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Abstract— One-dimensional artificial pinning centers (1D-APCs) 
in YBa2Cu3O7-x nanocomposite films provide strong collective 
pinning at magnetic field B//c-axis. In this work, we reveal a 1D-
APC/YBa2Cu3O7-x interface is preferred for high pinning efficiency 
of individual 1D-APCs including BaHfO3 and BaZrO3. The 
coherent 1D-APC/YBa2Cu3O7-x interface may be obtained via either 
growth of the nanocomposite films at optimal condition or Ca-
diffusion to dynamically reduce the interface strain during the 
nanocomposite film growth. Interestingly, the high pinning 
efficiency of the 1D-APCs with coherent interfaces with YBCO not 
only lead to a high critical current density (Jc) in magnetic fields up 
to 9.0 T at H//c-axis but also enhanced Jc over a larger angular range 
when H is away from H//c-axis up to θ=60-80 degree than that in the 
case the interface is defective. This result suggests the importance of 
understanding and engineering the APC/YBCO interface for 
optimal pinning in nanocomposite films.    

 

Index Terms- HTS nanocomposite film, artificial pinning center, 
vortex pinning, pinning efficiency, interface engineering. 

I. INTRODUCTION 
 

igh-temperature superconductors (HTS) are 
promising materials for various applications in both 
electronic and electrical devices and systems. 

Compared to their conventional counterparts, the HTS 
devices/systems have distinctive advantages including higher 
performance, higher energy efficiency, light weight, smaller 
volume, etc. These make HTS-based devices and systems 
promising for many applications including transportation 
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(maglev trains, electric airplanes, ships with superconductor 
power systems, etc), energy (motors for wind turbine, 
generators, etc), electric power grids (power transmission 
cables, transformers, fault current limiters, etc), high-field 
magnets (large-scale accelerators for high energy and nuclear 
research, fusion systems, and magnetic resonance imaging) to 
name a few [1-7].  

For the HTS applications, high superconducting critical 
temperature (Tc) and high critical current density (Jc) are both 
important [8, 9]. In particular, high Jc in magnetic fields (B) is 
required for many practical applications under the magnetic 
fields either applied and generated by the large current running 
through the HTS devices and systems. To achieve a high Jc(B) 
in magnetic fields of typically a few to tens of Tesla, pinning of 
high-concentration, quantized magnetic vortices becomes a 
critical task in HTS, which has motivated intensive research 
worldwide on generation of so-called artificial pinning centers 
(APCs).  Among other HTS materials, REBa2Cu3O7 (RE123, 
with RE regarding rare earth elements of Y, Er, Gd, Nd, Sm) is 
the most studied material because of the RE123-based coated 
conductors on textured metal tapes with various buffer layers 
provide a unique strategy for production of long-length wires 
and cables carrying high critical current Ic of a few hundreds to 
thousands Amperes per centimeter as required for applications 
[10-12]. 

In RE123 coated conductors, the c-axis oriented RE123 thin 
or thick films grow epitaxially on the textured buffer layers to 
minimize the obstruction of Jc by large-angle in-plane grain 
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boundaries. This means the design of APCs needs to consider 
several factors including APC materials selection, control of 
their morphology, dimension, concentration, orientation and 
APC/RE123 interface quality for a high pinning force that 
requires an abrupt pinning potential change across this 
interface. It is well known that Jc(B) is highly anisotropic in c-
axis epitaxial RE123 films due lack of strong pins along the c-
axis of Re123 film. Consequently, lower Jc(B) by orders of 
magnitude is observed at B//c-axis (or perpendicular to the film) 
than that at B//ab-plane due to the strong intrinsic pinning of the 
layered structure for RE123. In order to resolve the issue of 
anisotropic Jc(B) with respect to the orientation  of the magnetic 
field, c-axis aligned impurity nanorods  (or 1D-APCs) have 
been explored  and many interesting results have been reported 
in generation of various 1D-APCs including BaZrO3 (BZO) 
[13-17], BaHfO3 (BHO) [18-20], BaSnO3 (BSO) [21, 22], 
YBa2(Nb/Ta)O6 [23, 24], etc. in RE123 films. These 1D-APCs 
have diameters in the range of 5~10 nm and may be generated 
in high concentrations with so-called accommodation field 
(B*), defined from the inter-spacing of the 1D-APCs, up to 10-
12 T via control of the APC doping. The enhanced pinning by 
these 1D-APCs is illustrated as a Jc(B) peak at B//c-axis [9, 12, 
14-16, 18, 19, 21, 23-45].  

One thing in common for various 1D-APCs is they all have 
a fairly large lattice mismatch with RE123. For example, the 
lattice mismatch at the BZO/RE123 interface is 7.7% along the 
c-axis. This means a large interface strain will occur during the 
APC/RE123 nanocomposite film growth. In order to 
understand the growth mechanism, an elastic strain energy 
model was developed. Interestingly, the self-organization of the 
1D-APCs in the APC/RE123 nanocomposite film via phase 
segregation during the growth has been found to correlate 
closely with the strain field stemming from the lattice mismatch 
at the APC/RE123 interface. More importantly, the strain field 
has been found to affect the morphology, dimension, 
concentration, and orientation of the 1D-APCs [46-50].  

Despite the critical role of the strain field in driving the self-
organization of the 1D-APCs in APC/RE123 nanocomposite 
films, the strain field may also lead to formation of a highly 
defective 1D-APC/Y123 interface[51-53] and hence reduced 
pinning efficiency of the 1D-APCs. In a recent study to pinpoint  
the impact of the interface on pinning efficiency of BZO 1D-
APCs, we developed a multilayer (ML) method [54-57] for 
repairing the BZO 1D-APC/Y123 interface by dynamically 
enlarging the c-lattice constant of Y123 during the film growth 
through formation of stacking faults on the Cu-O planes via 
replacement partially the smaller Cu atoms with larger (by ~ 
30%) Ca ones. The much reduced lattice mismatch to ~ 1.4% 
between BZO and Ca-modified Y123 results in a highly 
coherent 1D-APC/Y123 interface and significantly enhanced Jc 
(B) by 2-5 folds at 65 K and 9.0 T at B//c-axis. This result 
confirms the correlation between the pinning efficiency of 1D-
APCs and their interface with RE123 matrix while raises a 
further question on whether the enhanced pinning efficiency 
would also benefit pinning when B field is tilted away from c-
axis.  In order to answer this question, this work investigates Jc 
(θ) and the Jc (B) measured at B//c-axis and other θ angles as B 

was tilted away from the c-axis. It has been found that the 
coherent interface benefits pinning in a broad angular range of 
B orientations.     

II. EXPERIMNT 
Pulsed laser deposition (PLD) was employed for sample 
fabrication. To fabricate BZO/Y123 nanocomposite ML films 
(BZO/YBCO-ML), two targets were used in sequential PLD. 
One target has the nominal composition of 6 vol.% BZO in 
Y123 (6% BZO-YBCO) and other, Ca0.3Y0.7Ba2Cu3O7-x 
(CaY123). The former was also used to make the reference 
single-layer (SL) samples to be regarded as BZO/YBCO-SL 
sample. For the ML samples, three 6% BZO-YBCO layers were 
deposited sequentially with two CaY-123 layers from the two 
PLD targets alternatively. Specifically, the 1st, 3rd, and 5th layers 
were 6% BZO-YBCO each with 50 nm in thickness and the 2nd 
and 4th layers were CaY-123 each with 10 nm in thickness. The 
substrate temperature was maintained at 825oC during PLD in 
pure oxygen of partial pressure of 300 mTorr. Different PLD 
repetition rates of 8 Hz and 2 Hz respectively were used for 
deposition of the 6% BZO-YBCO and CaY-123 layers for 
optimal superconducting properties. In particular, the PLD 
repetition rates were found to affect the Ca diffusion from the 
CaY-123 layers to the 6% BZO-YBCO layer for Ca/Cu 
replacement on the Cu-O planes. In addition, minimization of 
Ca/Y replacement was in consideration to reduce the Tc 
degradation due to Ca-induced overdoping of the ML samples 
[58, 59]. PLD was also employed to fabricate 4 vol.% 
BHO/YBCO nanocomposite SL film (BHO/YBCO-SL) at a 
PLD repetition rate of 8 Hz at 790oC and 300 mTorr oxygen 
partial pressure.  Note that 4 vol.% BHO doping was found 
optimal since a higher doping of 6 vol.% was found to have a 
significant degradation of the Tc to < 80 K [60]. In particular, the 
BHO/Y123 interface is approximately coherent with much 
smaller defect concentration than that on the interface of its 
BZO/YBCO-SL counterpart. After the PLD deposition, the 
films were annealed in one atmosphere oxygen for 30 minutes 
at 500 °C.  The full details of SL film fabrication have been 
reported previously based on PLD condition optimization [31, 
61, 62].  

A KLA Tencor P16 profilometer was used to measure the 
sample thickness and the BZO/YBCO-ML, BZO/YBCO SL 
and BHO/YBCO-SL samples have comparable thickness of  
160-170 nm. A Cs-corrected transmission electron microscopy 
(TEM) and scanning transmission electron microscopy (STEM) 
were employed to analyze the microstructures of the samples.  
Specifically,  a Thermo Fisher Scientific TALOS F200X TEM 
with a resolution of 1.6 Å was used to acquire TEM and STEM 
results. The STEM was taken under a high angle annular dark 
field mode (HAADF). In addition, an advanced Thermo Fisher 
Scientific Themis-Z TEM system was used to capture high-
resolution STEM (HRSTEM) images with a resolution as good 
as 63 pm. For electric transport measurement, standard 
photolithograph was adopted to pattern two microbridges on 
each sample. Both microbridges have the same length of 500 
μm but different widths of 20 μm and 40 μm respectively. The 
dimension of the microbridges were confirmed using the KLA 
Tencor P16 profilometer. Current-voltage (I-V characteristic) 
curves were taken in a Physical Property Measurement System 
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(Quantum Design Evercool II) equipped with a 9 T 
superconducting magnet.  The critical current Ic(B, θ) was 
determined using  the 1 μVcm-1 criterion on the I-V 
characteristic at different B field orientations at 65 K to 
minimize the Tc effect. In this work, θ was varied in the range 
from θ = 0o (H//c-axis) to θ =90o (B//ab-plane) in the plane 
perpendicular to the microbridge (or current) [63]. The pinning 
force density (Fp) was calculated from the equation Fp = Jc × B. 
The maximum pinning force density (Fp,max) and its location 
(Bmax) are then determined from the Fp (B) curves.  
 

III. RESULT AND DISCUSSION 
 
Figure 1 compares the STEM images of cross sections of the 
2% BZO-YBCO SL (Figures 1a) and BZO-YBCO ML (Figure 
1b) samples. The c-axis aligned BZO 1D-APCs can be clearly 
seen embedded in both kinds of the samples while 
morphologies are different. In the former, the edge of the 1D-
APC is distorted, which expected from the defective interface 
(inset), and the surrounding Y123 lattice is also defective. This 
indicates the presence of a strong strain field stemming from the 
large lattice mismatch at BZO/YBCO interface. In contrast, the 
BZO 1D-APC has straight boundaries with Y123 matrix in the 
latter and defects on the interface are negligible. Instead, short 
segments of stacking faults (marked with arrows in Figure 1b) 
due to a partial Ca/Cu replacement on the Cu-O plane [54-57].   
Since the Ca atom is larger than Cu ones by about 30% in 

diameter, the Ca/Cu replacement has been found to cause an 
enlarged c-axis lattice constant in the range of 1.20-1.24 nm in 
the Y123 around BZO 1D-APCs (or reduced lattice mismatch 
of ~1.4%) in the BZO/YBCO-ML sample. This explains the 

highly coherent BZO/Y123 interface with much negligible 
lattice distortion. Figures 1c-1d compare the fast Fourier 
filtered (FFT) images of the BZO/YBCO-SL and BHO/YBCO-
SL samples which were processed based on selecting an area of 
a TEM image and processing the FFT to obtain an FFT image 
by selecting and masking the specific diffraction dots in the 
FFT. A major difference between the two cases is in the higher 
concentration of dislocations (white marks) at the BZO 1D-
APC/YBCO interface, which may be explained by the larger 
lattice mismatch. the lower defect concentration in the BHO 
1D-APC/YBCO interface suggests that a coherent interface 
may be obtained by optimizing the PLD condition for 
BHO/YBCO-SL.  
 
Figures 2a and 2b respectively compare the Jc(B) and Fp (B) 
curves of the BZO/YBCO-ML (red), BZO/YBCO-SL (blue), 
and the BHO/YBCO-SL (black) films at 65 K (to minimize Tc 
effect since the three samples have reduced Tc in the range of 
85-86 K) and B//c-axis. It is evident that the BZO/YBCO-ML 
and BHO/YBCO-SL films, the two with more coherent 1D-
APC/Y123 interface, have overall larger Jc values and much 
lower Jc susceptibility to B than the BZO/YBCO-SL film that 
has a defective 1D-APC/Y123 interface.  For example, the Jc 
values are ~ 2.3 MA/cm2 at B=4.0 T for the former two films in 
contrast to 0.84 MA/cm2 for the BZO/YBCO-SL film. At B= 
9.0 T, the Jc for the BZO/YBCO-ML and BHO/YBCO-SL are 
~1.7 MA/cm2 and ~2.0 MA/cm2 respectively, while the Jc for 
the BZO/YBCO-SL film has decreased to 0.34 MA/cm2. The 
corresponding Fp(B) data (Figure 2b) confirms the relative 
stronger pinning in the BZO/YBCO-ML and BHO/YBCO-SL 
films with a more coherent 1D-APC/Y123 interface. As 
expected, both samples exhibit overall higher Fp values in the 
entire B-field range. The value of the Fp(B) peak (Fpmax) and the 
location of the Fpmax (Bmax) of the three samples differ with the 
BZO/YBCO-SL film having the lowest values. Specifically, 
Fp,max of 158 GNm-3 at ~8.0 T,  182 GNm-3 at ~9.0 T and 35.7 
GNm-3 at ~6.0 T were observed on the BZO/YBCO-ML, 
BHO/YBCO-SL, and BZO/YBCO-SL samples respectively. 
The higher pinning efficiencies of the BHO and BZO 1D-APCs 
in the BZO/YBCO-ML and BHO/YBCO-SL films are 
attributed to their coherent interface with Y123. On the other 
hand, the sub-par pinning efficiency of the BZO 1D-APCs in 
the BZO/YBCO-SL sample may be explained by the fact that 
its interface with Y123 matrix is defective or semi-coherent 
rather than coherent [54-57, 60]. It should be noted that the Jc  
and Fp of the BZO/YBCO-ML sample become smaller than that 
of the BHO/YBCO-SL at B >7 T, indicating other factors such 
as the strain field on the YBCO lattice are important and need 
to be optimized for optimal pinning at high B fields. 

Figure 2: Jc (B) (a) and Fp (B) (b) curves measured on BZO/YBCO-ML (red), 
BHO/YBCO-SL (black), and BZO/YBCO-SL (blue) B//c-axis and 65K.  

Figure 1. HRTEM of (a) semi-coherent BZO/YBCO interface in 
BZO/YBCO SL and (b) coherent BZO/YBCO interface in BZO/YBCO 
ML sample with white arrows indicating stacking faults due to Ca/Cu 
substitution on the YBCO’s Cu-O planes. The inset of (a) is a figure 
adapted from C. Cantoni et al, ACS Nano 5, 4783, (2011) showing a zoom-
in view of the BZO/YBCO interface exhibiting massive dislocations 
marked with while arrows, leading to a much lower Tc estimated to be 60-
70 K from the oxygen deficiency.  A zoom-in view of the BZO/YBCO 
interface from (a) and BHO/YBCO interface (d).   

BZO/YBCO SL BHO/YBCO SL 

1 nm 1 nm 
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Figure 3 shows the Jc (B) and Fp (B) curves of all three films at 
θ=45o and 90o (Figures 3a - 3b) and for just the BZO/YBCO-
SL and BZO/YBCO-ML films at 22o, 45o and 67o (Figures 3c - 
3d). The FP (B) data taken along these other B orientations 
confirm the extension of the pinning enhancement of 1D-APCs 
the BZO/YBCO-ML and BHO/YBCO-SL films with coherent 
APC/Y123 interfaces beyond B//c. The enhancement could be  
attributed to the intrinsic coherent (by growth) 1D-BHO 
APC/YBCO interface in the BHO/YBCO-SL [60] and the Ca 
doping induced coherent 1D-BZO APC interface in the 
BZO/YBCO-ML [54-57]. In particular, the BHO/YBCO-SL 
exhibits superior performance at all fields and at all orientations 
in the range from θ = 0o to 90o. At or near B//c-axis, this may 
not be attributable to difference in 1D-APCs concentration in 
the films since that number is expected to be lower in the 
BHO/YBCO-SL film as it was grown with a lower volume of 
APC material. Perhaps the intrinsic coherent APC/Y123 
interface in the BHO/YBCO-SL film is of a higher quality than 
the Ca diffusion enabled coherent APC/Y123 interface in the 
BZO/YBCO-ML, which may indicate further improvement is 
possible by optimizing the ML structure and PLD processing 
condition. In any case, the consequence of this difference in Jc-
B susceptibility is higher enhanced pinning in a larger B field 
range for the BHO/YBCO-SL (as seen in Figure 2b and Figure 
3b). It is curious that this coherent interface benefit may extend 
to B-orientations such as 45o. Figure 3d indicates that pinning 
benefits (relative to BZO/YBCO-SL) in the BZO/YBCO-ML 
extends well beyond B//c-axis and close to B//ab-plane [64].  

 
Figure 3: J

c
 (B) and F

p
 (B) plots on all 3 films at 45

o
 and 90

o
 (a and b); and on 

just BZO/YBCO-ML and BZO/YBCO-SL at 22
o
, 45

o
 and 67

o
 (c and d). The 

color red represents BZO/YBCO-ML, blue is BZO/YBCO-SL and black is 
BHO/YBCO-SL. Circle represents 22

o
, triangle represents 45

o
 and square 

represents 90
o
 (in Figures 3a-3b) and 67

o
 (in Figures 3c-3d). 

 
In Figure 4a the Fp,max values of the BZO/YBCO-ML and 
BHO/YBCO-SL were normalized to that of the BZO/YBCO-
SL and are plotted as function of θ for BHO/YBCO-SL (black) 
and BZO/YBCO-SL (red). As expected, the enhancement 
factor along B//c-axis is highest (4.6) for BHO/YBCO-SL and 
3.9 for the BZO/YBCO-ML. At B//ab-plane, these factors are 
reduced to ~ 3.2 and 1.5 respectively. This data confirms the 
relatively strong pinning maintained in the BHO/YBCO-SL 
film as the B-orientation deviates significantly from B//c-axis.  

Similar to the Fp,max, the normalized Bmax (open symbol and 
right axis) of Figure 4a. However, In contrast to Fp,max, the Bmax 
enhancement is largely insignificant (enhancement factor 
mostly between ~ 0.9 – 1.3 ) for both films. Which confirms 
that the enhancement in both films is largely due to the quality 
of the 1D-APCs rather than the number density of 1D-APCs. 
 
Furthermore, the Jc (θ, 65K) data for the samples in Figure 3 
are plotted in Figure 4b. As expected from the foregoing, the 
BHO/YBCO-SL and BZO/YBCO-ML have higher Jc than the 
BZO/YBCO-SL over almost the entire θ range. This is very 
remarkable in the BHO/YBCO-SL film as it stays higher in the 
entire θ  range without intersecting the BZO/YBCO-SL curve 
and intersecting the BZO/YBCO-ML curve only up to ~ 30o. 
However, overall, the Jc (θ) curves for the BZO/YBCO-SL and 
BHO/YBCO-SL films illustrate smaller variation while θ was 
varied from B//c-axis (θ=0) to B//ab-plane (θ=90°), which 
means a more isotropic pinning landscape. Interesting, the Jc of 
the BHO/YBCO-SL is the least anisotropic and the highest 
among the three samples especially at and near B//ab-plane 
(θ=90°), indicating other factors besides APC/YBCO interface 
need to be investigated for optimal pinning at high B fields.  

Figure 4: The normalized F
p,max 

(F
p,max

/F
p,max 

(BZO/YBCO-SL)) data (solid 
symbols and left axis) and normalized B

max
 (B

p,max
/B

p,max 
(BZO/YBCO-SL)) data 

(open symbols and right axis) as a function of  θ. Red and black represent the 
BZO/YBCO-ML and BHO/YBCO-SL films respectively. (b) Jc (θ) data at 65 
K in 9 T fields measured on BHO/YBCO-SL (black), BZO_SD-ML (red), and 
BZO/YBCO-SL (blue) 
.  

IV. CONCLUSIONS 
In summary, the effect of the APC/Y123 interface on the 

pinning efficiency of 1D-APCs in a broad range of B-field 
orientation from B//c-axis (θ=0) to B//ab-plane (θ=90°) has 
been investigated. Using three kinds of APC/Y123 
nanocomposites films, namely BZO/YBCO-SL, BHO/YBCO-
SL and BZO/YBCO-ML, this study aims to draw correlations 
between the quality of the APC/Y123 interface and the Jc 
performance in the entire range of B orientation at 65 K. In 
contrast to a semi-coherent interface with high-concentration of 
interface defects in the BZO/YBCO-SL, the APC/Y123 
interface is coherent with much smaller concentration of the 
interface defects in the BHO/YBCO-SL and BZO/YBCO-ML 
samples. This study has shown a significantly higher the Jc in 
the APC/Y123 nanocomposites with 1D-APCs forming a 
coherent APC/YBCO interface at B//c-axis and in a broad θ 
angle range away from it. This result has revealed the 
importance of the APC/Y123 interface on the pinning 
efficiency, which would be helpful to future development of 
pinning landscape for practical applications.  
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