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1 Introduction

The parton distribution functions (PDFs) and fragmentation functions (FFs) are two
important quantities in particle physics to understand the dynamics of a parton inside a
hadron. These functions have been studied extensively both by experiment and theory
hadron physics community [1]. In the last decade, the hadron physics community proposed a
new kind of distribution function called transverse momentum dependent (TMD) distribution
functions to extend this studies [2, 3]. These TMD functions provide information on a
parton carrying a certain amount of longitudinal momentum fraction x and transverse
momentum kT inside a nucleon, which can be used to probe the quantum correlation
between the nucleon spin and active quark or gluon polarization as well as its motion. The
measurement of TMD observables provides the leading information on the three-dimensional
imaging of a nucleon.

The TMD factorization and resummation framework offer a bridge between TMD
functions and observations, which was originally obtained by Collins, Soper and Sterman
in [4, 5] and has also been derived in Soft-Collinear Effective Theory (SCET) [6–10] based
on renormalization group (RG) methods [11–13]. In the small transverse momentum
limit, the differential cross section can be factorized as the product of the hard factor and
TMD functions at the leading power. Therefore, one can directly probe TMD functions
via different processes, including the Drell-Yan, semi-inclusive deep-inelastic scattering
(SIDIS) and back-to-back two hadron production in e+e− collisions. The universality of
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the non-perturbative parametrization of TMD functions has been investigated extensively
in [14–25]. In the context of the small-x limit, the naive TMD factorization formula at the
leading-power might no longer apply, and numerous studies have addressed TMD functions
with considerations for gluon saturation effects [26–30]. Conversely, as x approaches larger
values, the underlying factorization theorem of leading-power TMD factorization remains
robust; nonetheless, the associated resummation formula begins to incorporate non-negligible
logarithmic contributions. Intriguingly, recent lattice QCD simulations [31] demonstrate
that in this large x regime, lattice results show inconsistencies with the predictions of
various existing non-perturbative parametrization of TMD PDF models [19, 20, 24, 25].
Extending our comprehension of TMD functions in this limit is thus of pivotal importance.
This study aims to extend our understanding of TMD functions in the large x limit.

In the threshold limit, the phase space for real radiation is restricted, and then the
infrared cancellations between real and virtual diagrams leave behind large logarithms
∼ ln(1− x). Therefore, near the threshold limit, it becomes necessary to take into account
these large logarithmic corrections to all orders to have a reliable theoretical prediction.
In the Mellin space, these large logarithms are transformed into powers of logarithms of
the Mellin variable N . A systematic approach has been proposed to resum these large
logarithms to all order [32, 33] in the Mellin space and the technique is known as threshold
resummation. It is noted that, unlike the TMD resummation, the singular threshold
logarithms do not appear explicitly in the physical cross section, since they are always
convoluted with PDFs or FFs at the hadron level. After analyzing the dynamical origins
of the large corrections in both threshold and TMD resummations, the joint resummation
framework of threshold and TMD logarithms was first developed in [34]. Such a framework
has been applied in various processes [35–39] at hadron colliders. Later on, a factorization
and resummation formalism based on SCET+ [40, 41] was introduced in [42, 43], which
can be used to perform resummation calculation beyond the next-to-leading logarithmic
(NLL) accuracy.

In this paper, we introduce a new type of unpolarized TMD functions, threshold-TMD
distribution functions, within the joint threshold and TMD factorization and resummation
framework. We apply the crossed threshold resummation method [44] to find a close
correspondence between resummation for Drell-Yan, SIDIS and e+e− processes. Therefore,
one can obtain the resummation formula for each of the processes using the same procedure.
In the joint limit, the cross section is factorized as the product of hard factor and threshold-
TMD functions, including threshold-TMD PDFs and FFs, and the structure of the logarithms
turns out to be identical. Among these three processes, we have the universality among
these unpolarized threshold TMDs (TTMDs). Explicitly, we find

fTTMD
q/p (x,kT , Q)

∣∣
SIDIS = fTTMD

q/p (x,kT , Q)
∣∣
DY, (1.1)

DTTMD
h/q (z,pT , Q)

∣∣
SIDIS = DTTMD

h/q (z,pT , Q)
∣∣
e+e− . (1.2)

This property also appears in the standard TMD factorization and resummation formula,
which is very useful in the global fitting of different sets of TMD functions. In principle,
such property of universality can also be generalized to the polarized TMD functions, which
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will be discussed thoroughly in future work. In this paper, we present the numerical results
on the unpolarized threshold-TMD functions and also the transverse momentum cross
section in three processes. In numerics, we restrict ourselves to resummation at NLL, which
captures the main effects in the QCD evolution.

The rest of this paper is organized as follows. In section 2, we first review the
factorization theorem in the joint threshold and small transverse momentum limit for
the Drell-Yan process. Then, we introduce the definition of threshold-TMD PDFs and
write down the corresponding QCD evolution function. In this section, we also briefly
show the factorization theorem for SIDIS and e+e− processes and give the definition of
threshold-TMD FFs. We present the numerical results in section 3, where we first give
the numerical predictions of the transverse momentum distribution for threshold-TMD
PDFs and FFs, and then discuss the cross section for Drell-Yan, SIDIS and also e+e−. We
conclude in section 4. The details of perturbative results of the collinear-soft function are
provided in the appendix A. We also collect the fitting parameters of PDFs and FFs used
in our numerics in the appendix B.

2 Factorization and resummation formalism

This section presents the factorization theorems for processes, characterized by the leading
order partonic reaction qq̄ → γ∗ or one of its crossed versions, in the joint threshold and
small transverse momentum limits. First, we show the factorization theorem for the Drell-
Yan process and present our definition of threshold-TMD PDFs based on RG equations.
Then, we generalize our results to SIDIS and e+e− processes and introduce the definition
of threshold-TMD FFs, which captures both soft gluons and TMD evolution effects for the
inclusive hadron production.

2.1 Theory formalism in Drell-Yan

For simplicity, we consider the Drell-Yan process mediated by a virtual photon with time-like
momentum qµ,

h1(P1) + h2(P2)→ γ∗(q)→ l+ + l− +X, (2.1)

where X denotes the undetected hadronic particles in the final state. The standard TMD
factorization theorem reads

d4σDY

d2qT dQ2dY = σDY
0
s
HDY(Q,µ) (2.2)

×
∫ d2bT

4π2 e
iqT ·bT

∑
q

e2
qf

TMD
q/h1

(x1, bT , µ, ζ)f TMD
q̄/h2

(x2, bT , µ, ζ) +O(q2
T /Q

2),

where qT , Q and Y denote the transverse momentum, invariant mass and rapidity of
final-state lepton pairs respectively. The differential cross section is factorized in terms of
hard factor H(Q,µ) and TMD PDFs fTMD

q/hi
(xi, bT , µ, ζ) from two colliding beams where µ

and ζ denote the factorization and Collins-Soper scale respectively, and the soft function has
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been subtracted as in the standard redefinition procedure [45, 46]. Here q runs over quarks
and anti-quarks participating in the hard scattering, and eq denotes the corresponding
charges. The light-cone momentum fractions of the hadron h1,2 carried by the partons are
denoted by x1,2, which can be expressed as

x1 =
√
τDYe−Y , x2 =

√
τDYeY , with τDY ≡ Q2

s
and s ≡ (P1 + P2)2. (2.3)

In addition, for simplicity, we define the Born cross section as

σDY
0 ≡ 4πα2

em
3NcQ2 , (2.4)

with the number of color Nc = 3 and the fine structure constant αem, so that the leading-
order hard function HDY(Q,µ) is normalized to unity. The perturbative calculation of TMD
PDFs using the operator-product expansion method shows that large logarithmic terms
will appear in the limit x→ 1 [47–58]. Therefore, one needs to consider the factorization of
the cross section in the joint threshold and TMD limit.

Following [44] and performing the Mellin transformation with respect to the threshold
variable τDY, we obtain

d2σ̃(N)
d2qT

=
∫ 1

0
dτDY

(
τDY

)N−1 ∫
dY dQ2 d4σ

d2qT dQ2dY δ(τ
DY − x1x2),

= s

∫
dx1dx2(x1x2)N−1 d4σ

d2qT dQ2dY , (2.5)

where from the first line to the second line the Jacobian for converting between (Q2, Y ) and
(x1, x2) can be easily worked out using the definitions of the kinematic variables in (2.3).
Therefore, the differential cross section can be re-expressed as

d3σDY

d2qT dτDY = σDY
0

∫
CN

dN
2πi

(
τDY

)−N ∫ d2bT
4π2 e

iqT ·bT HDY(Q,µ) (2.6)

×
∑
q

e2
q f̃

TMD
q/h1

(N, bT , µ, ζ)f̃ TMD
q̄/h2

(N, bT , µ, ζ),

where we have applied the inverse Mellin transformation
∫
CN
· · · to obtain the cross section

in the momentum space. In the moment space, TMD PDF is defined as

f̃ TMD
i/h (N, bT , µ, ζ) ≡

∫ 1

0
dxxN−1f TMD

i/h (x, bT , µ, ζ). (2.7)

It is worth emphasizing that such transformation is not necessary for the standard TMD
factorization theorem, but we keep it for the following joint threshold and TMD factorization.

Now we briefly discuss the factorization formula in the joint threshold and TMD limit in
SCET formalism. More detailed discussions on the NLL resummation formula can be found
in [35, 36], and the factorization formula within SCET is given in [42, 43]. The threshold
effects embody the behavior of the cross sections at τ → 1, since near the machine threshold
s ≈ Q2, the colliding energy is just sufficient enough to produce the final-state lepton pair
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with the invariant mass Q. Therefore, one immediately realizes that the threshold limit in
momentum space τ → 1 corresponds to N → ∞ in Mellin space. This means the above
factorization is incomplete in the sense that the threshold kinematics are ignored. Generally,
there is a standard operator expansion step to relate TMD PDFs to collinear PDFs at small
bT [5, 45, 59]. Explictly, we have

fTMD
i/h (x, bT , µ, ζ) =

∑
j

∫ 1

x

dy
y
Cij (z, bT , µ, ζ) fj/h(y/z, µ) +O(b2TΛ2

QCD), (2.8)

where Cij(z, bT , µ, ζ) are perturbative matching coefficients. It is known that to arbitrary
order there are threshold logarithms [lnn(1− z)/(1− z)]+ in Cij as z → 1, which must be
resummed to achieve precise results. To incorporate both the TMD and threshold effects,
we employ the re-factorization technique presented in [42, 43] for the TMD PDF f̃ TMD

i/h

f̃ TMD
i/h (N, bT , µ, ζ) N→∞−−−−→ S̃unsub

c (bT , µ, ζN/ν2)
√
S(bT , µ, ν)︸ ︷︷ ︸

≡ S̃c(bT , µ, ζN )

f̃i/h(N,µ) +O(b2TΛ2
QCD),

(2.9)

where we introduce the Collins-Soper scale ζN ≡ ζ/N̄2 with N̄ = NeγE and the Euler
constant γE in the threshold limit. The rapidity scale dependence ν is cancelled between
the Mellin space unsubtracted collinear-soft function S̃unsub

c (bT , µ, ζN/ν2) and the standard
TMD soft function S(bT , µ, ν). We refer to S̃c(bT , µ, ζN ) as the genuine collinear-soft
function in the joint threshold and TMD limit, which is flavor and spin-independent, but
different for quarks and gluons. In the appendix A, we provide the derivation of its one-loop
expression in the perturbative region and also discuss its relation to the perturbative
matching coefficient of TMD PDFs in threshold limit. Moreover, we derive its expressions
up to the three-loop order based on the threshold behaviors of the next-to-next-to-next-
to-leading order (NNNLO) perturbative matching coefficients of TMD PDFs [56–58]. In
eq. (2.9), f̃i/h(N,µ) is the collinear PDF in Mellin space, which takes the form

f̃i/h(N,µ) =
∫ 1

0
dxxN−1fi/h(x, µ). (2.10)

It is important to emphasize that the aforementioned refactorization formula (2.9) is only
proven for small values of bT [42, 43]. The generalization of this formula to higher-twist
distributions remains unclear, and further investigation is required to address this issue.
We leave the study of higher-twist distributions for future works.

Since both the unsubtracted collinear-soft and TMD soft function depend on the
rapidity scale ν, their rapidity scale evolution is governed by the following ν-RG evolution
equations [12, 60]

d
d ln ν S̃

unsub
c (bT , µ, ζN/ν2) = γSc

ν (bT , µ)S̃unsub
c (bT , µ, ζN/ν2) , (2.11)

d
d ln ν S(bT , µ, ν) = γSν (bT , µ)S(bT , µ, ν) , (2.12)
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with γSc
ν = −γSν /2. Upon subtracting the soft function, as previously outlined in eq. (2.9),

we have the genuine collinear-soft function S̃c(bT , µ, ζN ). In particular, we find that
S̃unsub
c (bT , µ, ζN/ν2) depends only on the combination ζN/ν2 in the threshold limit,1 which

is verified up to the three-loop order in appendix A. This allows us to convert the above two
ν-RG evolution equations in eqs. (2.11) and (2.12) into a similar Collins-Soper evolution
equation for genuine collinear-soft function S̃c(bT , µ, ζN ) by following the procedure outlined
in [46] √

ζN
d

d
√
ζN

S̃c(bT , µ, ζN ) = κ(bT , µ) S̃c(bT , µ, ζN ), (2.13)

where κ(bT , µ) = −γSc
ν (bT , µ) is the Collins-Soper kernel [45, 46] or the rapidity anomalous

dimension [12, 60] and collinear anomaly exponent [11, 62] in SCET. Here, from perturbative
calculation, κ(bT , µ) can be written as κ(bT , µ) = −Γcusp(αs)Lb + O

(
α2
s

)
, where Lb =

ln
(
µ2b2T /b

2
0
)
with b0 = 2e−γE . We have verified eq. (2.13) up to three-loop order based on

the NNNLO expression of S̃c given in eq. (A.13). The four-loop perturbative expression of
κ(bT , µ) was recently calculated in [63, 64], and its nonperturbative analysis can be found
in [65, 66] and the preliminary nonperturbative numerical simulation in lattice QCD is
presented in [67–69].

It is noteworthy that the Collins-Soper equation governing S̃c as a function of
√
ζN

coincides with the equation for TMD PDFs as a function of
√
ζ. This correspondence

arises from the (ν-)RG invariance analysis elucidated in ref. [42]. Specifically, the rapidity
divergence remains the same in the threshold limit, defined by Q� Q(1− τ̂)� qT , where
τ̂ is the partonic analog of τDY. Consequently, the rapidity-RG equation (2.11) for the
unsubtracted collinear-soft function is unchanged. It is crucial, however, to highlight that the
rapidity scale differs between the unsubtracted collinear-soft function and the unsubtracted
TMD PDFs. In essence, all threshold logarithms present in the matching coefficients of
TMD PDFs are subsumed into the rapidity logarithms. This has been rigorously confirmed
up to three-loop calculations [56–58]. Therefore, we introduce a modified Collins-Soper
scale ζN in the joint threshold and TMD limit.

After solving the above Collins-Soper evolution equation for the ζN dependence at the
renormalization scale µ = µb, we have

S̃c (bT , µb, ζN,f ) = S̃c (bT , µb, ζN,i)
(√

ζN,f
ζN,i

)κ(bT , µb)

, (2.14)

where we can choose ζN,i = µ2
b = b20/b

2
T and ζN,f will be determined from RG consistency [45,

46]. To obtain its value, we first write down RG equations for the hard function, collinear-soft
function and threshold PDFs

µ
d

dµH
DY (Q,µ) = Γh(αs)HDY (Q,µ) , (2.15)

µ
d

dµS̃c (bT , µ, ζN,f ) = ΓS̃c(αs, ζN,f )S̃c (bT , µ, ζN,f ) , (2.16)

µ
d

dµf̃q (N,µ) = Γf̃q (αs)f̃q (N,µ) , (2.17)

1Note that away from the threshold limit, the unsubstracted TMD PDFs usually depend on the combina-
tion ζ/ν2 [46, 61].
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and the corresponding anomalous dimensions are

Γh(αs) = 2 Γcusp(αs) lnQ
2

µ2 + 2γV (αs) , (2.18)

ΓS̃c(αs, ζN,f ) = −Γcusp(αs) lnζN,f
µ2 + γS̃c

(αs) , (2.19)

Γf̃q (αs) = −2 Γcusp(αs) lnN̄ + 2γf̃q
(αs) , (2.20)

with perturbative coefficients of anomalous dimensions needed at the NLL accuracy2 as

γV0 = −6CF , γ
f̃q

0 = 3CF , γS̃c
0 = 0, (2.21)

Γ0 = 4CF , Γ1 =
(

268
9 − 4π2

3

)
CFCA −

40
9 CFnf , (2.22)

where they are defined by

Γcusp(αs) =
∞∑
n=0

Γn
(
αs
4π

)n+1
, γV, S̃c, f̃q

(αs) =
∞∑
n=0

γV, S̃c, f̃q
n

(
αs
4π

)n+1
. (2.23)

Then the RG consistency Γh + 2 ΓS̃c + 2 Γf̃q = 0 implies that

ζN,f = Q2

N̄2 . (2.24)

We observe that the value of ζN,f is different from the one in the standard TMD factorization
formula. In the momentum space the scale ζN,f can be expressed as ζN,f ∼ Q2(1− τ̂)2. We
note that its value is reduced from the original Collins-Soper scale ζf = Q2 in the standard
TMD factorization. This is expected since we have taken into account the threshold effects
in the joint factorization formula, and the phase space for the initial collinear radiations is
further constrained in the threshold limit. Especially, as Q(1− τ̂)→ qT , i.e. ζN,f → ζN,i,
the rapidity evolution effects in (2.14) will be turned off automatically.

All-order resummation formula can be obtained by solving the RG equations in both
position and moment spaces and evolving the ingredients from their intrinsic scales to a
common scale. The all-order resumed cross section is given as

d3σDY

d2qT dτDY = σDY
0

∫
CN

dN
2πi

(
τDY

)−N ∫ ∞
0

dbT bT
2π J0(qT bT )HDY(Q,Q) (2.25)

×
∑
q

e2
q f̃

TTMD
q/h1

(N, bT , Q)f̃ TTMD
q̄/h2

(N, bT , Q),

where we introduce a new type of TMD PDFs, i.e. the threshold-TMD PDFs f̃ TTMD
i/h ,

and then the cross section could be factorized as the product of the hard function and
threshold-TMD PDFs. The definition of the threshold-TMD PDF at a scale of Q is

f̃ TTMD
i/h (N,bT ,Q) = exp

[
−Spert(Q,µb∗ ,µF )−SfNP (bT ,Q0, ζN,f )

]
f̃i/h(N,µF ), (2.26)

2Here, we provide the two-loop cusp anomalous dimensions that are employed in Γh and Γf̃i . However, it
is important to note that, for the Collins-Soper kernel κ, we consistently utilize its one-loop results in our
NLL resummation calculations.
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where the perturbative evolution kernel Spert involves the contribution from both collinear
PDF and collinear-soft functions, which reads

Spert(Q,µb∗ , µF ) =
∫ Q

µb∗

dµ
µ

Γh(αs)
2 −

∫ µb∗

µF

dµ
µ

Γf̃i(αs)−
1
2κ(b∗, µb∗) ln ζN,f

ζN,i
. (2.27)

Here note that the Γh term is the same as the standard TMD PDFs since the hard function
only receives virtual pQCD corrections and is unchanged in the threshold limit. The Γf̃i

term may be viewed as a simplified DGLAP equation, where the flavor off-diagonal pieces
are non-singular as N → ∞, and thus can be neglected at the leading power formalism.
Besides, µb∗ and µF are the intrinsic scales of collinear-soft function and collinear PDFs.
We stress that the above perturbative evolution kernel is consistent with that in NLL
resummation formula [35, 36], and it can also be evaluated beyond the NLL accuracy [42]
after including higher order ingredients within the perturbative QCD framework.

To match the perturbative and non-perturbative contributions in (2.26), we first apply
the standard b∗-prescription [5] to avoid the Landau pole in the non-perturbative region as
bT →∞, which is

b∗ ≡
bT√

1 + b2T /b
2
max

, with µb∗ = b0/b∗ and bmax = 1.5 GeV−1. (2.28)

In addition to the b∗-prescription, we also apply the model in [14, 23] to parametrize the non-
perturbative contribution at large bT . Explicitly, in (2.26), we define the non-perturbative
kernel as

SfNP (bT , Q0, ζN,f ) = gf1 b
2
T + g2

2 ln
√
ζN,f
Q0

ln bT
b∗

(2.29)

with gf1 = 0.106 GeV2, g2 = 0.84 and Q2
0 = 2.4 GeV2. We observe that the value of ζN,f

in the threshold limit deviates from its counterpart in standard TMD resummation, as
elucidated subsequent to eq. (2.24). Accordingly, in eq. (2.29), we opt for the Collins-Soper
scale factor Q/N̄ rather than Q as originally posited in ref. [14]. We must underscore the
fact that our adaptation of the model does not account for the complete non-perturbative
threshold enhancement effects. Therefore, additional fits in the threshold region are requisite
for achieving high-precision results. Lastly, apart from the non-perturbative factor SNP
associated with TMDs, it is necessary to incorporate the collinear PDF, encapsulated in
the factor f̃i/h(N,µF ), defined at the scale µF .

2.2 Theory formalism in SIDIS and e+e−

In addition to TMD PDFs, another important set of distributions for probing hadronic
three-dimensional structures is the TMD FFs, which can be studied in SIDIS and back-to-
back two hadron production in e+e− collisions, separately. Similar to the structure of the
previous subsection, we first review the factorization in terms of usual threshold variables
in SIDIS and e+e−. Then we define the TMD FFs in the threshold limit. As we will see,
our formalism has an advantage over the usual pure threshold formalism allowing further
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discussions. Finally, we present the factorization for SIDIS and e+e− in the joint threshold
and TMD limit and a collected version.

For the SIDIS process, we consider a proton p with momentum Pµ1 is probed by a
virtual photon with space-like momentum qµ and produces a final-state inclusive hadron h
with momentum Pµ2 . Explicitly, we have

e−(`) + p(P1)→ e−(`′) + h(P2) +X, (2.30)

which probes the short-distance scattering of the electron and a quark inside the proton
p by exchanging a virtual photon. The standard unpolarized differential cross section
is [23, 45, 70]

dσSIDIS

dxdydzd2qT
= σDIS

0 HSIDIS(Q,µ) (2.31)

×
∫ d2bT

4π2 e
iqT ·bT

∑
q

e2
qf

TMD
q/p (x, bT , µ, ζ)DTMD

h/q (z, bT , µ, ζ),

where qT is the transverse momentum of the photon in the hardon proton frame, and σDIS
0

is the leading order electromagnetic scattering cross section given by

σDIS
0 = 2πα2

em
Q2

1 + (1− y)2

y
. (2.32)

Besides, HSIDIS denotes the hard function in the SIDIS process, and DTMD
h/q is the standard

TMD FF. Note that we have included a factor of z2 into the definition of DTMD
h/q (z, bT , µ, ζ).

Here, we have employed the usual SIDIS kinematic variables

x = Q2

2P1 · q
, y = Q2

xs
, z = P1 · P2

P1 · q
, (2.33)

with q = `− `′, Q2 = −q2 and s = (P1 + `)2. In the Mellin space, the above factorization
takes the form

d3σ̃(N)
dyd2qT

=
∫ 1

0
dτSIDIS

(
τSIDIS

)N−1 ∫
dxdz δ

(
τSIDIS − xz

) d5σ

dxdydzd2qT
,

=
∫

dxdz(xz)N−1 d5σ

dxdydzd2qT
, (2.34)

where, following [44], we have τSIDIS ≡ xz that is very similar to the Drell-Yan threshold
variable τDY. For this reason, this is referred to as “crossed threshold variable” in [44].
After the inverse Mellin transformation, the above factorization can be rewritten as

d4σSIDIS

dyd2qTdτSIDIS = σDIS
0

∫
CN

dN
2πi

(
τSIDIS)−N ∫ d2bT

4π2 e
iqT ·bTHSIDIS(Q,µ) (2.35)

×
∑
q

e2
q f̃

TMD
q/p (N, bT , µ, ζ)D̃TMD

h/q (N, bT , µ, ζ).

In the threshold limit i.e τSIDIS → 1 in momentum space or N →∞ in Mellin space, the
above factorization is incomplete. One needs to re-factorize the TMD FFs to take into
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account this threshold effect. We find that the re-factorized formula can be written in
Mellin space as

D̃TMD
h/q (N, bT , µ, ζ) N→∞−−−−→ S̃unsub

c

(
bT , µ, ζN/ν

2
)√

S(bT , µ, ν)︸ ︷︷ ︸
≡ S̃c(bT , µ, ζN )

D̃h/q(N,µ) +O(b2TΛ2
QCD),

(2.36)
where D̃h/q(N,µ) is the collinear FF in Mellin space. It is not surprising to find that the
genuine collinear-soft functions for TMD FFs are the same as the ones in TMD PDFs. Since,
in the threshold limit, the longitudinal momentum fractions of TMD FFs z → 1, making
the behavior of the TMD FFs similar to that of the TMD PDFs at NLL. Moreover, we
stress that it is one of the advantages of our joint threshold and TMD formalism to allow
one to define threshold distributions separately.

To obtain the Collins-Soper scale, one exploits the RG consistency by

µ
d

dµH
SIDIS (Q,µ) = Γh(αs)HSIDIS (Q,µ) , (2.37)

µ
d

dµS̃c (bT , µ, ζN,f ) = ΓS̃c(αs, ζN,f )S̃c (bT , µ, ζN,f ) , (2.38)

µ
d

dµD̃q (N,µ) = ΓD̃q (αs)D̃q (N,µ) , (2.39)

µ
d

dµf̃q (N,µ) = Γf̃q (αs)f̃q (N,µ) (2.40)

and the corresponding anomalous dimensions are

Γh(αs) = 2 Γcusp(αs) lnQ
2

µ2 + 2γV (αs) (2.41)

ΓS̃c(αs, ζN,f ) = −Γcusp(αs) lnζN,f
µ2 + γS̃c

(αs) (2.42)

ΓD̃q (αs) = −2 Γcusp(αs) lnN̄ + 2γD̃q
(αs) (2.43)

Γf̃q (αs) = −2 Γcusp(αs) lnN̄ + 2γf̃q
(αs) (2.44)

with perturbative coefficients of anomalous dimensions needed at the NLL accuracy as

γV0 = −6CF , γ
D̃q

0 = 3CF = γ
f̃q

0 , γS̃c
0 = 0, (2.45)

Γ0 = 4CF , Γ1 =
(

268
9 − 4π2

3

)
CFCA −

40
9 CFnf . (2.46)

Then Γh + (ΓS̃c + ΓD̃q ) + (ΓS̃c + Γf̃q ) = 0 just implies exactly the same Collins-Soper scale
as that in the Drell-Yan process

ζN,f = Q2

N̄2 . (2.47)

Therefore, we define the threshold-TMD FFs in the Mellin moment space at a scale Q as

D̃TTMD
h/i (N,bT ,Q) = exp

[
−Spert (Q,µb∗ ,µF )−SDNP (bT ,Q0, ζN,f )

]
D̃h/i (N,µF ) , (2.48)
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with the perturbative evolution kernel Spert is defined as

Spert(Q,µb∗ , µF ) =
∫ Q

µb∗

dµ
µ

Γh(αs)
2 −

∫ µb∗

µF

dµ
µ

ΓD̃i(αs)−
1
2κ(b∗, µb∗) ln ζN,f

ζN,i
. (2.49)

The nonperturbative factor SDNP is defined as

SDNP (bT , Q0, ζN,f ) = gD1 b
2
T + g2

2 ln
√
ζN,f
Q0

ln bT
b∗
, (2.50)

with gD1 = 0.042 GeV2 [14, 23]. The values of Q0 and g2 have been given in (2.29). It is
noted that the above parametrization is consistent with the model used in [14, 23] in the
threshold limit z → 1. Also, as mentioned earlier, a new fitting including the threshold
effect is required for a higher precision theoretical result. Thus, the all-order resummation
formula reads

d4σSIDIS

dyd2qTdτSIDIS = σDIS
0

∫
CN

dN
2πi

(
τSIDIS

)−N ∫ dbT bT
2π J0(qT bT )HSIDIS (Q,Q) (2.51)

×
∑
q

e2
q f̃

TTMD
q/h1

(N, bT , Q)D̃TTMD
h2/q

(N, bT , Q).

Finally, we move on to the factorization and resummation for the inclusive back-to-back
two hadron production in e+e− collision, i.e.

e+ + e− → γ∗(q)→ h1(P1) + h2(P2) +X, (2.52)

where Pµi is the momentum of the hadron hi, and the threshold variable in this process is
defined by

τ e
+e− ≡ (P1 + P2)2

Q2 , (2.53)

with Q2 = q2. As expected, in the joint limit, the cross section is factorized as the product
of hard factor and two TMD FFs that describe final-state di-hadron production. Besides,
the RG consistence also implies the Collins-Soper scale is the same as that in the Drell-Yan
and SIDIS processes. Therefore, we obtain the following all-order resummation formula.

d3σe
+e−

d2qTdτ e+e− = σe
+e−

0

∫
CN

dN
2πi

(
τ e

+e−)−N ∫ dbT bT
2π J0(qT bT )He+e− (Q,Q) (2.54)

×
∑
q

e2
qD̃

TTMD
h1/q

(N, bT , Q)D̃TTMD
h2/q̄

(N, bT , Q),

where σe+e−
0 = 4πα2

em/Q
2 is the Born cross section and He+e− is the corresponding hard

factor, and the definition of the threshold-TMD FFs at the scale Q is given in (2.48).
From now on, we have obtained the all-order resummation formula for Drell-Yan,

SIDIS and e+e− processes, and also find a close correspondence between them. In the joint
limit, the cross section is factorized as the product of the hard factor and threshold-TMD
functions, including TMD PDFs and FFs. Such a property of universality is significant in
the future global fitting analysis for threshold-TMD functions in different processes. To
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summarize this section, we give the following generic resummation structure for all three
processes as

d3σA

d2qTdτA = σA
0

∫
CN

dN
2πi

(
τA
)−N ∫ dbT bT

2π J0(qT bT )HA (Q,Q) (2.55)

×
∑
q

e2
qF̃TTMD

i,h1 (N, bT , Q)F̃TTMD
i,h2 (N, bT , Q),

where for A = DY; F̃TTMD
i,h1

= f̃ TTMD
q/h1

, F̃TTMD
i,h2

= f̃ TTMD
q̄/h2

, for A = SIDIS; F̃TTMD
i,h1

= f̃ TTMD
q/h1

,
F̃TTMD
i,h2

= D̃TTMD
h2/q

, and for A = e+e−; F̃TTMD
i,h1

= D̃TTMD
h1/q

, F̃TTMD
i,h2

= D̃TTMD
h2/q̄

and the
Born cross sections σA

0 and hard function HA are defined accordingly. Here in addition to
τ , the Born cross section σ0 can also depend on additional variables, for example, σSIDIS

0
depends on the inelasticity y as shown in (2.51). This structure holds in the all-order QCD
resummation formula.

3 Numerical results

In this section, we numerically study the threshold effect in TMD PDF and TMD FF using
the factorization formula of Drell-Yan, SIDIS, and the back-to-back di-hadron production
via the e+e− annihilation process. We apply these extracted TMD functions to provide
transverse momentum distributions for these three processes for different experimental
kinematics. Throughout our numerical analysis, we use one loop strong coupling constant
(αs). The fine structure constant (αem) is taken to be 1/137 and the number of active quark
flavor nf = 5 in the massless limit. For the TMD and collinear evolution, we choose our
initial scale (µF ) to be 1.3GeV. As mentioned earlier, threshold factorization has been done
in the Mellin space because, in this space, the convolutions become a simple product. After
achieving the factorization formula in Mellin space, we need to do the Mellin inversion to
achieve results in the x space. During our numerical study, we observe that one needs to
modify the Collins-Soper scale in order to achieve results that are consistence throughout
the allowed kinematic region of τ . This modified Collins-Soper scale will introduce new
poles in the Mellin inversion formula. We discuss these issues in detail in the next subsection
and present a prescription for Mellin inversion.

3.1 Modified Collins-Soper scale and inverse Mellin transformation

In the NLL resummation formula, the Collins-Soper scale in the non-perturbative factor
SNP (2.50) is given by Q/N̄ . When the moment variable N becomes very large, ζTTMD

f goes
down to the nonperturbative scale Q2

0, which violates the power counting, Q� Q(1− τ̂)�
qT , in the factorization theorem. Therefore, we need to freeze the Collins-Soper scale
as ζN,f < Q2

0

ζ∗ ≡ ζ∗(ζN,f , Q0) =
(
Q

N̄

)2
(

1 + Q2
0N̄

2

Q2

)
, (3.1)
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Figure 1. Mellin inversion contour. We choose φ = π/2 and c = 1.6 to adapt various Q in our
numerical analysis as shown in the blue dashed line.

which reproduces the resummation formula in the moment variable N as long as Q/N̄ � Q0.
Besides, it also allows us to perform a straightforward numerical calculation in the complex-
N plane. We leave the investigation of different function forms and corresponding theoretical
uncertainties for future studies.

To implement the inverse Mellin transformation, one often rewrites the standard
textbook Mellin inversion [71] as an integration over a real variable with adjustable contour:

ϕ(x) = 1
π

∫ ∞
0

dz Im
[
exp(iφ)x−c−z exp(iφ)ϕn=c+z exp(iφ)

]
. (3.2)

Then contour is characterized by a real number c, which should be the right to the rightmost
singularity of ϕn, and an arbitrary angle φ as shown in figure 1. The parametrization forms
we chose are certain simple combinations of power functions, so they only have poles on the
real axis. In this regard, one can always find a suitable c and may try various φ to reach
higher numerical efficiency. There are different Mellin inversion prescriptions available in
the literature [71, 72]. However, when we modify the Collins-Soper scale term from ζf to
ζ∗, we find that this modified term would contribute two new poles

n = −c± i Q̄
Q0

, (3.3)

with Q̄ ≡ eγEQ. These two singularities would cause numerical issues even when the contour
might not exactly pass the poles for different Q̄/Q0. For simplicity, we chose φ = π/2 for
our contour, which is safe no matter what the Q value is. Also, we choose c = 1.6 to avoid
all the other poles. Numerically, we vary the value of φ and c and find the results are stable
and do not depend, within errors, on the particular choice of input parameters.

3.2 Threshold-TMD PDFs and FFs

In this subsection, we present the numerical results for threshold-improved TMD PDFs and
FFs. To investigate the impact of threshold resummation, we compare the TMD PDFs with
and without threshold resummation in figure 2, which shows the transverse momentum
distributions of TMD PDFs for the up (u) quark in the proton. We vary the value of x
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Figure 2. Transverse momentum distribution of TMD PDFs for the up (u) quark in the proton,
obtained for three different Bjorken scales x = 0.1, 0.4, 0.8 at Q = 5GeV. The green curves correspond
to the results obtained without threshold resummation. The red and blue curves represent the
results obtained with threshold resummation using the ζ∗ scheme and without it, respectively. The
collinear PDF sets used in this analysis are parameterized according to the CT18NNLO prescription,
with the parameterized equations specified at the initial scale µF = 1.3GeV.

from 0.1 to 0.8 at 5GeV. The green curves represent the results obtained without threshold
resummation, corresponding to the case where ζN,f = Q2 in (2.26). The red and blue curves
correspond to the results obtained with threshold resummation using the ζ∗ scheme (3.1)
and naive replacement ζN,f = Q2/N̄2, respectively. In the low x region, all three curves
exhibit consistent behavior since the threshold effect is mild. However, as we increase the
value of x, the threshold effects become evident. Especially, it is noteworthy that in the
naive scheme the theoretical predictions for the distribution rapidly decrease to zero and
then turn negative. Consequently, we conclude that the ζ∗ prescription is necessary to
ensure reliable theoretical predictions.

In figure 3, we present the threshold improved TMD PDF for u and d quarks. We
make the use of CT18NNLO [73] parameterized colinear PDF set at a given initial scale
µF = 1.3GeV. The upper panel is for the u quark and the bottom panel is for the d quark.
We present our results for three different choices of hard scales; Q = 2.0, 5.0, 10.0GeV with
three different choices of Bjorken scales x = 0.4, 0.6, 0.8, from left to the right respectively.
In the threshold region when the hadronic threshold variable is in the order of 1, the Bjorken
scales are also in the order of 1. We present our results for a large Bjorken scale to highlight
the threshold effect in this region. The uncertainty bands correspond to the 1-σ variation
from CT18NNLO PDFs using the Hessian method. The details of these uncertainties are
given in appendix B.

In figure 4, we present threshold improved TMD fragmentation function of Pion (π+

hadron). In this case, we use the parameterized JAM20 fragmentation function [74] at the
scale µF = 1.3GeV. Similar to figure 3, the upper panel is for the up-type and bottom panel
is for the down-type quark fragmentation functions and z is the fragmentation variable.
Here, we present our results for three different values of hard scale (Q) with three different
values of fragmentation (z) variables. The uncertainty bands correspond to 1-σ variation of
JAM FFs using the replica method.

At this point, we would like to emphasize that the direct comparison between the usual
TMD functions and threshold-improved TMD functions is not trivial. In our theoretical
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Figure 3. Transverse momentum distribution of threshold-TMD PDFs for u (upper panel) and d
(lower panel) quark in the proton for three different hard scales and three different Bjorken scales.
Here, we choose parameterized CT18NNLO collinear PDF sets where the parameterized equations are
given at initial scale µF = 1.3GeV.

formalism, we evolve the TMD evolution factor from the initial scale µF to the desired
final scale. On the other hand, in the standard TMD evolution, one starts from scale µ∗b .
Besides, both perturbative and nonperturbative parts in the Collins-Soper evolution are
also different in these two frameworks. Because of this different evolution scheme, it is not
straightforward to compare them and we leave such a study for future investigation.

3.3 Predictions for different experiments

Finally, we use previously determined threshold-improved TMD functions (PDFs and FFs)
to predict some experimental results. For this, we investigate three different processes
namely, DY, SIDIS, and e+e− annihilation process. For the DY process, we consider
dilepton transverse momentum distribution from proton-proton collision. We choose the
hadronic center of mass energy to be

√
s = 15.0GeV and Q = 6.0GeV, which is relevant

to the Drell-Yan production at typical Fermilab experiments. The results are presented
in the left panel of figure 5. For the e+e− annihilation process, we consider Pion (π+) in
the final hadronic state. We choose the virtuality of the photon to be Q = 10.58GeV and
the threshold variable τ = 0.64 for the BELLE [75] kinematics. The results are presented
in the right panel of figure 5. The uncertainties in all the cross sections are coming from
the threshold-TMD functions which are computed from the 1-σ variation of PDF and FF
using Hessian and Replica methods respectively. As shown in the previous subsection, the
uncertainty from FFs is larger than that from PDFs at a similar value of the light-cone
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Figure 4. Transverse momentum distribution of threshold-TMD FFs for the π+ from u (upper
panel) and d (lower panel) quark. Here, we choose parameterized JAM20 collinear FF sets at a given
scale µF = 1.3GeV.

Figure 5. Cross section distribution for Drell-Yan and e+e− processes. The left panel is for
Drell-Yan dilepton production in pp collisions, p + p → γ∗ → `+ + `− + X. The right panel is
for back-to-back two hadron production in e+e− collisions, e+ + e− → π+ + π+ + X, where we
choose both hadrons to be π+ as an example. The e+e− annihilation result is presented for BELLE
kinematics. All the parameters for the numerical computations are mentioned in the main section of
the numerical results.

momentum fraction making a wider uncertainty band in the e+e− process than in the
Drell-Yan process.

Finally, in figure 6, we present the results for the SIDIS process. In this case, we make use
of four experiments kinematics namely HERMES [76], COMPASS [77], the future Electron-
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Figure 6. Cross section distribution for SIDIS process, e+ p→ e+ π+ +X, where we choose the
final state hadron to be a π+ meson as an example. The upper panel is for HERMES (left) and
COMPASS (right) kinematics, and the lower panel is for future EIC (left, 5× 41 beam energies for
ep collisions with

√
s = 29GeV) and JLab 12GeV program (right).

Ion Collider (EIC) [3] at Brookhaven National Laboratory, and the 12GeV program [78]
currently underway at Jefferson Lab (JLab). The upper left panel is for HERMES kinematics
of ep collision with hard scale Q2 = 4GeV2 and threshold parameter τ = 0.24 and the
upper right panel is for COMPASS kinematics with hard scale Q2 = 20GeV2 and threshold
parameter τ = 0.32. In the lower panel, we present the results for EIC (left, Q2 = 50GeV2

and τ = 0.4) and JLab 12GeV program (right, Q2 = 3GeV2 and τ = 0.48) kinematics. To
conclude this section, we notice that although the future EIC will make the most precise
SIDIS measurements at small x (down to x ∼ 10−4), the EIC will also increase the precision
of the data in the large-x region up to x ∼ 0.5. The JLab 12GeV program will make
precision measurements up to x ∼ 0.6 and smaller values of Q2. We expect both EIC and
JLab 12 to make important constraints on these threshold TMD PDFs and TMD FFs in
the near future.

4 Conclusion

In this paper, we have introduced the threshold TMD functions namely, PDFs and FFs. To
probe this threshold effect, we use three different processes: Drell-Yan, SIDIS and e+e−
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processes. Considering the extra degrees of freedom in this kinematical region known as
collinear-soft degrees of freedom, we re-factorized the formula for these processes and defined
threshold-improved TMD distribution functions. We observe that because of the phase
space reduction in the threshold region, the Collins-Soper scale is not the same for the usual
TMD and threshold-improved TMD distribution functions. We find that ζN,f = Q2/N̄2 for
threshold TMD whereas ζf = Q2 for the usual TMD. During our numerical analysis, we
observe that apart from the RG consistency, the Collins-Soper scale has to be chosen in
such a way that it is always greater than the non-perturbative scale Q0. Therefore, one
needs to modify the Collins-Soper scale, and this modified scale introduces a new kind of
pole in the integration contour. We provide a Mellin inversion prescription to avoid all
kinds of poles in the integration contour. Finally, we provide the numerical predictions for
transverse momentum distributions of Drell-Yan, SIDIS and e+e− processes for different
experimental kinematics using these threshold-improved TMD functions.

Our theoretical formalism would open a new window into TMD physics. Future
experimental analysis and global fitting analysis will certainly help in understanding the
non-perturbative mechanism of the TMD functions in the threshold limit and unveiling the
three-dimensional picture of a hadron in the large x limit. Our formalism will be important
to extract these TMD functions in the threshold region and will be reliable theoretical
input to understand the experimental data. In this work, we only present the factorization
and resummation formula for the unpolarized cross section, but it can be generalized to
the process involving polarized hadron in both initial and final states. The corresponding
theoretical predictions on the spin asymmetry in the threshold limit will be explored in
future work.
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A Collinear-soft function

In this appendix, we furnish a one-loop perturbative analysis of the collinear-soft functions.
Additionally, we investigate the threshold asymptotics of the perturbative matching coeffi-
cients for TMD PDFs, elucidating their equivalence to the collinear-soft functions. We then
extend our analysis to offer comprehensive expressions for the perturbative expansion of
the collinear-soft function, valid up to three-loop order. Importantly, we corroborate that
these expressions are consistent with the Collins-Soper equations, paralleling the behavior of
standard TMD PDFs. Furthermore, we confirm the RG invariance up to the third loop level.
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In the following calculation, the light-like basis vectors are defined as

nµ = (1, 0, 0, 1), n̄µ = (1, 0, 0,−1). (A.1)

In order to regularize the rapidity divergences we add the factor∫
ddk →

∫
ddk

(
ν

2|kz|

)η
(A.2)

in the phase space integrals [11, 12] in the collinear-soft function. This regulator preserves
the nµ ↔ n̄µ symmetry of the process. Explicitly, the momentum scaling of the collinear-soft
modes kµcs is

kµcs ≡ (n̄ · kcs, n · kcs, kcs,⊥) ∼
(
Q(1− τ̂), q2

T

Q(1− τ̂) , qT

)
, (A.3)

so the rapidity regulator should be further expanded as (ν/n̄ · k)η at the leading power
due to qT � Q(1 − τ̂). Similarly, the rapidity regulator is expressed as (ν/n · k)η in the
anti-collinear-soft sector. Then the one-loop unsubtracted bare collinear-soft function in
N -space is defined as

S̃0,unsub
c (bT , ε, η,Q/N̄) = 1 + CF g

2
s

(
µ2eγE

4π

)ε ∫ ddk
(2π)d−1 δ(k

2)θ(k0)
(

ν

n̄ · k

)η 2n · n̄
n · k k · n̄

× eikT ·bT e−Nn̄·k/Q

= 1 + αs
4πCF

[(
2
η

+ ln ν
2N̄2

Q2

)(2
ε

+ 2Lb
)]

, (A.4)

where we apply the approximation (1−z)N ≈ e−Nz after expanding out the power suppressed
terms in the large N limit. We note that the rapidity divergence is the same as the one in
TMD PDFs, which should be expected based on the factorization formula. After factorizing
the soft function, one can write

S̃c(bT , µ, ζN ) = lim
ε→0
η→0

Zuv(µ, ζN , ε)S̃0,unsub
c (bT , ε, η,Q/N̄)

√
S0(bT , ε, η)

= S̃unsub
c (bT , µ, ζN/ν2)

√
S(bT , µ, ν), (A.5)

where the one-loop bare soft function reads [60, 79]

S0(bT , ε, η) = 1 + αs
4πCF

[
−
(

2
η

+ ln ν
2

µ2

)(4
ε

+ 4Lb
)

+ 4
ε2
− 2L2

b −
π2

3

]
. (A.6)

In addition, we replaced Q2/N̄2 with the Collins-Soper scale ζN . Therefore, at one-loop
order (A.5) has the form as

S̃c(bT , µ, ζN ) = 1 + αs
4πCF

(
−L2

b + 2Lb ln µ2

ζN
− π2

6

)
, (A.7)
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where rapidity divergences related to the poles in η cancel out during the combination and
the remainder divergences in ε are absorbed into the renormalization factor Zuv by defining
a finite collinear-soft function based on the standard RG methods.

Finally, we want to point out that the perturbative results of the collinear-soft function
can also be obtained by taking the N →∞ limit in the TMD PDFs or TMD FFs [52]. In
the following discussion, we use TMD PDFs as our example. After performing operator
product expansion, the x-space unsubtracted TMD PDF can be expressed as

funsub
q/h (x,bT ,µ,ζ/ν2) =

∑
i

∫ 1

x

dz

z
Cq←i(z,bT ,µ,ζ/ν2)fi/h(x/z,µ)+O(b2TΛ2

QCD), (A.8)

where Cq←i is the perturbative matching coefficient, and in the moment space at one loop
it can be written as

Cq←q(z,bT , µ,ζ/ν2) = δ(1−z) (A.9)

+ αs
4π

[
CFLb

(
3+2ln ν

2

ζ

)
δ(1−z)+P

(0)
q←q(z)

2 Lb+2CF (1−z)
]

+O(α2
s),

where

P (0)
q←q(z) = 4CF

[
1 + z2

(1− z)+
+ 3

2δ(1− z)
]

(A.10)

is the one-loop Altarelli-Parisi splitting kernel. In the Mellin N -space the matching coefficient
can be written as

C̃q←q

(
N,bT ,µ,ζ/ν

2)= 1 (A.11)

+ αs

4π

[
CFLb

(
3+2ln ν

2

ζ

)
−CFLb(−4lnN̄+3)+2CF

1
N(N+1)

]
+O

(
α2

s

)
.

Then we take the large N limit and can have

C̃q←q
(
N, bT , µ, ζ/ν

2
)

N→∞−−−−→ S̃unsub
c (bT , µ, ζN/ν2) = 1 + αs

4πCF

[
2Lb ln ν2

ζN

]
, (A.12)

where the contribution from the flavor off-diagonal splitting kernels is power suppressed in
the threshold limit, and so can be neglected in the leading-power factorization formula.

To rigorously validate the factorization theorem in the joint threshold and TMD limit,
examining higher-order corrections in the perturbative expansion of collinear-soft functions
should be illuminating. Specifically, we employ the threshold asymptotics of the NNNLO
expressions for the perturbative matching coefficients Cq←q [56–58] to ascertain the three-
loop collinear-soft function. We represent the expansion coefficients of the unsubtracted
collinear-soft functions as

S̃unsub
c (bT , µ, ζN/ν2) = 1 +

∞∑
n=1

(
αs
4π

)n
S̃(n)
c , (A.13)
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where the coefficients up to three loop are given by

S̃(1)
c = 2CFLbLζ ,

S̃(2)
c = 2C2

FL
2
bL

2
ζ + CFCA

[11
3 L

2
b +

(134
9 − 4ζ2

)
Lb +

(404
27 − 14ζ3

)]
Lζ

+ CFTFnf

(
−4

3L
2
b −

40
9 Lb −

112
27

)
Lζ ,

S̃(3)
c = 4

3C
3
FL

3
bL

3
ζ + C2

FCA

[22
3 L

3
b +

(268
9 − 8ζ2

)
L2
b +

(808
27 − 28ζ3

)
Lb

]
L2
ζ

+ CFC
2
A

[242
27 L

3
b +

(1780
27 − 44

3 ζ2

)
L2
b +

(15503
81 − 536

9 ζ2 − 88ζ3 + 44ζ4

)
Lb

+
(297029

1458 − 3196
81 ζ2 −

6164
27 ζ3 + 88

3 ζ2ζ3 −
77
3 ζ4 + 96ζ5

)]
Lζ

+ CFCATFnf

[
−176

27 L
3
b +

(
−1156

27 + 16
3 ζ2

)
L2
b +

(
−8204

81 + 160
9 ζ2

)
Lb

+
(
−62626

729 + 824
81 ζ2 + 904

27 ζ3 −
20
3 ζ4

)]
Lζ

+ CFT
2
Fn

2
f

(32
27L

3
b + 160

27 L
2
b + 800

81 Lb + 3712
729 + 64

9 ζ3

)
Lζ

+ C2
FTFnf

[
−8

3L
3
bL

2
ζ +

(
−4− 80

9 Lζ
)
L2
bLζ +

(
−224

27 −
110
3 + 32ζ3

)
LbL

2
ζ

+
(
−1711

27 + 304
9 ζ3 + 16ζ4

)
Lζ

]
, (A.14)

where Lζ ≡ ln
(
ν2/ζN

)
. We can immediately confirm that the above expressions satisfy

the standard Collins-Soper equations. Upon factorizing the soft function, as previously
outlined in eq. (A.5), we procure the properly subtracted collinear-soft function S̃c(bT , µ, ζN ).
Furthermore, the non-cusp anomalous dimensions are as follows:

γS̃c
0 = 0,

γS̃c
1 = CFCA

(
404
27 −

11π2

18 − 14ζ3

)
+ CFTFnf

(
−112

27 + 2π2

9

)
,

γS̃c
2 = C2

FTFnf

(
−1711

27 + 2π2

3 + 8π4

45 + 304
9 ζ3

)

+ CFC
2
A

(
136781
1458 − 6325π2

486 + 44π4

45 − 658
3 ζ3 + 44π2

9 ζ3 + 96ζ5

)

+ CFCATFnf

(
−11842

729 + 1414π2

243 − 8π4

15 + 728
27 ζ3

)

+ CFT
2
Fn

2
f

(
−4160

729 −
40π2

81 + 224
27 ζ3

)
, (A.15)

which allows us to corroborate the RG consistency condition Γh + 2 ΓS̃c + 2 Γf̃q = 0 up to
the third-loop level. Below, we also provide, for convenience, the anomalous dimensions for

– 21 –



J
H
E
P
1
1
(
2
0
2
3
)
2
2
0

the hard function and the threshold PDF [80]:

γV0 = − 6CF ,

γV1 = C2
F

(
−3 + 4π2 − 48ζ3

)
+ CFCA

(
−961

27 −
11π2

3 + 52ζ3

)
+ CFnfTF

(
260
27 + 4π2

3

)
,

γV2 = C3
F

(
−29− 6π2 − 16π4

5 − 136ζ3 + 32π2

3 ζ3 + 480ζ5

)

+ C2
FCA

(
−151

2 + 410π2

9 + 494π4

135 − 1688
3 ζ3 −

16π2

3 ζ3 − 240ζ5

)

+ CFC
2
A

(
−139345

1458 − 7163π2

243 − 83π4

45 + 7052
9 ζ3 −

88π2

9 ζ3 − 272ζ5

)

+ C2
FTFnf

(
5906
27 − 52π2

9 − 56π4

27 + 1024
9 ζ3

)

+ CFCATFnf

(
−34636

729 + 5188π2

243 + 44π4

45 − 3856
27 ζ3

)

+ CFT
2
Fn

2
f

(
19336
729 − 80π2

27 − 64
27ζ3

)
, (A.16)

γ
f̃q

0 = 3CF ,

γ
f̃q

1 = C2
F

(3
2 − 2π2 + 24ζ3

)
+ CFCA

(
17
6 + 22π2

9 − 12ζ3

)
− CFTFnf

(
2
3 + 8π2

9

)
,

γ
f̃q

2 = C3
F

(
29
2 + 3π2 + 8π4

5 + 68ζ3 −
16π2

3 ζ3 − 240ζ5

)

+ C2
FCA

(
151
4 − 205π2

9 − 247π4

135 + 844
3 ζ3 + 8π2

3 ζ3 + 120ζ5

)

+ C2
FTFnf

(
−46 + 20π2

9 + 116π4

135 − 272
3 ζ3

)

+ CFC
2
A

(
−1657

36 + 2248π2

81 − π4

18 −
1552

9 ζ3 + 40ζ5

)

+ CFCATFnf

(
40− 1336π2

81 + 2π4

45 + 400
9 ζ3

)

+ CFT
2
Fn

2
f

(
−68

9 + 160π2

81 − 64
9 ζ3

)
. (A.17)

B Fitting parameters for PDFs and FFs

In this appendix, we will collect parametrization functional forms of PDF and FF at the
initial scale µF , where we consider CT18 PDF sets [73] and JAM20 FF sets used in section 3.
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In CT18 PDF sets [73], the valence quarks is parameterized as

fqv/p (x, µF ) = a0x
a1−1(1− x)a2Pv(

√
x), (B.1)

with Pv(y) a sum of Bernstein polynomials defined by

Pv(y) = a3(1− y)4 + 4a4y(1− y)3 + 6a5y
2(1− y)2 + 4 (1 + a1/2) y3(1− y) + y4. (B.2)

Similarly, for the sea quarks, one has

fqsea/p (x, µF ) = a0x
a1−1(1− x)a2Psea

(
1− (1−

√
x)4
)
, (B.3)

where

Psea(y) = (1−y)5+5a3y(1−y)4+10a4y
2(1−y)3+10a5y

3(1−y)2+5a6y
4(1−y)+a7y

5. (B.4)

The best-fit values of the parameters ak have been given in [73], and we collect them in
table 1. Besides, we also provide their Hessian uncertainties which have been included in
our numerics as the theoretical uncertainty estimation. In order to evaluate the Hessian
uncertainties, we apply the following formula

δ+F =

√√√√Nd∑
i=1

[
max (F2i−1 − F0, F2i − F0, 0)

]2
, (B.5)

δ−F =

√√√√Nd∑
i=1

[
max (F0 − F2i−1, F0 − F2i, 0)

]2
, (B.6)

where F0 represents the value of the central PDF of the Hessian set, and F2i−1(F2i) represents
the value of the error PDF of the Hessian set in the positive (negative) directions of the
ith eigenvectors in the Nd dimensional PDF parameter space. Then we use the functional
forms (B.1) and (B.3) to fit the uncertainties and get best-fitting parameters. The fitting
results are also collected in table 1 as errors of parameters ak.

For the pion FFs, we apply JAM20-SIDIS sets, and the corresponding parametrization
functional form reads

Dπ+/q(z, µF ) = za0(1− z)a1(1 + a2
√
z + a3z)∫ 1

0 dz za1+1(1− z)a2 (1 + a3
√
z + a4z)

, (B.7)

with initial scales are µF = 1.3GeV. The best fitting parameters are summarized in
table 2, where we give the error of ak corresponding uncertainties of FFs evaluated by the
replica method.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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CT18 uv dv usea = ū dsea = d̄ s = s̄

a0 3.385+0.066
−0.988 0.490+0.670

−0.072 0.414−0.012
+0.347 0.414−0.037

+0.334 0.288+0.111
−0.152

a1 0.763+0.005
−0.002 0.763−0.005

−0.002 −0.022−0.020
+0.084 −0.022−0.025

+0.082 −0.022−0.022
+0.616

a2 3.036−0.024
−0.165 3.036+0.301

+0.230 7.737+0.152
−0.415 7.737+0.870

−0.676 10.31+0.170
+0.510

a3 1.502+0.611
+1.740 2.615−0.107

+6.155 0.618+0.191
−0.608 0.292+0.517

−0.814 0.466+0.029
+1.599

a4 −0.147+0.072
−0.465 1.828−0.155

+0.406 0.195−0.206
+0.525 0.647−0.585

+0.888 0.466−0.197
+2.482

a5 1.671+0.813
+2.319 2.721+0.163

+7.609 0.871+0.336
−0.906 0.474+0.917

−1.238 0.255+0.260
−0.992

a6 . . . . . . 0.267−0.172
+0.305 0.741−0.645

+0.443 0.255−0.276
+1.772

a7 . . . . . . 0.733+0.267
−0.595 1+0.990

−0.696 1+0.035
−1.098

Table 1. Best-fit parameter values for the proton PDFs of the CT18 at the initial scale µF = 1.3 GeV,
where the explicit parametrization functional forms are given in (B.1) and (B.3) for valence and
sea quark, respectively. The errors are the Hessian uncertainties calculated as explained after (B.3).
The upper (lower) part of the numbers is the difference from the central values corresponding to the
upper (lower) bound of the PDFs.

JAM20 u = d̄ d = ū = s = s̄

a0 −1.372+0.010
−0.011 −1.026+0.062

−0.056

a1 0.924+0.016
−0.015 1.290+0.258

−0.298

a2 −1.541−0.016
+0.015 −1.216+0.216

+2.208

a3 0.897+0.016
−0.015 0.210−0.223

+0.191

Table 2. Best-fit parameter values for the pion π+ FFs of the JAM20 at the initial scale µF = 1.3 GeV,
where the parametrization functional form is shown in (B.7), and the errors are the uncertainties
calculated by the replica method. The upper (lower) part of the numbers is the difference from the
central values corresponding to the upper (lower) bound of the FFs.

References

[1] H.-W. Lin et al., Parton distributions and lattice QCD calculations: a community white paper,
Prog. Part. Nucl. Phys. 100 (2018) 107 [arXiv:1711.07916] [INSPIRE].

[2] A. Accardi et al., Electron Ion Collider: The Next QCD Frontier: Understanding the glue that
binds us all, Eur. Phys. J. A 52 (2016) 268 [arXiv:1212.1701] [INSPIRE].

[3] R. Abdul Khalek et al., Science Requirements and Detector Concepts for the Electron-Ion
Collider: EIC Yellow Report, Nucl. Phys. A 1026 (2022) 122447 [arXiv:2103.05419]
[INSPIRE].

[4] J.C. Collins and D.E. Soper, Back-To-Back Jets in QCD, Nucl. Phys. B 193 (1981) 381
[Erratum ibid. 213 (1983) 545] [INSPIRE].

[5] J.C. Collins, D.E. Soper and G.F. Sterman, Transverse Momentum Distribution in Drell-Yan
Pair and W and Z Boson Production, Nucl. Phys. B 250 (1985) 199 [INSPIRE].

– 24 –

https://doi.org/10.1016/j.ppnp.2018.01.007
https://arxiv.org/abs/1711.07916
https://inspirehep.net/literature/1637373
https://doi.org/10.1140/epja/i2016-16268-9
https://arxiv.org/abs/1212.1701
https://inspirehep.net/literature/1206324
https://doi.org/10.1016/j.nuclphysa.2022.122447
https://arxiv.org/abs/2103.05419
https://inspirehep.net/literature/1851258
https://doi.org/10.1016/0550-3213(81)90339-4
https://inspirehep.net/literature/164211
https://doi.org/10.1016/0550-3213(85)90479-1
https://inspirehep.net/literature/203059


J
H
E
P
1
1
(
2
0
2
3
)
2
2
0

[6] C.W. Bauer, S. Fleming, D. Pirjol and I.W. Stewart, An Effective field theory for collinear and
soft gluons: Heavy to light decays, Phys. Rev. D 63 (2001) 114020 [hep-ph/0011336]
[INSPIRE].

[7] C.W. Bauer and I.W. Stewart, Invariant operators in collinear effective theory, Phys. Lett. B
516 (2001) 134 [hep-ph/0107001] [INSPIRE].

[8] C.W. Bauer, D. Pirjol and I.W. Stewart, Soft collinear factorization in effective field theory,
Phys. Rev. D 65 (2002) 054022 [hep-ph/0109045] [INSPIRE].

[9] C.W. Bauer et al., Hard scattering factorization from effective field theory, Phys. Rev. D 66
(2002) 014017 [hep-ph/0202088] [INSPIRE].

[10] M. Beneke, A.P. Chapovsky, M. Diehl and T. Feldmann, Soft collinear effective theory and
heavy to light currents beyond leading power, Nucl. Phys. B 643 (2002) 431 [hep-ph/0206152]
[INSPIRE].

[11] T. Becher and M. Neubert, Drell-Yan Production at Small qT , Transverse Parton Distributions
and the Collinear Anomaly, Eur. Phys. J. C 71 (2011) 1665 [arXiv:1007.4005] [INSPIRE].

[12] J.-Y. Chiu, A. Jain, D. Neill and I.Z. Rothstein, The Rapidity Renormalization Group, Phys.
Rev. Lett. 108 (2012) 151601 [arXiv:1104.0881] [INSPIRE].

[13] M.G. Echevarria, A. Idilbi and I. Scimemi, Factorization Theorem For Drell-Yan At Low qT

And Transverse Momentum Distributions On-The-Light-Cone, JHEP 07 (2012) 002
[arXiv:1111.4996] [INSPIRE].

[14] P. Sun, J. Isaacson, C.-P. Yuan and F. Yuan, Nonperturbative functions for SIDIS and
Drell-Yan processes, Int. J. Mod. Phys. A 33 (2018) 1841006 [arXiv:1406.3073] [INSPIRE].

[15] M. Boglione et al., Kinematics of Current Region Fragmentation in Semi-Inclusive Deeply
Inelastic Scattering, Phys. Lett. B 766 (2017) 245 [arXiv:1611.10329] [INSPIRE].

[16] F. Hautmann, I. Scimemi and A. Vladimirov, Non-perturbative contributions to vector-boson
transverse momentum spectra in hadronic collisions, Phys. Lett. B 806 (2020) 135478
[arXiv:2002.12810] [INSPIRE].

[17] J.C. Collins and A. Metz, Universality of soft and collinear factors in hard-scattering
factorization, Phys. Rev. Lett. 93 (2004) 252001 [hep-ph/0408249] [INSPIRE].

[18] Z.-B. Kang, A. Prokudin, P. Sun and F. Yuan, Extraction of Quark Transversity Distribution
and Collins Fragmentation Functions with QCD Evolution, Phys. Rev. D 93 (2016) 014009
[arXiv:1505.05589] [INSPIRE].

[19] A. Bacchetta et al., Extraction of partonic transverse momentum distributions from
semi-inclusive deep-inelastic scattering, Drell-Yan and Z-boson production, JHEP 06 (2017)
081 [Erratum ibid. 06 (2019) 051] [arXiv:1703.10157] [INSPIRE].

[20] I. Scimemi and A. Vladimirov, Non-perturbative structure of semi-inclusive deep-inelastic and
Drell-Yan scattering at small transverse momentum, JHEP 06 (2020) 137
[arXiv:1912.06532] [INSPIRE].

[21] Jefferson Lab Angular Momentum collaboration, Origin of single transverse-spin
asymmetries in high-energy collisions, Phys. Rev. D 102 (2020) 054002 [arXiv:2002.08384]
[INSPIRE].

[22] A. Bacchetta, F. Delcarro, C. Pisano and M. Radici, The 3-dimensional distribution of quarks
in momentum space, Phys. Lett. B 827 (2022) 136961 [arXiv:2004.14278] [INSPIRE].

– 25 –

https://doi.org/10.1103/PhysRevD.63.114020
https://arxiv.org/abs/hep-ph/0011336
https://inspirehep.net/literature/537516
https://doi.org/10.1016/S0370-2693(01)00902-9
https://doi.org/10.1016/S0370-2693(01)00902-9
https://arxiv.org/abs/hep-ph/0107001
https://inspirehep.net/literature/559421
https://doi.org/10.1103/PhysRevD.65.054022
https://arxiv.org/abs/hep-ph/0109045
https://inspirehep.net/literature/562452
https://doi.org/10.1103/PhysRevD.66.014017
https://doi.org/10.1103/PhysRevD.66.014017
https://arxiv.org/abs/hep-ph/0202088
https://inspirehep.net/literature/582803
https://doi.org/10.1016/S0550-3213(02)00687-9
https://arxiv.org/abs/hep-ph/0206152
https://inspirehep.net/literature/588622
https://doi.org/10.1140/epjc/s10052-011-1665-7
https://arxiv.org/abs/1007.4005
https://inspirehep.net/literature/862424
https://doi.org/10.1103/PhysRevLett.108.151601
https://doi.org/10.1103/PhysRevLett.108.151601
https://arxiv.org/abs/1104.0881
https://inspirehep.net/literature/894935
https://doi.org/10.1007/JHEP07(2012)002
https://arxiv.org/abs/1111.4996
https://inspirehep.net/literature/946813
https://doi.org/10.1142/S0217751X18410063
https://arxiv.org/abs/1406.3073
https://inspirehep.net/literature/1300360
https://doi.org/10.1016/j.physletb.2017.01.021
https://arxiv.org/abs/1611.10329
https://inspirehep.net/literature/1501021
https://doi.org/10.1016/j.physletb.2020.135478
https://arxiv.org/abs/2002.12810
https://inspirehep.net/literature/1783023
https://doi.org/10.1103/PhysRevLett.93.252001
https://arxiv.org/abs/hep-ph/0408249
https://inspirehep.net/literature/657122
https://doi.org/10.1103/PhysRevD.93.014009
https://arxiv.org/abs/1505.05589
https://inspirehep.net/literature/1372084
https://doi.org/10.1007/JHEP06(2017)081
https://doi.org/10.1007/JHEP06(2017)081
https://arxiv.org/abs/1703.10157
https://inspirehep.net/literature/1520011
https://doi.org/10.1007/JHEP06(2020)137
https://arxiv.org/abs/1912.06532
https://inspirehep.net/literature/1770788
https://doi.org/10.1103/PhysRevD.102.054002
https://arxiv.org/abs/2002.08384
https://inspirehep.net/literature/1781484
https://doi.org/10.1016/j.physletb.2022.136961
https://arxiv.org/abs/2004.14278
https://inspirehep.net/literature/1793441


J
H
E
P
1
1
(
2
0
2
3
)
2
2
0

[23] M.G. Echevarria, Z.-B. Kang and J. Terry, Global analysis of the Sivers functions at
NLO+NNLL in QCD, JHEP 01 (2021) 126 [arXiv:2009.10710] [INSPIRE].

[24] M. Bury et al., PDF bias and flavor dependence in TMD distributions, JHEP 10 (2022) 118
[arXiv:2201.07114] [INSPIRE].

[25] MAP (Multi-dimensional Analyses of Partonic distributions) collaboration,
Unpolarized transverse momentum distributions from a global fit of Drell-Yan and
semi-inclusive deep-inelastic scattering data, JHEP 10 (2022) 127 [arXiv:2206.07598]
[INSPIRE].

[26] I. Balitsky and A. Tarasov, Rapidity evolution of gluon TMD from low to moderate x, JHEP
10 (2015) 017 [arXiv:1505.02151] [INSPIRE].

[27] J. Zhou, The evolution of the small x gluon TMD, JHEP 06 (2016) 151 [arXiv:1603.07426]
[INSPIRE].

[28] B.-W. Xiao, F. Yuan and J. Zhou, Transverse Momentum Dependent Parton Distributions at
Small-x, Nucl. Phys. B 921 (2017) 104 [arXiv:1703.06163] [INSPIRE].

[29] J. Zhou, Scale dependence of the small x transverse momentum dependent gluon distribution,
Phys. Rev. D 99 (2019) 054026 [arXiv:1807.00506] [INSPIRE].

[30] D. Boer, Y. Hagiwara, J. Zhou and Y.-J. Zhou, Scale evolution of T-odd gluon TMDs at small
x, Phys. Rev. D 105 (2022) 096017 [arXiv:2203.00267] [INSPIRE].

[31] LPC collaboration, Unpolarized Transverse-Momentum-Dependent Parton Distributions of the
Nucleon from Lattice QCD, arXiv:2211.02340 [INSPIRE].

[32] G.F. Sterman, Summation of Large Corrections to Short Distance Hadronic Cross-Sections,
Nucl. Phys. B 281 (1987) 310 [INSPIRE].

[33] S. Catani and L. Trentadue, Resummation of the QCD Perturbative Series for Hard Processes,
Nucl. Phys. B 327 (1989) 323 [INSPIRE].

[34] E. Laenen, G.F. Sterman and W. Vogelsang, Higher order QCD corrections in prompt photon
production, Phys. Rev. Lett. 84 (2000) 4296 [hep-ph/0002078] [INSPIRE].

[35] A. Kulesza, G.F. Sterman and W. Vogelsang, Joint resummation in electroweak boson
production, Phys. Rev. D 66 (2002) 014011 [hep-ph/0202251] [INSPIRE].

[36] A. Kulesza, G.F. Sterman and W. Vogelsang, Joint resummation for Higgs production, Phys.
Rev. D 69 (2004) 014012 [hep-ph/0309264] [INSPIRE].

[37] A. Banfi and E. Laenen, Joint resummation for heavy quark production, Phys. Rev. D 71
(2005) 034003 [hep-ph/0411241] [INSPIRE].

[38] G. Bozzi, B. Fuks and M. Klasen, Joint resummation for slepton pair production at hadron
colliders, Nucl. Phys. B 794 (2008) 46 [arXiv:0709.3057] [INSPIRE].

[39] J. Debove, B. Fuks and M. Klasen, Joint Resummation for Gaugino Pair Production at
Hadron Colliders, Nucl. Phys. B 849 (2011) 64 [arXiv:1102.4422] [INSPIRE].

[40] C.W. Bauer, F.J. Tackmann, J.R. Walsh and S. Zuberi, Factorization and Resummation for
Dijet Invariant Mass Spectra, Phys. Rev. D 85 (2012) 074006 [arXiv:1106.6047] [INSPIRE].

[41] M. Procura, W.J. Waalewijn and L. Zeune, Resummation of Double-Differential Cross
Sections and Fully-Unintegrated Parton Distribution Functions, JHEP 02 (2015) 117
[arXiv:1410.6483] [INSPIRE].

– 26 –

https://doi.org/10.1007/JHEP01(2021)126
https://arxiv.org/abs/2009.10710
https://inspirehep.net/literature/1818458
https://doi.org/10.1007/JHEP10(2022)118
https://arxiv.org/abs/2201.07114
https://inspirehep.net/literature/2012944
https://doi.org/10.1007/JHEP10(2022)127
https://arxiv.org/abs/2206.07598
https://inspirehep.net/literature/2096333
https://doi.org/10.1007/JHEP10(2015)017
https://doi.org/10.1007/JHEP10(2015)017
https://arxiv.org/abs/1505.02151
https://inspirehep.net/literature/1368942
https://doi.org/10.1007/JHEP06(2016)151
https://arxiv.org/abs/1603.07426
https://inspirehep.net/literature/1434317
https://doi.org/10.1016/j.nuclphysb.2017.05.012
https://arxiv.org/abs/1703.06163
https://inspirehep.net/literature/1518414
https://doi.org/10.1103/PhysRevD.99.054026
https://arxiv.org/abs/1807.00506
https://inspirehep.net/literature/1680491
https://doi.org/10.1103/PhysRevD.105.096017
https://arxiv.org/abs/2203.00267
https://inspirehep.net/literature/2040730
https://arxiv.org/abs/2211.02340
https://inspirehep.net/literature/2176728
https://doi.org/10.1016/0550-3213(87)90258-6
https://inspirehep.net/literature/230126
https://doi.org/10.1016/0550-3213(89)90273-3
https://inspirehep.net/literature/25461
https://doi.org/10.1103/PhysRevLett.84.4296
https://arxiv.org/abs/hep-ph/0002078
https://inspirehep.net/literature/523713
https://doi.org/10.1103/PhysRevD.66.014011
https://arxiv.org/abs/hep-ph/0202251
https://inspirehep.net/literature/583391
https://doi.org/10.1103/PhysRevD.69.014012
https://doi.org/10.1103/PhysRevD.69.014012
https://arxiv.org/abs/hep-ph/0309264
https://inspirehep.net/literature/628885
https://doi.org/10.1103/PhysRevD.71.034003
https://doi.org/10.1103/PhysRevD.71.034003
https://arxiv.org/abs/hep-ph/0411241
https://inspirehep.net/literature/664817
https://doi.org/10.1016/j.nuclphysb.2007.10.021
https://arxiv.org/abs/0709.3057
https://inspirehep.net/literature/761295
https://doi.org/10.1016/j.nuclphysb.2011.03.015
https://arxiv.org/abs/1102.4422
https://inspirehep.net/literature/890377
https://doi.org/10.1103/PhysRevD.85.074006
https://arxiv.org/abs/1106.6047
https://inspirehep.net/literature/916635
https://doi.org/10.1007/JHEP02(2015)117
https://arxiv.org/abs/1410.6483
https://inspirehep.net/literature/1323636


J
H
E
P
1
1
(
2
0
2
3
)
2
2
0

[42] G. Lustermans, W.J. Waalewijn and L. Zeune, Joint transverse momentum and threshold
resummation beyond NLL, Phys. Lett. B 762 (2016) 447 [arXiv:1605.02740] [INSPIRE].

[43] Y. Li, D. Neill and H.X. Zhu, An exponential regulator for rapidity divergences, Nucl. Phys. B
960 (2020) 115193 [arXiv:1604.00392] [INSPIRE].

[44] G.F. Sterman and W. Vogelsang, Crossed Threshold Resummation, Phys. Rev. D 74 (2006)
114002 [hep-ph/0606211] [INSPIRE].

[45] J. Collins, Foundations of perturbative QCD, Cambridge University Press (2013)
[DOI:10.1017/9781009401845] [INSPIRE].

[46] M.A. Ebert, I.W. Stewart and Y. Zhao, Towards Quasi-Transverse Momentum Dependent
PDFs Computable on the Lattice, JHEP 09 (2019) 037 [arXiv:1901.03685] [INSPIRE].

[47] S. Catani and M. Grazzini, Higgs Boson Production at Hadron Colliders: Hard-Collinear
Coefficients at the NNLO, Eur. Phys. J. C 72 (2012) 2013 [Erratum ibid. 72 (2012) 2132]
[arXiv:1106.4652] [INSPIRE].

[48] S. Catani et al., Vector boson production at hadron colliders: hard-collinear coefficients at the
NNLO, Eur. Phys. J. C 72 (2012) 2195 [arXiv:1209.0158] [INSPIRE].

[49] T. Gehrmann, T. Lübbert and L.L. Yang, Transverse parton distribution functions at
next-to-next-to-leading order: the quark-to-quark case, Phys. Rev. Lett. 109 (2012) 242003
[arXiv:1209.0682] [INSPIRE].

[50] T. Gehrmann, T. Luebbert and L.L. Yang, Calculation of the transverse parton distribution
functions at next-to-next-to-leading order, JHEP 06 (2014) 155 [arXiv:1403.6451] [INSPIRE].

[51] T. Lübbert, J. Oredsson and M. Stahlhofen, Rapidity renormalized TMD soft and beam
functions at two loops, JHEP 03 (2016) 168 [arXiv:1602.01829] [INSPIRE].

[52] M.G. Echevarria, I. Scimemi and A. Vladimirov, Unpolarized Transverse Momentum
Dependent Parton Distribution and Fragmentation Functions at next-to-next-to-leading order,
JHEP 09 (2016) 004 [arXiv:1604.07869] [INSPIRE].

[53] M.-X. Luo et al., Transverse Parton Distribution and Fragmentation Functions at NNLO: the
Quark Case, JHEP 10 (2019) 083 [arXiv:1908.03831] [INSPIRE].

[54] M.-X. Luo, T.-Z. Yang, H.X. Zhu and Y.J. Zhu, Transverse Parton Distribution and
Fragmentation Functions at NNLO: the Gluon Case, JHEP 01 (2020) 040
[arXiv:1909.13820] [INSPIRE].

[55] A. Behring et al., Quark beam function at next-to-next-to-next-to-leading order in perturbative
QCD in the generalized large-Nc approximation, Phys. Rev. D 100 (2019) 114034
[arXiv:1910.10059] [INSPIRE].

[56] M.-X. Luo, T.-Z. Yang, H.X. Zhu and Y.J. Zhu, Quark Transverse Parton Distribution at the
Next-to-Next-to-Next-to-Leading Order, Phys. Rev. Lett. 124 (2020) 092001
[arXiv:1912.05778] [INSPIRE].

[57] M.-X. Luo, T.-Z. Yang, H.X. Zhu and Y.J. Zhu, Unpolarized quark and gluon TMD PDFs and
FFs at N3LO, JHEP 06 (2021) 115 [arXiv:2012.03256] [INSPIRE].

[58] M.A. Ebert, B. Mistlberger and G. Vita, Transverse momentum dependent PDFs at N3LO,
JHEP 09 (2020) 146 [arXiv:2006.05329] [INSPIRE].

[59] J.C. Collins and D.E. Soper, Parton Distribution and Decay Functions, Nucl. Phys. B 194
(1982) 445 [INSPIRE].

– 27 –

https://doi.org/10.1016/j.physletb.2016.09.060
https://arxiv.org/abs/1605.02740
https://inspirehep.net/literature/1456940
https://doi.org/10.1016/j.nuclphysb.2020.115193
https://doi.org/10.1016/j.nuclphysb.2020.115193
https://arxiv.org/abs/1604.00392
https://inspirehep.net/literature/1441208
https://doi.org/10.1103/PhysRevD.74.114002
https://doi.org/10.1103/PhysRevD.74.114002
https://arxiv.org/abs/hep-ph/0606211
https://inspirehep.net/literature/719690
https://doi.org/10.1017/9781009401845
https://inspirehep.net/literature/922696
https://doi.org/10.1007/JHEP09(2019)037
https://arxiv.org/abs/1901.03685
https://inspirehep.net/literature/1713430
https://doi.org/10.1140/epjc/s10052-012-2013-2
https://arxiv.org/abs/1106.4652
https://inspirehep.net/literature/914989
https://doi.org/10.1140/epjc/s10052-012-2195-7
https://arxiv.org/abs/1209.0158
https://inspirehep.net/literature/1184204
https://doi.org/10.1103/PhysRevLett.109.242003
https://arxiv.org/abs/1209.0682
https://inspirehep.net/literature/1184368
https://doi.org/10.1007/JHEP06(2014)155
https://arxiv.org/abs/1403.6451
https://inspirehep.net/literature/1287076
https://doi.org/10.1007/JHEP03(2016)168
https://arxiv.org/abs/1602.01829
https://inspirehep.net/literature/1419677
https://doi.org/10.1007/JHEP09(2016)004
https://arxiv.org/abs/1604.07869
https://inspirehep.net/literature/1452696
https://doi.org/10.1007/JHEP10(2019)083
https://arxiv.org/abs/1908.03831
https://inspirehep.net/literature/1748797
https://doi.org/10.1007/JHEP01(2020)040
https://arxiv.org/abs/1909.13820
https://inspirehep.net/literature/1756868
https://doi.org/10.1103/PhysRevD.100.114034
https://arxiv.org/abs/1910.10059
https://inspirehep.net/literature/1760255
https://doi.org/10.1103/PhysRevLett.124.092001
https://arxiv.org/abs/1912.05778
https://inspirehep.net/literature/1770431
https://doi.org/10.1007/JHEP06(2021)115
https://arxiv.org/abs/2012.03256
https://inspirehep.net/literature/1835581
https://doi.org/10.1007/JHEP09(2020)146
https://arxiv.org/abs/2006.05329
https://inspirehep.net/literature/1800390
https://doi.org/10.1016/0550-3213(82)90021-9
https://doi.org/10.1016/0550-3213(82)90021-9
https://inspirehep.net/literature/166064


J
H
E
P
1
1
(
2
0
2
3
)
2
2
0

[60] J.-Y. Chiu, A. Jain, D. Neill and I.Z. Rothstein, A Formalism for the Systematic Treatment of
Rapidity Logarithms in Quantum Field Theory, JHEP 05 (2012) 084 [arXiv:1202.0814]
[INSPIRE].

[61] R. Boussarie et al., TMD Handbook, arXiv:2304.03302 [INSPIRE].

[62] T. Becher, M. Neubert and D. Wilhelm, Electroweak Gauge-Boson Production at Small qT :
Infrared Safety from the Collinear Anomaly, JHEP 02 (2012) 124 [arXiv:1109.6027]
[INSPIRE].

[63] I. Moult, H.X. Zhu and Y.J. Zhu, The four loop QCD rapidity anomalous dimension, JHEP
08 (2022) 280 [arXiv:2205.02249] [INSPIRE].

[64] C. Duhr, B. Mistlberger and G. Vita, Four-Loop Rapidity Anomalous Dimension and Event
Shapes to Fourth Logarithmic Order, Phys. Rev. Lett. 129 (2022) 162001 [arXiv:2205.02242]
[INSPIRE].

[65] T. Becher and G. Bell, Enhanced nonperturbative effects through the collinear anomaly, Phys.
Rev. Lett. 112 (2014) 182002 [arXiv:1312.5327] [INSPIRE].

[66] A.A. Vladimirov, Self-contained definition of the Collins-Soper kernel, Phys. Rev. Lett. 125
(2020) 192002 [arXiv:2003.02288] [INSPIRE].

[67] P. Shanahan, M. Wagman and Y. Zhao, Lattice QCD calculation of the Collins-Soper kernel
from quasi-TMDPDFs, Phys. Rev. D 104 (2021) 114502 [arXiv:2107.11930] [INSPIRE].

[68] LPC collaboration, Nonperturbative determination of the Collins-Soper kernel from
quasitransverse-momentum-dependent wave functions, Phys. Rev. D 106 (2022) 034509
[arXiv:2204.00200] [INSPIRE].

[69] Lattice Parton (LPC) collaboration, Lattice calculation of the intrinsic soft function and
the Collins-Soper kernel, JHEP 08 (2023) 172 [arXiv:2306.06488] [INSPIRE].

[70] A. Bacchetta et al., Semi-inclusive deep inelastic scattering at small transverse momentum,
JHEP 02 (2007) 093 [hep-ph/0611265] [INSPIRE].

[71] D. Graudenz, M. Hampel, A. Vogt and C. Berger, The Mellin transform technique for the
extraction of the gluon density, Z. Phys. C 70 (1996) 77 [hep-ph/9506333] [INSPIRE].

[72] S. Catani, M.L. Mangano, P. Nason and L. Trentadue, The Resummation of soft gluons in
hadronic collisions, Nucl. Phys. B 478 (1996) 273 [hep-ph/9604351] [INSPIRE].

[73] T.-J. Hou et al., New CTEQ global analysis of quantum chromodynamics with high-precision
data from the LHC, Phys. Rev. D 103 (2021) 014013 [arXiv:1912.10053] [INSPIRE].

[74] Jefferson Lab Angular Momentum (JAM) collaboration, Simultaneous Monte Carlo
analysis of parton densities and fragmentation functions, Phys. Rev. D 104 (2021) 016015
[arXiv:2101.04664] [INSPIRE].

[75] Belle collaboration, Measurement of Azimuthal Asymmetries in Inclusive Production of
Hadron Pairs in e+e− Annihilation at

√
s = 10.58GeV, Phys. Rev. D 78 (2008) 032011

[Erratum ibid. 86 (2012) 039905] [arXiv:0805.2975] [INSPIRE].

[76] HERMES collaboration, Single-spin asymmetries in semi-inclusive deep-inelastic scattering
on a transversely polarized hydrogen target, Phys. Rev. Lett. 94 (2005) 012002
[hep-ex/0408013] [INSPIRE].

[77] COMPASS collaboration, Experimental investigation of transverse spin asymmetries in
muon-p SIDIS processes: Collins asymmetries, Phys. Lett. B 717 (2012) 376
[arXiv:1205.5121] [INSPIRE].

– 28 –

https://doi.org/10.1007/JHEP05(2012)084
https://arxiv.org/abs/1202.0814
https://inspirehep.net/literature/1087437
https://arxiv.org/abs/2304.03302
https://inspirehep.net/literature/2650019
https://doi.org/10.1007/JHEP02(2012)124
https://arxiv.org/abs/1109.6027
https://inspirehep.net/literature/929848
https://doi.org/10.1007/JHEP08(2022)280
https://doi.org/10.1007/JHEP08(2022)280
https://arxiv.org/abs/2205.02249
https://inspirehep.net/literature/2077547
https://doi.org/10.1103/PhysRevLett.129.162001
https://arxiv.org/abs/2205.02242
https://inspirehep.net/literature/2077573
https://doi.org/10.1103/PhysRevLett.112.182002
https://doi.org/10.1103/PhysRevLett.112.182002
https://arxiv.org/abs/1312.5327
https://inspirehep.net/literature/1272864
https://doi.org/10.1103/PhysRevLett.125.192002
https://doi.org/10.1103/PhysRevLett.125.192002
https://arxiv.org/abs/2003.02288
https://inspirehep.net/literature/1784065
https://doi.org/10.1103/PhysRevD.104.114502
https://arxiv.org/abs/2107.11930
https://inspirehep.net/literature/1892223
https://doi.org/10.1103/PhysRevD.106.034509
https://arxiv.org/abs/2204.00200
https://inspirehep.net/literature/2061372
https://doi.org/10.1007/JHEP08(2023)172
https://arxiv.org/abs/2306.06488
https://inspirehep.net/literature/2667994
https://doi.org/10.1088/1126-6708/2007/02/093
https://arxiv.org/abs/hep-ph/0611265
https://inspirehep.net/literature/732275
https://doi.org/10.1007/s002880050083
https://arxiv.org/abs/hep-ph/9506333
https://inspirehep.net/literature/396282
https://doi.org/10.1016/0550-3213(96)00399-9
https://arxiv.org/abs/hep-ph/9604351
https://inspirehep.net/literature/417809
https://doi.org/10.1103/PhysRevD.103.014013
https://arxiv.org/abs/1912.10053
https://inspirehep.net/literature/1773096
https://doi.org/10.1103/PhysRevD.104.016015
https://arxiv.org/abs/2101.04664
https://inspirehep.net/literature/1840421
https://doi.org/10.1103/PhysRevD.78.032011
https://arxiv.org/abs/0805.2975
https://inspirehep.net/literature/786236
https://doi.org/10.1103/PhysRevLett.94.012002
https://arxiv.org/abs/hep-ex/0408013
https://inspirehep.net/literature/656015
https://doi.org/10.1016/j.physletb.2012.09.055
https://arxiv.org/abs/1205.5121
https://inspirehep.net/literature/1115720


J
H
E
P
1
1
(
2
0
2
3
)
2
2
0

[78] J. Dudek et al., Physics Opportunities with the 12GeV Upgrade at Jefferson Lab, Eur. Phys. J.
A 48 (2012) 187 [arXiv:1208.1244] [INSPIRE].

[79] Z.-B. Kang, X. Liu, F. Ringer and H. Xing, The transverse momentum distribution of hadrons
within jets, JHEP 11 (2017) 068 [arXiv:1705.08443] [INSPIRE].

[80] T. Becher, M. Neubert and G. Xu, Dynamical Threshold Enhancement and Resummation in
Drell-Yan Production, JHEP 07 (2008) 030 [arXiv:0710.0680] [INSPIRE].

– 29 –

https://doi.org/10.1140/epja/i2012-12187-1
https://doi.org/10.1140/epja/i2012-12187-1
https://arxiv.org/abs/1208.1244
https://inspirehep.net/literature/1125972
https://doi.org/10.1007/JHEP11(2017)068
https://arxiv.org/abs/1705.08443
https://inspirehep.net/literature/1600990
https://doi.org/10.1088/1126-6708/2008/07/030
https://arxiv.org/abs/0710.0680
https://inspirehep.net/literature/762845

	Introduction
	Factorization and resummation formalism
	Theory formalism in Drell-Yan
	Theory formalism in SIDIS and e**(+) e**(-)

	Numerical results
	Modified Collins-Soper scale and inverse Mellin transformation
	Threshold-TMD PDFs and FFs
	Predictions for different experiments

	Conclusion
	Collinear-soft function
	Fitting parameters for PDFs and FFs

