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Abstract— In this paper, we develop and present a novel
strategy for safe coordination of a large-scale multi-agent team
with “local deformation” capabilities. Multi-agent coordination
is defined by our proposed method as a multi-layer defor-
mation problem specified as a Deep Neural Network (DNN)
optimization problem. The proposed DNN consists of p hidden
layers, each of which contains artificial neurons representing
unique agents. Furthermore, based on the desired positions
of the agents of hidden layer k (k = 1, · · · , p − 1), the
desired deformation of the agents of hidden layer k + 1 is
planned. In contrast to the available neural network learning
problems, our proposed neural network optimization receives
time-invariant reference positions of the boundary agents as
inputs and trains the weights based on the desired trajectory of
the agent team configuration, where the weights are constrained
by certain lower and upper bounds to ensure inter-agent
collision avoidance. We simulate and provide the results of a
large-scale quadcopter team coordination tracking a desired
elliptical trajectory to validate the proposed approach.

I. INTRODUCTION

First inspired by natural phenomena, formation flight and
cooperative control in Multi-Agent Systems (MAS) have
been fascinating and important areas of study for the past 20
years. Research into MAS has led to interesting theoretical
problems and potential practical uses in a wide range of
situations. MAS formation flight and cooperative control are
achieved either in a centralized or decentralized manner. The
centralized technique makes use of a central computer that
controls every agent in the MAS. However, the decentralized
technique, also known as distributed control, allows for
computation onboard each agent, and information is shared
across neighboring agents [1]. For cooperative multi-agent
control, the decentralized method has many benefits, such
as low operational costs, fewer system requirements, great
robustness, strong adaptability, and flexible scalability.

A. Related Work

With applications ranging from surveillance [2], [3] to for-
mation flying [3], [4], rescue missions [5], wildlife monitor-
ing and exploration [6], precision agriculture [7], cooperative
payload delivery [8], [9], and hazardous environment sensing
[10], several multi-agent coordination techniques have been
researched and presented.

A group of agents, acting as particles of a single virtual
rigid body, use the centralized technique of Virtual Structure
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(VS) [11], [12]. VS is capable of maintaining the rigid
geometric relationship between the agents and evolving as
a rigid body in a given direction and orientation. Consensus
[13], [14] is among the most exhaustively researched cooper-
ative control approaches. In this approach, a team of agents
reaches an agreement or consensus regarding some quantities
of interest only by communicating with their neighbors. It
is a decentralized coordination and control approach and is
broadly divided into two categories: leaderless consensus
(i.e., consensus without a leader) [15], [16] and leader-
follower consensus (i.e., consensus with a leader) [17], [18].

Another decentralized leader-follower method is called
Containment Control [19], [20], [21], [22], where the collec-
tive motion of all agents is achieved with multiple leaders.
The follower agents obtain the desired positions through
local communication with in-neighbor agents, and all agents
are contained within a particular area defined by geomet-
ric constraints. A recent multi-agent coordination approach
known as Homogeneous (or Affine) Transformation, is based
on the principles of continuum mechanics, where the agents
in the system are treated as particles of a deformable body
undergoing a homogeneous transformation [23], [24], [25],
[26], [27], [28], [29]. This technique ensures that all agents in
the system remain inside a bounding envelope and allows for
translation, rotation, and shearing of the bounding envelope
while ensuring collision avoidance. Homogeneous transfor-
mation advances containment control by ensuring inter-agent
collision avoidance. To achieve the desired homogeneous
transformation in n-D (n = 1, 2, 3), n + 1 leaders in Rn

communicate with the follower agents via local communica-
tion.

B. Contributions

Although homogeneous transformation coordination can
allow for aggressive and safe changes to the inter-agent
distances, it has “deformation uniformity” problems. This is
due to the fact that at any moment t, the deformation of the
complete agent team configuration is given by a single Ja-
cobian matrix that can be specified based on unique rotation
and shear deformation angles, as well as axial deformations
[30]. Therefore, the rotation, axial, and shear deformations
must be consistent over the whole MAS arrangement. To
overcome this deformation uniformity issue, the existing
homogeneous transformation coordination, specified based
on a single Jacobian matrix, is advanced in this paper to
Deep Continuum Deformation Coordination (DCDC), which
allows us to plan safe “local deformation” of an agent team
without having to change the inter-agent distances between
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Fig. 1. (a) An example of the reference configuration of a N = 16
quadcopter team. As defined in Section II, we have B = {1, 2, 3}, C = {4}
and I = {5, · · · , 16}. The set L1 = {1, 2, 3, 4} is given by red triangles,
L2 = L1 ∪ {5, 6, 7} is represented by blue triangles, L3 = {8, · · · , 16}
is denoted by the black stars. Finally, we have V = {1, · · · , 16} as the set
that identifies all quadcopters in the team. (b) Local deformation of agent
9 by adjusting weights β9,5,3 and β9,2,3.

all agents (See Fig. 1(a),(b)).
DCDC defines multi-agent coordination as a multi-layer

continuum deformation constructed using a neural network in
which (i) each neuron represents a different agent and (ii) the
input layer receives time-invariant reference positions of the
boundary agents. In our proposed NN, which has p hidden
layers, the desired deformation of the agents of layer k + 1
is based on the agents’ desired positions belonging to hidden
layer k (k = 1, · · · , p − 1). Unlike existing neural network
learning methods that obtain the weights and biases based
on the training data, our proposed NN optimization assigns
weights and biases based on a single input and a time-varying
output. More specifically, our goal is to plan the deformation
of a multi-agent team by obtaining the weights and biases
of the hidden layers so that the error between the actual

position configuration of the agent team and the desired
position configuration of the agent team is minimized while
guaranteeing inter-agent collision avoidance between every
two agents. We provide guarantee conditions for assuring
inter-agent collision avoidance by obtaining the inequality
and equality constraints on the weights and biases of the
hidden layers.

This paper is organized as follows: The preliminaries
(Section II) are first introduced, followed by a detailed de-
scription of our proposed approach (Section III). We present
safety guarantee conditions (Section IV) before presenting
simulation results (Section V). Section VI concludes the
paper.

II. PRELIMINARIES

Consider a N -agent team (See Fig. 1) moving collectively
as particles of a deformable body in 3-D motion space. We
use set V = {1, · · · , N} to identify all agents in the team.
We express set V as

V = B
⋃
C
⋃
I, (1)

where B defines the primary leader agents that are located
at the boundary of the agent team configuration, singleton C
defines a single agent located inside the convex hull defined
by B, and I identifies the remaining agents, located inside
the convex hull defined by B. Without loss of generality
we index agents such that the sets B = {1, · · · , NL − 1},
C = {NL}, and I = {NL + 1, · · · , N} identify boundary,
core, and interior agents, respectively. Set V is also expressed
as

V =

p⋃
k=1

Lk (2)

with subsets L1 through Lp, where L1 = B
⋃
C. We note

that subset Lk serves as immediate leaders for Lk+1, for
k = 1, · · · , p − 1, which implies that desired positions
of the agents belonging to Lk+1 are defined based on
desired positions of the agents in Lk. L2 through Lp−1 are
defined as the interior leaders and the set Lp defines the
pure followers that do not serve as immediate leaders for
any agents belonging to L1 through Lp−1. Furthermore, L1

through Lp−1 satisfy the following condition:

p−1∧
k=1

(Lk ⊂ Lk+1) . (3)

More specifically, desired position of agent i ∈ Lk+1 is
given by

pi(t) =
∑
j∈Lk

βi,j,k(t)pj(t), i ∈ Lk+1, k = 1, · · · , p−1,

(4)
where βi,j,k(t) ∈ [0, 1], and∑

j∈Lk

βi,j,k(t) = 1, i ∈ Lk+1, k = 1, · · · , p− 1. (5)
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Safety conditions are explained in Section IV. Note that
leaders belonging to L1 are the primary leaders that move
independently with the desired trajectories defined by

pi(t) = αi(t)ai + d(t), ∀i ∈ L1, (6)

where d(t) specifies the nominal position of the agent team
configuration expressed with respect to an inertial coordinate
system, ai is the constant reference position of primary
leader i ∈ L1. Note that the reference position of the core
leader i ∈ C is 0, i.e. ai,0 = 0.

III. METHODOLOGY

We investigate deep continuum deformation coordination
of a N -agent team over a finite time interval [t0, tf ] and
develop a Neural-Network-based (NN-based) optimization
method to obtain the desired deformation of the agent team
(See Fig. 2), by assigning αi(t) of the first layer, and βi,j,k(t)
of every layer k = 1, · · · , p − 1. Figure 2 illustrates the
schematic of the proposed NN with p hidden layers. Note that
the artificial neurons in hidden layer 1 through p represent
the agents defined by L1 through Lp, respectively.

Input Layer: As shown in Fig. 2, the input layer generates
the reference positions of the boundary agents and core
agent, defined by B ∪ C. Note that the reference positions
are time-invariant.

Hidden Layers: The first hidden layer, denoted by L1,
receives the reference positions of the boundary agents. More
specifically, neuron j ∈ L1 represents agent j ∈ B ∪ C,
receives reference position aj , and returns pj(t) by using
Eq. (6). Notice that the rigid-body displacement vector d(t),
used in Eq. (6), has the same bias for all neurons in layer
L1.

Every hidden layer k ∈ {2, · · · , p} receives desired posi-
tions from previous hidden layer k−1 and returns the desired
positions of the agents defined by Lk. More specifically,
neuron i ∈ Lk receives the desired positions of agents of
Lk−1 and returns pi(t) using (4). Note that the bias of a
neuron in hidden layers 2 through p is 0.

Output Layer: The output layer consists of a single neuron
averaging the desired position of the agent team config-
uration. Therefore, the weights associated with the edges
connecting neurons of hidden layer p to the output layer
are 1

|Lp| where |Lp| denotes the cardinality of set Lp.
Loss function: In this paper, we use the residual sum of

squares as the loss function at time t given by the following
equation:

Loss(t) =

∥∥∥∥∥∥ 1

|Lp|
∑
i∈Lp

pi(t)− d (t)

∥∥∥∥∥∥
2

, t ∈ [t0, tf ] .

(7)
Training of the Neural Network: To train the network, we

determine positive weight parameters αi(t) and βi,j,k(t) at
any time t ∈ [t0, tf ]. To ensure safety of the agent team
coordination, αi(t) and βi,j,k(t) are constrained by specific
lower and upper bounds that are determined in Section IV.

IV. SAFETY GUARANTEE CONDITIONS

Before proceeding further, we express desired, actual,
and reference positions of agent i ∈ V as pi(t) =
[xi,d(t) yi,d(t) zi,d(t)]

T , ri(t) = [xi(t) yi(t) zi(t)]
T , and

ai,0 = [xi,0 yi,0 zi,0]
T , respectively. For obtaining the safety

guarantee conditions, we make the following assumptions:

Assumption 1. Every agent i ∈ V can execute a proper
trajectory tracking control such that deviation of the actual
trajectory ri(t) from the desired trajectory pi(t) remains
bounded and satisfies the following equation∧

i∈V

∧
q∈{x,y,z}

|qi,d(t)− qi(t)| ≤ δ, ∀t, (8)

where
∧

i∈V implies “include all” and δ > 0 is constant.

Assumption 2. Every agent i ∈ V can be enclosed by a box
with side length 2ϵ.

To assure safety of the agent team continuum deformation,
the following two safety requirements must be satisfied:

Safety Condition 1. For every two different agents i and j,
the inter-agent collision avoidance is guaranteed, if

N−1∧
i=1

N∧
j=i+1

∧
q∈{x,y,z}

|qi(t)− qj(t)| > 2ϵ, ∀t, (9)

Safety Condition 2. Every follower i ∈ Lk+1 remains inside
the convex hull defined by Lk. We say agents of layer Lk+1

are contained by the convex hull defined by Lk, if
p−1∧
k=1

∧
i∈Lk+1

∧
j∈Lk

(βi,j,k(t) ≥ 0) , ∀t. (10a)

p−1∧
k=1

∧
i∈Lk+1

∑
j∈Lk

βi,j,k(t) = 1

 , ∀t. (10b)

The Safety Condition 1 is satisfied, if [30]
N−1∧
i=1

N∧
j=i+1

∧
q∈{x,y,z}

|qi,d(t)− qj,d(t)| > 2 (δ + ϵ) , ∀t.

(11)
Note that Eq. (11) provides a sufficient safety condition for
inter-agent collision avoidance.

To ensure safety conditions 1 and 2 are satisfied, we
constrain αi,k and βi,j,k by∧

i∈L1

(αmin ≤ αi(t)) , ∀t (12)

p−1∧
k=1

∧
j∈Lk

∧
i∈Lk+1

(βk,min ≤ βi,j,k ≤ βk,max) . (13)

We first assign βk,min and βk,max for every layer k =
1, · · · , p − 1. Then, for given βk,min and βk,max at every
layer k = 1, · · · , p − 1, we obtain αmin by solving the
following optimization problem:

αmin = min
α∈(0,1)

α (14)
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Fig. 2. The structure of the proposed neural network used for MQS
continuum deformation optimization.

subject to ∧
i∈L1

∧
q∈{x,y,z}

(qi,d = αqi,0) , (15)

p−1∧
k=1

∧
i∈Lk+1

∧
q∈{x,y,z}

qi,d =
∑
j∈Lk

βi,j,kqj

 , (16)

p−1∧
k=1

∧
i,h∈Lk+1

i ̸=h

∧
q∈{x,y,z}

∑
j∈Lk

|(βi,j,k − βh,j,k) qj,d| > 2 (δ + ϵ)

 ,

∀βi,j,k, βh,j,k ∈ [βk,min, βk,max] .
(17)

We use Algorithm 1 to solve the above optimization problem.

Algorithm 1 Obtaining safety guarantee condition for Deep
Continuum Deformation Coordination and Optimization

1: Get: βk,min and βk,max for k = 1, · · · , p− 1, ∆α, and
reference position of every agent i ∈ V

2: Obtain: αmin

3: Set: α = 1
4: while Eq. (17) is satisfied do
5: α← α−∆α
6: Update pi(t) of agent i ∈ L1 using Eq. (15)
7: for < k ∈ {1, · · · , p− 1} do
8: for < j ∈ Lk do
9: for < q ∈ {x, y, z} do

10: for < βi,j,k ∈ [βk,min, βk,max] do
11: Update pi(t) using Eq. (16).
12: Check constraint (17).
13: end for
14: end for
15: end for
16: end for
17: end while
18: αmin ← α

Parameter Value Units
m 0.5 kg
g 9.81 m/s2

l 0.25 m
Ir 3.357× 10−5 kgm2

Ix 0.0196 kgm2

Iy 0.0196 kgm2

Iz 0.0264 kgm2

b 3× 10−5 Ns2/rad2

k 1.1× 10−6 Ns2/rad2

TABLE I
QUADCOPTER SPECIFICATIONS

V. SIMULATION RESULTS

Here, we present simulation results obtained using Py-
Torch1 on a desktop running Ubuntu 20.04 LTS with an
Intel i7 11th generation CPU, an NVIDIA GPU, and 16 GB
of RAM. We consider the evolution of a multi-quadcopter
system (MQS), consisting of N = 16 quadcopters with
initial formation at time t = 0, as shown in Fig. 1a. The
quadcopters in the MQS are similar and are modeled using
the dynamics established in [31]. The quadcopter parameters
originally presented in [32] are listed in Table I.

We consider the desired path of the MQS configuration to
be an ellipse as shown in Fig. 3 with major radius a = 100m
and minor radius b = 80m. The total travel time to complete
the ellipse is denoted by T = 60 s. The MQS is distributed
over the horizontal plane at z = 10m, whose value is always
constant.

The quadcopters’ in the MQS are identified by defining the
set V = B

⋃
C
⋃
I, where B = {1, 2, 3}, C = {4}, and I =

{5, · · · , 16}. Alternatively, as stated in Section II, the sets
L1 = {1, · · · , 4}, L2 = {5, · · · , 7} and L3 = {8, · · · , 16}
identify the quadcopters of hidden layers 1, 2, and 3, re-
spectively. We compute the αi and βi,j,k parameters using
the approach presented in Section III. The minimum and
maximum values assigned for the communication weights,
αi(t) and βi,j,k(t) are shown in Table II. Note that the
minimum values are assigned such that inter-agent collision
avoidance amongst every two quadcopters in the MQS is
guaranteed while also satisfying the constraints mentioned
in Section IV.

TABLE II
LOWER AND UPPER BOUNDS FOR OBTAINING THE NN WEIGHTS

αmin β1,min β2,min β1,max β2,max

0.5 0.2 0.35 0.6 0.65

It is desired that the quadcopter configuration follow
the desired elliptic trajectories while satisfying the safety
conditions presented in Table II. Therefore, we run the neural
network described in Section III for 6000 epochs with a
learning rate of 0.01. Stochastic Gradient Descent (SGD) has
been used along with the loss function mentioned in Section
III. The weights and biases of the NN are used to calculate

1https://pytorch.org/
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Fig. 3. Desired configuration of the MQS at various times.

the nominal trajectories of each of the quadcopters in the
MQS team. Using the input-output feedback linearization
control approach [31], Figures 4, 5, 6, and 7 plot the x-
position component, the y-position component, the thrust
force magnitude, and the rotors’ angular speeds of the
quadcopter 6 ∈ L2, respectively.

VI. CONCLUSIONS

This paper has developed and presented a NN-based
technique for safe continuum deformation coordination and
optimization of a N -quadcopter team tracking a known target
trajectory in 3-D motion space. Assuming that there are
no obstacles while tracking the desired trajectory and no
failures in the MQS, we presented a novel algorithm in which
the input to the NN is the constant reference configuration
and optimization is done based on the desired trajectory
to track so as to obtain the weights that directly correlate
to the matrices in homogeneous transformation. Our work
also provided safety guarantees ensuring inter-agent collision
avoidance. Future work lies in the direction of making the
algorithm robust to obstacles in the environment, conducting

Fig. 4. x component of the actual and desired trajectories of quadcopter
6.

Fig. 5. y component of the actual and desired trajectories of quadcopter
6.

further simulations and flight experiments with obstacles,
and incorporating fluid flow navigation [25], [29], [33] as an
obstacle avoidance algorithm. An alternate direction would
be to obtain the deformation of the MQS formation through
a known obstacle, such as windows of different shapes and
sizes.
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