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Abstract— Reliability is a critical aspect of multi-agent system
coordination as it guarantees the system’s accurate and consis-
tent functionality. If one agent in the system fails or behaves
unexpectedly, it can negatively impact the performance and
effectiveness of the entire system. Therefore, it is important to
design and implement multi-agent systems with a high level
of reliability to ensure that they can operate safely and move
smoothly in the presence of unforeseen agent failure or lack
of communication with some agent teams moving in a shared
motion space. This paper presents a novel navigation model
that, in an ideal fluid-flow, divides agents into cooperative
(non-singular) and non-cooperative (singular) agents, with co-
operative agents sliding along streamlines safely enclosing non-
cooperative agents in a shared motion space. A series of flight
experiments utilizing crazyflie quadcopters will experimentally
validate the suggested model.

I. INTRODUCTION

Robotics research has long drawn inspiration from nature.
Researchers have examined how animals move, communi-
cate, and interact with their environments in order to build
robots capable of performing similar tasks. Biomimicry, the
idea of designing and building technology inspired by nature,
has resulted in the development of efficient robots that can
adapt in response to their environment. Our inspiration stems
from the flow of a fluid around a rock offering a glimpse
into how robots can navigate around obstacles in their
environments. For example, the principles of fluid dynamics
can be applied to the design of a robot’s movement, allowing
it to move smoothly and efficiently around obstacles.

A. Related Work

Multi-Agent Systems (MAS) have been deployed in a
plethora of robotics applications such as search and rescue
missions [1], forest robotics [2], and surveillance [3], due to
their significant advantages when compared to a single agent.
Such MAS must be equipped with robust algorithms that can
safely navigate around both static and dynamic obstacles in
order for all agents to successfully complete the cooperative
job. Various collision-free path planning works have been
previously published such as collision cone [4], navigation
functions [5], velocity obstacle concept [6], [7], flocking
[8] and sampling based methods [9]. Flow-based control
strategies for marine robots in gyre-like flows have been
previously studied [10]. Artificial Potential Fields (APF)
[11]-[13] is a simple and mathematically elegant technique
originally proposed for manipulators and mobile robots in
an operational space. Combining a positive potential around
goal location and a negative potential around obstacles, this
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method guides the robot toward its goal by following the gra-
dients of potential field while steering away from obstacles.
A well-known issue of such an approach is getting trapped
in local minima and in a real-world dynamic environment it
has been shown that APF is inefficient [14].

Control Barrier Functions (CBFs) have emerged as a
potential mathematical tool for safety assurances [15]. Using
system dynamics, CBFs can be used to define a admissible
region in the robot’s workspace, and the robot’s control
inputs are then calculated to ensure that the robot’s state
remains within this region at all times. CBFs for a safe
behavior in multi-agent robotics was studied previously [16]
and a decentralized supervisory controller based on CBFs has
been presented [17]. A combination of CBFs with Control
Lyapunov Functions (CLFs) via quadratic programming was
studied for cruise control applications [18]. We have recently
developed an advanced physics-based automation system for
the safe and efficient coordination of large-scale multi-agent
systems, even in the face of disturbances and unexpected
failures [19]-[22]. This innovative approach is composed
of two operation modes: Homogeneous Deformation Mode
(HDM) and Failure Resilient Mode (FRM). By applying the
principles of continuum mechanics, we have successfully
formalized the transitions between these two modes, enabling
a robust response to varying operating conditions.

B. Contributions

This work presents a novel approach to ensuring the safe
and resilient coordination of multiple agent teams moving
collectively in a shared motion environment. Drawing in-
spiration from ideal fluid-flow models, each team treats its
agents as cooperative particles within an ideal fluid-flow field
while considering other teams’ agents as singular points in
the field. To ensure inter-agent collision avoidance and safely
wrap the non-cooperative agents, the cooperative agents
slide along the streamlines of an ideal fluid-flow field. The
proposed approach will be experimentally validated using
Crazyflie quadcopters in an indoor flight space. Compared
to existing literature and the authors’ previous work, this
paper offers the following key contributions:

Contribution 1: The work extends the experimental eval-
uation of navigation presented in [22], which investigated
a single failed quadcopter, by modeling and experimentally
validating navigation in multi-agent systems in the presence
of multiple non-concurrent failures and obstacles with arbi-
trary sizes and geometries.

Contribution 2: The proposed navigation approach estab-
lishes a novel paradigm for collision avoidance, wherein: (i)
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each obstacle is treated as a rigid body whose boundary is
determined by a streamline enclosing it; and (ii) collision
avoidance is ensured by defining agents desired trajectories
along the streamlines that safely wrap obstacles.
Contribution 3: The work models and experimentally
validates navigation for multiple agent teams simultaneously
coordinating within a shared motion space. In particular, this
work presents algorithmic approaches for navigation in the
presence of stationary and dynamic obstacles, encompass-
ing various situations such as Stationary Non-Concurrent
Failures (SNCF), Time-Varying Non-Cooperative (TVNC),
Time-Varying Cooperative (TVC), and Stationary Obstacle-
Laden Environments (SOLE) containing many obstacles with
arbitrary sizes and geometries that are randomly distributed.
Contribution 4: The proposed SOLE fluid-flow naviga-
tion approach applies the existing mesh generation tech-
niques [23], mainly used in computational fluid dynamics,
to convert a highly-constrained motion space, populated
with a random number of obstacles of arbitrary size and
geometry into an obstacle-free planning space, and ensure
collision avoidance by planning the agent coordination in
the planning space. To the best of authors’ knowledge, this
is the first work that leverages computational fluid dynamics
(CFD) mesh generation principles to ensure collision-free
multi-agent coordination within a highly-constrained motion
environment.
C. Organization

The remaining sections of the paper are organized as
follows: A detailed description of our proposed methods is
presented in Section II. The proposed model will be used in
Section III to present five different operation modes under
different communication and constraint protocols. Section IV
outlines the experimental setup and presents the results of the
experiments. We finally conclude the paper in Section V with
thoughts about future directions.

II. METHODOLOGY

We consider a MAS represented by the set V ={1,---,N},
which is subsequently clustered into m distinct groups. These
groups are identified by the set M ={1,---,m}. Let V; be
a set defining agents of cluster / € M; consequently, the set
V=V \V; defines agents that do not belong to cluster [ € M
Although, V remains time-invariant, the number of agents
in V; can vary with time, suggesting that V; may lose or
absorb agents at any given time ¢.

To safely plan coordination of V;’s agents, in the presence
of agents belonging to V;, we consider V,’s agents as finite
number of particles of an ideal fluid-flow field while V;’s
agents are either considered as “singularity points” or “rigid
bodies” that are safely wrapped by the streamlines. For the
ideal fluid-flow field, used for planning of coordination of
V)’s agents, we define potential filed ¢; (x,y,6;,1) and stream
field ¥ (x,y,0,(t),t), where x and y are position components,
t denotes time, and 6;(t) is the bulk motion direction of
cluster / € M. Note that both potential and stream functions
satisfy the Laplace equation:

b1, +1,, =0,

VieM (1a)
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Vi, (x;, yi, 01, t")
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Fig. 1: Schematic of the desired path of agent i € V.

lﬂl”-i-lj/lyy =0, VieM (1b)

For the sake of simplicity, we use ¢;;(¢) and ¥ () to
denote ¢;;(1) = ¢1(xi,yi,01,1) and Yy (1) = ¢ (xi, y:,01,1) tO
specify the corresponding potential and stream coordinates
of agent i € V; positioned at (x;,y;) at time ¢.

Path Planning Strategy: Every agent i € V; can avoid
inter-agent collision and hitting V;’s agents when it slides
along level curve vy (x;,y;,6;(t),t) = ¥ ;(¢) constant [21].
Therefore, the tangent vector to the desired sliding path of
agent i €V} is obtained by

f _ [0 Giyi 0 0w iy 60 "

[(X, y’t) - ) - )
y X

for every i € V; and [ € M (See Fig. 6). for every i € V; and
[ € M (See Fig. 6). The desired velocity of agent i € V] is

given by V= VlTi, VieV, leM, )

2

>

and we use the Algorithm 1 to update z; at any time .

Theorem 1. Let (x; 0,y;,0) denote the position of agent i €V,
in the x —y plane and 0;(tg) = 6;9 denote the bulk motion
direction of agents in V; at initial (reference) time tq for
every | € M. Define ¢ii(to) = ¢ir,0 = ¢1(xi,0,¥i,0,01.t0) and
Vi (t=1t0) =¥ir0 =¥1(xi0,¥i.0,010,t0) as the initial potential
and stream coordinates of agent i € V) for every | € M, and

Fmin,0 = n?i{?\/(fﬁil,o =¢j10)*+Wao—¥j0? @)
L]
i#j

as the minimum separation distance between agents in the

o]

Assume that the trajectory tracking control error of each
individual agent does not exceed n and every agent can be
enclosed by a ball of radius u. Then, inter-agent collision
avoidance is guaranteed, if the sliding speed ¢i; = v, is the
same for every agent iin Vi, and

S >

4(n+p)? (6)

Proof. According to equation (14), a one-to-one mapping
between infinitesimal elements in (d¢; —dy;) and (dx —dy)
planes exists; they can be related by

001
Ox

a¢1

3y &)

gmax = max
X,y

min,0
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d¢; dx
= 7
] 9[] "
where J is the Jacobian matrbéq)deﬁ%ed as follows:
941 Ot
Je) =80 5 ()
Bx Ty

Under Cauchy-Reimann conditions, we can write
adi\* (0
JTJ:(( ¢l) +( b1

2

d L.,
0x ﬁy) ) :

where I, € R>? is the identity matrix. We can therefore

write: p

by

dg2+dy? = [dx dy|J"Y [ ol (67, + 43, ) (e +ar?).
©))

If the x and y coordinates along the stream line of every

agent i € V) satisfies

dd? +dy?
(dx2+dy2) > M’ (10)
gmax
then, 2 (min(1))?
(dmin(1))” = Ry vt (11)
where
Fuin (1) = miny (51 (1) = 651 (0) + (Wir () —wz0 () Vo,
l,_]
i#j
(12a)
Amin(t) = n_li.n\/(xi(t) —x; (t))2 +(vi () -y; (t))z, Vi,
1,_]
i#j
(12b)

When the sliding speed ¢;; = v; is the same for every agent
i €V, it’s agents move as particles of a rigid-body in the
¢; — Y plane, and thus, inter-agent distances in the ¢; —y;
plane are time-invariant. As a result, the minimum separation
distance of the desired formation in the ¢; —y; plane can be
assigned at reference time #y9, when the failed agent no-fly
zone first appears. Therefore, pmin,0 = pmin(t) and Eq. (13)
simplifies to

(rmin,O)2

(dmin(1))? 2 Vi (13)

s
/lmax

Since dpin (1) = 2(n+p) is the collision avoidance condition
at any time ¢, the inter-agent collision avoidance is assured,
if Eq. (6) is satisfied. O]

Remark 1. We note that the ideal fluid-flow coordination is
defined over a 2-D plane, which is called x —y plane in this
paper. However, every agent i € V is free to move along
a direction that is normal to the x —y plane, while x and y
components of its desired position is restricted to slide along
a streamline determined by Eq. (2). For better clarification,
Fig. 2 shows how a multi-agent system, moving in a 3-D
space, can apply the ideal fluid flow model to safely wrap
obstacles specified as vertical cylinders [24].

Solutions: Given above problem setting, we will develop

analytic and numerical solutions with the details provided
in Sections II-A and II-B to define the potential fiction
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Fig. 2: Two-dimensional fluid flow coordination in a 3-
dimensional motion space where obstacles are wrapped by
vertical cylinders [24].

¢; and stream function ¢; for group coordination of V;’s
agents. The analytical approach will be used when V;’s
agents are dynamic, and thus, potential and stream curves
are time-varying. The analytic method considers V;’s agents
as singularity points that are excluded by combining irra-
tional fluid flow patterns. On the other hand, the numerical
solution will be applied to safely plan coordination V; in
the presence of many static obstacles, with arbitrary size
and geometry, that are randomly distributed in the motion
space, to maximize the motion space usability while ensuring
collision avoidance.

Navigation Modes: By applying the proposed fluid flow
guidance, this paper implements and experimentally evalu-
ates collision-free navigation of multiple groups of agents
under (i) Stationary Non-Concurrent Failures (SNCF), (ii)
Time-Varying Non-Cooperative (TVNC), (iii) Time-Varying
Cooperative (TVC), and Stationary Obstacle-Laden Environ-
ment (SOLE) scenarios, with the properties listed in Table

L
A. Analytic Approach

Assuming the agents in V' operate in the x —y plane, we
represent the position of agent i € V by complex variable z; =
X;+jyi. In order to safely plan a collision-free coordination
for agents in V}, in the presence of agents in V;, we treat
agents in V; as a finite number of particles in a time-
varying ideal fluid-flow field. This ideal flow field is defined
by combining uniform flow and doublet flow in the x —y
plane. Therefore, agents in V, perceive agents in V; as a
collection of singularities in the x —y plane and exclude them
by employing vertical cylinders. These cylinders are derived
by defining the following complex function:
£ (2210, 1) = 11,2, 000, 0) +301 (32, 32,01(0),)

A2 )
ze7i0% —2,(1) |
(14)

((zie’jo’ —-1Zp (t)) +
This equation applies to every cluster [ € M and agent i €
YV, where B; € {0,1} is a binary variable, 6;(¢) is a time
dependent angle that determines the bulk motion direction
of cluster I € M, and A, € R, is the chosen exclusion radius
such that the size of agent h € V} is properly incorporated.
Because Eq. (14) establishes a nonsingular transformation

=(1-B)ze %+ Z

heV;
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TABLE I: Properties of the investigated fluid-flow navigation
problems.

Scenarios 0 (le M) YV (leM) B (Le M) m
SNCF Time-Invariant | Time-Varying B = m=2
TVNC Time-Varying | Time-Invariant B =1 m=2

TVC Time-Varying | Time-Invariant | B; € {0,1} | m>1
SOLE Time-Invariant | Time-Invariant pr=1 m=1

between z; =x; +jy; and ¢;;+jy;; forevery i € V; and [ € M,
(x;,y;) can be uniquely obtained based on (¢;; (), (1)) at

any time by x; = g1 (i, ¥i1,01,1) (15a)
vi =82 (Pi1,¥i1,01,1)

We use g1 and g, in Algorithm 1 for presenting the position
update law.

(15b)

Algorithm 1 Position Update Algorithm for Every Cluster
[ € M under Fluid-Flow Navigation Strategy.

1: Get: Time increment Af, A, and z; for every h € vV,
B €{0,1}, 6; sliding speed v;, and current position z;
of every agent i € V.

2: Obtain: Next position z; = x; +jy;.

3: for i€V, do

4: Compute current ¢;; (1) and ¢;;(t) using Eq. (14).
5: Compute next potential ¢7;: ¢i; = ¢is +Vv/At.

6: Compute next stream ¥/,: i = ¥ij.

7: Compute next x': x} =g (¢/,,47,,01,1).

8: Compute next y;: y. = ga (¢/,.4},.61.1).

9: end for

B. Numerical Approach

For the numerical solution, we propose to establish a non-
singular mapping between an obstacle-laden “motion space”,
specified by position components X = xcosf; + ysin6; and
Y =ycosf; —xsin6;, and an obstacle-free “planning space”
that is defined by coordinates ¢; and y/;, where X +jY =ze 1%
and 6; is constant. By using the method presented in [23],
X(p1,41) and Y (¢y,4), defined over the planning space, are
obtained by solving

aXp ¢ =20X gy, + Xy

0, leM, (16a)

0, le M,

where a = X7 +Y; . b =X Xy, +Yp Yy, and c= X5 +Y7 .

For better clarification, Fig. 5 shows an obstacle-laden en-
vironment with eight obstacles. The streamlines shown by the
black curves and the potential lines shown by the red curves
are both obtained numerically by solving partial differential
equations (16) that are defined over the “planning” space. As
shown in Fig. 5, an agent following the streamline shown by
green can safely avoid an obstacle in the motion space, thus,
the path planning strategy presented in Section II can be used
by every agent to safely warp obstacles by sliding along a
streamline.

We implement the proposed numerical approach over a
rectangular motion space defined by

aYe, ¢ —20Y gy, + Yy (16b)
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Pz{(X,Y) 1 X € [Xmins Xmax],Y € [YmimYmax]} (17)

where (XminaYmin)s (XmimYmax), (Xma)ﬁ Ymin)’ and
(Xmax»>Ymax) are positions of the P’s corners. Obstacles
are defined by subset O c P, and divided into n, subsets
O, through O,, (O =0;J---0,,). Obstacle subset O;
consists of finite number of compact obstacle zones whose
Y components of their center of mass are the same and
equal to ¥;. Given P and O, N =P\ O define the navigable
space. The navigable space is divided into n, + 1 navigable
channels Ny, ---, N, , where

Nj = [Xomins Xmax] X [Yjafﬂl) -0, Jj=0,--,n,, (18)
X is Cartesian product symbol, Yy = Y, and ¥y 41 = Yinax-

For better clarification, we consider the available floor area
of the SMART lab as a rectangular motion space with X,,,;, =
Yinin =-2.5 and X;,0x = Yinax =2.5 (See Fig. 3). For the flight
experiments, we consider 8 cylinders, based by rectangles
and diamonds, as static obstacles as shown in Fig. 9. The
obstacles are divided into three group Oy with ¥| =—1.15, O,
with ¥, = —0.20, and O3 with ¥3 = 1.10. The four navigable
channels Ny, N1, N2, and N3, obtained Eq. (18), are colored
in purple, yellow, red, and blue, respectively.

Solution: To obtain ¢; and y; values over N, we first
define the boundary of navigable channel N, that is denoted
by dN;, as follows:

j=1,,n,,

Ny =N ;| Jona; | Jons ;| o,
(19)

where AN ;, ON2 j, ON3 ;, and Ny ; define the bottom,
right, top, and left boundaries of N, respectively. We
uniformly distribute n; nodes along boundaries dN> ; and
0N, ; while p nodes distributed over the boundaries N ;
and ON; ; are the same for every navigable channel (for
every j €{0,---,n,}). As a result, the planning space is also
divided into n, +1 rectangles denoted by Sy through S,
where 0S; denotes the boundary of the j-th rectangle in the
planning space.

We generate a uniform grid of size p xn; over S;|JdS;,
for every j € {0,---,n,}, as shown in Fig. 4. The boundary
conditions of the planning space are then defined as follows:

¢ (¢1,¥1) € ON1,; UUIN;
X(¢1,41) = bmin ~ (d1,81) € Ny (20a)
Pmax  (P1,¥1) € IN,
i (#1,91) € ON2,;UON
Y (1,91) = {Wmin  (d1,41) € ONy (20b)
Umax  (d1,91) € N3 j

for j=0,---,n,, where Yj <Y < Yj+1’ Smin = Xmins> Pmax =
Xinax Yimnin = Yonin, and Ymax = Xmax-

III. OPERATION MODES

We use the foundations provided in Section II to develop
algorithms for implementations SNCF, TVNC, TVC, and
SOLE operation modes in this section.
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Fig. 3: The SMART lab floor is defined as the motion space
% and divided into four navigable channels using Eq. (18).

N3 983

aX gy — 2bX gy, + Xy, = 0

ONyj | P + P1,,, = O Vi T W1, =0| 0N, 0S4 0875

Wiy = 2bYgpy, + Yy = 0

N, 03,

Fig. 4: Transformation between A; (the j-th navigable
channel) and the S;.

A. SNCF Navigation

For the SNCF navigation model, set V is divided into V;
and V5 =V, where V(t) and V5(t) are disjoint subsets of
V defining the “healthy” and “faulty” agents, respectively,
at time 7.

Definition 1. We define #,; > ¢y as the most recent time
when the status of failure of the agents has changed.

For the SNCF coordination, we make the following as-
sumptions:

Assumption 1. Angle 6,(t) is constant at any time t > t,
where tq is the start time of the SNCF coordination.

Assumption 2. We assume that either the sliding speed vy,
used in Eq. (3), is sufficiently large, or the geometry of
the domain enclosing h € V; is spacious enough, such that
every faulty agent h € V, remains inside a stationary vertical
cylinder after its failure is detected.

For the SNCF, we define potential and stream functions
only for the healthy agents. Thus, potential function ¢,
stream function 1, (81, and 6; are denoted by ¢, ¥, B, and
0, respectively, and substituted in Eq. (14) to compute the
potential and stream functions under SNCF. By imposing
Assumptions 1 and 2, potential function ¢(x,y,tpi) and
stream ¥ (x, y, trq)) are piece-wise time-invariant and remains
spatially-varying at any time ¢ > fg; until the status of

=

oty wf
P

=xcosb; +ysing; [

ycosf; —xcosb;

Y=

Fig. 5: Left: Motion space with streamlines shown by black
and potential lines shown by red. Right: Planning space. The
green curve in the motion space is an streamline used by an
agent i € V; to avoid collision with obstacles (the projection
of the agent i’s path is a horizontal line in the planning
space).

agents’ failures change. We apply Algorithm 2 to safely plan
coordination of healthy agents under the SNCF strategy.

Algorithm 2 Algorithm for SNCF Fluid-Flow Navigation.

1: Get: Initial time f9, number of time steps denoted by
n, time increment Az, healthy agent set Vi (zp), faulty
agent set V5(#p), time increment At, A, = A for every
h € V,, 6;, v;, initial position z;(fg) of every healthy
agent i € Vy, and initial position z,(79) of every faulty
agent he€V;
Set: B=1, k=1, tp, =19.
while k& < n do
if V5 (tr) # V> (tr—1) then
thail < Ik
Update ¢ (x,y, tfail)-
Update y (x, y, tail)-
end if
¢ (x’y’tk) — ¢ (-x»y’tfail)-
10: W('x’y’tk) <_w(x’y7tfail)‘

R e A A S o

11: Obtain z; (tx+1) for every i € V;(tx) by Algorithm 1.
12: Return z; (¢541).

13: z;(tx) < z;(ty41) for every i € V) (ty).

14: k—k+1.

15: end while

B. TVNC Navigation

For the TVNC navigation model, set V is divided into
time-invariant subsets V;, and V5 = V;, where V, and V,
define “cooperative” and “non-cooperative” agents, respec-
tively. The noncooperative agents have a predefined trajecto-
ries in the motion space whereas the cooperative agents uses
the navigation model, presented in Algorithm 1, to safely
update their positions and reach their target positions.

Similar the SNCF coordination model, we denote potential
function ¢, stream function ¥, 81, and 8, by ¢, ¥, B, and
0, respectively, and substitute them in Eq. (14) to compute
the potential and stream functions. Let z; y = x; ¢ +jy; r be
the known target position of cooperative agent i € V), then,
then angle 6, assigning the bulk motion direction of V; is
obtained by
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Fig. 6: The virtual box B; with side lengths 26 and v;n At
used by agent i €V} to estimate the possibility of colliding
an agent j € V].

Z (zi,f — (1))

0(t)=0;= a.rg(
eV

), Vt>19, Le M, (21)

where f( is the initial time. We use Algorithm 3 to safely
plan coordination of every agent i € V in a shared motion
space.

Algorithm 3 Algorithm for TVNC Fluid-Flow Navigation.

1: Get: Initial Eime to, time increment At, € > 0, A; for

every h € V), 0, v;, initial position z;(zy) of every
cooperative agent i € V).

2: Set: =1, k=0.

3: while };cq, |zi(tk) —Zi,f| > |V € for every i € V| do
4: Get zj, (1x) for every h € V5.

5: Compute 6(tx) by Eq. (21).

6: Update ¢ (x,y,0(tr),tx) and ¢ (x,y,0(tx),tx)-

7: Obtain z;(tx4) for every i € V| by Algorithm 1.
8: Return z; (tx41).

9: z;(tx) < 7;(ty41) for every i € V.

10: k—k+1.

11: end while

C. TVC Navigation

For the TVC navigation, we enable every agent i € V,
to check if there is a possibility of colliding with an agent
h € V; within the next n, time steps. To this end, we define
virtual box B;(¢) c C for every agent i € V], with side lengths
26 and vin At, to check possibility of collision with an
agent j € V, within the next n, At seconds. To formally
specify collision avoidance condition, we define condition

£ as follows: \/ \/ \/ (z; € Bi), (9]

leMie(Vljeq?l

where “\/” is used to specify “at least one”. Note that { is
satisfied, if there exists at least one agent j € V] that is inside
one of the safety boxes of V;’s agents.
Therefore, f3; is specified as follows:
(= \ Bi=D,

leM

(22a)
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-~ = /\ (Bi=0), (22b)
leM
where “A” is used to specify “include all”’; “ = " means

“implies that”; and “-=” is the “negation” symbol. For the
TVC, we use Algorithm 4 to safely plan coordination of
every agent i € V in a shared motion space.

Algorithm 4 Algorithm for TVC Fluid-Flow Navigation.
1:

Get: Initial time #9, number of sample times denoted by
n, time increment Az, Aj, for every h € V;, v, &, ns,
initial position z;(#p) of every agent i € V; and every
cluster / € M.

2: Set: k=0.

3: Set: Bi(tg) =0, ---, Bi(t,) =0 for every [ € M.

4. for k€{0,---,n} do

5: for /e Mdo

6: if £ is satisfied then

7: Bi(te) =1 .

8: Get z, (tx) for every h € V.

9: end if

10: Compute 6;(tx) by Eq. (21).

11: Update ¢; (x,y,0(tx),tx) and ¢ (x,y,0(tx),tx).
12: Obtain z;(tr41) for every i € V; by Algorithm 1.
13: Return z; (tx41).

14: z;(tx) < 2;(ty4+1) for every i € V}.

15: end for

16: k—k+1.

17: end for

D. SOLE Navigation

For the SOLE navigation, we consider operation of a
single agent team in an obstacle-laden environment, thus, m =
land V=V, ={1,---,N} defines the identification numbers
of the agents, ¢(x,y) =¢1(x,y) and ¥ (x,y) =41 (x,y) denote
the potential and stream function, and 6 = 6; is constant. We
propose the Algorithm 5 to obtain safe trajectories of every
i €V by following the motion strategy presented in Section
II. Note that “C6” and “S6€” in line 15 of Algorithm 5 stand
for “cos#” and “sin6”, respectively.

IV. EXPERIMENTS AND DISCUSSION

We experimentally evaluate the performance of the pro-
posed algorithms and validate the results on a group of tiny
quadcopters (The multimedia of our experiments is available
at YouTube (Link)).

The experimental setup includes 4 major components
shown in Fig. 7: (i) Motion Capture System (MCS), (ii)
Ground Control Station (GCS), (iii) Crazyradio PA, and (iv)
Crazyflie 2.1. The MCS captures the position of the each
crazyflie in 3-D space and sends the information to the
GCS through an ethernet cable at 100Hz. The GCS is an
Intel i7 11-th gen desktop, with 16 GB of RAM running
Ubuntu 20.04 and ROS Noetic. GCS is also installed with
the Crazyswarm [25] ROS stack built by USC-ACT Lab and
acts as a centralized planner for the system. The GCS uses
the information from MCS to compute the desired states for
each crazyflie and then transmits the data to the onboard
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Algorithm 5 Algorithm for SOLE Fluid-Flow Navigation

1: Get: Initial time tp, number of sample times denoted by
n, time increment Az, O; through O,,_, initial positions
Zi0 :xi,0+j)7i,0 of every i€ (V» ¢min’ ‘pmax’ p, and 6.
Set: k=0.

A¢ = (dmax — Pmin) | P-

Determine navigable channels by Eq. (18).

Specify boundary conditions using Eq. (20).

Obtain X (¢,y) and Y(4,¢¥) over P numerically, by
solving Eq. (16).

Obtain X; = x; ocosf+x;sind for every i € V.

: Obtain Y; g = y;0cosf —x; osiné for every i € V.

9: Compute associated (¢;(t9),¥;(to)) €S for every i € V.
10: for k€{0,---,n} do

AN

® 3

11: for i€V do

12: Gi (tkr1) — @i (1x) +Ad.

13: Ui (ter1) < ¥ (tk).

14: Obtain (X;,Y;) associated with (¢;,¥;).
15: Z; (lk+1) — (X,'CQ—YiSQ) +j(XiSQ+YiC6‘).
16: Return z; (tx+1).

17: Z;(ty) « z;(tg41) for every i € V.

18: end for

19: k—k+1.

20: end for

Crazyflie 2.1
Hardware

PWM signal
Onboard Controller

Desired Waypoint

VICON Motion Capture System

N
—

Crazyradio PA

Fig. 7: An overview of the experiment setup.

controller through Crazyradio PA. We conducted flight tests
at the University of Arizona’s Scalable Move and Resilient
Transversability (SMART) lab’s indoor flying area with a
volume of 5Sm X 5m X 2m equipped with 8 VICON motion
capture cameras. We assume that all crazyflies are flying at
the altitude of 1 m.

A. Stationary Non-Concurrent Failures (SNCF) Experiment

For this experiment, we follow the approach presented
in Section III-A where A; = 0.4m (Eq. (14)). The CFs are
uniquely identified using the set V ={1,---,6}. As indicated
in Table I, we have m = 2. At time 79, M = {1,2}, V is
divided into V; ={1,---,6} and V5 = 0. Until the first failure,
the CFs all move together represented as solid lines (See Fig.
8(a)). At try, = 2s, CF4, chosen randomly, is subjected to
failure and is wrapped by a green cylinder representing the
unsafe zone (See Fig. 8(a)). At this instant, V; ={1,2,3,5,6}

and V, = V\V, = {4}. The desired paths for all CFs
belonging to V; are computed based on algorithm 2. We
deploy another failure, CF5, in the system at #g;1, = 12s (See
Fig. 8(b)). The sets V; and V5 are updated: V; = {1,2,3,6}
and V, = {4,5}. The desired paths for the healthy CFs are
again computed until V;’s CFs have completely passed the
unsafe-zones (See Fig. 8(b)).

2 2
A AV
1 1
£o A A £o A Ay
=, =
cF1 oF1
cr2 cr2
A cFs e cFs
2 cFa cFa
cFs oFs
cre crs
3 . 3 . .
3 2 1 0 1 2 3 -3 2 -1 0 1 2 3
( neters)  (in meters)
(@ (b)

y (in meters)

(© (@)
Fig. 8: (a) Location of healthy CFs at the time of first failure.
The green circle corresponds to the unsafe-zone of CF4. (b)
Desired (dashed line) versus actual (solid line) paths tracked
by CF to avoid unsafe-zones. (c) Desired (dashed line) vs
actual (solid line) paths undertaken by CFs. We can see V;
taking advantage of the recovery algorithm in order to avoid
any collision with non-cooperative CFs in set V,. (d) Desired
(dashed line) vs actual (solid line) paths tracked by CFs using
algorithm 4 when N =6.

B. Time-Varying Non-Cooperative (TVNC) Experiment

In this experiment, we evaluate the performance of the
algorithm 3 proposed in Section III-B using m =2 groups
of crazyflies. Specifically, at time #y, the set V ={1,---,6}
is divided into time-invariant subsets V| ={1,2,3} and V; =
{4,5,6}. The aim of agents in V5, known as non-cooperative
agents, is to reach their goal locations quickly. Therefore,
trajectories of V,’s agents are predefined, as indicated in
Fig. 8(c) (See the green, cyan, and black paths). However,
the agents belonging to Vj, termed as cooperative agents,
use the fluid-flow navigation function to safely plan paths in
the shared motion space. As shown in Fig. 8(c), cooperative
CFs 1, 2, and 3 reach their target locations by following the
red, blue, and pink paths.

C. Time-Varying Cooperative (TVC)

According to Section III-C and 4, we define the set V =
{1,---,6} to uniquely identify all CFs. CFs are divided into
two groups identified by V, = {1,2,3} and V, = {4,5,6}.
For this experiment, we choose v; = 0.3m/s, 6 =0.15, and
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Fig. 9: Desired (dashed line) vs Actual (solid line) paths
tracked by crazyflies using Algorithm when N =4.

n, =3. We have experimentally evaluated the scenario when

0 is varying in time but constant for each individual group

of agents. This approach ensures that each agent in a group

move parallel to other agents in the group. Figure 8(d) plots

the result of our experiment.

D. Stationary Obstacle-Laden Environment (SOLE) Experi-
ment

In this experiment, we have an obstacle-laden environment
as shown in Figure 9. We follow the approach presented
in Section III-D and define the set V = {1,2,3,4}. By
implementing Algorithm 5, CF quadcopters 1 through 4
follow the paths shown in Fig. 9 to safely pass through
obstacles.

V. CONCLUSION

In this work, we proposed multiple recovery algorithms
based on ideal fluid-flow for collision-free coordination
between multiple groups of agents. Our algorithms were
able to handle different scenarios including stationary non-
concurrent failures, time-varying non-cooperative failures,
and time-varying cooperative failures. Experimental results
using teams of crazyflies displayed the advantage of our
proposed algorithms in handling different situations. Future
work on this direction include incorporating reinforcement
learning techniques.
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