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Abstract— Reliability is a critical aspect of multi-agent system
coordination as it guarantees the system’s accurate and consis-
tent functionality. If one agent in the system fails or behaves
unexpectedly, it can negatively impact the performance and
effectiveness of the entire system. Therefore, it is important to
design and implement multi-agent systems with a high level
of reliability to ensure that they can operate safely and move
smoothly in the presence of unforeseen agent failure or lack
of communication with some agent teams moving in a shared
motion space. This paper presents a novel navigation model
that, in an ideal fluid-flow, divides agents into cooperative
(non-singular) and non-cooperative (singular) agents, with co-
operative agents sliding along streamlines safely enclosing non-
cooperative agents in a shared motion space. A series of flight
experiments utilizing crazyflie quadcopters will experimentally
validate the suggested model.

I. INTRODUCTION

Robotics research has long drawn inspiration from nature.

Researchers have examined how animals move, communi-

cate, and interact with their environments in order to build

robots capable of performing similar tasks. Biomimicry, the

idea of designing and building technology inspired by nature,

has resulted in the development of efficient robots that can

adapt in response to their environment. Our inspiration stems

from the flow of a fluid around a rock offering a glimpse

into how robots can navigate around obstacles in their

environments. For example, the principles of fluid dynamics

can be applied to the design of a robot’s movement, allowing

it to move smoothly and efficiently around obstacles.

A. Related Work

Multi-Agent Systems (MAS) have been deployed in a

plethora of robotics applications such as search and rescue

missions [1], forest robotics [2], and surveillance [3], due to

their significant advantages when compared to a single agent.

Such MAS must be equipped with robust algorithms that can

safely navigate around both static and dynamic obstacles in

order for all agents to successfully complete the cooperative

job. Various collision-free path planning works have been

previously published such as collision cone [4], navigation

functions [5], velocity obstacle concept [6], [7], flocking

[8] and sampling based methods [9]. Flow-based control

strategies for marine robots in gyre-like flows have been

previously studied [10]. Artificial Potential Fields (APF)

[11]–[13] is a simple and mathematically elegant technique

originally proposed for manipulators and mobile robots in

an operational space. Combining a positive potential around

goal location and a negative potential around obstacles, this

Authors are with the Department of Aerospace and Mechanical Engi-
neering, University of Arizona, Tucson, AZ, 85721 USA e-mail: {huppaluru,
ghufran1942, hrastgoftar}@arizona.edu.

method guides the robot toward its goal by following the gra-

dients of potential field while steering away from obstacles.

A well-known issue of such an approach is getting trapped

in local minima and in a real-world dynamic environment it

has been shown that APF is inefficient [14].

Control Barrier Functions (CBFs) have emerged as a

potential mathematical tool for safety assurances [15]. Using

system dynamics, CBFs can be used to define a admissible

region in the robot’s workspace, and the robot’s control

inputs are then calculated to ensure that the robot’s state

remains within this region at all times. CBFs for a safe

behavior in multi-agent robotics was studied previously [16]

and a decentralized supervisory controller based on CBFs has

been presented [17]. A combination of CBFs with Control

Lyapunov Functions (CLFs) via quadratic programming was

studied for cruise control applications [18]. We have recently

developed an advanced physics-based automation system for

the safe and efficient coordination of large-scale multi-agent

systems, even in the face of disturbances and unexpected

failures [19]–[22]. This innovative approach is composed

of two operation modes: Homogeneous Deformation Mode

(HDM) and Failure Resilient Mode (FRM). By applying the

principles of continuum mechanics, we have successfully

formalized the transitions between these two modes, enabling

a robust response to varying operating conditions.

B. Contributions

This work presents a novel approach to ensuring the safe

and resilient coordination of multiple agent teams moving

collectively in a shared motion environment. Drawing in-

spiration from ideal fluid-flow models, each team treats its

agents as cooperative particles within an ideal fluid-flow field

while considering other teams’ agents as singular points in

the field. To ensure inter-agent collision avoidance and safely

wrap the non-cooperative agents, the cooperative agents

slide along the streamlines of an ideal fluid-flow field. The

proposed approach will be experimentally validated using

Crazyflie quadcopters in an indoor flight space. Compared

to existing literature and the authors’ previous work, this

paper offers the following key contributions:

Contribution 1: The work extends the experimental eval-

uation of navigation presented in [22], which investigated

a single failed quadcopter, by modeling and experimentally

validating navigation in multi-agent systems in the presence

of multiple non-concurrent failures and obstacles with arbi-

trary sizes and geometries.

Contribution 2: The proposed navigation approach estab-

lishes a novel paradigm for collision avoidance, wherein: (i)20
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each obstacle is treated as a rigid body whose boundary is

determined by a streamline enclosing it; and (ii) collision

avoidance is ensured by defining agents desired trajectories

along the streamlines that safely wrap obstacles.

Contribution 3: The work models and experimentally

validates navigation for multiple agent teams simultaneously

coordinating within a shared motion space. In particular, this

work presents algorithmic approaches for navigation in the

presence of stationary and dynamic obstacles, encompass-

ing various situations such as Stationary Non-Concurrent

Failures (SNCF), Time-Varying Non-Cooperative (TVNC),

Time-Varying Cooperative (TVC), and Stationary Obstacle-

Laden Environments (SOLE) containing many obstacles with

arbitrary sizes and geometries that are randomly distributed.

Contribution 4: The proposed SOLE fluid-flow naviga-

tion approach applies the existing mesh generation tech-

niques [23], mainly used in computational fluid dynamics,

to convert a highly-constrained motion space, populated

with a random number of obstacles of arbitrary size and

geometry into an obstacle-free planning space, and ensure

collision avoidance by planning the agent coordination in

the planning space. To the best of authors’ knowledge, this

is the first work that leverages computational fluid dynamics

(CFD) mesh generation principles to ensure collision-free

multi-agent coordination within a highly-constrained motion

environment.
C. Organization

The remaining sections of the paper are organized as

follows: A detailed description of our proposed methods is

presented in Section II. The proposed model will be used in

Section III to present five different operation modes under

different communication and constraint protocols. Section IV

outlines the experimental setup and presents the results of the

experiments. We finally conclude the paper in Section V with

thoughts about future directions.

II. METHODOLOGY

We consider a MAS represented by the setV = {1, · · · , #},

which is subsequently clustered into < distinct groups. These

groups are identified by the set M = {1, · · · ,<}. Let VĢ be

a set defining agents of cluster ; ∈M; consequently, the set

V̄Ģ =V\VĢ defines agents that do not belong to cluster ; ∈M

Although, V remains time-invariant, the number of agents

in VĢ can vary with time, suggesting that VĢ may lose or

absorb agents at any given time C.

To safely plan coordination of VĢ’s agents, in the presence

of agents belonging to V̄Ģ , we consider VĢ’s agents as finite

number of particles of an ideal fluid-flow field while V̄Ģ’s

agents are either considered as “singularity points” or “rigid

bodies” that are safely wrapped by the streamlines. For the

ideal fluid-flow field, used for planning of coordination of

VĢ’s agents, we define potential filed qĢ (G, H, \Ģ , C) and stream

field kĢ (G, H, \Ģ (C), C), where G and H are position components,

C denotes time, and \Ģ (C) is the bulk motion direction of

cluster ; ∈M. Note that both potential and stream functions

satisfy the Laplace equation:
qĢ ĮĮ +qĢ įį = 0, ∀; ∈M (1a)

Fig. 1: Schematic of the desired path of agent 8 ∈ VĢ .

kĢ ĮĮ
+kĢ įį

= 0, ∀; ∈M (1b)

For the sake of simplicity, we use qğĢ (C) and kğĢ (C) to

denote qğĢ (C) = qĢ (Gğ , Hğ , \Ģ , C) and kğĢ (C) = kĢ (Gğ , Hğ , \Ģ , C) to

specify the corresponding potential and stream coordinates

of agent 8 ∈ VĢ positioned at (Gğ , Hğ) at time C.

Path Planning Strategy: Every agent 8 ∈ VĢ can avoid

inter-agent collision and hitting V̄Ģ’s agents when it slides

along level curve kĢ (Gğ , Hğ , \Ģ (C), C) = k̄ğ,Ģ (C) constant [21].

Therefore, the tangent vector to the desired sliding path of

agent 8 ∈ VĢ is obtained by

T̂ğ (G, H, C) =

[
mkĢ (Gğ , Hğ , \Ģ , C)

mH
−
mkĢ (Gğ , Hğ , \Ģ , C)

mG

]Đ
, (2)

for every 8 ∈ VĢ and ; ∈M (See Fig. 6). for every 8 ∈ VĢ and

; ∈ M (See Fig. 6). The desired velocity of agent 8 ∈ VĢ is

given by
Vğ = EĢT̂ğ , ∀8 ∈ VĢ , ; ∈M, (3)

and we use the Algorithm 1 to update zğ at any time C.
Theorem 1. Let

(
Gğ,0, Hğ,0

)
denote the position of agent 8 ∈VĢ

in the G − H plane and \Ģ (C0) = \Ģ0 denote the bulk motion

direction of agents in VĢ at initial (reference) time C0 for

every ; ∈ M. Define qğĢ (C0) = qğĢ,0 = qĢ (Gğ,0, Hğ,0, \Ģ0 , C0) and

kğĢ (C = C0) = kğĢ,0 = kĢ (Gğ,0, Hğ,0, \Ģ0, C0) as the initial potential

and stream coordinates of agent 8 ∈ VĢ for every ; ∈M, and

AģğĤ,0 = min
i,j

i≠j

√
(qğĢ,0−q ĠĢ,0)2 + (kğĢ,0−k ĠĢ,0)2 (4)

as the minimum separation distance between agents in the

qĢ −kĢ plane, and

ZģėĮ = max
Į,į

((
mqĢ

mG

)2

+

(
mqĢ

mH

)2
)

. (5)

Assume that the trajectory tracking control error of each

individual agent does not exceed [ and every agent can be

enclosed by a ball of radius `. Then, inter-agent collision

avoidance is guaranteed, if the sliding speed ¤qğĢ = EĢ is the

same for every agent in VĢ , and
A2
ģğĤ,0

ZģėĮ

g 4([+ `)2 (6)

Proof. According to equation (14), a one-to-one mapping

between infinitesimal elements in (3qĢ − 3kĢ) and (3G− 3H)

planes exists; they can be related by
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[
3qĢ
3kĢ

]
= J

[
3G

3H

]
(7)

where J is the Jacobian matrix defined as follows:

J(G, H) =

[
ĉčĢ

ĉĮ

ĉčĢ

ĉį
ĉćĢ

ĉĮ

ĉćĢ

ĉį

]

(8)

Under Cauchy-Reimann conditions, we can write

JĐJ =

((
mqĢ

mG

)2

+

(
mqĢ

mH

)2
)

I2,

where I2 ∈ R
2×2 is the identity matrix. We can therefore

write:

3q2
Ģ + 3k

2
Ģ =

[
3G 3H

]
JĐJ

[
3G

3H

]
=

(
q2
ĢĮ +q

2
Ģį

) (
3G2 + 3H2

)
.

(9)

If the G and H coordinates along the stream line of every

agent 8 ∈ VĢ satisfies
(
3G2 + 3H2

)
g

3q2
Ģ
+ 3k2

Ģ

ZģėĮ

, (10)

then,
(3ģğĤ (C))

2 g
(AģğĤ (C))

2

ZģėĮ

, ∀C (11)

where

AģğĤ (C) =min
i,j

i≠j

√(
qğĢ (C) −q ĠĢ (C)

)2
+

(
kğĢ (C) −k ĠĢ (C)

)2
, ∀C,

(12a)

3ģğĤ (C) = min
i,j

i≠j

√(
Gğ (C) − G Ġ (C)

)2
+

(
Hğ (C) − H Ġ (C)

)2
, ∀C.

(12b)

When the sliding speed ¤qğĢ = EĢ is the same for every agent

8 ∈ VĢ , it’s agents move as particles of a rigid-body in the

qĢ −kĢ plane, and thus, inter-agent distances in the qĢ −kĢ

plane are time-invariant. As a result, the minimum separation

distance of the desired formation in the qĢ −kĢ plane can be

assigned at reference time C0, when the failed agent no-fly

zone first appears. Therefore, ?ģğĤ,0 = ?ģğĤ (C) and Eq. (13)

simplifies to

(3ģğĤ (C))
2 g

(
AģğĤ,0

)2

_ģėĮ

, ∀C (13)

Since 3ģğĤ (C) g 2([+ `) is the collision avoidance condition

at any time C, the inter-agent collision avoidance is assured,

if Eq. (6) is satisfied.

Remark 1. We note that the ideal fluid-flow coordination is

defined over a 2-D plane, which is called G− H plane in this

paper. However, every agent 8 ∈ V is free to move along

a direction that is normal to the G − H plane, while G and H

components of its desired position is restricted to slide along

a streamline determined by Eq. (2). For better clarification,

Fig. 2 shows how a multi-agent system, moving in a 3-D

space, can apply the ideal fluid flow model to safely wrap

obstacles specified as vertical cylinders [24].

Solutions: Given above problem setting, we will develop

analytic and numerical solutions with the details provided

in Sections II-A and II-B to define the potential fiction

Fig. 2: Two-dimensional fluid flow coordination in a 3-

dimensional motion space where obstacles are wrapped by

vertical cylinders [24].

qĢ and stream function kĢ for group coordination of VĢ’s

agents. The analytical approach will be used when V̄Ģ’s

agents are dynamic, and thus, potential and stream curves

are time-varying. The analytic method considers V̄Ģ’s agents

as singularity points that are excluded by combining irra-

tional fluid flow patterns. On the other hand, the numerical

solution will be applied to safely plan coordination VĢ in

the presence of many static obstacles, with arbitrary size

and geometry, that are randomly distributed in the motion

space, to maximize the motion space usability while ensuring

collision avoidance.

Navigation Modes: By applying the proposed fluid flow

guidance, this paper implements and experimentally evalu-

ates collision-free navigation of multiple groups of agents

under (i) Stationary Non-Concurrent Failures (SNCF), (ii)

Time-Varying Non-Cooperative (TVNC), (iii) Time-Varying

Cooperative (TVC), and Stationary Obstacle-Laden Environ-

ment (SOLE) scenarios, with the properties listed in Table

I.
A. Analytic Approach

Assuming the agents in V operate in the G− H plane, we

represent the position of agent 8 ∈V by complex variable zğ =

Gğ + jHğ . In order to safely plan a collision-free coordination

for agents in VĢ , in the presence of agents in V̄Ģ , we treat

agents in VĢ as a finite number of particles in a time-

varying ideal fluid-flow field. This ideal flow field is defined

by combining uniform flow and doublet flow in the G − H

plane. Therefore, agents in VĢ perceive agents in V̄Ģ as a

collection of singularities in the G− H plane and exclude them

by employing vertical cylinders. These cylinders are derived

by defining the following complex function:

f
(
zğe
−jĂĢ (Ī ) , C

)
= qĢ (Gğ , Hğ , \Ģ (C), C) + jkĢ (Gğ , Hğ , \Ģ (C), C)

= (1− VĢ) zğe
−jĂĢ + VĢ

∑

ℎ∈V̄Ģ

((
zğe
−jĂĢ − zℎ (C)

)
+

�2
ℎ

zğe−jĂĢ − zℎ (C)

)

,

(14)

This equation applies to every cluster ; ∈ M and agent 8 ∈

VĢ , where VĢ ∈ {0,1} is a binary variable, \Ģ (C) is a time

dependent angle that determines the bulk motion direction

of cluster ; ∈M, and �ℎ ∈ R+ is the chosen exclusion radius

such that the size of agent ℎ ∈ V̄Ģ is properly incorporated.

Because Eq. (14) establishes a nonsingular transformation
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TABLE I: Properties of the investigated fluid-flow navigation

problems.

Scenarios ĂĢ (Ģ ∈ M) VĢ (Ģ ∈ M) ÿĢ (Ģ ∈ M) ģ

SNCF Time-Invariant Time-Varying ÿĢ = 1 ģ = 2
TVNC Time-Varying Time-Invariant ÿĢ = 1 ģ = 2
TVC Time-Varying Time-Invariant ÿĢ ∈ {0, 1} ģ > 1

SOLE Time-Invariant Time-Invariant ÿĢ = 1 ģ = 1

between zğ = Gğ +jHğ and qğĢ +jkğĢ for every 8 ∈VĢ and ; ∈M,

(Gğ , Hğ) can be uniquely obtained based on (qğĢ (C),kğĢ (C)) at

any time C by Gğ = 61 (qğĢ ,kğĢ , \Ģ , C) (15a)

Hğ = 62 (qğĢ ,kğĢ , \Ģ , C) (15b)

We use 61 and 62 in Algorithm 1 for presenting the position

update law.

Algorithm 1 Position Update Algorithm for Every Cluster

; ∈M under Fluid-Flow Navigation Strategy.

1: Get: Time increment �C, �ℎ and zℎ for every ℎ ∈ V̄Ģ ,

VĢ ∈ {0,1}, \Ģ sliding speed EĢ , and current position zğ
of every agent 8 ∈ VĢ .

2: Obtain: Next position z′ğ = G′ğ + jH′ğ .

3: for 8 ∈ VĢ do

4: Compute current qğĢ (C) and kğĢ (C) using Eq. (14).

5: Compute next potential q′
ğĢ

: qğĢ = qğĢ + EĢ�C.

6: Compute next stream k′
ğĢ

: kğĢ = kğĢ .

7: Compute next G′ğ : G
′
ğ = 61

(
q′
ğĢ
,k′

ğĢ
, \Ģ , C

)
.

8: Compute next H′ğ: H
′
ğ = 62

(
q′
ğĢ
,k′

ğĢ
, \Ģ , C

)
.

9: end for

B. Numerical Approach

For the numerical solution, we propose to establish a non-

singular mapping between an obstacle-laden “motion space”,

specified by position components - = G cos\Ģ + H sin\Ģ and

. = H cos\Ģ − G sin\Ģ , and an obstacle-free “planning space”

that is defined by coordinates qĢ and kĢ , where -+j. = z4−jĂĢ

and \Ģ is constant. By using the method presented in [23],

- (qĢ ,kĢ) and . (qĢ ,kĢ), defined over the planning space, are

obtained by solving

0-čĢ čĢ
−21-čĢćĢ

+ 2-ćĢćĢ
= 0, ; ∈M, (16a)

0.čĢ čĢ
−21.čĢćĢ

+ 2.ćĢćĢ
= 0, ; ∈M, (16b)

where 0 = -2
ćĢ
+.2

ćĢ
, 1 = -čĢ

-ćĢ
+.čĢ

.ćĢ
, and 2 = -2

čĢ
+.2

čĢ
.

For better clarification, Fig. 5 shows an obstacle-laden en-

vironment with eight obstacles. The streamlines shown by the

black curves and the potential lines shown by the red curves

are both obtained numerically by solving partial differential

equations (16) that are defined over the “planning” space. As

shown in Fig. 5, an agent following the streamline shown by

green can safely avoid an obstacle in the motion space, thus,

the path planning strategy presented in Section II can be used

by every agent to safely warp obstacles by sliding along a

streamline.

We implement the proposed numerical approach over a

rectangular motion space defined by

P = {(-,. ) : - ∈ [-ģğĤ, -ģėĮ] ,. ∈ [.ģğĤ,.ģėĮ]} (17)

where (-ģğĤ,.ģğĤ), (-ģğĤ,.ģėĮ), (-ģėĮ ,.ģğĤ), and

(-ģėĮ ,.ģėĮ) are positions of the P’s corners. Obstacles

are defined by subset O ¢ P, and divided into =ĥ subsets

O1 through OĤĥ (O = O1

⋃
· · · OĤĥ ). Obstacle subset O Ġ

consists of finite number of compact obstacle zones whose

. components of their center of mass are the same and

equal to .̄ Ġ . Given P and O, N = P \O define the navigable

space. The navigable space is divided into =ĥ +1 navigable

channels N0, · · · , NĤĥ , where

NĠ = [-ģğĤ, -ģėĮ] ×
[
.̄ Ġ ,.̄ Ġ+1

)
−O, 9 = 0, · · · , =ĥ, (18)

× is Cartesian product symbol, .̄0 =.ģğĤ, and .̄Ĥĥ+1 =.ģėĮ .

For better clarification, we consider the available floor area

of the SMART lab as a rectangular motion space with -ģğĤ =

.ģğĤ =−2.5 and -ģėĮ =.ģėĮ = 2.5 (See Fig. 3). For the flight

experiments, we consider 8 cylinders, based by rectangles

and diamonds, as static obstacles as shown in Fig. 9. The

obstacles are divided into three group O1 with .̄1 =−1.15, O2

with .̄2 = −0.20, and O3 with .̄3 = 1.10. The four navigable

channels N0, N1, N2, and N3, obtained Eq. (18), are colored

in purple, yellow, red, and blue, respectively.

Solution: To obtain qĢ and kĢ values over N , we first

define the boundary of navigable channel NĠ , that is denoted

by mNĠ , as follows:

mNĠ = mN1, Ġ

⋃
mN2, Ġ

⋃
mN3, Ġ

⋃
mN4, Ġ , 9 = 1, · · · , =ĥ,

(19)

where mN1, Ġ , mN2, Ġ , mN3, Ġ , and mN4, Ġ define the bottom,

right, top, and left boundaries of NĠ , respectively. We

uniformly distribute = Ġ nodes along boundaries mN2, Ġ and

mN4, Ġ while ? nodes distributed over the boundaries mN1, Ġ

and mN3, Ġ are the same for every navigable channel (for

every 9 ∈ {0, · · · , =ĥ}). As a result, the planning space is also

divided into =ĥ + 1 rectangles denoted by S0 through SĤĥ
where mS Ġ denotes the boundary of the 9-th rectangle in the

planning space.

We generate a uniform grid of size ?×= Ġ over S Ġ

⋃
mS Ġ ,

for every 9 ∈ {0, · · · , =ĥ}, as shown in Fig. 4. The boundary

conditions of the planning space are then defined as follows:

- (qĢ ,kĢ) =





qĢ (qĢ ,kĢ) ∈ mN1, Ġ

⋃
mN3, Ġ

qģğĤ (qĢ ,kĢ) ∈ mN4, Ġ

qģėĮ (qĢ ,kĢ) ∈ mN2, Ġ

(20a)

. (qĢ ,kĢ) =





kĢ (qĢ ,kĢ) ∈ mN2, Ġ

⋃
mN4, Ġ

kģğĤ (qĢ ,kĢ) ∈ mN1, Ġ

kģėĮ (qĢ ,kĢ) ∈ N3, Ġ

(20b)

for 9 = 0, · · · , =ĥ, where .̄ Ġ f kĢ f .̄ Ġ+1, qģğĤ = -ģğĤ, qģėĮ =

-ģėĮ , kģğĤ = .ģğĤ, and kģėĮ = -ģėĮ .

III. OPERATION MODES

We use the foundations provided in Section II to develop

algorithms for implementations SNCF, TVNC, TVC, and

SOLE operation modes in this section.
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Fig. 3: The SMART lab floor is defined as the motion space

P and divided into four navigable channels using Eq. (18).

Fig. 4: Transformation between NĠ (the 9-th navigable

channel) and the S Ġ .

A. SNCF Navigation

For the SNCF navigation model, set V is divided into V1

and V2 = V̄1, where V1 (C) and V2 (C) are disjoint subsets of

V defining the “healthy” and “faulty” agents, respectively,

at time C.

Definition 1. We define Cfail g C0 as the most recent time

when the status of failure of the agents has changed.

For the SNCF coordination, we make the following as-

sumptions:

Assumption 1. Angle \1 (C) is constant at any time C g C0,

where C0 is the start time of the SNCF coordination.

Assumption 2. We assume that either the sliding speed EĢ ,

used in Eq. (3), is sufficiently large, or the geometry of

the domain enclosing ℎ ∈ V̄Ģ is spacious enough, such that

every faulty agent ℎ ∈V2 remains inside a stationary vertical

cylinder after its failure is detected.

For the SNCF, we define potential and stream functions

only for the healthy agents. Thus, potential function q1,

stream function k1, V1, and \1 are denoted by q, k, V, and

\, respectively, and substituted in Eq. (14) to compute the

potential and stream functions under SNCF. By imposing

Assumptions 1 and 2, potential function q(G, H, Cfail) and

stream k(G, H, Cfail) are piece-wise time-invariant and remains

spatially-varying at any time C g Cfail until the status of

Fig. 5: Left: Motion space with streamlines shown by black

and potential lines shown by red. Right: Planning space. The

green curve in the motion space is an streamline used by an

agent 8 ∈ VĢ to avoid collision with obstacles (the projection

of the agent 8’s path is a horizontal line in the planning

space).

agents’ failures change. We apply Algorithm 2 to safely plan

coordination of healthy agents under the SNCF strategy.

Algorithm 2 Algorithm for SNCF Fluid-Flow Navigation.

1: Get: Initial time C0, number of time steps denoted by

=, time increment �C, healthy agent set V1 (C0), faulty

agent set V2 (C0), time increment �C, �ℎ = � for every

ℎ ∈ V2, \Ģ , EĢ , initial position zğ (C0) of every healthy

agent 8 ∈ V1, and initial position zℎ (C0) of every faulty

agent ℎ ∈ V2

2: Set: V = 1, : = 1, Cℎ = C0.

3: while : < = do

4: if V2 (Cġ) ≠V2 (Cġ−1) then

5: Cfail← Cġ
6: Update q (G, H, Cfail).

7: Update k (G, H, Cfail).

8: end if

9: q (G, H, Cġ) ← q (G, H, Cfail).

10: k (G, H, Cġ) ← k (G, H, Cfail).

11: Obtain zğ (Cġ+1) for every 8 ∈ V1 (Cġ) by Algorithm 1.

12: Return zğ (Cġ+1).

13: zğ (Cġ) ← zğ (Cġ+1) for every 8 ∈ V1 (Cġ).

14: :← : +1.

15: end while

B. TVNC Navigation

For the TVNC navigation model, set V is divided into

time-invariant subsets V1 and V2 = V̄1, where V1 and V2

define “cooperative” and “non-cooperative” agents, respec-

tively. The noncooperative agents have a predefined trajecto-

ries in the motion space whereas the cooperative agents uses

the navigation model, presented in Algorithm 1, to safely

update their positions and reach their target positions.

Similar the SNCF coordination model, we denote potential

function q1, stream function k1, V1, and \1 by q, k, V, and

\, respectively, and substitute them in Eq. (14) to compute

the potential and stream functions. Let zğ, Ĝ = Gğ, Ĝ + jHğ, Ĝ be

the known target position of cooperative agent 8 ∈ V1, then,

then angle \, assigning the bulk motion direction of V1 is

obtained by
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Fig. 6: The virtual box Bğ with side lengths 2X and EĢ=ă�C

used by agent 8 ∈ VĢ to estimate the possibility of colliding

an agent 9 ∈ V̄Ģ .

\ (C) = \Ģ = arg

(
∑

ğ∈V1

(
zğ, Ĝ − zğ (C)

)
)

, ∀C g C0, ; ∈M, (21)

where C0 is the initial time. We use Algorithm 3 to safely

plan coordination of every agent 8 ∈ V in a shared motion

space.

Algorithm 3 Algorithm for TVNC Fluid-Flow Navigation.

1: Get: Initial time C0, time increment �C, n > 0, �ℎ for

every ℎ ∈ V̄Ģ , \Ģ , EĢ , initial position zğ (C0) of every

cooperative agent 8 ∈ V1.

2: Set: V = 1, : = 0.

3: while
∑

ğ∈V1

��zğ (Cġ) − zğ, Ĝ
�� > |V1 | n for every 8 ∈ V1 do

4: Get zℎ (Cġ) for every ℎ ∈ V2.

5: Compute \ (Cġ) by Eq. (21).

6: Update q (G, H, \ (Cġ), Cġ) and k (G, H, \ (Cġ), Cġ).

7: Obtain zğ (Cġ+1) for every 8 ∈ V1 by Algorithm 1.

8: Return zğ (Cġ+1).

9: zğ (Cġ) ← zğ (Cġ+1) for every 8 ∈ V1.

10: :← : +1.

11: end while

C. TVC Navigation

For the TVC navigation, we enable every agent 8 ∈ VĢ

to check if there is a possibility of colliding with an agent

ℎ ∈ V̄Ģ within the next =ă time steps. To this end, we define

virtual box Bğ (C) ¢ C for every agent 8 ∈VĢ , with side lengths

2X and EĢ=ă�C, to check possibility of collision with an

agent 9 ∈ V̄Ģ within the next =ă�C seconds. To formally

specify collision avoidance condition, we define condition

Z as follows: ∨

Ģ∈M

∨

ğ∈VĢ

∨

Ġ∈V̄Ģ

(
z Ġ ∈ Bğ

)
, (Z)

where “
∨

” is used to specify “at least one”. Note that Z is

satisfied, if there exists at least one agent 9 ∈ V̄Ģ that is inside

one of the safety boxes of VĢ’s agents.

Therefore, VĢ is specified as follows:

Z =⇒
∧

Ģ∈M

(VĢ = 1) , (22a)

¬Z =⇒
∧

Ģ∈M

(VĢ = 0) , (22b)

where “
∧

” is used to specify “include all”; “ =⇒ ” means

“implies that”; and “¬” is the “negation” symbol. For the

TVC, we use Algorithm 4 to safely plan coordination of

every agent 8 ∈ V in a shared motion space.

Algorithm 4 Algorithm for TVC Fluid-Flow Navigation.

1: Get: Initial time C0, number of sample times denoted by

=, time increment �C, �ℎ for every ℎ ∈ V̄Ģ , EĢ , X, =ă ,

initial position zğ (C0) of every agent 8 ∈ VĢ and every

cluster ; ∈M.

2: Set: : = 0.

3: Set: VĢ (C0) = 0, · · · , VĢ (CĤ) = 0 for every ; ∈M.

4: for : ∈ {0, · · · , =} do

5: for ; ∈M do

6: if Z is satisfied then

7: VĢ (Cġ) = 1.

8: Get zℎ (Cġ) for every ℎ ∈ V̄Ģ .

9: end if

10: Compute \Ģ (Cġ) by Eq. (21).

11: Update qĢ (G, H, \ (Cġ), Cġ) and kĢ (G, H, \ (Cġ), Cġ).

12: Obtain zğ (Cġ+1) for every 8 ∈ VĢ by Algorithm 1.

13: Return zğ (Cġ+1).

14: zğ (Cġ) ← zğ (Cġ+1) for every 8 ∈ VĢ .

15: end for

16: :← : +1.

17: end for

D. SOLE Navigation

For the SOLE navigation, we consider operation of a

single agent team in an obstacle-laden environment, thus, < =

1 andV =V1 = {1, · · · , #} defines the identification numbers

of the agents, q(G, H) = q1 (G, H) and k(G, H) =k1 (G, H) denote

the potential and stream function, and \ = \1 is constant. We

propose the Algorithm 5 to obtain safe trajectories of every

8 ∈ V by following the motion strategy presented in Section

II. Note that “C\” and “S\” in line 15 of Algorithm 5 stand

for “cos\” and “sin\”, respectively.
IV. EXPERIMENTS AND DISCUSSION

We experimentally evaluate the performance of the pro-

posed algorithms and validate the results on a group of tiny

quadcopters (The multimedia of our experiments is available

at YouTube (Link)).

The experimental setup includes 4 major components

shown in Fig. 7: (i) Motion Capture System (MCS), (ii)

Ground Control Station (GCS), (iii) Crazyradio PA, and (iv)

Crazyflie 2.1. The MCS captures the position of the each

crazyflie in 3-D space and sends the information to the

GCS through an ethernet cable at 100Hz. The GCS is an

Intel i7 11-th gen desktop, with 16 GB of RAM running

Ubuntu 20.04 and ROS Noetic. GCS is also installed with

the Crazyswarm [25] ROS stack built by USC-ACT Lab and

acts as a centralized planner for the system. The GCS uses

the information from MCS to compute the desired states for

each crazyflie and then transmits the data to the onboard
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Algorithm 5 Algorithm for SOLE Fluid-Flow Navigation

1: Get: Initial time C0, number of sample times denoted by

=, time increment �C, O1 through OĤĥ , initial positions

zğ,0 = Gğ,0 + jHğ,0 of every 8 ∈ V, qģğĤ, qģėĮ , ?, and \.

2: Set: : = 0.

3: �q = (qģėĮ −qģğĤ) /?.

4: Determine navigable channels by Eq. (18).

5: Specify boundary conditions using Eq. (20).

6: Obtain - (q,k) and . (q,k) over P numerically, by

solving Eq. (16).

7: Obtain -ğ,0 = Gğ,0 cos\ + Gğ,0 sin\ for every 8 ∈ V.

8: Obtain .ğ,0 = Hğ,0 cos\ − Gğ,0 sin\ for every 8 ∈ V.

9: Compute associated (qğ (C0),kğ (C0)) ∈ S for every 8 ∈ V.

10: for : ∈ {0, · · · , =} do

11: for 8 ∈ V do

12: qğ (Cġ+1) ← qğ (Cġ) +�q.

13: kğ (Cġ+1) ← k (Cġ).

14: Obtain (-ğ ,.ğ) associated with (qğ ,kğ).

15: zğ (Cġ+1) ← (-ğ�\ −.ğ(\) + j(-ğ(\ +.ğ�\).

16: Return zğ (Cġ+1).

17: zğ (Cġ) ← zğ (Cġ+1) for every 8 ∈ V.

18: end for

19: :← : +1.

20: end for

Fig. 7: An overview of the experiment setup.

controller through Crazyradio PA. We conducted flight tests

at the University of Arizona’s Scalable Move and Resilient

Transversability (SMART) lab’s indoor flying area with a

volume of 5m × 5m × 2m equipped with 8 VICON motion

capture cameras. We assume that all crazyflies are flying at

the altitude of 1 m.

A. Stationary Non-Concurrent Failures (SNCF) Experiment

For this experiment, we follow the approach presented

in Section III-A where �ℎ = 0.4m (Eq. (14)). The CFs are

uniquely identified using the set V = {1, · · · ,6}. As indicated

in Table I, we have < = 2. At time C0, M = {1,2}, V is

divided intoV1 = {1, · · · ,6} andV2 = ∅. Until the first failure,

the CFs all move together represented as solid lines (See Fig.

8(a)). At Cfail1 = 2s, CF4, chosen randomly, is subjected to

failure and is wrapped by a green cylinder representing the

unsafe zone (See Fig. 8(a)). At this instant,V1 = {1,2,3,5,6}

and V2 = V \V1 = {4}. The desired paths for all CFs

belonging to V1 are computed based on algorithm 2. We

deploy another failure, CF5, in the system at Cfail2 = 12s (See

Fig. 8(b)). The sets V1 and V2 are updated: V1 = {1,2,3,6}

and V2 = {4,5}. The desired paths for the healthy CFs are

again computed until V1’s CFs have completely passed the

unsafe-zones (See Fig. 8(b)).

(a) (b)

(c) (d)

Fig. 8: (a) Location of healthy CFs at the time of first failure.

The green circle corresponds to the unsafe-zone of CF4. (b)

Desired (dashed line) versus actual (solid line) paths tracked

by CF to avoid unsafe-zones. (c) Desired (dashed line) vs

actual (solid line) paths undertaken by CFs. We can see V1

taking advantage of the recovery algorithm in order to avoid

any collision with non-cooperative CFs in setV2. (d) Desired

(dashed line) vs actual (solid line) paths tracked by CFs using

algorithm 4 when # = 6.

B. Time-Varying Non-Cooperative (TVNC) Experiment

In this experiment, we evaluate the performance of the

algorithm 3 proposed in Section III-B using < = 2 groups

of crazyflies. Specifically, at time C0, the set V = {1, · · · ,6}

is divided into time-invariant subsets V1 = {1,2,3} and V2 =

{4,5,6}. The aim of agents in V2, known as non-cooperative

agents, is to reach their goal locations quickly. Therefore,

trajectories of V2’s agents are predefined, as indicated in

Fig. 8(c) (See the green, cyan, and black paths). However,

the agents belonging to V1, termed as cooperative agents,

use the fluid-flow navigation function to safely plan paths in

the shared motion space. As shown in Fig. 8(c), cooperative

CFs 1, 2, and 3 reach their target locations by following the

red, blue, and pink paths.
C. Time-Varying Cooperative (TVC)

According to Section III-C and 4, we define the set V =

{1, · · · ,6} to uniquely identify all CFs. CFs are divided into

two groups identified by V1 = {1,2,3} and V2 = {4,5,6}.

For this experiment, we choose EĢ = 0.3m/s, X = 0.15, and
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Fig. 9: Desired (dashed line) vs Actual (solid line) paths

tracked by crazyflies using Algorithm when # = 4.

=ă = 3. We have experimentally evaluated the scenario when

\ is varying in time but constant for each individual group

of agents. This approach ensures that each agent in a group

move parallel to other agents in the group. Figure 8(d) plots

the result of our experiment.

D. Stationary Obstacle-Laden Environment (SOLE) Experi-

ment

In this experiment, we have an obstacle-laden environment

as shown in Figure 9. We follow the approach presented

in Section III-D and define the set V = {1,2,3,4}. By

implementing Algorithm 5, CF quadcopters 1 through 4

follow the paths shown in Fig. 9 to safely pass through

obstacles.

V. CONCLUSION

In this work, we proposed multiple recovery algorithms

based on ideal fluid-flow for collision-free coordination

between multiple groups of agents. Our algorithms were

able to handle different scenarios including stationary non-

concurrent failures, time-varying non-cooperative failures,

and time-varying cooperative failures. Experimental results

using teams of crazyflies displayed the advantage of our

proposed algorithms in handling different situations. Future

work on this direction include incorporating reinforcement

learning techniques.
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