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of the polytope. Such random walks are important because
they can be used to generate an element from a set of
combinatorial objects uniformly at random. A weaker form
of the conjecture of Mihail and Vazirani says that the edge
expansion of the graph of a 0/1 polytope in RY is greater
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1 | INTRODUCTION

A 0/1 polytope (in R?) is the convex hull of some subset of {0, 1}¢. In other words, 0/1 polytopes are
polytopes such that every coordinate of every vertex is either zero or one. One reason these polytopes
have been studied is their connection to various combinatorial optimization problems. This connection
arises due to the fact that many combinatorial structures can be described by a set of 0/1 vectors.
For example, if M is a matroid whose ground-set has size d, then every basis of M corresponds to a
0/1 vector in {0, 1}%. One can then define the matroid base polytope of M as the convex hull of the
0/1 vectors corresponding to bases of M. With this construction, questions about the combinatorial
structure of M can be restated as questions about the geometric structure of the matroid base polytope
of M. See [6,7] for an early example of the use of this idea.
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The applications of 0/1 polytopes that are most relevant to this article depend only on the graph
of the polytope. For a polytope P, the graph G(P) of P is the graph whose vertices are vertices of
P and whose edges are edges of P. It turns out that by performing a random walk on the graph of a
0/1 polytope, one can solve a number of important combinatorial optimization problems. The prime
example of this is the problem of sampling from a set of combinatorial objects uniformly at random.
In our setting, the set of combinatorial objects naturally corresponds to the set of vertices of some
0/1 polytope. Thus, the problem of generating such a random sample is reduced to the problem of
generating a random vertex of a 0/1 polytope. This can be done efficiently as long as the random walk
on the graph of the polytope mixes rapidly, that is, approaches the stationary distribution in poly(d)
steps. For polytopes whose maximum vertex degree is bounded by a polynomial in d, this rapid mixing
can be guaranteed to occur if one can obtain a 1/poly(d) lower bound on a quantity associated to
the graph called the edge expansion.' This is well known, see, for example, [15,17]. We explain in
more detail the relationship between edge expansion and rapid mixing below. First, we define edge
expansion.

For a graph G = (V,E), and a subset S C V, we use 6(S) to denote the set of edges that connect a
vertex in S to a vertex in V' \ S. With this, we can the define the edge expansion of a graph as follows:

Definition 1. The edge expansion of a graph G = (V,E) is

. [18(9)] . VI
PRl scv,i<|S| <Y
m‘“{ H Sl<5

Similarly, the edge expansion of a polytope P is defined to be the edge expansion of the graph G(P)
of P.

The proof that a good lower bound on edge expansion implies rapid mixing is roughly as follows.
For polytopes whose maximum vertex degree is bounded by a polynomial in d, a 1/poly(d) lower
bound on the edge expansion implies, by the Cheeger inequality for general graphs as stated in [5], a
1/poly(d) lower bound on the spectral gap of the Laplacian of the graph. It is then a standard fact that
this lower bound on the spectral gap implies rapid mixing, see, for example, [20].

The main motivation for this article is the conjecture of Mihail and Vazirani which states that all
0/1 polytopes have edge expansion at least 1. See [8, Section 7] and [17]. For applications, it would
suffice to establish the following weaker form of Mihail and Vazirani’s conjecture which has been
mentioned in a number of previous works including [10,14,17].

Conjecture 2. The edge expansion of the graph of a 0/1 polytope in R? is greater than

ﬁ for some polynomial function f.

As mentioned above, a proof of this conjecture would have important applications to the analysis
of randomized algorithms for combinatorial problems. For details concerning such applications, see
[8,9,14,17].

A number of previous works have made some progress on the above conjecture, by establishing it
for various special classes of 0/1 polytopes. We overview such previous work in Section 3. As another
special case, it was asked in [9,15] whether random 0/1 polytopes have good expansion properties.
Our main result gives an affirmative answer to this question. We consider three different (but similar)
models of random 0/1 polytopes which we call the balls-into-bins model, the binomial model and the

"We remark that the requirement that the maximum vertex degree be bounded by a polynomial in d is not satisfied by a significant
number of examples of 0/1 polytopes. This is because, as remarked in [13], many 0/1 polytopes are known to be 2-neighborly
which means that their graph is the complete graph. It is also shown in [13] that random polytopes with not too many vertices
are 2-neighborly with high probability.
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LEROUX AND RADEMACHER Wl LEY 3

uniform model. See Section 2 for definitions of these models. We prove that the edge expansion of a
random 0/1 polytope distributed according to any of these three models is at least 1/12d with high
probability. In this theorem and everywhere else in the article the phrase “with high probability” means
“with probability lower bounded by a function of d alone that converges to 1 as d goes to c0.”

Theorem 3. Assume that P C R? is a random 0 /1 polytope that is distributed according
to either the balls-into-bins model, the binomial model, or the uniform model as defined
in Section 2. Then the edge expansion of P is at least 1/12d with high probability.

See Section 5 for the proof of this theorem.

A rough idea of the proof is as follows: Say we have a random 0/1 polytope P in R with n vertices.
It is possible to choose an integer k which depends on 7 and d such that if we consider the orthogonal
projection of P to the first & coordinates, then the projected vertices of P cover the vertices of the
k-cube C* in the projected space and also the projected vertices of P are well distributed among the
vertices of C¥ in the sense that not too many vertices of P are projected to the same vertex of C¥. We
then use the known fact that C* has good edge expansion to show that P also must have good edge
expansion. Apart from being interesting in their own right, these results provide some evidence that
the above weaker form of the conjecture (Conjecture 2) of Mihail and Vazirani may be true. We give
some additional motivation for the study of random 0/1 polytopes in the next section, after we explain
the models of randomness we consider.

2 | MODELS OF RANDOMNESS

In this section, we introduce the models of random 0/1 polytopes that we consider.

The most familiar example of a 0/1 polytope in RY is, of course, the regular d-dimensional cube.
We use the notation C¢ := [0, 1]¢ for the regular d-dimensional cube in R?. The vertex set of the cube
C? is {0, 1} and so every 0/1 polytope can be seen as the convex hull of some subset of vertices of
C? for some d. Therefore, to generate a random 0/1 polytope, one can first pick some random subset
S € {0,1}¢ and then form the polytope by taking the convex hull of S. For a set S C {0, 1}¢, we use
convs to denote the convex hull of S, that is, the 0/1 polytope with vertex set S.

We restrict our attention to the following three models of random 0/1 polytopes.

1. The balls-into-bins model: For any n € N, choose S, ... , S, independently and uniformly
from {0, 1}?. Repetition is allowed. Define the set S¢ := {S|, ... ,S,} and the polytope P¢ :=
convsS?.

2. The binomial model: For any p € (0, 1), let Sg be the subset of {0, 1}¢ where each v € {0, 1}
is in S¢ with probability p. Define the polytope P4 := convSg.

3. The uniform model: For any 1 < n < 29, let U¢ be chosen uniformly at random from the set
of all n-element subsets of {0, 1}¢. Define the polytope Q¢ := convU¢.

The above three models of random polytopes have been fairly well-studied. In particular, these
models are known to produce polytopes which have properties that are interesting either in the context
of geometric algorithms or in the context of the study of the combinatorial structure of convex poly-
topes. We list some examples of such properties here. Random 0/1 polytopes distributed according to
the balls-into-bins model have been used to show that there exist 0/1 polytopes with superexponen-
tially many facets [2]. No deterministic construction of such polytopes is known. Random 0/1 polytopes
distributed according to what we call the uniform and balls-into-bins models have also been studied
because they exhibit surprising behavior with respect to convex hull algorithms [10] and because they
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are similar to well-studied 0/1 polytopes in polyhedral combinatorics in that they have a large number
of low-dimensional faces with high probability [13]. Another example is the paper [3] which studies a
model of random —1/0/1 polytopes which exhibit extreme behavior when performing a cutting-plane
procedure. Their model is similar to our uniform model. In addition, all three of our models are inspired
by standard models in random graphs and random structures (see, for example, [12]). We consider all
three models in order to illustrate the flexibility of our techniques.

3 | PREVIOUS WORK ON EXPANSION OF 0/1 POLYTOPES

Some important families of 0/1 polytopes are known to have edge expansion at least 1. We give an
overview of what is known below. We also explain what is known about a closely related expansion
property called vertex expansion (defined in Section 3.2).

3.1 | Edge expansion

In a recent breakthrough, the authors of [1] showed that the matroid base polytope of any matroid has
edge expansion at least one [1, Theorem 1.5]. That is, they established the original conjecture of Mihail
and Vazirani (that all 0/1 polytopes have edge expansion at least one) for 0/1 polytopes which are the
matroid base polytope of some matroid.

Prior to this breakthrough, the conjecture had only been established for some more limited families
of 0/1 polytopes: Kaibel showed in [14] that the conjecture holds for 0/1 polytopes of dimension at
most five, simple 0/1 polytopes, hypersimplices, stable set polytopes, and perfect matching polytopes.
In earlier papers, the conjecture had been established for matching polytopes, order ideal polytopes,
and independent set polytopes in [18], and for balanced matroid base polytopes in [8].

Despite this progress, the conjecture of Mihail and Vazirani is still a long way from being fully
solved. Indeed, most 0/1 polytopes do not fall into any of the categories mentioned above. Some exam-
ples of 0/1 polytopes for which the conjecture still open are knapsack polytopes, equality constrained
0/1 polytopes [16], and symmetric traveling salesman polytopes. For these polytopes, the weaker form
of the conjecture (Conjecture 2), is also still open.

3.2 | Vertex expansion

We also consider another known notion of expansion called vertex expansion. The vertex expansion
is relevant to our considerations because the vertex expansion of a graph is a lower bound on the edge
expansion of the graph. For a graph G = (V, E), and a subset S C V, we use N(S) to denote the set of
all v € V' \ S such that there is an edge connecting v to some s € S. With this, we can define vertex
expansion as follows

Definition 4. The vertex expansion of a graph G = (V,E) is

min{lN(S)| :ScV, 1|5 L |V|}
IS 2
The vertex expansion of a polytope is the vertex expansion of the graph of the polytope.
Because the vertex expansion gives a lower bound on the edge expansion, in the context of
Conjecture 2, it is natural to ask whether one can establish a 1/poly(d) lower bound on the vertex
expansion of 0/1 polytopes. Unfortunately, this is known to be impossible: Gillmann showed in his
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thesis [9] that there exists a sequence { P, }gen of 0/1 polytopes Py in R such that the vertex expan-
sion of P, is at most 273219 for 4 sufficiently large. A similar construction was mentioned in [17],
but it seems that the details were never published.

In the construction of the polytopes P;, some of the vertices are chosen deterministically and
some are chosen randomly. In contrast to Gillman’s result, we can show that if the vertices are chosen
completely randomly, then the polytope will have 1/poly(d) vertex expansion with high probability.
In particular, we can prove that the vertex expansion of a random 0/1 polytope distributed according
to any of the three models described in Section 2 is Q(1/d>/?) with high probability:

Theorem 5. Assume that P C R? is a random 0/1 polytope that is distributed according
to either the balls-into-bins model, the binomial model, or the uniform model as defined
in Section 2. Then the vertex expansion of P is Q(1/d*/?) with high probability.

The proof of the above theorem is nearly the same as the proof of the corresponding result for edge
expansion (i.e., Theorem 3) and is thus omitted. Whereas in the proof of Theorem 3 we use the fact
that the edge expansion of the graph of the d-dimensional cube C? is one, in the proof of Theorem 5
one uses the well known fact that the vertex expansion of the graph of the d-dimensional cube C¢ is
o1/ \/E ). For several proofs that the edge expansion of the graph of C? is one, see the introduction
in [17]. For a proof of the fact that the vertex expansion of the graph of the d-dimensional cube C? is
e/ \/E), see [4, Theorem 3]. The ©(1/ \/E) bound also follows from Harper’s solution [11] of the
vertex isoperimetric problem for the cube.

4 | BACKGROUND ON POLYTOPES

Previous works which established good edge expansion for special classes of 0/1 polytopes used
mainly combinatorial proof techniques. Our approach, in contrast, is mainly geometric. Thus, we need
some basic facts about the geometry of convex polytopes.

As is standard, by a polytope we always mean a convex polytope and we sometimes omit the word
convex. We refer the reader to [22] for a comprehensive introduction to the theory of convex polytopes
and to [21] for a survey on 0/1 polytopes in particular.

LetPcR?bea polytope. A face F of P is any set that can be writtenas F = {x € P : c-x = cp}
where ¢ - x < ¢g is some linear inequality that is satisfied by all x € P. A proper face of P is any
face of P which is not equal to either P or §J. For a polytope P, we use the notation V(P) for the set of
vertices of P, that is, the set of O-dimensional faces of P and E(P) for the set of edges, that is, the set
of 1-dimensional faces of P.

Aside from these definitions, the only fact about polytopes we need is the following basic result
that is often used without proof. We give a proof for the sake of completeness.

Proposition 6. If P c RY is a d-polytope (i.e., P is full-dimensional, so that aff P = RY),
then for any vertex v of P, the set of edges incident to v are not contained in any hyperplane.

Proof. The proof uses the notion of the vertex figure of a polytope P as defined in [22].
For a polytope P ¢ R? and v a vertex of P, the vertex figure of P at v is defined as follows.
Let c € RY and ¢y € R be such that P C {x eRY:c-x< co} and {v} =Pn{x e
R? : ¢-x = ¢p}. Choose ¢; < cg so that all of the vertices v/ of P other than v satisfy
¢ -V < cy. Then the vertex figure of P at v is the polytope P N {x € RY : ¢ -x=c1).
In order to complete the proof we need to recall two basic facts about vertex figures. It
follows from [22, Proposition 2.4] that the vertex figure of a d-polytope at any vertex v is
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a (d — 1)-polytope and that the vertices of the vertex figure are precisely the intersections
of the edges incident to v with the hyperplane containing the vertex figure. This means
that the set of edges incident to v cannot be contained in a hyperplane. [

5 | PROOFS

This section is devoted to the proof of Theorem 3. The idea of the proof is as follows. We first establish
what we call the “projection lemma” (Lemma 7) which says that for a 0/1 polytope P C R, if there
exists an orthogonal projection of P to some k coordinates with certain nice properties, then P has
good edge expansion. The nice properties that the projection z needs to satisfy are that the image of
P by r is equal to the k-dimensional hypercube C* and that not too many vertices of P are projected
to the same vertex of C. If such a projection exists, we can show that P has good edge expansion by
using the known fact that the edge expansion of C¥ is one. The way this argument works is that given
any partition S U T of the vertices of P, we consider z(S) and z(T’) (which are subsets of the vertices
of C* but do not necessarily form a partition) and use that the edge expansion of C¥ is one to show that
there are many edges of a certain type in C¥. Then, using properties of the projection, we show that
all edges of this type lift through z~! (i.e., we consider the preimage of each edge by r) to edges of P
that connect a vertex in S to a vertex in 7.

After we establish the above “projection lemma,” we show using basic probability that for our
models of random 0/1 polytopes, the projection to any k coordinates has the above nice properties
with high probability. Here, k is some positive integer that is chosen based on the parameters of the
random 0/1 polytope in question.

5.1 | The projection lemma

Lemma 7. Let P ¢ R? be a 0/1 polytope and suppose that there exists a constant
¢ € N and k coordinates such that the orthogonal projection ;. : RY - R* 10 those k
coordinates satisfies

1. 7P = C*. Equivalently, with C* denoting the k-cube in nR? = RE, every vertex
of C* appears at least once in mV(P).
2. For every vertex v € V(C¥), the cardinality of 7rk_1(v) N V(P) is at most c.

Then the edge expansion of the graph of P is at least i

Proof. Let R C V(P) and let B := V(P) \ R. Set s = min(|R|, |B]). We need to show that
there are at least s/2¢ edges in P which connect a vertex in R to a vertex in B.

The notation R, B is chosen so that we think of R as the “red” vertices and B as the
“blue” vertices. For a vertex v € V(C¥), we call v a monochromatic red vertex if v €
R\ miB and v is monochromatic blue if v € ;B \ xR. Furthermore, we call v € V(C¥)
bichromatic if v € m R N m;B.

Observe that either the number of monochromatic red vertices is at most 2! or the
number of monochromatic blue vertices is at most 2~! (or both). Also, observe that in
order to show that there are at least s /2¢ edges in P which connect a vertex in R to a vertex
in B, it suffices to show either that the number of such edges is at least |R|/2c¢ or that the
number of such edges is at least |B|/2c. Therefore, R and B are interchangeable. We will
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LEROUX AND RADEMACHER Wl LEY 7

write the proof in the case where the number of monochromatic red vertices is at most
251 The same proof work with R swapped for B in the other case.

The projection of the red vertices, that is, mR, is a subset of vertices of C* and by
Assumption 2 of the lemma, |z R| > s/c. There are two cases to consider.

Case 1: At least half of the vertices in 7;R are bichromatic.
Case 2: At least half of the vertices in 7R are monochromatic red.

For Case 1, for each bichromatic vertex x € R, Jrk‘l(x) N P is a face of P which
contains points from R and points from B. Since graphs of polytopes are connected, there
exists an edge in this face going from a point in R to a point in B. Since there are at least
s/2¢ bichromatic vertices in 7R, we have found s/2c¢ edges in P from R to B. Each of
these edges is unique because the image of each edge by 7 is a unique vertex of V(C¥).
This completes the proof for Case 1.

For Case 2, let M be the set of monochromatic red vertices, that is, M := mR \ 7;B.
Because we are in Case 2, we have that [M| > s/2c¢. By Assumption 1, we know that
7 (RUB) contains every vertex of C. Finally, recall that we are assuming that the number
of monochromatic red vertices is at most 2"_1, thatis, M| < 2%=1 Now using the fact that
the edge expansion of C* is 1, we know that there are at least |M| > s/2c edges of C*
going from a vertex in M to a vertex in V(C¥) \ M. Let E be the set of those edges. We
will show that each such edge lifts (through z;!) to an edge of P that has one point in R
and one point in B as its endpoints. That is, for each edge e € E, we consider the preimage
b !(e) and we will show that there exists some edge of P that is contained in rck_l(e) and
which has one point in R and one point in B as its endpoints.

Let e be some edge in E. We have e = conv(m,n) withm € M and n € V(C*)\ M. The
pre-image zrk‘l (e) N P is a face (call it F) of P which has two proper faces 7rk‘1 (m)N P and
b Y(n)n P.2 Since m € M, the face b !(m) N P contains only points from R. Furthermore,
by the way M was constructed, the fact that n is in V(C*) \ M implies that ;! (n) contains
at least one point from B. Let b be a point in B N z;!(n). We claim that there is an edge
in the face F which goes from b to a point r € 7 I(m). Indeed, if this were not the case,
all of the edges in F incident to b would be contained in the face 7; Y(n) N P. Now if we
consider F as a full dimensional polytope in affF, because 7 '(n) N P is a proper face of
F, it is contained in a hyperplane in affF. This implies that the vertex b has the property
that all edges incident to b are contained in a hyperplane in affF" which is not possible by
Proposition 6. We have shown that for every edge e € E, there is an edge ¢’ in P which
goes from a point in R to a point in B and also that z;(e") = e. Since all of the edges e € E
are unique, the fact that ;(e’) = e for all ¢ € E implies that all of the edges ¢’ that we
construct are unique. Since |E| > s/2c¢ we have shown that there are at least this many

edges in P going from R to B and we are done.

5.2 | The three models of random polytopes

In this section, we complete the proof of Theorem 3. For the sake of readability, we state Theorem 3
separately for each of the three models of random polytopes we consider. We first prove the theorem
for the balls-into-bins model P¢ (Theorem 8). The proof first considers certain “degenerate” cases,

2Here is an explanation of why these preimages are faces and/or proper faces: We know that F is a face of P because if H is a
hyperplane supporting e as a face of C¥, then ' (H) is a hyperplane that supports F as a face of P. A similar argument shows
that 7' (m) N P, ' (n) N P are both faces of F and they are proper because they do not contain all the vertices of F.
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that is, when n is either very large or very small. In these cases, it is trivial to show the conclusion of
the theorem. For all other cases, we consider the projection of P¢ to the first k-coordinates (for certain
k depending on n and d) and show that, with high probability, this projection has properties which
allow us to obtain the conclusion of the theorem as a direct consequence of Lemma 7. The proof for
the binomial model P4 (Theorem 9) is very similar to the one for the balls-into-bins model. Finally, for
the uniform model Q¢, instead of redoing the proof a third time, we use a basic result from the theory
of random sets to obtain the proof for the uniform model as a direct consequence of the proof for the
binomial model (Theorem 10).

Theorem 8 (The balls-into-bins model). For each d € N, let S¢ be a set of n := n(d)
points chosen independently and uniformly from {0,1}?. Then the edge expansion of the
polytope P := convS? is at least 1/12d with high probability.

Proof. First, if n < d then it is clear that P¢ has edge expansion at least 1/12d because
P? has at most d vertices. Indeed, given any subset S C P? with |S| < |PZ|/2, the fact
that graphs of polytopes are connected implies that there is at least one edge connecting
a vertex in S to a vertex in P4 \ S. Since |S| < d/2, this is enough to show that the edge
expansion of P4 is at least 2/d > 1/12d.

If n > d2%, then we claim that P4 = C¢ with high probability. Indeed, the probability
that there exists some vertex of C? that is not chosen at least once in S¢ is less than or

equal to
d2! d
21— L <<%)
24 “\e/

and so the probability that P4 # C¢ goes to zero as d — co. The fact that P¢ has edge
expansion at least 1/12d with high probability now follows from the known fact that the
edge expansion of C? is 1.

Now assume that d < n < d2%. Let k be the largest integer such that n > k2*. We
will show that by considering the projection of P to the first k coordinates, we can apply
Lemma 7 to show that the edge expansion of P¢ is at least 1/12d with high probability.
Note that since n < d29, this means that k < d. Let Ty - R? — R* denote the orthogonal
projection to the first k coordinates. We claim that two things hold with high probability:

Claim 1: Letting C* denote the k-cube in 7;RY = R*, every vertex of C* appears at
least once in z, V(P2).

Claim 2: For every vertex v € V(CY), the cardinality of z;!(v) N V(P%) is at most 6d.

To prove that the first claim holds with high probability, note that it suffices to prove
that every vertex of C* appears at least once in 7;S¢ with high probability. Observe that
7S¢ is the same as SK. Therefore, the first claim is equivalent to the statement that every
vertex of C¥ appears at least once in S. Since n > k2, as argued above, we have that the
probability that there exists some vertex of C* that is not chosen once in S% is less than or

k
equal to (%) . Since we are assuming in this case that (k + 1)2’“rl > n > d, we have that

k — oo as d — oo and therefore the probability that there exists some vertex of C that
is not chosen once in S goes to zero as d — co0. And so we have that that Claim 1 holds
with high probability.

For the second claim, we use the well-known analysis of the classic “balls-into-bins”
problem from probability theory, see, for example, [19]. In our application, that balls are
the points in S9 and the bins are the vertices of C¥. That is, we have n balls each of which is
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LEROUX AND RADEMACHER WILEY 9

placed into one of 2% bins uniformly at random. Using the fact that k2* < n < (k + 1)2¢"1,
by [19, Theorem 1], each bin contains at most 6k balls with high probability. Since k < d,
each bin contains at most 6d balls with high probability. In other words, Claim 2 holds

with high probability.
Because Claims 1 and 2 hold with high probability, by Lemma 7 we have that the edge
expansion of the graph of P¢ is at least 1/12d with high probability. (]

Theorem 9 (The binomial model). For each d € N, let S¢ be the subset of {0,1}¢
where each x € {0, 1}4 is in S§ with probability p := p(d), 0 < p(d) < 1. Then the edge
expansion of the polytope Pg = COIlVSg is at least 1/12d with high probability.

Proof. First, if p < d /29, then it is clear that P4 has edge expansion at least 1/12d with
high probability because it has few vertices with high probability. Indeed, the cardinality
of Sg is a binomial random variable with number of trials 2¢ and probability of success p
and so it has expected value u := p2?. Using the Chernoff bound, we have that IS4 is less
than 3 = 3p2¢ < 3d with high probability. This means that P4 has at most 3d vertices
with high probability. Given any subset S C P% with |S| < |P4]/2, the fact that graphs of
polytopes are connected implies that there is at least one edge connecting a vertex in S to
a vertex in P4 \ S. Since |S| < 3d /2, this is enough to show that the edge expansion of P4
isatleast 2/3d > 1/12d.

So now assume that p > d /2¢.

Let k be the largest integer such that p2¢ > k2. We will show that by considering the
projection of P4 to the first k coordinates, we can apply Lemma 7 to show that the edge
expansion of P9 is at least 1/12d with high probability. Note that since p < 1, this means
that k < d. Let 7 : R? > R* denote the orthogonal projection to the first k coordinates. 3
We claim that two things hold with high probability:
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Claim 1: Every vertex of C* appears at least once in 7, V(P%).
Claim 2: For every vertex v € V(C"), the cardinality of z;'(v) n V(P{) is at most 6d.

wooKapim

To prove the first claim holds with high probability, observe that for each v € V(C*),
the set ﬂ,?l(v) contains 297% vertices of C?. Therefore, the probability that there is some
vertex in C* that does not appear in ; V(P4) is equal to 2k - p)zd_k. Now using the fact

that p2¢ > k2%, we have that 1 —p < 1 — kzldk Therefore, the previously mentioned prob-

ability is at most 2k(1 - %)20’ k. This quantity is less than (2/e)*. Since k is the largest
integer such that p2¢ > k2*, we know that p2? < (k + 1)2**!. Substituting p > d /2% into
the previous inequality yields d < (k + 1)2¥*! and so k — o0 as d — o0. Now since the
probability that there is some vertex that does not appear in 7 V(P%) is less than (2/e)*, and
this probability goes to zero as d — oo, we have that Claim 1 holds with high probability.

For the second claim, observe that for each v € V(CY), |z (v) N V(P%)| is a binomial
random variable with number of trials 2¢7% and probability of success p. This means that
the expected value u of each of these random variables is p2~*. Now by the fact that
k2% < p2¢ < (k + 1)2%*!, we have that k < p < 2(k + 1). This means that 3y < 6(k + 1).
Therefore, using the Chernoff bound, we have

" k
P (lz' ) nVPYI 2 6(k+ 1)) <P Iz ) n V(P 2 3u) < <§§> < <62> SENCY
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This means that the probability that there is some v € V(C*) such that |z7'(v) n

k
V(P,‘,’)| > 6(k + 1) is at most (%) which goes to zero as k — oo. Therefore, with
high probability, for every vertex v € V(C*), the cardinality of z;'(v) N V(P4) is at most

6k+5 < 6d.
Because Claims 1 and 2 hold with high probability, by Lemma 7 we have that the edge
expansion of the graph of P4 is at least 1/12d with high probability. L]

For the proof for the uniform model, we will make use of the fact that the uniform model is in
some sense very similar to the binomial model. In particular, it follows from a result from the theory
of random sets that under certain assumptions, if a random 0/1 polytope distributed according to the
binomial model satisfies a given property with high probability, then a random 0/1 polytope distributed
according to the uniform model will also satisfy that property with high probability. The assumption
that needs to hold for this to be true is that the property in question needs to be a convex property as
defined below.

Given a finite set I, a family of subsets Q C 2T of Tis convexif forallA,B,C € 2", A c B c Cand
A, C € Qimplies B € Q [12, Section 1.3]. Similarly, we say that a property of subsets of I" is a convex
property if the family of subsets satisfying that property is convex. Assume that Q is a convex property
of subsets of I'. Proposition 1.15 in [12] says that if a binomial random subset of I" with probability
n/|I| satisfies Q w.h.p. as || — oo, then a uniform random subset of I" with size n also satisfies Q
w.h.p. as [I'| = oo. Now we can use [12, Proposition 1.15] to prove our result for the uniform model.

Theorem 10 (The uniform model). For each d € N, let U? be a set of size n := n(d)
chosen uniformly at random from the set of all n-element subsets of {0, 1}¢. Then the edge
expansion of the polytope Q2 := convU¢ is at least 1/12d with high probability.

Proof. Recall that in the proof of Theorem 9 we showed that with z; denoting the
orthogonal projection to the first k coordinates, two claims hold with high probability:

Claim 1: Every vertex of C* appears at least once in 7 V(P2).
Claim 2: For every vertex v € V(C¥), the cardinality of z;'(v) n V(P%) is at most 6d.

Now it is easy to see that, considering V(P%) as a subset of {0, 1}¢, satisfying Claims
1 and 2 is a convex property of subsets of {0, 1}¢ as defined above and in [12, Section
1.3]. Therefore, by [12, Proposition 1.15], Claims 1 and 2 hold with high probability if we
replace P4 by Q4 in the statements of these claims. Therefore, again using Lemma 7, we
have that the edge expansion of QF is at least 1/12d with high probability. ]
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