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ABSTRACT

Fair resource allocation is one of the most important topics in com-
munication networks. Existing solutions almost exclusively assume
each user utility function is known and concave. This paper seeks
to answer the following question: how to allocate resources when
utility functions are unknown, even to the users? This answer has
become increasingly important in the next-generation Al-aware
communication networks where the user utilities are complex and
their closed-forms are hard to obtain. In this paper, we provide a
new solution using a distributed and data-driven bilevel optimiza-
tion approach, where the lower level is a distributed network utility
maximization (NUM) algorithm with concave surrogate utility func-
tions, and the upper level is a data-driven learning algorithm to
find the best surrogate utility functions that maximize the sum
of true network utility. The proposed algorithm learns from data
samples (utility values or gradient values) to autotune the surrogate
utility functions to maximize the true network utility, so works for
unknown utility functions. For the general network, we establish
the nonasymptotic convergence rate of the proposed algorithm
with nonconcave utility functions. The simulations validate our
theoretical results and demonstrate the great effectiveness of the
proposed method in a real-world network.
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1 INTRODUCTION

Network utility maximization (NUM) has been studied for decades
since the seminal work [21] and has been the central analytical
framework for the design of fair and distributed resource allocation
over the communication networks (e.g., the Internet, 6G networks).
Its applications span from network congestion control [21, 28, 37],
power allocation and routing in wireless networks [9, 34], load
scheduling in cloud computing [10, 18, 31], to video streaming over
dynamic networks [7, 12, 13, 23, 42, 49], and etc. A comprehensive
introduction of the method and its connections to control theory
and convex optimization can be found in [40].

In the traditional NUM, each user is associated with a utility func-
tion that captures the level of satisfaction with allocated resources
(often the assigned data rate), and distributed NUM solutions and
their variations have been implemented as the congestion control
algorithms on the Internet, such as TCP-Reno, and scheduling algo-
rithms for cellular networks, such as Proportional Fair Scheduling.
The solutions maximize the total network utility subject to resource
constraints such as channel capacity, average power, etc. There have
been a large body of studies on NUM for wired [1, 3, 21, 25, 28, 37, 40,
47] and wireless networks [4, 6, 7, 12, 22, 23, 30, 33, 41, 45, 46, 49].
These existing studies on NUM almost exclusively assume that
the utility functions are known to the users and are concave, e.g.
the widely used a-fair utility functions [32], However, in many
real-world applications, e.g., emerging Al-aware next-generation
networks like 6G, the underlying utilities often correlate with user
experience, information freshness, diversity, fidelity, job quality,
etc, which can be nonconcave and generally unknown. Then, an
open and challenging question in the field is:

How to allocate network resources fairly and efficiently when the
utility functions are unknown and nonconcave?

The answer to this question has not been explored well except a
few recent attempts [7, 44] using online learning algorithms. For ex-
ample, [7] focused on a stochastic dynamic scenario, and proposed
an online policy to gradually learn the utility functions and allo-
cate resources accordingly. However, it still assumes the unknown
utility functions are concave and requires a central scheduler.

In this paper, we consider unknown utility functions and pro-
vide a distributed solution from a new bilevel optimization per-
spective, where the lower-level problem is a standard distributed
resource allocation algorithm with parameterized surrogate utility
functions such as a—fair utility functions, and the upper-level is
to fine-tune the surrogate utility functions based on user experi-
ences/feedback. While the solution is based on bilevel optimization,
it is very different from existing studies for non-distributed bilevel
optimization [5, 11, 14, 16, 17, 19, 27, 38] (see [26] and [15] for a
more comprehensive overview) due to the distributed nature of
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the solution over the communication networks. In addition, these
approaches cannot be directly applied here due to the computa-
tion of either the Hessian inverse or a product of Hessians of the
NUM objective, which requires each node to know the infeasible
global network information, which is not practical. Although sev-
eral decentralized bilevel optimization methods have been proposed
by [2, 8, 29, 39, 48], they consider general bilevel objective functions
without taking the channel capacity, the transmission links and the
structured NUM objectives into account, and hence cannot be di-
rectly applied to the NUM problems. Then, the main contributions
of this paper are summarized below:

e QOur first contribution is the design of a distributed bilevel opti-
mization algorithm named DBiNUM, which approximates the
Hessian-inverse-vector product of the upper-level gradient us-
ing one-step gradient decent. We show that each user under
DBiNUM only needs to know the partial network information
such as transmission rates and link states of other users on
her route, and hence DBiNUM admits a distributed implemen-
tation. In addition, DBINUM does not need to know the true
utility functions and only requires user feedback via gradient-
or value-based queries.

o Theoretically, we prove that the hypergradient estimation er-
ror, although large initially, is formed by iteratively decreasing
terms with a proper selection of the learning rates. Based on
such key derivations, we provide the finite-time convergence
rate guarantee for DBINUM with a general nonconcave upper
objective as well as a general network topology. We further
provide a case study for a single-link multi-user network, where
we show that when the true user utilities are a-fairness func-
tions (but still unknown to the users), DBiNUM converges to
the solution as if the utility functions are known. This provides
some validation for the proposed bilevel formulation.

e In the simulations, we first validate our theoretical result by
showing that our bilevel algorithm converges to the standard
NUM solutions (total utility, user resources) when the true
utility functions are a-fair utility functions. In a real-world
Abilene network, we demonstrate that our bilevel approach
achieves a significantly better network utility than the standard
NUM baseline with fixed surrogate utility functions.

2 PROBLEM FORMULATION

Consider a communication network with n users (or data flows)
and m communication links. Each user is associated with a util-
ity function Uy (xr), where x, the transmission rate of user r. Let
L ={l,1,.... I} denote all communication links, ¢; denote the
capacity of link I/, £, denote all links along the route of user r, and
X = [x1, ... xn] T denote the transmission rate vector. The network
utility maximization (NUM) problem is to find a resource allocation
x that solves the following optimization problem:

n
max Z Uy (xy)
X
r=1

subject to: Z xr <c¢j, foranyle L
r:ile L,
x>0, forr=1,..n.

1
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Different from existing works on NUM, we consider general utility
function Uy (x,), not necessarily concave, and assume it may be
unknown to user r.

2.1 The Traditional Network Utility
Maximization and the Primal Solution

If Uy () is continuously twice differentiable and concave, e.g, a-
1-a
xr

fairness utility function such that Uy (x;) = 3=,
user r, then the problem in eq. (1) becomes the traditional NUM
problem and has been extensively studied since the seminal work
[21]. In particular, a variety of distributed algorithms have been
proposed to solve eq. (1) efficiently with only limited information
exchange between the user and the network. Among them, the
primal approach penalizes the capacity constraints into the total
network utility, and solves the following alternative regularized
problem.

and is known to

min
X1yee0 X >0

n

Z Ur(xr) = Z Bl( Z xr),
r=1 leL r:ilel,
where the regularizer B;(+) is continuously twice differentiable and
p-strongly-convex, and can be regarded as the cost of transmitting
the data on link [ to penalize the arrival rate for exceeding the link
capacity. TCP-Reno for the Internet congestion control is such a
primal algorithm.

@)

2.2 NUM via Bilevel Optimization

The question we want to answer is how to solve NUM with un-
known utility functions and how to solve it in a distributed fash-
ion.We propose a distributed, bilevel solution to this problem. The
lower level corresponds to a standard network resource allocation
problem via a primal distributed algorithm as in eq. (2) with parame-
terized surrogate utility functions Uy (x; &), where a € A are the
parameters and the surrogate function is continuously twice differ-
entiable and concave for any given a € A. The upper-level add-on
procedure is to fine-tune the user-specified parameters a,,r =
1,...,n to learn the best surrogate utilities U, (xr; ), r = 1,..,n
based on the user feedback, e.g., the value-based query Uy (xy) (ie.,
how much the user feel satisfied with x,) or the gradient-based
query VU, (x,) (i.e., how fast the user experience increases at x;).
Mathematically, this problem can be formulated as

¥(a)= ) ﬁr<x:<a)>}
r=1

n 2

Z (Ur(erOCr) - %)

r=1

max

aceA

x" (@) = argmax ®(x; @) =
x>0

Sy () )
leL ileL;

where A = {a : & € A,,r = 1,...,n} is a closed, convex and

bounded constraint set. Compared with eq. (2), we add a small

2

quadratic term — 92(’ to each surrogate utility function Uy (x,; &) to

ensure that the lower-level objective function ®(x; &) is strongly-

concave w.r.t. x. Also note that this extra quadratic term changes

the original solution of eq. (2) up to only an € level, and hence the
solution x* () is still valid.

®)
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3 ALGORITHM AND MAIN RESULTS

We first discuss the challenges in solving the bilevel problem eq. (3)
and then present a distributed bilevel algorithm. We then provide
the main results for the proposed method.

3.1 Challenges in Hypergradient Computation
over Networks

Gradient ascent is a typical method to efficiently solve the bilevel
problem in eq. (3). This process needs to calculate the gradient
V¥ (&) (which we refer to the hypergradient) of the upper-level
objective function. However, as shown in the following proposition,
this hypergradient contains complicated components due to the
nested problem structure.

ProrosITION 1. Hypergradient V¥ () takes the form of

V(@) = -V Vi®(x*; ) (Vad(x"; ) "

X [VOL(x), .o, VO (x)] 7, )

where Vo Vx®(x*; &) is a diagonal matrix whose ith diagonal el-
ement is Vo VxUi(x]; a;), and the (i, )" element of the Hessian
matrix V2®(x*; &) equals to

{ViUi(X?;ai) —e=Yier, VB (Zpicr, xr)i=] 5)

—XleLing; VEB(Zrier, Xr)s i # J,
where we define 3}jc¢(+) = 0 for simplicity.

Note that the Hessian matrix V2®(x*; a) is invertible because
the lower-level function ®(x; &) is strongly-concave. As shown
in Proposition 1, the hypergradient V¥ () involves the second-
order derivatives Vg V,®(x*; @) and V2®(x*; @) of the lower-
level function ®(x*; r). In particular, exactly computing V¥ ()
needs to invert the Hessian matrix V2®(x*; ) whose form is taken
as in Proposition 1. However, this inversion is hard to implement
in a large communication network because it requires the global
network information but each user in reality knows only partial
information. In addition, this inversion is computationally infeasible
because the matrix dimension can be super large when the network
contains millions of users. We next introduce a fast approximation
method to tackle these two issues, which 1) allows a distributed
implementation in the network and 2) is highly efficient without
any Hessian inverse computations.

3.2 Proposed Distributed Bilevel Algorithm

In this section, we present a distributed bilevel method for solving
the resource allocation problem in eq. (3).

As shown in algorithm 1, this algorithm involves a two-level
optimization procedures. For the lower level, a standard distributed
primal algorithm (examples can be found in [40]) is used to get
S¢-approximated solutions Xy , such that |x . — Z,r| < 8¢ (0 is

sufficiently small) under Ay forr=1,...,n, where x;; ST = 1,..n
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Algorithm 1 Distributed Bilevel Network Utility Maximization
(DBINUM)

1: Input: Initialization ay € A and x¢ > 0

2: fork=0,1,...,K do

3:  Lower-level standard network maximization with T; time slots:

e  Use standard distributed primal algorithm to get X , > 0
satisfying |Xg , — Xy .| < 8¢ for each user r.

4:  Information broadcast for upper level with T, time slots:

e All users release packets with information Xy ,- and vy - for
r = 1,..., n for broadcast.
e Each user r collects X ; from his neighbors N, = {i : £; N
L, # 0} and V2B;( Yutery Xku) fromits links I € L.
5. For each user r, update auxiliary variable v, by eq. (6).
6:  For each user r = 1,..., n, update user-specified parameters a1 »

by eq. (7).
7: end for

are the lower-level solutions of the problem eq. (3) and are given by

Z ex?
x;;l, ....,x;;n = arg max Z (Ur(xrs g ) — 7’)
X1seesXn >0 =1
Sa(3 x)
le L i:le L;

Note that the above solutions Ek’,, r =1, ..., n are achievable even
in the presence of network delays as long as the execution time T;
is long enough [50].

For the next stage, all users continue to transmit packages to
broadcast their information X , and v, for r = 1,...,n over the
network. Each user stops broadcast once he receives all information
X ; from his neighbors Ny = {i : £; N L, # 0} (including himself)
and constraint-induced quantities V2B;( X,./c r, Xk..) from all links
I € L, along his path. This process is finished after a sufficiently
long time T,, i.e., no packages are transmitted in the networks. Note
that each user can easily distinguish packages in this stage from
those in the previous NUM procedure via identifying the existence
of the new variable vy ,..

After receiving the neighbor information Xy ;, v ; for i € Ny,
each user r update the auxiliary variable vy , locally by

TRTEE DYDY Vsz( > J?k,j)vk,i

ieN,leLinL, JjileL;

+ (1 —e+t anchr(Ek,r; ak,r))ok,r - UVﬁr(J?k,r)) (6)
N—
user feedback

where the important quantity VU, (X ,) reflects how fast the user
experience can increase when increasing the current supply Xy .
Note that the update in eq. (6) for user r only uses the information
of its neighbors with at least one common link, so it is amenable to
the practical decentralized implementation. The updates in eq. (6)
for r = 1,...,n can be regarded as one-step approximation of the
Hessian-inverse-vector (V2@ (x}; ax)) ™ [VU; (C A Vﬁ,,(x;;n)]T
of the hypergradient in eq. (4). The quantity VU, (%) of eq. (6)
is constructed via querying the use experience on the received
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resource. As mentioned before, we use the gradient-type informa-
tion from users to improve the resource allocation via asking how
fast their experiences increase when supplying slightly more re-
source than X, .. In some circumstances where only utility values
are observed, e.g., user satisfaction or job quality, we also provide
a derivative-free gradient approximation using only utility values
Uy, (+) in Section 6.

Finally, each user r updates the user-specified parameter oy, via
a projected gradient ascend step as

™

where 8 > 0 is the outer-loop stepsize and P 4, (-) is the projection
onto the constraint set A,.

i1 = P, {ak,r - ﬂvavar(fk,ﬁ ak,r)”kﬂ,r}’

3.3 Main Results

We present the finite-time convergence analysis for our proposed
distributed method in Algorithm 1. All detailed proofs can be found
in the arXiv version [20] of this submission. We first introduce
some definitions and assumptions.

DEFINITION 1. f(z) : Z — R? is L-Lipschitz continuous if for
Vzi,z € Z, |If(z1) = f(z2)l < Lllz1 - z2||.

Without loss of generality, We make the following assumptions
on the objective function in eq. (3).

AssUMPTION 1. The lower-level solution x* () in eq. (3) is bounded
in the sense that there exist constants 8, b > 0 such that its each coor-
dinate satisfies § < xf(a) <b,r=1,..nforVa € A.

Assumption 1 says that the lower-level solutions x;,r = 1,...,n
are lower and upper-bounded by a small constant § > 0 and a
sufficiently large constant b. This assumption is reasonable because
the regularization B;(-) prevents the solutions from converging to
the infinity and the lower bound constant § helps to avoid some
trouble when x, — 0 for some utility function such as log(x,)

—ar

1
X,
and 35

= with @, > 1. For example, it can be shown that the solu-

tions of for a-fairness utility function Uy (x; a,) = ’i}_—:r satisfies
Assumption 1 given the boundedness of & € A. '

The following assumption imposes some geometrical conditions
on the utility function Uy (-; @) and the regularization function
Bj(-).Let X = {x: ‘% <xr <2b,r=1,..,n}.

ASSUMPTION 2. Forany o € A and any x € X,

e U,(-;ar) is concave and Bj(-) is u-strongly-convex.

. ﬁr('): Vﬁr('): VUr(+5), VaVaUr (-50), Vchr(' ;+) are Ly~
Lipschitz continuous.

o VB;(-) and V?By(-) are Ly-Lipschitz continuous.

Assumption 2 cover many utility functions of practical interest

such as log utility log(x,) and a-fairness utility, as well as a variety

of regularizers such as the quadratic function gxz and the barrier

function —log(c — x) for g < x < 2b < c. For example, for the a-

ar
fairness utility function );’_—a, the Lipschitz continuity assumption

holds because its high-order derivatives such as VU, (xr; ar) =
ar(ar+l)
x;xr+2

1 g2 . _ @ 3 . _
Pl ViUr(xp;00) = xa—ril, ViUr(xp;00) = are bounded
r r
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due to the boundedness of a, € A, and x, € (é, 2b). The follow-
ing theorem characterizes the convergence rate analysis for the
proposed algorithm with general utility functions and networks.

. o)
THEOREM 1. Suppose Assumptions 1 and 2 hold. Choose 5y < 3,

_1 : nHe 1 _ Lgrad \/EL,%
n< Lom and § < min ( ,—ZSGCULi’ 2Lq/)’ where Ly = (—ﬂq) (_/J¢ +
2 2 3
M yLlu ) + YLy + \Fn—ZL”) is the smoothness constant of the total
He Ho Ho 7
objective function ¥ (a). Then, the iterates generated by Algorithm 1
satisfy
1 K-1
2
X IGproj( @)l
k=0
< 16(maxgeq ¥(a) — ¥(ap)) . 256nLy (1 + :”czp) 1

BK qyé K

Sublinearly decaying terms

2 2 4,252

128LMC<1>5® 4L;n 6<I>
+ +

NHo

>

1y

Lower-level error

where Gproj(otg) = B Y Palag +BVY ()} — ) denote the gen-
eralized projected gradient at the k' iteration, and pe, Lyrads LHess,

constants Cg and C, are defined in Propositions 2, 3 and 4.

Theorem 1 uses the generalized gradient Gyoj( ) instead of
the gradient V¥ (ay) due to the existence of the projection. Note
that if the iterate o + SV () locates inside of the constraint set
A, this generalized gradient Gpyoj( @) reduces to the vanilla gra-
dient V¥ (). Theorem 1 shows that the proposed DBINUM finds
a stationary point a5 with s = arg ming ||Gpyoj () ||% for the con-
strained nonconcave bilevel problem in eq. (3), whose generalized
projected gradient norm ||Gpyoj () || 2 contains a sublinearly decay-
128L2Cy85 | 4L.n*S%

nHo 5
the approximation error dg of the lower-level network utility maxi-
mization. This convergence error can be arbitrarily small by setting
the lower-level target accuracy 8¢ small, e.g., at an € accuracy. Note
that we adopt the stationary point as the convergence criterion due
to the general nonconcavity of the upper-level objective function
Uy.

induced by

ing term and a convergence error

4 PROOF OF THE MAIN RESULT

In this section, we provide the technical proofs for Theorem 1. We
first prove an important strongly-concave geometry of the lower-
level objective function ®(x; «).

PROPOSITION 2. Suppose Assumptions 2 holds. Forany a € A,x €

X, O(x; ) is ugp-strongly-concave w.r.t. x, where jgp = w and

the topology-related constant My is defined as
Mpin = nllin {M; : number of links user r exclusively occupies}.
r=1,...n
: 6+ﬂMmin

Note that the strong-concavity constant ———"* depends on the
network topology due to the factor Mp;,. For the case where each
user r occupies solely at least one link, My, > 1 and hence the
quadratic term %x% r =1,..,nin eq. (3) are not needed. However,



Network Utility Maximization with Unknown Utility Functions via Distributed Bilevel Optimization

for the general topology, this quadratic regularization is necessary
to guarantee the strong-concavity.

In the worst cases, the smoothness parameter of the Hessian
matrix V2®(- ; &) whose form is given by Proposition 1 scales in the
order of n? | L], which can be prohibitively large in the network with
millions of users and links, and hence leads to slow convergence in
practice. For this reason, we next provide a refined analysis of the
smoothness of quantities V2®(x; @) and V4 Vx®(x; @) by taking
the sparse network structure (i.e., each user shares links with only
some of other users) into account.

PROPOSITION 3. Suppose Assumption 2 holds. Then, for any a €
A, x € X and any vectoru = [uy, ..., un],

V@ (x; @) = Vx®(x'; @)|| <Lgraallx = 1,
V3@ (x; @)u — Vi®(x"; @)u|| <Lpess max [u][lx — x|,
13
V30 (x; @)u - Vi®(x; @’ )u|| <L, max ;]| - &,
1

where the constants

n

202 +2n ) 3 12

Lgrad =
\ i=1 Lle L,

2L% + 2nL[§ max ( Z Z 1)2
L

Ligess =
\ j:£,f\.£j¢0l€£iﬂ£j

are related to the network topology. Similarly, for the mixed derivative
Vo Vx®(x; @), we have

Vo Vi@ (s )t — Vi Voed (x's o) || < Ly, max |ui? ||| — x|,
13

IV Vx®(x;@)u — Vo Vi®(x; &) u|| < L, max |u;|||la — o]
1

It can be observed from Proposition 3 that the smoothness con-
stant of V2®(-; er)u scales in the order of

2
nmlax( Z Z 1)?,
JLinLj#01e LinL;

which represents to the total number of links the users i share
with other users. As mentioned before, In the worst case, i.e., all
users share the same links, this constant takes the order of n2 |L].
However, in the practical network, each user shares links with a
small portion of users, and hence each Zj:L,ﬂLj#@ ZleLij 1
is much smaller than the worst-case n|.L|. We next characterize
the error in approximating the Hessian-inverse-vector product in
the hypergradient at iteration k. For notational convenience, let

ok = [0k1, - 0 0] T and VU (x) = [VO; (x1), ..., VO (x0) |

PROPOSITION 4. Suppose Assumptions 1 and 2 hold. Choose 54 <

‘g andn < L‘LetCU =n(1+ m)(%(%ﬁ‘?SS ﬁ) %)2
and Ce = 4(1 + m)(LH:ZL“ + ‘;';1 )2 2. Then, we have

o1 = (VP (s ak))ﬂVﬁ(xZ)”Z

<(1- %)””k - Vid)(xz_l; O’k—l)_lVﬁ(xlt—l)“z

+ Collay — a1 |I* + Co 5. 8)
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Proposition 4 characterizes the error of v, in approximating
the Hessian-inverse-vector product (V5®(x}; )™ vU (x3) of the
hypergradient. It can be seen from eq. (8) that this error contains an
iteratively decreasing term (i.e., the first term at the right hand side)
and two error terms Cy || g — atg_1 || (which captures the difference
between two adjacent iterations) and C@Sé (which is induced by
the lower-level estimation error ||} — x||). By choosing the upper-
level stepsize f# small enough, we can well control the increment
|| etg — ag_1|| and guarantee the hypergradient estimation error not
to explode. Based on the form of the hypergradient established in
Proposition 1, the update in eq. (7) can be written as

©)

where ﬁ‘l’(ak) = =V Vx®(Xy; o )vp4q serves as an estimator of
the hypergradient V¥ (ay) given by eq. (4). We now characterize
the error between V¥ () and V¥ ().

g1 = Palar — BVa Vx@(Fp: o) vps1 ),

PROPOSITION 5. Suppose Assumptions 1 and 2 hold. Choose 54 <

A
G, Then,

[} 1
21 < L and f§ <

[V¥ () - V()|

<(1 T],U<p)

4nL4 (1+ yq)z)

+4C,L uﬁ Z

8L5C¢(5§)p¢ +4nL} n25<zb
+

’7,U<I> k-1—
HIGproj(a)1I?

, (10)
npd

where the constants Cy, Cp are given in Proposition 4,

Proposition 5 shows that the bound on the hypergradient esti-
mation error ||§‘I‘(ak) - V‘I’(o.rk)“2 contains three terms, i.e., an
exponentially decaying term, an error term proportional to the
average gradient norm, and a sufficiently small error term induced
by the lower-level approximation. Based on the results in Propo-
sitions 2, 3,4 and 5, we now characterize the convergence rate
performance of the distributed bilevel method in Algorithm 1.

Proof Sketch of Theorem 1. The first step is to derive the
smoothness property of the hypergradient V¥(-). Based on the
form of V¥(-) in eq. (4) and using Proposition 2, Proposition 3, we
have, for any two a1, az € A

V¥ (a1) - V¥ (a2)l
<Ly(llx*(ar1) = x* (a2) || + ||y —

i

az))

VnLy
Ho

“ (Lhessl|lx™ (1) = x™ (@2) || + Lull e — e2][)
3
Lu * *
+ —|lx*(e1) — x"(e2)|l, (11)
Ho
which, using ||x*(a1) — x*(a2)|| < Lgrad g — a2, yields
IVE(a1) — V¥ ()|l < L\P||0!1 - ozl (12)

Let V¥ (o) = — Vo Vi@ (Xk; o) vks; demote the hypergradient es-
timate. Then, based on the smoothness property established in
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eq. (12), we have
Y(ogs1) — ¥(ag)
> <W(ak),¢>ﬂ{ak + BV ()} - ak>

+ <V‘I’(ak) - 6\1’(0!](), Pﬂ{dk + ﬁe‘l’(dk)} - Olk>

(13)

Using the property of the projection on the convex set A, i.e.,
(x=Pa(x),y-Pa(x)) <0foranyy € A and noting that ;. € A,
the first term of the right hand side of eq. (13) can be lower-bounded
by

Ly 2
- 7||f¥k+1 — o l”.

1
p

Let épmj(ak) = ﬂ_l(?ﬂ{ak + ﬁﬁ‘l’(ak)} — ay) be the estimate
of the generalized projected gradient G () defined in Propo-
sition 5. Then, substituting eq. (14) into eq. (13) and based on
{a,b) > —%(||a||2 + ||b||?) and the non-expansive property of the
projection on convex sets, we have

B Lep?

Y(ape) 2¥ (o) + (Z -

e, - Palon + V¥ () }I1% (14)

)”Gproj(ak)nz

2 —~
- _%)HW(%)—W(%)IIZ- (15)

Applying Proposition 5 to the above eq. (15), conducting the tele-
scoping and using the fact that $X-! %L ap b, < 3K g 3K Lp,
for a;, b; > 0, we have

202 K-1
(-2l ) 2 W0
_maxgen ¥(@) - ¥(a)
< K
. 16nLy (1 + pg?) 1, 8LZCo S iy + 4nLyn?S?
nHo K s |
which, in conjunction with the choice of § < [%, completes

the proof. O

5 VALIDATION STUDY OF BILEVEL
FORMULATION

In this section, we provide a case study for a single-link multi-user
network as shown in Figure 1 to validate the bilevel formulation we
propose in eq. (3), where all n users share the same communication
link with a capacity P. In this setting, the bilevel formulation is
solve the following problem.

no_x 1-a,
x5 (a)lmor
max ¥Y(a) = Z %
aeA = 1-ay
n 1-a,
xj(a),...xp(@) = argmax Z 1r_ . (16)
r

xr>0,2;l:1 xr<P =1

where we adopt a simple bounded constraint set A := {0 < a, <
b,r = 1,..,n}. Note that the lower level adopts the original problem
in eq. (1) rather than the primal version as in eq. (3) because the
explicit solutions can be obtained here.
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%o

X1

n—1

Figure 1: Example: single communication link with n users.

The following theorem establishes the equivalence between the
solutions of the bilevel problem in eq. (16) and the standard single-
level NUM, when the true user utilities are a-fairness functions.

THEOREM 2. Let a* € argmax, . # ¥ () be any solution of the
bilevel problem in eq. (16). Then, the resulting allocated resources
xf(a®),r = 1,...,n from the bilevel formulation recover the solutions
of the following standard utility maximization problem under o-
fairness utilities with fixed parameters o, > 0,7 = 1,...,n.

n 1

> |Orndn = —|,

1-—
r=1 @

-G,

17)

Xlseens Xn

n

subject to 3.7_; xr < P and x; > 0, forr =1,...,n.

Theorem 2 shows that the solution x* (&™) of the bilevel problem
we formulate in eq. (16) also maximizes the original network utility
maximization problem in eq. (17). This means that the proposed
DBiNUM converges to a solution as if the utility functions are
known. This case study provides some validation of the proposed
bilevel objective function. We note that our analysis is possibly
extended to the multi-link scenarios with the graph structure satis-
fying certain properties.

6 DISCUSSION ON USER FEEDBACK

It can be seen from eq. (6) that DBiNUM takes the user (or appli-
cation) information VU, (Xk,r) to improve the selection of the user
utility functions. In other words, each user has to give feedback
to the network showing how fast their experiences increase at the
given allocated resource x, . However, in some circumstances, only
utility values are available such as energy consumption, user satis-
faction or job quality, and hence a more feasible solution is to query
their utility value at x; i.e., ﬁr (x). Given such value information,
one can use a gradient-free approach to approximate the gradient
VU, (X ») by taking the utility difference at two close points Xy, ,
and Xj , + du, as shown below.

ﬁr (fk,r + 51';) - ﬁr (fk,r) u (18)

where § > 0 is the smoothing parameter and u is a standard Gauss-
ian random variable. Based on the results in [36], it can be shown
that the estimation bias |Eu ViwoUr (X rs 1) -VU, (%) |0f the above
two-point estimator is bounded by 4L, §, which can be small by
choosing a small §. Hence, we can establish a convergence rate
result similar to Theorem 1 with an error proportional to d.

6tvvo ﬁr (Ec\k,r; u) =
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Figure 2: Network utility maximization via our proposed bilevel solver DBiNUM in a 3-user setting. Left plot: total underlying
utility ¥ v.s. # of rounds; middle plot: allocated resource v.s. # of rounds; right plot: normalized « v.s. # of rounds.
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Figure 3: Network utility maximization via our proposed bilevel solver DBiNUM in a 5-user setting. Left plot: total underlying
utility ¥ v.s. # of rounds; middle plot: allocated resource v.s. # of rounds; right plot: normalized « v.s. # of rounds.

Note that the estimator in eq. (18) requires to query the utility
value Uy (-) at two points simultaneously. However, in the time-
varying and non-stationary environments, Uy is changing with
time, and hence the two-point estimator may contain large estima-
tion error. In this case, one-point approach turns out to be more
appealing, which takes the form of

U, (X + Su)u
—

Note that the above one-query estimator has the same mean as the

§oneﬁr(9?k,r§u) = (19)

two-query estiamtion, i.e., Ey,VoneUr (X rsu) = EuViwoUr (Xge 3w,
so the convergence analysis in Theorem 1 is still applied.

7 DISCUSSION ON LOWER-LEVEL METHOD

Our method can be regarded as adding a top-level procedure over
a lower-level standard network resource allocation process to im-
prove the overall network utility. In this section, we discuss the
impact of the lower-level procedure on our convergence analysis.
In Algorithm 1, the lower-level procedure adopts a distributed
primal solution (see [40]) given by x* (&) = argmax, ®(x; &) =
2
P (Ur(xr; ar) — %) —lers Bl( Yilerl; x,-), as given in eq. (3).
To solve this objective with given a;, each user first computes the
gradient information VU (xr; ar) — €xr — Xje £, VBI(Zide g, Xi)
using the information from his neighbors with shared links, and
then run simple gradient-based updates. It has been shown in Propo-
sitions 2 and 3 that the lower-level function ®(x; &) is strongly-
convex and smooth w.r.t. x, respectively. Then, based on the results
for smooth convex optimization [35], it can be shown that a sim-
ple gradient ascent method can find the optimal maximizer with a
sublinear rate. In other words, we can find a dg-accurate solution
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Xy at the k? h jteration in finite steps. The accelerated gradient
methods such as Nesterov acceleration can also be applied here to
achieve a faster linear convergence rate.

In reality, there exist various delays such as forward delay T
from the source to the target link and the backward delay T;, for
certain feedback to the source. By choosing the stepsize inversely
proportional to the maximum delay over the network, we enable
to establish the asymptotic stability of the lower-level process (see
Section 2.6 in [40]) as well as a nonasymptotic convergence guaran-
tee (see [24]). Thus, as long as we execute a sufficiently long time
for this lower-level process, we can obtain a desired §y-accurate
solution.

8 SIMULATION STUDIES
8.1 Validation of Bilevel Objective function

In this section, we conduct experiments to underpin Theorem 2
to demonstrate that our bilevel optimization based approach in
Algorithm 1 recovers the standard network utility maximization
solution with known utility functions. We consider a a single-link
multi-user setting as in Section 5, where n users transmit their pack-
age in a single communication link with capacity P. We consider
the following problem setup.

Z": X (@)
l-a

r=1

max Y(a) =
axeA ()

1-a,

n
Xr
arg max E n
—ar

xr>0,%7_ % <P y=1

(53

i=1

xj(a), ... xp(a) =

where we choose the log barrier regularization function B(x) =
—7log(P — x) with a parameter 7. For the lower-level problem, we
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use a simple T-step gradient ascent method with stepsize A to obtain
good estimates fk,w r = 1,...,n at each round k. For the constraint
set, we choose A = {0.001 < a, < 100,r = 1,...,n} to ensure the
boundedness of «.

Hyperparameter selection. We choose the hyperparameters A, n, §
and 7 from the candidate set {107, ¢t = —4,-3. - 2,-1,0, 1,2, 3,4},
and set a large inner-loop iteration number T from {10%,t = 3,4,5}

to ensure a high-accuracy lower-level solution at each round. For

all experiments, we choose the link capacity P = 100. For the experi-
ment in Figure 2, we consider a 3-user setting with n = 3, where we

set ay = % ay = % and a3 = % For the experiment in Figure 3, we

consider a 5-user setting with n = 3, where we set a7 = %, a = %,
as=2a4=3% a5 =%

Results. It can be seen from the left plot in Figure 2 that the total
underlying utility achieved by our proposed DBiNUM increases
with the number of rounds, and converges to the standard NUM
solution 31.77. From the middle plot in in Figure 2 , it is shown that
under the choice of a1, a2, a3 = % % % for the underlying utility
functions, x; converges to the standard NUM solution 57.9, and
x2 and x3 converge to the same solution 20.99 due to the identical
underlying utility function with @z = a3 = % This validates our
results in Theorem 2, where we show that the bilevel solutions
x(a®),r = 1,..,nrecover the standard NUM solution. The same
observation can be made for the 5-user case, where users 4, 5 con-
verges to the lowest 9.9 due to the largest ay = a5 = % and user
2 converges to the largest 45.9 due to the smallest ay = % (note
that larger @ means lower increase rate at larger x and hence a
smaller allocated resource). From the right plots in Figure 2 and
Figure 3, since the global solution « is not unique, we plot the
normalized solution a;/a1,i = 2,3,- - -. It can be clearly seen that
each normalized solution converges after some rounds.

Flow 2

Flow 3 H Flow 4

Figure 4: Abilene network with four transmission flows.

8.2 Simulation over Real-World Networks

In this section, we consider a real-world network, Abilene network,
whose topology is shown in Figure 4. Following the setup in [7],
this network contains four data transmission flows with distinct
underlying utilities, where flow 1 has a quadratic utility a;x?, flow
2 has a square root utility azVx + by — azv/x, flow 3 has a log utility
a3 log(bz + 1), and flow 4 uses either an a-fairness ’if::
utility [43] %1 (x»0) — ba(=%)*1(x<g) (1(.) is the indicator func-
tion). For the bilevel objective function in eq. (3), we choose a log
barrier regularization function B(x) = —7 log(P—x) with a capacity
P. Similarly to the setup in Section 8.1, we use a simple T-step gradi-
ent ascent method with stepsize A for the lower-level problem. For

or s-shape
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the constraint set, we choose A := {1.01 < a, < 100,r = 1,...,n}
to ensure the boundedness of «.

Hyperparameter setting. For the regularization function B(-),
we choose the constant 7 = 0.01 and set the capacity P = 20 for each
link. The stepsizes A, 1, § are chosen from {10%,t = -3,-2,-1,0,1,2,3}
to ensure the convergence. For the experiment in Figure 5, we set
a; =0.1,ap =5,by = 0.4,a3 = 4,b3 = 1,a4 = 0.8 and by = 0.2. For
the experiment in Figure 6, we set a; = 3,a2 = 0.5,b2 = 0.2,a3 =
0.5,b3 = 2,a4 = 1.8 and by = 2.

Baseline. The baseline is the standard NUM solution, where each
user has an a-fairness utility function with a = 2.

-
~
in

o
o

[
N
n

= Bilevel solver
201 /e Standard NUM baseline

o
o

Allocated resource

N
n

0 500 1000 1500 2000 0 250 500 750 10001250 150017502000
Round Round

Figure 5: Performance of DBiNUM in Abilene network with
(a1, a2,b2,a3,b3,a4,b4) = (0.1,5,0.4,4,1,0.8,0.2). Left: underly-
ing utility ¥ v.s. # of rounds; right: resource v.s. # of rounds.
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Figure 6: Performance of DBiNUM in Abilene network with
(a1, az, ba, as, bs, aq, by) = (3,0.5,0.2,0.5,2,1.8, 2).

Results. It can be seen from the left plots in Figure 5 and Figure 5
that our bilevel optimization method iteratively increases the un-
derlying network utility, and greatly outperform the standard NUM
baseline. For example, in Figure 5, our DBiNUM method converges
to a utility of 1127.06, which is much higher than the baseline
229.40. The same improvement can be observed from Figure 5. This
demonstrate the effectiveness of our bilevel optimization process
in increasing the total underlying network utility.

9 PROOF OF THEOREM 2

Let us first compute the lower-level solution x (@) of eq. (16). Based
on the the standard analysis in [40], it is shown that the solutions
satisfy the equality that }.7"_, x, = P, which implies that, for any
index m, Xy, = P — X+, Xi. Then, the solutions can be obtained
by setting the derive of the objective w.r.t. xj (j # m) to be 0, as
shown below.

1-a;
X 0 (P=Nigm xi)TOm
Mhiem i * ) w (p Y e =
=x. 7 — - i =0,
axj / iFm
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which further yields x;aj = x;,™ for any j # m. Then, combining

this relationship with the equality ¥, x; = P, we have xj (@), r =
1, ..., n satisfy
n

Zx;f(a) =P, xj(a)y™ ™ =-..

i=1

= x5 (@)% (20)

Next, we derive the solutions of @* from eq. (16). From eq. (20),

n a;
D =P,
t=1

where we omit & for each x] to simplify notations. Then, for i #

(21)

Js
eq. (21) w.r.t. @j to be 0 via implicit differentiation, as shown below.
n ) * @
oG a1 0x; B
Z—'(x;k)“t 1—’—(x;-“)“f—llnx;f=0,
ar oaj 2
=1 J

which, by rearranging all terms, yields

a;

s DT S
1 J
—_— . 22
daj  yn @iyl )
t=1 a; X

For the case when i = j, using an approach similar to eq. (22), we
have

X
% _ L oya, *
axl. _ Zt#l ar (xl' ) ot lnxi (23)
o n ﬂ( *)%—1 ’
t=1 a; X

Based on the property of the derivatives we obtain in eq. (22) and
eq. (23), we next derive the optimal solution a* and the resulting
resource allocation x} (™). Taking the derivative of the total upper-

level objective ¥(er) = X1, % w.rt. a; yields
a‘I’(a) 5, X} a j

1 + J —_—,
5 oD T

which, combined with eq. (22) and eq. (23), yields
(x} )”‘J Zl Inx}

¥ ()
L T S b
%j i#j (x*) th
t 1 a;
_ s i(x*.)aﬁ-lnx*f
- (x) v = : (24)
() Xy !
For the right hand side of eq. (24), note that
1 * Zi]l * 1 *1 *
a_i(x') Plnx; g a; XjInx;
- ai(E-4)
" o (x*)a, 1 a (x*) Thar
1 a—g(x’.")“ij Inx?*
T e B ) B ' (25)
i Gy i g1
;1:1 g—t x)at ?:1 g—t xi)at
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. %
where (i) follows by dividing upper and lower sides by % (x;f) @
(ii) follows because (x;f)“f = (x})% (see eq. (20)), and (iii) follows

&

because x;f = (x}) 4 Then, incorporate eq. (25) into eq. (24) yields

()@

& (s

M__l nxt Z((x) @ _(

80(j i#j

A)—gj)
n
t=1 a;
(26)
We next consider two cases P # n and P = n, separately.

For P # n case: Note that x}f # 1. Otherwise, from eq. (21), we have
n = P, which contradicts the condition that P # n. Then, we derive
the optimal solution & by setting eq. (26) to be 0. This gives

a

F

3

()

D) - () “f)—a* =0 ()
! ook
i i g ()
Let j be such that (x}f)_&f (x7)” @ for any i = 1,...,n, which,
combined with eq. (27) and x} > 0, yields
()~ = = ()7 (28)

Combining the above eq. (28) with the relationship (x})™ = --- =
(x5,)~% in eq. (20) and the constraint & € A, the solution a* €
argmax, c 4 V() satisfies that a; = ca, with 0 < ¢ < max, (@)
for r = 1, ..., n. Next, we show that the resulting x*(a*) recovers
the solution of the conventional network maximization problem

in eq. (17). To see this, combining eq. (28) with the relationship

2, x; = Pineq.(20) yields that each x] satisfies .}, (x]) @ = P,

which can be verified to be the solution of eq. (17).
For P = n case: In this case, letting the derivative in eq. (26) to
be 0, it can be seen that if there exists at least one x;f = 1, based

on eq. (20), all x7, ..., x;, equal to 1. Otherwise, using an approach

similar to the above P # n case, we have >}, 1(x*) & = P Let ip be

such that aj, := max; a;. Then, the equation 7", (x} ) 7 = =P=n
implies that xi*0 = 1. Then, by eq. (20), we also have the conclusion
that all x;‘ , .. X, equal to 1. In sum, in this P = n case, we have the
solution given by x] = -+ = x;; = 1. Note that this also recovers
the solution of eq. (17) in the case of P = n. Then, combining the
above two cases completes the proof.

10 CONCLUSION AND FUTURE WORK

We provide a novel distributed bilevel approach for network utility
maximization with unknown user utility functions. Our method
iteratively improves the underlying total utility based on the user
feedback. Theoretically, we analyze the convergence rate of the
proposed method, and show that it also recovers the standard solu-
tions when the utility functions are known. We anticipate that our
proposed theory and algorithms can motivate the design of feasible
resource allocation protocol to support distributed Al in dynamic,
heterogeneous wireless networks. We anticipate that our results
will promote the development of distributed bilevel optimization
in the resource allocation over the communication networks.
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