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Abstract— Increasing penetration of distributed energy re-
sources is fueling the evolution of our centralized electric grid to a
multi-agent system. System-level performance of multi-agent net-
works greatly depends on the communication and computational
capabilities of nodes (customers). The equitable representation of
customers with limited access to communication bandwidth (e.g.,
caused by sporadic internet access) or computational power (e.g.,
due to the age of their device) is not well-understood. To this
end, this paper investigates equity in the context of multi-agent
power systems and showcases the adverse impacts of overlooking
struggling nodes. The case studies leverage the Consensus +
Innovations approach to simulate the behavior of a multi-agent
power system.

Index Terms—distributed optimization, energy aggregation,
energy equity, energy justice, multi-agent systems

NOMENCLATURE

i Agent index
NN Number of power system nodes (agents)
A Set of agents in the power system
c1,i, c2,i Generators cost function parameters
PGi Electric output of agent i
PLi Electric demand of agent i
PGi

, PGi Agent i’s minimum/maximum output limit
ΩB Set of generators reaching minimum generation

limit in the energy aggregation
ΩB Set of generators reaching maximum generation

limit in the energy aggregation
λt
i Lagrangian multiplier of agent i at iteration t

P t
Gi

Electric output of agent i at iteration t
λ∗
i Lagrangian multiplier of agent i at the optimal

point
(P 0

Gi
)∗ Optimal electric output of agent i at previous

iteration
P 0
Li

Electric demand of agent i at previous iteration
βt+1
i , αt+1

i Tuning parameters of agent i at iteration t+ 1
Ωi Set of agent i’s neighbors
Nm Maximum number of iterations for Consensus +

Innovations process
f Objective function value
f∗ Optimal objective function value

I. INTRODUCTION

The evolution of the electric power grid is driven by
connectivity and autonomy. In its broad sense, autonomy
refers to independence in decision-making, inference, energy
production, or storage. Wide-spread connectivity is the result
of continuous digitalization [1] [2]. These transitions result in

increased distributedness and collected data volume [3]. Dis-
tributed information processing methods lend themselves well
to processing vast amounts of heterogeneous and distributed
data shared among multiple entities. Unlike today’s centralized
configuration, distributed methods fit well to facilitate infor-
mation fusion across multi-agent systems [4]. These multi-
agent methods’ scalability, privacy preservation, and robust-
ness have drawn much research interest [5]. In the framework
of networked infrastructures, an agent is broadly defined
as a node or a set of nodes that can execute computation
or communication tasks. Multi-agent optimization methods
establish a collaborative framework among agents to solve
problems through local computations and communications. [2]
These methods aim to reduce computational complexity while
preserving privacy. [6]

Energy system transition makes addressing energy equity
issues even more challenging [7]. Energy equity (Energy
justice) aims to attain equity in both the social and economic
participation in the energy system, particularly stressing the
concerns of marginalized groups to make energy more ac-
cessible, affordable, clean, and fair-coordinated for all groups
[8]. Put differently, central aspects of energy equity such as
energy costs [9], air pollution [10], and assets costs [11]
need to be addressed in the context of an evolving multi-
entity complex system. Vulnerability to increased energy cost
can be considered as an immediate impact on low-income
customers (agents) with a limited budget to adopt energy
efficiency solutions (e.g., smart meters, roof-top solars) [9].
According to authors in [12], merely 5.8% of total roof-top
PV installed is owned by low-income households. Households
with roof-top solar enjoy reduced energy bills and are less
exposed to distribution grid tariffs [7] [8]. This disparity
means the benefits are concentrated on wealthy households
(agents) instead of equally distributed [13]. Even worse, the
lack of access to clean energy might cause air pollution
in their living areas. In addition, vulnerable agents suffer
from disconnection problems [14]. In a multi-agent system,
communication between agents is crucial to the performance
of distributed optimization methods [15]. Sporadic and weak
connectivity can widen the energy equity gap and further
impact marginalized agents of future multi-agent energy sys-
tems. This paper intends to draw readers’ attention to the
impact of (computation and communication) access inequities
on system-level coordination.
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Recent works have addressed energy equity problems from
different aspects. The author in [8] raises several energy
justice-related challenges that power system engineers need to
address to pursue energy equity, including equity in electricity
planning, system operation and control, distributed energy
resources coordination, electricity rate, and demand response
program design, and reducing bias in data-driven algorithms.
The authors in [7] study challenges for energy equity in
multi-agent systems at three levels: intra-agent, inter-agent,
and interactions between agents and the grid operator agent.
From an economic perspective, [16] and [17] study the equity
impacts of electricity tariffs and the influence of energy equity
on the prices of agricultural commodities, respectively. More-
over, [18] mathematically models the cost-effectiveness of an
equitable transition from fossil fuels to clean energy sources.
Author in [10] assessed current energy justice programs in the
US and found out that most of the programs addressing the
equity problems are managed by non-profit organizations and
vary in implementation strategies. Similarly, the author in [19]
investigated how energy justice is pursued in renewable energy
communities (RECs) from 71 European cases and concluded
that some RECs actively contribute to energy justice by
providing necessary resources to vulnerable groups. However,
they need support and regulations from national legislation for
better services. The relationships between energy equity and
race [9] and gender [20] have been reviewed by researchers
as well. While there has been extensive literature work on
different aspects, to the authors’ best knowledge, the inequity
challenges of marginalized agents (e.g., with sporadic com-
munication access) in the context of system-wide aggregation
strategies are not broadly modeled and evaluated [8].

Specifically, this paper studies how marginalized agents with
unstable communication will be represented in system-level
results of multi-agent problem-solving. To this end, we will
build on our models on the foundation of our extensive prior
works on distributed consensus-based optimization methods
[4] [6]. Specifically, we will leverage our pioneering work on
the Consensus + Innovations method to solve optimization
problems in multi-agent collaborative setups [4]. In this setup,
the Consensus term enforces agreement among agents, while
the Innovations term ensures that local constraints are satisfied.
This approach has been widely adopted for solving Economic
Dispatch (ED) [4], Security Constrained Optimal Power Flow
[15], among many other optimization problems. Although the
discussions are presented for solving the aggregation problem,
our findings apply understanding energy equity in the context
of various multi-agent energy optimization problems.

The rest of the paper is structured as follows. Section II
includes the mathematical models of the aggregation prob-
lem and Consensus + Innovations approach and disruption
modeling. Simulation settings and results are demonstrated in
Section III. This section will use the IEEE 118-bus system and
compare the results from four different scenarios with various
communication line instabilities in normal and contingency
times. Finally, Section IV concludes this paper.

II. MATHEMATICAL MODELS

This section introduces the mathematical models of the
energy aggregation problem and the Consensus + Innovations
multi-agent solution approach.

A. Energy Aggregation Problem

We adopt a multi-agent view of the electric network, where
each agent (power system node) denotes individual electric
demand, generation, or a combination of both. The electric
connections in this setup enable power transfer between nodes
and constitute the links of the power network. Given these
preliminary definitions, the aggregation problem seeks to
minimize the system-level energy cost while persevering the
supply-demand balance and satisfying the physical limitations
node’s assets.

The system-level cost is modeled as a quadratic function
of energy generation cost, and the centralized aggregation
optimization problem is formulated as,

min
PGi

NN∑

i=1

Ci(PGi) =
NN∑

i=1

(c1,iP
2
Gi

+ c2,iPGi) (1)

s.t.
NN∑

i=1

PGi =
NN∑

i=1

PLi (2)

PGi
≤ PGi ≤ PGi (3)

The Lagrange multiplier of (2) is regarded as the price signal
(λ), which is the same among agents that have not reached
limits of (3). To solve (1)-(3), we remove the inequality con-
straints on generation to simplify the problem. The Lagrangian
function of the above optimization problem reduces to,

L =
NN∑

i=1

Ci(PGi) + λ ·
(

NN∑

i=1

PLi −
NN∑

i=1

PGi

)
(4)

Deriving the first-order optimality conditions gives,
∂L
∂PGi

= 2c1,iPGi + c2,i − λ = 0 (5)

∂L
∂λ

=
NN∑

i=1

PLi −
NN∑

i=1

PGi = 0 (6)

Assume that λ∗ and P ∗
Gi

give the solution to (5) and (6).
Thus,

λ∗ =

(
NN∑

i=1

1
2c1,i

)−1 (NN∑

i=1

PLi +
NN∑

i=1

c2,i
2c1,i

)
(7)

The above λ∗ describes the Lagrange multiplier for nodes
with non-biding inequality constraints. The following equa-
tions represent a generalization of it.

2c1,iP
∗
Gi

+ c2,i − λ∗ = 0, i /∈ ΩB ∪ ΩB (8)
P ∗
Gi

= PGi , i ∈ ΩB (9)
P ∗
Gi

= PGi
, i ∈ ΩB (10)

Here, ΩB ∪ ΩB refers to the set of non-binding variables.
Thus, (7) can be updated as
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λ∗ =

⎛

⎝
∑

i/∈ΩB∪ΩB

1
2c1,i

⎞

⎠
−1 ⎡

⎣
NN∑

i=1

PLi −
∑

i∈ΩB

PGi

−
∑

i∈ΩB

PGi
+

∑

i/∈ΩB∪ΩB

(
c2,i
2c1,i

− PGi

)⎤

⎦ (11)

Thus, we can analytically find λ∗ and P ∗
Gi

for a centralized
aggregation problem by (8)-(11).

B. Consensus + Innovations Approach

The Consensus + Innovations approach aims to find solu-
tions for the energy aggregation problem in a fully distributed
manner [4]. In this iterative approach, agents collaborate to
solve the energy aggregation problem (1)-(3) through local
computations and communication with neighboring agents.
Consequently, we first make local copies of the ”consensus
variable” (i.e., λ) and allocate each copy to an agent (power
grid node). Then the Consensus term in the algorithm enforces
consensus among all agents while the Innovations term ensures
that local constraints are satisfied. Agents cooperate to make
an agreement on local copies of λ while obtaining the optimal
value for the nodal generation to preserve the supply and
demand balance locally. In a nutshell, this process aims to
solve the optimality conditions of the underlying optimization
problem (energy aggregation) in a fully distributed fashion.

Based on our prior work [4], we update the optimization
variables for this energy aggregation problem iteratively as
follows,

λt+1
i = λt

i − βt+1
i

∑

j∈Ωi

(λt
i − λt

j)− αt+1
i (P t

Gi
− PLi) (12)

P t+1
Gi

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

λt+1
i −c2,i
2c1,i

, 0 ≤ λt+1
i −c2,i
2c1,i

≤ PGi

PGi ,
λt+1
i −c2,i
2c1,i

> PGi

0,
λt+1
i −c2,i
2c1,i

< 0

(13)

Our prior works show that the updates in (12) (13) converge
to the optimal solution as long as the communication topology
forms a connected graph and α and β are properly tuned
[4], [15]. Further, if we have knowledge about the previous
instances of solving the underlying optimization problem, we
can adjust (12) to,

λt+1
i = λt

i − βt+1
i

∑

j∈Ωi

(λt
i − λt

j)

− αt+1
i (P t

Gi
− (P 0

Gi
)∗ − PLi + P 0

Li
) (14)

In each iteration, each agent i performs the updates locally
and shares the updated values of λi with the neighboring
agents until the consensus on λ is reached and optimality
conditions of (1)-(3) are fulfilled. Mathematically, we define
the convergence criterion as the difference between the local
λi and optimal λ∗. This value is compared against a predefined
threshold (ε) so that,

|λi − λ∗| ≤ ε, ∀i ∈ A (15)

C. Disruption Modeling

In our multi-agent cyber-physical infrastructure, each node
is an agent. In addition to the physical power lines connecting
agents, there are communication lines supporting communica-
tion between agents. This paper assumes that the communi-
cation topology is the same as the physical connections (i.e.,
physics-based communication), which means communication
only occurs between electrically connected nodes.

The promise of this paper is to examine the need for
equitable aggregation and we evaluate our primary hypothesis
by considering two scenarios for struggling agents (nodes):
(i) lack of access to reliable communication and (ii) spo-
radic communication in the face of physical disruptions. As
described in Section II-B, agents need to exchange local
λ in each iteration to reach convergence. Under unreliable
communication, each agent i cannot receive the latest λi from
neighboring agents in Ωi. Instead, agents may use the last
communicated λ value (prior to the disruption) in upcoming
iterations. During physical disruptions, agent i may lose com-
munication and physical connections with some neighbors. Put
differently, the set of neighboring agents Ωi will be a function
of iterations, i.e., Ωi(k). The Consensus + Innovations update
(outlined in (14)) skips the communication between disrupted
physical lines.

III. SIMULATIONS & RESULTS

A. Test Setup and Initializations

We evaluated our algorithm using the IEEE 118 bus (node)
test system [21]. Without loss of generality, we randomly
choose three agents as struggling agents (nodes): agent 5,
agent 35, and agent 95. We assume these agents experience
disruption in communication with other agents. However, these
disruptions do not lead to islanding. The disrupted connections
are between agents 5 and 3, 5 and 4, 5 and 6, 5 and 8, 35
and 36, 95 and 96. We simulate the disruptions by breaking
them off at a specific iteration during Consensus + Innovations
update process.

Table I presents four scenarios of interest. Scenarios 1 and
2 are unreliable communication without disruption of physical
power lines. The disruption in communication restores before
Consensus + Innovations updates end (Scenario 1) or stays
disconnected before Consensus + Innovations updates termi-
nate (Scenario 2). In both scenarios, Consensus + Innovations
uses the last communicated value before the disruption. For
Scenarios 3 and 4, we have physical disruptions in addition to
sporadic communication. We assume that physical disruption
stays unresolved until the end of Consensus + Innovations
process. Thus, Consensus + Innovations process skips the
communication between disrupted physical lines. For compar-
ison, we propose Scenario 0 (no disruption) as a baseline. The
convergence performance of Scenario 0 is shown in Fig. 1.

We will use a high-quality starting point to initialize λ and
PG. We set the convergence threshold ε = 0.05 in (15), and
the maximum number of iterations Nm = 600. Our tests are
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TABLE I
FOUR SCENARIOS OF CONNECTION DISRUPTIONS.

Communication Line Physical Power Line
No Disruption Disruption

Disrupted and Recovered Scenario 1 Scenario 3
Disrupted but Not Recovered Scenario 2 Scenario 4

Fig. 1. Convergence performance for Scenario 0 (no disruption). The vertical
dashed line indicates the iteration that the convergence criterion is met. The
horizontal dashed line shows the initial value (initial price). The horizontal
solid line shows the optimal value. [a] shows λ of all agents throughout
iterations. [b] presents the relative distance of the objective function value
REL = |f − f∗|/f∗.

performed using PyCharm (Version 2022.3.2) platform with
Python 3.6 environment on a MacBook Pro (Intel, 2020).

B. Testing Results
1) Lack of Access to Reliable Communication: In this case,

communication lines associated with struggling agents are
disrupted but physical power lines stay intact. We disconnect
communication lines at the 20th iteration for Scenario 1 and
2 and reconnect them at the 400th iteration only for Scenario
1.

To display the convergence process, we illustrate the evo-
lution of optimization variables and convergence metrics
throughout iterations in Fig. 2 and 3. Scenario 1 takes 555
iterations to converge and Scenario 2 fails to converge. As it
can be observed from Fig. 2 [b] and 3 [b], there is a large
error and divergence between Scenario 0 and Scenarios 1 and
2. This is due to using the outdated communicated value to
compensate for sporadic communication during Consensus +
Innovations updates. This misleads the consensus away from
the correct value. It is only when the communication recovers
that the error decreases again (Fig. 2 [b]) . Similar results for
communication lines disconnected at the 50th iteration and
reconnected at the 150th iteration are shown in Table II. But
the disruption is less detrimental as it starts later and terminates
earlier.

TABLE II
NUMBER OF ITERATIONS UNTIL CONVERGENCE FOR FIVE SCENARIOS

UNDER TWO SETS OF DISRUPTION AND RECOVERY ITERATIONS.

Disruption 50,
Recovery 150

Disruption 20,
Recovery 400

Scenario 0 295 295
Scenario 1 305 555
Scenario 2 387 N/A
Scenario 3 295 314
Scenario 4 315 314

Fig. 2. Convergence performance for Scenario 1. The vertical dashed lines
(from left to right) indicate the iteration when communication lines are
disrupted, the iteration when communication lines recover, and the iteration
when the convergence criterion is met. The horizontal dashed line shows the
initial value (initial price). The horizontal solid line shows the optimal value
(target price). [a] shows λ of all agents throughout iterations. [b] presents the
relative distance of the objective function value REL = |f − f∗|/f∗, with
the red curve for Scenario 0 and the blue curve for Scenario 1.

Fig. 3. Convergence performance for Scenario 2. The vertical dashed lines
(from left to right) indicate the convergence criterion is not met and the
iteration when communication lines are disrupted. The horizontal dashed line
shows the initial value (initial price). The horizontal solid line shows the
optimal value. [a] shows λ of all agents throughout iterations. [b] presents
the relative distance of the objective function value REL = |f − f∗|/f∗,
with the red curve for Scenario 0 and the blue curve for Scenario 2.

2) Sporadic Communication in the Face of Physical Dis-
ruptions: In this case, physical power lines associated with
struggling agents are disconnected and cannot recover before
Consensus + Innovations updates end. In Scenario 3, the com-
munication recovers before Consensus + Innovations updates
end. For Scenario 4, the communication stays disconnected.
We disconnect a few communication lines at the 20th iteration
for Scenarios 3 and 4 and reconnect them at the 400th iteration
only for Scenario 3.

We depict the convergence process of optimization variables
and convergence metrics in Fig. 4 and 5. It could be observed
from [a] that both scenarios converge to the optimal value. In
[b], the converge behavior of both scenarios matches scenario
0. Note both Scenarios take 314 iterations to converge. The
converging iteration is the same as they reach convergence
before the reconnecting iteration. The convergence speed is
close to Scenario 0, which is 295. Considering results for
communication lines disconnected at the 50th iteration and
reconnected at the 150th iteration in Table II, Scenario 3
is almost unaffected by disruptions. Therefore, we consider
skipping the communication of disconnected lines during
communication disruption a promising direction for further
research to safeguard energy equity.
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Fig. 4. Convergence performance for Scenario 3. The vertical dashed
lines (from left to right) indicate the iteration when communication lines
and physical power lines are disrupted, the iteration when the convergence
criterion is met, and the iteration when communication lines recover. The
horizontal dashed line shows the initial value (initial price). The horizontal
solid line shows the optimal value. [a] shows λ of all agents throughout
iterations. [b] presents the relative distance of the objective function value
REL = |f − f∗|/f∗, with the red curve for Scenario 0 and the blue curve
for Scenario 3.

Fig. 5. Convergence performance for Scenario 4. The vertical dashed lines
(from left to right) indicate the iteration when communication lines and
physical power lines are disrupted and the iteration when the convergence
criterion is met. The horizontal dashed line shows the initial value (initial
price). The horizontal solid line shows the optimal value. [a] shows λ of all
agents throughout iterations. [b] presents the relative distance of the objective
function value REL = |f − f∗|/f∗, with the red curve for Scenario 0 and
the blue curve for Scenario 4.

IV. CONCLUSION

This paper investigates energy equity in the context of multi-
agent power systems and demonstrates the adverse impacts
of overlooking struggling nodes. The case studies utilize the
multi-agent Consensus + Innovations approach to simulate the
behavior of a multi-agent power system under two cases: lack
of access to reliable communication and lack of access to
reliable communication in the face of physical disruptions. Our
simulation results show that connection issues with struggling
nodes (agents) can lead to system-level divergence. Put differ-
ently, ignoring struggling agents (that are facing inequitable
access) can result in system-level disruptions.

Current multi-agent systems lack the awareness of energy
equity issues and usually overlook the connection problems
between struggling nodes. We highlight this drawback by
simulating four scenarios for possible communication and
physical power line connection disruptions using IEEE 118
node test system. We will perform extensive simulations on a
large-scale system with randomly selected struggling nodes to
infer the significance of their connection problems. In addition,
further strategies should be taken to reduce the effect of
struggling nodes and ensure equitable coordination.
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