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Quadcopter Tracking Using Euler-Angle-Free Flatness-Based Control

Aeris El Asslouj' and Hossein Rastgoftar’?

Abstract— Quadcopter trajectory tracking control has been
extensively investigated and implemented in the past. Available
controls mostly use the Euler angle standards to describe the
quadcopter’s rotational kinematics and dynamics. As a result,
the same rotation can be translated into different roll, pitch, and
yaw angles because there are multiple Euler angle standards
for the characterization of rotation in a 3-dimensional motion
space. To address this issue, this paper will develop a flatness-
based trajectory tracking control without using Euler angles.
We assess and test the proposed control’s performance in the
Gazebo simulation environment and contrast its functionality
with the existing Mellinger controller, which has been widely
adopted by the robotics and unmanned aerial system (UAS)
communities. Our simulations also show that, for both con-
trollers, the main cause of loss of stability is not the theoretical
domain of stability, but it is instead the inability of quadcopter
rotors to provide negative thrust as is requested by controllers
for aggressive trajectories.

I. INTRODUCTION

Over the past few decades, multi-copter UAVs have been
used for a variety of purposes, including crop management
[1], rescue and disaster relief missions [2], aerial payload
transport [3], [4], surveillance [5], piping inspections [6].
Trajectory tracking control of multi-copters have been exten-
sively investigated by the researchers and multiple position-
yaw controllers have been proposed. These include the
cascaded Proportional-Integral-Derivative (PID) controller
[7], the Incremental Nonlinear Dynamic Inversion (INDI)
controller [8], and the Mellinger controller [9]. Additionally,
we recently developed a feed-back linearization-based con-
trol for quadcopter trajectory tracking [10], [11] which is
called “Snap” controller in this paper. All these controllers
are based intentionally or not on the concept of differential
flatness [12] which can facilitate designing controllers for
non-linear systems.

The Mellinger controller is somewhat of an outlier in this
list by the fact that it is able to follow aggressive trajectory
far from the hover state while being simple and small.
Meanwhile, the Snap controller offers a considerably wider
domain of attraction as compared to the Mellinger controller,
with the stability margin that is constrained to specific initial
conditions [9], [10]. While these two controllers solve the
same control problem using differential flatness, they are
polar opposite solutions, each with their advantages and
disadvantages.
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This paper compares the functionality of the Snap and
Mellinger controllers. Compared to the authors’ previous
work and existing literature, this paper offers the following
main contributions:

1) Rotation-Based Presentation of Flatness-Based Con-
trollers: While [10] uses the 3 — 2 — 1 Euler angle standard
to model and control a quadcopter, this paper develops a
rotation matrix-based form of the Snap controller without
using Euler angles. This is particularly beneficial because
there are more than 12 Euler angles conventions not count-
ing all variations [13]. As a result, when implementing a
controller relying on Euler angles, it is nearly always the
case multiple Euler angle conventions exist for the same
rotation. During our research, we found that the existing
Snap controller paper [10], the Mellinger controller paper
[14], and the Gazebo robot simulation software [15] each
have a different convention for Euler angles requiring many
conversions. However, all systems have a single convention
for rotation matrices which they always provide and take as
input. So the presented formulation of the Snap controller
based on rotation matrices is universally compatible with all
systems without a need for conversions. To accommodate
systems that provide quaternions for orientation, we include
a quaternion to rotation matrix conversion at the start. While
a quaternion-only representation is possible, it would be
more computationally expensive than the rotation-matrix
representation as rotating a vector p by a quaternion ¢
requires two matrix-like products p’ = gpg~! [16]. Note
that our proposed formulation still uses a yaw angle, but it
is defined using a heading vector as opposed to an Euler
angle convention. The definition is equivalent to that of the
3 — 2 — 1 Euler angle standard.

2) Comparison of the Snap and Mellinger controllers:
We compare the Snap and Mellinger controllers both from
a theoretical point of view and in terms of tracking perfor-
mance during simulations. We have found that the Mellinger
controller is more versatile as it can be easily converted to an
attitude controller. Meanwhile, the Snap controller performs
better in terms of minimizing tracking error as shown in
simulations.

3) Comparison between complex and real poles for tuning
the controllers: We discovered that using real or complex
poles does not affect the Snap Controller’s performance.
However, the Mellinger controller performs better when it
is tuned using complex poles to a point where they are
practically required. We also showed that complex poles did
not lead to any non-negligible oscillations in the simulations.

In our simulations, the main cause of loss of stability
for quadcopter controllers was not domain of stability but
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rotor speed bounds. Before the domain of stability is left,
there is a smaller domain out of which controllers already
lose stability. This is due to the controllers attempting to
get thrust and torque values that correspond to non-valid
rotor speeds (negative rotor speeds or beyond maximum rotor
speeds). This is an important finding because it shows that in
order to make quadcopter position control more aggressive,
research should focus on creating quadcopter designs which
allow for negative thrust. For example, an octo-copter where
4 of its rotors create downward forces, or a quadcopter with
symmetric rotors that can spin in both directions.

In Section II, we provide a problem statement and present
an overview of the solution strategy for both the Snap and
Mellinger controllers. In Section III, we present the dynamics
of the quadcopter system using rotation matrices instead of
Euler angles and define the concept of quadcopter heading.
Section IV builds on the dynamics to formulate the Snap
and Mellinger controllers which are then compared from a
theoretical point of view in Section V. In Section VI, we
present the results of our simulations which are discussed in
Section VII with a conclusion in Section VIIIL.

II. PROBLEM STATEMENT
Both the Snap and Mellinger controllers solve the quad-

copter yaw-position control. They use the sensor data to
stably track both a given smooth trajectory 1 and a given
smooth yaw as a function of time 7. More specifically,
for both Mellinger and Snap controllers, the quadcopter is
equipped with sensors that provide the real-time data

§ = {T71:‘7Q7 w}

aggregating position r, velocity 7, quaternion g specifying
the orientation of the quadcopter body frame with respect to
the global frame [16], and angular velocity w of the body
frame with respect to the global frame. In the Quadcopter
Model section, Section III, we show that rotor speeds map
to thrust and torque. As such, the controllers only need to
provide desired thrust and desired torque to solve the tracking
problem. In other words, to ensure position-yaw tracking,
Snap and Mellinger need to map s, rp, and ¥ to desired
thrust p and desired torque 7. In this paper, we add the
requirement that the mapping should not use Euler angles
for the reasons described in the Introduction Section.

As shown in the Quadcopter Control section, Section IV,
the Snap and Mellinger controllers have different strategies
for solving the tracking problem. Mellinger uses a cas-
caded pair of position and attitude controllers. Meanwhile,
Snap uses a parallel pair of position and yaw controllers.
Mellinger’s controllers are “cascaded” because the output of
the Mellinger position controller is given as an input to the
Mellinger attitude controller. Snap also has the particularity
that it stores previous values of thrust and change in thrust
whereas the Mellinger controller is state-less with no stored
values.

The Mellinger controller’s cascaded form allows it to be
easily modified to become an attitude controller making it
more versatile as detailed in Section V. However, the results
of Section VI show that it is reliant on using complex poles
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(2) (b)

Fig. 1.  (a) Quadcopter reference pose. Red arrows show the rotation
direction of each rotor. Purple arrows show the rotor thrust forces. (b)
Heading vector and heading constraints visualized. (ip,jp,kp) are the
local frame of reference shown with respect to the inertial frame of reference

(13 K.

for tuning. The Snap controller on the other hand does not
benefit from complex poles and outperforms the Mellinger
controller in tracking precision as shown in Section VI.

III. QUADCOPTER MODEL
We denote the inertial reference frame with base vectors

f,j, R) and the quadcopter’s body frame with in , j B, ks ).
All vectors are represented in the inertial reference frame un-
less stated otherwise. The body frame base can be determined
from the quaternion ¢ through [16] :

N T
is =2[(@q+aqn)—1 (gg2+q043) (91q3 — qog2)] " .
(la)
N T
iB=2[(01¢2 — 90a3) (900 + 202) =1 (q2q3 + qoq1)] " .
(1b)
- T
kp =2 [(q1g3+ q092) (q203 — q0q1) (qogo + gags) — 1],
(Ie)
where qo, q1, g2, q3 are the components of ¢. The rotation
matrix R describing the orientation of the body frame
with respect to the inertial frame and its derivative can be

expressed as: " s o
P R=1[is js ks, (2a)

R=|wxip wxjp wxkp. (2b)

The quadcopter has a mass m and a diagonal inertia matrix
J with entries (J,, Jy, J). It is setup in a plus “+” formation
with a distance from rotors to center of mass L as shown in
Fig. 1 (a). Note that plus “+” formation means that the rotor
arms are aligned with the body frame axes. This is in contrast
to a cross "x” formation where the rotor arms are aligned
with the diagonals of the body frame. The ¢-th rotor spins
at angular speed s; € [0, Synqaz] Where Sy, is the maximum
rotor angular speed which is the same for every rotor ¢ €
{1,---,4}. The i-th rotor creates a thrust p; = krs? and
a torque 7; = +kjrs? both in the kp direction where kp
and ks are aerodynamic constants. Collectively, they create
a net thrust force pﬁ p and net torque T given by:

p _ 0 —kFL 0 kFL S% 3
[RTT:| kel 0 kel o | |2 ©
—kum kv —kamo k| | S3

The quadcopter’s dynamics re given by:
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mr = pﬁB — mglE, (4a)

Ja+wx (Jw) = (4b)

where o = w is the quadcopter’s angular acceleration. We
express the body frame coordinates of w and o with:

w = wiip + w;jp + wikp, (5a)
o= OziiB + O&jjB + OékRB. (5b)
A. Heading model
We define the heading vector
fo (it (50 6)

(i - D)i+ (ip - )]
as the normalized projection of i ip on the X-Y plane. As
shown in Fig. 1 (b), h is a unit vector containing the i
and J components of i in. They are equal when ip has no
k component meaning that there is no pitch or roll, only
yaw. Note that the denominator in Eq. (6) is zero only if the
quadcopter is about to flip over, i.e. its front-facing vector
ip is pointing fully upward in the k direction. Heading h is
visualized in Fig. 1 and respects the following properties:

(kxh).ip =0, (7a)
h.iz > 0. (7b)
Yaw is then defined as the principal angle of h such that:

1) = atan2 (fl -j, h- ;> , (8a)

~

h = cos(¢)i + sin(¥)],

where atan2 is the function which maps a 2d vector’s y and
X components to its principal angle [17]. It has the property:

(8b)

atan2(Asin(f), Acos()) =6, VO € [-m,7],VA € RT.

€))
The definition of yaw is equivalent to that of the 3 —2 — 1
Euler angle standard [13]. This intuitively describes that the
direction of the quadcopter’s front-facing vector i, in the X-
Y plane irrespective of pitch and roll. As such, if a camera is
placed on the front of the quadcopter, yaw-tracking enables
controlling the X-Y direction in which the camera is pointing

at all times.

IV. QUADCOPTER CONTROL
Both the Snap controller and the Mellinger controller are
designed to allow quadcopters to track a trajectory position
rp and trajectory yaw . These approaches are presented
in in Sections IV-A and IV-B below.

A. Snap controller

The Snap controller’s data flow is visualized in Fig. 2 (a).
It can be decomposed into a position controller and a yaw
controller which work in parallel.

3

Fig. 2. Data flow of the Snap (a) and Mellinger (b) controllers.

1) Snap position controller: To ensure position tracking,
the Snap position controller tries to achieve a snap 7°°
determined by:

.’I."..des - —Kl(’l"— ’I"T)—KQ (’I’—
—K3(7.“—7.“T)—K4(’I‘—’I‘T).

77) (10)

where (K1, K2, K3, K,4) are position gain matrices.

The Snap position controller needs as inputs r, 7, #,
and 7. r and 7 are given as sensor inputs. #* and 7 can
be computed from thrust p and its derivative p using the
translational dynamics equation Eq. (4a) and its derivative:

= M7 (11a)

m
_ pkp —p(w x kp)
= - )

(11b)

As p and p are not sensor inputs, Snap stores their values
after computing them in each control cycle to be used for
the next control cycle.

2) Snap yaw controller: To ensure yaw tracking, the Snap
yaw controller tries to achieve a second yaw derivative )
determined by:

Yaes = —Ks <¢ - '(/)T) — Ko (Y — ).

where (K5, K¢) are positive yaw gain scalars. The Snap yaw
controller needs as inputs ¢) and . These can be obtained
using:

12)

1) = atan?2 (iB ~j,§B I) ,
) o

3) Mapping to thrust and torque: Once 7 4.5 and ﬁ;des
are obtained, Snap maps them to Pges and ovges. If we
derivate twice and rearrange both the translational dynamics
equation Eq. (4a) and the first property of the heading vector
(7a) we obtain:

(13a)

=

o (R B) i - o (i

V= hig

(13b)

h,=m7 —-p

(w x (w x 123)) — % (w x RB) . (14a)

P =h,kpg, (14b)
. h, — jk
h, = 2 _PXB (14¢)
P
a; = —hy jp, (14d)
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= h,.ip, (14e)

Q:@x@, (14f)

V= ($h+920) dp+ 200 (wxip)), (4
Vel K. (wx (wxin)) o)

K jp
The denominator in Eq. (14h) is zero only if the quadcopter
is about to flip over. Also, these equations assume thrust p
is non-zero. Then Snap integrates pg.s twice to get desired
thrust pges and gets desired torque T 4.5 from o4 using the
rotational dynamics equation Eq. (4b).

B. Mellinger controller

The Mellinger controller’s data flow is visualized in Fig. 2
(b) and cascaded position and attitude controllers. To ensure
position tracking, the Mellinger position controller tries to
achieve a force determined by:

Fuos = —K, (7 —77)— K, (r — r7)+mgk+mir, (15)

where K, and K, are positive definite gain matrices. The
force F'g.s is projected onto the body frame base vector kp
to get the desired thrust force by

Paes = Faes kg, (16)

Additionally, we normalize F'j.; to obtain the desired ori-

entation of kg by
© Fdes
KB des = 77—+
e ”F deSH

Assuming the quadcopter is not flipped over (i.e. kp.k > 0),
desired unit vectors ip 4es and jp q4es are obtained by

(o B x ke e
(i B) ke e

A7)

iBdes = : (18a)

jB,des = l;B,des X iB,des- (18b)

If the quadcopter were to flip over, the sign of iB,des would
flip. We do not account for this case as a flipped quadcopter
has already irrecoverably lost control.

Note that the denominator in Eq. (18a) is zero only if the
quadcopter is about to flip over. Note that the desired body
frame base vectors, denoted by i B.dess j B,des» and kB des>
are all obtained form the rotation matrix Rdes and used to
compute attitude error as defined by: y

er = % (RI.R~ R Ru) (19)
where [0V is the vee map which maps skew-symmetric
matrices to vectors:

0 a b —c
—a 0 ¢l =|b], Y(a,b,c) €R3. (20)
b —c O —a

By taking the time-derivative of the translational dynamics
equation Eq. (4a) and the first property of the heading vector
Eq. (7a), we obtain the components of trajectory angular

4

velocity wr = w; rkp 1 +wj, rip.r +wp kg T as follows:
mr — PTkB T

hy=————, (21a)
Y%
wir = —hy, jp1, 21b)
wjr =hy,ip, Q1)
w5, T (l; X BT) ~1A(B,T + 'l/}TflT~’i\B,T
WE,T = (21d)

(kx Br) oo
To ensure both yaw and position tracking, the attitude

controller then tries to achieve a torque determined by: We

use wr to compute angular velocity error as defined by:

Tdes = —Krer — Ky ey, (22)
where K and K, are diagonal gain matrices, and
e, = w—wr. (23)

V. THEORETICAL COMPARISON
In this section, we compare the stability and versatility of

the Snap and Mellinger controllers in order to assess their
performance.

A. Stability

If the desired force and torques can be achieved, the
domain of stability for the Snap controller is unbound as
proven in [10]. For the Mellinger controller, no proof of
stability was provided, but a very similar controller was
proven to be stable in [18] given that the initial conditions
respect certain constraints.

Assuming reasonable initial conditions, both controllers
are able to maintain stability if they can achieve the desired
thrust and torques in simulations or experiments as shown in
their respective papers. What can cause loss of stability for
both of them, as shown later in the simulation section, is that
their desired thrust and torques cannot be achieved because
they map to rotor speeds which are outside the valid range.
For example, desired thrust cannot be negative or higher than
what the maximum rotor speeds can provide. In these cases,
the usual approach is to “clamp” or restrict the rotor speeds
to the valid range by rounding them up to zero if they are
negative or rounding them down to the maximum rotor speed.

Based on this, the main measures of stability performance
between the two controllers is their ability to track tra-
jectories while staying within the valid motor range and
recovering from unexpected thrust/torque values caused by
rotor speeds being clamped.

B. Versatility

The Mellinger controller is separated into a position con-
troller that feeds into an attitude controller. This allows it
to easily be reconfigured to an attitude controller where the
position controller only controls altitude. Attitude control is
useful because it allows the drone to have a manual mode
where orientation and attitude, or orientation and thrust, are
given by the user. On the other hand, the Snap controller
cannot be modified to be used as an attitude controller
without a near complete rewriting.
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Both controllers are assumed to be tuned with pole
placement [19]. For stability, the used poles need to be
in the left half of the complex plane (negative real part).
As shown in the simulation section, the Snap controller
performs well with negative real poles, while the Mellinger
controller practically requires complex poles for its attitude
sub-controller. Complex poles allow the system to converge
to the desired state faster. Convergence from value 1 to
value 0 with both types of poles is shown in Fig. 3. As
shown, the cumulative average for complex poles converges
significantly faster than for real poles. A disadvantage of
complex poles is that they introduce oscillations which are
undesirable for position control. However, the simulation
section also shows that the oscillations from complex poles
seem to be negligible.

—— real poles
—— real poles (cumulative)
—— complex poles

—— complex poles (cumulative)

value
°
S

0 2 4 6 8§ 10 12 14
time (s)

Fig. 3. Convergence from value 1 to value 0 with real and complex poles
along with the cumulative averages for an arbitrary one-dimensional linear
system with a simple linear controller.

VI. SIMULATION RESULTS
To compare the Snap and Mellinger controllers. We im-

plemented a discrete version of both in the Python scripting
language with a time step of At = 10ms. Then we created
a simulation model in the open-source 3D robotics simulator
Gazebo [15] based on the following parameters: m = 0.5kg,

= 9.81m/s?, L = 0.25m, J, = Jy = 0.0196kg m2,
J, = 0.0264kg m?, kr = 3x 107°N s?/rad?, ky = 1.1 x
107°N s?/rad®. Fig. 4 (a) shows the Gazebo quadcopter
model used. Finally, we bridged between the controllers and
the simulation using ROS, the Robotics Operating System
[20], which allows processes to communicate. For the tests,
we used helix trajectories for a duration of 7' = 10s with
vertical velocity of 0.1m/s, radius 1m, and angular speeds
w € [0rad/s,2rad/s]:

r,(t) = [cos(wJT(t)) sin(wor(t)) 0.1op(t)],

(+)

(24)

=T xo
—20t7 + 70t

for any time ¢ € [0, 7T, and
84t° + 35t vt e [0,1]

where o7 (t

o(t) =
ensures that initial and final velocities, accelerations, and
jerks are O to match the initial takeoff condition.

(25)

TABLE I
USED POLES FOR THE SNAP AND MELLINGER CONTROLLERS.
Sub-controller real poles complex poles
Snap: position -10, -10, -10, -10 -
Snap: yaw -10, -10 -
Mellinger: position -5, -5 -5,-5
Mellinger: attitude -1, -1 -0.5 + 3j, -0.5 - 3j

For values of w separated by Aw = 0.1rad/s, we tested
each controller in simulation and recorded the maximum

5

tracking error 6. The poles used for tuning the controllers are
shown in Table I. Fig. 4 (b) shows the results of the tests.
Figs. (c) and 4 (d) show the real (simulation) and desired
trajectories for w = 0.5rad/s for the Snap and Mellinger
controllers (complex poles for Mellinger).

VII. DISCUSSION
As expected, in all cases, the tracking error became larger

as w increased. A phenomena in all cases that these graphs
show is that both controllers with either sets of poles have
breaking points after which they fully lose stability and spiral
out of control. The reason for this seems to be controllers
reaching the limits of the rotors’ angular velocity range. Fig.
5 shows the rotor speeds for a trajectory near the breaking
point for the Mellinger controller with real poles. If the
required force and torques are too high in magnitude, they
require angular velocities that are too high for certain rotors
(reaching the maximum rotor speed), while requiring angular
velocities that are too low for the other rotors (rotor speeds
cannot be negative). When this is the case, rotor speeds get
clamped to the valid range leading to thrusts/torques that are
different from the desired ones. This will likely make the
tracking error larger which the controller will likely respond
to by attempting even more out of bound forces and torques
and so on. This cycle seems to lead to the loss of stability
at breaking points and beyond in all cases. For the pole
types, the Mellinger controller sees a very significant increase
in its performance when the poles of its attitude controller
are allowed to be complex. Adding complex poles to the
Mellinger position controller or to the Snap controller did not
have any impact. The reason why the Mellinger controller’s
performance is dependent on having complex poles for its
attitude controller could be because the Mellinger controller’s
sub-controllers are cascaded. The position controller’s output
is passed to the attitude controller. While the attitude con-
troller always works, the position controller only works if the
drone has the right attitude which the attitude controller is
supposed to guarantee. In the case where poles are real, the
attitude will exponentially decay toward the desired attitude.
In the case where poles are complex, the attitude decays
exponentially while oscillating around the desired attitude.
The difference is the average attitude during the decay
process reaches the desired faster significantly faster when
oscillation is added. Using complex poles would therefore
allow the position controller to function properly as the
average attitude is closer to the desired attitude than with
real poles. If this is the reason complex poles affect the
Mellinger attitude controller, then the same pattern should
appear for all cascaded controllers with a position controller
that feeds into an attitude controller. On the other hand, any
non-cascaded quadcopter controllers should not be affected
by complex poles.

VIII. CONCLUSION
We compared two quadcopter position-yaw controllers, the

Snap controller and the Mellinger controller. We rewrote
their equations to use only rotation matrices instead of Euler
angles with a vector-based definition of yaw through heading.
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(a)
(a) Gazebo quadcopter model used for our simulation. (b) Tracking error é as a function of helix angular velocity w for the Snap controller and
the Mellinger controller with real and complex poles. (c,d) Real (simulation) and desired trajectories for w = 0.5rad/s for the Snap controller (c) and
the Mellinger controller (d) (Green is desired trajectory which is hidden behind red which is real trajectory).
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Fig. 5. Rotor speeds for a trajectory near the breaking point for the
Mellinger controller with real poles.

Both of them were implemented and tested on single drone
simulations. We also tried both real poles and complex poles
for tuning the controllers. We found that the Snap controller
outperformed the Mellinger controller in terms of minimizing
tracking error. We also found that complex poles only
affect the Mellinger attitude controller and greatly enhance
the Mellinger controller’s performance without leading to
non-negligible oscillations. Our main finding is that both
controllers seem to lose stability because their desired thrust
and torques map to rotor speeds outside the valid range.

In terms of possible future work, there are two main
problems that are still not solved. The first is the question
of whether our reasoning for why complex poles affect the
Mellinger attitude controller is right. This can be tested
by verifying if the same behavior can be observed with
other cascaded controllers. The second problem is creating
a multi-copter which can create negative thrust and testing
quadcopter controllers with it. This type of design would
not have the rotor speed limit issue of regular quadcopter
(assuming maximum rotor speeds are big enough) and should
be able to perform trajectories that are significantly more
aggressive than what a regular quadcopter can do.
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