
IFAC PapersOnLine 56-2 (2023) 10222–10227

ScienceDirect

Available online at www.sciencedirect.com

2405-8963 Copyright © 2023 The Authors. This is an open access article under the CC BY-NC-ND license.
Peer review under responsibility of International Federation of Automatic Control.
10.1016/j.ifacol.2023.10.901

Copyright © 2023 The Authors. This is an open access article under the CC BY-NC-ND license  
(https://creativecommons.org/licenses/by-nc-nd/4.0/)

1. INTRODUCTION

Coordination, formation control and cooperative control
are important active areas of research in the field of
Multi-Agent Systems(MAS) with a wide range of potential
applications including, but not limited to, surveillance
(Leslie et al., 2022), search and rescue operations (Kleiner
et al., 2013), and air traffic monitoring (Idris et al., 2018).
In terms of efficiency, costs, and resilience to failure, a
MAS comprised of Unmanned Aerial Vehicles (UAV) can
provide substantial benefits over a single UAV. Coopera-
tion among MAS agents improves the multi-agent team’s
capacity to recover from abnormalities. Virtual structure,
containment control, consensus control and continuum de-
formation (Rastgoftar, 2016) are some of the prominent
and existing approaches for multi-agent system coordina-
tion that have been extensively studied.

1.1 Related Work

The centralized coordination approach in which the multi-
agent formation is represented as a single structure and a
rigid body is known as Virtual Structure (Lewis and Tan,
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1997; Beard et al., 2000). Given some orientation in 3-
D motion space, the virtual structure moves in a certain
direction as a rigid body while maintaining the rigid ge-
ometric relationship between multiple agents. Consensus
control (Cao et al., 2015; Shao et al., 2018) is a decentral-
ized technique with various coordination implementations
presented such as leaderless multi-agent consensus (Ding
et al., 2019; Qin et al., 2016) and leader-follower consensus
(Wu et al., 2018). Another decentralized leader-follower
technique is containment control (Notarstefano et al.,
2011), where a fixed number of leaders guide the followers
via local communication. A multi-agent system’s finite-
time containment control has been investigated (Wang
et al., 2013; Liu et al., 2015). The criteria required and
adequate for containment control stability and conver-
gence were developed in (Cao et al., 2012; Ji et al., 2008).
Researchers investigated containment control in the con-
text of fixed and switching inter-agent communication (Li
et al., 2015).

Continuum deformation (Rastgoftar, 2016; Rastgoftar and
Atkins, 2017; Uppaluru et al., 2022) is a decentralized
multi-agent coordination technique that considers agents
as finite number of particles in a continuum that deform
and translate in 3-D space. An n-D (n = 1, 2, 3) continuum
deformation coordination has at least n+1 leaders in R

n,
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Fig. 1. An example of the configuration of a N = 67
agent team defined by set V = {1, · · · , 67}, where
V = W1

⋃
W2

⋃
W3. The set W1 = {1, · · · , 7} is

represented by red triangles where 1 through 6 are
the boundary leader agents and 7 is the core leader
agent. Set W2 = W1 ∪ {8, · · · , 13}, set W3 = W2 ∪
{14, · · · , 67} identifies all the agents in the N -agent
configuration. We also define the set T = {1, · · · , 6}
that identifies the number of unique triangles formed
by the leading polygon. Set Vj associates particular
agents enclosed by triangle j ∈ T .

positioned at the vertices of an n-D simplex at any time
t. Leaders plan the agent team’s continuum deformation
independently which are acquired by followers through
local communication. Despite the fact that both contain-
ment control and continuum deformation are decentral-
ized leader-follower approaches, continuum deformation
enables inter-agent collision avoidance, obstacle collision
avoidance, and agent containment by formally specifying
and verifying safety in a large-scale multi-agent coordi-
nation (Rastgoftar et al., 2018; Rastgoftar and Atkins,
2019). A large scale multi-agent system can safely and
aggressively deform in an obstacle-filled environment by
employing continuum deformation coordination. Experi-
mental evaluation of continuum deformation coordination
in 2-D with a team of quadcopters has been performed
previously (Romano et al., 2019, 2022; Uppaluru and Rast-
goftar, 2022).

1.2 Contributions and Outline

We advance the existing continuum deformation approach
(Rastgoftar, 2016; Rastgoftar and Atkins, 2017; Uppaluru
et al., 2022) towards multi-layer continuum deformation
(MLCD) coordination at which the desired multi-agent
deformation is planned by a finite number of leaders orga-
nized hierarchically through a feed-forward network. The
feed-forward hierarchical network consists of one input
layer receiving reference positions of the boundary agents,
p hidden layers, and one output layer. While the first p−1
hidden layers contain neurons that represent leaders, the
neurons sorted in the last hidden layer (hidden layer p)
all represent follower agents. The output layer computes
nominal position of the agent team configuration by mini-
mizing the error between nominal and desired trajectories.

The proposed MLCD overcomes the deformation unifor-
mity of the available continuum deformation coordination,
which is resulted from deformation planning by a single
Jacobian matrix. MLCD is defined as a quadtratic pro-
gramming problem with inequality safety constraints ob-
tained by eigen-decomposition of MAS spatial deformation
matrices.

The rest of the paper is organized as follows: Preliminaries
are first introduced in Section 2 followed by a detailed
description of our approach in Section 3. Safety guarantee
conditions have been presented in Section 4 before present-
ing simulation results in Section 5. Section 6 concludes the
paper.

Fig. 2. The structure of the proposed hierarchical opti-
mization approach inspired from neural networks.

2. PRELIMINARIES

We define a N -agent team as individual particles of a
deforming body navigating collectively in a 3-D motion
space. An example of the N -agent team configuration
where N = 67 is shown in Figure 1. The set V =
{1, · · · , N} is used to uniquely identify all the agents in
the team. Set V can be expressed as

V =

p⋃

k=1

Wk (1)

with subsets W1 through Wp, where W1 defines the
boundary leader agents and a single core (leader) agent
located inside the agent team configuration; W2 through
Wp−1 define the interior leaders; and Wp defines pure
follower agents. The boundary and core agents defined by
W1 are called primary leaders and npl = |W1| denotes the
number of primary leaders.

Subset Wk functions as immediate leaders for Wk+1 (for
k = 1, · · · , p − 1), which implies that desired positions of
the agents belonging to Wk+1 are obtained based upon
the desired positions of the agents in Wk. Explicitly, the
desired position of agent i ∈ Wk+1 is given by

pi(t) =
∑

j∈Wk

βi,j,kpj(t), k = 2, · · · , p− 1, (2)

where βi,j,k ∈ [0, 1], and
∑

j∈Wk

βi,j,k = 1, i ∈ Wk+1, k = 2, · · · , p− 1. (3)

The desired trajectories of agents belonging to set W1 are
calculated using

pl(t) = αl(t)al0 + s(t), ∀l ∈ W1, (4)
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where αl(t) is a positive weight parameter ∈ [αmin, αmax],
al0 specifies the constant reference (material) position of
agents l ∈ W1 at time t0, s(t) is the desired position of
the N -agent team configuration with respect to an inertial
coordinate system. Note that the reference position of the
core agent l ∈ W1 is 0, i.e. anpl

= 0.

Assumption 1. We assume that the magnitude of reference
position of every boundary leader l ∈ W1 \ {npl} is the
same and it is equal to a0. Therefore,

�

l∈W1\{npl}

(�al0� = a0) . (5)

3. PROPOSED APPROACH

We propose a hierarchical optimization framework for
safe and optimal continuum deformation coordination
of a N -agent team over the finite time interval [t0, tf ].
The proposed hierarchical structure resembles a Neural
Network (See Figure. 2) and consists of one input layer,
hidden layers, and a single output layer, where the nodes
contained by non-output layers represent agents. The
hierarchical framework is structured as follows:

As shown in Figure. 2, the input layer receives the time-
invariant reference (material) position (al0) of primary
leader agents at time t0. The first hidden layer computes
the desired trajectories of boundary and core agents using
equation (4). More specifically, in hidden layer 1, node
j ∈ W1, receives reference position aj0, and bias s(t),
to return pj(t) according to equation (4). The weights
associated with this hidden layer are coined as α(t). Every
hidden layer k ∈ {2, · · · , p} acquires desired positions from
previous hidden layer k−1 and yields the desired positions
of the agents defined by Wk by using Eq. (2). Note that
bias is 0 in these hidden layers 2 through p. The weights
associated with hidden layer k ∈ {2, · · · , p} is coined as
βk and are constant.

The output layer generates the nominal position of N -
agent team configuration which is denoted by p(t) by
averaging the desired positions of agents in Wp. Note that
p(t) is the nominal position of N -agent team configuration
at any time t ∈ [t0, tf ].

3.1 Continuum Deformation Optimization

Our objective is to determine the time-varying factors
αl(t), used in Eq. (4), for every l ∈ W1 and any
t ∈ [t0, tf ] by applying quadratic programming, assum-

ing that βk =
�

βi,j,k

�

∈ R
|Wk|×|Wk−1| is constant for

k ∈ {2, · · · , p}, where |·| denotes set cardinality. To this
end, we aim to minimize the deviation of the nomi-
nal position of N -agent team configuration, denoted by

p(t) = [px(t), py(t), pz(t)]
T
, from the desired position

s(t) = [sx(t), sy(t), sz(t)]
T
, at any time t, where the nomi-

nal position p(t) is calculated using the following equation:

p(t) =

�

px(t)
py(t)
pz(t)

�

=
1

Np

�

j

pj(t) ∀j ∈ Wp (6)

where Np = |Wp| denotes the cardinality of the set Wp.
Before further discussion, we first define α(t) as

α(t) =

⎡

⎢

⎢

⎣

α1(t) 0 . . . 0
0 α2(t) . . . 0
...

...
. . .

...
0 0 . . . αnpl

(t)

⎤

⎥

⎥

⎦

(7)

Given material position of leader l as

al0 = [al0x al0y al0z]
T
, ∀l ∈ W1, (8)

we define the following diagonal matrices:

a0x =

⎡

⎢

⎣

a10x
. . .

anpl0x

⎤

⎥

⎦
∈ R

npl×npl , (9)

a0y =

⎡

⎢

⎣

a10y
. . .

anpl0y

⎤

⎥

⎦
∈ R

npl×npl , (10)

a0z =

⎡

⎢

⎣

a10z
. . .

anpl0z

⎤

⎥

⎦
∈ R

npl×npl . (11)

Furthermore, we define matrices ∆x,∆y,∆z as follows:

∆x =
1

Np

1(1×Np)βp · · ·β2a0x ∈ R
1×npl , (12)

∆y =
1

Np

1(1×Np)βp · · ·β2a0y ∈ R
1×npl , (13)

∆z =
1

Np

1(1×Np)βp · · ·β2a0z ∈ R
1×npl . (14)

Using the definitions above, and by defining the state

vector X =
�

α1, · · · , αnpl
, sx, sy, sz

�T
∈ R

(npl+3)×1, we
write individual components of nominal position p(t) as

px(t) = [∆x 1 0 0]X(t) = RXX(t) (15)

py(t) = [∆y 0 1 0]X(t) = RY X(t) (16)
pz(t) = [∆z 0 0 1]X(t) = RZX(t) (17)

where RX ,RY ,RZ are of shape (1, npl + 3).

The objective of the quadratic programming problem is
assign X by solving the following optimization problem:

minimize
X

1

2
XTHX+ kTX (18)

subject to the following inequality and equality con-
straints:

AineqX ≤ Bineq, (19a)
AeqX = Beq(t), (19b)

where

Aineq =

�

−I(npl−1)×(npl−1) 0(npl−1)×4

I(npl−1)×(npl−1) 0(npl−1)×4

�

(20)

Bineq =

�

−αmin × 1(npl−1)×1

αmax × 1(npl−1)×1

�

(21)

Aeq =
�

04×(npl−1) diag[1, 1, 1, 1]
�

(22)

Beq(t) =

⎡

⎢

⎣

0
sx(t)
sy(t)
sz(t)

⎤

⎥

⎦
(23)

H = ζI(npl+3)×(npl+3) +RT
XRX +RT

Y RY +RT
ZRZ (24)

kT = −2(sxRX + syRY + szRz) (25)

I(npl−1)×(npl−1) ∈ R
(npl−1)×(npl−1) is an identity matrix

and 0(npl−1)×4 ∈ R
(npl−1)×4 is a matrix of zeros in Eq.
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(20). Also, 1(npl−1)×1 ∈ R
(npl−1)×1 represents a vector

of ones in Eq. (21). In Eq. (24), ζ > 0 is a small
positive number and I(npl+3)×(npl+3) ∈ R

(npl+3)×(npl+3)

is an identity matrix. αmin and αmax are the minimum
and maximum values of αl(t).

4. SAFETY CONDITIONS

To ensure safety of the multi-agent team continuum de-
formation, we provide inter-agent collision avoidance and
agent containment conditions by determining αmin and
αmax as discussed in sections 4.1 and 4.2 below.

4.1 Collision Avoidance

The desired configuration of the agent team is contained by
the leading polygon consisting of npl−1 triangles that are
defined by the set T = {1, · · · , npl − 1}. We can express
set V as

V =
�

j∈T

Vj , (26)

where Vj identifies particular agents enclosed by triangular
cell j ∈ T . Because desired trajectories of the agents are
defined by piece-wise affine transformations in Eqs. (2) and
(4), the desired position of agent i ∈ Vj can be given by

pi(t) = Qj(t)ai0 + bj , j ∈ T , i ∈ Vj (27)

with nonsingular Jacobian matrix Qj ∈ R
3×3 and rigid-

body displacement vector bj ∈ R
3×1, where ai0 is the

reference position of agent i ∈ Vj .

We denote λ1,j(t) > 0, λ2,j(t) > 0, and λ3,j(t) as
the eigenvalues of pure deformation matrix Uj(t) =
�

Qj(t)
TQj(t)

�
1

2 , and make the following assumptions:

Assumption 2. Every agent i can be enclosed by a ball of
radius �.

Assumption 3. Every agent i can stably track the desired
trajectory pi(t) such that the tracking error does not
exceed δ. This implies that

�ri(t)− pi(t)� ≤ δ, ∀t (28)

where ri(t) and pi(t) denote the actual and desired posi-
tions of agent i ∈ V at time t.

By evoking the theorem developed in Ref. (Rastgoftar and
Kolmanovsky (2021)), inter-agent collision avoidance is
assured in j ∈ T , if

min {λ1,j(t), λ2,j(t), λ3,j(t)} ≥
2 (δ + �)

pmin,j

, j ∈ T , ∀t,

(29)
where pmin,j is the minimum separation distance between
every two agents inside j ∈ T . Then, inter-agent collision
avoidance between every two agents in V is assured, if

αmin = max
j∈T

2 (δ + �)

pmin,j

(30)

assigns a lower bound on αi(t) for every i ∈ W1 at any
time t.

4.2 Agent Containment

We can assure that every agent remains inside a ball of
radius amax, if

αmax =
amax − 2 (δ + �)

a0
(31)

where a0 is the reference position of boundary leaders’ (See
Assumption 1). Also, δ is the control tracking error bound
and � is radius of the circle enclosing every agent i, as they
were introduced in Section 4.1.

5. SIMULATIONS

The simulations for this study were conducted on a desk-
top computer equipped with an Intel i7 11-th gen CPU, 16
GB of RAM, and running MATLAB R2022b on Ubuntu
20.04. We investigated the evolution of a multi-quadcopter
system (MQS) consisting of N = 67 quadcopters, which
were assumed to have similar size and attributes. The
quadcopters’ dynamics were modelled based on the work
by Rastgoftar (2022) (Rastgoftar, 2022) and the quad-
copter parameters can be found in Gopalakrishnan (2017)
(Gopalakrishnan, 2017).

The quadcopters are identified by unique index numbers
defined by the set V = {1, · · · , 67} with primary leader
quadcopters defined by W1 = {1, · · · , 7}. The interior
leader quadcopter are given by the set W2 = {8, · · · , 13}
and the followers are denoted uniquely using the set
W3 = {14, · · · , 67}. Therefore, for this simulation we have
p = 3. The minimum and maximum values assigned for
the weights α(t) are in the range [0.6, 5.0]. The objective is
to determine these weights using Quadratic Programming
such that inter-quadcopter collision avoidance is guaran-
teed (See Section 4) in the MQS.

For time t in the range [0, T ], the large-scale quadcopter
team is supposed to move in an obstacle-free environment
from an initial configuration, shown in Figure 1, until
final time T is reached while tracking the desired helix
trajectory. The desired helix trajectory (Lee et al., 2010)
is generated as follows:

s(t) =

�

sx(t)
sy(t)
sz(t)

�

=

�

0.4ωt
0.4 sin(πωt)
0.6 cos(πωt)

�

(32)

where ω = 0.01 and T = 1000 s. The reference (material)
positions of the primary leaders are given by

⎡

⎣

a10x · · · anpl0x

a10y · · · anpl0y

a10z · · · anpl0z

⎤

⎦ =

�

20 10 −10 −20 −10 10 0
0 10 10 0 −10 −10 0

−1 1 1 −1 1 1 0

�

(33)
In our MATLAB simulations, the state vector X is defined

as X = [α1, α2, α3, α4, α5, α6, α7, sx, sy, sz]
T
. From equa-

tion (24), we observe that H depends on constant weights
βi,j,k for k = {2, · · · , p} and constant reference (material)
configuration al0. Therefore, H is constant for all time t.
However kT depends on time-varying desired trajectory
s(t). In Figure 4, optimal values of α(t) obtained through
quadratic programming have been plotted. Using input-
output feedback linearization control approach (Rastgof-
tar, 2022), Figure 5 plots x-position component, y-position
component, z-position component, rotors’ angular speeds
and thrust force magnitude of quadcopter 67 ∈ W3, re-
spectively.

6. CONCLUSION

This paper has developed and presented a leader-follower
model for large-scale safe and optimal continuum defor-
mation coordination by formulating the optimization as
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Fig. 3. Configurations of the MQS at various times while tracking the desired helix trajectory.

(a) (b)

(c) (d)

(e) (f)

Fig. 4. α(t) for simple helical path

quadratic programming problem. We take inspiration from
graphical structure of a neural network to develop a hier-
archical optimization framework and obtain time-varying
weights over time t ∈ [t0, tf ] using constant reference

(a) (b) (c)

(d) (e)
Fig. 5. (a) Desired (green) vs Actual (red) x-position

component, (b) Desired (green) vs Actual (red) y-
position component, (c) Desired (green) vs Actual
(red) z-position component, (d) Angular speeds of
rotors, (e) Thrust force magnitude for quadcopter
agent 67.

(material) configuration of the agents as the input. We
also provided conditions to assure safety between every
two agents while the desired trajectory is tracked by the
nominal position of the MAS with minimal deviation. As
implied by our simulation results, our approach consisting
of N = 67 quadcopters is able to track a known target
trajectory in 3-D motion space. Future work in this area
can be further extended by making the algorithm more
robust as follows: (1) by extending the approach to an
obstacle-laden environment integrated with path-planning
algorithms such as A∗; (2) integrate our previously pro-
posed fluid flow navigation function (Uppaluru et al., 2022;
Romano et al., 2022; Emadi et al., 2022) as an obstacle-
avoidance algorithm to account for sudden and abrupt
failures in the multi-agent system (MAS); and (3) conduct
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flight experiments to pass through a different windows of
known shape and size.
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