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Abstract— Mechanics of materials is a traditional engineering
course that exposes undergraduate students in a variety of
engineering fields to the principles of strain and stress analysis.
However, material deformation and strain have been evalu-
ated theoretically, numerically, and empirically tested using
expensive machinery and instruments. This paper describes
a novel method for analyzing strain and deformation using
quadrotors. We propose to treat quadrotors as a finite number
of particles of a deformable body and apply the principles
of continuum mechanics to illustrate the concept of axial
and shear deformation in 2-D and 3-D motion spaces. The
outcome from this work has the potential to significantly
impact undergraduate education by bridging the gap between
classroom instruction and hardware implementation and ex-
periments using quadrotors. Therefore, we introduce a new
role for quadrotors as “teachers,” which provides an excellent
opportunity to practice theoretical concepts of mechanics in a
productive way.

I. INTRODUCTION

Cooperative control and formation keeping are important

areas of research into multi-agent systems (MAS) with

several applications such as surveillance [1], search and

rescue missions [2], precision agriculture [3], air traffic

monitoring [4], area surveys [5] and payload delivery [6].

A MAS consisting of unmanned aerial vehicles can offer

significant advantages over a single unmanned aerial vehicle

(UAV) in terms of efficiency, costs, and resilience to failures.

Cooperation amongst the agents in a MAS also enhances the

team’s ability to recover from anomalies.

A. Related Work

Virtual structure [7], [8], consensus [9], [10], [11], con-

tainment control [12], [13], [14] and continuum deformation

[15] are some of the most studied methodologies for MAS

control. Virtual structure [16], [17], [18] is a centralized

multi-agent coordination approach at which the multi-agent

formation is represented as a single structure translating as

a rigid-body in a 3-D motion space. Consensus control is

a decentralized approach with several coordination applica-

tions proposed such as leaderless multi-agent consensus [19],

[20] and leader-follower consensus [21]. Fixed communica-

tion topology and switching inter-agent communication are

other areas under multi-agent consensus control previously

investigated [22], [23]. Stability of the consensus control in
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Positioning Node (d) Crazyradio PA

the presence of communication delays was also studied [24],

[25].

Containment control is another decentralized leader-

follower method where a finite number of leaders guide

the followers through local communication. A finite-time

containment control of a MAS was studied [26], [27].

Necessary and sufficient conditions for containment control

stability and convergence were established in [28], [29].

Researchers have explored containment control under fixed

and switching inter-agent communication [30]. Containment

control under the presence of time-varying delays affecting

multi-agent coordination was analyzed [31], [32].

Continuum deformation is another decentralized multi-

agent coordination approach that treats agents as particles of

a continuum authorizing safe translation, rotation, and shear

deformation of a MAS in a 3-D space under a homogeneous

transformation. A n-D (n = 1, 2, 3) homogeneous transfor-

mation is defined by n + 1 leaders in R
n, located at the

vertices of an n-D simplex at any time t, i.e. an n-D simplex

is an n-D convex hull defined by n+1 leader agents. While

leaders plan desired trajectories and move independently,

the remaining follower agents obtain the desired trajecto-

ries, defined by the homogeneous transformation, through

local communication. Though, continuum deformation and

containment control are similar and both are decentralized

leader-follower methods, continuum deformation ensures

inter-agent collision avoidance, obstacle collision avoidance

and agent containment by formally specifying and verifying

safety in a large-scale agent coordination system [33], [34].

As a result, a large scale MAS can safely and aggressively

deform using continuum deformation coordination. Experi-

mental evaluation of continuum deformation coordination in

2-D with a team of 5 quadrotors was also performed [35].

Authorized licensed use limited to: The University of Arizona. Downloaded on July 07,2024 at 00:09:15 UTC from IEEE Xplore.  Restrictions apply. 



B. Contributions and Outline

This paper presents an approach for visualizing linear

deformation in 2-D and 3-D motion spaces using quadro-

tors, treated as particles of a deformable body. By flight

experiments, we visualize linear deformation, while assuring

inter-agent collision avoidance by imposing lower bounds

on the axial strains of the proposed continuum deformation

coordination. While numerical and analytical methodologies

are available for studying material deformation, our work

presents a novel approach for analyzing material deforma-

tion and strain using quadrotors. This will provide a great

opportunity for integration of robots into education by de-

veloping innovative techniques for teaching the fundamental

ideas of mechanics in a practical manner. Additionally, by

imposing the lower bound on the principle strains of the

quadrotor team deformation, we can provide inter-quadrotor

collision avoidance utilizing the proposed linear deformation

coordination and strain analysis.

This paper is organized as follows: basics of linear defor-

mation are presented in Section II. Our approach for software

and hardware realization of the continuum deformation is

detailed in Section III. The experimental setup, and flight

test results are presented in Section IV and followed by

Conclusion in Section V.

II. PRELIMINARIES

The linear transformation of a deformable body in a 3-D

motion space, specified by a homogeneous transformation is

given by,

ri(t) = Q(t)ri0 + d(t), t g t0, (1)

where t0 is the initial time, t is the current time, ri0 ∈ R
3

is the material position of particle i at time t0, d(t) is the

rigid-body displacement vector, ri(t) is the current desired

position of particle i at time t. Q(t) is a Jacobian matrix that

can be decomposed as follows:

Q(t) = R (t)E (t) , (2)

where R(t) is an orthogonal rotation matrix and E(t) is a

positive definite strain matrix defined as

E (t) =





ϵxx (t) ϵxy (t) ϵxz (t)
ϵxy (t) ϵyy (t) ϵyz (t)
ϵxz (t) ϵyz (t) ϵzz (t)



 . (3)

Before proceeding further, we make following assumptions:

Assumption 1. We assume that the material configuration

of the continuum is the same as the initial configuration.

Therefore, ri,0 = ri(t0) i.e., material position ri0 is the same

as the initial position ri(t0) for every material particle i.

Assumption 2. We assume that the rigid-body displacement

vector, d (t0) = 0.

Considering assumptions 1 and 2, Q becomes the identity

matrix at the initial time t0, i.e., Q (t0) = I3.

III. METHODOLOGY

We consider N quadrotors coordinating in a 3-D motion

space where they are identified by set V = {1, · · · , N}.
We define quadrotors as particles of a deformable body and

let Eq. (1) define the desired continuum deformation of the

quadrotor team. Without loss of generality, we only focus

on realization of pure deformation, thus, we set d(t) = 0 ∈
R

3×1 and R = I ∈ R
3×3 at any time t i.e., rigid-body

displacement and rotation are both zero at any time t. Under

this assumption, the quadrotor team continuum deformation,

given by (1), simplifies to

ri(t) = E (t) ri,0, ∀i ∈ V, ∀t ∈ [t0, tf ] (4)

where t0 and tf denote the initial and final times. ri,0 and

ri(t) are the material and the current desired position of

quadrotor i ∈ V . Positive definite strain matrix E (t), defined

by (3), specifies the axial strains and shear deformations in

a linear deformation scenario.

While particles have infinitesimal size in a material defor-

mation, here, quadrotors, treated as particles of a deformable

body, are rigid and cannot deform. Therefore, realization of

linear deformation by a quadrotor team requires to assure

inter-agent collision avoidance via constraining the lower

bound of the principal strains of matrix E(t) at any time

t. To this end, the principal strains, defined as eigenvalues

of matrix E, must all be greater than ϵmin where ϵmin is

obtained based on the following conditions:

(i) quadrotor size,

(ii) quadrotor trajectory control performance, and

(iii) the minimum separation distance between every two

quadrotors in the initial (material) configuration [15].

To assign ϵmin, we will also make the following assump-

tions:

Assumption 3. Every quadrotor is enclosed by a ball of

radius r.

Assumption 4. The trajectory tracking error of every

quadrotor is less than ¶. Therefore,
∧

i∈V

(∥pi(t)− ri(t)∥ f ¶) , ∀t ∈ [t0, tf ] , (5)

where pi(t) is the actual position of quadrotor i ∈ V at time

t ∈ [t0, tf ].

By imposing Assumptions 3 and 4, we obtain

ϵmin =
2 (¶ + r)

pmin
(6)

where pmin is the minimum separation distance between

every two quadrotors in the initial configuration [15].

To formally characterize safety, we need to decompose

matrix E and define it based on axial and shear strains. To

this end, we use the 3−2−1 Euler angle standard to specify

rigid-body rotation in a 3-D motion space by matrix

LEuler (ϕ, ¹, È) =





cθcψ cθsψ −sθ
sφsθcψ − cφsψ sφsθsψ + cφcψ sφcθ
cφsθcψ + sφsψ cφsθsψ − sφcψ cφcθ



 ,
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where c(.) = cos(.), s(.) = sin(.), whereas ϕ, ¹, and È are

the first, second, and third Euler angles, respectively. Matrix

E(t) can be decomposed as

E (t) = LT
Euler

(ϕd(t), ¹d(t), Èd(t))

× diag (ϵ1(t), ϵ2(t), ϵ3(t))

× LEuler (ϕd(t), ¹d(t), Èd(t))

(7)

at any time t ∈ [t0, tf ], where ϕd(t), ¹d(t), Èd(t) are the

shear deformation angles and ϵ1(t), ϵ2(t), ϵ3(t) are the strain

values. The axial and shear strains specified by matrix E (t)
can be graphically illustrated by using Mohr circle, as shown

in Fig. 2. By using Mohr circle, we can assign the bounds

on the deformation angles ϕd(t), ¹d(t), and Èd(t) that will

improve safety of the continuum deformation coordination.

Fig. 2: Graphical representation of axial and shear strains by

using Mohr circle.

Fig. 3: ´ (t, T ) versus t−t0
T

for t−t0
T
∈ [0, 1].

For quadrotor team continuum deformation coordination,

positive definite matrix Ef = E (tf ) = [ϵij (tf )] is known

but final time tf is free. The problem of continuum defor-

mation planning consists of performing the following two

steps:

• Step 1– Choosing Final Time tf : The final time tf
needs to be sufficiently large such that the principal

strains, denoted by ϵ1, ϵ2, and ϵ3, satisfy the following

safety constraint:

3
∧

i=1

(ϵmin f ϵi(t)) , ∀t ∈ [t0, tf ] . (8)

In [36], it was shown that the minimum final time t∗f
can be obtained by using bi-section method such that

all safety constraints are satisfied. To ensure condition

(8) is satisfied, we choose a final time tf that is greater

than t∗f .

• Step 2–Specifying E (t) for t ∈ [t0, tf ]: To assure that

the safety constraint (8) is satisfied at any time t ∈
[t0, tf ], we need to decompose matrix E (t) and perform

the following steps to plan E(t) (for t ∈ [t0, tf ]):

– A. Assignment of Final Shear Deformation

Angles and Ultimate Principal Strains: Given

Ef , we first obtain the final values of the shear

deformation angles, denoted by ϕd,f = ϕd(tf ),
¹d,f = ¹d(tf ), and Èd,f = Èd(tf ), and the ultimate

principal strain values, denoted by ϵ1,f = ϵ1(tf ),
ϵ2,f = ϵ2(tf ), and ϵ3,f = ϵ3(tf ), by solving six

non-linear equations provided by Eq. (7).

– B. Planning of the Shear Deformation Angles

and Principal Strains at Every Time t ∈ [t0, tf ]:
We first define the fifth order polynomial

´ (t, T ) = 6

(

t− t0
T

)5

− 15

(

t− t0
T

)4

+ 10

(

t− t0
T

)3
(9)

where t ∈ [t0, tf ], T = tf − t0 is the travel time,

´ (0, T ) = 0, ˙́ (0, T ) = ˙́ (tf , T ) = 0, ΅ (0, T ) =
΅ (tf , T ) = 0, and ´ (tf , T ) = 1. The plot ´ (t, T )
versus t−t0

T
is shown in Fig. 3. Then, the shear

deformation angles and principal strains are defined

by

ϕd (t) = ϕd,0 (1− ´ (t, T )) + ϕd,f´ (t, T ) , (10a)

¹d (t) = ¹d,0 (1− ´ (t, T )) + ¹d,f´ (t, T ) , (10b)

Èd (t) = Èd,0 (1− ´ (t, T ))+Èd,f´ (t, T ) , (10c)

ϵ1 (t) = ϵ1,0 (1− ´ (t, T )) + ϵ1,f´ (t, T ) , (10d)

ϵ2 (t) = ϵ2,0 (1− ´ (t, T )) + ϵ2,f´ (t, T ) , (10e)

ϵ3 (t) = ϵ3,0 (1− ´ (t, T )) + ϵ3,f´ (t, T ) , (10f)

Authorized licensed use limited to: The University of Arizona. Downloaded on July 07,2024 at 00:09:15 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 4: The block diagram of quadrotor team coordination planning and control.

where ϕd,0 = ϕd (t0) = 0, ¹d,0 = ¹d (t0) = 0,

Èd,0 = Èd (t0) = 0, ϵ1,0 = ϵ1 (t0) = 1, ϵ2,0 =
ϵ2 (t0) = 1, and ϵ3,0 = ϵ3 (t0) = 1 since E (t0) =
I ∈ R

3×3 is an identity matrix (See Assumptions

1 and 2).

– C. Assignment of Matrix E (t): By knowing the

shear deformation angles and principal strains at

any time t ∈ [t0, tf ], matrix E (t) is assigned by

using Eq. (7) at any time t ∈ [t0, tf ].

Functionality of our proposed approach for experimental

evaluation of continuum deformation coordination is shown

in Fig. 4.

Algorithm 1 2-D Safe Continuum Deformation Algorithm

Input r0, ϵ1,f , ϵ2,f , ϵ1,f , Èd,f , tf , and time increment h

Output rd(t)
ns ←

tf
h

Initialize ϵ1,0 = 0, ϵ2,0 = 0, ϵ3,0 = 1, Èd,0 = 1
for i = 1, 2, · · · , ns do

t ← i ∗ h
Compute ´ using (9).

Get ϵ1,i, ϵ2,i, ϵ3,i, Èd,i using (10) .

Compute E(t) using (7).

ri,d(t) = E(t)r0
end for

IV. EXPERIMENTS

In this section, the proposed approach was validated

through both 2-D and 3-D flight tests. The hardware and soft-

Algorithm 2 3-D Safe Continuum Deformation Algorithm

Input r0, ϵ1,f , ϵ2,f , ϵ3,f , ϕd,f , ¹d,f , Èd,f , tf , and time

increment h

Output rd(t)
ns ←

tf
h

Initialize ϵ1,0 = 0, ϵ2,0 = 0, ϵ3,0 = 0, ϕd,0 = 1, ¹d,0 =
1, Èd,0 = 1
for i = 1, 2, · · · , ns do

t ← i ∗ h
Compute ´ using (9).

Get ϵ1,i, ϵ2,i, ϵ3,i, ϕd,i, ¹d,i, Èd,i using (10).

Compute E(t) using (7).

ri,d = E(i)r0
end for

ware configurations for the multi-quadrotor system (MQS)

are summarized below, followed by a presentation of the test

results. It should be noted that the Crazyflie (cf) quadrotor

was utilized in our flight tests, so the terms “cf” and

“quadrotor” are used interchangeably in this context.

1) Hardware and Software Configuration: The proposed

continuum deformation coordination approach was evaluated

on a hardware configuration consisting of Crazyflie 2.11

(See Fig. 1(a)), open-source, open-hardware nano quadrotor

developed by Bitcraze2. 4 coreless DC motors and 45mm
plastic propellers are included with each Crazyflie. As a

1https://www.bitcraze.io/products/crazyflie-2-1/
2https://www.bitcraze.io/
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Parameter 2-D 3-D

ϵ1,f 1.8 0.9
ϵ2,f 0.8 1.1
ϵ3,f 1 0.7
ϕd,f 0 0.1
¹d,f 0 0.12
Èd,f −0.2 0.15

TABLE I: Shear deformation angles and principal strains.

result, the quadrotor is just 92mm diagonal rotor-to-rotor,

29mm tall, and weighs around 27 g with the battery, making

it ideal for dense formation flight.

The Crazyflie (cf) quadrotor is equipped with two mi-

crocontroller units (MCUs): a Cortex-M4, 168MHz, 192kb

SRAM, 1Mb flash primary controller, STM32F405, and a

Cortex-M0, 32MHz, 16kb SRAM, 128kb flash controller,

nRF5182. The primary application MCU is STM32F405,

which is capable of inertial state estimation and control

tasks, while nRF51822 is responsible for radio and power

management. Each Crazyflie can fly for up to 7 minutes on

a single charge of its 240mAh LiPo battery. Each cf connects

with a PC through the Crazyradio PA3 (See Fig. 1(b)), a long

range 2.4 GHz USB radio capable of sending up to 2 Mbps

in 32-byte packets.

The Ground Control Station (GCS) is an Intel i7 11-th gen

desktop, with 16 GB of RAM running Ubuntu 20.04. We em-

ploy ROS Noetic in conjunction with the Crazyswarm ROS

stack built by the USC-ACT lab4 [37] for flight experiments.

Crazyswarm platform enables the user to fly a swarm of

crazyflie quadrotors with ease in tight formations. All flight

tests were carried out at the University of Arizona’s Scalable

Move and Resilient Transversability (SMART) lab’s indoor

flying arena with a volume of 5m × 5m × 2m equipped

with 8 VICON motion capture cameras.

2) Discussion of the Initial Configuration: In Figs. 5

and 6, cf 1-2-3 form the outer triangle whereas cf 4-5-6
form the inner triangle. The distance between cfs 3-6 is the

smallest, where pmin = 0.5m. At any time t > t0 during

the experiment, the inner triangle will always lie inside the

outer triangle. Similarly, in case of 3-D as shown by Figs. 7

and 8, quadrotors 1-2-3-4 form the outer tetrahedron whereas

quadrotors 5-6-7-8 form the inner tetrahedron. In this case,

the distance between quadrotors 4-8 is the minimum where

pmin = 0.3536m. Similar to the case in 2-D, the inner

tetrahedron will always be inside the volume of the outer

tetrahedron at all times t > t0.

3https://www.bitcraze.io/products/crazyradio-pa/
4https://crazyswarm.readthedocs.io/en/latest/

2-D (in m) 3-D (in m)

Quadro-
tor

xi(0) yi(0) xi(0) yi(0) zi(0)

1 −1.00 −1.50 −1.75 −1.50 0.75
2 −1.00 1.50 −1.75 1.50 0.75
3 1.00 0.0 2.00 0.00 0.75
4 −0.50 −0.5 −0.50 0.00 1.75
5 −0.50 0.5 −0.75 −0.50 1.00
6 0.50 0.00 −0.75 0.50 1.00
7 — — 0.75 0.00 1.00
8 — — −0.25 0.00 1.50

TABLE II: Initial positions of the quadrotor system.

Fig. 5: Initial configuration of the quadrotor team consisting

of 6 quadrotors in a 2-D continuum deformation coordination

experiment. The exact coordinates (x-y) of each quadrotor

has been provided in Table II. z-coordinate for all quadrotors

is assumed to be constant and equal to 1m in this experiment.

Fig. 6: Initial configuration for 2-D flight tests.
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Fig. 7: Initial configuration of the quadrotor team consisting

of 8 quadrotors in a 3-D continuum deformation coordi-

nation. The exact coordinates(x-y-z) of each quadrotor has

been provided in Table II.

Fig. 8: Initial configuration for 3-D flight tests.

Figs. 9 and 10 show the desired trajectories for the 2-D

and 3-D continuum deformation experiment for the multi-

quadrotor system (MQS) consisting 6 and 8 crazyflie respec-

tively (See algorithm 1 for 2-D and algorithm 2 for 3-D).

To ensure inter-quadrotor collision avoidance, the minimum

separation distance in the initial configuration should be

large enough such that the safety condition in Eq. (6) is

satisfied. The tracking of quadrotors in an environment is

accurate up to 0.05m. Therefore, we choose tracking error

¶ = 0.05m, and obtain the following condition on the

minimum separation distance in the initial configuration:

pmin g
2× (¶ + r)

ϵmin
=

0.2

ϵmin
(11)

For the following flight experiments, we consider tf = 12s.

3) 2-D Continuum Deformation Coordination Experi-

ment: According to Table I, ϵmin = 0.8 is considered for

the 2-D continuum deformation experiment. Substituting the

value of ϵmin in Eq. (11), we get pmin = 0.25m. As listed

in Table II, cf 3− 6 are closest compared to any other pair

Fig. 9: Desired 2-D trajectories

Fig. 10: Desired 3-D simulation results

of quadrotors. The distance between them is 0.5m which

satisfies Eq. (11), thus guaranteeing collision avoidance. Fig.

9 shows the desired trajectories whereas Fig. 11 shows the

observed trajectories during our flight tests.

4) 3-D Continuum Deformation Coordination Experi-

ment: According to Table I, we have ϵmin = 0.7 for 3-

D experiments. Substituting the value of ϵmin in Eq. (11),

we get pmin = 0.285m. We observe from Table II that cf

pair 4−8 is closest. The distance between them is 0.3536m
which satisfies Eq. (11). Fig. 10 shows the desired trajectories

whereas Fig. 12 shows the final trajectories obtained in our

experiments.
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Fig. 11: Obtained trajectories of the quadrotor team in the

2-D continuum deformation coordination experiment.

Fig. 12: Obtained trajectories of the quadrotor team in the

3-D continuum deformation coordination experiment.

V. CONCLUSION

In this paper, we treated quadrotors as particles of a

deformable body and applied the principles of continuum

mechanics to experimentally demonstrate the concept of

linear deformation, principal strains, and shear strains. The

primary objective of this work was to provide a new mul-

tidisciplinary learning approach for undergraduate students

studying different engineering majors. By experimentally

demonstrating linear deformation, principal strains, and shear

strains, this work offered a novel visual perspective on

mechanics education. The secondary objective of this work

focused on experimentally validating via flight experiments,

continuum deformation guidance protocol and show how

a team of quadrotors can deform while assuring collision

avoidance when they pass through narrow passages. The

proposed methodology has the potential to open up new

research opportunities and foster a deeper understanding of

mechanics principles among engineering students.
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