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1 Introduction

The energy-energy correlator (EEC) [1, 2] is one of the earliest infrared and collinear (IRC)
safe observables [3, 4]. It measures the energy correlations as a function of the angle θ between
two detectors. This allows EEC to be represented in terms of the correlation function of
energy flow operators [5–12] defined as

E(n⃗) =
∫ ∞

0
dt lim

r→∞
r2niT0i(t, rn⃗) , (1.1)

making them a subject of extensive study in conformally invariant N = 4 super-Yang-Mills
(SYM) theory [9–11, 13, 14]. The EEC as event shape observables has been extensively
measured in e+e− collisions [15–28] and most recently has been a target of study in electron-
hadron scatterings for the future Electron-Ion Collider (EIC) [29, 30]. In hadron-hadron
collisions, a generalization of the EEC called transverse EEC (TEEC) has been measured and
studied at the Large Hadron Collider (LHC) kinematics [31–35]. The study of EEC has played
a crucial role in advancing our understanding of fundamental particles and their interactions.
For example, these measurements of EEC provide one of the sharpest determination of the
strong coupling constant for both hadron and lepton collider environments [35–39].

Over the last several decades, with particularly reinvigorated efforts in recent years, there
have been significant advances in the theoretical studies of the EEC. There have been rigorous
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Figure 1. Illustration of EEC for e+e− annihilation. Here θ is the angular separation between the
two detectors pointing along n̂1 and n̂2 and ϕ is the azimuthal angle between the plane formed by
these detectors (referred to as “detector plane”, shown as yellow) and the plane generated by the
direction n̂2 and the beam (referred to as “lepton plane”, shown as gray).

computations at fixed orders for arbitrary θ angles [10, 11, 40–49], where the state-of-the-art
computations provide an analytical expressions up to NLO [50, 51] and numerical results at
NNLO accuracy [52] in QCD, and analytical evaluations at both NLO [13] and NNLO [53]
for N = 4 SYM. There has also been many important works to better understand the
nonperturbative structure of the EEC [7, 54–56]. Furthermore, the factorization structure
of the singular regions of the EEC in the back-to-back (θ → π) [37, 49, 57–63] and collinear
limits (θ → 0) [64–67] have been better understood in recent years using the soft collinear
effective field theory (SCET) [68–70], allowing them to be studied to unprecedented accuracy
in both regions.1 In particular, connection to the Transverse-Momentum Dependent (TMD)
observables [79] in the back-to-back limit has been observed and studied in the context of
unpolarized processes in both e+e− and appropriately modified definition of the EEC for
the ep collisions. With the state-of-the-art computation of the 4-loop rapidity anomalous
dimension [61, 80], the EEC in the back-to-back limit has been calculated at very impressive
N4LL accuracy [61]. Within the N = 4 SYM, even the subleading power resummation in
the back-to-back limit has been carried out [81] using techniques from conformal bootstrap.
Many developments of EEC like this in the context of N = 4 SYM give hope of importing
valuable techniques from the CFTs to improve and better our understanding for QCD as well.

While significant progress has been made for the EEC, almost all the existing work
concentrate on studying the EEC as a function of the angle θ only.2 However, as shown
already in the original paper where the EEC was first introduced [1, 2], when considering the
incoming beam direction in e+e− collisions, there would be two additional independent angles
one has to introduce in order to fully describe the EEC. As shown in figure 1, in addition to

1The collinear limit has been computed at NNLL accuracy. For rich interplay and wide-ranging applications
of EEC in the collinear limit with the jet substructure program, see [71–78].

2Refer to [82–84] for several important recent examples that are exceptions, notably considering the
azimuthal angle dependence in the collinear limit of the EEC, as well as for the nucleon EEC.
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the usual angle θ between the two detectors, one also has an azimuthal angle difference ϕ

between the plane formed by the detectors (referred to as “detector plane”, shown as yellow)
and the plane generated by n̂2 and the beam (referred to as “lepton plane”, shown as gray).
The very first proposal of energy correlators in [1] included an LO calculation of the EEC as
a function of the angle θ and the azimuthal angle ϕ. However, at the end of the paper, the
authors decided to integrate over the azimuthal angle ϕ, indicating that the importance of
this azimuthal dependence in the EEC was not realized back then. Since then, higher-order
computations of energy correlators have consistently integrated such azimuthal dependence.

In recent years, spin asymmetries have been widely studied in the hadron physics
community. Because these asymmetries provide nontrivial quantum correlations and imaging
for the hadron structure, their studies have been one of the most important scientific thrusts
for the future EIC [85–87]. Motivated by the fact that many spin asymmetries arise from
the azimuthal correlations, we study the azimuthal dependent EEC. We will develop the
theoretical formalism to demonstrate the full potential of such azimuthal dependent EEC
observables, in particular in terms of exploring the nucleon structure.

In this paper we concentrate on the EEC in the back-to-back region where the angle
between the detectors approaches θ → π and study its azimuthal angle dependence. For
convenience, we also often use the variable τ defined as3

τ = 1 + cos θ

2 , (1.2)

and thus the back-to-back region corresponds to τ → 0. Then the azimuthal dependent
EEC in the e+e− collisions is defined as

EECe+e−(τ, ϕ) ≡ dΣe+e−

dτdϕ
= 1

2
∑
1,2

∫
dσz1z2 δ

(
τ − 1 + cos θ12

2

)
δ(ϕ − ϕ12) , (1.3)

where the weighted sum over pairs of hadrons produced in the final state give correlation
between the energy flown into the detectors in the form of hadrons detected. We also use
z1,2 = 2E1,2/Q to denote the energy fractions of the final-state hadrons 1, 2 flown into the
detectors 1, 2, where Q =

√
s is the center-of-mass (CM) energy of the e+e− collisions. This

definition of the EEC can also be recasted using the operator definition of the energy flow
given in eq. (1.1) as

1
σtot

dΣe+e−

dτdϕ
=

〈
OE (n⃗1) E (n⃗2)O†

〉
〈
OO†

〉 , (1.4)

where O is a source operator that creates the excitation that is detected in the form of energy
carried by the hadrons in the asymptotic detector.

Below, we will demonstrate the similarity between the azimuthal dependent EEC and the
usual TMD factorization formalism. In particular, we show in the back-to-back region that a
new term ∝ cos(2ϕ) will arise for EECe+e−(τ, ϕ), which is related to the Collins fragmentation
function [88], one of the most extensively discussed polarized transverse momentum dependent
functions (TMDs), describing the fragmentation of a transversely polarized quark into an

3Note that z variable defined as z = 1 − τ is also often used in the literature [59, 60].

– 3 –



J
H
E
P
0
3
(
2
0
2
4
)
1
5
3

unpolarized hadron. This fragmentation process correlates the transverse momentum of the
outgoing hadron with the transverse polarization of the quark, giving rise to non-trivial
azimuthal angular asymmetries. For the e+e− annihilation, two transversely polarized quarks
can be produced from the unpolarized e+e− without violating spin conservation. The Collins
asymmetries then manifest itself with the azimuthal asymmetry cos(2ϕ) in the azimuthal
dependent EEC observable.

In addition, we introduce a similar version of azimuthal dependent EEC in deep inelastic
ep scattering (DIS), extending the unpolarized case considered in [29] using the Breit frame.
We show that the azimuthal dependence in the EEC would allow us to probe the transverse
momentum dependent parton distribution functions (TMD PDFs). In particular, in the
context of ep collisions employing polarized electron and/or proton beams, the EEC in DIS
in the back-to-back region exhibits a remarkable correlation between the EEC jet functions
defined below and the polarized and unpolarized TMD PDFs, highlighting the immense
potential of azimuthal dependent EEC as a novel tool for probing TMD PDFs and advancing
our knowledge of the internal structure of nucleons. Furthermore, building on the insights
presented in [89], we introduce a new EEC observable in DIS defined using the lab-frame
angle q∗. By solely relying on angles defined within the Lab frame, this observable offers an
order-of-magnitude improvement in the anticipated experimental resolution at the EIC.

The rest of the paper is structured as follows. Section 2 presents a comprehensive analysis
of the factorization framework governing azimuthal dependent energy-energy correlators in
e+e− and ep collisions. We introduce the Collins-type EEC jet function, which has a close
relation to the Collins fragmentation function. In section 3, we study the properties of the
unpolarized and Collins-type EEC jet functions. Section 4 presents our phenomenological
study to demonstrate the potential of azimuthal dependent EEC observables for probing
nucleon structures. Finally, we conclude our work in section 5.

2 Factorization formalism for azimuthal dependent EEC

In this section, we study the azimuthal dependent EEC observables for both e+e− annihilation
and DIS processes. We show that in the back-to-back region, they can be related to the TMD
factorization framework. We demonstrate that in the factorization formalism, beside the
usual unpolarized EEC jet function which is related to the unpolarized TMD fragmentation
functions, the Collins-type EEC jet function arises that is closely connected with the Collins
fragmentation functions. We write down all the azimuthal angle dependent correlations for the
EEC(τ, ϕ) observables for both e+e− and DIS processes. In our study of the EEC in DIS, we
extend the version adapted from the Breit frame as cited in [29]. Drawing inspiration from [89],
we also introduce a new EEC utilizing lab-frame angles. Furthermore, we demonstrate the
applicability of EEC in DIS in probing both polarized and unpolarized nucleon structures.

2.1 Azimuthal dependent EEC for e+e− annihilation

We will first discuss the azimuthal dependent EEC for the e+e− annihilation. Let us start
with specifying the details of the coordinate frame in which the observables will be measured,
shown already in figure 1. As often done in the TMD factorization for e+e−, we adopt the
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so-called Gottfried-Jackson (GJ) frame [90, 91] by aligning the detector 2 along the n̂2 = n̂z.
Therefore, the angle θ between the two detectors is the polar angle of the detector 1 in the GJ
frame. With this setup, we can easily measure the azimuthal angle of the detector plane with
respect to the lepton plane, as mentioned already in the Introduction and shown clearly in
figure 1. This coordinate frame is slightly different from what was introduced in the original
EEC paper [1] where the +z axis is defined to be along the incoming lepton e− beam, while
the azimuthal angle ϕ is kept the same. In general, one can also parameterize the difference
between the two frame choices by keeping track of the angle between the e− beam and the
detector 2. However, as we integrate over this angle and only measure θ and ϕ, the two
coordinate frame choice give the same results. This demonstrates that our choice of using
GJ frame was not unique, though it is useful to visualize the measurements.

In the back-to-back limit of the two detectors where the angle approaches θ → π (or
τ → 0), we find up to power corrections,

τ =
P 2

h1⊥
z2

1Q2 , (2.1)

for a given pair of hadrons in the two detectors. Here, Ph1⊥ is the transverse momentum
of the hadron h1 in the GJ frame, namely with respect to n̂2 in the pair production. The
azimuthal angle associated with Ph1⊥ is simply ϕ in the GJ frame, as shown in figure 1.
The energy fractions zi=1,2 are given by

zi = 2Phi · q

Q2 = 2Ei

Q
, (2.2)

where q = ℓe+ + ℓe− with Q2 = q2. For convenience, we also introduce qT = −Ph1⊥/z1.
With the relation between τ and qT at hand in the back-to-back region, the azimuthal

dependent EEC for e+e− defined in eq. (1.3) can then be related to the qT -differential
cross section as

EECe+e−(τ, ϕ) = dΣe+e−

dτdϕ

= 1
2
∑
1,2

∫
d2qT dz1 dz2 z1 z2

dσ

dz1dz2d2qT
δ

(
τ − q2

T

Q2

)
δ(ϕ − ϕ12) , (2.3)

where the standard TMD factorization for the back-to-back di-hadron process in e+e− is
given by [91, 92]

dσ

dzidzjd2qT
= σ0 H(Q,µ)

∑
q

e2
q

∫
d2p1⊥d2p2⊥d2λ⊥δ2

(
p1⊥

z1
+ p2⊥

z2
−λ⊥+qT

)
S(λ2

⊥,µ,ν)

×
[
D

(u)
1,h1/q(z1,p2

1⊥,µ,ζ/ν2)D(u)
1,h2/q̄(z2,p2

2⊥,µ,ζ/ν2)+cos(2ϕ12)
(

q̂T,αq̂T,β−
1
2g⊥,αβ

)
× pα

1⊥
z1M1

H
⊥(u)
1,h1/q(z1,p2

1⊥,µ,ζ/ν2) pβ
2⊥

z2M2
H

⊥(u)
1,h2/q̄(z2,p2

2⊥,µ,ζ/ν2)
]

. (2.4)

Here we have integrated over the angle between the hadron h2 and the incoming beam
direction from the conventional TMD factorization expression. It is natural to concentrate
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on the dependence on the angle θ and ϕ only from the EEC perspective as it is an inclusive
measurement over all the hadron pairs as a function of angular separation of detectors in which
they are found. The born cross-section is given by σ0 = 4πNcα

2
em/3Q2. On the other hand,

D
(u)
1,h/q(z, p2

⊥, µ, ζ/ν2) and H
⊥(u)
1,h/q(z, p2

⊥, µ, ζ/ν2) are the unsubtracted (u) unpolarized and
Collins transverse momentum dependent fragmentation functions (TMD FFs) [79], with p⊥ the
hadron transverse momentum with respect to the fragmenting parton. As we have mentioned
already, Collins fragmentation function describes the process where a transversely polarized
quark fragments into an unpolarized hadron with the quark transverse spin correlated with
the hadron transverse momentum. Here µ and ν are the usual renormalization and rapidity
renormalization scales, and ζ is the Collins-Soper scale, for details see ref. [79]. We also have
H(Q, µ), the hard function, which at the next-to-leading order is (see e.g. [93])

H(Q, µ) = 1 + αs

2π
CF

[
3 ln Q2

µ2 − ln2 Q2

µ2 − 8 + 7π2

6

]
. (2.5)

Finally, S(λ2
⊥, µ, ν) is the soft function with λ⊥ describing the soft recoil of the fragment-

ing partons from being exactly back-to-back. The TMD factorization formalism can be
transformed into the coordinate b-space as

dσ

dz1dz2d2qT
= σ0 H(Q,µ)

∑
q

e2
q

∫
d2b

(2π)2 e−ib·qT S(b2,µ,ν)

×
[
D̃

(u)
1,h1/q(z1, b,µ,ζ/ν2)D̃(u)

1,h2/q(z2, b,µ,ζ/ν2)+cos(2ϕ12)
(

q̂T,αq̂T,β−
1
2g⊥,αβ

)
×H̃

⊥(u)α
1,h1/q (z1,b,µ,ζ/ν2)H̃⊥(u)β

1,h2/q (z2,b,µ,ζ/ν2)
]

, (2.6)

where the TMD FFs in the b-space are defined as

D̃
(u)
1,h/q(z, b, µ, ζ/ν2) =

∫
d2p⊥e−ib·p⊥/zD

(u)
1,h/q(z, p2

⊥, µ, ζ/ν2) , (2.7)

H̃
⊥(u) α
1,h/q (z, b, µ, ζ/ν2) =

∫
d2p⊥e−ib·p⊥/z pα

⊥
zM

H
⊥(u)
1,h/q(z, p2

⊥, µ, ζ/ν2) , (2.8)

≡
(
− ibα

2

)
H̃
⊥(u)
1,h/q(z, b, µ, ζ) (2.9)

and likewise for the soft function S(b2, µ, ν) in the b-space, which has been computed to
the three-loop order in [94]. To simplify the notation, here we introduce the “subtracted”
TMD FFs as,

F̃ (z, b, µ, ζ) = F̃ (u)(z, b, µ, ζ/ν2)
√

S(b2, µ, ν) , (2.10)

where F̃ can be unpolarized or the Collins TMD FFs. As a result, eq. (2.6) is further written as

dσ

dz1dz2d2qT
= σ0 H(Q, µ)

∑
q

e2
q

∫
d2b

(2π)2 e−ib·qT

[
D̃1,h1/q(z1, b, µ, ζ)D̃1,h2/q(z2, b, µ, ζ)

+ cos(2ϕ12)
(

q̂T,αq̂T,β − 1
2g⊥,αβ

)
H̃⊥α

1,h1/q(z1, b, µ, ζ)H̃⊥β
1,h2/q(z2, b, µ, ζ)

]
.

(2.11)
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To proceed, we will also have a “subtracted” TMD Collins FF H̃⊥1,h/q(z, b, µ, ζ) following
eq. (2.9),

H̃⊥α
1,h1/q(z, b, µ, ζ) ≡

(
− ibα

2

)
H̃⊥1,h/q(z, b, µ, ζ) . (2.12)

Next, we carry out the Lorentz contractions on α and β and then perform the energy-fraction-
weighted integrals in eq. (2.3) to obtain the azimuthal-dependent EEC in the back-to-back
limit and arrive at

EECe+e−(τ,ϕ) = dΣe+e−

dτdϕ

= 1
2σ0 H(Q,µ)

∑
q

e2
q

∫
bdb

2π

[
J0(b

√
τQ)Jq(b,µ,ζ)Jq̄(b,µ,ζ)

+cos(2ϕ) b2

8 J2(b
√

τQ) J⊥q (b,µ,ζ)J⊥q̄ (b,µ,ζ)
]

. (2.13)

This is one of the key results of our paper, which shows that a new term ∝ cos(2ϕ) arises
in the azimuthal dependent EEC observable for e+e− annihiliation. Here it is important
to emphasize that beside Jq(b, µ, ζ), the so-called unpolarized EEC jet function introduced
previously in [59], we have defined a new EEC jet function J⊥q (b, µ, ζ). The unpolarized EEC
jet function has a close relation to the unpolarized TMD FFs, while J⊥q (b, µ, ζ) is closely
connected with the Collins fragmentation functions:

Jq(b, µ, ζ) ≡
∑

h

∫ 1

0
dz z D̃1,h/q(z, b, µ, ζ) , (2.14)

J⊥q (b, µ, ζ) ≡
∑

h

∫ 1

0
dz z H̃⊥1,h/q(z, b, µ, ζ) . (2.15)

Because of this close connection, we name the new EEC jet function J⊥q (b, µ, ζ) as the
“Collins-type” EEC jet function. Note that the left-hand side in eqs. (2.14) and (2.15) no
longer carries hadron label as we sum over the final state hadrons as appropriate from the
inclusive nature of the EEC. We will defer the discussion on the properties of these jet
functions, especially the Collins-type EEC jet function in section 3. We will now study the
azimuthal dependent EEC in ep collisions.

2.2 Azimuthal dependent EEC in DIS

A modified version of EEC in the deep inelastic ep scattering was first introduced in [29] in
the Breit frame. It measures the energy correlation as a function of the angle θ (we also often
use τ defined similarly as eq. (1.2) for convenience) between a detector and the incoming
proton p beam, as shown in the left panel of figure 2.4 As in [29], we begin by generalizing
the DIS version of EEC in the Breit frame, which we define using the Trento conventions. In
this frame, the exchanged virtual photon has no temporal component and points along the
+z direction and the proton beam moves along the −z axis. We can then form two planes:

4Technically, since we detect energy flowing into only a single detector, calling it an ‘energy-energy’
correlator is somewhat of a misnomer.
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e−

ϕ
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Figure 2. Left: illustration of EEC for DIS in the Breit frame using the Trento conventions. Here
the exchanged virtual photon is along the +z direction and the incoming proton moves along the −z

axis, together with the incoming lepton, they form the lepton plane (shown as gray in the figure).
The detector direction n̂ and the initial proton forms the detector plane (shown as yellow), which
has an azimuthal angle ϕ with respect to the lepton plane. The angle between the detector and the
proton p is given by θ. Right: EEC for DIS in the EIC lab frame. Here the incoming proton is along
the +zlab direction and the incoming electron is along the −zlab direction.

the detector plane that is generated by the detector direction and the initial proton p and the
lepton plane that is formed by the incoming (outgoing) leptons and the initial proton. We
denote the azimuthal angle difference between these two planes as ϕ. We will be particularly
interested in studying the consequence of such an azimuthal dependent EEC for DIS process,
especially when both the incoming lepton and proton beams can be polarized.

Let us start with the kinematics. Since the EEC will be closely related to the TMD
factorization for producing a final-state hadron, e(ℓ) + p(P ) → e(ℓ′) + h(Ph) + X, we define
the usual semi-inclusive DIS kinematic variabbles,

xB = Q2

2P · q
, y = Q2

xBS
, zh = P · Ph

P · q
, (2.16)

where q = ℓ′ − ℓ is the momentum of the exchanged virtual photon with Q2 = −q2 and
S = (ℓ + P )2 is the electron-proton center-of-mass energy. Denoting the corresponding
opening and azimuthal angles of a given final-state hadron measured in the detector as θhp

and ϕh, we generalize the EEC definition in [29] to include the azimuthal angle dependence as

EECDIS(τ, ϕ) ≡ dΣDIS
dxBdydτdϕ

(2.17)

=
∑

h

∫
dθhp dϕh dzh zh

dσ

dxBdydzhdθhpdϕh
δ

(
τ − 1 + cos θhp

2

)
δ(ϕ − ϕh) ,

where we have suppressed xB and y dependence in the azimuthal dependent EEC definition,
EECDIS(τ, ϕ).

Similar to the discussion above for e+e− collisions, in the back-to-back limit of the
incoming proton and the detector, i.e. θ → π (or τ → 0), we find

τ = P 2
hT

z2
hQ2 , (2.18)
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for a given outgoing hadron inside the detector up to power corrections. Here PhT is the
transverse momentum of the final hadron h, measured using the Trento convention [95] with
azimuthal angle ϕh. For convenience, we introduce the shorthand notation qT ≡ −PhT /zh,
which corresponds to the virtual photon’s transverse momentum in the center-of-mass frame
where the initial proton and final hadron align along the z-axis. In the Breit frame used in our
analysis, the transverse momentum qT serves as a useful auxiliary variable. Additionally, this
momentum scale facilitates the distinction between perturbative and non-perturbative regions:

• In the region where ΛQCD ≪ qT ≲ Q, known as the fixed-order region, perturbative
approaches, including fixed-order and collinear calculations, are appropriate.

• For ΛQCD ≪ qT ≪ Q, termed the resummation region, resummation is crucial for
summing large logarithms and avoiding divergences.

• In the range ΛQCD ≲ qT ≪ Q, identified as the non-perturbative region, it is vital to
account for non-perturbative Sudakov effects, and the influence of non-perturbative
power corrections becomes more pronounced.

With the relation between τ and hadron’s transverse momentum, we can then relate
the azimuthal dependent EEC in eq. (2.17) in the back-to-back limit to the qT -differential
cross section as

EECDIS(τ, ϕ) = dΣDIS
dxBdydτdϕ

=
∑

h

∫
d2qT dzh zh

dσ

dxBdydzhd2qT
δ

(
τ − q2

T

Q2

)
δ(ϕ − ϕh) , (2.19)

where ϕh is the azimuthal angle of PhT . The standard TMD factorization in the Breit frame
tells us that the transverse momentum can be sourced from different contributions as [96, 97]

qT = −p⊥
zh

− k⊥ − λ⊥ , (2.20)

where p⊥ is the hadron transverse momentum with respect to the fragmenting parton (quark
or anti-quark, in this case), k⊥ is the transverse momentum of the parton inside the incoming
proton, and λ⊥ is the soft-radiation describing the recoil and is measured with respect to
the photon-beam axis.

Then in the back-to-back limit, using this known TMD factorization in the Breit frame
(e.g. see [98–102]), the azimuthal angle dependent EEC for DIS defined in the eq. (2.17)
can be presented in the back-to-back limit as

EECDIS(τ, ϕ) = dΣDIS
dxBdydτdϕ

= σ0

∫
d2qT δ

(
τ − q2

T

Q2

)
δ(ϕ − ϕh)

∫
db b

2π

{
FUU

+ cos(2ϕh) 2(1 − y)
1 + (1 − y)2F

cos(2ϕh)
UU + S∥ sin(2ϕh) 2(1 − y)

1 + (1 − y)2F
sin(2ϕh)
UL

+ |S⊥|
[

sin(ϕh − ϕs)F sin(ϕh−ϕs)
UT + sin(ϕh + ϕs) 2(1 − y)

1 + (1 − y)2F
sin(ϕh+ϕs)
UT

+ sin(3ϕh − ϕs) 2(1 − y)
1 + (1 − y)2F

sin(3ϕh−ϕs)
UT

]
+ λe

[
S∥

y(2 − y)
1 + (1 − y)2FLL + |S⊥| cos(ϕh − ϕs)Fcos(ϕh−ϕs)

LT

]}
, (2.21)
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where the indices A and B of the structure functions FAB represent the polarization of the
incoming electron and incoming proton, respectively. The born cross-section is given by

σ0 = 2πα2
em

Q2
1 + (1 − y)2

y
. (2.22)

Also, S∥ and |S⊥| respectively denote the helicity and transverse spin of the incoming proton,
whereas λe denotes the helicity of the incoming electron. The angle ϕs is the azimuthal
angle of the transverse spin of the beam. The exact expression of each structure functions
in terms of different nuclear TMDs and the EEC jet functions defined above in eqs. (2.14)
and (2.15) are given in appendix A. Unlike the EEC in e+e− annihilation, the DIS version
of the EEC has only one EEC jet function per term as it measures correlation between
one outgoing hadron and the beam.

2.3 Azimuthal dependent EEC in DIS using the lab-frame angles

As demonstrated in [89], a new angular observable q∗ defined in the Lab frame was proposed
for precisely extracting the transverse momentum distribution of hadrons in DIS experiments,
by taking advantage of the near-perfect resolution on the angles of charged particle tracks
as opposed to momentum. Although energy correlators are inherently angular observables,
boosting to the Breit frame in section 2.2 requires precise determination of the virtual photon
momentum, which compromises precision. To this end, we study how energy correlator in DIS
can be formulated using the angle defined in the lab frame using the proposed q∗ observable.

More specifically, as discussed in [89], a high-precision reconstruction of polar and
azimuthal angles in the EIC lab frame was developed to exploit the acoplanarity angle ϕEIC

acop
as a precision probe of hadron transverse momentum PhT measured in Trento convention
discussed above. In the EIC lab frame as given in right panel of figure 2, the acoplanarity
angle ϕEIC

acop are defined as P EIC
hy /P EIC

hx , where P EIC
hx and P EIC

hy is the x and y component of
the produced hadron momentum in the EIC frame. At the leading power kinematics, with√

P 2
hT = PhT , one can relate this angle with quantities in the Breit frame as

tan ϕEIC
acop = − PhT sin ϕh

zhQ
√

1 − y
+ O

(
P 2

hT /(zhQ)2
)

= −
√

τ

1 − y
sin ϕh + O(τ) , (2.23)

where Q2 = −q2 = −(l − l′)2, and y and zh have been defined in eq. (2.16). To probe PhT

more straightforwardly with quantities that can be directly measured in the EIC frame, an
optimized observable q∗ is constructed and given by

q∗ ≡ 2P 0
EIC

eηh

1 + e∆η
tan ϕEIC

acop . (2.24)

Here P 0
EIC, ηh and ηe are energy and pseudorapidities measured in the EIC frame. At

the leading-power limit PhT ≪ zhQ, one can apply the relation between ϕEIC
acop and PhT

in eq. (2.23) and obtain the approximation q∗ ≈ −PhT sin ϕh to simplify the analytical
calculation. An illustration of ϕh in the x-y plane of figure 2 is shown in figure 3. Although
ϕh here, the azimuthal angle of PhT , is measured in the Trento frame, the observable q∗ itself
is purely a measurable observable in the lab frame and designed to be maximally resilient
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e−
lT

qT
PhT

ϕh

x

y

PhT sinϕh

h

Figure 3. Illustration of ϕh in the x − y plane of the left panel in figure 2.

against resolution effects while delivering the same sensitivity to TMD dynamics as PhT ≪ Q.
Moreover, this resolves the issue of accurately reconstructing small transverse momentum
PhT in 3d measurements of confinement and hadronization.

Now we will construct a new EEC observable called EEC∗DIS as a function of q∗,

EEC∗DIS(q∗) = dΣDIS
dxBdydq∗

=
∑

h

∫
dzhzh

dσ

dxBdydzhdqh
∗

δ(q∗ − qh
∗ ) . (2.25)

Using the factorization theorem presented for dσ
dxdydzhdqh

∗
given in [89], the EEC∗DIS(q∗) is

given as

dΣDIS
dxBdydq∗

= σ0

∫
db

{
cos(bq∗)

[
C[f̃1J ]+ 2(1−y)

1+(1−y)2C
⊥[h̃⊥(1)

1 J⊥]+λeS∥
y(2−y)

1+(1−y)2C[g̃1LJ ]
]

+|S⊥|sin(bq∗)cosϕs

[
−C[f̃⊥(1)

1T J ]+ 2(1−y)
1+(1−y)2C

⊥[h̃1J⊥]

+ 2(1−y)
1+(1−y)2

1
4C
⊥[h̃⊥(2)

1T J⊥]
]
+λe|S⊥|sin(bq∗)sinϕsC[g̃(1)

1T J ]
}

, (2.26)

where the f̃ (m) is m-moment TMD PDFs in the Fourier b-space “subtracted” with squared root
of the soft function

√
S(b2, µ, ν), similar to the “subtracted” TMD FFs defined in eq. (2.10).

J and J⊥ are the “subtracted” unpolarized and Collins-type EEC jet function, respectively,
given in eq. (2.14) and (2.15). For convenience, we define the notations C(⊥)[f̃ (m)J (⊥)] as

C[f̃ (m)J ] =
∑

q

e2
qH(Q, µ)Jq(b, µ, ζ)bmMmf̃ (m)

q (x, b, µ, ζ) , (2.27)

C⊥[f̃ (m)J⊥] =
∑

q

e2
qH(Q, µ)J⊥q (b, µ, ζ)bm+1

2 Mm(−Mh)f̃ (m)
q (x, b, µ, ζ) . (2.28)

Using the new EEC observable defined in eq. (2.26), one can get access to probing 7 leading-
twist TMD PDFs with q∗ measured, which is constructed as a high-precision probe in the
EIC lab frame. Note that the reason h̃

⊥(1)
1L is not present in eq. (2.26) is that its coefficient

sin(2ϕh) has an odd symmetry thus the contribution vanishes after integrating over ϕh.

3 Properties of Collins-type EEC jet functions

In this section, we derive the intricate behavior of the EEC jet functions using the operator
product expansion (OPE) as done for the unpolarized case in [59], and extend their analysis
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to the Collins-type EEC jet function defined in eq. (2.15). We find that the Collins-type EEC
jet function becomes null in the OPE region upon neglecting the off-diagonal matching terms,
which is αs suppressed relative to the diagonal terms. Finally, we conclude by discussing the
application of considering less inclusive EEC jet function by restricting to a subset of hadrons.

3.1 Operator product expansion region

In order to elucidate the OPE of the EEC jet functions, we start with the concept of
“subtracted” TMD FFs as defined in eq. (2.10), which absorbs the square-root of the soft-
function. This serves as a vital starting point for our analysis, enabling us to uncover
the intricate interplay between the OPE and the azimuthal angle dependence of the EEC
jet functions.

The OPE of the subtracted unpolarized and Collins TMD FFs then gives [79, 102–106]

D̃1,h/q(z, b, µ, ζ) =
[
Cj←q ⊗ D1,h/j

]
(z, b, µ, ζ) + O(b2Λ2

QCD), (3.1)

H̃⊥1,h/q(z, b, µ, ζ) =
[
δCCollins

j←q ⊗ Ĥ
⊥(3)
1,h/j + Aj←q⊗̃ĤF,h/j

]
(z, b, µ, ζ) + O(b2Λ2

QCD) , (3.2)

where the usual convolution ⊗ is given by[
Cj←q ⊗ Fh/j

]
(z, b, µ, ζ) =

∫ 1

z

dx

x
Cj←q

(
z

x
, b, µ, ζ

)
Fh/j (x, µ) , (3.3)

and the convolution ⊗̃ is a double convolution[
Aj←q⊗̃ĤF,h/j

]
(z, b, µ, ζ)

=
∫ 1

z

dx

x

∫
dz1
z2

1
PV

(
1

1
x − 1

z1

)
Aj←q

(
z

x
, z1, b, µ, ζ

)
ĤF,h/j (x, z1, µ) , (3.4)

where Aq′←q (z, z1, µ, ζ) starts at the order O(αs) and will be ignored in our analysis relative
to the δCCollins

j←q term. Also, PV represents principle value and eq. (3.4) comes from the
two-variable twist-3 fragmentation function ĤF,h/q(z1, z2, µ) that appears in the collinear
factorization region in b ≪ 1/ΛQCD [104]. Such two-variable dependence arise from different
longitudinal momentum flow on the amplitude and conjugate amplitude side.

Here, D1,h/j(z, µ) in eq. (3.1) describes the unpolarized collinear fragmentation functions.
On the other hand, Ĥ

⊥(3)
1,h/j(z, µ) is a twist-3 fragmentation function, which can be related to

the first k⊥-moment of the Collins TMD FF through an equation of motion relation [102, 104].
Matching of the unpolarized TMD FF and the Collins TMD FF given in eqs. (3.1) and (3.2)
can be derived through the usual OPE in the small-b region, 1/b ≫ ΛQCD. To one-loop, these
matching coefficients of eqs. (3.1) and (3.2) are given by (see e.g. [102, 105–107])

Cq′←q (z, b, µ, ζ) = δqq′

{
δ (1 − z) + αs

π

[
CF δ (1 − z)

(
−L2

b

4 + Lb

2

(
3
2 + ln µ2

ζ2

)
− π2

24

)

+ CF

2 (1 − z) +
(

ln z − Lb

2

)
Pq←q (z)

]}
+ O(α2

s) , (3.5)

δCCollins
q′←q (z, b, µ, ζ) = δqq′

{
δ (1 − z) + αs

π

[
CF δ (1 − z)

(
−L2

b

4 + Lb

2

(
3
2 + ln µ2

ζ2

)
− π2

24

)

+
(

ln z − Lb

2

)
P̂ c

q←q (z)
]}

+ O(α2
s) , (3.6)
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where Lb = ln(µ2/µ2
b) with µb = 2e−γE /b. The splitting functions Pq←q(z) and P̂ c

q←q(z)
is given as

Pq←q(z) = CF

[
1 + z2

(1 − z)+
+ 3

2δ(1 − z)
]

, (3.7)

P̂ c
q←q(z) = CF

[ 2z

(1 − z)+
+ 3

2δ(1 − z)
]

. (3.8)

The matching coefficients δCCollins
q′←q from (anti-)quark to gluon or different flavored (anti-

)quark are zero at 1-loop for the Collins TMD FFs. And other matching coefficients for the
unpolarized TMD FFs have been provided in [102].

The collinear functions in the matching obey the sum rules [108–110]

∑
h

∫ 1

0
dz z D1,h/j (z, µ) = 1 , (3.9)

∑
h

∫ 1

0
dz Ĥ

⊥(3)
1,h/q (z, µ) = 0 . (3.10)

The first sum rule is just the longitudinal momentum conservation, i.e. sum over longitudinal
momentum fraction carried by the hadron h is 1. The second sum rule for the twist-3
fragmentation function is called Schäfer-Teryaev (ST) sum rule, which is related to the
transverse momentum conservation of the Collins TMD FF [108]. A general proof of the
ST sum rule in QCD was given in [109]. It was intuitively understood as the fact that
the transverse momentum carried by the final hadron must sum to 0 as the fragmenting
parton has a 0 transverse momentum.

With the “subtracted” EEC jet function defined in eqs. (2.14) and (2.15), we provide
the parameterization of our TMD FFs using the b∗ prescription [96, 102, 111, 112], which
ensures µb∗ ≫ ΛQCD to include the TMD evolution in the large b region and gives

D̃1,h/q(z, b, µ, ζf ) = D̃1,h/q(z, b, µb∗ , ζi)e−Spert(µ,µb∗ )−S
D1
NP(b,Q0,ζf )

(√
ζf

ζi

)κ(b,µb∗ )

, (3.11)

H̃⊥1,h/q(z, b, µ, ζf ) = H̃⊥1,h/q(z, b, µb∗ , ζi)e−Spert(µ,µb∗ )−S
H⊥

1
NP (b,Q0,ζf )

(√
ζf

ζi

)κ(b,µb∗ )

, (3.12)

where κ (b, µb∗) is the Collins-Soper (CS) kernel [113], denoting the universal rapidity evolu-
tion [114] for TMDs, and can be perturbatively calculated at small b region [107]. Spert(µ, µb∗)
is the perturbative Sudakov factor that resums all the global logarithms and evolves TMD
FFs from their characteristic scales µb∗ to scale µ. When b is large, the CS kernel is non-
perturbative and can be computed in lattice QCD [115–118] or extracted from experimental
data [97, 119–122]. The non-perturbative Sudakov factors SD1

NP and S
H⊥

1
NP in general depend

on the hadron species and we will explore it in the section below.
In [59], interesting observation was made about simplification of unpolarized EEC jet

function when the non-perturbative Sudakov effects are ignored, i.e. 1
b ≫ ΛQCD. That is,
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using the sum rule in eq. (3.9), we arrive at

Jq(b, µ, ζ) =
∑

h

∫ 1

0
z dz D̃1,h/q(z, b, µ, ζ)

=
∑

h

∫ 1

0
z dz

∫ 1

z

dx

x
Cj←q

(
z

x
, b, µb∗ , ζ

)
D1,h/j (x, µb∗) e−Spert(µ,µb∗ )

=
∫ 1

0
τ dτ Cj←q(τ, b, µb∗ , ζ)

[∑
h

∫ 1

0
dx x D1,h/j (x, µb∗)

]
e−Spert(µ,µb∗ )

=
∫ 1

0
τ dτ Cj←q(τ, b, µb∗ , ζ)e−Spert(µ,µb∗ ) , (3.13)

and thus reproduce the result from [59] that unpolarized EEC jet function is purely pertur-
bative object in the OPE region, given by the matching coefficients Cj←q alone.

On the other hand, the Collins-type EEC jet function can be simplified analogously
using the ST sum rule described in eq. (3.10), with the contribution from twist-3 function
ĤF,h/j in eq. (3.2) neglected. By making this simplification, we can achieve the same level of
accuracy as in the previous scenario. In the OPE region, the Collins-type EEC jet functions
can be further simplified as follows:

J⊥q (b, µ, ζ) =
∑

h

∫ 1

0
dz z H̃⊥1,h/q(z, b, µ, ζ)

=
∑

h

∫ 1

0
dz

∫ 1

z

dx

x
δCCollins

q←q

(
z

x
, b, µb∗ , ζ

)
Ĥ
⊥(3)
1,h/q (x, µb∗) e−Spert(µ,µb∗ )

=
∫ 1

0
dτδCCollins

q←q (τ, b, µb∗ , ζ)
[∑

h

∫ 1

0
dx Ĥ

⊥(3)
1,h/q (x, µb∗)

]
e−Spert(µ,µb∗ )

= 0 , (3.14)

which demonstrates that the Collins-like EEC jet function J⊥q becomes 0 in the OPE region.
Both of these results only hold true when non-perturative effects can be ignored.

3.2 Collins-type EEC with subsets of hadrons

In this section, we explore a less inclusive version of EEC in the back-to-back limit that is only
sensitive to the energy flow of subset of hadrons ⟨ES1(n̂1)ES2(n̂2)⟩.5 Here, we denote some
subset of hadron sharing some quantum number as S. By considering the τ, ϕ-differential
and z-weighed cross section, while summing over this subset of hadrons S, we arrive at the
modified jet functions from eqs. (2.14) and (2.15),

Jq/S(b, µ, ζ) ≡
∑
h∈S

∫ 1

0
dz z D̃1,h/q(z, b, µ, ζ) , (3.15)

J⊥q/S(b, µ, ζ) ≡
∑
h∈S

∫ 1

0
dz z H̃⊥1,h/q(z, b, µ, ζ) . (3.16)

5See [71, 78, 123–125] for similar consideration in the context of EEC in the collinear limit, where the track
function formalism was used to study energy correlation between hadrons with specific quantum number.
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In the OPE region, these subset jet functions can then be matched to the collinear
functions as

Jq/S(b, µ, ζ) =
∑

j

Fj→S

∫ 1

0
dτ τ Cj←q(τ, b, µb∗ , ζ)e−Spert(µ,µb∗ ) , (3.17)

J⊥q/S(b, µ, ζ) =
∑

j

F⊥j→S

∫ 1

0
dτ δCCollins

j←q (τ, b, µb∗ , ζ)e−Spert(µ,µb∗ ) . (3.18)

Physically, Fj→S is the average fraction of longitudinal momentum of parton j carried by
the subset S of hadrons [29], which is thus between 0 and 1. On the other hand, F⊥j→S is
related to the average transverse momentum carried by the subset S of the hadrons, which is
thus able to take any real value. These two functions are defined in terms of the moments
of NP collinear objects as

Fj→S =
∑
h∈S

∫ 1

0
dz z D1,h/j (z, µb∗) , (3.19)

F⊥j→S =
∑
h∈S

∫ 1

0
dz Ĥ

⊥(3)
1,h/j (z, µb∗) . (3.20)

It is worth noting that since δCCollins
j←q is only non-zero when j = q, the only relevant term

is F⊥q→S. Additionally, as demonstrated in eqs. (3.9) and (3.10), when S = all hadrons, one
will obtain Fj→S = 1 and F⊥j→S = 0.

Although the EEC jet functions are now sensitive to the non-perturbative information
carried by the subset of hadrons, it is worth noting that all of the non-perturbative information
are captured by a single number in the OPE region. As pointed out in [29], considering EEC
with subsets of hadrons can be interesting from the point of view of considering a set of all
charged particles S = C or a set of a single hadron type S = h. From the perspective of Collins-
type EEC jet function, we are motivated to consider the so-called favored and unfavored subset
as well [102, 110, 126]. The vanishing value of Collins-type EEC jet function in the OPE
region can be understood as F⊥j→fav ≈ −F⊥j→unfav, and thus it is also interesting to consider
S = {π+}, {π−}, {π0}, {π+, π−}, {π+, π−, π0} for Collins-type EEC in phenomenology.

4 Phenomenology

The present study focuses on the Collins azimuthal asymmetry in e+e− annihilation with
subsets of hadrons, namely S = {π+, π−}, {π+}, and {π−}, as the hadron component of the
EEC jet using EIC kinematics. Furthermore, we provide predictions for both the Collins and
Sivers asymmetry in the Breit frame for the DIS process. It is worth noting that the EEC
jet function is also a powerful tool for probing the internal structure of nucleons in the lab
frame, as evidenced by our example of an azimuthal asymmetry related to the worm-gear
TMD PDFs and EEC jet functions.

4.1 The EEC Collins asymmetry in e+e− annihilation

With the EEC derived for e+e− annihilation in the back-to-back region in terms of the
EEC jet functions in eq. (2.13), we now carry out phenomenological study of the asymmetry
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associated with EEC. To achieve this, we first rewrite the eq. (2.13) as

EECe+e−(τ, ϕ) = dΣe+e−

dτdϕ
= 1

2σ0
∑

q

e2
q

∫
dq2

T δ

(
τ − q2

T

Q2

)
Zuu

[
1 + cos(2ϕ) ZCollins

Zuu

]
≡ 1

2σ0
∑

q

e2
q Zuu

[
1 + cos(2ϕ) Ae+e−(τQ2)

]
, (4.1)

where

Zuu =
∫

bdb

2π
J0(bqT )Jq(b, µ, ζ)Jq̄(b, µ, ζ) , (4.2)

ZCollins =
∫

bdb

2π

b2

8 J2(bqT )J⊥q (b, µ, ζ)J⊥q̄ (b, µ, ζ) . (4.3)

Recall that subtracted EEC jet functions were defined in eqs. (2.14) and (2.15). As pions
are the primary measurements available for the Collins-type asymmetry, we now study the
ratio AS1×S2

e+e− (q2
T ) = AS1×S2

e+e− (τQ2) with different subsets S1 × S2 of produced pion pairs. This
amounts to simply using EEC jet functions with a subset in eqs. (3.15) and (3.16) defined in
terms of TMD FFs of the pions. As explained in the section 3.1, TMD FFs can be matched to
the collinear functions in the OPE region. We now use the parametrization of [102] to generate
AS1×S2

e+e− (τQ2). In the case of the TMD Collins FFs as formulated in eq. (3.12), our approach
is to evolve these functions to the hard scale, denoted by µh ∼ Q. This evolution allows for
the resummation of relevant logarithms at the next-to-leading logarithmic (NLL) accuracy.

H̃⊥1,h/q(z, b, µ, ζ) =
[
δCCollins

j←q ⊗ Ĥ
⊥(3)
1,h/j

] (
x, b, µb∗ , µ2

b∗

)
e−

1
2 Spert(µ,µb∗ )−S

H⊥
1

NP (b,Q0,ζ) . (4.4)

The corresponding twist-3 collinear fragmentation functions Ĥ(3)(z, Q0) were parametrized as

Ĥ
(3)
fav(z, Q0) = N c

uzαu(τ)βuD1,π+/u(z, Q0) , (4.5)

Ĥ
(3)
unfav(z, Q0) = N c

dzαd(τ)βdD1,π+/d(z, Q0) , (4.6)

Ĥ
(3)
s/s̄(z, Q0) = N c

dzαd(τ)βdD1,π+/s,s̄(z, Q0) , (4.7)

and fitting parameters N c
u, N c

d , αu, αd, βu, βd, are provided in [102]. The collinear FFs
D1,h/i are the NLO DSS fragmentation functions [127] and the contribution from twist-3
function ĤF,h/j in eq. (3.2) has been neglected following what was done in [102]. The
coefficient δĈCollins

q′←q is given in eq. (3.6). It is important to note that at a scale where µb is
comparable to ΛQCD (corresponding to large b values), it becomes necessary to account for
non-perturbative contributions. To address this, we have implemented the b∗ prescription as
detailed in [96, 102, 111, 112]. This prescription defines b∗ as b/

√
1 + b2/b2

max, with a chosen
value of bmax = 1.5 GeV−1 [102]. Consequently, in the regime of small b, the behavior of b∗
approximates b, whereas in the large-b region, b∗ asymptotically approaches bmax. Here we
also provide the parametrization of the non-perturbative Sudakov factors for unpolarized
and Collins TMD FFs,

SD1
NP(b, Q0, ζ) = g2

2 ln
(

b

b∗

)
ln
(√

ζ

Q0

)
+ gh

z2 b2 , (4.8)

S
H⊥

1
NP (b, Q0, ζ) = g2

2 ln
(

b

b∗

)
ln
(√

ζ

Q0

)
+ gh − gc

z2 b2 , (4.9)

where g2 = 0.84, Q2
0 = 2.4 GeV2, gh = 0.042 GeV2 and gc is extracted in [102].
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Figure 4. AS1×S2
e+e− for S1×S2 = {π+, π−}×{π+, π−}, {π+}×{π−} and {π−}×{π−} as a function of

τ at
√

s = 10.6 GeV with Collins functions fitted in [102]. The bands with lighter colors are generated
by varying the hard scale with a factor of 2 and the bands with darker colors indicate the uncertainties
given by the global fitting of the Collins function at 68% C.L.

In figure 4, we present the results for AS1×S2
e+e− (τQ2) with different subsets of pions

S1 × S2 = {π+, π−} × {π+, π−} (red curve), {π+} × {π−} (green curve) and {π−} × {π−}
(blue curve) at

√
s = 10.6 GeV with the model uncertainties (dark) given by the estimated

errors in the global fitting of the Collins function in [102] at 68% C.L. For the perturbative
uncertainties, we vary the hard scale µh = Q by a factor of 2 and take the envelop between
the variation curves with lighter shades. Note that we avoid varying the characteristic scale
µb∗ of TMD FFs since the canonical scale of fitting the non-perturbative Sudakov factor is
fixed at µb∗ with bmax = 1.5 GeV−1 [102]. We find that at this perturbative order (NLL),
the perturbative uncertainty is on par with the non-perturbative uncertainty. However,
as we further increase the perturbative precision [29, 31, 128, 129], we should expect the
perturbative uncertainty becomes smaller than non-perturbative uncertainty. Although the
subset with S1 × S2 = {π+, π−} × {π+, π−} is suppressed due to the sum rule, one can
have sizable asymmetries when restricting to a subset of either positively or negatively
charged pions in EEC.

4.2 The EEC Collins asymmetry in DIS

To define the asymmetry associated with EEC for DIS, we begin by rewriting eq. (2.21) as

EECDIS(τ,ϕ) = dΣDIS
dxBdydτdϕ

= σ0

∫
d2qT δ

(
τ− q2

T

Q2

)∫
db b

2π

{
FUU +sin(ϕh+ϕs) 2(1−y)

1+(1−y)2F
sin(ϕh+ϕs)
UT +· · ·

}
,

(4.10)

where the ellipsis represents other spin-dependent structures given in eq. (2.21) and

FUU =
∫

d2qT δ

(
τ − q2

T

Q2

)∫
bdb

2π
J0(bqT ) C

[
f̃1J

]
, (4.11)
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F sin(ϕh+ϕs)
UT =

∫
d2qT δ(τ − q2

T

Q2 )
∫

bdb

2π
J1(bqT ) C⊥

[
h̃1J⊥

]
, (4.12)

where the notations C(⊥)[· · · ] has been defined in eqs. (2.27) and (2.28). Note that we
absorbed

√
S to define the subtracted versions of TMD PDFs f̃ q

1 and h̃q
1 as we did for the

EEC jet functions. Then we define the asymmetry as the ratio of the above structure functions

ADIS(τQ2) = 2(1 − y)
1 + (1 − y)2

F sin(ϕh+ϕs)
UT

FUU
. (4.13)

As discussed for the e+e− case, we can analogously define AS
DIS for various subsets of hadrons.

We use the same parameterization of the twist-3 fragmentation functions discussed around
eq. (4.5)–(4.7). As for the TMD PDFs, we follow the b∗ prescription and write them as

f̃1,q/p(x, b, µ, ζ) =
[
Ĉq←i ⊗ f1,i/p

] (
x, b, µb∗ , µ2

b∗

)
e−

1
2 Spert(µ,µb∗ )−S

f1
NP(b,Q0,ζ) , (4.14)

h̃1,q/p(x, b, µ, ζ) =
[
δCq←i ⊗ h1,i/p

] (
x, b, µb∗ , µ2

b∗

)
e−

1
2 Spert(µ,µb∗ )−S

h1
NP(b,Q0,ζ) , (4.15)

where the coefficients can be found in e.g. [79, 102] as

Ĉq←i(x, b, µb∗ , µ2
b∗) = δqi

[
δ(1 − x) + αs

π

(
−CF

π2

24δ (1 − x) + CF

2 (1 − x)
)]

+ O(α2
s) ,

(4.16)
δCq←i(x, b, µb∗ , µ2

b∗) = δqi
[
δ(1 − x)

]
+ O(α2

s) , (4.17)

and the convolution ⊗ has been defined in eq. (3.3). To parametrize the non-perturbative
form factors for TMD PDFs, one has [102]

Sh1
NP(b, Q0, ζ) = Sf1

NP(b, Q0, ζ) = g2
2 ln

(
b

b∗

)
ln
(√

ζ

Q0

)
+ gqb2 , (4.18)

where g2 = 0.84, Q2
0 = 2.4 GeV2 and gq = 0.106 GeV2. For the quark transversity distribution

hq
1 (x, µ), we use the parametrization from [102]. On the other hand, we use CT10nlo [130]

for the unpolarized PDFs f1,q/p(x, µ).
In figure 5, we present the results for AS

DIS(τQ2) using the future EIC kinematics with
different subsets of pions S = {π+, π−} (red curve), {π+} (green curve) and {π−} (blue
curve). The darker-colored error bands represent the uncertainties associated with the global
extraction of transversity TMD PDFs h1,q/p and Collins fragmentation functions H⊥q

1 at a
68% C.L., as detailed in [102]. Additionally, the lighter-colored error bands, which indicate
perturbative uncertainties, are generated by varying the hard scale µh = Q by a factor of
2. It is noted that these perturbative uncertainty bands are slightly broader than those
representing model uncertainties. Again, as expected, we find |A{π

+,π−}
DIS | ≪ |A{π

+}
DIS | and

|A{π
−}

DIS |. The asymmetry is overall much smaller than the e+e− case due to the cancellation
between hu

1 and hd
1 as discussed in the section 3.2. And the asymmetry is measurable when

choosing a subset of π+ or π−.
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Figure 5. AS
DIS(τQ2) for S = {π+}, {π−}, and {π+, π−} using the future EIC kinematics with

fittings from [102]. Here we also have |A{π+,π−}
DIS | ≪ |A{π+}

DIS | and |A{π−}
DIS | and the bands with lighter

colors indicate perturbative uncertainties from scale variation while the bands with darker colors are
model uncertainties from the Collins function.

4.3 The EEC Sivers asymmetry in DIS

To define the asymmetry associated with the Sivers asymmetry, we begin by noting that
the eq. (2.21) has Sivers function dependent part

EECDIS(τ,ϕ) = dΣDIS
dxBdydτdϕ

= σ0
1
2

∫
d2qT δ(τ− q2

T

Q2 )
∫

db b

2π

{
FUU +sin(ϕh−ϕs) 2(1−y)

1+(1−y)2F
sin(ϕh−ϕs)
UT +· · ·

}
,

(4.19)

where the ellipsis represents other spin-dependent structures given in eq. (2.21) and

FUU =
∫

d2qT δ(τ − q2
T

Q2 )
∫

bdb

2π
J0(bqT ) C

[
f̃1J

]
, (4.20)

F sin(ϕh−ϕs)
UT =

∫
d2qT δ(τ − q2

T

Q2 )
∫

bdb

2π
J1(bqT ) C

[
f̃
⊥(1)
1T J

]
. (4.21)

Here the notation C[· · · ] is provided in eq. (2.27). Note that we absorbed
√

S to define the
subtracted versions of TMD PDFs f̃1 and f̃

⊥(1)
1T (x, b, µ, ζ) as we did for the EEC jet functions.

Then we define the asymmetry as the ratio of the above structure functions

ASivers
DIS (τQ2) = 2(1 − y)

1 + (1 − y)2
F sin(ϕh−ϕs)

UT

FUU
. (4.22)

Now we can study ASivers
DIS for the final hadron subset {π+, π−} as an example. As for the

TMD PDFs, we follow the b∗ prescription and write them as [131]

f̃
⊥(1)
1T,q/p(x, b, µ, ζ) = − 1

2M

∫ 1

x

dx̂1
x̂1

dx̂2
x̂2

C̄q←i (x/x̂1, x/x̂2, b, µ, ζ)

× TF i/p (x̂1, x̂2; µ) e−
1
2 Spert(µ,µb∗ )−S

f⊥
1T

NP (b,Q0,ζ) , (4.23)
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where

C̄q←i

(
x1, x2, b, µb∗ , µ2

b∗

)
=δqi

[
δ (1 − x1) δ (1 − x2) − αs

2π

1
2NC

δ (1 − x2/x1) (1 − x1)

− αs

2π
CF

π2

12δ (1 − x1) δ (1 − x2)
]

. (4.24)

And the non-perturbative form factors of TMD PDFs are given by

S
f⊥

1T
NP (b, Q0, Q2) = g2

2 ln
(

b

b∗

)
ln
(

Q

Q0

)
+ g

f⊥
1T

q b2 , (4.25)

where g2 = 0.84, Q2
0 = 2.4 GeV2 and the value of g

f⊥
1T

q given by the fitting in [131], where the
Qiu-Sterman function TF q/p(x, x, µ) has the following parametrization form

TF q/p(x, x, µ) = Nq
(αq + βq)(αq+βq)

α
αq
q β

βq
q

xαq (1 − x)βq f1,q/p(x, µ) , (4.26)

where all fitting parameters are presented in [102], f1,q/p are the NLO unpolarized PDF set
from HERAPDF20_NLO_ALPHAS_118 [132], which is applied in the Sivers fitting in [131].

In figure 6, we present the results for the Sivers asymmetry ASivers
DIS (τQ2) in terms of

EEC jet functions convoluted with TMD PDFs using the parametrization of the twist-3
Qiu-Sterman function fittings from [131], using the future EIC kinematics with all pions
measured in the final state. The magnitude is about a few percents and indicates that this
asymmetry is a reasonable measurement for constraining the Sivers function. Here the error
bands correspond to the perturbative uncertainty (light-red) from hard scale variation by a
factor of two around µh ∼ Q and the model uncertainty (red) from the global extractions
of Sivers function in [131]. We note that the scale variation leads to a much larger error
band than the parameter errors, indicating the necessity of reducing scale uncertainties to
improve the perturbative accuracy in studying the Sivers asymmetry.

4.4 The azimuthal asymmetry in DIS using the lab-frame angles

In this subsection, we provide an azimuthal asymmetry prediction related to the worm-gear
function g1T , which has been recently extracted from experimental data (see e.g. [133, 134]).
In the factorization formalism, one has the EEC defined using the lab frame angular observable
q∗ [89] as we have introduced in section 2.3. As we have shown in eq. (2.26), the two structure
functions for unpolarized and double-spin polarized (worm-gear) incoming proton are given by∫

db cos (bq∗) C[f̃1J ] =
∫

db cos (bq∗)
∑

q

e2
qH(Q, µ)Jq(b, µ, ζ) f̃1,q(x, b, µ, ζ) , (4.27)∫

db sin (bq∗) C[g̃(1)
1T J ] =

∫
db sin (bq∗)

∑
q

e2
qH(Q, µ)Jq(b, µ, ζ) b M g̃

(1)
1T,q(x, b, µ, ζ) . (4.28)

For numerical results, using the b∗ prescription [135] as we have applied in previous sections,
we combine TMD evolution with the recent Gaussian fit [133] for the worm-gear function,

g
(1)
1T,q (x, b, µ, ζ) = g

(1)
1T,q (x, µb∗) e−

1
2 Spert(µ,µb∗ )−S

g1T
NP (b,Q0,ζ) , (4.29)
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Figure 6. ASivers
DIS (τQ2) for S = {π+, π−} using the future EIC kinematics with fittings from [131].

The error bands correspond to the uncertainties from scale variation as indicated in the context and
the global extractions of Sivers function in [131] for lighter and darker colors, respectively.

where Spert(µ, µb∗) is the same as in eqs. (4.14) and (4.15). The parametrization of the
non-perturbative Sudakov factor is given by

Sg1T
NP (b, Q0, ζ) = g2

2 ln
(

b

b∗

)
ln
(√

ζ

Q0

)
+

⟨k2
⊥⟩|gq

1T

4 b2 , (4.30)

and the fitted function g
(1)
1T,q has the following functional form

g
(1)
1T,q

(
x, Q2

)
= Nq

Ñq

xαq (1 − x)βq f1
(
x, Q2

)
, (4.31)

with the same DGLAP evolution as f1(x, Q2) as adopted in the fitting [133]. Here ⟨k2
⊥⟩|gq

1T
,

Nq, αq and βq are provided in [133], Ñq is defined in terms of the unpolarized collinear
PDFs f1(x, Q2

0) with Q0 = 2 GeV,

Ñq ≡
∫ 1

0
dxxαq+1(1 − x)βq f1(x, Q2

0) . (4.32)

In the upper panel of figure 7, we present the unpolarized structure function in eq. (4.27)
with a blue curve as a function of q∗. The light-blue shade corresponds to the perturbative
uncertainty given by scale variation as introduced in the context. We choose the central fit
for the unpolarized TMDPDFs, with the collinear PDFs f1(x, Q2) given by CT10nlo [133]. In
the middle panel, we present the structure function depending on the worm-gear functions as
given in eq. (4.28), plotted as a green curve along with 2 error bands, which correspond to the
uncertainties from scale variation and the global extraction of the worm-gear functions [133]
for lighter and darker colors, respectively. In the lower panel of figure 7, we use eq. (4.28)
divided by eq. (4.27) and plot the ratio AWG

DIS (curves in the middle panel over upper panel)
as a function of q∗. As given by the extraction in [133], the worm-gear functions of u quark
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Figure 7. The EEC related to unpolarized TMD PDFs f1 (blue) and worm-gear TMD PDFs g1T

(green) for all pions in the final state at the EIC kinematics are shown as a function of q∗ in the
upper panel. The ratio AWG

DIS is shown at the bottom. Again, in each panel, we plot the perturbative
uncertainties with light colors by varying the hard scale. In the second and third panels, we also
include the model uncertainties given by the global extractions of worm-gear function as provided
in [133] in dark-color bands.

and d quark have opposite signs and similar magnitudes, and convoluted with unpolarized
EEC jet functions, which is always positive. Thus for the production of all pions as final
hadrons, the EEC related to worm-gear function are suppressed. This observable can be an
inspiration for us to explore new directions for studying 3-dimensional nucleon structures
encoded in TMD PDFs.

5 Conclusion

In summary, we present a comprehensive study of the azimuthal angle dependence of the
energy-energy correlators (EEC) in the back-to-back region to both e+e− and deep inelastic
scattering (DIS) processes with unpolarized hadron production. Notably, we introduce the
Collin-type EEC jet function for the first time in this context. Using the unpolarized and
the Collins-type EEC jet function, we demonstrate that all of the leading-twist Transverse-
Momentum-Dependent Parton Distribution Functions (TMD PDFs) can be extracted from the
DIS process. This finding points towards a new approach for gaining a deeper understanding
of the complex structure of nucleons. Furthermore, we introduce a new EEC observable
defined only using the lab-frame angle first introduced in [89], which offers much better
experimental resolution.
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To illustrate phenomenological applications, we provide predictions for the Collins
asymmetry in e+e− annihilation and DIS, within the contexts of Belle and Electron-Ion
Collider (EIC) kinematics, respectively. Furthermore, we present predictions for the Sivers
asymmetry using the Breit frame version of the EEC, as well as the worm-gear asymmetry
using the new EEC observable based on lab-frame angles, both with future EIC kinematics.
These examples underscore the potential of azimuthal angle dependent EEC as a unique
tool for a deeper understanding of nucleon structures.
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A DIS structure functions with hadrons and EEC jets

In this appendix, we provide the relevant azimuthal-angle-dependent qT factorization in the
Breit frame and q∗ factorization in the lab frame for the DIS process as well as the structure
functions factorized with EEC jet functions.

A.1 Breit frame adaptations

As shown in [96, 98–102, 136], the differential cross section for the DIS process up to twist-2
functions is factorized by

dσ

dxdydzhd2qT
= σ0

∫
bdb

2π

{
FUU + cos(2ϕh) 2(1 − y)

1 + (1 − y)2 F
cos(2ϕh)
UU

+ S∥ sin(2ϕh) 2(1 − y)
1 + (1 − y)2 F

sin(2ϕh)
UL + |S⊥|

[
sin(ϕh − ϕs)F sin(ϕh−ϕs)

UT

+ sin(ϕh + ϕs) 2(1 − y)
1 + (1 − y)2 F

sin(ϕh+ϕs)
UT

+ sin(3ϕh − ϕs) 2(1 − y)
1 + (1 − y)2 F

sin(3ϕh−ϕs)
UT

]
+ λe

[
S∥

y(2 − y)
1 + (1 − y)2 FLL + |S⊥| cos(ϕh − ϕs)F cos(ϕh−ϕs)

LT

]}
, (A.1)

where for structure functions FAB, the indices A and B represent the polarization of the
incoming electron and incoming proton. S∥ and |S⊥| are the helicity and transverse spin
of the incoming proton, λe is the helicity of the incoming electron. The variables x and y

represent the longitudinal momentum fraction of the incoming parton inside the beam and the
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inelasticity variable, respectively, which we will additionally be differential in. The azimuthal
angles ϕs and ϕh are the azimuthal angles of the transverse spin of the beam and the transverse
momentum of the produced hadron, respectively. By defining the notation C[f̃ (m)D̃(n)] as

C[f̃ (m)D̃(n)] =
∑

q

e2
qbm+nJm+n(b qT )(M)m(−zMh)n

× f̃ (m)(x, b, µ, ζ)D̃(n)(z, b, µ, ζ̂)H(Q, µ) , (A.2)

where f̃ (m)(x, b, µ, ζ) and D̃(n)(z, b, µ, ζ̂) are the Fourier transform of TMD PDFs and TMD
FFs in b-space6 and defined by [137, 138]

f̃ (m)(x, b, µ, ζ) = 2πm!
(M2)m

∫
dpT pT

(
pT

b

)m

Jm(bpT )f(x, p2
T , µ, ζ) (A.3)

D̃(n)(z, b, µ, ζ̂) = 2πn!
(zM2

h)n

∫
dkT kT

(
kT

b

)n

Jn(bkT )D(z, k2
T , µ, ζ̂) . (A.4)

Thus one obtains the factorization of the spin-averaged structure function FUU and the all
possible spin-dependent structure functions shown in eq. (A.1) as

FUU = C[f̃1D̃1] , (A.5)

F
cos(2ϕh)
UU = −C[h̃⊥(1)

1 H̃
⊥(1)
1 ] , (A.6)

F
sin(2ϕh)
UL = −C[h̃⊥(1)

1L H̃
⊥(1)
1 ] , (A.7)

F
sin(ϕh−ϕs)
UT = −C[f̃⊥(1)

1T D̃1] , (A.8)

F
sin(ϕh+ϕs)
UT = −C[h̃1H̃

⊥(1)
1 ] , (A.9)

F
sin(3ϕh−ϕs)
UT = −1

4C[h̃⊥(2)
1T H̃

⊥(1)
1 ] , (A.10)

FLL = C[g̃1LD̃1] , (A.11)

F
cos(ϕh−ϕs)
LT = C[g̃⊥(1)

1T D̃1] , (A.12)

where we encounter unpolarized and Collins TMD FF from eq. (2.4) again. Here, summation
over q includes the anti-quarks as well. Then using the EEC jet functions defined above
in eqs. (2.14) and (2.15), namely

Jq(b, µ, ζ) ≡
∑

h

∫ 1

0
dz z D̃1,h/q(z, b, µ, ζ) (2.14)

J⊥q (b, µ, ζ) ≡
∑

h

∫ 1

0
dz z H̃⊥1,h/q(z, b, µ, ζ) . (2.15)

6To simplify the notations, we apply n = 0 by default, namely f̃1 = f̃
(0)
1 and D̃1 = D̃

(0)
1 .
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Then the azimuthal angle dependent EEC at DIS in eq. (2.19) can be written as7

dΣDIS
dxdydτdϕ

=
∑

h

∫
d2qT dzhzh

dσ

dxdydzhd2qT
δ

(
τ − q2

T

Q2

)
δ(ϕ − ϕh)

= σ0
∑

q

e2
q

∫
d2qT δ(τ − q2

T

Q2 )δ(ϕ − ϕh)
∫

db b

2π
H(Q, µ)

×
{

J0(bqT )f̃1,qJq + cos(2ϕh) 2(1 − y)
1 + (1 − y)2 J2(bqT )b2

2 h̃
⊥(1)
1,q J⊥q

+ S∥ sin(2ϕh) 2(1 − y)
1 + (1 − y)2 J2(bqT )b2

2 h̃
⊥(1)
1L,q J⊥q

+ |S⊥|
[
− sin(ϕh − ϕs)J1(bqT )bf̃

⊥(1)
1T,q Jq

+ sin(ϕh + ϕs) 2(1 − y)
1 + (1 − y)2

b

2J1(bqT )h̃1,qJ⊥q

+ sin(3ϕh − ϕs) 2(1 − y)
1 + (1 − y)2

M2b3

8 J3(bqT )h̃⊥(2)
1T,q J⊥q

]
+ λe

[
S∥

y(2 − y)
1 + (1 − y)2 J0(bqT )g̃1L,qJq + |S⊥| cos(ϕh − ϕs)J1(bqT )bg̃

⊥(1)
1T,q Jq

]}
,

(A.13)

where the first term appeared already in [29].
Unlike the EEC in e+e− annihilation, DIS version of the EEC has only one EEC jet

function per term as it measures correlation between one outgoing hadron and the beam.
By defining the notation Ĉ(⊥)[f̃ (m)J (⊥)] similar to C(⊥)[f̃ (m)J (⊥)] in eqs. (2.27) and (2.27)
but with an extra Bessel function, namely

C[f̃ (m)J ] =
∑

q

e2
qH(Q, µ)Jq(b, µ, ζ)bmMmf̃ (m)

q (x, b, µ, ζ) , (2.27)

C⊥[f̃ (m)J⊥] =
∑

q

e2
qH(Q, µ)J⊥q (b2, µ, ζ)bm+1

2 Mm(−Mh)f̃ (m)
q (x, b, µ, ζ) , (2.28)

Ĉ[f̃ (m)J ] = C[f̃ (m)J ]Jm(bqT ) , (A.14)

Ĉ⊥[f̃ (m)J⊥] = C⊥[f̃ (m)J⊥]Jm+1(bqT ) . (A.15)

Finally, we can define the structure functions FAB as

FUU = Ĉ[f̃1J ] , (A.16)

Fcos(2ϕh)
UU = −Ĉ⊥[h̃⊥(1)

1 J⊥] , (A.17)

F sin(2ϕh)
UL = −Ĉ⊥[h̃⊥(1)

1L J⊥] , (A.18)

7Here the “subtracted” TMD PDFs f̃
(n)
q (x, b, µ, ζ), EEC jet functions Jq(b, µ, ζ) and J⊥

q (b, µ, ζ) are written
as f̃

(n)
q , Jq and J⊥

q respectively, for simplification of the notations.
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F sin(ϕh−ϕs)
UT = −Ĉ[f̃⊥(1)

1T J ] , (A.19)

F sin(ϕh+ϕs)
UT = −Ĉ⊥[h̃1J⊥] , (A.20)

F sin(3ϕh−ϕs)
UT = −1

4 Ĉ
⊥[h̃⊥(2)

1T J⊥] , (A.21)

FLL = Ĉ[g̃1LJ ] , (A.22)

Fcos(ϕh−ϕs)
LT = Ĉ[g̃⊥(1)

1T J ] , (A.23)

and obtains the azimuthal angle-dependent EEC at DIS as given in eq. (2.21).

A.2 EEC using the lab-frame angles

As introduced in [89], an optimized observable q∗ is defined for probing the transverse
momentum of the produced hadron with respect to the photon momentum direction and
at leading power q∗ = qT sin ϕh. Namely one has

dσ

dxdydzhdq∗
=
∫

d2qT δ (q∗ − qT sin ϕh) dσ

dxdydzhd2qT
. (A.24)

Using the identities

J0 (bqT ) :
∫

d2qT δ (q∗ − qT sin ϕh) J0(bqT ) =
∫

qT dqT
dϕh

sin ϕh
δ

(
q∗

sin ϕh
− qT

)
J0 (bqT )

=
∫

ϕh

sin2 ϕh
q∗Θ

(
q∗

sin ϕh

)
J0

(
bq∗

sin ϕh

)
= 2 cos (bq∗)

b
, (A.25)

J1 (bqT ) :
∫

d2qT δ (q∗ − qT sin ϕh) sin (ϕh) J1(bqT )

=
∫

ϕh

sin2 ϕh
q∗Θ

(
q∗

sin ϕh

)
sin (ϕh) J1

(
bq∗

sin ϕh

)
= 2 sin (bq∗)

b
, (A.26)∫

d2qT δ (q∗ − qT sin ϕh) cos (ϕh) J1(bqT ) = 0 , (A.27)

J2 (bqT ) :
∫

d2qT δ (q∗ − qT sin ϕh) sin (2ϕh) J2(bqT ) = 0 , (A.28)∫
d2qT δ (q∗ − qT sin ϕh) cos (2ϕh) J2(bqT )

=
∫

ϕh

sin2 ϕh
q∗Θ

(
q∗

sin ϕh

)
cos (2ϕh) J2

(
bq∗

sin ϕh

)
= 2 cos (bq∗)

b
, (A.29)

J3 (bqT ) :
∫

d2qT δ (q∗ − qT sin ϕh) sin (3ϕh) J3(bqT )

=
∫

ϕh

sin2 ϕh
q∗Θ

(
q∗

sin ϕh

)
sin (3ϕh) J3

(
bq∗

sin ϕh

)
= 2 sin (bq∗)

b
, (A.30)∫

d2qT δ (q∗ − qT sin ϕh) cos (3ϕh) J3(bqT ) = 0 , (A.31)

– 26 –



J
H
E
P
0
3
(
2
0
2
4
)
1
5
3

following the DIS differential cross section introduced in appendix A and eq. (A.24), one
obtains

dσ

dxdydzhdq∗
= σ0

∫
db
∑

q

e2
qH(Q, µ)S(b2, µ, ν)

{
cos (bq∗)

[
f̃1D̃1

+ 2(1 − y)
1 + (1 − y)2 zMMhb2h̃

⊥(1)
1 H̃

⊥(1)
1 + λeS∥

y(2 − y)
1 + (1 − y)2 g̃1LD̃1

]
+ |S⊥| sin (bq∗) cos ϕs

[
− Mbf̃

⊥(1)
1T D̃1 + 2(1 − y)

1 + (1 − y)2 zMhbh̃1H̃
⊥(1)
1

+ 2(1 − y)
1 + (1 − y)2

zM2Mhb3

4 h̃
⊥(2)
1T H̃

⊥(1)
1

]
+ λe|S⊥| sin (bq∗) sin ϕsMg̃

(1)
1T D̃1

}
.

(A.32)

Note that as indicated in eq. (A.28), the contribution from h⊥1L will vanish when measuring
q∗. Now we define the EEC with q∗ measured as

dΣDIS
dxdydq∗

=
∑

h

∫
d2qT dzhzh

dσ

dxdydzhd2qT
δ(q∗ − qT sin ϕh)

= σ0

∫
db

{
cos (bq∗)

[
C[f̃1Jq]

+ 2(1 − y)
1 + (1 − y)2C

⊥[h̃⊥(1)J⊥q ] + λeS∥
y(2 − y)

1 + (1 − y)2C[g̃1LJq]
]

+ |S⊥| sin (bq∗) cos ϕs

[
− C[f̃⊥(1)

1T Jq] + 2(1 − y)
1 + (1 − y)2C

⊥[h̃1J⊥q ]

+ 2(1 − y)
1 + (1 − y)2

1
4C
⊥[h̃⊥(2)

1T J⊥q ]
]

+ λe|S⊥| sin (bq∗) sin ϕsC[g̃(1)
1T Jq]

}
, (A.33)

where

C[f̃ (m)J ] =
∑

q

e2
qH(Q, µ)Jq(b, µ, ζ)bmMmf̃ (m)

q (x, b, µ, ζ) , (2.27)

C⊥[f̃ (m)J⊥] =
∑

q

e2
qH(Q, µ)J⊥q (b, µ, ζ)bm+1

2 Mm(−Mh)f̃ (m)
q (x, b, µ, ζ) . (2.28)

Compared to Ĉ[· · · ] defined in eqs. (A.14) and (A.15), the notation here C[· · · ] is not equipped
with a Bessel function, since Jm(+1)(bqT ) has been integrated out in eqs. (A.25)–(A.31) for
measuring q∗.

Upon closer inspection of eq. (A.33) and eq. (10) in [89], the disparity in sign arises from
different definitions of the m-th order TMD PDFs in b-space. Nonetheless, one can successfully
harmonize the two works by appropriately factoring in (−1)m for each structure function in
eq. (A.33) that corresponds to f̃ (m), and thereby cancel the divergence in convention.
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