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Abstract

A large literature specifies conditions under which the information complexity for a se-
quence of numerical problems defined for dimensions 1,2, ... grows at a moderate rate, i.e.,
the sequence of problems is tractable. Here, we focus on the situation where the space of
available information consists of all linear functionals, and the problems are defined as lin-
ear operator mappings between Hilbert spaces. We unify the proofs of known tractability
results and generalize a number of existing results. These generalizations are expressed as
five theorems that provide equivalent conditions for (strong) tractability in terms of sums of
functions of the singular values of the solution operators.

1 Introduction

The information complexity of a problem is the number of function data required to solve the
problem within the desired error tolerance. A problem is tractable if the information complexity
does not grow too large as the dimension of the problem increases or the error threshold decreases.
There are a number of tractability results for numerical problems, beginning in the 1990s with
[17, [18], spawning numerous articles since then, and filling a series of three impressive volumes
[12, 13], [14]. Research on tractability continues at a vigorous pace.

The authors have identified common themes in the proofs of necessary and sufficient condi-
tions for tractability that appear in the literature. By abstracting these themes, this article aims
to unify and generalize many existing tractability results for approximation problems where all
possible linear functional data are available. This is done in a series of five theorems, which
provide necessary and sufficient conditions for (strong) tractability.

Let {F4}aen and {Gg}aen be sequences of Hilbert spaces, and let {SOLy : Fy — Ga}aen be
a sequence of linear solution operators with adjoints SOL; such that SOL}; SOL, : Fy — Fy has
eigenvalues and orthonormal eigenvectors

2 2
)\Ld > )‘2,d > UL d, U2,dy - - d e N.

Here, N denotes the set of positive integers. This means that the singular values of the operator
SOLg are the non-negative \; 5. We remark that in the literature on Information-Based Com-
plexity the singular values of SOL; are often denoted by \/m instead of \; 4. However, since
we assume non-negativity of the ); 4, the notation used here is equivalent.

We make the technical assumption that SOL, is a compact operator. This implies (see, e.g.,
[12]) that A; 4 converges to zero as i tends to infinity for every d, which in turn implies that the
problem is solvable by suitable algorithms. To avoid trivial cases, we assume that there are an
infinite number of positive singular values for every d.

The goal is to find a sequence of approximate solution operators, {APP; : By x (0,00) —
Gatden, defined on the unit ball of functions in Fy, denoted B4, which satisfy an absolute error
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criterion:

ISOL4(f) — APPy(f,e)llg, <e VS €Ba, e (0,00)]1 (1)

Here, APP4(f,¢) is allowed to depend on arbitrary linear functionals. Note that we also allow
adaptive information, i.e., the linear functionals may sequentially depend on each other.
The information complexity of the problem SOLy is given by the function

comp : (0,00) x N — Ny,

where comp(e, d) is the number of linear functionals required by the best admissible algorithm
to satisfy the error criterion (1), and Ny denotes the set of non-negative integers. By definition,
the information complexity is non-decreasing as & tends to zero. We also expect it to be non-
decreasing as d tends to infinity since d is typically the number of variables for the functions in
Fa.

For this case where arbitrary linear functionals are allowed, the optimal approximate solution
operator is known to be

APPy(f,e) = > SOLa(usa) (f,ui) £, ,
i=1

and the information complexity of our linear problem is
comp(e,d) = min{n € Ng : A\jy1 4 < €}, (2)

see [12].

Strictly speaking, we are considering the absolute error criterion in this paper. Alternatively,
one could also consider the normalized error criterion, where the error in (1) is divided by the
so-called initial error, which is the error without sampling the function, or, equivalently, the
operator norm of SOL; (see [12] for details). For the sake of brevity, we restrict ourselves to the
absolute error criterion here, but presumably, analogous results hold for the normalized setting
(all criteria would then be normalized by the first singular value A 4).

The question of tractability is one of determining how fast the information complexity in-
creases as € tends to zero and/or as d tends to infinity. Although (2) has a relatively simple
form, its dependence on the ordering of the singular values means that it is not obvious what
the behavior of comp(e,d) is as ¢! and/or d tend to infinity.

We want to bound the information complexity in terms of a simple function, T, of ¢71, d,
and some parameter p, and then identify conditions on the singular values that are equivalent
to the fact that this bound holds, and are easier to verify than showing the bound directly.
By “simple” we mean that T takes a form such that the conditions in the theorems of this
paper can be checked effectively; however, we remark that this is also related to the singular
values \; 4 of the solution operator. Depending on those, a function 7" may be useful for one
particular problem setting but not for another. In Table[Il we present various common notions
of tractability studied in the literature, characterized by 7.

We note that generalized tractability specified by a function T" has been considered before
in the literature. In particular, there are several papers by Gnewuch and WoZniakowski (see
[4L 5, 6 [7]), and also [12, Chapter 8] is devoted to this topic. To our understanding, however,
these references mainly focus on the special case of tensor product problems, a restriction we do
not make. Moreover, the conditions for tractability derived there focus mostly on relating the

We note that the radius of the By could be taken to be an arbitrary positive value, R, in which case the
problem becomes equivalent to the original one with the tolerance e replaced by €/R since the problem and the
optimal approximate solution are both linear (see below). We allow the error tolerance, £, to be arbitrarily large
because if SOL4 has large singular values, a large error tolerance may be a reasonable expectation.

{eq:errcr
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Table 1: Common notions of tractability

Tractability type T(e71,d,p)
algebraic strong polynomial max{1l,e7P}
algebraic polynomial max{1l,e P}d?
exponential strong polynomial [max{1,log(1 + & 1}]P
exponential polynomial [max{1,log(1 + e~1)}]Pd4
algebraic quasi-polynomial exp{p(1 + log(max{1,e71}))(1 + log(d))}

exponential quasi-polynomial exp{p(1 + log(max{1,log(1+&71)}))(1 + log(d))}

properties of the function T to the different varieties of tractability, and not in terms of sums
of (functions of) the singular values of a problem. Hence, the present paper adds to what is
presently known on this subject.

In this article, we investigate a generalized tractability function, denoted by T':

T :(0,00) x N x [0,00)* — (0, 00). (3)

The conditions we require T to satisfy are described in Section 1] however, the basic idea
is that we define our approximation problem to be tractable if comp(e,d) < CpT(c7},d,p)
for some constantﬁ, Cp, depending only on the parameter p. For instance, when considering
(algebraic) polynomial tractability, the parameter p represents the exponents (p,q) of € and d,
as illustrated in Table [l In practice, we expect T'(¢ ™!, d, p) to increase sub-exponentially with
increasing e ! and/or d, however, most of our theorems do not require such an assumption.

The parameter p is an s-dimensional vector with s > 1. We write 0 to denote a vector
with all components equal to zero, and oo to denote a vector with all components equal to oco.
Furthermore, for two vectors p = (p1,...,ps) and p’ = (p),...,p}) in [0,00)*, we write p > p’
if pj > pj for all j € {1,...,s}. Furthermore, p > p' if p; > p); for all j € {1,...,s}. The
expression p € (p/,p”) is to be interpreted as p’ < p < p” in that sense, and analogously for
half-closed or closed intervals.

Theorems [I 2 [ and [ below all take the following form: for a given 2 € {1,d} and
Q2 C(0,00) x N,

3Cp > 0 with comp(e,d) < CpT(e™,2,p) V(e ' d) €
% (d)

1

<= dLp > 0 with sup < 00,

L
N1, 7005 T Pid> ZoP)

min{n € No : A\pj14 < &(d)}, &(d)

where &(d) := inf{e : (7',d) € Q}, % (d) := {OO &(d)

> 0, (@)
= 0,
where T'(0,2,p) is defined as in (Zc) below. These theorems say essentially that (strong)
tractability is equivalent to summability conditions on the singular values. A more stringent
form of tractability resulting from a smaller T' is equivalent to a more stringent summability
condition since the terms being summed become larger.

Although some of Theorems[I] [, [ and Bl are special cases of others, we prove each separately
to allow the reader to become familiar with the arguments used as additional layers of complexity
are added. (This may be, e.g., additional dependence on d when going from strong tractability to
tractability in Subsection 23], or a restriction of the domain of € for which we define tractability
in Section [l). Theorem [ has a somewhat different form than () above.

2By “constant” we mean that the term is independent of the wvariables € and d, but may depend on the
parameter p.

{eq:Tspec
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Although in many cases € is chosen to be all of (0,00) x N, there are situations where it
makes sense to choose ) as a proper subset of all possible values of e ! and d. For some problems
with unbounded d—as in finance—there may be no need for arbitrarily small error tolerances,
so 2 = (0, 6;111n] x N may be appropriate. For other problems with a moderate upper bound on
d, Q@ =(0,00) x {1,...,dnax} may be appropriate.

The remainder of this paper is organized as follows. In Section Bl we give the definitions
of the considered tractability notions, in particular (strong) tractability. We consider strong
tractability when there is an upper bound on the information complexity that is independent of
the dimension, d. We then turn to tractability when the bound on the information complexity
may depend on both d and e~!. In Section [§] we provide examples of tractability functions for
both the algebraic and exponential cases. We also consider other notions of tractability such as
quasi-polynomial tractability, and introduce other notions of tractability. A generalized notion
of weak tractability is given in Section [l In Section [5 we consider tractability on a restricted
domain, €. There are two appendices to the paper. Appendix 1 contains an example that shows
how we can make use of one of the findings in this paper in a concrete example. Appendix 2
contains the technical proof of Proposition [1I

2 (Strong) Tractability

2.1 Notation and fundamental definitions

Let T be a function given in ([B]). A tractability function 7" is a function of a simple form that
provides an upper bound on the information complexity of a problem.

Definition 1. A problem is defined as T-tractable with parameter p iff there exists a positive
constant Cp, which is independent of ¢ and d, such that

comp(e,d) < Cp T(e',d,p) Ve >0, deN. (5)

A problem is strongly T-tractable with parameter p iff the information complexity is independent
of the dimension of the problem, that is, there exists a positive constant Cp, again independent
of € and d, such that

comp(e,d) < Cp T( 1 1,p) Ve >0, deN. (6)
We allow p to be a scalar or vector as the situation dictates.

For this definition of tractability to make sense we assume that
T is non-decreasing in all variables, (7a)

which implies that the problem is expected to be no easier by decreasing ¢, the tolerance, or
increasing d, the dimensiorf. Furthermore, increasing p allows for a possibly looser bound on
the information complexity. Since there are an infinite number of positive singular values, it
also makes sense to assume that

lim T(e ' dp)=0c0 VdeEN, pecl0,00)°. (7b)

E—>
Since T'(-, d, p) is non-decreasing, we may define the following limit, which we assume will always
be positive:

T(0,d,p) := lim T(¢~',d,p) =inf T(e~},d,p) > T(0,1,0) > 0. (7c)
15

E—OO

-1

3This is why we make T a function of e~ rather than of .
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Table 2: Common forms of the tractability function, T.

Tractability type T(e Y, d,p) T7(0,d,p)
algebraic polynomial max{1,e"P}d? d?
exponential polynomial [max{1,log(1 + e~1)}]Pd4 d?
algebraic quasi-polynomial exp{p(1 + log(max{1, 5_1}))(1 + log(d))} exp{p(1 + log(d))}

exponential quasi-polynomial exp{p(1 + log(max{1,log(1 +¢&~1)}))(1 +log(d))} exp{p(1+ log(d))}

Finally, there is a technical assumption required for our analysis in Sections 2] and B There
exists a Kp r depending on p and 7, but independent of € and d, such that

[T(e',d,p)]" < Kp,T(e',d,7p) Vee (0,00), deN, pe0,00)°, 7€ [l,00). (8)

We remark that the latter assumption is quite natural, and is, for example fulfilled for all
tractability types in Table

Certain common notions of tractability covered by the general situation described above are
provided in Table 2l Here, p = (p,q) in some cases, and p is a scalar in other cases. A general
reference for results on algebraic tractability is [12]. For exponential tractability we refer to [§]
and [11].

If ([B) holds for some p, it clearly holds for larger p. We are often interested in the optimal
or smallest p for which (Bl) holds. Define the closures of the sets of parameters for which our
(strong) tractability conditions hold:

Piret := {p* : (@) holds Vp € (p*,00)}, Pstret := {p* : ([6) holds Vp € (p*,00)}.

If p* € Ps)trct> (strong) tractability may not hold for p = p*, but it must hold for any p whose
components are all greater than the corresponding components of p*.

Definition 2. The set of optimal parameters is defined as all of those parameters satisfying the
(strong) tractability conditions that are not greater than or equal to others:

Popt = {p* € Ptrct : P* ¢ [P, OO) vp € 7Dtrct \ {P*}}, (9)
Psopt = {p* € Pstrct 317* ¢ [ ,OO) Vp € 7Dstrct \ {p*}} (10)

In the sections below we prove necessary and sufficient conditions on tractability as generally
deﬁned in (B) and (6). These conditions involve the boundedness of sums defined in terms of
(T ()\Z FIR )2, . In practice, it may be easier to verify whether or not these conditions hold than

to verify () and (@) directly.

2.2 Strong tractability

We first consider the simpler case when the information complexity is essentially independent of
the dimension, d. The proof also introduces the line of argument used for the case where there
is d-dependence.

Theorem 1. Let T be a tractability function as specified in @Bl) and satisfying [@) and [@&). A
problem is strongly T-tractable iff there exists p € [0,00) and an integer Ly > 0 such that

Sp = sup Z ————— <00, (11)
dENZ L )\Zd’17p)

{eq:ptaua
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If (M) holds for some p, let Prtret 1= {p* : M) holds Vp € (p*,00)}. Then Pstrct = ﬁstrct, and
the set of optimal strong tractability parameters is

Psopt = {p* € ﬁstrct : p* ¢ [137 OO) VT) € ﬁstrct \ {p*}}

Proof. Sufficient condition:

We make the first part of the argument in some generality so that it can be reused in the proof
of Theorem [2] for tractability. Fix any ¢ > 0 and any d € N, and let 2 € N be arbitrary.
Since the A; 4 are non-increasing in 4, it follows that the T()\;é, 2,p) are non-decreasing in 1.
In particular, for any N € N with n > N, we have

1 1 1
Tl o) T o> STnl.2
( n+1,d’ 7p) ( n,d’ 7p) ( N,d> 7p)

[e.e]

>‘n+1,d < )\n,d <---< )\N,d —

n

_ 1 o1 S 1 o1 5 1
TApiras2:p) = N+1Z TN, 2,p) ~ n=N+1= T\, 2,p)

where the infinite sum is guaranteed to exist by the condition (IIl). Thus, we can conclude from
the previous line that

> 1
n—N+1ZT(571a-@,P) P E—
;:\[ T()‘@ér@ap)

(e o]

T(}\;}rLd,@’p) B n_N+1Z:NT()‘Z;797p) N T(gila-@,p)
V2,NeNandn> N. (12) [{eq:impli

Moreover, given that T is increasing in its arguments, we have the following equivalent
expression for the information complexity via (2)):

Comp(€7 d) — mln{n S NO : )\n+17d < g}
1 < 1
T\t 2.p) ~ T, 2,p)

:min{nENO: } V9 € N

o

gmin{nENO:nzN—1+T(e1,_@,p) }V@,NEN, by ([12)

1
;:VT(Ai,C}a@7P)

N - 1
<TEY2,p)|=—s——+ —| VZY,NeN. 13) |{eq:compU
( o0t 2 T0 00 (13) [ £eq:conpy
Now we take this upper bound further, specializing to the case of ¥ =1 and N = Ly:
(e,d) < T(e71,1,p) Lp + i !
complg, a) < y 4 o=y B o Y
T 1p) S TNy Lp)

<Sp<oo by [
Lp
— = 4+ S b
7O, Lp) 4 v @)

=:Cp

<T(e ' 1,p) [

= CpT(e*I,l,p).

This means that we have strong T-tractability via (), and verifies the sufficiency of (ITI).



Necessary condition:
Suppose that we have strong T-tractability as defined in (@]). That is, for some p > 0 there
exists a positive constant Cp, such that

comp(e,d) < Cp T(e7 4, 1,p) Ve >0, deN.
Since the sequence of singular values A1 4, A2 ¢, ... is non-increasing, we have
AlCp T(e-11,p)J+1,d < € Ve >0, deN. (14)
For all positive ¢, define
i(e,p) = [Cp T, 1,p) | +1, i(00,p) = [CpT(0,1,p)] +1. (15)
Thus, it follows by ([4) that ;. )4 < . Note furthermore that we always have

i(e,p) < CpT(e 4 1,p) +1< CpT()\i_(;,p),d, I,p)+1 Ve>0, deN,

since T'(+, 1, p) is non-decreasing.
For ¢ taking on all positive values, i(e, p) takes on, by (7h]), all values greater than or equal
to i(oco, p), SO
i <CpT(N\ig:1,p)+1  Vi>i(oo,p), deN.

This implies via our technical assumption (&) that, for any 7 > 1,

. _ 1 T
Ko T 10) 2 L) 2 [YE 2] vz i), der
p
1 Kpr C5

Vi > (c0.p). 2}, d €N.
o tp) ~ G-pr o R

Summing both sides of this last inequality over i from i(oco,p) + 1 > 2 to oo yields

(o] o
1
sup —— < Kp,C} E —— < Kp - Cp((7) < o0,
deN i:i(oo,p)-i—l T()\i7d7 17 Tp) =2 (Z - 1)

where ¢ denotes the Riemann zeta function. This yields (II]) with p replaced by p’ = 7p and
Ly =i(oco,p) + 1, and so we see the necessity of ().

Optimality: N
To complete the proof, we must show that Psiret = Pstret- Then, the expression for Pyopt
automatically follows from its definition in (0.

First we show that if p* € Pgret, then p* € Pygret. If p* € Patret, then (@) must hold for all
p' € (p*,00). For any p’ € (p*,00), we may choose p and 7 such that p* < p < p’ = 7p. Since
p > p*, (6) also holds for p, and it follows that (II]) must hold for p’ by the proof of necessity
above. Thus, p* € Psiret-

Next we show that if p* € ﬁstrct, then p* € Pyret. If p* € ﬁstrct, then (II]) holds for all
p € (p*,00). By the argument to prove the sufficient condition above, it follows that (6] must
also hold for all p € (p*,00). Thus, p* € Pstret-

This concludes the proof of Theorem [Il

{eq:lambd

{eq:iepsp



2.3 Tractability

:tractability

The argument proving equivalent conditions for tractability is similar to, but somewhat more
involved than the proof of Theorem [ The lower limit on the sum is somewhat more complicated
as well.

m_main_tract2| Theorem 2. Let T' be a tractability function as specified in @Bl) and satisfying () and (&). A
problem is T-tractable iff there exists p > 0 and a positive constant Ly, such that

> 1

Sp = sup Z W < 0. (16) {eq:tract

dEN 1= I—LP T(Ovdvp).l
If [@6) holds for some p, let Priret 1= {p* : Q) holds Vp € (p*,00)}. Then Pyt = ﬁtrct,

and the set of optimal tractability parameters is

7Dopt = {P* € 73trct : P* ¢ [ﬁa OO) Vﬁ € ﬁtrct \ {p*}}

Comparing the equivalent conditions for strong tractability in (II]) and tractability in (I6]),
they are seen to be nearly the same. The difference lies in the lower summation index, which
is allowed to depend on d for tractability, and the second argument of 7" in the sum, which is 1
for strong tractability, and d in general. Both of these can allow Sp, to be finite in Theorem [2]
when it may be infinite in Theorem [1l

Proof. Sufficient condition:
Suppose that (I6) holds for some p > 0. By the argument in the proof of the sufficient condition
for Theorem [ it follows from (I3]) with 2 =d and N = [L, T'(0,d,p)] that

- (ij (07d7 p)-‘ 1
comp(e,d) < T(e™ !, d, p) | =2—2 2221 + g ——————| Ve>0,deN
T(e 1. d -1
(7 d,p) i=[Lp T(0,d,p)] T(Aia»d:p)

<Sp by (IIGD
[Lp,T(0,d,p)+ 1
T(e',d,p)

B [L,T(0,d,p) 1
<T( ' d o Sk B S, b
<TE 4P | 7T ap) " ToLp) | ”] y @)

<T(s%,d,p) + Sp} Ve>0, deN

1
<T(et L —_— .
O R L

=:Cp

It follows that we have T-tractability, which shows sufficiency of (If]).

Necessary condition:
Suppose that we have T-tractability. That is, for some p > 0, there exists a positive constant
Cp such that

comp(e,d) < CpT(e71,d, p) Ve >0, d e N.

Since the sequence of singular values Ay 4, A2 4, ... is non-increasing, we have

ACpT(etdp)|+1da <€ V>0, deN. (17) [{eq:1ambd

Define the integers



Thus, it follows by (7)) that i 4p)q < & Note furthermore that we always have

i(e,d,p) < CpT(e,d,p)+1< CpT(Ai’(;7d’p)7d,d,p) +1  Ve>0,deN,

since T'(+,d, p) is non-decreasing.
For ¢ taking on all positive values, i(e, d, p) takes on, by ([7hl), all values greater than or equal
to i(o0,d, p), so

i< CpT(e b d,p)+1< CpT(\, j,d,p)+1  Vi>i(co,d,p), deN.
This implies via our technical assumption (g]) that for any 7 > 1,

1T
Kpﬂ' T()‘;,c%’d’ Tp) > [T(A;é’d’p)r— > |:(ZC«7):| Vi > ’L'(OO,d,p), de N’
P

1 Kp, C
T d,mp) ~ (i—1)7

Vi > max{i(co,d,p),2}, d € N.

Let p’ = 7p. Note that i(co,d,-) is non-decreasing. Summing both sides of the latter
inequality over i from i(oco,d,p’) + 1 > i(c0,d,p) + 1 > 2 to oo it follows that

o0 o0
1 1
sup Y e <K CF Y ———— < K Op((7) < 00,
dEN o ap T()\ivd,d, p’) pars (1—1)

where ¢ denotes the Riemann zeta function.
Note now that, for any d € N,

2
: N41=|CpyT N +2<|Cp+ mo—rn
i(00,d, p') + %<MM+—@ﬂqu

(0,d,p') < [LyT(0,d,p))].

] T(0,d,p)
<%+ ) T

~
=:Lp/

For this choice of L, we have

(e} [e.e]

1 < Z 1 <
sup ——1 - <suwp 7 < oo
dEN 1L, T(0,d,p)] T(Aardp") ~den _y Somn 1 TN, d:p')

This yields (I6]) with p replaced by p’, so we see the necessity of (I6]).

Optimality:
This proof is similar to the proof for the optimality condition for strong tractability in Theorem
I We must show that Pipet = ﬁtrct. Then, the expression for Pyp¢ in this theorem automatically
follows from its definition in ().

First we show that if p* € Pypet, then p* € ﬁtrct. If p* € Phiyet, then (B) must hold for all
p' € (p*,00). For any p’ € (p*, 00), we may choose p and 7 such that p* < p < p’ = 7p. Since
p > p*, (@) also holds for p, and it follows that (I6) must hold for p’ by the proof of necessity
above. Thus, p* € ﬁtrct.

Next we show that if p* € ﬁtrct, then p* € Py If p* € ﬁtrcm then (I6) holds for all
p € (p*,00). By the argument to prove the sufficient condition above, it follows that (Bl) must
also hold for all p € (p*,00). Thus, p* € Pyyet-

This concludes the proof of Theorem [2 O
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3 Examples

In this section, we present six examples relating to Theorem [ and Theorem 2] both of which
were shown in Section 2] for the various notions of tractability that are listed in Table 2l In the
subsequent sections, we will continue to present various examples.

The concept of (strong) polynomial tractability for both the algebraic case and the expo-
nential case will be first considered as follows:

Example 1 (Algebraic polynomial tractability). Let the tractability function, T, be defined by
T(e7',d,p) = max{1l,e P} d? Ve >0,d €N, p € [0,00)?,

where in this case p = (p,q). Then Theorem [2 yields the equivalent condition for algebraic

polynomial tractability:

o
supd™? > min{l, M} < oo for some p,q >0, L, > 0.
deN i=[L d4 7
=[L(p,q)d]

Furthermore, for optimality, let PaLGtret = {(p*,q*) : the above condition holds V(p,q) €
(p*,00) X (¢*,00)}. Therefore, the set of optimal (p, q) is the set

{(p*, q*) € ﬁALG—trct : (p*7q*) ¢ [ﬁa OO) X [EL OO) v(ﬁa a) € ﬁALG—trct \ {p*, q*}}

This essentially recovers the result on polynomial tractability in [I12] Theorem 5.1].
Having defined the tractability function as above, we will now examine a specific case where
we always set d = 1, i.e.,

T(e 1,1, p) = max{1,e P} Ve>0,deN, pel0,00),

where in this case p = p is a scalar.
Then Theorem [ yields the equivalent condition for algebraic strong polynomial tractability:

o
sup Z min{1, ! ;} < oo for some p > 0,L, € N.

deN 7

Furthermore, the optimal p is the infimum of all p for which the above condition holds. This
essentially recovers the result in [12, Theorem 5.1].

Next, we study the exponential case where we replace e~ by log(1 +¢~!) and consider the
same notions of tractability as for the algebraic case.

Example 2 (Exponential polynomial tractability). Let the tractability function, T', be defined
by

T(e Y d,p) = [max{l,log(l + 6_1)}]p d? Ve >0,deN, pel0,00)?
where p = (p,q). Then Theorem [2] yields the equivalent condition for exponential polynomial
tractability:

[e.9]

1
sup d— 4 Z < oo for some p,q > 0, L, 4 > 0. (18) |{eq:exp_p

deN (max{1,log(1 + A; )}

Z':[L(zv,q)dq]

Furthermore, for optimality, let PExXpotret 1= {(p*,q¢*) : the above condition holds V(p,q) €
(p*,00) x (¢*,00)}. Therefore, the set of optimal (p, q) is the set

{(p*,q*) € ﬁEXP—trct : (p*’q*) ¢ [ﬁa OO) X [(Aj’ OO) \V/(ﬁ, Zf) € 75EXP—trct \ {p*a q*}}

10
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Again, we will look at the special case in which we always set d = 1. In this case, we will define
T as follows.

T(e71,1,p) = [max{1,log(1 + e H}P Ve>0,deN,pe0,00),

where p = p is a scalar. Then Theorem [ yields the equivalent condition for exponential strong
polynomial tractability:

1
sup — < o0, forsomep>0,L,cN. 19
0 2 T ToB (LT TP d 1)

In this case, the optimal p is the infimum of all p for which the above condition holds.

In the paper [11], the authors derived conditions equivalent to exponential strong polynomial
tractability and exponential polynomial tractability, respectively. These conditions read (with
notation slightly adapted to our present paper) as follows:

e We have exponential strong polynomial tractability iff there exists a 7 > 0 and a C € N
such that

[e.9]
sup Z )\ﬁde < oo0. (20)
deN =,

e We have exponential polynomial tractability iff there exist 71,73 > 0 and 79, C > 0 such
that

oo
supd~ ™ Z )\2;2 < 00. (21)
deN i=[Cd3]

Firstly, we remark that the role of L, in (I9) corresponds to that of C in ([20]). Moreover, ¢ in
(I8) has a similar role as 71 and 73 in (1) (i.e., (2I)) is slightly more precise than (Ig]) regarding
the exponents of d, but this is just a minor difference); furthermore L, 4y in (I8]) corresponds
to C in (21)).

Secondly, it should be noted that our condition (I9) is easier to check in practice than
condition (20)). Since in (20 the summation indices i show up in the exponents of the summands,
we need the exact ordering of the singular values \; 4, whereas in (IJ)) we only have a summation
of the values of 1/ T()\;}, d,p), and the exact order of the singular values can be neglected. A
similar observation holds for (I8]) and (2II).

The following proposition states that the conditions (I9) and (20), as well as the conditions
(IR) and (21]), are indeed equivalent. The proof of this result is deferred to Appendix 2 where
we will prove this statement for the latter two conditions, i.e., for the conditions on exponential
polynomial tractability. The case of exponential strong polynomial tractability is not explicitly
included, as it is actually simpler and can be treated analogously. We give a short example of
how we can apply the condition (I9) to a concrete problem in Appendix 1.

Proposition 1. The conditions (I9) and 20) are equivalent. Furthermore, the conditions (I8])
and ([ZI)) are equivalent.

Next, we provide a generalization of the above examples of tractability. We would like to
emphasize that this example was previously known (see, e.g., [4]) where in this case the roles of
e~ ! and d are separated. In order to accomplish this, we will first define two functions ¢ and 1
with positive values that are increasing in both of their arguments. The equivalent conditions
for this example take the same form as those in Theorems [l and 21

11
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Example 3 ((Strong) Separable tractability). Suppose that the tractability function is defined
by
T(e™hd,p) = d(e " p)P(dq)  Ve>0,deN, pe 0,007

with non-decreasing functions ¢ : (0,00) x (0,00) — (0,00) and ¥ : N x (0,00) — (0,00) and
where p = (p, q), hence T is non-decreasing in all variables.

We say that a problem is T-separably tractable with parameter p iff there exists a positive
constant Cp, which does not depend on ¢ and d such that

comp(e,d) < Cp d(e, p)v(d, q) Ve >0,deN.

A problem is strongly T-separably tractable with parameter p iff the information complexity is
independent of d, that is, there exists a positive constant Cj, which again does not depend on ¢
and d such that

comp(e,d) < Cp p(eL,p) Ve >0,d €N,

where in this case p = p is a scalar. Furthermore, we assume the following, which corresponds
to the conditions in (7hl), (7d), and (8). We assume that

lim ¢(e™ ", p) = © Vd € N,p > 0,

e—0
since there are an infinite number of positive singular values. Furthermore, we have that ¢(-,p)
is non-decreasing, hence we define the following limit

lim ¢(e~1,p) > 0.

E—0O0
Additionally, we have the following technical assumptions. Suppose that, for any real 7,7 > 0
and any p,q > 0, we have that

(e P < Kprd(e ™ mip) and  [(d,q)]? < Kynib(d,72q)  Ve>0,deN,

where Kp,n > 0 is a constant that may depend on p and 71, but is independent of ¢, and where
K, 7, > 0is a constant that may depend on ¢ and 7, but is independent of d.
Theorem [ yields the following equivalent condition for strong T-separable tractability:

sup Z

CX)’

deN S (Aig) p)
for some p > 0 and L, € N. Furthermore, the optimal p is also the infimum of all p satisfying
the latter condition. Also, Theorem [2 yields the following equivalent condition for T-separable
tractability:

(e}

sip—— S Lo
d -1 '
deN TIZ)( q) —[L(p.g) ¥(dq)] ¢()\Zd7p)

for some p,q > 0 and a positive constant L, 4.

Next, we introduce another notion of tractability called non-separable tractability. See [5],
which is probably where the term “non-separable tractability” was first introduced. In the
following, we will define two functions ¢ and 1[1 that take the roles of e~! and d. As will be seen
below, this kind of tractability function includes the special case of the so-called quasi-polynomial
tractability.

12



Example 4 (Non-separable tractability). Suppose we define the tractability function 7' by
T(= 71 d,p) = exp(pde ™) (d)) = [exp(d(e ))PY@  ¥e>0,deN, pe0,00),

with non-decreasing functions ¢ : (0,00) — (0,00) and ) : N — (0,00). We say that a problem
is non-separably tractable with scalar parameter p iff there exists a positive C), such that

comp(z, d) < Cpexp(p(d(e)b(d)).

Hence we can apply Theorem Pl as follows. We have the following equivalent condition for
non-separable tractability:

sup Z [exp(é()\;;))]_p@(d) for some p > 0, L, > 0.
deN N 5
i=[Ly ¢(0)P V(D]

For (ﬁ and 1& of special form, the condition above can be simplified further as in the following
two special cases of non-separable tractability.

Example 5 (Algebraic quasi-polynomial tractability). Let the tractability function, 7', be de-
fined by

T(e7t,d, p) = exp{p(1 + log(max{1,e~}))(1 + log(d))} Ve >0,deN, pel0,00).
We note that the choice of T' is equivalent to the definition in [7]. This can be rewritten as
T(eL,d, p) = P (max{1,e1})PI+los(d) gp,

Then Theorem Pl yields the following equivalent condition for quasi-polynomial tractability
in the algebraic case:

1
(max{l,)\id})p(1+log(d))

sup d P
deN

< o0 for some p > 0, L, > 0.
i=[Lp dv]

This essentially recovers [14, Theorem 23.1].
Next, we will consider the exponential case as follows.

Example 6 (Exponential quasi-polynomial tractability). Suppose that the tractability function,
T, is defined by

T(e71,d,p) = exp{p(1 + log(max{1,log(1 + & H}))(1 + log(d))} Ve >0,deN, pe|0,00).
This can be rewritten as
T, d,p) = e (max{L, log(1 + =) })r-+os@) v

Hence we can apply Theorem ] as follows. We have the following equivalent condition for
quasi-polynomial tractability in the exponential case:

1

sup d™P

< oo forsomep>0,L,>0.
deN i=[Ly dP] <max{1, log(1 + )\;;)}

>p(1+10g(d))

This essentially recovers [L1], Theorem 2.

13



def :subhT

thm: subhT

4 Sub-h Tractability

In this section we generalize the concept of weak tractability (see again [12]-[14]). Let A :
[0,00) — [1, 00) satisfy

h is strictly increasing, h(0) =1, h(x +y) > h(x) - h(y) Vz,y>0. (22) |{eq:h_con

This means that log(h) is a superadditive function. An example of the function A is the expo-
nential function, from which we can recover weak tractability.

Furthermore, let us denote the inverse function of A by h~!. Then, for arbitrary z,w € [1, 00)
we choose z = h~!(z) and y = h~(w), to obtain from (22)

2w < A=) + b (w)),
which yields by the monotonicity of h~! that
Rl (zw) < 7Y 2) + b (w). (23) I@
Now we define a generalized notion of weak tractability.
Definition 3. A problem is sub-h-T tractable for parameter p > 0 if

lim h~!(max(1, comp(e, d)))

=0.
e~ 14d—s00 T(e~1,d,p)

Note that this definition of sub-h-T tractability implies that

. comp(e, d)
1 =0 Y 0 24 :
a—ligl—mo h(cT(e71,d,p)) ¢ (24) [ {eq: comp.

which means that for ¢ — 0 or d — oo comp(e,d) must increase slower than h(cT(¢~%,d, p)),
no matter how small c is.

Theorem 3. Let T be a tractability function as specified in [Bl) and satisfying (d). Moreover,
assume that lim—1,4 T(e7',d,p) = oo for all p > 0. The problem is sub-h-T tractable if
and only if

S, = < Ve > 0.
S‘“’Z cm;,d -

Proof. The idea of this proof follows [16]. We suppress the p dependence in the proof, because
it is insignificant.

Sufficient condition:
Suppose that S, < oo for all ¢ > 0. Since the terms of the series in the definition of S, are

non-increasing, we have
n

. <S.  VndeN,
h(cT (N, L, d))

or equivalently
n < S h(cT (N, 4, d)  Vn,deN. (25) |{eq:Sclb}

This implies that for the special choice
n=|[S.h(cT(e',d)] >1

we have

T\, pd) >T(e"d)  Ve>0,deN.
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Since T'(-,d) is non-decreasing, it follows that A, 4 < €, and thus

comp(e,d) < [Sch(cT(e7",d))| < [Seh(cT(A[1,1))h(cT(e~",d))]  Ve,e>0,deN

because h is no smaller than 1.

As S, > l/h(cT()\l_&,l)) by (25), it follows that S.h(cT(0,1))h(cT(c71,d)) > 1. Define

S =25, h(cT()\l_&, 1)), and note that S, must also be finite for all ¢ > 0. It follows that

max(1, comp(e, d)) < [(Se/2) h(cT'(e7,d))] < Seh(cT(e7',d))  Ve,e >0, deN.

Since h is strictly increasing, so is h~!, and thus by (23),
h~(max(1,comp(e,d))) < h™? <§c h(cT(afl,d))>
<h Y8) 4 cT(et,d) Vee>0,deN.
By the hypothesis of this theorem, lim -1, 4, T(¢71,d) = co. Therefore

-1 -1
lim h~*(max(1, comp(e, d))) lim h=*(25,)

= Ve > 0.
e~ l4+d—o0 T(&fl, d) T e l4d—oo T(&fl, d) te=c ¢

Since this limit is bounded above by all positive ¢, it must be zero, and the problem is sub-h-T

tractable.

Necessary condition:

Suppose that the problem is sub-h-T' tractable. Then by (24]), for any ¢ > 0 there exists a

positive integer V. such that
comp(e,d) < [h(cT (7", d))| Vel +d > V..
By the definition of the information complexity in (2), it follows that
An(ede)d < € Vel4d >V, where n(e, d, c) := Lh(cT(eil, d)| + 1.
Since h(cT'(-,d)) is non-decreasing, it follows that
n(e,d,c) < h(cT(e L, d)) +1 < h(cT(A;(; d0)d

For a fixed ¢ and d, define

d) +1 Ve l+d>V..

(26) |{eq:nedcb

el (d,¢) :== max(V,—d, )\ié), n*(d,c) == n(el (d,c),d, c) < h(cT(egl (d,c),d))+1. (27) |{eq:nstar

By varying ¢! in the interval [e;,l(
all values greater than or equal to n*(d,c). Thus, by (20,

n < h(CT()\;ii, d)) Vn > n*(d,c),

1 1 1 .
h(2¢T (N, 5, d)) = (T (N, 5, )2 —  Vnzn’(dc) by @

<

Combining this inequality with the upper bound on n*(d, c¢) yields

> 1
Soc = sup PP R
2 den Zl h(2¢T (A@-J,d))

15
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[n*(d,c)—1

1 1
= Ssu _ -
deh ; h(2¢T (A4, d)) Z h(%T(A;C}, d))

[ d,c) —1 =1
< sup ( C) ]

_|_
deN h(2cT(A;;,d Zzlﬂ

2

3 by 27). m (29) |{eq:lasto

< aup | PT i), )
deN | h(QCT()‘1 d,d))

+

Note that

Vo—d<V,, de{l,....d;=|V.— A 4]},

d,c) =max(V, —d,\7}) =
max( ) ( l,d) {)\Lcli’ d e {dz+1,},

and furthermore, it follows from above that we always have d} < |V.]. Recalling that T is
non-decreasing in its arguments, this implies that

T (e
SWMcumg@m
eN  h(2cT(N] d,d

< max T (max(d; ©), d)) sup (T (emnax (d; €), d))
deltnis) (QCT(M D) detdzit.y (2N g, d))

(T (Ve,d) W(eT (A g d))
< max sup PPy I,
de{l, ,d*} W(2eT (AL 3 ) deqdz+1,..3 h(2¢T (AL 4, d))
h(eT( Vc,dc h(eT (A g d))
<m sup T
“defdz+1,..} [M(cT(A] g, d))]
“m X{thVc,Ld )’1}

where we used that h(-) is always at least 1. Combining this bound with the upper bound on
Sc in (29]) establishes the finiteness of So. and completes the proof of the necessary condition.
This concludes the proof of Theorem [3l

O

Example 7 (Weak Tractability). Suppose that
T(e7',d,s,t) =max(l,e 1) +d' Ve, s,t>0,deN, h(z) = exp(xz) Vz >0.
Then Theorem [3l implies that

log(comp(e, d))

. . ) s t
E421&1;00 T =0 < Zlelg Zzlexp c(min{1,\; ¢}* +d")) < o0 Ve > 0.

The expression on the left is the notion of (s,t)-weak tractability introduced in [15], and the
condition on the right was derived in [16, Theorem 3.1]. Weak tractability corresponds to
(s,t) = (1,1), and uniform weak tractability corresponds to the case when a problem is weakly
tractable for all positive s and .
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ec:restricted

5 (Strong) Tractability on a Restricted Domain
Suppose that the domain of interest (¢!, d) is not all of (0,00) x N but some subset
Q:={(e7',d): e € (£(d),0), d € N}, where & : N — [0, 00). (30)

We then expect that the equivalent conditions for (strong) tractability will be similar in form,
but weaker than the conditions in Theorems [I] and 21

Definition 4. A problem is strongly T-tractable with parameter p on the restricted domain 2
iff the information complexity is independent of the dimension of the problem, that is, there
exists a positive constant Cp, again independent of ¢ and d, such that

comp(e,d) < Cp T( 1 1,p) V(e d) € Q. (31)

A problem is T-tractable with parameter p on the restricted domain € iff there exists a
positive constant Cp, again independent of ¢ and d, such that

comp(e,d) < CpT(e7 %, d, p) V(e d) € Q. (32)
Define the closures of the sets of parameters for which our (strong) tractability conditions hold:
Prtret := {p* : 32) holds Vp € (p*,00)}, Prstret == {p" : (31) holds Vp € (p*,00)}.

The set of optimal parameters is defined as all of those parameters satisfying the (strong)
tractability conditions that are not greater than or equal to others:

Propt = {p* S Prtrct :p* ¢ [pa OO) Vp € ,Pl“trCt \ {p*}}7 (33)
7Drsopt = {P* € Prstrct : P* ¢ [P, OO) Vp € 7Drstrct \ {p*}} (34)

Define % : N — Ny U {oo}

i eNp: Ay <&(d)}, &(d) >0,
W (d) min{n € No: An1.4 < E(d)},  £(d) (35)
00, &(d) = 0.
Also, for each d € N define the set
0, U (d) =0,
Ig:=<{1,...,7(d)}, 0<(d) < oo, (36)
N, U (d) = oc.
From the definition of % (d) it follows that (A, J,d) € @ <= i € I, and
—0, w(d) =0, B
comp(e, d) (d) V(e d) e Q. (37)
€Iy, %(d) >0,

The equivalent conditions for (strong) T-tractability on a restricted domain in Theorems [
and B mimic the conditions given in Theorems [Il and 2], except that the upper limits on the
sums now correspond to % (d) rather than co. The proofs are a bit more delicate, but similar
arguments are used.

We note that it may be possible to define €2 such that A\; 4 < &(d) for all d € N. In this case,
% (d) = 0 for all d € N, the equivalent conditions for (strong) tractability are trivially satisfied,
and the zero algorithm satisfies the error tolerance.
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5.1 Strong Tractability on a Restricted Domain

_strong_tract| Theorem 4. Let T be a tractability function as specified in @) and satisfying (@) and ). A
problem is strongly T-tractable on the restricted domain Q iff there exists p € [0,00) and an

integer Ly, > 0 such that

% (d)
1
Sp := sup — < 0. (38) |{eq:stron
P deN Z':ZL:p T()‘Léa 1’p)

By convention, if % (d) < Ly, the sum is zero.
If (B8) holds for some p, let Prstret := {p* : B8] holds Vp € (p*,00)}. Then Prstret = Prstret,

and the set of optimal strong tractability parameters on the restricted domain is

Prsopt = {P* € ﬁrstrct : P* ¢ [13’ OO) Vﬁ € ﬁrstrct \ {p*}}

Proof. Sufficient condition:

Fix d. If % (d) = 0, then comp(e,d) = 0 < Cp T'(e 71,1, p) automatically for all £ € [£(d), o).
For the case % (d) > 0, following the argument for the sufficient condition in Theorem [I] it

follows that for all 2 € N and integers n, N € Zy with N < n, we have

1 1 1
Tl 29 " TO V29 = STOhl.2
( n+1,d’ ’p) ( n,d’ ap) ( N,d> ap)
% (d)

Agtd SApd < S ANg =

n

_ 1 o1 - 1 o1 5 1
T 10 2.p) n—N+1Z T\ 5, 2,p)  n—N+1 =T\ ;,2,p)

Thus, we can conclude from the previous line that

% (d)

1
n_N+1ZT(€_17@7p) i —1 > N\
Z'ZN T(Azéa‘@’p)

1 A

< Z 1 < !
T()‘;ild’-@ap) S n- N + 1 i=N T(A;;,-@ap) B T(€_17‘@7p)
V€N, Ne€Z;, andn>N (39) |{eq:impli

Moreover, given that T is increasing in its arguments, we have the following equivalent
expression for the information complexity via (2):

—

comp(e,d) = min{n € Zg : Apj1,4 < £} by B7)
1 1
<
2,p) ~ T 2,p)
% (d)

1
< min{n €ly:n>N-1+TE12,p)Y ———
Z'ZN T(Azéa‘@’p)

:min{nGId: } V7 €N

—1
T(AnJrl,d’

}vg, 1< N <%(d)

by ([B39).

This last statement holds for all N < % (d) because n > N automatically in the expression
above. Thus,

% (d)

N 1
Comp(e,d) < T(e_l,g,p) m + Z m] V.@, 1 < N < %(d) (40) {eq:compU
T i=N i,d? =

18



Now we take this upper bound further, specializing to the case of 2 =1 and N = min{L,, % (d)}:

: (d
comp(e,d) < T(e71,1,p) ml;({eli’i’?(d)} + Z(:) %
Pl T 1P)
gsp+1/T(,\;/1;7d,1,p) by @)
<T(e1,p) [% + Sp] by (72)
=Cp
= CpT(e71,1,p).

This means that we have strong T-tractability on the restricted domain 2 via (31, and verifies
the sufficiency of (B8]).

Necessary condition:
Suppose that we have strong T-tractability on the restricted domain € as defined in ([31I]). That
is, for some p > 0 there exists a positive constant Cp, such that

comp(e,d) < Cp T( 1, 1,p) V(e d) € Q.

Since the sequence of singular values Ay 4, A2 4, ... is non-increasing, we have

ANepT(etap)+1a<e V(T d) e (41) [{eq:1ambd

For all € > 0, define the positive integers
i(e,p) = LCP T(eila 1ap)J + 1’ Z(Oo’p) = LCP T(O’ 1ap)J +12 1’
just as in (I3]). Thus, it follows by (@I]) that

Ai(ep)d < € V(€_17d) €. (42) |{eq:lambd

Note furthermore that we always have

i(e,p) S CpT(e ' L,p) +1 < CpT(N [y 1P +1 W d) e,

since T'(+,1,p) is non-decreasing.
For e taking on all values in (&(d),0), i(c, p) takes on (at least) all values in

0, i(€(d),p) = i(c0, p),
Fap =1 {i(co,p),...,i(&(d),p) — 1}, &(d) >0,
{i(c0,p),i(c0,p) + 1,...},  &(d) =0.
So,
i <CpT(A\ 4 1,p)+1 Vi€ Fyp deN.

This implies via our technical assumption () that, for 7 > 1,

R
Kpr T 17p) 2 [T Lp)]” > [(107)] Vi€ Jop, dEN,
p
1 Kp,Cy
< = Vi e .7, 1}, d eN. 43) [{eq:rest.
R A (48) [Leqirest.

To complete the proof, we will sum both sides of ([43]) over the range of ¢ appearing in (38,
to establish that S;p is finite. To do this we need to show that (43]) holds for that range. Choose
L;p =i(00,p) +1 > 2. There are three cases.
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i) If % (d) < L;p, then
7 (d)

1
V=0
Z T()\i,c%’ 1,7p)

i=Lrp

which does not affect the finiteness of Srp.
ii) If % (d) > Lrp and &(d) =0, then {Lp, Lrp+1,...} C F4, \ {1}

iii) If % (d) > L;p and &(d) > 0, then (B5]) implies that Ay (4)41,4 < &(d) < Ay (a),q- Moreover,
there must be some e* satisfying &'(d) < e* < Ay (q) 4, for which \j.« p) < " < Ay (a)q by
([#2). Because of the ordering of the singular values, this implies that i(e*,p) > % (d) + 1.
Since i(-, p) is nonincreasing, i(&'(d), p) > % (d)+1. This means that % (d) < i(&(d),p)—1.
S0, {Lsp,..., % (d)} C Fyp\ {1}.

In both the second and third cases,

1 1
S;p = sup —————— < sup P
P den i:ZL;p T(A4,1,7p) ~ deN, 2 T(A4:1,7p)

ZEﬂdm\{l}
=1
< KprCp) oD S Ker Gpl(n) <00 by @),
=2

where ( denotes the Riemann zeta function.

Thus, in all three cases, the assumption of strong tractability on the restricted domain implies
([B38) with p replaced by p’ = Tp, and so we see the necessity of (B8]).

Optimality:
The proof of optimality is analogous to that for Theorem [l and is omitted.

This concludes the proof of Theorem [4l O

5.2 Tractability on a Restricted Domain

The equivalent condition for tractability on a restricted domain is analogous to the conditions
for tractability on an unrestricted domain and for strong tractability on a restricted domain.
The proof is analogous as well.

Theorem 5. Let T be a tractability function as specified in @) and satisfying () and ([&). A
problem is T-tractable on the restricted domain 2 iff there exists p > 0 and a positive constant

Ly, such that
« (d)

1
S = su — < Q. 44 { : t_
p d€§< Z T()‘;éadyp) ( ) eq:res

i=[Lp T(0,d,p)]

If @A) holds for some p, let Prtret 1= {p* : @4) holds Vp € (p*,00)}. Then Prtret = ﬁmct, and
the set of optimal tractability parameters is

Propt = {P* € ﬁrtrct : P* ¢ [ﬁa OO) Vﬁ € ﬁrtrct \ {p*}}
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Proof. Sufficient condition:

Fix d. If % (d) = 0, then comp(e,d) = 0 < Cp T'(e71,d, p) automatically for all € € [£(d), o).
For the case % (d) > 0, we utilize the upper bound (40]), specializing to the case of ¥ = d

and N = min{[L, T(0,d,p)], % (d)}:

min{[L, T(0,d,p)]|, % (d)}

7@ .
+ -

1 z : -1
T(€ ) d7 p) t=min{ ’—Lp T(0,d,p)],% (d)} T()\Zvd ’ d, p)

comp(e, d) < T(e™,d,p) [

SSP+1/T()‘;/1(d)’dvd7p) by @)

L, T(0,d,p) + 1 1
A ) ] by ([Zal)

+Sp+——————
7(0,d, p) P T(Ay (a0 4 P)

+5p by (Za)

<T(s',dp)

<T(1,d L —_—
<7 ) B+

=:Cp

=CpT(s7 1, d,p).

This means that we have strong T-tractability on the restricted domain 2 via (82]), and verifies
the sufficiency of (44)).

Necessary condition:
Suppose that we have T-tractability on the restricted domain. That is, for some p > 0, there
exists a positive constant Cp, such that

comp(e,d) < CpT(e7,d,p) V(™! d) € Q.

Since the sequence of singular values Ay 4, A2 g, ... is non-increasing, we have

AlCp Tt dp))+1,d < € V(e d) e Q. (45) |{eq:rest_

For (e71,d) € €, define the positive integers

It follows by [@B) that A )4 < € for any (7!, d) € Q. Note furthermore that since T'(-, d, p)
is non-decreasing, we have

i(e,d,p) < CpT(eilada p)+1< CPT()‘i_(;,d,p%d,da p)+1 v(eila d) € Q.

For ¢ taking on all values in (&(d), 00), i(e,d, p) takes on (at least) all values in
0, i(£(d),d,p) = i(o0,d, p),

Fap = { {i(co,d,p),...,i(&(d),d,p) — 1}, &(d) >0,
{i(00,d,p),i(c0,d,p) +1,...}, E( 0

So,
i <CpT (A 4, d,p) +1, Vie 4y, deN.

This implies via our technical assumption () that, for 7 > 1,

S
Kp: T\ g,d,7p) > [T(A 4. d,p)]” > [(ZC )] Vi€ yp, dEN,
p
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1 < Kp-Cy
T(A;g.d,7p) ~

To complete the proof, we will sum both sides of ([46]) over the range of ¢ appearing in ([44),
to establish that Sy is finite, where p’ = 7p. To do this we need to show that (&) holds for
that range.

For any d € N, let

2
L A / —_—
p = Cp t T(0,1,p')’
and note that
2
maX{i(OO, d’ pl), 2} S Z(OO, d’ pl) + 1= ch/ T(O, d, p/)J + 2 S Cp/ + W T(O, d, p/)

= LP/ T(07 d7 p,) S (LP/T(O’ d’ p/)—‘ :

This is the inequality needed for the lower limit of the sum.
There are three cases.

i) If % (d) < [LyT(0,d,p)], then

% (d

=

1
E — =0,
T(\ 4,d,p')

i=[LyT(0,d,p')]

which does not affect the finiteness of .Spy.

i) If Z(d) > [LyT(0,d,p’)] and &(d) = 0, then {[LyT(0,d,p")], [LpyT(0,d,p")]+1,...} C
Fap \ {1}

iii) If % (d) > [LyT(0,d,p’)] and &(d) > 0, then ([BE5) and (@5) imply that
i (d),dp)d < A (d)+1,d < E(d) < Agy(a),a-
By the same argument as in the proof of strong tractability, % (d) < i(&(d),d,p) — 1. So,
{[LpT(0,d,p")], ..., %(d)} S Fap\{1}.

In both the second and third cases,

% (d)

1 1
Sp = s TOLarp) =3 TOLd78)
deN i=[LyT(0,dp")] i,d> % D deN i€y p\{1} i,dr % p
T = 1 T
< Kpﬂ— Cp (Z _ 1)7— < prT CpC(T) <00 by (m)a
1=2

where ¢ denotes the Riemann zeta function.

Thus, in all three cases, the assumption of strong tractability on the restricted domain implies
(#4) with p replaced by p’ = 7p, and so we see the necessity of (44)).

Optimality:
The proof of optimality is analogous to that for Theorem [2] and is omitted.

This concludes the proof of Theorem [l O
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6 Discussion and Further Work

We have shown that many proofs of equivalent conditions for (strong) tractability of various types
can be unified into a handful of proofs. Even the arguments underlying these handful are quite
similar and could be consolidated even further. This unification simplifies our understanding of
these equivalent conditions and spotlights the key ideas about what makes a class of problems
hard.

However, some questions remain:
e What interesting cases of T" do not correspond to known tractability measures?

e What interesting cases are there where there is no (strong) tractability on an unrestricted
domain, but there is (strong) tractability on a nontrivial restricted domain, such as (0, 00) x
{1, dmax] U (g1, 00) x N?

e For Hilbert spaces and solution operators, {SOLy : Fy — G4}aen, of tensor product form,
the singular values take the form \; g = A\j g1+ A qq- What more can be said about the
equivalent conditions for (strong) tractability in this case?

e For information complexity defined over cones of functions rather than balls (see e.g.,
[2, 3]), what can be said about equivalent conditions for (strong) tractability?
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Appendix 1: A concrete example

We define the weighted Korobov space Hior,d,q,6 below. This space contains real-analytic func-
tions, and has been studied in the context of exponential tractability in, e.g., [Il [10], where the
reader can find further details on this space.

Let @ = {a;};>1 and b = {b;};>1 be two non-decreasing sequences of real positive weights.
Fix w € (0,1), and write

rd,a,b(h) = w_Z?:l ajlh;|"i for h = (hy,ha,... ,hd) e z4.

We define Hyor,q,a,p as the space of all one-periodic functions f with absolutely convergent
Fourier series given by f(x) = > cza f(h) exp(2my/—1h'x), and with finite norm || f||xor,d,a,b :=
(f, f >11(éf d.a.p> Where the inner product is given by

(f.9kordab = Y Taas(h)f(h)g(h).
hezd

Let us consider Lo-approximation, i.e., SOLg : Hyor,d,ap — L2([0, 1]9), SOL4(f) = f, and let
us allow arbitrary continuous linear functionals as information. One can show that the singular
values for this choice of SOL, are given by

{Ma:neN} = {(rd,al,(h))*l/2 the Zd} = {w% Si-railhil” . p e Zd} . (47) |{eq:eigen
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If, for instance, we would like to find out whether Lo-approximation on Hyor 4.6 Satisfies
exponential strong tractability, we would use condition (20), which previously existed in the
literature. A slight drawback of this condition, however, is that we need to know everything
about the order of the singular values, since we need to study summability of )\?dT in (20). This
is technically rather involved, and was implicitly done in [I] (we remark that the concise form
of the condition (20]) was not yet known when [I] was written, and the proof idea in [I] is less
straightforward than just checking (20I).

Alternatively, we can use the newly derived condition (I9) instead of (20)) and study the

expression
o

1
25 (Md- 1. 0.0))

for a real p > 0. Inserting the singular values as in (7)), yields

>S——L - % 1

i—1 I <)‘;0%7 17 (p7 O)) heZd |:1’IlaX {1’ log (1 + wié Z;l:l aj‘hﬂbj) }i|p

1
= Z <10g(w*%23?:1@j|hj\bj>)p'

heZd\{0}

It is then not hard to show that the two conditions

log a; 1
liminfﬂ>0 and Z—<oo
jooo P

are sufficient to achieve exponential strong tractability (for details we refer to [9]), and this is in
accordance with the findings in [I]. Note, however, that this result in [I] was technically much
harder to show than the analysis of the previous sum is.

Appendix 2: Proof of Proposition 1l

Proposition 1. We will give the proof of equivalence of the conditions (I8) and (2II). The proof
of the equivalence of (I9) and (20) is analogous and simpler (actually, the latter proof can be
seen as a special case of the former, by assuming all exponents of d to be zero).

Let us first assume that (2I)) holds, i.e.,

[e.e]
M :=supd™ ™ Z )\{dQ < 00
deNi—[odms

for some 7,73 > 0 and 75,C > 0. Here, M and other constants above may depend on 7y, 75,
and 73. Define B, as the set of indices that are contained in the above sum and for which the
terms in the sum are relatively large:

. 1
By = {iEN:iz[CdTS] and )‘ﬁ,d2 >g}.

Due to our assumption, we see that card(By) < e M d™ and card(B;) < |[eM d™]|. Suppose
now that i > [Cd™]| but i ¢ By, which means that the term in the above sum is relatively small:

i~ 72 1 -1 T
Aia < - — IOg()\Ld) >0, (48) |{eq:logan
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Now, choose p > 1/7m2, ¢ = max{71,73}, and L, , = max{C,eM}, which implies that
[Lp,qd?| > eMd™. Then, for any d € N, the desired sum in (I8) can be bounded by splitting
it into the sum of the larger terms and the sum of the smaller terms:

Y 1
d Z (max{1,log(1+ A; ;)}]?

=1L(p,q)d?]
=d™ i 1 oy T4 i 1 T
- p N p
T [max{1,log(1+ A; ;)}] T [max{1,log(1 + A; ;)}]
i€By iZB,
> 1
<d9eMdt+d 1Y ———
)P
i:{L(p,q)dq‘l [log()\z,d)]
i¢By
— 1
—q 2
comrat Y L
i=[Lp,q)d?]
idBy

< eM +((r2p).

Since p was chosen to be strictly larger than 1/79, it follows that the latter expression is finite
and its value is independent of d. Therefore, Condition (I8]) holds.

Conversely, let us now assume that Condition (I8]) holds for some p > 0 and ¢ > 0 that are
assumed to be fixed. All constants in this part of the proof may depend on p and ¢q. We will
show next that this implies Condition (2II). Indeed, due to (I8]), there exist constants M > 1
and L, ;) > 0 such that for all d € N,

1

> ——— < M,
i L] [max{1,log(1 + A; ;) }P

which is equivalent to
o

Z ! ——— < dIM.
i L] [max{1,log(1 + A; ;) }P

Similarly to the proof of the sufficient condition in Theorem[I} we see that for any n > [L, d?],

o

1 < 1 5 L diM
T bp) ~ 1 [Lad 1= T, 1,p) — 1= [Lpgdl +1

This inequality implies for our specific choice of T" that

L n—|L dil +1
n__ Lo - [Lepe®l < [max{1,log(1+ A1, JHP < [1+log(1+ A1, )P

M M~ d1M
Since both L, 4 and M in the latter chain of inequalities are independent of d and n, there
exists a positive constant K such that

n —
e S [MHlog(L+ A5 )P Yn> [Lgd”],
which implies
nl/p

—1

n+1,d
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This, in turn, implies the existence of another constant K > 0 such that

nl/p

Mg < —_—
= P < K1l/pda/p

) Vn > [L(p,q)dq-l — 1,

which is essentially the situation described in [11, p. 118]. We can then choose 72 € (0,1/p),
and proceed as in [I1] to obtain

e ¢)

> N =0/t
i=[L(p.q)d]

with the implied factor in the O-notation independent of d. Then, we can choose 71 = ¢/(1—72p)
and 73 = ¢ and see that (2I]) holds.

This concludes the proof of the equivalence of (I8]) and (21I).
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