
Quadcopter Tracking Using Euler-Angle-Free Flatness-Based Control

Aeris El Asslouj1 and Hossein Rastgoftar1,2

Abstract— Quadcopter trajectory tracking control has been
extensively investigated and implemented in the past. Available
controls mostly use the Euler angle standards to describe the
quadcopter’s rotational kinematics and dynamics. As a result,
the same rotation can be translated into different roll, pitch, and
yaw angles because there are multiple Euler angle standards
for the characterization of rotation in a 3-dimensional motion
space. To address this issue, this paper will develop a flatness-
based trajectory tracking control without using Euler angles.
We assess and test the proposed control’s performance in the
Gazebo simulation environment and contrast its functionality
with the existing Mellinger controller, which has been widely
adopted by the robotics and unmanned aerial system (UAS)
communities. Our simulations also show that, for both con-
trollers, the main cause of loss of stability is not the theoretical
domain of stability, but it is instead the inability of quadcopter
rotors to provide negative thrust as is requested by controllers
for aggressive trajectories.

I. INTRODUCTION

Over the past few decades, multi-copter UAVs have been

used for a variety of purposes, including crop management

[1], rescue and disaster relief missions [2], aerial payload

transport [3], [4], surveillance [5], piping inspections [6].

Trajectory tracking control of multi-copters have been exten-

sively investigated by the researchers and multiple position-

yaw controllers have been proposed. These include the

cascaded Proportional–Integral–Derivative (PID) controller

[7], the Incremental Nonlinear Dynamic Inversion (INDI)

controller [8], and the Mellinger controller [9]. Additionally,

we recently developed a feed-back linearization-based con-

trol for quadcopter trajectory tracking [10], [11] which is

called “Snap” controller in this paper. All these controllers

are based intentionally or not on the concept of differential

flatness [12] which can facilitate designing controllers for

non-linear systems.

The Mellinger controller is somewhat of an outlier in this

list by the fact that it is able to follow aggressive trajectory

far from the hover state while being simple and small.

Meanwhile, the Snap controller offers a considerably wider

domain of attraction as compared to the Mellinger controller,

with the stability margin that is constrained to specific initial

conditions [9], [10]. While these two controllers solve the

same control problem using differential flatness, they are

polar opposite solutions, each with their advantages and

disadvantages.

*This work has been supported by the National Science Foundation under
Award Nos. 2133690 and 1914581.

1Aeris El Asslouj is with the Department of Electrical and Com-
puter Engineering, University of Arizona, Tucson, Arizona, USA
aymaneelasslouj@arizona.edu

2Hossein Rastgoftar is with with the Departments of Aerospace &
Mechanical Engineering and Electrical & Computer Engineering, University
of Arizona, Tucson, Arizona, USA hrastgoftar@arizona.edu

This paper compares the functionality of the Snap and

Mellinger controllers. Compared to the authors’ previous

work and existing literature, this paper offers the following

main contributions:

1) Rotation-Based Presentation of Flatness-Based Con-

trollers: While [10] uses the 3− 2− 1 Euler angle standard

to model and control a quadcopter, this paper develops a

rotation matrix-based form of the Snap controller without

using Euler angles. This is particularly beneficial because

there are more than 12 Euler angles conventions not count-

ing all variations [13]. As a result, when implementing a

controller relying on Euler angles, it is nearly always the

case multiple Euler angle conventions exist for the same

rotation. During our research, we found that the existing

Snap controller paper [10], the Mellinger controller paper

[14], and the Gazebo robot simulation software [15] each

have a different convention for Euler angles requiring many

conversions. However, all systems have a single convention

for rotation matrices which they always provide and take as

input. So the presented formulation of the Snap controller

based on rotation matrices is universally compatible with all

systems without a need for conversions. To accommodate

systems that provide quaternions for orientation, we include

a quaternion to rotation matrix conversion at the start. While

a quaternion-only representation is possible, it would be

more computationally expensive than the rotation-matrix

representation as rotating a vector p by a quaternion q
requires two matrix-like products p′ = qpq−1 [16]. Note

that our proposed formulation still uses a yaw angle, but it

is defined using a heading vector as opposed to an Euler

angle convention. The definition is equivalent to that of the

3− 2− 1 Euler angle standard.

2) Comparison of the Snap and Mellinger controllers:

We compare the Snap and Mellinger controllers both from

a theoretical point of view and in terms of tracking perfor-

mance during simulations. We have found that the Mellinger

controller is more versatile as it can be easily converted to an

attitude controller. Meanwhile, the Snap controller performs

better in terms of minimizing tracking error as shown in

simulations.

3) Comparison between complex and real poles for tuning

the controllers: We discovered that using real or complex

poles does not affect the Snap Controller’s performance.

However, the Mellinger controller performs better when it

is tuned using complex poles to a point where they are

practically required. We also showed that complex poles did

not lead to any non-negligible oscillations in the simulations.

In our simulations, the main cause of loss of stability

for quadcopter controllers was not domain of stability but

Authorized licensed use limited to: The University of Arizona. Downloaded on July 07,2024 at 00:05:17 UTC from IEEE Xplore. Restrictions apply.

rotor speed bounds. Before the domain of stability is left,

there is a smaller domain out of which controllers already

lose stability. This is due to the controllers attempting to

get thrust and torque values that correspond to non-valid

rotor speeds (negative rotor speeds or beyond maximum rotor

speeds). This is an important finding because it shows that in

order to make quadcopter position control more aggressive,

research should focus on creating quadcopter designs which

allow for negative thrust. For example, an octo-copter where

4 of its rotors create downward forces, or a quadcopter with

symmetric rotors that can spin in both directions.

In Section II, we provide a problem statement and present

an overview of the solution strategy for both the Snap and

Mellinger controllers. In Section III, we present the dynamics

of the quadcopter system using rotation matrices instead of

Euler angles and define the concept of quadcopter heading.

Section IV builds on the dynamics to formulate the Snap

and Mellinger controllers which are then compared from a

theoretical point of view in Section V. In Section VI, we

present the results of our simulations which are discussed in

Section VII with a conclusion in Section VIII.

II. PROBLEM STATEMENT

Both the Snap and Mellinger controllers solve the quad-

copter yaw-position control. They use the sensor data to

stably track both a given smooth trajectory rT and a given

smooth yaw as a function of time ψT . More specifically,

for both Mellinger and Snap controllers, the quadcopter is

equipped with sensors that provide the real-time data

s = {r, ṙ, q,ω}

aggregating position r, velocity ṙ, quaternion q specifying

the orientation of the quadcopter body frame with respect to

the global frame [16], and angular velocity ω of the body

frame with respect to the global frame. In the Quadcopter

Model section, Section III, we show that rotor speeds map

to thrust and torque. As such, the controllers only need to

provide desired thrust and desired torque to solve the tracking

problem. In other words, to ensure position-yaw tracking,

Snap and Mellinger need to map s, rT , and ψT to desired

thrust p and desired torque τ . In this paper, we add the

requirement that the mapping should not use Euler angles

for the reasons described in the Introduction Section.

As shown in the Quadcopter Control section, Section IV,

the Snap and Mellinger controllers have different strategies

for solving the tracking problem. Mellinger uses a cas-

caded pair of position and attitude controllers. Meanwhile,

Snap uses a parallel pair of position and yaw controllers.

Mellinger’s controllers are ”cascaded” because the output of

the Mellinger position controller is given as an input to the

Mellinger attitude controller. Snap also has the particularity

that it stores previous values of thrust and change in thrust

whereas the Mellinger controller is state-less with no stored

values.

The Mellinger controller’s cascaded form allows it to be

easily modified to become an attitude controller making it

more versatile as detailed in Section V. However, the results

of Section VI show that it is reliant on using complex poles

(a) (b)

Fig. 1. (a) Quadcopter reference pose. Red arrows show the rotation
direction of each rotor. Purple arrows show the rotor thrust forces. (b)

Heading vector and heading constraints visualized. (̂iB , ĵB , k̂B) are the
local frame of reference shown with respect to the inertial frame of reference

(̂i, ĵ, k̂).

for tuning. The Snap controller on the other hand does not

benefit from complex poles and outperforms the Mellinger

controller in tracking precision as shown in Section VI.

III. QUADCOPTER MODEL

We denote the inertial reference frame with base vectors
(

î, ĵ, k̂
)

and the quadcopter’s body frame with
(

îB , ĵB , k̂B

)

.

All vectors are represented in the inertial reference frame un-

less stated otherwise. The body frame base can be determined

from the quaternion q through [16] :

îB = 2
[

(q0q0 + q1q1)− 1 (q1q2 + q0q3) (q1q3 − q0q2)
]T
,

(1a)

ĵB = 2
[

(q1q2 − q0q3) (q0q0 + q2q2)− 1 (q2q3 + q0q1)
]T
,

(1b)

k̂B = 2
[

(q1q3 + q0q2) (q2q3 − q0q1) (q0q0 + q3q3)− 1
]T
,

(1c)

where q0, q1, q2, q3 are the components of q. The rotation

matrix R describing the orientation of the body frame

with respect to the inertial frame and its derivative can be

expressed as:
R =

[

îB ĵB k̂B

]

, (2a)

Ṙ =
[

ω × îB ω × ĵB ω × k̂B

]

. (2b)

The quadcopter has a mass m and a diagonal inertia matrix

J with entries (Jx, Jy, Jz). It is setup in a plus “+” formation

with a distance from rotors to center of mass L as shown in

Fig. 1 (a). Note that plus “+” formation means that the rotor

arms are aligned with the body frame axes. This is in contrast

to a cross ”x” formation where the rotor arms are aligned

with the diagonals of the body frame. The i-th rotor spins

at angular speed si ∈ [0, smax] where smax is the maximum

rotor angular speed which is the same for every rotor i ∈
{1, · · · , 4}. The i-th rotor creates a thrust pi = kF s

2
i and

a torque τi = ±kMs
2
i both in the k̂B direction where kF

and kM are aerodynamic constants. Collectively, they create

a net thrust force pk̂B and net torque τ given by:

[

p

R
T
τ

]

=









kF kF kF kF
0 −kFL 0 kFL

−kFL 0 kFL 0
−kM kM −kM kM

















s21
s22
s23
s24









. (3)

The quadcopter’s dynamics re given by:

Authorized licensed use limited to: The University of Arizona. Downloaded on July 07,2024 at 00:05:17 UTC from IEEE Xplore. Restrictions apply.

mr̈ = pk̂B −mgk̂, (4a)

Jα+ ω × (Jω) = τ . (4b)

where α = ω̇ is the quadcopter’s angular acceleration. We

express the body frame coordinates of ω and α with:

ω = ωîiB + ωj ĵB + ωkk̂B , (5a)

α = αîiB + αj ĵB + αkk̂B . (5b)

A. Heading model

We define the heading vector

ĥ =
(̂iB · î)̂i+ (̂iB · ĵ)̂j

||(̂iB · î)̂i+ (̂iB · ĵ)̂j||
. (6)

as the normalized projection of îB on the X-Y plane. As

shown in Fig. 1 (b), ĥ is a unit vector containing the î

and ĵ components of îB . They are equal when îB has no

k̂ component meaning that there is no pitch or roll, only

yaw. Note that the denominator in Eq. (6) is zero only if the

quadcopter is about to flip over, i.e. its front-facing vector

îB is pointing fully upward in the k̂ direction. Heading ĥ is

visualized in Fig. 1 and respects the following properties:
(

k̂× ĥ
)

.̂iB = 0, (7a)

ĥ.̂iB > 0. (7b)

Yaw is then defined as the principal angle of ĥ such that:

ψ = atan2
(

ĥ · ĵ, ĥ · î
)

, (8a)

ĥ = cos(ψ)̂i+ sin(ψ)̂j, (8b)

where atan2 is the function which maps a 2d vector’s y and

x components to its principal angle [17]. It has the property:

atan2(A sin(θ), A cos(θ)) = θ, ∀θ ∈ [−π, π] , ∀A ∈ R
+.
(9)

The definition of yaw is equivalent to that of the 3− 2− 1
Euler angle standard [13]. This intuitively describes that the

direction of the quadcopter’s front-facing vector îb in the X-

Y plane irrespective of pitch and roll. As such, if a camera is

placed on the front of the quadcopter, yaw-tracking enables

controlling the X-Y direction in which the camera is pointing

at all times.

IV. QUADCOPTER CONTROL

Both the Snap controller and the Mellinger controller are

designed to allow quadcopters to track a trajectory position

rT and trajectory yaw ψT . These approaches are presented

in in Sections IV-A and IV-B below.

A. Snap controller

The Snap controller’s data flow is visualized in Fig. 2 (a).

It can be decomposed into a position controller and a yaw

controller which work in parallel.

Fig. 2. Data flow of the Snap (a) and Mellinger (b) controllers.

1) Snap position controller: To ensure position tracking,

the Snap position controller tries to achieve a snap
....
r

determined by:

....
r des = −K1 (

...
r −

...
r T)−K2 (r̈ − r̈T)

−K3 (ṙ − ṙT)−K4 (r − rT) .
(10)

where (K1,K2,K3,K4) are position gain matrices.

The Snap position controller needs as inputs r, ṙ, r̈,

and
...
r . r and ṙ are given as sensor inputs. r̈ and

...
r can

be computed from thrust p and its derivative ṗ using the

translational dynamics equation Eq. (4a) and its derivative:

r̈ =
pk̂B −mgk̂

m
, (11a)

...
r =

ṗk̂B − p(ω × k̂B)

m
. (11b)

As p and ṗ are not sensor inputs, Snap stores their values

after computing them in each control cycle to be used for

the next control cycle.

2) Snap yaw controller: To ensure yaw tracking, the Snap

yaw controller tries to achieve a second yaw derivative ψ̈
determined by:

ψ̈des = −K5

(

ψ̇ − ψ̇T

)

−K6 (ψ − ψT) . (12)

where (K5,K6) are positive yaw gain scalars. The Snap yaw

controller needs as inputs ψ and ψ̇. These can be obtained

using:

ψ = atan2
(

îB · ĵ, îB · î
)

, (13a)

ψ̇ =
ωk

(

k̂× ĥ
)

.̂jB − ωj

(

k̂× ĥ
)

.k̂B

ĥ.̂iB
. (13b)

3) Mapping to thrust and torque: Once
....
r des and ψ̈des

are obtained, Snap maps them to p̈des and αdes. If we

derivate twice and rearrange both the translational dynamics

equation Eq. (4a) and the first property of the heading vector

(7a) we obtain:

ĥp = m
....
r − p

(

ω ×
(

ω × k̂B

))

− 2ṗ
(

ω × k̂B

)

, (14a)

p̈ = ĥp.k̂B , (14b)

ĥα =
ĥp − p̈k̂B

p
, (14c)

αi = −ĥα .̂jB , (14d)

Authorized licensed use limited to: The University of Arizona. Downloaded on July 07,2024 at 00:05:17 UTC from IEEE Xplore. Restrictions apply.

αj = ĥα .̂iB , (14e)

k̂′ =
(

k̂× ĥ
)

, (14f)

V =
(

ψ̈ĥ+ ψ̇2k̂′

)

.̂iB + 2ψ̇ĥ.
(

ω × îB

)

), (14g)

αk =
V + αj k̂′.k̂B − k̂′.

(

ω ×
(

ω × îB

))

k̂′ .̂jB
. (14h)

The denominator in Eq. (14h) is zero only if the quadcopter

is about to flip over. Also, these equations assume thrust p
is non-zero. Then Snap integrates p̈des twice to get desired

thrust pdes and gets desired torque τ des from αdes using the

rotational dynamics equation Eq. (4b).

B. Mellinger controller

The Mellinger controller’s data flow is visualized in Fig. 2

(b) and cascaded position and attitude controllers. To ensure

position tracking, the Mellinger position controller tries to

achieve a force determined by:

F des = −Kp (ṙ − ṙT)−Kv (r − rT)+mgk̂+mr̈T , (15)

where Kp and Kv are positive definite gain matrices. The

force F des is projected onto the body frame base vector k̂B

to get the desired thrust force by

pdes = F des.k̂B , (16)

Additionally, we normalize F des to obtain the desired ori-

entation of k̂B by

k̂B,des =
F des

∥F des∥
. (17)

Assuming the quadcopter is not flipped over (i.e. k̂B .k̂ > 0),

desired unit vectors îB,des and ĵB,des are obtained by

îB,des =

(

k̂× ĥ
)

× k̂B,des
∣

∣

∣

∣

∣

∣

(

k̂× ĥ
)

× k̂B,des

∣

∣

∣

∣

∣

∣

, (18a)

ĵB,des = k̂B,des × îB,des. (18b)

If the quadcopter were to flip over, the sign of îB,des would

flip. We do not account for this case as a flipped quadcopter

has already irrecoverably lost control.

Note that the denominator in Eq. (18a) is zero only if the

quadcopter is about to flip over. Note that the desired body

frame base vectors, denoted by îB,des, ĵB,des, and k̂B,des,

are all obtained form the rotation matrix Rdes and used to

compute attitude error as defined by:

eR =
1

2

(

R
T
desR−R

T
Rdes

)(

, (19)

where □
(is the vee map which maps skew-symmetric

matrices to vectors:




0 a b
−a 0 c
−b −c 0





(

=





−c
b
−a



 , ∀(a, b, c) ∈ R
3. (20)

By taking the time-derivative of the translational dynamics

equation Eq. (4a) and the first property of the heading vector

Eq. (7a), we obtain the components of trajectory angular

velocity ωT = ωi,T k̂B,T +ωj,T ĵB,T +ωk,T k̂B,T as follows:

hω =
m

...
r T − ṗT k̂B,T

pT
, (21a)

ωi,T = −hω · ĵB,T , (21b)

ωj,T = hω .̂iB,T , (21c)

ωk,T =
ωj,T

(

k̂× ĥT

)

.k̂B,T + ψ̇T ĥT .̂iB,T

(

k̂× ĥT

)

.̂jB,T

. (21d)

To ensure both yaw and position tracking, the attitude

controller then tries to achieve a torque determined by: We

use ωT to compute angular velocity error as defined by:
τ des = −KReR −Kωeω, (22)

where KR and Kω are diagonal gain matrices, and
eω = ω − ωT . (23)

V. THEORETICAL COMPARISON

In this section, we compare the stability and versatility of

the Snap and Mellinger controllers in order to assess their

performance.

A. Stability

If the desired force and torques can be achieved, the

domain of stability for the Snap controller is unbound as

proven in [10]. For the Mellinger controller, no proof of

stability was provided, but a very similar controller was

proven to be stable in [18] given that the initial conditions

respect certain constraints.

Assuming reasonable initial conditions, both controllers

are able to maintain stability if they can achieve the desired

thrust and torques in simulations or experiments as shown in

their respective papers. What can cause loss of stability for

both of them, as shown later in the simulation section, is that

their desired thrust and torques cannot be achieved because

they map to rotor speeds which are outside the valid range.

For example, desired thrust cannot be negative or higher than

what the maximum rotor speeds can provide. In these cases,

the usual approach is to ”clamp” or restrict the rotor speeds

to the valid range by rounding them up to zero if they are

negative or rounding them down to the maximum rotor speed.

Based on this, the main measures of stability performance

between the two controllers is their ability to track tra-

jectories while staying within the valid motor range and

recovering from unexpected thrust/torque values caused by

rotor speeds being clamped.

B. Versatility

The Mellinger controller is separated into a position con-

troller that feeds into an attitude controller. This allows it

to easily be reconfigured to an attitude controller where the

position controller only controls altitude. Attitude control is

useful because it allows the drone to have a manual mode

where orientation and attitude, or orientation and thrust, are

given by the user. On the other hand, the Snap controller

cannot be modified to be used as an attitude controller

without a near complete rewriting.

Authorized licensed use limited to: The University of Arizona. Downloaded on July 07,2024 at 00:05:17 UTC from IEEE Xplore. Restrictions apply.

Both controllers are assumed to be tuned with pole

placement [19]. For stability, the used poles need to be

in the left half of the complex plane (negative real part).

As shown in the simulation section, the Snap controller

performs well with negative real poles, while the Mellinger

controller practically requires complex poles for its attitude

sub-controller. Complex poles allow the system to converge

to the desired state faster. Convergence from value 1 to

value 0 with both types of poles is shown in Fig. 3. As

shown, the cumulative average for complex poles converges

significantly faster than for real poles. A disadvantage of

complex poles is that they introduce oscillations which are

undesirable for position control. However, the simulation

section also shows that the oscillations from complex poles

seem to be negligible.

Fig. 3. Convergence from value 1 to value 0 with real and complex poles
along with the cumulative averages for an arbitrary one-dimensional linear
system with a simple linear controller.

VI. SIMULATION RESULTS

To compare the Snap and Mellinger controllers. We im-

plemented a discrete version of both in the Python scripting

language with a time step of ∆t = 10ms. Then we created

a simulation model in the open-source 3D robotics simulator

Gazebo [15] based on the following parameters: m = 0.5kg,

g = 9.81m/s2, L = 0.25m, Jx = Jy = 0.0196kg m2,

Jz = 0.0264kg m2, kF = 3×10−5N s2/rad2, kM = 1.1×
10−6N s2/rad2. Fig. 4 (a) shows the Gazebo quadcopter

model used. Finally, we bridged between the controllers and

the simulation using ROS, the Robotics Operating System

[20], which allows processes to communicate. For the tests,

we used helix trajectories for a duration of T = 10s with

vertical velocity of 0.1m/s, radius 1m, and angular speeds

ω ∈ [0rad/s, 2rad/s]:
rω(t) =

[

cos(ωσT (t)) sin(ωσT (t)) 0.1σT (t)
]

, (24)

where σT (t) = T × σ
(

t
T

)

for any time t ∈ [0, T], and

σ(t) = −20t7 + 70t6 − 84t5 + 35t4 ∀t ∈ [0, 1] (25)

ensures that initial and final velocities, accelerations, and

jerks are 0 to match the initial takeoff condition.

TABLE I

USED POLES FOR THE SNAP AND MELLINGER CONTROLLERS.

Sub-controller real poles complex poles

Snap: position -10, -10, -10, -10 -
Snap: yaw -10, -10 -

Mellinger: position -5, -5 -5, -5
Mellinger: attitude -1, -1 -0.5 + 3j, -0.5 - 3j

For values of ω separated by ∆ω = 0.1rad/s, we tested

each controller in simulation and recorded the maximum

tracking error δ. The poles used for tuning the controllers are

shown in Table I. Fig. 4 (b) shows the results of the tests.

Figs. (c) and 4 (d) show the real (simulation) and desired

trajectories for ω = 0.5rad/s for the Snap and Mellinger

controllers (complex poles for Mellinger).

VII. DISCUSSION
As expected, in all cases, the tracking error became larger

as ω increased. A phenomena in all cases that these graphs

show is that both controllers with either sets of poles have

breaking points after which they fully lose stability and spiral

out of control. The reason for this seems to be controllers

reaching the limits of the rotors’ angular velocity range. Fig.

5 shows the rotor speeds for a trajectory near the breaking

point for the Mellinger controller with real poles. If the

required force and torques are too high in magnitude, they

require angular velocities that are too high for certain rotors

(reaching the maximum rotor speed), while requiring angular

velocities that are too low for the other rotors (rotor speeds

cannot be negative). When this is the case, rotor speeds get

clamped to the valid range leading to thrusts/torques that are

different from the desired ones. This will likely make the

tracking error larger which the controller will likely respond

to by attempting even more out of bound forces and torques

and so on. This cycle seems to lead to the loss of stability

at breaking points and beyond in all cases. For the pole

types, the Mellinger controller sees a very significant increase

in its performance when the poles of its attitude controller

are allowed to be complex. Adding complex poles to the

Mellinger position controller or to the Snap controller did not

have any impact. The reason why the Mellinger controller’s

performance is dependent on having complex poles for its

attitude controller could be because the Mellinger controller’s

sub-controllers are cascaded. The position controller’s output

is passed to the attitude controller. While the attitude con-

troller always works, the position controller only works if the

drone has the right attitude which the attitude controller is

supposed to guarantee. In the case where poles are real, the

attitude will exponentially decay toward the desired attitude.

In the case where poles are complex, the attitude decays

exponentially while oscillating around the desired attitude.

The difference is the average attitude during the decay

process reaches the desired faster significantly faster when

oscillation is added. Using complex poles would therefore

allow the position controller to function properly as the

average attitude is closer to the desired attitude than with

real poles. If this is the reason complex poles affect the

Mellinger attitude controller, then the same pattern should

appear for all cascaded controllers with a position controller

that feeds into an attitude controller. On the other hand, any

non-cascaded quadcopter controllers should not be affected

by complex poles.

VIII. CONCLUSION
We compared two quadcopter position-yaw controllers, the

Snap controller and the Mellinger controller. We rewrote

their equations to use only rotation matrices instead of Euler

angles with a vector-based definition of yaw through heading.

Authorized licensed use limited to: The University of Arizona. Downloaded on July 07,2024 at 00:05:17 UTC from IEEE Xplore. Restrictions apply.

(a) (b) (c) (d)

Fig. 4. (a) Gazebo quadcopter model used for our simulation. (b) Tracking error δ as a function of helix angular velocity ω for the Snap controller and
the Mellinger controller with real and complex poles. (c,d) Real (simulation) and desired trajectories for ω = 0.5rad/s for the Snap controller (c) and
the Mellinger controller (d) (Green is desired trajectory which is hidden behind red which is real trajectory).

Fig. 5. Rotor speeds for a trajectory near the breaking point for the
Mellinger controller with real poles.

Both of them were implemented and tested on single drone

simulations. We also tried both real poles and complex poles

for tuning the controllers. We found that the Snap controller

outperformed the Mellinger controller in terms of minimizing

tracking error. We also found that complex poles only

affect the Mellinger attitude controller and greatly enhance

the Mellinger controller’s performance without leading to

non-negligible oscillations. Our main finding is that both

controllers seem to lose stability because their desired thrust

and torques map to rotor speeds outside the valid range.

In terms of possible future work, there are two main

problems that are still not solved. The first is the question

of whether our reasoning for why complex poles affect the

Mellinger attitude controller is right. This can be tested

by verifying if the same behavior can be observed with

other cascaded controllers. The second problem is creating

a multi-copter which can create negative thrust and testing

quadcopter controllers with it. This type of design would

not have the rotor speed limit issue of regular quadcopter

(assuming maximum rotor speeds are big enough) and should

be able to perform trajectories that are significantly more

aggressive than what a regular quadcopter can do.

REFERENCES

[1] S. Ahirwar, R. Swarnkar, S. Bhukya, and G. Namwade, “Application
of drone in agriculture,” International Journal of Current Microbiology

and Applied Sciences, vol. 8, no. 1, pp. 2500–2505, 2019.

[2] B. Rabta, C. Wankmüller, and G. Reiner, “A drone fleet model for last-
mile distribution in disaster relief operations,” International Journal

of Disaster Risk Reduction, vol. 28, pp. 107–112, 2018.

[3] A. Otto, N. Agatz, J. Campbell, B. Golden, and E. Pesch, “Opti-
mization approaches for civil applications of unmanned aerial vehicles

(uavs) or aerial drones: A survey,” Networks, vol. 72, no. 4, pp. 411–
458, 2018.

[4] H. Rastgoftar and E. M. Atkins, “Cooperative aerial lift and manipula-
tion (calm),” Aerospace Science and Technology, vol. 82, pp. 105–118,
2018.

[5] A. Mir and D. Moore, “Drones, surveillance, and violence: Theory and
evidence from a us drone program,” International Studies Quarterly,
vol. 63, no. 4, pp. 846–862, 2019.

[6] A. Alharam, E. Almansoori, W. Elmadeny, and H. Alnoiami, “Real
time ai-based pipeline inspection using drone for oil and gas industries
in bahrain,” in 2020 International Conference on Innovation and

Intelligence for Informatics, Computing and Technologies (3ICT).
IEEE, 2020, pp. 1–5.

[7] N. Bao, X. Ran, Z. Wu, Y. Xue, and K. Wang, “Research on attitude
controller of quadcopter based on cascade pid control algorithm,” in
2017 IEEE 2nd Information Technology, Networking, Electronic and

Automation Control Conference (ITNEC). IEEE, 2017, pp. 1493–
1497.

[8] E. Tal and S. Karaman, “Accurate tracking of aggressive quadrotor
trajectories using incremental nonlinear dynamic inversion and differ-
ential flatness,” IEEE Transactions on Control Systems Technology,
vol. 29, no. 3, pp. 1203–1218, 2020.

[9] D. Mellinger and V. Kumar, “Minimum snap trajectory generation
and control for quadrotors,” in 2011 IEEE International Conference

on Robotics and Automation, 2011, pp. 2520–2525.
[10] H. Rastgoftar and I. V. Kolmanovsky, “Safe affine transformation-

based guidance of a large-scale multiquadcopter system,” IEEE Trans-

actions on Control of Network Systems, vol. 8, no. 2, pp. 640–653,
2021.

[11] H. Rastgoftar, “Real-time deployment of a large-scale multi-
quadcopter system (mqs),” arXiv preprint arXiv:2201.10509, 2022.

[12] M. J. Van Nieuwstadt and R. M. Murray, “Real-time trajectory
generation for differentially flat systems,” International Journal of

Robust and Nonlinear Control: IFAC-Affiliated Journal, vol. 8, no. 11,
pp. 995–1020, 1998.

[13] J. Diebel, “Representing attitude: Euler angles, unit quaternions, and
rotation vectors,” Matrix, vol. 58, no. 15-16, pp. 1–35, 2006.

[14] D. Mellinger and V. Kumar, “Minimum snap trajectory generation
and control for quadrotors,” in 2011 IEEE international conference

on robotics and automation. IEEE, 2011, pp. 2520–2525.
[15] N. Koenig and A. Howard, “Design and use paradigms for gazebo, an

open-source multi-robot simulator,” in 2004 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS) (IEEE Cat.

No.04CH37566), vol. 3, 2004, pp. 2149–2154 vol.3.
[16] J. C. Hart, G. K. Francis, and L. H. Kauffman, “Visualizing

quaternion rotation,” ACM Trans. Graph., vol. 13, no. 3, p. 256–276,
jul 1994. [Online]. Available: https://doi.org/10.1145/195784.197480

[17] F. De Dinechin and M. Istoan, “Hardware implementations of fixed-
point atan2,” in 2015 IEEE 22nd Symposium on Computer Arithmetic,
2015, pp. 34–41.

[18] T. Lee, M. Leok, and N. H. McClamroch, “Geometric tracking control
of a quadrotor uav on se(3),” in 49th IEEE Conference on Decision

and Control (CDC), 2010, pp. 5420–5425.
[19] M. Kinnaert and V. Blondel, “Discrete-time pole placement with stable

controller,” Automatica, vol. 28, no. 5, pp. 935–943, 1992.
[20] A. Koubâa et al., Robot Operating System (ROS). Springer, 2017,

vol. 1.

Authorized licensed use limited to: The University of Arizona. Downloaded on July 07,2024 at 00:05:17 UTC from IEEE Xplore. Restrictions apply.

