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ABSTRACT
Fair resource allocation is one of the most important topics in com-

munication networks. Existing solutions almost exclusively assume

each user utility function is known and concave. This paper seeks

to answer the following question: how to allocate resources when

utility functions are unknown, even to the users? This answer has

become increasingly important in the next-generation AI-aware

communication networks where the user utilities are complex and

their closed-forms are hard to obtain. In this paper, we provide a

new solution using a distributed and data-driven bilevel optimiza-

tion approach, where the lower level is a distributed network utility

maximization (NUM) algorithmwith concave surrogate utility func-

tions, and the upper level is a data-driven learning algorithm to

find the best surrogate utility functions that maximize the sum

of true network utility. The proposed algorithm learns from data

samples (utility values or gradient values) to autotune the surrogate

utility functions to maximize the true network utility, so works for

unknown utility functions. For the general network, we establish

the nonasymptotic convergence rate of the proposed algorithm

with nonconcave utility functions. The simulations validate our

theoretical results and demonstrate the great effectiveness of the

proposed method in a real-world network.
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1 INTRODUCTION
Network utility maximization (NUM) has been studied for decades

since the seminal work [21] and has been the central analytical

framework for the design of fair and distributed resource allocation

over the communication networks (e.g., the Internet, 6G networks).

Its applications span from network congestion control [21, 28, 37],

power allocation and routing in wireless networks [9, 34], load

scheduling in cloud computing [10, 18, 31], to video streaming over

dynamic networks [7, 12, 13, 23, 42, 49], and etc. A comprehensive

introduction of the method and its connections to control theory

and convex optimization can be found in [40].

In the traditional NUM, each user is associated with a utility func-

tion that captures the level of satisfaction with allocated resources

(often the assigned data rate), and distributed NUM solutions and

their variations have been implemented as the congestion control

algorithms on the Internet, such as TCP-Reno, and scheduling algo-

rithms for cellular networks, such as Proportional Fair Scheduling.

The solutions maximize the total network utility subject to resource

constraints such as channel capacity, average power, etc. There have

been a large body of studies on NUM for wired [1, 3, 21, 25, 28, 37, 40,

47] and wireless networks [4, 6, 7, 12, 22, 23, 30, 33, 41, 45, 46, 49].

These existing studies on NUM almost exclusively assume that

the utility functions are known to the users and are concave, e.g.

the widely used 𝛼-fair utility functions [32], However, in many

real-world applications, e.g., emerging AI-aware next-generation

networks like 6G, the underlying utilities often correlate with user

experience, information freshness, diversity, fidelity, job quality,

etc, which can be nonconcave and generally unknown. Then, an

open and challenging question in the field is:

How to allocate network resources fairly and efficiently when the
utility functions are unknown and nonconcave?

The answer to this question has not been explored well except a

few recent attempts [7, 44] using online learning algorithms. For ex-

ample, [7] focused on a stochastic dynamic scenario, and proposed

an online policy to gradually learn the utility functions and allo-

cate resources accordingly. However, it still assumes the unknown

utility functions are concave and requires a central scheduler.

In this paper, we consider unknown utility functions and pro-

vide a distributed solution from a new bilevel optimization per-

spective, where the lower-level problem is a standard distributed

resource allocation algorithm with parameterized surrogate utility

functions such as 𝛼−fair utility functions, and the upper-level is

to fine-tune the surrogate utility functions based on user experi-

ences/feedback. While the solution is based on bilevel optimization,

it is very different from existing studies for non-distributed bilevel

optimization [5, 11, 14, 16, 17, 19, 27, 38] (see [26] and [15] for a

more comprehensive overview) due to the distributed nature of
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the solution over the communication networks. In addition, these

approaches cannot be directly applied here due to the computa-

tion of either the Hessian inverse or a product of Hessians of the

NUM objective, which requires each node to know the infeasible

global network information, which is not practical. Although sev-

eral decentralized bilevel optimization methods have been proposed

by [2, 8, 29, 39, 48], they consider general bilevel objective functions

without taking the channel capacity, the transmission links and the

structured NUM objectives into account, and hence cannot be di-

rectly applied to the NUM problems. Then, the main contributions

of this paper are summarized below:

• Our first contribution is the design of a distributed bilevel opti-

mization algorithm named DBiNUM, which approximates the

Hessian-inverse-vector product of the upper-level gradient us-

ing one-step gradient decent. We show that each user under

DBiNUM only needs to know the partial network information

such as transmission rates and link states of other users on

her route, and hence DBiNUM admits a distributed implemen-

tation. In addition, DBiNUM does not need to know the true

utility functions and only requires user feedback via gradient-

or value-based queries.

• Theoretically, we prove that the hypergradient estimation er-

ror, although large initially, is formed by iteratively decreasing

terms with a proper selection of the learning rates. Based on

such key derivations, we provide the finite-time convergence

rate guarantee for DBiNUM with a general nonconcave upper

objective as well as a general network topology. We further

provide a case study for a single-link multi-user network, where

we show that when the true user utilities are 𝛼-fairness func-

tions (but still unknown to the users), DBiNUM converges to

the solution as if the utility functions are known. This provides

some validation for the proposed bilevel formulation.

• In the simulations, we first validate our theoretical result by

showing that our bilevel algorithm converges to the standard

NUM solutions (total utility, user resources) when the true

utility functions are 𝛼-fair utility functions. In a real-world

Abilene network, we demonstrate that our bilevel approach

achieves a significantly better network utility than the standard

NUM baseline with fixed surrogate utility functions.

2 PROBLEM FORMULATION
Consider a communication network with 𝑛 users (or data flows)

and 𝑚 communication links. Each user is associated with a util-

ity function 𝑈𝑟 (𝑥𝑟 ), where 𝑥𝑟 the transmission rate of user 𝑟 . Let

L = {𝑙1, 𝑙2, ...., 𝑙𝑚} denote all communication links, 𝑐𝑙 denote the

capacity of link 𝑙, L𝑟 denote all links along the route of user 𝑟 , and

x = [𝑥1, ..., 𝑥𝑛]𝑇 denote the transmission rate vector. The network

utility maximization (NUM) problem is to find a resource allocation

x that solves the following optimization problem:

max

x

𝑛∑︁
𝑟=1

𝑈𝑟 (𝑥𝑟 )

subject to:

∑︁
𝑟 :𝑙 ∈L𝑟

𝑥𝑟 ≤ 𝑐𝑙 , for any 𝑙 ∈ L

𝑥𝑟 ≥ 0, for 𝑟 = 1, ..., 𝑛. (1)

Different from existing works on NUM, we consider general utility

function 𝑈𝑟 (𝑥𝑟 ), not necessarily concave, and assume it may be

unknown to user 𝑟 .

2.1 The Traditional Network Utility
Maximization and the Primal Solution

If 𝑈𝑟 (·) is continuously twice differentiable and concave, e.g, 𝛼-
fairness utility function such that𝑈𝑟 (𝑥𝑟 ) = 𝑥1−𝛼𝑟

1−𝛼 , and is known to

user 𝑟, then the problem in eq. (1) becomes the traditional NUM

problem and has been extensively studied since the seminal work

[21]. In particular, a variety of distributed algorithms have been

proposed to solve eq. (1) efficiently with only limited information

exchange between the user and the network. Among them, the

primal approach penalizes the capacity constraints into the total

network utility, and solves the following alternative regularized

problem.

min

𝑥1,...,𝑥𝑛>0

𝑛∑︁
𝑟=1

𝑈𝑟 (𝑥𝑟 ) −
∑︁
𝑙 ∈L

𝐵𝑙

( ∑︁
𝑟 :𝑙 ∈L𝑟

𝑥𝑟

)
, (2)

where the regularizer 𝐵𝑙 (·) is continuously twice differentiable and

𝜇-strongly-convex, and can be regarded as the cost of transmitting

the data on link 𝑙 to penalize the arrival rate for exceeding the link

capacity. TCP-Reno for the Internet congestion control is such a

primal algorithm.

2.2 NUM via Bilevel Optimization
The question we want to answer is how to solve NUM with un-

known utility functions and how to solve it in a distributed fash-

ion.We propose a distributed, bilevel solution to this problem. The

lower level corresponds to a standard network resource allocation

problem via a primal distributed algorithm as in eq. (2) with parame-

terized surrogate utility functions𝑈𝑟 (𝑥𝑟 ;𝛼𝑟 ), where 𝜶 ∈ A are the

parameters and the surrogate function is continuously twice differ-

entiable and concave for any given 𝜶 ∈ A. The upper-level add-on

procedure is to fine-tune the user-specified parameters 𝛼𝑟 , 𝑟 =

1, ..., 𝑛 to learn the best surrogate utilities 𝑈𝑟 (𝑥𝑟 ;𝛼𝑟 ), 𝑟 = 1, ..., 𝑛

based on the user feedback, e.g., the value-based query 𝑈𝑟 (𝑥𝑟 ) (i.e.,
how much the user feel satisfied with 𝑥𝑟 ) or the gradient-based

query ∇𝑈𝑟 (𝑥𝑟 ) (i.e., how fast the user experience increases at 𝑥𝑟 ).

Mathematically, this problem can be formulated as

max

𝜶 ∈A

[
Ψ(𝜶 ) =

𝑛∑︁
𝑟=1

𝑈𝑟 (𝑥∗𝑟 (𝜶 ))
]

x∗ (𝜶 ) = argmax

𝒙>0
Φ(x;𝜶 ) =

𝑛∑︁
𝑟=1

(
𝑈𝑟 (𝑥𝑟 ;𝛼𝑟 ) −

𝜖𝑥2𝑟

2

)
−
∑︁
𝑙 ∈L

𝐵𝑙

( ∑︁
𝑖:𝑙 ∈L𝑖

𝑥𝑖

)
, (3)

where A := {𝜶 : 𝛼𝑟 ∈ A𝑟 , 𝑟 = 1, ..., 𝑛} is a closed, convex and

bounded constraint set. Compared with eq. (2), we add a small

quadratic term −𝜖𝑥
2

𝑟

2
to each surrogate utility function𝑈𝑟 (𝑥𝑟 ;𝛼𝑟 ) to

ensure that the lower-level objective function Φ(𝒙 ;𝜶 ) is strongly-
concave w.r.t. x. Also note that this extra quadratic term changes

the original solution of eq. (2) up to only an 𝜖 level, and hence the

solution 𝒙∗ (𝜶 ) is still valid.
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3 ALGORITHM AND MAIN RESULTS
We first discuss the challenges in solving the bilevel problem eq. (3)

and then present a distributed bilevel algorithm. We then provide

the main results for the proposed method.

3.1 Challenges in Hypergradient Computation
over Networks

Gradient ascent is a typical method to efficiently solve the bilevel

problem in eq. (3). This process needs to calculate the gradient

∇Ψ(𝜶 ) (which we refer to the hypergradient) of the upper-level

objective function. However, as shown in the following proposition,

this hypergradient contains complicated components due to the

nested problem structure.

Proposition 1. Hypergradient ∇Ψ(𝜶 ) takes the form of

∇Ψ(𝜶 ) = −∇𝜶∇𝒙Φ(𝒙∗;𝜶 )
(
∇2

𝒙Φ(𝒙∗;𝜶 )
)−1

×
[
∇𝑈1 (𝑥∗1 ), ...,∇𝑈𝑛 (𝑥

∗
𝑛)
]𝑇
, (4)

where ∇𝜶∇𝒙Φ(𝒙∗;𝜶 ) is a diagonal matrix whose 𝑖𝑡ℎ diagonal el-
ement is ∇𝛼∇𝑥𝑈𝑖 (𝑥∗𝑖 ;𝛼𝑖 ), and the (𝑖, 𝑗)𝑡ℎ element of the Hessian
matrix ∇2

𝒙Φ(𝒙∗;𝜶 ) equals to{
∇2

𝑥𝑈𝑖 (𝑥∗𝑖 ;𝛼𝑖 ) − 𝜖 −
∑
𝑙 ∈L𝑖 ∇

2𝐵𝑙
( ∑

𝑟 :𝑙 ∈L𝑟 𝑥𝑟
)
, 𝑖 = 𝑗

−∑
𝑙 ∈L𝑖∩L 𝑗 ∇

2𝐵𝑙
( ∑

𝑟 :𝑙 ∈L𝑟 𝑥𝑟
)
, 𝑖 ≠ 𝑗,

(5)

where we define
∑
𝑙 ∈∅ (·) = 0 for simplicity.

Note that the Hessian matrix ∇2

𝒙Φ(𝒙∗;𝜶 ) is invertible because
the lower-level function Φ(𝒙;𝜶 ) is strongly-concave. As shown
in Proposition 1, the hypergradient ∇Ψ(𝜶 ) involves the second-
order derivatives ∇𝜶∇𝒙Φ(𝒙∗;𝜶 ) and ∇2

𝒙Φ(𝒙∗;𝜶 ) of the lower-

level function Φ(𝒙∗;𝜶 ). In particular, exactly computing ∇Ψ(𝜶 )
needs to invert the Hessian matrix ∇2

𝒙Φ(𝒙∗;𝜶 ) whose form is taken

as in Proposition 1. However, this inversion is hard to implement

in a large communication network because it requires the global

network information but each user in reality knows only partial

information. In addition, this inversion is computationally infeasible

because the matrix dimension can be super large when the network

contains millions of users. We next introduce a fast approximation

method to tackle these two issues, which 1) allows a distributed

implementation in the network and 2) is highly efficient without

any Hessian inverse computations.

3.2 Proposed Distributed Bilevel Algorithm
In this section, we present a distributed bilevel method for solving

the resource allocation problem in eq. (3).

As shown in algorithm 1, this algorithm involves a two-level

optimization procedures. For the lower level, a standard distributed

primal algorithm (examples can be found in [40]) is used to get

𝛿Φ-approximated solutions 𝑥𝑘,𝑟 such that |𝑥𝑘,𝑟 − 𝑥∗𝑘,𝑟 | ≤ 𝛿Φ (𝛿Φ is

sufficiently small) under 𝛼𝑘,𝑟 for 𝑟 = 1, ..., 𝑛 , where 𝑥∗
𝑘,𝑟
, 𝑟 = 1, ..., 𝑛

Algorithm 1 Distributed Bilevel Network Utility Maximization

(DBiNUM)

1: Input: Initialization 𝒂0 ∈ A and x0 > 0
2: for 𝑘 = 0, 1, ..., 𝐾 do
3: Lower-level standard network maximization with𝑇𝑙 time slots:

• Use standard distributed primal algorithm to get 𝑥𝑘,𝑟 ≥ 0

satisfying |𝑥𝑘,𝑟 − 𝑥∗𝑘,𝑟 | ≤ 𝛿Φ for each user 𝑟 .

4: Information broadcast for upper level with𝑇𝑜 time slots:

• All users release packets with information 𝑥𝑘,𝑟 and 𝑣𝑘,𝑟 for

𝑟 = 1, ..., 𝑛 for broadcast.

• Each user 𝑟 collects 𝑥𝑘,𝑖 from his neighbors N𝑟 = {𝑖 : L𝑖 ∩
L𝑟 ≠ ∅} and ∇2𝐵𝑙

( ∑
𝑢:𝑙∈L𝑢 𝑥𝑘,𝑢

)
from its links 𝑙 ∈ L𝑟 .

5: For each user 𝑟 , update auxiliary variable 𝑣𝑘,𝑟 by eq. (6).

6: For each user 𝑟 = 1, ..., 𝑛, update user-specified parameters 𝛼𝑘+1,𝑟
by eq. (7).

7: end for

are the lower-level solutions of the problem eq. (3) and are given by

𝑥∗
𝑘,1
, ...., 𝑥∗

𝑘,𝑛
= argmax

𝑥1,...,𝑥𝑛>0

𝑛∑︁
𝑟=1

(
𝑈𝑟 (𝑥𝑟 ;𝛼𝑘,𝑟 ) −

𝜖𝑥2𝑟

2

)
−
∑︁
𝑙 ∈L

𝐵𝑙

( ∑︁
𝑖:𝑙 ∈L𝑖

𝑥𝑖

)
.

Note that the above solutions 𝑥𝑘,𝑟 , 𝑟 = 1, ..., 𝑛 are achievable even

in the presence of network delays as long as the execution time 𝑇𝑙
is long enough [50].

For the next stage, all users continue to transmit packages to

broadcast their information 𝑥𝑘,𝑟 and 𝑣𝑘,𝑟 for 𝑟 = 1, ..., 𝑛 over the

network. Each user stops broadcast once he receives all information

𝑥𝑘,𝑖 from his neighborsN𝑟 = {𝑖 : L𝑖 ∩ L𝑟 ≠ ∅} (including himself)

and constraint-induced quantities ∇2𝐵𝑙
( ∑

𝑢:𝑙∈L𝑢 𝑥𝑘,𝑢
)
from all links

𝑙 ∈ L𝑟 along his path. This process is finished after a sufficiently

long time𝑇𝑜 , i.e., no packages are transmitted in the networks. Note

that each user can easily distinguish packages in this stage from

those in the previous NUM procedure via identifying the existence

of the new variable 𝑣𝑘,𝑟 .

After receiving the neighbor information 𝑥𝑘,𝑖 , 𝑣𝑘,𝑖 for 𝑖 ∈ N𝑟 ,
each user 𝑟 update the auxiliary variable 𝑣𝑘,𝑟 locally by

𝑣𝑘+1,𝑟 = − 𝜂
∑︁
𝑖∈N𝑟

∑︁
𝑙 ∈L𝑖∩L𝑟

∇2𝐵𝑙

( ∑︁
𝑗 :𝑙 ∈L 𝑗

𝑥𝑘,𝑗

)
𝑣𝑘,𝑖

+
(
1 − 𝜖 + 𝜂∇2

𝑥𝑈𝑟 (𝑥𝑘,𝑟 ;𝛼𝑘,𝑟 )
)
𝑣𝑘,𝑟 − 𝜂∇𝑈𝑟 (𝑥𝑘,𝑟 )︸        ︷︷        ︸

user feedback

, (6)

where the important quantity ∇𝑈𝑟 (𝑥𝑘,𝑟 ) reflects how fast the user

experience can increase when increasing the current supply 𝑥𝑘,𝑟 .

Note that the update in eq. (6) for user 𝑟 only uses the information

of its neighbors with at least one common link, so it is amenable to

the practical decentralized implementation. The updates in eq. (6)

for 𝑟 = 1, ..., 𝑛 can be regarded as one-step approximation of the

Hessian-inverse-vector

(
∇2

𝒙Φ(𝒙∗
𝑘
;𝜶𝑘 )

)−1 [∇𝑈1 (𝑥∗𝑘,1), ..., ∇𝑈𝑛 (𝑥
∗
𝑘,𝑛

) ]𝑇

of the hypergradient in eq. (4). The quantity ∇𝑈𝑟 (𝑥𝑘,𝑟 ) of eq. (6)
is constructed via querying the use experience on the received
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resource. As mentioned before, we use the gradient-type informa-

tion from users to improve the resource allocation via asking how

fast their experiences increase when supplying slightly more re-

source than 𝑥𝑘,𝑟 . In some circumstances where only utility values

are observed, e.g., user satisfaction or job quality, we also provide

a derivative-free gradient approximation using only utility values

𝑈𝑟 (·) in Section 6.

Finally, each user 𝑟 updates the user-specified parameter 𝛼𝑘,𝑟 via

a projected gradient ascend step as

𝛼𝑘+1,𝑟 = PA𝑟

{
𝛼𝑘,𝑟 − 𝛽∇𝛼∇𝑥𝑈𝑟 (𝑥𝑘,𝑟 ;𝛼𝑘,𝑟 )𝑣𝑘+1,𝑟

}
, (7)

where 𝛽 > 0 is the outer-loop stepsize and PA𝑟
(·) is the projection

onto the constraint set A𝑟 .

3.3 Main Results
We present the finite-time convergence analysis for our proposed

distributed method in Algorithm 1. All detailed proofs can be found

in the arXiv version [20] of this submission. We first introduce

some definitions and assumptions.

Definition 1. 𝑓 (𝑧) : Z → R𝑑 is 𝐿-Lipschitz continuous if for
∀𝑧1, 𝑧2 ∈ Z, ∥ 𝑓 (𝑧1) − 𝑓 (𝑧2)∥ ≤ 𝐿∥𝑧1 − 𝑧2∥.

Without loss of generality, We make the following assumptions

on the objective function in eq. (3).

Assumption 1. The lower-level solution 𝒙∗ (𝜶 ) in eq. (3) is bounded
in the sense that there exist constants 𝛿, 𝑏 > 0 such that its each coor-
dinate satisfies 𝛿 < 𝑥∗𝑟 (𝜶 ) < 𝑏, 𝑟 = 1, ..., 𝑛 for ∀𝜶 ∈ A.

Assumption 1 says that the lower-level solutions 𝑥∗𝑟 , 𝑟 = 1, ..., 𝑛

are lower and upper-bounded by a small constant 𝛿 > 0 and a

sufficiently large constant 𝑏. This assumption is reasonable because

the regularization 𝐵𝑙 (·) prevents the solutions from converging to

the infinity and the lower bound constant 𝛿 helps to avoid some

trouble when 𝑥𝑟 → 0 for some utility function such as log(𝑥𝑟 )
and

𝑥
1−𝛼𝑟
𝑟

1−𝛼𝑟 with 𝛼𝑟 > 1. For example, it can be shown that the solu-

tions of for 𝛼-fairness utility function 𝑈𝑟 (𝑥𝑟 ;𝛼𝑟 ) = 𝑥
1−𝛼𝑟
𝑟

1−𝛼𝑟 satisfies

Assumption 1 given the boundedness of 𝜶 ∈ A.

The following assumption imposes some geometrical conditions

on the utility function 𝑈𝑟 (· ;𝛼𝑟 ) and the regularization function

𝐵𝑙 (·). Let X := {𝒙 :
𝛿
2
< 𝑥𝑟 < 2𝑏, 𝑟 = 1, ..., 𝑛}.

Assumption 2. For any 𝜶 ∈ A and any 𝒙 ∈ X,

• 𝑈𝑟 (· ;𝛼𝑟 ) is concave and 𝐵𝑙 (·) is 𝜇-strongly-convex.
• 𝑈𝑟 (·), ∇𝑈𝑟 (·), ∇𝑥𝑈𝑟 (· ; ·), ∇𝛼∇𝑥𝑈𝑟 (· ; ·), ∇2

𝑥𝑈𝑟 (· ; ·) are 𝐿𝑢 -
Lipschitz continuous.

• ∇𝐵𝑙 (·) and ∇2𝐵𝑙 (·) are 𝐿𝑏 -Lipschitz continuous.

Assumption 2 cover many utility functions of practical interest

such as log utility log(𝑥𝑟 ) and 𝛼-fairness utility, as well as a variety
of regularizers such as the quadratic function

𝜇
2
𝑥2 and the barrier

function − log(𝑐 − 𝑥) for 𝛿
2
< 𝑥 < 2𝑏 < 𝑐 . For example, for the 𝛼-

fairness utility function
𝑥
1−𝛼𝑟
𝑟

1−𝛼𝑟 , the Lipschitz continuity assumption

holds because its high-order derivatives such as ∇𝑥𝑈𝑟 (𝑥𝑟 ;𝛼𝑟 ) =
1

𝑥
𝛼𝑟
𝑟

, ∇2

𝑥𝑈𝑟 (𝑥𝑟 ;𝛼𝑟 ) =
−𝛼𝑟
𝑥
𝛼𝑟 +1
𝑟

, ∇3

𝑥𝑈𝑟 (𝑥𝑟 ;𝛼𝑟 ) =
𝛼𝑟 (𝛼𝑟+1)
𝑥
𝛼𝑟 +2
𝑟

are bounded

due to the boundedness of 𝛼𝑟 ∈ A𝑟 and 𝑥𝑟 ∈ ( 𝛿
2
, 2𝑏). The follow-

ing theorem characterizes the convergence rate analysis for the

proposed algorithm with general utility functions and networks.

Theorem 1. Suppose Assumptions 1 and 2 hold. Choose 𝛿𝜙 < 𝛿
2
,

𝜂 < 1

𝐿grad
and 𝛽 ≤ min

(√︃ 𝜂𝜇Φ

256𝐶𝑣𝐿
2

𝑢
, 1

2𝐿Ψ

)
, where 𝐿Ψ =

( 𝐿grad
𝜇Φ

(√𝑛𝐿2𝑢
𝜇Φ

+
√
𝑛𝐿2𝑢𝐿Hess
𝜇2Φ

+ 𝐿𝑢𝜇Φ
)
+
√
𝑛𝐿2𝑢
𝜇Φ

+
√
𝑛𝐿3𝑢
𝜇2Φ

)
is the smoothness constant of the total

objective function Ψ(𝜶 ). Then, the iterates generated by Algorithm 1
satisfy

1

𝐾

𝐾−1∑︁
𝑘=0

∥𝐺proj (𝜶𝑘 )∥2

≤ 16(max𝜶 ∈A Ψ(𝜶 ) − Ψ(𝜶0))
𝛽𝐾

+
256𝑛𝐿4𝑢 (1 + 𝜇2Φ)

𝜂𝜇3Φ

1

𝐾︸                                                               ︷︷                                                               ︸
Sublinearly decaying terms

+
128𝐿2𝑢𝐶Φ𝛿

2

Φ

𝜂𝜇Φ
+
4𝐿4𝑢𝑛

2𝛿2Φ

𝜇2Φ︸                         ︷︷                         ︸
Lower-level error

,

where𝐺proj (𝜶𝑘 ) = 𝛽−1 (PA {𝜶𝑘 + 𝛽∇Ψ(𝜶𝑘 )} − 𝜶𝑘 ) denote the gen-
eralized projected gradient at the 𝑘𝑡ℎ iteration, and 𝜇Φ, 𝐿grad, 𝐿Hess,
constants 𝐶Φ and 𝐶𝑣 are defined in Propositions 2, 3 and 4.

Theorem 1 uses the generalized gradient 𝐺proj (𝜶𝑘 ) instead of

the gradient ∇Ψ(𝜶𝑘 ) due to the existence of the projection. Note

that if the iterate 𝜶𝑘 + 𝛽∇Ψ(𝜶𝑘 ) locates inside of the constraint set
A, this generalized gradient 𝐺proj (𝜶𝑘 ) reduces to the vanilla gra-

dient ∇Ψ(𝜶𝑘 ). Theorem 1 shows that the proposed DBiNUM finds

a stationary point 𝜶𝑠 with 𝑠 = argmin𝑘 ∥𝐺proj (𝜶𝑘 )∥2 for the con-
strained nonconcave bilevel problem in eq. (3), whose generalized

projected gradient norm ∥𝐺proj (𝜶𝑠 )∥2 contains a sublinearly decay-

ing term and a convergence error

128𝐿2𝑢𝐶Φ𝛿
2

Φ
𝜂𝜇Φ

+ 4𝐿4𝑢𝑛
2𝛿2Φ

𝜇2Φ
induced by

the approximation error 𝛿Φ of the lower-level network utility maxi-

mization. This convergence error can be arbitrarily small by setting

the lower-level target accuracy 𝛿Φ small, e.g., at an 𝜖 accuracy. Note

that we adopt the stationary point as the convergence criterion due

to the general nonconcavity of the upper-level objective function

𝑈𝑟 .

4 PROOF OF THE MAIN RESULT
In this section, we provide the technical proofs for Theorem 1. We

first prove an important strongly-concave geometry of the lower-

level objective function Φ(x;𝜶 ).

Proposition 2. Suppose Assumptions 2 holds. For any𝜶 ∈ A, 𝒙 ∈
X, Φ(𝒙 ;𝜶 ) is 𝜇Φ-strongly-concave w.r.t. 𝒙 , where 𝜇Φ :=

𝜖+𝜇𝑀min

2
and

the topology-related constant𝑀min is defined as

𝑀min = min

𝑟=1,...,𝑛
{𝑀𝑟 : number of links user 𝑟 exclusively occupies}.

Note that the strong-concavity constant
𝜖+𝜇𝑀min

2
depends on the

network topology due to the factor𝑀min. For the case where each

user 𝑟 occupies solely at least one link, 𝑀min ≥ 1 and hence the

quadratic term
𝜖
2
𝑥2𝑟 , 𝑟 = 1, ..., 𝑛 in eq. (3) are not needed. However,
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for the general topology, this quadratic regularization is necessary

to guarantee the strong-concavity.

In the worst cases, the smoothness parameter of the Hessian

matrix∇2

𝒙Φ(· ;𝜶 ) whose form is given by Proposition 1 scales in the

order of𝑛
3

2 |L|, which can be prohibitively large in the networkwith
millions of users and links, and hence leads to slow convergence in

practice. For this reason, we next provide a refined analysis of the

smoothness of quantities ∇2

𝒙Φ(𝒙 ;𝜶 ) and ∇𝜶∇𝒙Φ(𝒙 ;𝜶 ) by taking

the sparse network structure (i.e., each user shares links with only

some of other users) into account.

Proposition 3. Suppose Assumption 2 holds. Then, for any 𝜶 ∈
A, 𝒙 ∈ X and any vector 𝒖 = [𝑢1, ..., 𝑢𝑛],

∥∇𝒙Φ(𝒙 ;𝜶 ) − ∇𝒙Φ(𝒙 ′;𝜶 )∥ ≤𝐿grad∥𝒙 − 𝒙 ′∥,
∥∇2

𝒙Φ(𝒙 ;𝜶 )𝒖 − ∇2

𝒙Φ(𝒙 ′;𝜶 )𝒖∥ ≤𝐿Hessmax

𝑖
|𝑢𝑖 |∥𝒙 − 𝒙 ′∥,

∥∇2

𝒙Φ(𝒙 ;𝜶 )𝒖 − ∇2

𝒙Φ(𝒙 ;𝜶 ′)𝒖∥ ≤𝐿𝑢 max

𝑖
|𝑢𝑖 |∥𝜶 − 𝜶 ′∥,

where the constants

𝐿grad =

√√√
2𝐿2𝑢 + 2𝑛

𝑛∑︁
𝑖=1

∑︁
𝑙 :𝑙 ∈L𝑖

𝐿2
𝑏

𝐿Hess =

√√
2𝐿2𝑢 + 2𝑛𝐿2

𝑏
max

𝑖

( ∑︁
𝑗 :L𝑖∩L 𝑗≠∅

∑︁
𝑙 ∈L𝑖∩L 𝑗

1

)
2

are related to the network topology. Similarly, for the mixed derivative
∇𝜶∇𝒙Φ(𝒙 ;𝜶 ), we have

∥∇𝜶 ∇𝒙Φ(𝒙 ;𝜶 )𝒖 − ∇𝜶 ∇𝒙Φ(𝒙′;𝜶 )𝒖 ∥ ≤ 𝐿𝑢 max

𝑖
|𝑢2𝑖 | ∥𝒙 − 𝒙′ ∥,

∥∇𝜶 ∇𝒙Φ(𝒙 ;𝜶 )𝒖 − ∇𝜶 ∇𝒙Φ(𝒙 ;𝜶 ′)𝒖 ∥ ≤ 𝐿𝑢 max

𝑖
|𝑢𝑖 | ∥𝜶 − 𝜶 ′ ∥.

It can be observed from Proposition 3 that the smoothness con-

stant of ∇2

𝒙Φ(· ;𝜶 )𝒖 scales in the order of√︄
𝑛max

𝑖
(

∑︁
𝑗 :L𝑖∩L 𝑗≠∅

∑︁
𝑙 ∈L𝑖∩L 𝑗

1)2,

which represents to the total number of links the users 𝑖 share

with other users. As mentioned before, In the worst case, i.e., all

users share the same links, this constant takes the order of 𝑛
3

2 |L|.
However, in the practical network, each user shares links with a

small portion of users, and hence each

∑
𝑗 :L𝑖∩L 𝑗≠∅

∑
𝑙 ∈L𝑖∩L 𝑗 1

is much smaller than the worst-case 𝑛 |L|. We next characterize

the error in approximating the Hessian-inverse-vector product in

the hypergradient at iteration 𝑘 . For notational convenience, let

𝒗𝑘 = [𝑣𝑘,1, ..., 𝑣𝑘,𝑛 ]𝑇 and ∇𝑈 (𝒙) =
[
∇𝑈1 (𝑥1), ..., ∇𝑈𝑛 (𝑥𝑛)

]𝑇
.

Proposition 4. Suppose Assumptions 1 and 2 hold. Choose 𝛿𝜙 <

𝛿
2
and 𝜂 < 1

𝐿grad
. Let 𝐶𝑣 = 𝑛

(
1 + 2

𝜂𝜇Φ

) ( 𝐿grad
𝜇Φ

( 𝐿𝑢𝐿Hess
𝜇2Φ

+ 𝐿𝑢√
𝑛𝜇Φ

)
+ 𝐿2𝑢
𝜇2Φ

)
2

and 𝐶Φ = 4

(
1 + 1

𝜂𝜇Φ

) ( 𝐿Hess𝐿𝑢
𝜇2Φ

+ 𝐿𝑢√
𝑛𝜇Φ

)
2

𝑛2. Then, we have

∥𝒗𝑘+1 − (∇2

𝒙Φ(𝒙∗𝑘 ;𝜶𝑘 ))
−1∇𝑈 (𝒙∗

𝑘
)∥2

≤
(
1 − 𝜂𝜇Φ

2

)

𝒗𝑘 − ∇2

𝒙Φ(𝒙∗𝑘−1;𝜶𝑘−1)
−1∇𝑈 (𝒙∗

𝑘−1)


2

+𝐶𝑣 ∥𝜶𝑘 − 𝜶𝑘−1∥2 +𝐶Φ𝛿2Φ . (8)

Proposition 4 characterizes the error of 𝒗𝑘+1 in approximating

the Hessian-inverse-vector product (∇2

𝒙Φ(𝒙∗
𝑘
;𝜶𝑘 ))−1∇𝑈 (𝒙∗

𝑘
) of the

hypergradient. It can be seen from eq. (8) that this error contains an

iteratively decreasing term (i.e., the first term at the right hand side)

and two error terms𝐶𝑣 ∥𝜶𝑘 −𝜶𝑘−1∥ (which captures the difference

between two adjacent iterations) and 𝐶Φ𝛿
2

Φ (which is induced by

the lower-level estimation error ∥𝒙̂𝑘 −𝒙𝑘 ∥). By choosing the upper-
level stepsize 𝛽 small enough, we can well control the increment

∥𝜶𝑘 −𝜶𝑘−1∥ and guarantee the hypergradient estimation error not

to explode. Based on the form of the hypergradient established in

Proposition 1, the update in eq. (7) can be written as

𝜶𝑘+1 = PA
{
𝜶𝑘 − 𝛽∇𝜶∇𝒙Φ(𝒙̂𝑘 ;𝜶𝑘 )𝒗𝑘+1

}
, (9)

where ∇̂Ψ(𝜶𝑘 ) := −∇𝜶∇𝒙Φ(𝒙̂𝑘 ;𝜶𝑘 )𝒗𝑘+1 serves as an estimator of

the hypergradient ∇Ψ(𝜶𝑘 ) given by eq. (4). We now characterize

the error between ∇̂Ψ(𝜶𝑘 ) and ∇Ψ(𝜶𝑘 ).

Proposition 5. Suppose Assumptions 1 and 2 hold. Choose 𝛿𝜙 <

𝛿
2
, 𝜂 < 1

𝐿grad
and 𝛽 <

√︃
𝜂𝜇Φ

16𝐶𝑣𝐿
2

𝑢
. Then,

∇̂Ψ(𝜶𝑘 ) − ∇Ψ(𝜶𝑘 )



2
≤
(
1 − 𝜂𝜇Φ

4

)𝑘
4𝑛𝐿4𝑢 (1 + 𝜇−2Φ )

+ 4𝐶𝑣𝐿
2

𝑢𝛽
2

𝑘−1∑︁
𝑡=0

(
1 − 𝜂𝜇Φ

4

)𝑘−1−𝑡 ∥𝐺proj (𝜶𝑡 )∥2

+
8𝐿2𝑢𝐶Φ𝛿

2

Φ𝜇Φ + 4𝜂𝐿4𝑢𝑛
2𝛿2Φ

𝜂𝜇2Φ

, (10)

where the constants 𝐶𝑣,𝐶Φ are given in Proposition 4,

Proposition 5 shows that the bound on the hypergradient esti-

mation error



∇̂Ψ(𝜶𝑘 ) − ∇Ψ(𝜶𝑘 )


2

contains three terms, i.e., an

exponentially decaying term, an error term proportional to the

average gradient norm, and a sufficiently small error term induced

by the lower-level approximation. Based on the results in Propo-

sitions 2, 3,4 and 5, we now characterize the convergence rate

performance of the distributed bilevel method in Algorithm 1.

Proof Sketch of Theorem 1. The first step is to derive the

smoothness property of the hypergradient ∇Ψ(·). Based on the

form of ∇Ψ(·) in eq. (4) and using Proposition 2, Proposition 3, we

have, for any two 𝜶1,𝜶2 ∈ A

∥∇Ψ(𝜶1) − ∇Ψ(𝜶2)∥

≤𝐿𝑢 (∥𝒙∗ (𝜶1) − 𝒙∗ (𝜶2)∥ + ∥𝜶1 − 𝜶2∥)
√
𝑛𝐿𝑢

𝜇Φ

+
√
𝑛𝐿2𝑢

𝜇2Φ

(
𝐿Hess∥𝒙∗ (𝜶1) − 𝒙∗ (𝜶2)∥ + 𝐿𝑢 ∥𝜶1 − 𝜶2∥

)
+ 𝐿𝑢

𝜇Φ
∥𝒙∗ (𝜶1) − 𝒙∗ (𝜶2)∥, (11)

which, using ∥𝒙∗ (𝜶1) − 𝒙∗ (𝜶2)∥ ≤ 𝐿grad
𝜇Φ

∥𝜶1 − 𝜶2∥, yields

∥∇Ψ(𝜶1) − ∇Ψ(𝜶2)∥ ≤ 𝐿Ψ∥𝜶1 − 𝜶2∥. (12)

Let ∇̂Ψ(𝜶𝑘 ) = −∇𝜶 ∇𝒙Φ(𝒙𝑘 ;𝜶𝑘 )𝒗𝑘+1 demote the hypergradient es-

timate. Then, based on the smoothness property established in
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eq. (12), we have

Ψ(𝜶𝑘+1) − Ψ(𝜶𝑘 )

≥
〈
∇̂Ψ(𝜶𝑘 ),PA

{
𝜶𝑘 + 𝛽∇̂Ψ(𝜶𝑘 )

}
− 𝜶𝑘

〉
+
〈
∇Ψ(𝜶𝑘 ) − ∇̂Ψ(𝜶𝑘 ),PA

{
𝜶𝑘 + 𝛽∇̂Ψ(𝜶𝑘 )

}
− 𝜶𝑘

〉
− 𝐿Ψ

2

∥𝜶𝑘+1 − 𝜶𝑘 ∥2 . (13)

Using the property of the projection on the convex set A, i.e.,

⟨𝒙 − PA (𝒙),𝒚 − PA (𝒙) ⟩ ≤ 0 for any𝒚 ∈ A and noting that 𝜶𝑘 ∈ A,

the first term of the right hand side of eq. (13) can be lower-bounded

by

1

𝛽
∥𝜶𝑘 − PA

{
𝜶𝑘 + 𝛽∇̂Ψ(𝜶𝑘 )

}
∥2 . (14)

Let 𝐺proj (𝜶𝑘 ) = 𝛽−1
(
PA

{
𝜶𝑘 + 𝛽∇̂Ψ(𝜶𝑘 )

}
− 𝜶𝑘

)
be the estimate

of the generalized projected gradient 𝐺proj (𝜶𝑘 ) defined in Propo-

sition 5. Then, substituting eq. (14) into eq. (13) and based on

⟨𝒂, 𝒃⟩ ≥ − 1

2
(∥𝒂∥2 + ∥𝒃 ∥2) and the non-expansive property of the

projection on convex sets, we have

Ψ(𝜶𝑘+1) ≥Ψ(𝜶𝑘 ) +
( 𝛽
4

− 𝐿Ψ𝛽
2

4

)
∥𝐺proj (𝜶𝑘 )∥2

−
(
𝛽 − 𝐿Ψ𝛽

2

2

)
∥∇Ψ(𝜶𝑘 ) − ∇̂Ψ(𝜶𝑘 )∥2 . (15)

Applying Proposition 5 to the above eq. (15), conducting the tele-

scoping and using the fact that

∑𝐾−1
𝑘=1

∑𝑘−1
𝑡=0 𝑎𝑘−1−𝑡𝑏𝑡 ≤ ∑𝐾−1

𝑘=0
𝑎𝑘

∑𝐾−1
𝑡=0 𝑏𝑡

for 𝑎𝑡 , 𝑏𝑡 ≥ 0, we have(
1

8

−16𝐶𝑣𝐿
2

𝑢𝛽
2

𝜂𝜇Φ

)
1

𝐾

𝐾−1∑︁
𝑘=0

∥𝐺proj (𝜶𝑘 )∥2

≤max𝜶 ∈A Ψ(𝜶 ) − Ψ(𝜶0)
𝛽𝐾

+
16𝑛𝐿4𝑢 (1 + 𝜇−2Φ )

𝜂𝜇Φ

1

𝐾
+
8𝐿2𝑢𝐶Φ𝛿

2

Φ𝜇Φ + 4𝜂𝐿4𝑢𝑛
2𝛿2Φ

𝜂𝜇2Φ

,

which, in conjunction with the choice of 𝛽 ≤
√︃

𝜂𝜇Φ

256𝐶𝑣𝐿
2

𝑢
, completes

the proof. □

5 VALIDATION STUDY OF BILEVEL
FORMULATION

In this section, we provide a case study for a single-link multi-user

network as shown in Figure 1 to validate the bilevel formulation we

propose in eq. (3), where all 𝑛 users share the same communication

link with a capacity 𝑃 . In this setting, the bilevel formulation is

solve the following problem.

max

𝜶 ∈A
Ψ(𝜶 ) =

𝑛∑︁
𝑟=1

𝑥∗𝑟 (𝜶 )1−𝛼𝑟
1 − 𝛼𝑟

,

𝑥∗
1
(𝜶 ), ..., 𝑥∗𝑛 (𝜶 ) = argmax

𝑥𝑟>0,
∑𝑛
𝑟=1 𝑥𝑟 ≤𝑃

𝑛∑︁
𝑟=1

𝑥
1−𝛼𝑟
𝑟

1 − 𝛼𝑟
, (16)

where we adopt a simple bounded constraint set A := {0 < 𝑎𝑟 ≤
𝑏, 𝑟 = 1, ..., 𝑛}. Note that the lower level adopts the original problem
in eq. (1) rather than the primal version as in eq. (3) because the

explicit solutions can be obtained here.

Figure 1: Example: single communication link with 𝑛 users.

The following theorem establishes the equivalence between the

solutions of the bilevel problem in eq. (16) and the standard single-

level NUM, when the true user utilities are 𝛼-fairness functions.

Theorem 2. Let 𝜶 ∗ ∈ argmax𝜶 ∈A Ψ(𝜶 ) be any solution of the
bilevel problem in eq. (16). Then, the resulting allocated resources
𝑥∗𝑟 (𝜶 ∗), 𝑟 = 1, ..., 𝑛 from the bilevel formulation recover the solutions
of the following standard utility maximization problem under 𝛼-
fairness utilities with fixed parameters 𝛼𝑟 > 0, 𝑟 = 1, ..., 𝑛.

max

𝑥1,...,𝑥𝑛

𝑛∑︁
𝑟=1

[
𝑈𝑟 (𝑥𝑟 ;𝛼𝑟 ) =

𝑥
1−𝛼𝑟
𝑟

1 − 𝛼𝑟

]
, (17)

subject to
∑𝑛
𝑟=1 𝑥𝑟 ≤ 𝑃 and 𝑥𝑟 > 0, for 𝑟 = 1, ..., 𝑛.

Theorem 2 shows that the solution 𝒙∗ (𝜶 ∗) of the bilevel problem
we formulate in eq. (16) also maximizes the original network utility

maximization problem in eq. (17). This means that the proposed

DBiNUM converges to a solution as if the utility functions are

known. This case study provides some validation of the proposed

bilevel objective function. We note that our analysis is possibly

extended to the multi-link scenarios with the graph structure satis-

fying certain properties.

6 DISCUSSION ON USER FEEDBACK
It can be seen from eq. (6) that DBiNUM takes the user (or appli-

cation) information ∇𝑈𝑟 (𝑥𝑘,𝑟 ) to improve the selection of the user

utility functions. In other words, each user has to give feedback

to the network showing how fast their experiences increase at the

given allocated resource 𝑥𝑘,𝑟 . However, in some circumstances, only

utility values are available such as energy consumption, user satis-

faction or job quality, and hence a more feasible solution is to query

their utility value at 𝑥 , i.e., 𝑈𝑟 (𝑥). Given such value information,

one can use a gradient-free approach to approximate the gradient

∇𝑈𝑟 (𝑥𝑘,𝑟 ) by taking the utility difference at two close points 𝑥𝑘,𝑟
and 𝑥𝑘,𝑟 + 𝛿𝑢, as shown below.

∇̂two𝑈𝑟 (𝑥𝑘,𝑟 ;𝑢) =
𝑈𝑟 (𝑥𝑘,𝑟 + 𝛿𝑢) −𝑈𝑟 (𝑥𝑘,𝑟 )

𝛿
𝑢, (18)

where 𝛿 > 0 is the smoothing parameter and 𝑢 is a standard Gauss-

ian random variable. Based on the results in [36], it can be shown

that the estimation bias

��E𝑢 ∇̂two𝑈𝑟 (𝑥𝑘,𝑟 ;𝑢)−∇𝑈𝑟 (𝑥𝑘,𝑟 )
��
of the above

two-point estimator is bounded by 4𝐿𝑢𝛿 , which can be small by

choosing a small 𝛿 . Hence, we can establish a convergence rate

result similar to Theorem 1 with an error proportional to 𝛿 .
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Figure 2: Network utility maximization via our proposed bilevel solver DBiNUM in a 3-user setting. Left plot: total underlying
utility Ψ v.s. # of rounds; middle plot: allocated resource v.s. # of rounds; right plot: normalized 𝛼 v.s. # of rounds.

Figure 3: Network utility maximization via our proposed bilevel solver DBiNUM in a 5-user setting. Left plot: total underlying
utility Ψ v.s. # of rounds; middle plot: allocated resource v.s. # of rounds; right plot: normalized 𝛼 v.s. # of rounds.

Note that the estimator in eq. (18) requires to query the utility

value 𝑈𝑟 (·) at two points simultaneously. However, in the time-

varying and non-stationary environments, 𝑈𝑟 is changing with

time, and hence the two-point estimator may contain large estima-

tion error. In this case, one-point approach turns out to be more

appealing, which takes the form of

∇̂one𝑈𝑟 (𝑥𝑘,𝑟 ;𝑢) =
𝑈𝑟 (𝑥𝑘,𝑟 + 𝛿𝑢)𝑢

𝛿
. (19)

Note that the above one-query estimator has the same mean as the

two-query estiamtion, i.e., E𝑢 ∇̂one𝑈𝑟 (𝑥𝑘,𝑟 ;𝑢) = E𝑢 ∇̂two𝑈𝑟 (𝑥𝑘,𝑟 ;𝑢),
so the convergence analysis in Theorem 1 is still applied.

7 DISCUSSION ON LOWER-LEVEL METHOD
Our method can be regarded as adding a top-level procedure over

a lower-level standard network resource allocation process to im-

prove the overall network utility. In this section, we discuss the

impact of the lower-level procedure on our convergence analysis.

In Algorithm 1, the lower-level procedure adopts a distributed

primal solution (see [40]) given by x∗ (𝜶 ) = argmax𝒙 Φ(x;𝜶 ) =∑𝑛
𝑟=1

(
𝑈𝑟 (𝑥𝑟 ;𝛼𝑟 ) − 𝜖𝑥2𝑟

2

)
−∑

𝑙 ∈L 𝐵𝑙
( ∑

𝑖:𝑙 ∈L𝑖 𝑥𝑖
)
, as given in eq. (3).

To solve this objective with given 𝛼𝑟 , each user first computes the

gradient information ∇𝑥𝑈𝑟 (𝑥𝑟 ;𝛼𝑟 ) − 𝜖𝑥𝑟 −
∑
𝑙 ∈L𝑟 ∇𝐵𝑙 (

∑
𝑖:𝑙 ∈L𝑖 𝑥𝑖 )

using the information from his neighbors with shared links, and

then run simple gradient-based updates. It has been shown in Propo-

sitions 2 and 3 that the lower-level function Φ(𝒙;𝜶 ) is strongly-
convex and smooth w.r.t. 𝒙 , respectively. Then, based on the results

for smooth convex optimization [35], it can be shown that a sim-

ple gradient ascent method can find the optimal maximizer with a

sublinear rate. In other words, we can find a 𝛿Φ-accurate solution

𝑥𝑘,𝑟 at the 𝑘
𝑡ℎ

iteration in finite steps. The accelerated gradient

methods such as Nesterov acceleration can also be applied here to

achieve a faster linear convergence rate.

In reality, there exist various delays such as forward delay 𝑇𝑓
from the source to the target link and the backward delay 𝑇𝑏 for

certain feedback to the source. By choosing the stepsize inversely

proportional to the maximum delay over the network, we enable

to establish the asymptotic stability of the lower-level process (see

Section 2.6 in [40]) as well as a nonasymptotic convergence guaran-

tee (see [24]). Thus, as long as we execute a sufficiently long time

for this lower-level process, we can obtain a desired 𝛿𝜙 -accurate

solution.

8 SIMULATION STUDIES
8.1 Validation of Bilevel Objective function
In this section, we conduct experiments to underpin Theorem 2

to demonstrate that our bilevel optimization based approach in

Algorithm 1 recovers the standard network utility maximization

solution with known utility functions. We consider a a single-link

multi-user setting as in Section 5, where 𝑛 users transmit their pack-

age in a single communication link with capacity 𝑃 . We consider

the following problem setup.

max

𝜶 ∈A
Ψ(𝜶 ) =

𝑛∑︁
𝑟=1

𝑥∗𝑟 (𝜶 )1−𝛼𝑟
1 − 𝛼𝑟

,

𝑥∗
1
(𝜶 ), ..., 𝑥∗𝑛 (𝜶 ) = argmax

𝑥𝑟>0,
∑𝑛
𝑟=1 𝑥𝑟 ≤𝑃

𝑛∑︁
𝑟=1

𝑥
1−𝛼𝑟
𝑟

1 − 𝛼𝑟
− 𝐵

( 𝑛∑︁
𝑖=1

𝑥𝑖

)
where we choose the log barrier regularization function 𝐵(𝑥) =

−𝜏 log(𝑃 − 𝑥) with a parameter 𝜏 . For the lower-level problem, we

137



MobiHoc ’23, October 23–26, 2023, Washington, DC, USA K. Ji and L. Ying.

use a simple𝑇 -step gradient ascent method with stepsize 𝜆 to obtain

good estimates 𝑥𝑘,𝑟 , 𝑟 = 1, ..., 𝑛 at each round 𝑘 . For the constraint

set, we choose A := {0.001 < 𝑎𝑟 ≤ 100, 𝑟 = 1, ..., 𝑛} to ensure the

boundedness of 𝜶 .

Hyperparameter selection.We choose the hyperparameters 𝜆, 𝜂, 𝛽

and 𝜏 from the candidate set {10−𝑡 , 𝑡 = −4,−3. − 2,−1, 0, 1, 2, 3, 4},
and set a large inner-loop iteration number 𝑇 from {10𝑡 , 𝑡 = 3, 4, 5}
to ensure a high-accuracy lower-level solution at each round. For

all experiments, we choose the link capacity 𝑃 = 100. For the experi-

ment in Figure 2, we consider a 3-user setting with 𝑛 = 3, where we

set 𝛼1 =
1

2
, 𝛼2 =

2

3
and 𝛼3 =

2

3
. For the experiment in Figure 3, we

consider a 5-user setting with 𝑛 = 3, where we set 𝛼1 =
1

2
, 𝛼2 =

2

5
,

𝛼3 =
3

5
, 𝛼4 =

2

3
, 𝛼5 =

2

3
.

Results. It can be seen from the left plot in Figure 2 that the total

underlying utility achieved by our proposed DBiNUM increases

with the number of rounds, and converges to the standard NUM

solution 31.77. From the middle plot in in Figure 2 , it is shown that

under the choice of 𝛼1, 𝛼2, 𝛼3 = 1

2
, 2
3
, 2
3
for the underlying utility

functions, 𝑥1 converges to the standard NUM solution 57.9, and

𝑥2 and 𝑥3 converge to the same solution 20.99 due to the identical

underlying utility function with 𝛼2 = 𝛼3 = 2

3
. This validates our

results in Theorem 2, where we show that the bilevel solutions

𝑥∗𝑟 (𝜶 ∗), 𝑟 = 1, ..., 𝑛 recover the standard NUM solution. The same

observation can be made for the 5-user case, where users 4, 5 con-

verges to the lowest 9.9 due to the largest 𝛼4 = 𝛼5 = 2

3
, and user

2 converges to the largest 45.9 due to the smallest 𝛼2 = 2

5
(note

that larger 𝛼 means lower increase rate at larger 𝑥 and hence a

smaller allocated resource). From the right plots in Figure 2 and

Figure 3, since the global solution 𝜶 is not unique, we plot the

normalized solution 𝛼𝑖/𝛼1, 𝑖 = 2, 3, · · · . It can be clearly seen that

each normalized solution converges after some rounds.

Figure 4: Abilene network with four transmission flows.

8.2 Simulation over Real-World Networks
In this section, we consider a real-world network, Abilene network,

whose topology is shown in Figure 4. Following the setup in [7],

this network contains four data transmission flows with distinct

underlying utilities, where flow 1 has a quadratic utility 𝑎1𝑥
2
, flow

2 has a square root utility 𝑎2
√
𝑥 + 𝑏2 −𝑎2

√
𝑥 , flow 3 has a log utility

𝑎3 log(𝑏3 + 1), and flow 4 uses either an 𝛼-fairness 𝑥
1−𝑎

4

1−𝑎4 or s-shape

utility [43] 𝑥𝑎41(𝑥≥0) − 𝑏4 (−𝑥)𝑎41(𝑥<0) (1( ·) is the indicator func-
tion). For the bilevel objective function in eq. (3), we choose a log

barrier regularization function 𝐵(𝑥) = −𝜏 log(𝑃−𝑥) with a capacity
𝑃 . Similarly to the setup in Section 8.1, we use a simple𝑇 -step gradi-

ent ascent method with stepsize 𝜆 for the lower-level problem. For

the constraint set, we choose A := {1.01 < 𝑎𝑟 ≤ 100, 𝑟 = 1, ..., 𝑛}
to ensure the boundedness of 𝜶 .

Hyperparameter setting. For the regularization function 𝐵(·),
we choose the constant 𝜏 = 0.01 and set the capacity 𝑃 = 20 for each

link. The stepsizes 𝜆, 𝜂, 𝛽 are chosen from {10𝑡 , 𝑡 = −3,−2,−1, 0, 1, 2, 3}
to ensure the convergence. For the experiment in Figure 5, we set

𝑎1 = 0.1, 𝑎2 = 5, 𝑏2 = 0.4, 𝑎3 = 4, 𝑏3 = 1, 𝑎4 = 0.8 and 𝑏4 = 0.2. For

the experiment in Figure 6, we set 𝑎1 = 3, 𝑎2 = 0.5, 𝑏2 = 0.2, 𝑎3 =

0.5, 𝑏3 = 2, 𝑎4 = 1.8 and 𝑏4 = 2.

Baseline. The baseline is the standard NUM solution, where each

user has an 𝛼-fairness utility function with 𝛼 = 2.

Figure 5: Performance of DBiNUM in Abilene network with
(𝑎1, 𝑎2, 𝑏2, 𝑎3, 𝑏3, 𝑎4, 𝑏4) = (0.1, 5, 0.4, 4, 1, 0.8, 0.2). Left: underly-
ing utility Ψ v.s. # of rounds; right: resource v.s. # of rounds.

Figure 6: Performance of DBiNUM in Abilene network with
(𝑎1, 𝑎2, 𝑏2, 𝑎3, 𝑏3, 𝑎4, 𝑏4) = (3, 0.5, 0.2, 0.5, 2, 1.8, 2).

Results. It can be seen from the left plots in Figure 5 and Figure 5

that our bilevel optimization method iteratively increases the un-

derlying network utility, and greatly outperform the standard NUM

baseline. For example, in Figure 5, our DBiNUM method converges

to a utility of 1127.06, which is much higher than the baseline

229.40. The same improvement can be observed from Figure 5. This

demonstrate the effectiveness of our bilevel optimization process

in increasing the total underlying network utility.

9 PROOF OF THEOREM 2
Let us first compute the lower-level solution 𝑥∗𝑟 (𝜶 ) of eq. (16). Based
on the the standard analysis in [40], it is shown that the solutions

satisfy the equality that

∑𝑛
𝑟=1 𝑥𝑟 = 𝑃 , which implies that, for any

index𝑚, 𝑥𝑚 = 𝑃 − ∑
𝑖≠𝑚 𝑥𝑖 . Then, the solutions can be obtained

by setting the derive of the objective w.r.t. 𝑥 𝑗 ( 𝑗 ≠ 𝑚) to be 0, as

shown below.

𝜕(∑𝑖≠𝑚 𝑥
1−𝛼𝑖
𝑖

1−𝛼𝑖 + (𝑃−∑𝑖≠𝑚 𝑥𝑖 )1−𝛼𝑚
1−𝛼𝑚 )

𝜕𝑥 𝑗
= 𝑥

−𝛼 𝑗
𝑗

−
(
𝑃 −

∑︁
𝑖≠𝑚

𝑥𝑖
)−𝛼𝑚 = 0,
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which further yields 𝑥
−𝛼 𝑗
𝑗

= 𝑥
−𝛼𝑚
𝑚 for any 𝑗 ≠𝑚. Then, combining

this relationship with the equality

∑𝑛
𝑖=1 𝑥𝑖 = 𝑃 , we have 𝑥

∗
𝑟 (𝜶 ), 𝑟 =

1, ..., 𝑛 satisfy

𝑛∑︁
𝑖=1

𝑥∗𝑖 (𝜶 ) = 𝑃, 𝑥∗
1
(𝜶 )−𝛼1 = · · · = 𝑥∗𝑛 (𝜶 )−𝛼𝑛 . (20)

Next, we derive the solutions of 𝜶 ∗
from eq. (16). From eq. (20),

𝑛∑︁
𝑡=1

(𝑥∗𝑖 )
𝛼𝑖
𝛼𝑡 = 𝑃, (21)

where we omit 𝜶 for each 𝑥∗
𝑖
to simplify notations. Then, for 𝑖 ≠

𝑗 , we derive the derivative
𝜕𝑥∗𝑖
𝜕𝛼 𝑗

through setting the derivative of

eq. (21) w.r.t. 𝛼 𝑗 to be 0 via implicit differentiation, as shown below.

𝑛∑︁
𝑡=1

𝛼𝑖

𝛼𝑡
(𝑥∗𝑖 )

𝛼𝑖
𝛼𝑡

−1 𝜕𝑥
∗
𝑖

𝜕𝛼 𝑗
− (𝑥∗𝑖 )

𝛼𝑖
𝛼𝑗
𝛼𝑖

𝛼2
𝑗

ln𝑥∗𝑖 = 0,

which, by rearranging all terms, yields

𝜕𝑥∗
𝑖

𝜕𝛼 𝑗
=

(𝑥∗
𝑖
)
𝛼𝑖
𝛼𝑗 𝛼𝑖

𝛼2

𝑗

ln𝑥∗
𝑖∑𝑛

𝑡=1
𝛼𝑖
𝛼𝑡

(𝑥∗
𝑖
)
𝛼𝑖
𝛼𝑡

−1
. (22)

For the case when 𝑖 = 𝑗 , using an approach similar to eq. (22), we

have

𝜕𝑥∗
𝑖

𝜕𝛼𝑖
=

−∑
𝑡≠𝑖

1

𝛼𝑡
(𝑥∗
𝑖
)
𝛼𝑖
𝛼𝑡 ln𝑥∗

𝑖∑𝑛
𝑡=1

𝛼𝑖
𝛼𝑡

(𝑥∗
𝑖
)
𝛼𝑖
𝛼𝑡

−1
. (23)

Based on the property of the derivatives we obtain in eq. (22) and

eq. (23), we next derive the optimal solution 𝜶 ∗
and the resulting

resource allocation 𝑥∗
𝑖
(𝜶 ∗). Taking the derivative of the total upper-

level objective Ψ(𝜶 ) = ∑𝑛
𝑖=1

𝑥∗𝑟 (𝜶 )1−𝛼𝑟
1−𝛼𝑟 w.r.t. 𝛼 𝑗 yields

𝜕Ψ(𝜶 )
𝜕𝛼 𝑗

=
∑︁
𝑖≠𝑗

(𝑥∗𝑖 )
−𝛼𝑖 𝜕𝑥

∗
𝑖

𝜕𝛼 𝑗
+ (𝑥∗𝑗 )

−𝛼 𝑗
𝜕𝑥∗
𝑗

𝜕𝛼 𝑗
,

which, combined with eq. (22) and eq. (23), yields

𝜕Ψ(𝜶 )
𝜕𝛼 𝑗

=
∑︁
𝑖≠𝑗

(𝑥∗𝑖 )
−𝛼𝑖

(𝑥∗
𝑖
)
𝛼𝑖
𝛼𝑗 𝛼𝑖

𝛼2

𝑗

ln𝑥∗
𝑖∑𝑛

𝑡=1
𝛼𝑖
𝛼𝑡

(𝑥∗
𝑖
)
𝛼𝑖
𝛼𝑡

−1

− (𝑥∗𝑗 )
−𝛼 𝑗

∑
𝑖≠𝑗

1

𝛼𝑖
(𝑥∗
𝑗
)
𝛼𝑗

𝛼𝑖 ln𝑥∗
𝑗∑𝑛

𝑡=1

𝛼 𝑗
𝛼𝑡

(𝑥∗
𝑗
)
𝛼𝑗

𝛼𝑡
−1

. (24)

For the right hand side of eq. (24), note that

1

𝛼𝑖
(𝑥∗
𝑗
)
𝛼𝑗

𝛼𝑖 ln𝑥∗
𝑗∑𝑛

𝑡=1

𝛼 𝑗
𝛼𝑡

(𝑥∗
𝑗
)
𝛼𝑗

𝛼𝑡
−1

(𝑖)
=

1

𝛼 𝑗
𝑥∗
𝑗
ln𝑥∗

𝑗∑𝑛
𝑡=1

𝛼𝑖
𝛼𝑡

(𝑥∗
𝑗
)𝛼 𝑗 (

1

𝛼𝑡
− 1

𝛼𝑖
)

(𝑖𝑖)
=

1

𝛼 𝑗
𝑥∗
𝑗
ln𝑥∗

𝑗∑𝑛
𝑡=1

𝛼𝑖
𝛼𝑡

(𝑥∗
𝑖
)
𝛼𝑖
𝛼𝑡

−1
(𝑖𝑖𝑖)
=

𝛼𝑖
𝛼2

𝑗

(𝑥∗
𝑖
)
𝛼𝑖
𝛼𝑗

ln𝑥∗
𝑖∑𝑛

𝑡=1
𝛼𝑖
𝛼𝑡

(𝑥∗
𝑖
)
𝛼𝑖
𝛼𝑡

−1
, (25)

where (𝑖) follows by dividing upper and lower sides by 𝛼 𝑗
𝛼𝑖

(𝑥∗
𝑗
)
𝛼𝑗

𝛼𝑖
−1
,

(𝑖𝑖) follows because (𝑥∗
𝑗
)𝛼 𝑗 = (𝑥∗

𝑖
)𝛼𝑖 (see eq. (20)), and (𝑖𝑖𝑖) follows

because 𝑥∗
𝑗
= (𝑥∗

𝑖
)
𝛼𝑖
𝛼𝑗

. Then, incorporate eq. (25) into eq. (24) yields

𝜕Ψ(𝜶 )
𝜕𝛼 𝑗

=
1

𝛼 𝑗
ln𝑥∗𝑗

∑︁
𝑖≠𝑗

((𝑥∗𝑖 )
−𝛼𝑖 − (𝑥∗𝑗 )

−𝛼 𝑗 )
(𝑥∗
𝑖
)
𝛼𝑖
𝛼𝑗∑𝑛

𝑡=1
𝛼𝑖
𝛼𝑡

(𝑥∗
𝑖
)
𝛼𝑖
𝛼𝑡

−1
.

(26)

We next consider two cases 𝑃 ≠ 𝑛 and 𝑃 = 𝑛, separately.

For 𝑃 ≠ 𝑛 case: Note that 𝑥∗
𝑗
≠ 1. Otherwise, from eq. (21), we have

𝑛 = 𝑃 , which contradicts the condition that 𝑃 ≠ 𝑛. Then, we derive

the optimal solution 𝜶 by setting eq. (26) to be 0. This gives

∑︁
𝑖≠𝑗

((𝑥∗𝑖 )
−𝛼𝑖 − (𝑥∗𝑗 )

−𝛼 𝑗 )
(𝑥∗
𝑖
)
𝛼∗
𝑖
𝛼∗
𝑗∑𝑛

𝑡=1

𝛼∗
𝑖

𝛼∗
𝑡
(𝑥∗
𝑖
)
𝛼∗
𝑖
𝛼∗𝑡

−1
= 0 (27)

Let 𝑗 be such that (𝑥∗
𝑗
)−𝛼 𝑗 ≤ (𝑥∗

𝑖
)−𝛼𝑖 for any 𝑖 = 1, ..., 𝑛, which,

combined with eq. (27) and 𝑥∗
𝑖
> 0, yields

(𝑥∗
1
)−𝛼1 = · · · = (𝑥∗𝑛)−𝛼𝑛 . (28)

Combining the above eq. (28) with the relationship (𝑥∗
1
)−𝛼1 = · · · =

(𝑥∗𝑛)−𝛼𝑛 in eq. (20) and the constraint 𝜶 ∈ A, the solution 𝜶 ∗ ∈
argmax𝜶 ∈A Ψ(𝜶 ) satisfies that 𝛼∗𝑟 = 𝑐𝛼𝑟 with 0 < 𝑐 ≤ 𝑏

max𝑟 (𝛼𝑟 )
for 𝑟 = 1, ..., 𝑛. Next, we show that the resulting 𝒙∗ (𝜶 ∗) recovers
the solution of the conventional network maximization problem

in eq. (17). To see this, combining eq. (28) with the relationship∑𝑛
𝑖=1 𝑥

∗
𝑖
= 𝑃 in eq. (20) yields that each 𝑥∗

𝑖
satisfies

∑𝑛
𝑡=1 (𝑥∗𝑖 )

𝛼𝑖
𝛼𝑡 = 𝑃 ,

which can be verified to be the solution of eq. (17).

For 𝑃 = 𝑛 case: In this case, letting the derivative in eq. (26) to

be 0, it can be seen that if there exists at least one 𝑥∗
𝑗
= 1, based

on eq. (20), all 𝑥∗
1
, ..., 𝑥∗𝑛 equal to 1. Otherwise, using an approach

similar to the above 𝑃 ≠ 𝑛 case, we have

∑𝑛
𝑡=1 (𝑥∗𝑖 )

𝛼𝑖
𝛼𝑡 = 𝑃 . Let 𝑖0 be

such that 𝛼𝑖0 := max𝑖 𝛼𝑖 . Then, the equation
∑𝑛
𝑡=1 (𝑥∗𝑖0 )

𝛼𝑖
0

𝛼𝑡 = 𝑃 = 𝑛

implies that 𝑥∗
𝑖0
= 1. Then, by eq. (20), we also have the conclusion

that all 𝑥∗
1
, ..., 𝑥∗𝑛 equal to 1. In sum, in this 𝑃 = 𝑛 case, we have the

solution given by 𝑥∗
1
= · · · = 𝑥∗𝑛 = 1. Note that this also recovers

the solution of eq. (17) in the case of 𝑃 = 𝑛. Then, combining the

above two cases completes the proof.

10 CONCLUSION AND FUTUREWORK
We provide a novel distributed bilevel approach for network utility

maximization with unknown user utility functions. Our method

iteratively improves the underlying total utility based on the user

feedback. Theoretically, we analyze the convergence rate of the

proposed method, and show that it also recovers the standard solu-

tions when the utility functions are known. We anticipate that our

proposed theory and algorithms can motivate the design of feasible

resource allocation protocol to support distributed AI in dynamic,

heterogeneous wireless networks. We anticipate that our results

will promote the development of distributed bilevel optimization

in the resource allocation over the communication networks.
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