for the isolated
homogeneous voxel cases, the tree cases, especially the distributed
leaves tree case, exhibited substantially more error (Fig. 12). Such
errors were somewhat surprising given that this case was similar to
the isolated homogeneous voxel cases in that it was designed to more
closely meet the assumptions of Beer’s law (i.e., no clumping of leaves
on branches).

The large differences observed between the isolated homogeneous
voxel cases and distributed leaves tree cases point to the importance
of factors other than weighting method and partial misses. First is the
lack of sensitivity of transmission probability to changes in LAD as
LAD increases, which is inherent due to the exponential relationship
between these variables (Eq. (1)). Errors in 𝐿𝐴𝐷𝑒𝑥𝑎𝑐𝑡 tended to be
reatest for denser canopies (Fig. 12), with the greatest errors tending
o occur for high 𝐿𝐴𝐷𝑟𝑒𝑓 voxels towards the interior of the tree (not
hown). As in the current study, Bailey and Ochoa (2018) also observed
greater scatter in the relationship between simulated and reference leaf
area for higher leaf area voxels, though they did not observe the same
spatial pattern seen here.

This spatial pattern of increased errors in the tree interior points
towards another likely contributor to the observed errors: occlusion.
Although the minimum number of beams reaching any of the large
voxels from the four scan positions was approximately 65,000, this was
only about 12% of the maximum number of beams reaching any voxel.
It is possible these dense, occluded interior voxels were not sampled
adequately by the four scan positions, contributing to the errors in
individual voxel 𝐿𝐴𝐷 and the whole tree leaf area estimated.

Although the distributed leaves case was designed to exclude clump-
ing of leaves on branches, the finite dimension of the leaves themselves
14
constitutes a type of clumping that may violate the assumptions of
Beer’s Law. Pimont et al. (2018) evaluated the impact of finite leaf size
on estimations of leaf area density with Beer’s Law and found up to ±50
% confidence intervals when the projected area of an individual leaf
was on the order of 10% the cross-sectional area of the voxel and the
vegetation was dense. While the highest errors in the current study did
tend to occur where leaf area was most dense, one-sided cross-sectional
area of individual leaves were on the order of 0.19, 0.76, and 3.0% of
the cross-sectional area of the smallest voxel face for the large, medium,
and small voxels respectively. Thus the effects of finite leaf size in the
current study are not likely to be as large as that observed by Pimont
et al. (2018), but may be one contributor to the large biases in LAD
observed.

In all cases, differences between the equal-weighting and intensity-
weighting methods were relatively small, with the equal-weighting
method generally estimating slightly higher transmission probabilities
and slightly lower leaf area densities than the intensity based methods.
The equal-weighting method was generally slightly closer to the exact
beam-weighting method which perfectly accounted for all beam energy
including partial misses. Thus, in cases where exact beam-weighting
produced accurate 𝑃 and 𝐿𝐴𝐷 estimates, the equal-weighting method
was expected to perform better than the intensity-weighting and even
the idealized intensity-weighting methods. However, in the case of
clumped canopies which did not match the basic assumptions of Beer’s
Law, the situation was not clear cut. Which method was more accu-
rate was dependent on canopy characteristics including overall LAI
and sub-voxel scale leaf clumping. For voxels with clumped leaves
(i.e., the orchard and isolated tree cases in this study), the intensity
based methods did tend to be slightly more accurate due to offsetting
errors; transmission was generally underestimated in these cases due
to clumping and intensity-weighting methods tended to have slightly
higher transmission estimates, thus producing slightly more accurate
results. Using smaller voxels helped reduce the impact of clumping and,
in these cases, the intensity-based methods tended to have slightly more
error than the equal-weighting method. Applying corrected intensity-
based weighting based on the approaches considered in this work
(i.e., the idealized intensity-weighting method) with actual TLS data
may not be justified given the difficulty of determining the corrected
fractional echo intensity from real TLS data, and the small improvement
relative to other larger sources of error like clumping and occlusion.
Applying the equal-weighting method to real TLS data is straight-
forward and is not expected to substantially change accuracy of 𝐿𝐴𝐷

estimates.
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Performance of the equal-weighting approach reported here was
roughly similar to results reported by Grau et al. (2017) despite some
ifferences in the canopy. They reported a relative bias in total plant
rea index (PAI) of 33% for an isolated tree with known PAI of 0.85,
m3 voxels, and a single scan position. The relative difference in

otal tree leaf area for the most comparable isolated tree simulation
resented here was 17%, but for a shorter tree, a higher reference LAI
1), slightly smaller voxels, and four scan positions instead of one.
As far as we are aware, no other studies have compared multi-

le weighting methods including intensity-based weighting and equal
eighting of multiple echoes within a beam in the context of terrestrial
iDAR data. Armston et al. (2013) and Yin et al. (2020) evaluated
multiple methods, including those using intensity-based weighting, but
for aerial LiDAR data in which the scanner was always above the
canopy and the ground prevented partial misses. Armston et al. (2013)
eported relatively small differences in gap probability between equal
eighting and intensity weighting approaches. This is similar to the
mall differences between these methods generally found in the present
tudy. In the case of voxels below the height of the scanners, where
artial misses were not possible, results for the idealized intensity-
eighting method investigated here were generally consistent with
hose reported by Yin et al. (2020) for ALS simulations in the same
AI range; intensity-based methods estimated higher transmission than
he equal-weighting method. The (non-idealized) intensity-weighting
pproach, on the other hand, often estimated lower transmission than
he equal-weighting method in this study for voxels not impacted by
artial misses. This could be due to the more oblique beam angles
ith respect to the ground for the TLS cases compared with more
verhead scan positions in the ALS simulations. Beams more perpen-
icular to the ground are expected to estimate higher transmission
ompared with more oblique beams and compared with the idealized
ntensity-weighting approach.
This study found the first hits method differed most from the

xact beam-weighting method, consistently underestimating transmis-
ion probability and overestimating LAD. For the high LAI, clumped
anopies examined here this actually resulted in the most accurate
otal tree 𝐿𝐴𝐷 estimate of any of the methods tested when using large
oxels, since clumping caused underestimates by the other methods
hich were compensated by the relative overestimation using the first-
it method. The performance of this method also appeared to be
ndependent of the fraction of partial misses, with a tendency towards
nderestimating transmission probability even when no partial misses
ere possible. Grau et al. (2017) and Yin et al. (2020) also found
onsistent underestimation of transmission using the first-hits data with
LS and ALS, respectively. Armston et al. (2013) found that using first
eturns also resulted in the most error in gap probability compared to
heir manual measurements, but, in contrast, reported overestimates of
ap probability.
Results from the isolated homogeneous voxel cases (Section 3.1)

howed increasing underestimates of transmission probability (overes-
imates of LAD) as the size of the beam approached the size of the leaf.
his was due to an increase in partial misses. In the context of clumped
anopies with smaller leaves (e.g., needle-leaf forests), the decrease in
ransmission (associated with an increase in partial misses) would be
xpected to counteract overestimates due to clumping even more than
n the case of larger almond leaves simulated in this study. If all else
as equal, this would lead to higher LAD estimates. Smaller leaves
ay also lead to more hit points and could impact the equal weighting
ethod if the ratio of the number of hit points inside and after a voxel
hanges.

. Conclusions

Probability of TLS beam energy transmission through voxels was
15

alculated using a range of methods, including simplified approaches
sed in previous work, intensity-based approaches, and idealized meth-
ds in which the fraction of intercepted beam energy associated with
ach echo is known. The latter are relatively straightforward to im-
lement in synthetic LiDAR simulations and can produce a perfect
ntensity-based weighting while avoiding complications from actually
ttempting to calculate the energy intercepted in each echo from
ntensity information returned by actual TLS data. Such a correc-
ion of actual TLS data requires additional information that is not
enerally available from the TLS data itself (i.e., the angles and reflec-
ivities of all scanned surfaces, and information about partial misses).
he main question addressed in this research was whether corrected
ntensity-based weighting methods actually have the potential to im-
rove transmission probability and leaf area density estimated using
LS data compared to simplified methods that are easier to implement
ith actual TLS data. Overall, it was concluded that the intensity-
ased methods tested did not offer a consistent advantage over the
qual-weighting method for the cases examined in this work.
The impact of partial misses on transmission and LAD estimates

as another question this article addressed. The synthetic LiDAR data
imulation approach employed allowed for quantification of the im-
act of partial misses, which is otherwise difficult to estimate from
ctual TLS data. When partial misses were taken into account in the
imulated TLS scans using the exact-weighting approach, voxel-level
stimations of transmission could be substantially higher and estimates
f LAD substantially lower than those produced with the idealized
ntensity-weighting method. This study also demonstrated that accurate
ransmission and LAD estimations are not assured even with exact
eighting of echoes within each individual beam. The combined im-
acts of clumping, occlusion, and limitations of Beer’s law at high LAD
ould have comparable or greater impacts on accuracy than differences
etween return-weighting approaches. Clumping and partial misses had
ffsetting effects on LAD, with clumping causing lower LAD estimates
nd partial misses causing higher LAD estimates. Overall accuracy
f LAD estimates was dependent on the relative magnitude of these
pposing effects and varied with canopy LAI, voxel size, and degree of
ub-voxel scale leaf clumping.
Given the multiple sources of error observed in this study that com-

ine to impact estimated 𝐿𝐴𝐷, future work is needed to separate their
ontributions and individually understand their dependencies. This
ould include exploring scanner configurations to best sample dense
anopies, or even alternative/hybrid approaches to using Beer’s Law
or canopy LAD estimation in these situations. Empirical approaches
o deriving relationships between LiDAR intensity and canopy cover
raction (e.g., Schraik et al., 2021; Korpela et al., 2013; Armston et al.,
013) could also be further explored.
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