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Abstract. Matrix Schubert varieties are affine varieties arising in the Schubert calculus
of the complete flag variety. We give a formula for the Castelnuovo–Mumford regularity of
matrix Schubert varieties, answering a question of Jenna Rajchgot. We follow her proposed
strategy of studying the highest-degree homogeneous parts of Grothendieck polynomials,
which we call Castelnuovo–Mumford polynomials. In addition to the regularity formula, we
obtain formulas for the degrees of all Castelnuovo–Mumford polynomials and for their lead-
ing terms, as well as a complete description of when two Castelnuovo–Mumford polynomials
agree up to scalar multiple. The degree of the Grothendieck polynomial is a new permuta-
tion statistic which we call the Rajchgot index; we develop the properties of Rajchgot index
and relate it to major index and to weak order.

1. Introduction

The flag variety Flagsn, the parameter space for complete flags of nested vector subspaces
of Cn, has a complex cell decomposition given by its Schubert varieties. The geometry
and combinatorics of this cell decomposition are of central importance in Schubert calculus.
These Schubert varieties are closely related to certain generalized determinantal varieties
Xw of n × n matrices called matrix Schubert varieties (see [Ful92] and Section 2.2 for the
definition). These varieties have been heavily studied from various perspectives (see, e.g.,
[EM16, FRS16, Ful92, HPW22, Hsi13, KM05, KMY09, WY18]). It is natural to desire a
measure of the algebraic complexity of matrix Schubert varieties. One such measure is the
Castelnuovo–Mumford regularity of Xw, a commutative-algebraic invariant determining the
extent to which the defining ideal of Xw can be resolved by low-degree polynomials.
Jenna Rajchgot (cf. [RRR+21]) noted that, since matrix Schubert varieties are Cohen–

Macaulay [Ful92, KM05, Ram85], the regularity of Xw is given by the difference between
the highest-degree and lowest-degree homogeneous parts of the K-polynomial for Xw. These
particular K-polynomials have been much studied. They were introduced by Lascoux and
Schützenberger [LS82b], under the name of Grothendieck polynomials Gw(x), as polynomial
representatives for structure sheaf classes in the K-theoretic Schubert calculus of Flagsn
(see also, [FL94]). Grothendieck polynomials are inhomogeneous polynomials Gw(x) in
n variables x = x1, x2, . . . , xn, indexed by permutations w in the symmetric group Sn.
Later, Knutson and Miller [KM05] showed that Grothendieck polynomials coincide, up to
convention choices, with the K-polynomials of matrix Schubert varieties.
The lowest-degree homogeneous part of Gw(x) is the Schubert polynomial Sw(x) [LS82a];

Schubert polynomials are well-understood from a combinatorial perspective, and the degree
of Sw(x) equals the codimension of Xw or equivalently the Coxeter length inv(w) of the
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permutation w. Hence, determining the regularity of Xw reduces to answering the following
question of Rajchgot:

“What is the degree of a Grothendieck polynomial?”

In light of these observations, we term the highest-degree part of (−1)degGw(x)−inv(w)Gw(x)
the Castelnuovo–Mumford polynomial and write it CMw(x). (The power of −1 makes
CMw(x) have positive coefficients.) The goal of this paper is to answer Rajchgot’s question
by understanding these homogeneous polynomials and in particular their degrees, thereby
obtaining a formula for the Castelnuovo–Mumford regularity of Xw. In the special case of
symmetric Grothendieck polynomials, corresponding to Grassmannian permutations w and
Schubert varieties in a complex Grassmannian, a formula for the degree of CMw(x) was
recently given in [RRR+21]. Formulas for vexillary and 1432-avoiding permutations (and
related objects) appear in [RRW23]. Our first main result is a degree formula for arbitrary
CMw(x), answering Rajchgot’s question in full generality.
Write a permutation w ∈ Sn in one-line notation as w(1)w(2) · · ·w(n). For each k, find

an increasing subsequence of w(k)w(k + 1) · · ·w(n) containing w(k) and of greatest length
among such subsequences. Let rk be the number of terms from w(k)w(k+1) · · ·w(n) omitted
from this subsequence. We call the sequence (r1, . . . , rn) = rajcode(w) the Rajchgot code
of w and its sum raj(w) the Rajchgot index of w.

Theorem 1.1. For w ∈ Sn, we have degCMw(x) = raj(w). Moreover, for any term order
satisfying x1 < x2 < · · · < xn, the leading term of CMw(x) is a scalar multiple of the
monomial xrajcode(w) = xr11 x

r2
2 · · · xrnn .

In particular, the Castelnuovo–Mumford regularity of the matrix Schubert variety Xw is
raj(w)− inv(w).

Example 1.2. Consider the permutation w = 293417568 ∈ S9. A longest increasing subse-
quence starting from 2 is 2 • 34 • •568, which omits three terms, so r1 = 3. In full,

rajcode(w) = (r1, r2, . . . , r9) = (3, 7, 2, 2, 1, 2, 0, 0, 0).

Hence, by Theorem 1.1, the leading term of CMw(x) is a scalar multiple of the monomial
x31x

7
2x

2
3x

2
4x5x

2
6 and the degree of CMw(x) is raj(w) = 3+7+2+2+1+2+0+0+0 = 17. Since

inv(w) = 12, it follows that the Castelnuovo–Mumford regularity of the matrix Schubert
variety Xw is raj(w)− inv(w) = 17− 12 = 5. ♦

Proof of Theorem 1.1. The verification that degCMw(x) = raj(w) is Theorem 5.8. The
claim about the leading term follows from Theorems 6.4 and 7.1. The consequence for
Castelnuovo–Mumford regularity is explained in Corollary 2.6. □

Remark 1.3. After this paper was written, the matrixSchubert package for Macaulay2 was
written, which implements Theorem 1.1 as an algorithm for computing regularity. For details
of this implementation, see [AGH+23].

Remark 1.4. The theorems in this introductory section are stated in what the authors hope
is the clearest order to explain the results, not in the order of their proof. In the main body
of the paper, the results appear in their logical order, and we reference those results from
the introduction, as in the proof above. The reader can thus see that the remaining sections
of the paper have no forward citations, and the results in this section are not referenced in
the proofs of the following sections, so there is no circularity.
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Our remaining results explore the combinatorics of Castelnuovo–Mumford polynomials
and the associated permutation statistics.
While Schubert polynomials are all distinct and have distinct leading monomials, we ob-

serve that many Castelnuovo–Mumford polynomials differ only by a scalar multiple. In fact,
we will show that CMu(x) and CMv(x) differ by a scalar precisely if rajcode(u) = rajcode(v).
This phenomenon is best understood in the context of double Castelnuovo–Mumford poly-
nomials, as we now explain. The double Grothendieck polynomials are certain polynomials
Gw(x1, . . . , xn; y1, . . . , yn) in 2n variables, also indexed by w ∈ Sn. They represent Schubert
classes in the torus-equivariant K-theory of Flagsn, and obey the relations Gw(x; 0) = Gw(x)
and Gw(x;y) = Gw−1(y;x). We define the double Castelnuovo–Mumford polynomial
CMw(x;y) to be the highest-degree part of Gw(x;y). We will show (Corollary 2.5) that
Gw(x,y) has terms whose x-degree and y-degree are simultaneously maximal, so CMw(x,y)
is homogeneous in both x and y.
Remarkably, we find that double Castelnuovo–Mumford polynomials factor as a polyno-

mial in x times a polynomial in y. We identify a special family of single Castelnuovo–
Mumford polynomials, which we refer to as the Rajchgot polynomials Rπ(x), indexed by
set partitions of {1, . . . , n}. For each w ∈ Sn, we associate a set partition π(w) so that the
following holds.

Theorem 1.5. Double Castelnuovo–Mumford polynomials factor into Rajchgot polynomials
as

CMw(x;y) = Rπ(w)(x)Rπ(w−1)(y).

Moreover, for any term order satisfying x1 < · · · < xn and y1 < · · · < yn, the leading term of
the double Castelnuovo–Mumford polynomial CMw(x;y) is exactly x

rajcode(w)yrajcode(w−1). In
particular, the single Castelnuovo–Mumford polynomial CMw(x) is Rπ(w−1)(1, . . . , 1)Rπ(w)(x)

and has leading term Rπ(w−1)(1, . . . , 1)x
rajcode(w).

Proof. The factorization is established in Theorem 6.2. The claim about the leading mono-
mial follows from Theorems 6.4 and 7.1; the fact that this monomial has coefficient 1 is Theo-
rem 7.7. The remaining statements follow from the equality CMw(x) = CMw(x; 1, 1, . . . , 1).

□

In particular, Theorem 1.5 shows that, up to scalar multiple, the number of distinct
Castelnuovo–Mumford polynomials for w ∈ Sn is not n!, but rather the number of set
partitions of n, which is also known as the n-th Bell number.
The Rajchgot index is related to the classical major index statistic. In particular, we

prove the following:

Theorem 1.6. For all w ∈ Sn, we have

raj(w) = max{maj(v) : v ≤R w} = max{maj(u−1) : u ≤L w} = degCMw(x),

where ≤L and ≤R denote the left and right weak orders, respectively.

To the best of our knowledge, none of the equalities in Theorem 1.6 have been observed
previously.

Proof. The equality between raj(w) and degCMw(x) was proved above; the formulas in
terms of the major index statistic appear in Theorem 4.20. □
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As an application of these ideas, we also determine the maximum Castelnuovo–Mumford
regularity for matrix Schubert varieties Xw with w ∈ Sn.

Theorem 1.7. Let n be a positive integer and define k by
󰀃
k
2

󰀄
≤ n ≤

󰀃
k+1
2

󰀄
; if n is a

triangular number, then we may choose either value for k. For matrix Schubert varieties Xw

with w ∈ Sn, the largest Castelnuovo–Mumford regularity is
󰀃
n+1
2

󰀄
− kn+

󰀃
k+1
3

󰀄
.

In Theorem 5.9, we will characterize the permutations that achieve this maximum.

Proof. In Theorem 5.9, we will show that raj(w) − inv(w) ≤
󰀃
n+1
2

󰀄
− kn +

󰀃
k+1
3

󰀄
(and find

permutations that achieve equality). As noted above, raj(w) − inv(w) is the Castelnuovo–
Mumford regularity of Xw. □

This paper is organized as follows. In Section 2, we review necessary background. In Sec-
tion 3, we begin to develop the combinatorics of Rajchgot index and introduce fireworks
permutations . In Section 4, we introduce the key tools of the blob diagram and the
fireworks map. In Section 5, we apply these results to establish most of Theorem 1.1; we
show that degCMw(x) = raj(w) and therefore that the Castelnuovo–Mumford regularity
of Xw is raj(w) − inv(w). Section 6 introduces Rajchgot polynomials, establishes the fac-
torization result for double Castelnuovo–Mumford polynomials CMw(x;y) of Theorem 1.5
and shows that the leading term of CMw(x,y) is at most as large as predicted by Theo-
rem 1.5. In Section 7, we complete our proofs by constructing a pipe dream whose degree is
xrajcode(w)yrajcode(w−1).

2. Background

2.1. Permutations. Let [n] := {1, 2, . . . , n}. Let Sn denote the symmetric group of permu-
tations of [n]. We consider w ∈ Sn as a map w : [n] → [n] and write w in one-line notation
as the string w(1)w(2) · · ·w(n). We will often write wi := w(i). We identify w ∈ Sn with
the permutation matrix having a 1 in each position (i, wi) and 0s elsewhere. We will also
often identify Sn−1 with the subgroup {w ∈ Sn : wn = n} ⊂ Sn fixing n. We write id for the
identity permutation 12 · · ·n and w0 for the reverse permutation n(n− 1) · · · 1.
Let si := (i i + 1) denote the simple transposition that exchanges i and i + 1, and recall

that s1, . . . , sn−1 together generate Sn. We note that, because we write a permutation w in
one-line notation as w(1)w(2) · · ·w(n), multiplying w on the left by sk switches the values
k and k+ 1 and multiplying on the right by sk switches the values in positions k and k+ 1.
An inversion of w ∈ Sn is a pair i, j ∈ [n] such that i < j and wi > wj. We write inv(w)

for the number of inversions in w and call this quantity the Coxeter length of w. Note
that inv(w) is the length of the shortest expression for w as a product of the generators si.
A factorization w = si1 · · · siinv(w) is called a reduced expression for w, and the sequence
of subscripts i1 · · · iinv(w) is called a reduced word for w.
We will have need of four different partial orders on the set Sn. If w = uv with inv(w) =

inv(u) + inv(v), then we say that v ≤L w and u ≤R w; the relations ≤L and ≤R are known
as left and right weak order , respectively. We write ≤LR for the partial order obtained as
the transitive closure of the union of left and right weak orders and call this the two-sided
weak order (see [Pet18]). For u ≤R v, we write [u, v]R for the interval from u to v in right
weak order. Similarly, we define the notations [u, v]L and [u, v]LR in the analogous ways.
Finally, we define Bruhat order on Sn by v ≤ w if some reduced word for v is a substring
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of some reduced word for w. The various weak orders are “weak” in the sense that they are
proper subrelations of Bruhat order.
A descent of w ∈ Sn is a value i such that wi > wi+1. Equivalently, i is a descent of w if

inv(w) > inv(wsi). A permutation w is Grassmannian if it has at most one descent.
The 0-Hecke monoid Hn is the free monoid on generators τ1, . . . , τn−1 subject to the

“idempotent braid relations”

τ 2i = τi, τiτj = τjτi, for j ∕= i± 1, and τiτi+1τi = τi+1τiτi+1.

There is a natural action of Hn on Sn induced by

τi ∗ w :=

󰀫
siw, if inv(siw) > inv(w);

w, otherwise.

For every permutation w in Sn, there is a unique element w̄ in Hn with w̄ ∗ id = w; for
example, s̄i = τi. We define the Demazure product on Sn to be the binary operation u∗ v
given by u ∗ v = ū ∗ v̄ ∗ id.
The graph of the permutation w ∈ Sn is obtained by plotting bullets • in the n× n grid

in positions (i, wi) for i ∈ [n] (in matrix coordinates). The Rothe diagram RD(w) of w is
constructed from its graph as follows. From each •, fire a laser beam directly to the right
and another straight down. The cells of the n×n grid that are hit by no laser beam are the
Rothe diagram RD(w). It is not hard to see that the number of cells in RD(w) is inv(w).
Write ℓi for the number of cells in row i. We call the sequence invcode(w) := (ℓ1, . . . , ℓn)
the inv code of w. (This is also often referred to as the Lehmer code, but we won’t use this
terminology.) Note that inv(w) is the sum of invcode(w).

Example 2.1. Suppose w = 42153 ∈ S5. Then the Rothe diagram of w is the gray cells of
the diagram

.

Hence we have invcode(w) = (3, 1, 0, 1, 0) and inv(w) = 5. ♦

Suppose v ∈ Sk and w ∈ Sn with k ≤ n. We say w contains v if there is a subsequence
wi1 , wi2 , . . . , wik such that we have vp < vq ⇐⇒ wip < wiq for all 1 ≤ p, q ≤ k. If w does not
contain v, we say w avoids v. A dominant permutation is one that avoids 132.

2.2. Matrix Schubert varieties. The matrix Schubert variety Xw is an affine variety
cut out by certain determinants. Let Z = (zij)1≤i,j≤n be a matrix of distinct indeterminants.
Then Xw is a subvariety of the n2-dimensional affine space SpecC[Z].
Consider the Rothe diagram RD(w). For each cell (i, j) of RD(w), let ri,j denote the

number of 1s appearing in the permutation matrix w northwest of the cell (i, j). Let Iw be
the ideal generated by, for each (i, j), the (ri,j+1)× (ri,j+1) minors of the matrix northwest
of (i, j). (If ri,j = min(i, j), so that no such minor fits in the matrix, then we obtain an
empty list of generators in this case.) The matrix Schubert variety Xw is the subvariety of
n × n matrices defined by the ideal Iw. By work of Fulton [Ful92], the ideal I is prime, so
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Xw is a reduced and irreducible affine variety; a n × n matrix A lies in Xw if the rank of
each northwest submatrix of A is less than or equal to the rank of the same submatrix of w.

2.3. Castelnuovo–Mumford regularity. Let R := C[Z] be a standard-graded polynomial
ring, so deg(zij) = 1, and let I ⊆ R be a homogeneous ideal. We write R(−i) for R with all
degrees shifted by i. A free resolution of R/I is a diagram of graded R-modules

0 →
󰁐

i∈Z

R(−i)bki → · · · →
󰁐

i∈Z

R(−i)b0i → R/I → 0

that is exact , that is, such that the image of each map is the kernel of the next. By Hilbert’s
Basis and Syzygy Theorems, there always exists such a free resolution with k ≤ n2. Up to
isomorphism there is a unique free resolution simultaneously minimizing all bji . We call this

theminimal free resolution of R/I. In this case, the dimensions bji are invariants of R/I.
The Castelnuovo–Mumford regularity reg(R/I) of R/I is the greatest i− j such that
bji ∕= 0. Conflating affine varieties with their coordinate rings, we also refer to this number as
the Castelnuovo–Mumford regularity of SpecR/I. In the case that R/I is Cohen–Macaulay,
it is known that the projective dimension of R/I equals the height of the ideal I as well as
the codimension of SpecR/I in SpecR.
Write (R/I)a for the degree a piece of R/I. The Hilbert series of R/I is the formal

power series

H(R/I; t) =
󰁛

a∈N

dimC(R/I)at
a.

If we write the Hilbert series as a rational expression

H(R/I; t) =
K(R/I; t)

(1− t)n2

the numerator K(R/I; t) is the K-polynomial of R/I.
The height ht(I) of a prime ideal I is the maximum k so that there exists a nested chain

of prime ideals

I0 ⊊ I1 ⊊ · · · ⊊ Ik = I.

If I is prime, ht(I) is the codimension of SpecR/I in SpecR.
The following lemma is well known to experts, see e.g. [BH93, BV15, RRR+21].

Lemma 2.2. Suppose R/I is Cohen–Macaulay. Then reg(R/I) = deg(K(R/I; t))− ht(I).

Matrix Schubert varieties are Cohen–Macaulay [Ful92] and the codimension of Xw is the
inversion statistic inv(w). Hence, computing the regularity of matrix Schubert varieties
amounts to finding the degree of their K-polynomials.

2.4. Schubert and Grothendieck Polynomials. Consider the polynomial ring Z[x;y] =
Z[x1, x2, . . . , xn; y1, y2, . . . , yn]. There is a natural action of Sn on Z[x;y] defined by

w · f = f(xw1 , xw2 , . . . , xwn ; y1, . . . , yn).

Given f ∈ Z[x;y] and 1 ≤ i < n, we define the action of the divided difference operator
∂i by

∂i(f) =
f − si · f
xi − xi+1

.
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Note that ∂i(f) is a polynomial, symmetric under interchanging the variables xi and xi+1.
Let ∂i be defined by

∂i(f) = ∂i((1− xi+1)f).

The operators ∂i satisfy the braid relations

∂i∂j = ∂j∂i, for j ∕= i± 1, and ∂i∂i+1∂i = ∂i+1∂i∂i+1.

and the idempotent relation

∂i
2
= ∂i.

The double Grothendieck polynomials can be defined by the recursion:

∂iGw(x,y) =

󰀫
Gwsi(x,y) wsi <R w

Gw(x,y) wsi >R w

together with the initial condition

Gw0(x,y) =
󰁜

i+j≤n

(xi + yj − xiyj).

We obtain the (single) Grothendieck polynomials by specializing y to 0, that is to say,

Gw(x) := Gw(x;0).

The double Schubert polynomial Sw(x,y) is the lowest-degree homogeneous part of
the double Grothendieck polynomial Gw(x,y) substituting yj 󰀁→ −yj, while the (single)
Schubert polynomial Sw(x) is the lowest-degree homogeneous part of Gw(x). The degree
of the Schubert polynomial Sw(x) is inv(w).
We now recall an explicit combinatorial formula for (double) Schubert polynomials and

(double) Grothendieck polynomials. A pipe dream is a subset P of the cells in the strictly
upper left triangular part of the n× n grid, i.e.

P ⊆ {(i, j) : 1 < i+ j ≤ n}.

We represent this subset pictorially by placing a crossing tile in each cell of P and

bumping tiles in the other cells.
If there is a crossing tile in cell (i, j), we associate to it the simple transposition si+j−1. We

then associate a reading word word(P ) to P by reading these simple transpositions within
rows from right to left, working from the top row downwards. We say P is a pipe dream for
w if w is the Demazure product of word(P ). Write Pipes(w) for the set of pipe dreams for
w. We say P ∈ Pipes(w) is reduced if word(P ) is a reduced word for w and write Pipes0(w)
for the subset of such reduced pipe dreams P .
The following theorem first appeared in this form in [KM05]; however, special cases and

essentially equivalent formulations were known earlier, e.g. in [BB93, FK94].

Theorem 2.3 ([KM05]). For any w ∈ Sn, we have

Gw(x) =
󰁛

P∈Pipes(w)

(−1)|P |−inv(w)
󰁜

(i,j)∈P

xi

Gw(x;y) =
󰁛

P∈Pipes(w)

(−1)|P |−inv(w)
󰁜

(i,j)∈P

(xi + yj − xiyj)
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and

Sw(x;y) =
󰁛

P∈Pipes0(w)

󰁜

(i,j)∈P

(xi − yj)

Example 2.4. Pictured below are the reduced pipe dreams for w = 42153.

Pictured below are the non-reduced pipe dreams for w.

♦

Theorem 2.3 has the following corollary, which makes it clear that there is no ambiguity
in talking about the “highest degree part” of Gw(x;y).

Corollary 2.5. Let w be a permutation and let d be the degree of Gw(x). Then Gw(x;y)
has terms which are of bidegree (d, d) in the x and y variables, and no term in Gw(x;y) has
x-degree or y-degree higher than d.

Proof. Let P be a pipe dream for w with |P | = c. We see that P contributes a monomial
of degree c to Gw(x), and that all monomials of the same degree occur with the same sign,
so there is no cancellation. Thus, the degree of Gw(x) is the maximum number of crosses in
any pipe dream for w.
Then, from the formula for Gw(x;y), we see that a pipe dream with c crosses contributes

terms in bidegrees (a, b) for a, b ≤ c. So no term in Gw(x;y) can have x-degree or y-
degree larger than d. Moreover, those pipe dreams with the maximal number of crosses all
contribute monomials in bidegree (d, d) with the same sign, so there can be no cancellation,
and we see that Gw(x;y) has terms of bidegree (d, d). □
Define the Castlenuovo-Mumford polynomial CM(x) to be (−1)degGw(x)−inv(w) times

the highest degree part of Gw(x) and define the double Castlenuovo-Mumford poly-
nomial , CMw(x;y), to be (−1)inv(w) times the highest degree part of Gw(x;y). These
sign factors make CMw(x;y) and CMw(x) have positive coefficients, as can be seen from
Theorem 2.3. So the degree of CMw(x), and the bidegree of CMw(x;y), are both given by
the maximal number of crosses in any pipe dream for w.
If we specialize the single Grothendieck polynomial Gw(x) by setting xi 󰀁→ 1−t, we obtain

the K-polynomial of the matrix Schubert variety Xw [KM05]. Note that this specialization
does not affect the degrees of the polynomials, since all top-degree terms of Gw(x) have
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the same sign. Moreover, degSw(x) = codimXw = inv(w) [Ful92]. Thus, we can rewrite
Lemma 2.2 as follows.

Corollary 2.6. Let Xw be a matrix Schubert variety. Then reg Xw = degGw(x)− inv(w).

3. Simple properties of Rajchgot index

In this section, we develop some of the basic combinatorial properties of the Rajchgot
index of a permutation, which we can prove without introducing new tools. In the next
section, we will build more complex tools and prove stronger results.

3.1. Rajchgot index and the inversion statistic.

Lemma 3.1. Let w be a permutation and let (ℓ1(w), ℓ2(w), . . . , ℓn(w)) be its inversion code.
Then ri(w) ≥ ℓi(w). Hence, raj(w) ≥ inv(w).

Proof. To make an increasing sequence starting at wi, we must at least delete all following
letters that are less than wi. There are ℓi(w) such letters. □

In light of Lemma 3.1, it is natural to ask when we have equality.

Proposition 3.2. Let w be a permutation. Then ri(w) = ℓi(w) if w has no 132 pattern
starting at position i. In particular, raj(w) = inv(w) if and only if w avoids the pattern 132,
i.e. if w is dominant.

Proof. If ri(w) > ℓi(w), then there exist j, k such that i < j < k and wi < wk < wj, which
is exactly a 132 pattern. Conversely, if there is a 132 pattern starting at position i, then
ri(w) > ℓi(w). □

The next proposition summarizes standard results about Schubert and Grothendieck poly-
nomials of dominant permutations.

Proposition 3.3. Let w be a permutation in Sn. Then w is dominant if and only if ℓ1(w) ≥
ℓ2(w) ≥ · · · ≥ ℓn(w). In this case, we can view (ℓ1(w), . . . , ℓn(w)) as a partition, and the
Rothe diagram RD(w) is the Young diagram of that partition. This gives a bijection between
dominant permutations in Sn and partitions fitting inside the staircase (n−1, n−2, . . . , 2, 1).
If w is a dominant permutation, then

Gw(x;y) =
󰁜

(i,j)∈RD(w)

(xi + yj − xiyj)

Sw(x;y) =
󰁜

(i,j)∈RD(w)

(xi − yj)

Gw(x) = Sw(x) =
󰁜

(i,j)∈RD(w)

xi =
n󰁜

i=1

x
ℓi(w)
i .

Proof. That w is dominant if and only if ℓ1(w) ≥ ℓ2(w) ≥ · · · ≥ ℓn(w) follows from [Man01,
Section 2.2.1]. When w is dominant, it has a single pipe dream whose crossing tiles are
exactly the elements of RD(w). □
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3.2. Rajchgot index and major index. Let w ∈ Sn be a permutation and let mi(w)
equal the number of j ≥ i such that wj > wj+1. The major index of w is

maj(w) =
n󰁛

i=1

mi(w).

We remind the reader that Theorem 4.20 will establish a formula for raj as a maximum
of many values of maj. At the moment, we can prove an inequality:

Lemma 3.4. Let w be a permutation and let mi(w) equal the number of j ≥ i such that
wj > wj+1. Then ri(w) ≥ mi(w). Hence, raj(w) ≥ maj(w).

Proof. To make an ascending sequence from wiwi+1 . . . wn, we must delete from each consec-
utive descending sequence at least all but one letter. Hence ri(w) ≥ mi(w) for all i. Since,
maj(w) =

󰁓n
i=1mi(w), we then have raj(w) ≥ maj(w). □

3.3. Fireworks permutations. We previously explained that dominant permutations have
equality between Rajchgot index and the inversion statistic; we now discuss when we have
equality between Rajchgot index and major index. In order to state this characterization,
we must define a new class of permutations.

Definition 3.5. The permutation w is fireworks if the initial elements of its decreasing
runs are in increasing order. (These permutations are sometimes called 3 − 12 avoiding.)
Write Fn for the set of fireworks permutations in Sn. We define w to be inverse fireworks
if w−1 is fireworks.

Example 3.6. The permutation 41|62|853|97 is fireworks because 4 < 6 < 8 < 9. ♦

Remark 3.7. We imagine each descending run in a permutation as a firework dropping to
earth. In a fireworks show, each new explosive is launched higher than the previous one.

Proposition 3.8. Let w be a permutation. Then raj(w) = maj(w) if and only if w is
fireworks.

Proof. If w is fireworks, we can delete all but the first letter of each descending run to get
an ascending sequence, so ri(w) ≤ mi(w). However, we already know the reverse inequality
by Lemma 3.4. Thus ri(w) = mi(w) for all i and so raj(w) = maj(w).
Now suppose w is not fireworks. Then we have a 3− 12 pattern, i.e. there are i < j such

that wj < wj+1 < wi. Now consider wiwi+1 . . . wn. It does not suffice to delete mi(w) letters
because we must delete both wj and wj+1, so mi(w) < ri(w), and so maj(w) < raj(w). □

A set partition of [n] is a collection π of pairwise-disjoint nonempty subsets of [n] whose
union is [n]; the subsets are called the blocks of π. We canonically order the blocks of π
according to their largest elements and index them as (πt, πt+1, . . . , πn), where max(πt) <
max(πt+1) < · · · < max(πn). (This apparently odd decision to number ending at n rather
than starting at 1 will pay off in simpler notation later on; see Remark 4.4.)
The number of set partitions of [n] is called the nth Bell number [Slo, A000110]. For

brevity, we generally omit commas and braces from the individual parts of a set partition, for
example, writing (1, 3, 45, 67, 8, 29) rather than {{1}, {3}, {4, 5}, {6, 7}, {8}, {2, 9}}.

Proposition 3.9 ([Cla01]). Fireworks permutations are enumerated by the Bell numbers.
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Proof. The decreasing runs give blocks of a set partition of [n]. Conversely, if we order
the blocks of a set partition π according to their largest elements, and write each block
backwards, we get a fireworks permutation. □
Example 3.10. The fireworks permutation 416285397 corresponds under this bijection to the
set partition (14, 26, 358, 79). ♦
This is a convenient time to prove the following lemma, which we will want later.

Lemma 3.11. Let w be a permutation in Sn for n ≥ 2 and let w′ be the permutation in Sn−1

such that w′(1), w′(2), . . . , w′(n − 1) are linearly ordered in the same way as w(2), w(3),
. . . , w(n). If w is fireworks, then w′ is fireworks and, if w is inverse fireworks, then w′ is
inverse fireworks.

Proof. We first consider the case that w is fireworks. The descending runs of w′ are the same
as those of w, with the initial letter missing.
We now consider the case that w is inverse fireworks, so we must consider descending runs

of w−1. If w(1) = 1, then 1 is in a descending run of w−1 by itself, and deleting it will not
change the initial elements of the other descending runs. If w(1) > 1, then 1 is not the initial
element of its descending run in w−1 and deleting it does not change the initial elements of
the descending runs. □
3.4. Valley and inverse valley permutations. A permutation w is called a valley per-
mutation if there is some index a for which w(1) > w(2) > · · · > w(a) < w(a + 1) <
· · · < w(n). There are 2n−1 valley permutations in Sn, because a valley permutation is
uniquely determined by the subset {w(1), w(2), . . . , w(a − 1)} of {2, 3, . . . , n}. We define a
permutation w to be a inverse valley permutation if w−1 is a valley permutation.

Lemma 3.12. A permutation w is a valley permutation if and only if w is both dominant
and inverse fireworks; w is inverse valley if and only if w is both dominant and fireworks.

Proof. We note that the valley permutations are the permutations which simultaneously
avoid 132 and 231; and that the inverse valley permutations are those which simultaneously
avoid 132 and 312. By symmetry, it is sufficient to show that the inverse valley permutations
are exactly the dominant permutations that are fireworks.
The easy direction is that a inverse valley permutation is both dominant and fireworks.

Indeed, let w be a inverse valley permutation. Since w avoids 132, it is dominant. Since w
avoids 312, it avoids 3− 12, and therefore it is fireworks.
Now suppose that w−1 is not a valley permutation. Then, there is some p with w−1(p−1) <

w−1(p) and w−1(p + 1) < w−1(p). If w−1(p − 1) < w−1(p + 1) < w−1(p), then w−1, and
hence w, is not dominant, so we may assume that w−1(p + 1) < w−1(p− 1) < w−1(p). Put
i = w−1(p + 1), j = w−1(p − 1) and k = w−1(p), so that i < j < k. We now consider two
cases. If w(k − 1) < w(k) = p, then we have w(k − 1) < w(k) < w(j), showing that w is
not fireworks. If w(k − 1) > w(k) = p, then w(i) < w(k) < w(k − 1), showing that w is not
dominant. Either way, the lemma follows. □
Remark 3.13. There is a standard bijection between dominant permutations in Sn, and
partitions λ contained the staircase (n−1, n−2, . . . , 1, 0): The Rothe diagram of a dominant
permutation is such a partition. Under this bijection, valley permutations correspond to
partitions with distinct parts, and inverse valley permutations correspond to partitions whose
transposes have distinct parts.
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4. The shape of a permutation and associated ideas

4.1. The blob diagram. We begin by giving a pictorial description of the Rajchgot code.
Start by drawing the graph of w, i.e. by plotting dots in the n × n grid in positions (i, wi)
for i ∈ [n]. (To be clear, we are using matrix coordinates, so (i, j) is in row i, numbered
from the top, and is in column j, numbered from the left.) We say a dot is maximally
southeast if there is no other dot simultaneously weakly right of it and weakly below it.
Draw a lasso around the dots which are maximally southeast in the grid. Call this set of dots
Bn(w). Then draw another lasso around the maximally southeast non-lassoed dots. This
next set of dots is Bn−1(w). Continue in this way until all dots have been lassoed. We refer
to this picture as the blob diagram of w (see Figure 1 for an example).

•

•

•

•

•

•

•

•

•

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9

B9

B8

B7

B6
B5

Figure 1. For w = 462357918, we plot w in the 9 × 9 grid as shown. The
blobs are found by repeatedly lassoing the maximally southeast unlassoed •s.

Lemma 4.1. Let (i, wi) be in blob Bk. Then the longest increasing subsequence starting at
(i, wi) contains n+ 1− k elements.

Proof. We prove this claim by reverse induction on k. If (i, wi) is in Bn, then there are no
dots to the southeast of (i, wi), so the longest increasing subsequence starting at (i, wi) is
just the singleton {wi}.
Now, suppose that (i, wi) is in Bk. Let a longest increasing subsequence starting at wi

continue wiwj · · · . Then wj is in Bℓ for ℓ > k, so the length of the sequence starting at wj

is at most n− ℓ+ 1 ≤ n− (k + 1) + 1 = n− k. So the length of the sequence starting at wi

is at most n − k. This shows that any increasing subsequence starting at wi has length at
most n− k.
Conversely, since (i, wi) is in blob Bk, there is some element (j, wj) in blob Bk+1 to the

southeast of (i, wi), and by induction there is an increasing subsequence of length n− k − 1
starting at wj. Prepending wi to this subsequence gives an increasing subsequence of length
n− k starting at wi. □
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Corollary 4.2. Let (r1(w), r2(w), . . . , rn(w)) be the Rajchgot code of w, and let (i, wi) be in
blob Bk. Then ri(w) = k − i.

Proof. By Lemma 4.1, the longest increasing subsequence starting at wi has n−k+1 elements.
There are n− i+ 1 elements in the word wiwi+1 · · ·wn, so k − i of them are omitted. □

4.2. The set partition and shape of a permutation. First, let 󰂃(w) = 󰂃1󰂃2 · · · 󰂃n be the
word where (i, wi) is in blob B󰂃i . In other words, we project the blob numbers left onto the
rows of the blob diagram. So, for the permutation in Figure 1, we have 󰂃(w) = 675678989.
From Corollary 4.2, the Rajchgot code of w is 󰂃(w)−(1, 2, . . . , n) so, in this case, the Rajchgot
code of 462357918 is (6, 7, 5, 6, 7, 8, 9, 8, 9) − (1, 2, 3, 4, 5, 6, 7, 8, 9) = (5, 5, 2, 2, 2, 2, 2). Note
that, if we projected the blob numbers onto the columns instead, we would obtain 󰂃(w−1).
We note that the words 󰂃(w) and 󰂃(w−1) are anagrams of each other. In the example of
Figure 1, 󰂃(w−1) is 856677899.
Define πk(w) to be the set of column labels of the dots in Bk(w). (Note that by sym-

metry, πk(w
−1) is the row labels of the dots in Bk(w).) Then π(w) is the set partition

of w. Note that i and j are in the same block of the set partition exactly if (w−1(i), i)
and (w−1(j), j) are in the same blob. In our running example, π(w) is the set partition
{{2}, {3, 4}, {5, 6}, {1, 7}, {8, 9}}. We will generally shorten this to {2, 34, 56, 17, 89}.
(Of course, we would obtain π(w−1) by recording the row labels of the entries in each blob.)
We note that the ordering of the blocks of π(w) is recoverable from the set partition π(w),
because the maximum elements of the blocks occur in increasing order. We index the blocks
of π(w) as (πt, πt+1, . . . , πn), so that πk corresponds to block Bk, and we set αk(w) = #πk(w).
We define the composition (αt(w),αt+1(w), . . . ,αn(w)) to be the shape of w. We note that
αk is the number of times the letter k occurs in the word 󰂃(w−1). In particular, since 󰂃(w)
and 󰂃(w−1) are anagrams, we see that w and w−1 have the same shape. We can express the
Rajchgot index in terms of the shape:

Lemma 4.3. For w ∈ Sn, we have

raj(w) =
n󰁛

k=1

kαk −
󰀕
n+ 1

2

󰀖
=

n󰁛

k=1

(αk + αk+1 + · · ·+ αn)−
󰀕
n+ 1

2

󰀖
.

Remark 4.4. Lemma 4.3 is the first of several places where our indexing convention simplifies
formulas.

Proof of Lemma 4.3. Let 󰂃(w) = (󰂃1, 󰂃2, . . . , 󰂃n). From Corollary 4.2, we have raj(w) =󰁓n
i=1 󰂃i −

󰀃
n+1
2

󰀄
. By definition, αk is the number of times that k occurs in this sum. This

proves the first formula for raj(w); the second is a formal rearrangement of it. □
Corollary 4.5. We have raj(w) = raj(w−1).

Proof. We have seen that w and w−1 have the same shape. By Lemma 4.3, Rajchgot index
only depends on shape. □
Given two compositions, (αj,αj+1, . . . ,αn) and (βk, βk+1, . . . , βn) of n, we say that α dom-

inates β and write α ≽ β if αm + αm+1 + · · · + αn ≥ βm + βm+1 + · · · + βn for all m. We
write α ≻ β to mean α ≽ β and α ∕= β.

Corollary 4.6. Let u and v be permutations of shapes α and β. If α ≽ β, then raj(u) ≥
raj(v); if α ≻ β, then raj(u) > raj(v).



14 OLIVER PECHENIK, DAVID E SPEYER, AND ANNA WEIGANDT

Proof. This is clear from the second formula for raj in Lemma 4.3. □
We return to our discussion of valley permutations, from Section 3.4.

Lemma 4.7. For each composition α of n, there is exactly one valley permutation, fα of
shape α, and likewise one inverse valley permutation of shape α, which is f−1

α .

Proof. Inverting permutations preserves the shape while switching valley and inverse valley,
so it is enough to prove the valley case.
Suppose α = (αt, . . . ,αn). For t ≤ k ≤ n, define ρk = (n+ 1)− αn − αn−1 − · · ·− αk. Let

R = {ρt < ρt+1 < · · · < ρn}. Let [n] \ R = {λ1 > λ2 > · · · > λt−1}. Then the corresponding
valley permutation f has f(k) = λk for 1 ≤ k ≤ t− 1 and f(k) = ρk for t ≤ k ≤ n.

•

•
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•

•

•

•

•

•

1
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7

8

9

1 2 3 4 5 6 7 8 9

B9

B8
B7B6

B5

Figure 2. For α = (2, 1, 2, 3, 1), the proof of Lemma 4.7 gives R = {1 <
3 < 4 < 6 < 9} and [9]\R = {8 > 7 > 5 > 2}. So the corresponding valley
permutation is f = 875213469. Here we have drawn the blob diagram of f , so
the reader may observe that f has shape α, as desired.

From the blob diagram for f (for example, see Figure 2), it is easy to see that there are
n − t + 1 blobs, with Bk (for t ≤ k ≤ n) containing the dots in columns {ρk, ρk + 1, ρk +
2, . . . , ρk+1 − 1}. Thus, the shape of f is α. Uniqueness follows from the bijection between
valley permutations and subsets of {2, 3, . . . , n}. □
4.3. Going down edges in weak order. Suppose that we have covers w >R wsi or
w >L siw. In this section, we will discuss how the blobs, the Rajchgot codes, and the
Rajchgot index change in this case.

Lemma 4.8. Let w >R wsi. Let (i, w(i)) and (i + 1, w(i + 1)) be in blobs Bp and Bq of w,
respectively. If p > q, then (i + 1, w(i)) and (i, w(i + 1)) are, respectively, in blobs Bp and
Bq of wsi, and all other dots stay in the same blobs. In this case, w and wsi have the same
shape, and raj(w) = raj(wsi). If p ≤ q, then w and wsi have different shapes. Calling their
shapes α and β respectively, we have α ≻ β and raj(w) > raj(wsi).
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Example 4.9. Let w = 462357918 as in Figure 1. Let w′ = ws2. The blob diagram of w′ is
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•
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,

where we have marked the dots that have moved with respect to w in green. Observe that
the shape of the permutation is unchanged from that of w (see Figure 1).
Then let w′′ = w′s4. Note that w

′ <R w′′. Then the blob diagram for w′′ is
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,

where again we have marked the dots that have moved in green. Note that here the shape
is different from the shape of w′, as depicted above. Letting α = (2, 3, 2, 2) be the shape of
w′′ and β = (1, 2, 2, 2, 2) be the shape of w′, we observe that α ≻ β. ♦

Proof of Lemma 4.8. First, suppose that p > q. Throughout the lassoing process up to blob
Bp+1, exactly the same dots will get lassoed in w and in wsi. When we get to blob Bp,
because j > k, there is some dot to the southeast of (i+1, w(i+1)) and this dot will remain
to the southeast of (i, w(i+ 1)), so (i, w(i+ 1)) will still not be lassoed; on the other hand,
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(i+ 1, w(i)) will still be lassoed. All other dots behave exactly the same way for w and wsi.
After blob Bp has been formed, the remaining unlassoed dots for w and wsi are precisely the
same except for whether they have an empty row in row i or in row i + 1, so everything is
the same after that point. Since we have shown that the blobs of w and wsi have the same
number of dots, w and wsi have the same shape and raj(w) = raj(wsi).
Now, suppose that p ≤ q. Again, the lassoing process is the same up to blob Bq+1. In

wsi, the dot (i + 1, w(i)) is southeast of (i, w(i + 1)), so (i, w(i + 1)) cannot be added to
blob Bq. If p = q, then (i + 1, w(i)) does get added to blob Bq; if p < q, then whatever
dot was southeast of (i, w(i)) to prevent it from getting added to blob Bq of w also prevents
(i+1, w(i)) from getting added to blob Bq of w. So either way, blob Bq for wsi has one fewer
element than for w. As we proceed through the lassoing process, each dot occurs in a blob
of wsi whose number is less than or equal to the corresponding blob of w. This shows that
α ≽ β and, since blob Bq is smaller for wsi than for w, we have α ≻ β. By Corollary 4.6,
this implies that raj(w) > raj(wsi). □
We have a similar result for left covers, whose proof is analogous and thus omitted:

Lemma 4.10. Let w >L sjw. Let (w−1(j), j) and (w−1(j + 1), j + 1) be in blobs Bp and
Bq of w, respectively. If p > q, then (w−1(j), j + 1) and (w−1(j + 1), j) are, respectively, in
blobs Bp and Bq of sjw, and all other dots stay in the same blobs. In this case, w and sjw
have the same shape, and raj(w) = raj(sjw). If p ≤ q, then w and sjw have different shapes.
Calling their shapes α and β, respectively, we have α ≻ β and raj(w) > raj(sjw). □
Lemmas 4.8 and 4.10 immediately give the following corollary.

Corollary 4.11. Let u and v be permutations with u ≥LR v. Then raj(u) ≥ raj(v). We
have raj(u) = raj(v) if and only if u and v have the same shape. □
Finally, we focus on understanding how the Rajchgot code of w is related to that of wsi

or siw, in the case where these permutations have the same Rajchgot index.

Lemma 4.12. If w >L siw and raj(w) = raj(siw), then rajcode(w) = rajcode(siw).
Suppose that w >R wsi and raj(w) = raj(wsi). Let rajcode(w) = (r1, r2, . . . , rn). Then
rajcode(wsi) = (r1, r2, . . . , ri+1 + 1, ri − 1, . . . , rn).

Proof. We begin by analyzing the case that w >L wsi. In this case, when we compare the
blob diagrams of w and siw, dots which are in the same row are in the same blob. Thus,
󰂃(w) = 󰂃(siw) and so rajcode(w) = rajcode(siw).
We now consider the case that w >R wsi. In this case, the dots which are in rows other

than i and i+1 are in the same blob for w and for wsi, but the dots in those two rows switch
blobs. So, if 󰂃(w) = (󰂃1, 󰂃2, . . . , 󰂃n), then 󰂃(wsi) = (󰂃1, 󰂃2, . . . , 󰂃i+1, 󰂃i, . . . , 󰂃n). We now apply
the formula rajcode(w) = 󰂃(w)− (1, 2, . . . , n) from Corollary 4.2. □
4.4. The fireworks map. We now describe how we can use the blob diagram to see whether
a permutation is fireworks.

Lemma 4.13. The permutation w ∈ Sn is fireworks if and only if the dots in each blob
occupy consecutive rows of the graph of w. Likewise, w is inverse fireworks if and only if the
dots in each blob occupy consecutive columns.

Proof. Suppose w is fireworks. Let the maximal descending runs of w be Dt, . . . , Dn−1, Dn

and write each such run Dk as Dk
1 , D

k
2 , . . . , D

k
j .
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We claim that dots of each Bk are those coming from the run Dk. To see this, first note
that dots from the last descending run Dn are a subset of Bn. By the fireworks condition,
each dot from Dn−1 is northwest of the dot for Dn

1 . Therefore none of these dots can be in
Bn; hence, they are all in Bn−1. Similarly each dot from Dn−2 is northwest of the dot for
Dn−1

1 , so they cannot be in Bn−1 and hence must be in Bn−2, etc.
Since the descending runs of w are by definition in consecutive positions, it follows that

the dots of each Bk occupy consecutive rows of the graph.
Conversely, suppose that the dots of each Bk are in consecutive positions. Clearly, w

restricted to the rows of any Bk is descending. We will show that the blobs are exactly
the descending runs. Let blob Bk be in rows p, p + 1, . . . , q − 1 and let blob Bk+1 be in
rows q, q + 1, . . . , r − 1. We must show that wq−1 < wq. Indeed, if not, then we have
wp > wp+1 > · · · > wq−1 > wq > wq+1 > · · · > wr−1. But then all the dots of Bk are to the
northeast of all the dots of Bk+1, contradicting that each dot of Bk must be northwest of at
least one dot in Bk+1. So, we now know that the blobs are precisely the descending runs of
w, and we know that the rightmost elements of the blobs come in increasing order, so w is
fireworks.
The statement about inverse fireworks permutations now follows by transposition. □
We now describe a map, the fireworks map, which turns an arbitrary permutation w

into a fireworks permutation Φ(w). The fireworks permutation Φ(w) corresponds to the set
partition π(w) using the bijection of Proposition 3.9. In other words, we take the dots in
the graph of w and shove the dots of each blob into consecutive rows.
For example, let w = 462357918. We computed before that π(w) = {2, 34, 56, 17, 89}.

The corresponding fireworks permutation is 243657198. See Figure 3 for a graphical depiction
of this process.
We define Φinv(w) = Φ(w−1)−1. Graphically, we take the blobs of w and shove them into

consecutive columns.

Lemma 4.14. For any permutation w, we have Φ(w) ≤R w and Φinv(w) ≤L w. In other
words, we have length additive factorizations w = Φ(w)v = uΦinv(w) for some u and v.

Proof. Suppose i < j and i appears left of j in w. Then i goes in a smaller numbered block
of π(w), so i is left of j in Φ(w). Thus Φ(w) ≤R w by [HP08, Lemma 4.1] (see also, [Ber71]).
Now notice Φ(w−1) ≤R w−1. Thus Φinv(w) = Φ(w−1)−1 ≤L w. □

Remark 4.15. Although Φ(w) ≤R w, this does not mean that Φ is order-preserving! For
example, Φ(4312) = 1432 and Φ(3412) = 3142. Now 4312 = 3412 · s1, so 3412 <R 4312, but
3142 ∕≤R 1432 since 1 and 3 are noninverted in 1432, but inverted in 3142.

Lemma 4.16. The blobs Bk of Φ(w) and of w consist of dots in the same columns, the
permutation w is fireworks if and only if Φ(w) = w, and the permutations w and Φ(w) have
the same shape. The corresponding statements (replacing “columns” with “rows”) also hold
for Φinv and being inverse fireworks.

Proof. The first claim is true by construction. The second claim is straightforward from
Lemma 4.13. As we checked in the proof of Lemma 4.13, the blobs of a fireworks permutation
are its descending runs. The cardinalities of these blobs are the shape, proving the last claim
for Φ. The claims for Φinv are then immediate by transposition. □
Corollary 4.17. For any permutation w, we have raj(w) = raj(w−1) = raj(Φ(w)) =
raj(Φinv(w)).
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Figure 3. The fireworks permutation Φ(w) corresponding to the permutation
w from Figure 1. Note that the the dots in blob Bk are in the same columns
in both blob diagrams.

Proof. Since w, w−1, Φ(w) and Φinv(w) all have the same shape by Lemma 4.16, this corollary
follows immediately from Lemma 4.3. □

In the case of the inverse fireworks map, we can state a stronger result.

Corollary 4.18. For any permutation w, we have rajcode(w) = rajcode(Φinv(w)).

Proof. The blobs Bk of the blob diagrams for w to Φinv(w) consist of dots from the same rows.
Therefore, 󰂃(w) = 󰂃(Φinv(w)). We obtain the Rajchgot code by subtracting (1, 2, 3, . . . , n)
from the word 󰂃. □

For a composition α = (α1, . . . ,αr) of n, let Sα be the Young subgroup Sα1×Sα2×· · ·×Sαr

(in the standard way) and let eα be its longest element. A permutation w is called layered
if w = eα for some α. (These are also called “231- and 312-avoiding” permutations.)

Lemma 4.19. Let w be a permutation of shape α. Then Φ(Φinv(w)) = Φinv(Φ(w)) = eα.

Proof. This is clear from the blob diagram description and Lemma 4.16. □

We are now ready to prove:

Theorem 4.20. For all w ∈ Sn, we have

raj(w) = max{maj(v) : v ≤R w} = max{maj(u−1) : u ≤L w}

Proof. Fix w ∈ Sn. From Corollary 4.11, for any v with v ≤R w, we have raj(w) ≥ raj(v).
And, from Lemma 3.4, we have raj(v) ≥ maj(v). So raj(w) ≥ max{maj(v) : v ≤R w}. We
now must show that there is some v with w ≥R v and raj(w) = maj(v).
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Indeed, we have w ≥R Φ(w) (Lemma 4.14), we have raj(w) = raj(Φ(w)) (Corollary 4.17)
and we have raj(Φ(w)) = maj(Φ(w)) (Proposition 3.8), so v = Φ(w) is the desired permuta-
tion. The proof that raj(w) = max{maj(u−1) : u ≤L w} is similar. □

4.5. Weak order and factorizations. We now discuss interactions between the fireworks
maps and the left and right weak orders.

Lemma 4.21. Suppose w ∈ Sn has shape α. Then w has a unique length-additive factor-
ization

w = ueαv,

for some permutations u, v ∈ Sn. Moreover, we have Φ(w) = ueα and Φinv(w) = eαv.

The reader may wish to consult Example 4.26 now.

Proof. We first show that such a factorization exists. By Lemma 4.14, we have length additive
factorizations w = Φ(w)v = (uΦinv(Φ(w)))v = ueαv, where we have used Lemma 4.19 in
the last equality. For this u and v, we have Φ(w) = wv−1 = ueα. Similarly, there is some a
priori different u′ and v′ for which we have length-additive factorizations w = u′Φinv(w) =
u′(Φ(Φinv(w))v

′) = u′eαv
′ and, for this (u′, v′), we have Φinv(w) = eαv

′.
We will now show that a permutation w of shape α can have only one length-additive

factorization of the form ueαv. This will prove the uniqueness claim in the lemma, and will
also establish that (u, v) = (u′, v′), so that we have both Φ(w) = ueα and Φinv(w) = eαv.
First, suppose that we have a length-additive factorization w = ueβv but do not yet

assume that β is the shape of w (which we still denote α.) Let A1, A2, . . . , An be the blobs
of w and let B1, B2, . . . , Bn be the blobs of eβ (some of these blobs with small indices may
be empty). Let (i, j) be in blob Ak.

Claim. We have (v(i), u−1(j)) ∈ B1 ∪ B2 ∪ · · · ∪ Bk.

Proof of Claim. Let (i, j) = (i1, j1) and consider a maximal chain

(i1, j1), (i2, j2), . . . , (in−k+1, jn−k+1)

of dots arranged northwest to southeast in the graph of w (i.e., such that ih < ih+1 and
jh < jh+1 for all h). By [HP08, Lemma 4.1] and the fact that ueβv is a length-additive
factorization, the dots

(v(i1), u
−1(j1)), (v(i2), u

−1(j2)), . . . , (v(in−k+1), u
−1(jn−k+1))

are also arranged northwest to southeast in the graph of eβ (although no longer necessarily
a maximal such chain). Therefore, (v(i), u−1(j)) is in B1 ∪ B2 ∪ · · · ∪ Bk. □
From the claim, we deduce that |A1 ∪ A2 ∪ · · · ∪ Ak| ≤ |B1 ∪ B2 ∪ · · · ∪ Bk| or, in other

words, that α1 + α2 + · · ·+ αk ≤ β1 + β2 + · · ·+ βk.
Now, suppose α = β. Then we have equalities in the previous paragraph, implying that

we must have (v(i), u−1(j)) in Bk for every (i, j) in Ak. So u takes the columns of blob Bk to
the columns of blob Ak, and v takes the rows of blob Bk to the rows of blob Ak. Moreover,
since any two rows within a blob are inverted in eα, and ueα and eαv are length-additive
factorizations, the permutations u and v must preserve the order within blobs (again by
[HP08, Lemma 4.1]). Thus, u and v are uniquely determined by eα. □
We can use this factorization to understand the ≤LR interval [eα, w]LR.
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Lemma 4.22. Let w be a permutation of shape α, and let w = ueαv be the unique length-
additive factorization of w. Then the map µ : (u′, v′) 󰀁→ u′eαv

′ is a poset isomorphism from
the product [eα, u]L × [eα, v]R to the two-sided weak interval [eα, w]LR.

Proof. The map µ lands in [eα, w]LR and is injective by the uniqueness part of Lemma 4.21,
combined with Lemmas 4.8 and 4.10. It is also a morphism of posets. We will prove that µ
is surjective and that is is a poset isomorphism at the same time. Specifically, we will show
the following claim.

Claim. If w1 ⋖LR w2 is a cover, with w1 ∈ [eα, ueαv]LR and w2 ∈ imµ, then w1 ∈ imµ, and
µ−1(w2) covers µ

−1(w1) in [eα, u]L × [eα, v]R.

Proof of Claim. Let w1 ⋖LR w2. Then either w1si = w2 or siw1 = w2; without loss of
generality, we consider only the former case w1si = w2. Since we assume w2 ∈ imµ, we
have a length-additive factorization w2 = u2eαv2. We claim that v2 >R v2si. Indeed, from
Lemma 4.8, (i, w2(i)) is in a higher-numbered blob of w2 than (i + 1, w2(i + 1)) is. From
the description in the proof of Lemma 4.21 of how to recover v2 from w2, this means that
v2(i) > v2(i+1). Thus, v2 >R v2si. So w1 = u2eα(v2si) is also a length-additive factorization,
and the cover (w1, w2) lifts to the cover ((u2, v2si), (u2, v2)). This proves the claim. □
Let us see why the claim establishes the surjectivity and isomorphism. For surjectivity, let

x ∈ [eα, w]LR and choose a saturated ≤LR-chain from x up to w. Working down that chain
from the top, the claim inductively shows that every element of that chain is in the image
of µ (the base case x = w is trivial), so in particular x ∈ imµ; since x was arbitrary, this
shows that µ is surjective. Also, since the claim shows that every edge of the Hasse diagram
of [eα, w]LR lifts to an edge of the Hasse diagram of [eα, u]L × [eα, v]R, and we have already
noted that µ is a map of posets, the claim also shows that µ is an isomorphism of posets. □
We can use weak order to get a new perspective on the set of fireworks permutations of a

given shape.

Lemma 4.23. Let fα be the unique valley permutation of shape α (introduced in Lemma 4.7).
Then the set of fireworks permutations of shape α is the left interval [eα, f

−1
α ]L, and the set

of inverse fireworks permutations of shape α is the right interval [eα, fα]R.

Proof. We will show that the set of inverse fireworks permutations of shape α is [eα, fα]R;
the other claim follows by inversion. Let α = (αt,αt+1, . . . ,αn). Set ρn+1 = n + 1 and
ρk = n+ 1− αk − αk+1 − · · ·− αn for t ≤ k ≤ n.
In any inverse fireworks permutation w of shape α, Lemma 4.13 shows that blob Bk is in

columns {ρk, ρk +1, . . . , ρk+1 − 1}, and the rows of that blob are πk(w) by definition. Let us
consider whether or not (i, j) will be an inversion of w, for some 1 ≤ i < j ≤ n. Recall that
(i, j) is an inversion if and only if the dot in column i in the blob diagram is east of the dot
in column j. This configuration occurs if and only if ρk ≤ i < j < ρk+1.
Suppose, then, that ρk ≤ i < ρk+1 ≤ ρℓ ≤ j < ρℓ+1. If w is eα, (i, j) will not be an

inversion. If w is fα, (i, j) will not be an inversion if j = ρℓ, but will be if j > ρℓ. For
an arbitrary inverse fireworks permutation w, it is also true that (i, j) is not an inversion
if j = ρℓ, as the largest element of πℓ must be larger than all elements of πk. Hence, the
inversion set of w contains that of eα and is contained in that of fα, implying w ∈ [eα, fα]R
by [HP08, Lemma 4.1].
We have now shown that the set of all inverse fireworks permutations of shape α is con-

tained in [eα, fα]R. Conversely, let u ∈ [eα, fα]R, and apply Lemma 4.22 with w = fα.
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Then we see that u has a length-additive factorization eαv, and that u is of shape α. These
conditions force u to be inverse fireworks as well. □

Remark 4.24. It is well known that the permutation w1w2 · · ·wn is in the interval [eα, w0]R if
and only if the letters {ρk, ρk+1, . . . , ρk+1−1} appear in decreasing order within w1w2 · · ·wn

for each t ≤ k ≤ n. For example, in S3, we have [e21, w0]R = {213, 231, 321}. We thus
have a bijection β from [eα, w0]R to permutations of the string tαt(t + 1)αt+1 · · ·nαn , where
β(w1w2 · · ·wn) replaces the letters {ρk, ρk + 1, . . . , ρk+1 − 1} with k’s. Continuing with our
example, β(213) = 223, β(231) = 232 and β(321) = 322. If we think of first inserting the
(t + 1)’s into the t’s, then the (t + 2)’s into the string of t’s and (t + 1)’s, and so forth, we
see that

#[eα, w0]R =
n󰁜

k=t+1

󰀕
αt + αt−1 + · · ·+ αk

αk

󰀖
=

n!

(αt)!(αt+1)! · · · (αn)!
.

We have β(fα) = nαn−1 · · · (t+1)αt+1−1tαt−1t(t+1) · · ·n. Using the permutation of Figure 2
as an example, with α = (2, 1, 2, 3, 1), we have β(fα) = β(875213469) = 887556789. More
generally, for a permutation w ∈ [eα, w0]R, we have w ∈ [eα, fα]R if and only if, for each
t < k ≤ n, the last occurrence of k in β(w) comes after the last occurrence of k − 1.
Proceeding as in the above enumeration of [eα, w0]R, we have

#[eα, fα]R =
n󰁜

k=t+1

󰀕
αt + αt−1 + · · ·+ αk − 1

αk − 1

󰀖
=

󰁔n
k=t+1 αk󰁔n

k=t+1(αt + αt+1 + · · ·+ αk)
·#[eα, w0]R.

We are now able to prove the following lemma, to be used in Section 6.

Lemma 4.25. Let x be any permutation in Sn, let α = (αk,αk+1, . . . ,αn) be a composition
of n, and let y = eα ∗ x ∗ eα, where ∗ denotes the Demazure product. Then raj(y) ≥ raj(eα)
and we have equality if and only if y = eα.

Proof. Set βm = αk+αk+1+ · · ·+αm and let ρm = {βm−1+1, βm−1+2, · · · , βm−1+αm}, so
ρ is a set partition of [n] with |ρm| = αm. Write π for the set partition π(y) associated to y.
We note that eα ∗ eα = eα. Therefore, we have eα ∗ y = y = y ∗ eα. The equality y = y ∗ eα

is equivalent to imposing that y is descending when restricted to any of the blocks of ρ. In
other words, if we split the blob diagram of y into horizontal strips of sizes αk, αk+1, . . . ,
αn, the dots in each strip are arranged on a northeast-southwest antidiagonal. We thus see
that πn ∪πn−1 ∪ · · ·∪πm ⊇ ρn ∪ ρn−1 ∪ · · ·∪ ρm. Together with Lemma 4.3, this implies that
raj(y) ≥ raj(eα), with equality if and only if πm = ρm for all m.
However, we also have y = eα ∗ y, which means that if we split the blob diagram of y

into vertical strips of the same sizes, the dots in each strip are also arranged on a northeast-
southwest antidiagonal. We thereby deduce that we have equality if and only if y−1(πm) =
ρm. Thus, we have equality if and only if y maps each ρm to itself, and does so in an order
reversing way. The only permutation which does this is eα. □

Example 4.26. We list all permutations of shape α = (1, 1, 2), their factorizations in the form
ueαv, and the corresponding double Castelnuovo–Mumford polynomials:

2341
1342
1243 1423 4123

s1s2e112
s2e112
e112 e112s2 e112s2s1
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(x1x2x3)(y
3
1)

(x1x2x3)(y
2
1y2 + y1y

2
2)

(x1x2x3)(y1y2y3) (x21x2 + x1x
2
2)(y1y2y3) (x31)(y1y2y3)

The layered permutation e112 = 1243 is in the lower left, the valley permutation f112 = 4123
is in the lower right and the inverse valley permutation f−1

112 = 2341 is in the upper left.
The permutations in the left column are fireworks; the permutations in the bottom row
are inverse fireworks, and the permutations which are maximally northeast are dominant.
The maps Φ and Φinv are the orthogonal projections onto the left column and bottom row,
respectively. ♦

5. Degrees of Grothendieck polynomials

In this section, we prove part of Theorem 1.1. Namely, we establish that the degree of the
Castelnuovo–Mumford polynomial CMw(x) is the Rajchgot index raj(w), and hence that
raj(w) − inv(w) gives the Castelnuovo–Mumford regularity of the matrix Schubert variety
Xw. This also proves the final remaining equality of Theorem 1.6 (the other equalities
of Theorem 1.6 were established in Theorem 4.20). The remainder of Theorem 1.1, the
identification of leading monomials of Castelnuovo–Mumford polynomials, will be proved
later after we establish the factorization statement of Theorem 1.5.

Lemma 5.1. If u ≤LR w, then degCMu(x) ≤ degCMw(x).

Proof. Suppose w > wsi. Then Gwsi(x) = ∂iGw(x) = ∂i(Gw(x) − xi+1Gw(x)). Suppose
degGw(x) = d. Then deg(Gw(x) − xi+1Gw(x)) = d + 1. Note that ∂i is a linear operator
that maps any k-form to a (k − 1)-form (or to 0). Hence, degGwsi(x) ≤ d = degGw(x).
Suppose v > siv. Let w = v−1, so (siv)

−1 = wsi. Then w > wsi, so we have
degGwsi(x) ≤ degGw(x). But by the pipe dream formula (Theorem 2.3), it is clear that
degGw(x) = degGv(x) and degGwsi(x) = degGsiv(x), as pipe dreams for inverse permu-
tations are related by transposition. Hence, we also have degGsiv(x) ≤ degGv(x).
The lemma follows by recursion down two-sided weak order. □

Example 5.2. Note that the analogous result does not hold for the strong order. For instance,
1432 ≤ 3412 but degG1432(x) = 5 and degG3412(x) = 4. ♦

Lemma 5.3. If w is a dominant permutation, then

degCMw(x) = degSw(x) = inv(w) = raj(w).

Proof. From Proposition 3.3, we have Gw(x) = Sw(x) when w is dominant, establishing the
first equality. The second equality is a standard fact about Schubert polynomials. The final
equality was established in Proposition 3.2. □
Now we turn to determining degCMw(x) for layered permutations w.

Lemma 5.4. If w = eα, then degCMw(x) = raj(w).

Proof. Let α = (α1, . . . ,αk) and let w = eα. It is convenient to abbreviate βm = α1 + α2 +
· · ·+αm. We will compute CMw(x) using the pipe dream formula (Theorem 2.3); note that
only pipe dreams with the maximal number of crossings contribute to the highest degree part
of Gw(x). We will show that, in fact, there is a unique pipe dream for eα with a maximal
number of crossings.
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Specifically, let Qα be the pipe dream which has bumping tiles on the antidiagonals i +
j − 1 = βm, for 1 ≤ m ≤ k, and crossing tiles on all antidiagonals i + j − 1 = γ for
γ ∕∈ {β1, β2, . . . , βk}. See Example 5.5 for an example. It is easy to check that Qα is a pipe
dream for eα.
Now, let P be any pipe dream for eα. We will show that the set of crossing tiles in P is

a subset of the crossing tiles of Qα. Indeed, suppose for the sake of contradiction that P
has a crossing tile on the antidiagonal i+ j − 1 = βm for some βm. Then the pipe dream P
corresponds to a permutation which is greater than the simple transposition sβm in Bruhat
order. But, in fact, eα ∕≥ sβm , a contradiction.
We have thus shown that every pipe dream for w is a subset of Qα, so the only maximal

degree term in CMeα(x) is the term corresponding to Qα. The antidiagonal i + j − 1 = γ
has γ crossing tiles on it, for each γ ∕∈ {β1, . . . , βk}, and these γ’s are precisely the descents
of eα. So degQα = maj(eα). Since eα is fireworks, we have raj(eα) = maj(eα). □
Example 5.5. If α = (2, 2, 3, 2), then eα has one-line notation 214376598. Below, we draw
the Rothe diagram (on the left) and the pipe dream Qα (on the right).

, ♦
Remark 5.6. In fact, the proof of Lemma 5.4 shows that there is a unique pipe dream for eα
of top degree, so CMeα(x) is a single monomial.

Proposition 5.7. Let w ∈ Sn have shape α. The permutation w is ≤LR-maximal among
permutations of shape α if and only if w is dominant.

Proof. (⇒) Suppose w ∈ Sn has shape α and is not dominant. We show it is not ≤LR-
maximal among permutations of that shape.
Recall that a permutation u is dominant if and only if there do not exist i1 < i2 < i3 and

j1 < j2 < j3 with u(i1) = j1, u(i2) = j3, u(i3) = j2. We will call such ((i1, i2, i3), (j1, j2, j3))
a 132-pattern . We define the magnitude of a 132-pattern ((i1, i2, i3), (j1, j2, j3)) to be the
positive integer (i2 − i1) + (j2 − j1).
Consider a 132-pattern ((i1, i2, i3), (j1, j2, j3)) of minimal magnitude among all 132-patterns

of w. Let j1 ∈ πd1(w), j2 ∈ πd2(w) and j3 ∈ πd3(w). Since (i1, j1) is strictly northwest of
both (i2, j3) and (i3, j2) in the diagram, we have d1 < d2 and d1 < d3.
Without loss of generality, we will assume that d2 ≤ d3 and show that w is not≤R-maximal.

(If we had made the opposite assumption that d2 ≥ d3, the same argument mutatis mutandis
would show that w is not ≤L-maximal.)
Set i = i2 − 1 and j = w(i). If j > j2, then ((i1, i, i3), (j1, j2, j)) is a 132-pattern in w with

magnitude strictly less than ((i1, i2, i3), (j1, j2, j3)), a contradiction. Also, clearly i ∕= i3, so
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j ∕= j2. Hence j < j2. Thus, wsi >R w. We will therefore be done if we show that wsi has
the same shape as w.
Let j ∈ πd(w). Since (i, j) is strictly northwest of (i3, j2) in the diagram for w, we have

d < d2 ≤ d3. If d ≤ d3 − 2, then w and wsi automatically have the same shape, since in
this case the longest increasing run of w starting at j does not involve j3. So it remains to
analyze the case where d = d3 − 1.
Assume therefore that d = d3 − 1. Then we must have d2 = d3. Then observe that (i, j)

is strictly northwest of both (i2, j3) and (i3, j2) in the diagram for w, and that j2 and j3 are
both in πd3(w). Therefore, wsi has an increasing substring starting with j of the same length
as the maximal such run of w, since we may merely prepend j onto a maximal increasing
substring of either permutation starting with j2.
(⇐) Suppose w is dominant and that wsi >R w. We will show that α(w) ∕= α(wsi). Since

α(w) = α(w−1) and inverses of dominant permutations are also dominant, an equivalent
argument shows that left covers of w also have different shapes from α(w).
Let j = w(i) and j′ = w(i+1). By assumption j < j′. Since w is dominant, j′ is the least

integer greater than j that is not w(k) for some k < i. Therefore, any maximal increasing
subsequence of w starting with j must include the letter j′, and indeed must start jj′. Let
j ∈ πd(w). Then j′ ∈ πd+1(w).
If we have k ∈ πd+1(w), then k ∈ πd+1(wsi). This is because the maximal increasing

subsequences of w starting with k are the same as the maximal increasing subsequences of wsi
starting with k. On the other hand, j /∈ πd(wsi) since every maximal increasing subsequence
of w starting with j must start jj′, but j′ does not follow j in wsi. We can however find
increasing runs of wsi starting with j that are of length one smaller, so j ∈ πd+1(wsi).
Therefore, αd+1(w) < αd+1(wsi) and so α(w) ∕= α(wsi). □

Theorem 5.8. Let w ∈ Sn. Then degCMw(x) = raj(w).

Proof. Suppose the shape of w is α. By Proposition 5.7, there is a dominant permutation u
of shape α with w ≤LR u. By Lemma 4.21, the layered permutation eα satisfies eα ≤LR w.
Let d = raj(eα). By Lemma 5.4, we have d = degCMeα(x). Since α(u) = α, we have

raj(u) = d. By Lemma 5.3, we have CMu(x) = raj(u) = d.
Since raj(•) and degCM•(x) are weakly increasing with respect by ≤LR (by Corollary 4.11

and Lemma 5.1), we must also have raj(w) = d and degCMw(x) = d. □

5.1. Matrix Schubert varieties of maximal Castelnuovo–Mumford regularity. As
an application of the preceding ideas, we will determine the permutations w ∈ Sn which max-
imize raj(w)− inv(w). By Theorem 5.8, these are the permutations whose matrix Schubert
varieties are of maximal Castelnuovo–Mumford regularity.

Theorem 5.9. Let n be a positive integer and define k by
󰀃
k
2

󰀄
≤ n ≤

󰀃
k+1
2

󰀄
; if n is a triangular

number, then we may choose either value for k. Then the permutations in Sn which achieve
the highest value of raj(w)−inv(w) are the layered permutations eα1α2···αk where j−1 ≤ αj ≤ j
and

󰁓
αj = n; subject to the convention that we permit α1 = 0 and treat e0α2α3···αk as meaning

eα2α3···αk . All of these permutations achieve raj(w)− inv(w) =
󰀃
n+1
2

󰀄
− kn+

󰀃
k+1
3

󰀄
.

Remark 5.10. If n is a triangular number, n =
󰀃
m
2

󰀄
, then there is a unique permutation

which maximizes raj(w)− inv(w), namely e12···(m−1) = e012···(m−1). In general, if n =
󰀃
k
2

󰀄
+ j

for 0 ≤ j ≤ k, there are
󰀃
k
j

󰀄
permutations which achieve the bound.
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Remark 5.11. The sequence of values
󰀃
n+1
2

󰀄
− kn +

󰀃
k+1
3

󰀄
starts 0, 0, 1, 2, 4, 7, 10, 14, 19,

25, 31, 38, 46, 55, 65, 75 . . . . The differences between consecutive terms of this sequence
are 0, 1, 1, 2, 3, 3, 4, 5, 6, 6, 7, 8, 9, 10, 10 . . . ; in other words, the increasing sequence
where each triangular number occurs twice and all other positive integers occur once. The
sequence

󰀃
n+1
2

󰀄
− kn+

󰀃
k+1
3

󰀄
(with the initial zeroes deleted) is [Slo, A023536].

Proof of Theorem 5.9. Let w ∈ Sn and say it has shape α. By Lemma 4.21, take a length-
additive factorization w = ueαv with raj(w) = raj(eα). Then raj(w) − inv(w) = raj(eα) −
inv(u)− inv(eα)− inv(v) ≤ raj(eα)− inv(eα), with equality if and only if u = v = 1. So the
maximum regularity will occur only for layered permutations.
Now, let α = (α1,α2, . . . ,αℓ) be a composition of n. We compute raj(eα)− inv(eα). The

unique maximal pipe dream for eα is described in the proof of Lemma 5.4 and depicted in
Example 5.5. The number of crosses in it is

󰀃
n+1
2

󰀄
−

󰁓ℓ
i=1(α1 + α2 + · · · + αi); the term

(α1+α2+ · · ·+αi) being the number of elbows on the antidiagonal between the ith and the

(i+ 1)st block. Meanwhile, the length of eα is inv(eα) =
󰁓ℓ

j=1

󰀃
αj
2

󰀄
. So

raj(eα)− inv(eα) =

󰀕
n+ 1

2

󰀖
−

ℓ󰁛

i=1

(α1 + α2 + · · ·+ αi)−
ℓ󰁛

j=1

󰀕
αj

2

󰀖
.

We note for future reference that this formula would still be correct if we prefixed zeroes to
our composition vector α.
We now rearrange the formula. We have

󰁓ℓ
i=1(α1 + α2 + · · ·+ αi) =

󰁓ℓ+1
j=1(ℓ− j)αj. So

raj(eα)− inv(eα) =

󰀕
n+ 1

2

󰀖
−

ℓ󰁛

j=1

󰀕
(ℓ+ 1− j)αj +

󰀕
αj

2

󰀖󰀖

=

󰀕
n+ 1

2

󰀖
−

ℓ󰁛

j=1

󰀕
ℓαj +

󰀕
αj − j + 1

2

󰀖
−

󰀕
j

2

󰀖󰀖

=

󰀕
n+ 1

2

󰀖
− ℓ

ℓ󰁛

j=1

αj +
ℓ󰁛

j=1

󰀕
j

2

󰀖
−

ℓ󰁛

j=1

󰀕
αj − j + 1

2

󰀖

=

󰀕
n

2

󰀖
− ℓn+

󰀕
ℓ+ 1

3

󰀖
−

ℓ󰁛

j=1

󰀕
αj − j + 1

2

󰀖
.

Define 󰂏(α) =
󰀃
n
2

󰀄
− ℓn+

󰀃
ℓ+1
3

󰀄
−

󰁓ℓ
j=1

󰀃
αj−j+1

2

󰀄
.

It is now easy to see that the claimed compositions achieve raj(eα) − inv(eα) =
󰀃
n+1
2

󰀄
−

kn +
󰀃
k+1
3

󰀄
: For these compositions, we have αj − j + 1 ∈ {0, 1} for all j, so the final sum

is 0. (In the cases where α1 = 0, we have used that our formula is valid with an initial 0
prepended to α.)
We now need to show that no other composition can achieve as high a value. It is tempting

to think that we can simply say that we are done because
󰀃
αj−j+1

2

󰀄
≥ 0. However, we do not

know that ℓ (the number of parts of our composition) is equal to k (the index of the largest
triangular number below n). We take a different route.
Let α = (α1,α2, . . . ,αℓ) be a composition which maximizes 󰂏(α), and we emphasize that

we have not prefixed any zeroes, so all the αi are strictly positive. Replacing α by α′ =
(α1 − 1,α2, . . . ,αi + 1, . . . ,αℓ) and subtracting 󰂏(α′) from 󰂏(α), we deduce from maximality
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that αi − i ≥ α1 − 2 so αi ≥ i + α1 − 2 ≥ i− 1. On the other hand, if αi > 1 then we may
replace α by α′′ = (1,α1,α2, . . . ,αi − 1, . . . ,αn). Subtracting 󰂏(α′′) from 󰂏(α), then gives by
maximality that αi − (i + 1) ≤ 0, so αi ≤ i + 1 and, of course, if αi = 1 then we also have
αi ≤ i+ 1. In short, we see that i− 1 ≤ αi ≤ i+ 1.
We now claim that it is impossible that we both have αi = i − 1 and αj = j + 1 for

some indices i and j. Indeed, if this occurred, then replacing α with α′′′ = (α1,α2, . . . ,αi +
1, . . . ,αj − 1, . . . ,αℓ), we find that 󰂏(α′′′) has the same ith summand as 󰂏(α), but the jth
summand descreases from 1 to 0, making 󰂏(α′′′) larger than 󰂏(α), a contradiction. So it
either holds that i− 1 ≤ αi ≤ i or that i ≤ αi ≤ i + 1 for all i. If we are in the latter case,
prepend a 0 to α. The modified α will then have i− 1 ≤ αi ≤ i for all i. We will now use ℓ
to refer to the number of parts in this modified α.
We have shown that the optimal α has i − 1 ≤ αi ≤ i for all i, and possibly an initial 0,

and we have excluded the case (0, 1, 2, . . . , ℓ− 1) by fiat. Then

n =
ℓ󰁛

i=1

αi ≤
ℓ󰁛

i=1

i =

󰀕
ℓ+ 1

2

󰀖

and

n =
ℓ󰁛

i=1

αi ≥
ℓ󰁛

i=1

(i− 1) =

󰀕
ℓ

2

󰀖
,

so
󰀃
ℓ
2

󰀄
≤ n ≤

󰀃
ℓ+1
2

󰀄
, and ℓ is the k in the statement of the theorem (or one of the two values

for k, if n is a triangular number). □

6. Rajchgot polynomials

We identify an important family of polynomials, indexed by set partitions.

Definition 6.1. Let π be a set partition of [n] and let w be the unique fireworks permutation
with π(w) = π. We define the Rajchgot polynomial Rπ(x) to be CMw(x).

The goal of this section is to prove the following factorization theorem for double Castelnuovo–
Mumford polynomials, establishing the first part of Theorem 1.5.

Theorem 6.2. For any w ∈ Sn,

CMw(x;y) = Rπ(w)(x)Rπ(w−1)(y).

See Example 4.26 for examples of this Theorem.

Lemma 6.3. Let p ∈ [Φinv(w), w]L and q ∈ [Φ(w), w]R. Then q ∗ p = w if and only if
p = Φinv(w) and q = Φ(w).

By Lemma 4.21, every permutation w ∈ Sn with α(w) = α has a unique length-additive
factorization w = ueαv, where Φ(w) = ueα and Φinv(w) = eαv. Therefore, the interval
[Φinv(w), w]L is {u′eαv : id ≤L u

′ ≤L u} and [Φ(w), w]R is {ueαv′ : id ≤R v′ ≤R v}.

Proof. Let w have shape α and uniquely write w = ueαv as above, so p = u′eαv and q = ueαv
′

for some u′ ∈ [id, u]L and some v′ ∈ [id, v]R.
If p = Φinv(w) and q = Φ(w), then q ∗ p = ueα ∗ eαv = ueαv = w as desired, since the

layered permutation eα is idempotent for the Demazure product ∗.
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Now, suppose that at least one of u′ and v′ is not the identity; we must show that (ueαv
′)∗

(u′eαv) is not equal to ueαv. Since the products in parentheses are length additive, we have
(ueαv

′) ∗ (u′eαv) = u ∗ eα ∗ v′ ∗ u′ ∗ eα ∗ v.
Since at least one of u′ and v′ is not the identity, at least one of eα ∗ v′ and u′ ∗ eα is longer

than eα and thus (eα ∗v′)∗(u′ ∗eα) is not eα. However, eα ∗v′ ∗u′ ∗eα is of the form eα ∗x∗eα,
so Lemma 4.25 applies and we see that raj(eα ∗ v′ ∗ u′ ∗ eα) > raj(eα). Using Corollary 4.11,
we then have raj(u∗eα ∗v′ ∗u′ ∗eα ∗v) > raj(eα). However, we also have raj(eα) = raj(ueαv),
so we deduce that u ∗ eα ∗ v′ ∗ u′ ∗ eα ∗ v ∕= u ∗ eα ∗ v, as required. □

Proof of Theorem 6.2. Recall the Cauchy identity for double Grothendieck polynomials (see
[LRS06, Proof of Theorem 6.7]) is

(1) Gw(x;y) =
󰁛

q∗p=w
(−1)inv(w)−inv(p)−inv(q)Gp(x)Gq−1(y).

We note that the condition q ∗ p = w implies that p ≤L w and q ≤R w.
Now, let’s strip off the terms of degree (raj(w), raj(w)). These can only come from (p, q)

with raj(p) = raj(q) = raj(w). By combining Corollary 4.6 with Lemmas 4.8 and 4.10,
the conditions p ≤L w and raj(p) = raj(w) are collectively equivalent to p ∈ [Φinv(w), w]L.
Similarly, we need q ∈ [Φ(w), w]R. So the highest degree parts of Equation (1) are also the
highest degree parts of

󰁛

q∗p=w
p∈[Φinv(w),w]L
q∈[Φ(w),w]R

Gp(x)Gq−1(y).

But now Lemma 6.3 says that the single term satisfying the summation conditions is (p, q) =
(Φinv(w),Φ(w)). So the highest degree part of Gw(x;y) is also the highest degree part of
GΦinv(w)(x)GΦ(w)−1(y) = Rπ(w)(x)Rπ(w−1)(y), as desired. □

We are now ready to prove another portion of Theorems 1.1 and 1.5, namely that the
leading monomial of the double Grothendieck polynomial is at most xrajcode(w)yrajcode(w−1).
The verification that there is in fact a monomial with this degree will occur in Section 7.
For the following argument, it will be useful to consider pipe dreams as a special case

of more general planar histories, confined to a rectangular region (cf. [FK94, Wei21]). A
southwest planar history of size n is a configuration of n paths, each of which starts
at the top edge of a rectangle and ends at the left edge. Within the rectangle, paths move
weakly southwest at all times. Paths may cross, but they do not travel concurrently at any
point, and there are no triple crossings.
To each crossing, we associate a simple reflection as follows. Let k be the number of paths

which pass strictly southeast of the crossing. Then we label the crossing with sn−k−1. To
produce a word, order crossings from top to bottom, breaking ties within rows by reading
from right to left. The reader may verify that in the case of pipe dreams, this procedure
produces the same reading word as the one we described in Section 2.4. We associate a
permutation to a planar history by taking the Demazure product of its reading word.

Theorem 6.4. Let w be a permutation, let rajcode(w) = (r1, . . . , rn) and let rajcode(w−1) =
(s1, . . . , sn). For any term order satisfying x1 < x2 < · · · < xn and y1 < y2 < · · · < yn, every
monomial of CMw(x;y) is at most xr11 · · · xrnn ys11 · · · ysnn .
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Proof. Let xa11 · · · xann yb11 · · · ybnn be a monomial occurring in CMw(x;y), and let P be a corre-
sponding pipe dream, so that P has ai crosses in row i and bj crosses in column j. We must
show, for all k, that ak+1 + · · ·+ an ≤ rk+1 + · · ·+ rn and bk+1 + · · ·+ bn ≤ sk+1 + · · ·+ sn.
We will prove that ak+1+ · · ·+an ≤ rk+1+ · · ·+ rn; the other inequality is analogous. When
k = 0, this says that the number of crosses in any pipe dream for w is bounded by raj(w),
which we showed in Theorem 5.8. We will now provide the proof for general k.
Take the pipe that exits in the first row of P and delete it to create a new diagram Q1.

This is now a southwest planar history of size n − 1. Now, take the pipe that exits in the
second row of Q1 and delete it to create Q2, a southwest planar history of size n−2. Continue
in this way to define planar histories Qk for each 1 ≤ k ≤ n− 1.
First, observe that the permutation corresponding to Qk is the unique wk ∈ Sn−k such

that wk
1 · · ·wk

n−k have the same relative order as wk+1 · · ·wn. In particular, this implies
raj(wk) = rk+1 + · · ·+ rn. We want to show that ak+1 + · · ·+ an ≤ raj(wk).
Let P k be the result of restricting P to rows k+1 through n (numbering from the top) and

let uk be the permutation for which P k is a pipe dream. By Theorem 5.8, ak+1 + · · ·+ an ≤
raj(uk). Observe that P k is contained within Qk, each has n − k paths, and the crossings
have the same associated simple reflections in P k as they do in Qk. In particular, it follows
that uk ≤L w

k. Then, by Corollary 4.11, we have

ak+1 + · · ·+ an ≤ raj(uk) ≤ raj(wk),

as desired. □

6.1. A divided difference recurrence for Rajchgot polynomials. The material in this
section is not used in the rest of the paper, but gives an efficient way to compute Rajchgot
polynomials.
For each set partition π, there is a unique inverse fireworks permutation w with π(w)

equal to π, and we have Rπ(x) = CMw(x). Thus, if we want to compute all the Rajchgot
polynomials without redundancy, we should compute CMw(x) for w ranging over inverse
fireworks permutations. By Lemma 4.23, the set of inverse fireworks permutations of shape
α is the right interval [eα, fα]R, where eα is the layered permutation of shape α and fα
is the valley permutation of shape α. We describe a method for computing the Rajchgot
polynomials of all permutations in this interval by starting at the valley permutation fα and
walking down in right weak order. Our base case, the Rajchgot polynomial for fα is simple.

Proposition 6.5. Let α = (αt,αt+1, . . . ,αn) be a composition and fα the corresponding
valley permutation. Let σk = αt + αt+1 + · · ·+ αk (so σn = n) and let

[n] \ {σt, σt+1, . . . , σn} = {ρ1 < ρ2 < · · · < ρt}.
Then

Rπ(fα) =
󰁜

x
ρj
j .

Proof sketch. The permutation fα is dominant, so Rπ(fα) = xrajcode(fα). We leave computing
the Rajchgot code of fα as an exercise for the reader. □
We now discuss how Rajchgot polynomials transform when we go down by a cover in right

weak order. Recall from Section 2.4 the divided difference operator

∂i(f) = ∂i((1− xi+1)f) =
(1− xi+1)f − (1− xi)si · f

xi − xi+1

.
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for f ∈ Z[x1, x2, . . . , xn]. Similarly define

󰁥∂i(f) =
xi+1f − xisi · f

xi − xi+1

.

Then by the recursive definition of Grothendieck polynomials, we have the following.

Proposition 6.6. Let w ∈ Sn and let 1 ≤ i ≤ n− 1. Then

󰁥∂i(CMw(x)) =

󰀻
󰁁󰀿

󰁁󰀽

CMwsi(x), wsi <R w, raj(wsi) = raj(w);

0, wsi <R w, raj(wsi) < raj(w);

−CMw(x), wsi >R w.

The reader who is confused about signs should recall that CMw(x) is the top degree part
of (−1)degGw(x)−inv(w)Gw(x), and inv(w) = inv(wsi)± 1.
Propositions 6.5 and 6.6 give a recursion for computing CMw(x) for every w ∈ [eα, fα],

and therefore for computing all Rajchgot polynomials of shape α.
When carrying out this computation practically, it is most useful to encode set partitions

by words as follows. Given a set partition (πt, πt+1, . . . , πn) of [n] with |πk| = αk, we define
the corresponding word p = p1p2 · · · pn in [n]n by pj = k if and only if j ∈ πk, and we write
Rp in place of Rπ. Not every word corresponds to a set partition, because we always order
set partitions so that max(πt) < max(πt+1) < · · · < max(πn−1) < max(πn) = n.
We note that π(eα) corresponds to the word 1α1 · · ·nαn , and that π(fα) corresponds to

nαn−1(n − 1)αn−1−1 · · · (t + 1)αt+1−1tαt(t + 1) · · · (n − 1)n. So our recursive procedure starts
with nαn−1(n− 1)αn−1−1 · · · (t+ 1)αt+1−1tαt(t+ 1) · · · (n− 1)n and walks towards 1α1 · · ·nαn .
We let Sn act on words of length n by reordering the letters. In this notation, Proposition 6.6
translates as follows.

Proposition 6.7. Let p1p2 · · · pn be a word corresponding to a set partition and let 1 ≤ i ≤
n− 1. Then

󰁥∂(Rp(x)) =

󰀻
󰁁󰀿

󰁁󰀽

Rpsi(x), pi > pi+1;

0, pi < pi+1;

−Rp(x), pi = pi+1.

Remark 6.8. The condition that 󰁥∂(f) = 0 is equivalent to “xi divides f and f/xi is symmetric

in xi and xi+1”; the condition 󰁥∂(f) = −f is equivalent to “f is symmetric in xi and xi+1.”

Example 6.9. Let α be 1+1+2, so we are studying anagrams of 2344. There are 12 anagrams
of this string, but only three of these correspond to set partitions: 2344, 2434, and 4234.
These correspond to the permutations 1243, 1423, and 4123. The first of these is the layered
permutation eα and the last is the valley permutation fα.
In the diagram below, we have drawn the Hasse diagram of [eα, fα]R, labeling each edge

(u, v) with the index i such that u = vsi, and labeling each node with the inverse fireworks
permutation w, with the word p, and with its Rajchgot polynomial Rw(x) = Rp(x). We
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have underlined the leading term, whose exponent is rajcode(w) = p− (1, 2, 3, . . . , n).

w = 4123 p = 4234 Rw(x) = x1
3

1

w = 1423 p = 2434 Rw(x) = x21x2 + x1x
2
2

2

w = 1243 p = 2344 Rw(x) = x1x2x3

Compare this example to the bottom row in Example 4.26. ♦

7. Maximal pipe dreams

The primary statement now outstanding from Theorems 1.1 and 1.5 is that there is a
pipe dream for w with rajcodei(w) crossing tiles in row i and rajcodej(w

−1) crossing tiles

in column j, thereby contributing the monomial xrajcode(w)yrajcode(w−1) to CMw(x;y). We
call such a pipe dream a maximal pipe dream for w. We will verify the existence of this
pipe dream in this section. We also need to check that this monomial has coefficient 1 in
CMw(x;y), which we will also verify in this section.
In other words, our goal is to prove:

Theorem 7.1. Let w be a permutation, let rajcode(w) = (r1, . . . , rn) and let rajcode(w−1) =
(s1, . . . , sn). There is a pipe dream for w with ri crosses in row i and sj crosses in column j.

Remark 7.2. We find it frustrating that we do not have a direct recipe for the maximal
pipe dream in terms of w. The reader who believes they know one should test it on the
example w = 14523. The unique maximal pipe dream for this permutation is shown below,
but straightforward greedy procedures get stuck at local maxima with only five crosses:

7.1. Proof of Theorem 7.1. Let α be the shape of w, so that we have a length-additive
factorization w = ueαv, as in Lemma 4.21. We already constructed a maximal pipe dream
for eα in Lemma 5.4. We will now show how to modify this maximal pipe dream for eα to
obtain a maximal pipe dream for w.
If w ∕= eα, then at least one of u and v is not the identity. Without loss of generality,

suppose that u is not the identity. Let i be such that siu <L u (i.e., i is a left descent of
u). Put u′ = siu and w′ = u′eαv. Since w′ ≥LR eα, the permutations w and w′ both have
shape α by Lemma 4.22. Assume inductively that we have a maximal pipe dream P ′ for w′;
we will show that there is a maximal pipe dream P for w. We first need to investigate the
structure of P ′ in rows i and i+ 1.
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In any given column of P ′, rows i and i+ 1 look like one of , , , or . We define

the simplified array to be the 2-row pipe dream obtained by deleting all columns from
rows i and i + 1, and denote the simplified array of P ′ by Q′. We consider Q′ to extend

infinitely to the right, with all columns sufficiently to the right equal to .

Lemma 7.3. The left column of Q′ is .

Proof. The simplified array, by construction, has no columns. If the left column were ,
then the pipes starting in rows i and i+ 1 would cross, contradicting that siw

′ >L w
′.

If the left column were , then replacing it with would give a pipe dream for w with
one more cross than in P ′. But, by assumption, P ′ has raj(w′) crosses, and raj(w) = raj(w′)
since w and w′ have the same shape, so no pipe dream for w can have more than raj(w′)
crosses, a contradiction. □

Lemma 7.4. The following patterns cannot occur in consecutive columns of Q′: , ,

.

Proof. If we had or , then replacing these columns with would give a pipe
dream for w′ with more crosses than P ′.
Now, suppose for the sake of contradiction that occurred. By Lemma 7.3, it cannot

occur in the left two columns, so we can travel to the left from this pattern until we first see

a column which is not . At this point, we will have either or else . The

first we have ruled out in the first paragraph of this proof. If occurs, let P ′′ be the

pipe dream obtained by replacing it with . Then P ′′ is also a pipe dream for w′, and

its monomial differs from that of P ′ by a factor of xix
−1
i+1. So the monomial of P ′′ dominates

the monomial of P ′, contradicting that P ′ is maximal. □

Combining Lemmas 7.3 and 7.4, we see that the simplified array Q′ is of the form

a1 b1 a2 b2
· · ·

ak−1 bk−1 ak ∞

for some constants a1, a2, . . . , ak, b1, b2, . . . , bk−1, where the aj are positive integers and the
bj are nonnegative integers.
The following lemma concludes the proof of Theorem 7.1.

Lemma 7.5. Define a pipe dream P by replacing the columns
a1

of the simplified array

by
a1+1

, while leaving all other columns (including the columns) as in P ′. Then P is a
maximal pipe dream for w. Moreover, in the above notation, we have a2 = a3 = · · · = ak = 1
in Q′.

Proof. It is easy to check that P is a pipe dream for w.

Let A =
󰁓k

j=1 aj. Let ℓ be the number of columns in rows i and i+ 1 of P ′. Then P ′

has k + ℓ crosses in row i and A+ ℓ crosses in row i+ 1. The pipe dream P has a1 + k + ℓ
crosses in row i and A+ ℓ− a1 crosses in row i+ 1.
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By our assumption that P ′ is maximal, we have rajcodei(w
′) = k+ ℓ and rajcodei+1(w

′) =
A + ℓ. By Lemma 4.12, we have rajcodei(w) = A + ℓ + 1 and rajcodei+1(w) = k + ℓ − 1,
while rajcodej(w) = rajcodej(w

′) for j ∕∈ {i, i+ 1}.
By Theorem 6.4, the pipe dream P must have at most

rajcodei+1(w) + rajcodei+2(w) + · · ·+ rajcoden(w)

crosses in the bottom n− i rows. Since rajcodej(w) = rajcodej(w
′) for j > i+1, and P and

P ′ agree in rows below i+1, this tells us that P must have at most rajcodei+1(w) = k+ ℓ−1

crosses in row i+ 1. So A+ ℓ− a1 ≤ k + ℓ− 1 or, in other words,
󰁓k

j=2 aj ≤ k − 1.
But each aj is at least 1. So we must have a2 = a3 = · · · = ak = 1, and P has exactly

rajcodei+1(w) crosses in row i+1. Since P and P ′ match outside rows i and i+1, we see that
P has rajcodej(w) = rajcodej(w

′) crosses in every such row outside of i and i + 1. Finally,
since we only moved crosses vertically, P and P ′ the same number of crosses in each column,
namely rajcode(w−1) = rajcode((w′)−1). This completes the proof that P is maximal for w
and, along the way, we noted that a2 = a3 = · · · = ak = 1. □

7.2. The leading monomial has coefficient one. Finally, we will show that maximal
pipe dreams are unique.

Proposition 7.6. Let π be a set partition. Then the leading monomial of the Rajchgot
polynomial Rπ(x) has coefficient 1.

Proof. Let w be the inverse fireworks permutation with π(w) = w. So Rπ(x) = CMw(x).
Let rajcode(w) = (r1, . . . , rn). In the proof of Lemma 7.5, we constructed a pipe dream for
w with monomial xr11 x

r2
2 · · · xrnn ; we now will show that pipe dream is unique.

Let P be a maximal pipe dream for w. Fix an index k and define permutations uk and
wk in Sn−k as in the proof of Theorem 6.4. By the proof of Theorem 6.4, we must have
raj(uk) = raj(wk).
The permutation wk is obtained from w by applying k-fold application of the operation

in Lemma 3.11. By Lemma 3.11, wk is also inverse fireworks. But we showed in the proof
of Theorem 6.4 that uk ≤L wk. So the only v ∈ Sn−k with v ≤L wk and raj(v) = raj(wk) is
v = wk itself. So we have proved, for every k, that uk = wk.
Recall that wk is the permutation for which P k is a pipe dream. So, for each k, we

know where the pipes end at the bottom of row k and where they end at the top of row k.
There is a unique maximal way to place crosses in row k to connect up those pipes. So the
permutation w determines the list of permutations w1, w2, . . . , wn, and this determines the
positions of the crosses in each row of P . Thus P is unique. □

Theorem 7.7. Let w be a permutation in Sn. The monomial xrajcode(w)yrajcode(w−1) appears
with coefficient 1 in CMw(x;y).

Proof. Immediate by combining Theorem 6.2 with Proposition 7.6. □
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Appendix A. Partial derivatives of Grothendieck polynomials

The authors originally discovered many of the results in this paper by a different route,
using a differential recurrence relation for Grothendieck polynomials that seems both new
and interesting to us. In the end, this technique proved less powerful than the methods that
we have used in this paper, but we record it here, as we hope it will have other uses.
We will use the following two differential operators on Z[x1, x2, . . . , xn]:

E =
n󰁛

i=1

xi
∂

∂xi
and ∇ =

n󰁛

i=1

∂

∂xi
.

Theorem A.1. For any permutation w ∈ Sn, we have

(2) (maj(w−1) +∇− E)Gw(x) =
󰁛

skw<Lw

kGskw(x).

Before proving Theorem A.1, we restate Equation (2) using the notion of β-Grothendieck
polynomials [FK94]. The β-Grothendieck polynomial is the polynomial

G(β)
w (x1, . . . , xn) :=

Gw(−βx1, . . . ,−βxn)

(−β)inv(w)
.

in Z[x1, x2, . . . , xn, β]. Define the operator

∇β = ∇+ β2 ∂

∂β
.

Then Equation (2) yields the following.

Corollary A.2. For any permutation w ∈ Sn, we have

(3) ∇βG(β)
w (x) = β(maj(w−1)− inv(w))G(β)

w (x) +
󰁛

skw<Lw

kG(β)
skw

(x).

Proof. First, note Theorem A.1 implies that for β-Grothendieck polynomials specialized at
β = 1, an analogue of Equation (2) holds, but where the signs of the maj and E terms are
swapped. That is,

(4) ∇G(1)
w (x) = maj(w−1)G(1)

w (x)− EG(1)
w (x) +

󰁛

skw<Lw

kG(1)
skw

(x).

Now on any monomial βd−inv(w)m where m is degree d and does not involve the variable
β, we have
󰀃
∇β − βmaj(w−1) + βinv(w)

󰀄 󰀃
βd−inv(w)m

󰀄

= βd−inv(w)∇m+ (d− inv(w))βd−inv(w)+1m− βmaj(w−1)βd−inv(w)m+ inv(w)βd−inv(w)+1m

= βd−inv(w)∇m+ dβd−inv(w)+1m−maj(w−1)βd−inv(w)+1m

= βd−inv(w)∇m+ βd−inv(w)+1Em−maj(w−1)βd−inv(w)+1m,
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by definition.
Hence we obtain,

󰀃
∇β−βmaj(w−1) + βinv(w)

󰀄
G(β)

w (x) =

=
󰀃
∇+ β2 ∂

∂β
− βmaj(w−1) + βinv(w)

󰀄
G(β)

w (x)

=

󰀣
󰁛

skw<Lw

kG(β)
skw

(x)− βEG(β)
w (x) + βmaj(w−1)G(β)

w (x)

󰀤
+ β2 ∂

∂β
G(β)

w (x)

− βmaj(w−1)G(β)
w (x) + βinv(w)G(β)

w (x),

by Equation (4) together with the fact that ∇ does not see the variable β. This then
simplifies as

󰀣
󰁛

skw<Lw

kG(β)
skw

(x)− βEG(β)
w (x) + βmaj(w−1)G(β)

w (x)

󰀤
+ β2 ∂

∂β
G(β)

w (x)

− βmaj(w−1)G(β)
w (x) + βinv(w)G(β)

w (x)

=

󰀣
󰁛

skw<Lw

kG(β)
skw

(x)− βEG(β)
w (x)

󰀤
+ β2 ∂

∂β
G(β)

w (x) + βinv(w)G(β)
w (x)

=
󰁛

skw<Lw

kG(β)
skw

(x),

as desired. □
Remark A.3. By setting β = 0 in Equation (3), we recover [HPSW20, Proposition 1.1], which
describes the action of ∇ on Schubert polynomials.

In order to prove Theorem A.1, we recall the divided difference operator ∂i(f) :=
f−si·f
xi−xi+1 ,

acting on Z[x1, . . . , xn], and its K-analogue ∂i(f) = ∂i((1 − xi+1)f). To avoid confusion
with the partial derivatives in this appendix, we will write these divided difference operators
instead here as Ni and Ni, respectively.

Lemma A.4. The differential operator ∇− E commutes with Ni.

Proof. It is enough to check that (∇ − E)Ni(f) = Ni(∇ − E)(f) when f is homogeneous.
So let f ∈ Z[x1, . . . , xn] be a homogenous polynomial of degree d.
By [HPSW20, Lemma 2.1], ∇ and Ni commute. Therefore,

∇Ni(f) = ∇Ni

󰀓
(1− xi+1)f

󰀔
= Ni∇

󰀓
(1− xi+1)f)

󰀔

= Ni

󰀓
−f + (1− xi+1)∇(f)

󰀔
= −Ni(f) +Ni(∇f).

Note that, if g is homogeneous of degree e, then Eg = eg, and that Ni lowers degrees by 1.
So we have

ENi(f) = ENi

󰀓
(1− xi+1)f

󰀔
= ENif − ENixi+1f = (d− 1)Ni(f)− dNi(xi+1f)

= −Ni(f) + dNi

󰀓
(1− xi+1)f

󰀔
= −Ni(f) + dNi(f) = −Ni(f) +Ni(Ef).
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Subtracting the two equations from each other,

(∇− E)(Nif) = Ni(∇f)−Ni(Ef) = Ni(∇− E)f,

as required. □

For w ∈ Sn and for {τi}1≤i≤n−1 the generators of the 0-Hecke monoid from Section 2, we
define

(5) τi□w =

󰀫
siw siw <L w

w siw >L w
w□τi =

󰀫
wsi wsi <R w

w wsi >R w
.

The following lemma is easily checked.

Lemma A.5. The formulas of Equation (5) define commuting left and right actions of the
0-Hecke monoid on Sn. □

In this notation, we have Ni(Gw) = Gw□τi by definition.

Proof of Theorem A.1. By definition,

maj(w−1) =
󰁛

skw<Lw

k,

so we can rewrite Equation (2) as

(6) (∇− E)Gw(x) =
󰁛

skw<Lw

k (Gskw(x)−Gw(x)) =
n−1󰁛

k=1

k (Gτk□w(x)−Gw(x)) .

We will prove Equation (6) by reverse induction on inv(w). We check the base case w = w0.
We have Gw0(x) =

󰁔n
i=1 x

n−i
i , so

(∇− E)Gw0(x) =
n󰁛

j=1

(n− j)

󰁔n
i=1 x

n−i
i

xj
−

󰀕
n

2

󰀖 n󰁜

i=1

xn−ii .

On the other hand, τk□w0 = skw0 and Gskw0(x) =
󰁔n
i=1 x

n−i
i

xn−k
. So the right side of Equation (6)

is
n−1󰁛

k=1

k

󰀣󰁔n
i=1 x

n−i
i

xn−k
−

n󰁜

i=1

xn−ii

󰀤
=

n−1󰁛

k=1

k

󰁔n
i=1 x

n−i
i

xn−k
−

󰀕
n

2

󰀖 n󰁜

i=1

xn−ii ,

and the formulas match.
Now, suppose that we want to prove Equation (2) for some w ∕= w0, and that we already

know Equation (2) holds for all longer permutations. Since w ∕= w0, we can find some index
i with wsi >R w and, by induction, we know that

(∇− E)Gwsi(x) =
n−1󰁛

k=1

k (Gτk□wsi(x)−Gwsi(x)) .

We apply the operator Ni to both sides of this equation. On the left, we have by Lemma A.4
that

Ni(∇− E)Gwsi(x) = (∇− E)NiGwsi(x) = (∇− E)G(wsi)□τi(x) = (∇− E)Gw(x).
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On the right, we have

n−1󰁛

k=1

k
󰀃
NiGτk□wsi(x)−NiGwsi(x)

󰀄
=

n−1󰁛

k=1

k
󰀃
G(τk□wsi)□τi(x)−Gwsi□τi(x)

󰀄
.

Since the left and right actions of the τi elements commute, we have

(τk□wsi)□τi = τk□(wsi□τi) = τk□w,
so this last formula simplifies to

n−1󰁛

k=1

k (Gτk□w(x)−Gw(x)) ,

which is the required form to complete the induction. □
We now explain the relevance of Theorem A.1 to the results in this paper. Let f be a

polynomial and let m be a nonnegative integer. If deg(f) ∕= m, then deg
󰀃
(m+∇−E)(f)

󰀄
=

deg(f) whereas, if deg(f) = m, then deg
󰀃
(m +∇ − E)(f)

󰀄
< deg(f). Thus, equating the

degrees of both sides of Theorem A.1 implies the following result.

Proposition A.6. For all permutations w ∈ Sn, either degGw(x) = maxskw<Lw degGskw(x)
or else degGw(x) = maj(w−1) > maxskw<Lw degGskw(x). □
Recalling Rajchgot’s question, we wondered whether Proposition A.6 could be used to

inductively compute degGw(x). Proposition A.6 determines degGw(x) when maj(w−1) ≤
maxskw<Lw degGskw(x), as then the second case is impossible. The remaining cases, where
maj(w−1) > maxskw<Lw degGskw(x), are the inverse fireworks permutations, and this is how
we discovered the fireworks condition. Proposition A.6 likewise implied degGw(x) equaled
maj(u−1) for some u ≤L w and, by attempting to describe u in terms of w, we found the
inverse fireworks map. These investigations lead to this paper, although Proposition A.6
does not play a role in our final proofs.
We suspect that the best applications of Theorem A.1 are yet to be found.
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