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We describe an exciting new application domain for deep reinforcement learning (RL): droplet routing on digi-
tal microfluidic biochips (DMFBs). A DMFB consists of a two-dimensional electrode array, and it manipulates
droplets of liquid to automatically execute biochemical protocols for clinical chemistry. However, a major
problem with DMFBs is that electrodes can degrade over time. The transportation of droplet transportation
over these degraded electrodes can fail, thereby adversely impacting the integrity of the bioassay outcome.
We demonstrated that the formulation of droplet transportation as an RL problem enables the training of
deep neural network policies that can adapt to the underlying health conditions of electrodes and ensure
reliable fluidic operations. We describe an RL-based droplet routing solution that can be used for various
sizes of DMFBs. We highlight the reliable execution of an epigenetic bioassay with the RL droplet router on
a fabricated DMFB. We show that the use of the RL approach on a simple micro-computer (Raspberry Pi 4)
leads to acceptable performance for time-critical bioassays. We present a simulation environment based on
the OpenAI Gym Interface for RL-guided droplet routing problems on DMFBs. We present results on our
study of electrode degradation using fabricated DMFBs. The study supports the degradation model used in
the simulator.
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1 INTRODUCTION

In recent years, we have seen progress on the use of deep Reinforcement Learning (RL) to assist
sequential decision-making problems, such as games [2, 67, 77], robotics [18], autonomous driv-
ing [57, 61, 78], quantitative trading strategies [37], and healthcare systems [46]. The systems as-
sisted by RL have shown tremendous promise in games [50, 67], robotics [18], and natural language
processing [22, 51]. This can be attributed to the fact that RL systems in dynamic environments
can learn from history and adapt better to the environment. In this article, we show that because
the health of an electrode in a Digital Microfluidic Biochip (DMFB) dynamically changes over
time, we can utilize innovations in RL to ensure more reliable droplet transportation in DMFBs.

1.1 Digital Microfluidic Biochips

The rapid worldwide spread and impact of the COVID-19 virus has created an urgent need for
reliable, accurate, and affordable testing on a massive scale. For example, the National Institutes of
Health (NTH) has launched the Rapid Acceleration of Diagnostics (RADx) initiative to develop and
implement technologies for COVID-19 testing [54]. One of the most promising technologies for
realizing this goal is digital microfluidics. A microfluidic biochip (DMFB) manipulates tiny amounts
of fluids to automatically execute biochemical protocols for point-of-care clinical diagnosis with
high efficiency and fast sample-to-result turnaround [16, 65, 74]. Because of these characteristics,
the RADx initiative has awarded grants to several biomedical diagnostic companies to develop
microfluidic technologies that could dramatically increase testing capacity and throughput [53, 56].
Other applications of DMFBs include screening of newborn infants [33, 69], drug discovery [38],
and clinical diagnostics [8, 62].

A DMFB consists of an electrode array in two dimensions that controls the movement of discrete
liquid droplets. Upon actuation by a sequence of control voltages, the electrode array can perform
a variety of fluidic operations, such as dispensing, mixing, and splitting [7, 25]. Figure 1(a) shows
a DMFB in which two droplets are present on a patterned electrode array. Nanoliter droplets on
this platform are transported using the principle of Electrowetting-on-Dielectric (EWOD) [60].
This principle refers to the modulation of the interfacial tension between a conductive fluid and a
solid electrode coated with a dielectric layer through the application of an electric field between
them. See Figure 1(b).

Mumina commercialized digital microfluidics for sample preparation in 2015 through NeoPrep—
a nearly $40K instrument that automates the preparation of up to 16 sequencing libraries at
a time [31]. Genmark has also deployed the microfluidic technology for infectious disease test-
ing [59], and Baebies uses this technology to detect lysosomal storage diseases in newborns [26].

However, reliability remains a major concern in DMFB systems. [llumina halted the sale of Neo-
Prep in February 2017. In its letter to customers, Illumina cited reliability issues in-house and far
worse ones in the field. Even though biochips are tested after production, defects such as electrode
degradation can occur during system lifetime [13, 71]. As the electrodes are actuated over time,
two types of electrode degradation might happen: charge residual and charge trapping. Charge
residual is caused by the accumulated charges, which can be mitigated by inserting grounding
vectors [58]. Charge trapping is when the charges are trapped in the dielectric insulator, and this
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Fig. 1. (a) Top view of a DMFB. Two droplets are present on the biochip. (b) Illustration of the side view of a
DMEFB. The droplet is moved to the right using EWOD.
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Fig. 2. Droplet transportation failure due to electrode degradation. (a) Two droplets on the electrode array.
Two electrodes are actuated to move these droplets. (b) After electrode actuation, the upper droplet cannot
be moved completely because it was present over a degraded electrode; the lower droplet is correctly moved
to the desired electrode.

phenomenon is irreversible [5]. A consequence of electrode degradation is that droplet movement
is impeded [72]. An example of electrode degradation is shown in Figure 2. The figure shows two
droplets on the biochip—one located on a degraded electrode. Two electrodes are actuated to move
these droplets. However, one of these operations fails because the degraded electrode exerts addi-
tional surface-tension force. Detailed analyses of the relationship between electrode defects and
fluidic operations can be found in the work of Drygiannakis et al. [14].

1.2 Motivating RL-Guided Droplet Routing

In a typical use model for DMFBs [70], a bioassay protocol with fluidic operations is obtained from
biologists. Next, a synthesis technique maps these operations to groups of electrodes, referred
to as fluidic modules, of a biochip to perform the required operations [4]. A droplet has to be
transported from one module to the next. The problem of determining droplet transportation paths
between modules is referred to as droplet routing. A number of droplet routing techniques have
been proposed in the literature for bioassay applications [73, 82, 86]. Su et. al [73] proposed the
first systematic droplet routing approach, which adopted the Lee algorithm and minimized the
number of electrodes used for droplet routing. Xu and Chakrabarty [82] proposed a droplet routing
aware synthesis tool, which was based on parallel recombinative simulated annealing. Zhao and
Chakrabarty [86] proposed an integer linear programming based method to co-optimize droplet
routing and pin mapping.
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Fig. 3. Droplet routing paths from a start point to an end point (gray: healthy electrodes; brown: degraded
electrodes). (a) A pre-computed path for a healthy DMFB. (b) The DMFB has aged, and some electrodes
have degraded. Some degraded electrodes are involved in the pre-computed path. Droplet transportation
may hence fail. (c) A more reliable path for the aged DMFB.

However, these methods overlook the fact that transportation of droplet may fail if the electrodes
on the routing path degrade over time.

Example. Figure 3(a) shows a pre-computed routing path. We can see that this route is the
shortest path between the start and the destination points. Droplet transportation can be successful
because the biochip is healthy (i.e., no electrode degradation has occurred). Conversely, Figure 3(b)
shows that droplet transportation to the destination fails because degraded electrodes exist in the
associated path. If an online droplet router knows the locations of the degraded electrodes, it can
generate another route that involves only healthy electrodes. An alternative route is shown in
Figure 3(c); note that this is a shortest path, and it avoids electrodes that are degraded.

In Figure 3, a different color is used to indicate the degraded electrodes. However, in reality, we
cannot identify degraded electrodes by simple examination; this is because the degradation pro-
cess results from charge trapped in the insulator. When routing errors occur, simply replacing the
degraded DMFB with a new one will not only increase the cost but also lead to undesirable wastage
of biosamples. Droplets that are in the middle of an unfinished operation, such as mixing or dilut-
ing, need to be abandoned. The wastage of droplets is particularly undesired in some applications,
such as newborn screening [32] and forensic analysis [83], since the bio-examples are limited in
volume and availability. For example, in the newborn screening test provided by Baebies Inc., the
entire screening test contains 10 to 20 different assays and each assay needs 100 nl of dried blood
spot extract [32]. Thus, a newborn screening test needs at least 1,000 nl of dried blood spot extract,
which needs 200 to 300 p L (4-6 drops) of whole blood [3]. Prior work has led to synthesis meth-
ods that prevent excessive usage of a few electrodes by evenly distributing fluidic operations to
multiple electrodes [5, 88]. However, these methods can only postpone the occurrence of electrode
degradation, which still happens as electrodes are actuated over time. If such electrode degradation
happens during bioassay execution and a route is associated with degraded electrodes, bioassay
execution will fail, and it will need to be re-executed on a new biochip [29]. Furthermore, the loca-
tions of degraded electrodes may vary from biochip to biochip because the electrode degradation
process is affected by geometric variations and different electrode actuation times [24].

Several methods have been proposed to perform error recovery when routing tasks fail [1, 40, 66].
However, these methods are focused on recovery after routing failures, and they do not proac-
tively alleviate the occurrence of erroneous behaviors caused by electrode degradation. Recently,
an RL-based routing framework was developed to identify degradation-aware routing strategies
for Micro-Electrode-Dot-Array (MEDA) biochips [15]. However, this method cannot be used
for DMFBs due to the inherent difference between DMFBs and MEDA biochips: MEDA biochips
provide the real-time degradation status of each electrode using built-in sensing circuits. This is
not the case of non-MEDA DMFBs. In this work, we adopt RL techniques to respond to the dynamic
degradation environments, which is not possible with existing offline routing methods.
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Numerous papers have been published in recent years to advance applications that leverage
RL theory [9, 11, 49]. Our work aims to introduce RL to a new application—that is, the droplet
routing problem on DMFBs. We target an RL formulation for the droplet routing problem to ad-
dress the dynamic degradation of electrodes. An RL-based droplet router addresses the electrode
degradation problem and ensures reliable bioassay executions in three ways. First, it provides real-
time decision for droplet routing. Second, it can “learn” from the prior experience associated with
electrodes that start malfunctioning. Therefore, the droplet router can generate routing paths that
include any healthy electrodes. Third, even though the degradation processes may differ for two
DMFBs, the router can generate different, yet reliable, routing paths on distinct DMFBs for the
same routing objective.

1.3 Article Contributions

This article represents one of the first attempts to map RL to clinical microfluidic systems. The
main contributions of this work are as follows:

— We describe a new framework for RL-based droplet routing on DMFBs. We discuss the chal-
lenges inherent in formulating droplet routing as an RL task.

— We describe an experiment using fabricated PCB-based DMFBs to gain insights into elec-
trode degradation. The insights derived in this manner support our degradation model in
the simulator.

— We present an online droplet routing framework, which uses deep RL to generate a policy
that uses real-time observations of a DMFB to choose droplet paths dynamically. Training is
first carried out in a simulated DMFB. Next, the pre-trained policy is loaded on the controller
for the DMFB, and the policy generates routing paths in a real-time manner.

— We consider a parallel droplet routing scenario where multiple droplets are transported con-
currently on a DMFB. We formulate a Multi-Agent Reinforcement Learning (MARL)
framework for parallel droplet routing on DMFBs. Experimental results show that the MARL
framework outperforms the single-agent RL framework in parallel routing scenarios.

— We evaluate the proposed solution by executing an epigenetic bio-protocol on a fabricated
DMEB. Our experiment shows that the online router can learn the degradation behavior of
electrodes and generate reliable routes.

— We identify the timing constraints associated with the use of the RL approach on a simple,
GPU-less micro-computer (Raspberry Pi 4). The results show that the timing constraints
arising from the RL approach do not impede the fluidic operations in a bioassay.

2 PROBLEM FORMULATION

The problem formulation for the droplet routing problem on DMFBs is as follows.

Given a DMFB consists of a two-dimensional array of electrodes with size NxM, let e; ; represent
the i™™ row and the j® column electrode of the DMFB, where 1 < i < N,1 < j < M. The main
objective for the droplet routing problem is to minimize the time required to transport the droplet
from the source ey, to the destination e, ,,. In a single-droplet routing problem without electrode
degradation, the problem can be simplified as finding the shortest path between e, , and e, ,.

2.1 Routing with Multiple Droplets

Multiple droplet routing tasks can be parallel executed on a DMFB at the same time. Assume that
there are n droplets in total, where n > 2. For any two of the droplets d; and d;, where 1 < i,j < n
and i # j, assume that their positions at timestep ¢ are ey ,+ and ex:, ¢, respectively. The following
are the fluidic constraints that should be satisfied [6]:
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Fig. 4. (a) The fabricated DMFB. (b) The experimental setup.

1) |x' =kl > 1or |y’ —m!| > 1,
2) |x"*t =k > 1or |yt —m!| > 1or [x! —k'*! > 1or |y —m!™ > 1.

With the preceding constraints, the objective of the multi-droplet routing problem is to minimize
the maximal routing timestep among all the n routing tasks.

2.2 Routing with Electrode Degradation

For the droplet routing problem that considers electrode degradation, we define function d(e; ;) to
describe the degradation status of an electrode, where 0 < d(e; ;) < 1.d(e; ;) is 1 when the elec-
trode e; ; is completely healthy. The modeling of the degradation status function will be explained
in Section 5.3. Note that the value of the electrode status function cannot be obtained by the users
during the execution since the degradation status is not measurable. As an electrode degrades, the
success rate of droplet transition decreases. A failing transition causes the droplet to stay in the
same position. For an electrode with the degradation status d(e;, j), we assume that the success rate
of transition is d(e; j) and the expected steps for a success transition is 1/d(e; ;). Therefore, the ob-
jective of a droplet routing problem with electrode degradation can be formulated as following:
find a path {ex, y,, €x, 45 - - - » €xr,yy } that minimizes 3,7, 1/d(ex, y,),where ey, ,, the is the source
and ey, 4, is the destination.

3 ELECTRODE DEGRADATION IN DMFBS

Previous work has shown that charge trapping in a dielectric layer follows an exponential
model [13, 44, 47, 84]. To independently validate this claim, we design an experiment where we
monitor electrode degradation in the fabricated PCB-based DMFB.

The electrode size of the DMFB is 2x2 mm? (Figure 4(a)). Four reservoir modules are placed on
two sides of the biochip; these modules are used to dispense droplets of reagents. Every electrode
can be individually controlled; the control signals are provided by a control board placed below the
DMEB. The activation/de-activation status of each electrode is controlled by a high-voltage relay
(part no. Panasonic AQW212). A high-voltage relay in our setup is controlled by a configuration
bit; the configuration bits are stored in a register (part no. Texas Instruments SN74AHC595). The
details of the control hardware are shown in Figure 4(b). The Raspberry Pi 4 on the left generates
control signals. We used a voltage source of 1.5 KHz and 200 Vpp for electrode actuation. To avoid
introducing excessive current, a resistor R = 1 MQ is placed in series between each electrode and
the high-voltage source.

We developed an actuation sequence for the electrodes that leads to repeated fluidic operations
on the biochip. When we execute the actuation sequence on the DMFB, each electrode is actuated
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Fig. 5. Capacitance increase (top) and EWOD force degradation (bottom).

for 1 second for hundreds of times. After executing the actuation sequence, we actuated an elec-
trode and measured the charging times needed using an oscilloscope. Because the electrode and
the top plate form a capacitor, and a resistor is placed in series with the electrode, the charging path
is a simple RC circuit. The effective capacitance of an electrode can be derived using the equation

Ve(t) = Vpp (1-¢115C)

where C is the effective capacitance of the electrode, V¢ is the voltage of the electrode, and ¢ is
time. The degradation results are shown in Figure 5. The results show that the capacitance of an
electrode grows linearly as we repeatedly actuate the electrode.
The EWOD force of a droplet is given by Zhong et al. [87]:
Cunit (Ve = Vr)?
Fewop = %Leffa (1)
where Vr is the threshold voltage, C,n;; is the structural capacitance per unit area in the dielectric

layer, and L.¢ is the length of the contact line. Therefore, the EWOD force exerted by an electrode
(relative to the same EWOD force at full health) can be estimated as

F) (V(”)/Va)z, (2)

where n is the number of actuations of the electrode, V" is the actuation voltage on (potentially
affected by electrode degradation), and V, is the nominal actuation voltage. By plugging our experi-
mental results to (2), the impact of the electrode number of actuations and the relative EWOD force
is shown in Figure 5. As the EWOD force correlates to the exponential actuation times, we derive
an exponential model that has the least-squared error to fit the measured data. The model fitting
results show that the relationship between the number of actuation n and the relative EWOD force
F™ can be modeled as

F(n) ~ TZn/c’ (3)
where 7 € [0,1] and ¢ € R are constants capturing the degradation rate. The degradation
parameters are estimated as 7 € [0.5,0.7] and ¢ € [500, 800].

For realistic bioassays, the value of n varies between different applications. For instance, the
total number of operations range from 18 (PCR) to 1,920 (ProteinSplit7) in the work of Grissom
and Brisk [17], where each operation needs several steps to be completed. Besides, additional
operations might be performed when error recovery is required, increasing the total number of
actuations. Thus, the number of total actuations ranges from hundreds to thousands.
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4 BACKGROUND ON RL
4.1 DeepRL

An agent in an RL formulation is placed within an environment. The agent’s goal is to accomplish
a using task with the best performance given a set of small actions. At each step, the agent takes
one of these actions, and the agent receives an observation and reward from the environment [75].

RL problems can be formally stated using Markov decision processes. A Markov decision process
contains two sets (S and A), a probability function f, a reward model R, and a variable y. The
observations made by the agent are included in a set S, and an observation is also referred to as a
state. An element s; € S is an observation made by the agent at time ¢. We use A to denote a set of
actions taken by the agent. An action a; € A denotes the action made by the agent at time ¢. Note
that P(s;11la;, s;) refers to the transition model; it describes what the next state s;.; will be after
the agent takes action a; while in state s;. The reward model is denoted by R(s;); it describes the
agent’s reward when it enters the state s;. The parameter y is a discount factor, where 0 <y <1
and y € R. It represents the relative importance of immediate and future rewards. The agent’s
goal is to select the best policy 7 that maximizes the total reward received from the environment
from the start state to an end state. The expected cumulative discounted reward is expressed as

Ut) =E[Z:v" - R(st)].

4.2 RL Algorithms

We briefly describe three deep RL algorithms that we use to evaluate our RL framework; these
algorithms are Temporal-Difference (TD), on-policy gradient descent, and off-policy actor-critic
approaches.

4.2.1 Double Deep Q-Network. The Deep Q-Network (DQN) algorithm [50] is a TD method
that uses a neural network to approximate the state-action value function

[ee)
Q(s,a) = m,?XE Zyirt+i|st =s,a; =a,n|.
0

DON relies on an experience replay dataset D, = {my, ..., m;}, which stores the agent’s experi-
ences m; = (S¢;az; re; Se41) to reduce correlations between observations. The experience consists
of the current state s;, the action the agent took a;, the reward it received r;, and the next state
after transition s,.1. The learning update at each iteration j uses a loss function based on the TD
update:
Lj(0)) = Emg~p[(r + ymaxay Q(s,a’;07) = Q(s. a;:67)°],

where 0; and 0~ are the parameters of the online Q-networks and the target network, respectively,
and the experiences m; are sampled uniformly from 9. The parameters of the target network are
fixed for a number of iterations while the online network Q(s, a; 0;) is updated by gradient descent.
In partially observable environments, an agent can only observe o, instead of the entire state s;.
The experience replay is therefore updated as m; = (0;; as; 43 0441).

In DQN, the max operator uses the same values to select an action and evaluate an action, which
can lead to overoptimistic value estimation [21]. An improved method named double DQN was
proposed to mitigate this problem [76]. In double DQON, the loss function at iteration j is updated
as

Li(0;) = Emy~p[(r + yQ(s’,argmax,, Q(s’, a’;6,);07) — Q(s, a; 0;))*].

4.2.2  Proximal Policy Optimization Algorithm. Proximal Policy Optimization (PPO) is an
on-policy method that improves gradient descent stability without performance collapse [64]. It
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updates policies using the following equation:

Or+1 = argmax E [L(s,a, 6k, 0)].
0

s,a~7e,
The update usually takes several steps of stochastic gradient descent (SGD) to maximize the objec-
tive. Here, the loss function L is defined as
mo(als)
o, (als)

where A is an estimator of the advantage function, € is a hyperparameter, and

L(s, a, Ok, 0) = min( A% (s, a), g(e, A% (s, a))),

(1+€)A ifA>0

gle.4) = {(1 —€)A ifA<o0.

4.2.3  Actor-Critic with Experience Replay. Actor-Critic with Experience Replay (ACER)
is an off-policy actor-critic model that increases the sample efficiency and reduces the data
correlation [80]. Similar to asynchronous advantage actor-critic (A3C) [48], ACER learns the
value function by training multiple actors in parallel. To obtain stability of the off-policy estimator,
ACER adopts a retrace Q-value estimation:

. ArlSr)
AQT (S, A =yt mm(c,”(#)é,
Q" (St,Ar) =y ll:[g B(A,1S,) t

where (7, ) is the target and behavior policy pair, J; is the TD error, and c is a constant. In
addition to a retrace Q-value estimation, ACER uses importance sampling and a trust region
policy optimization [63].

4.3 MARL Training Schemes

We consider three widely used training schemes for our MARL framework: centralized, concurrent,
and parameter sharing [20]. We briefly describe how each approach can be used with MARL.

Centralized. The centralized learning approach assumes a joint model that receives all the
observations and generates the joint actions for all the agents. A drawback of this approach is that
it leads to exponential growth in the observation and actions spaces with the number of agents.

Concurrent. In concurrent learning, each agent learns its own individual policy. Each indepen-
dent policy maps an agent’s private observation to an action. In the policy gradient approach, this
means optimizing multiple policies simultaneously from the joint reward signal.

Parameter Sharing. Similar to concurrent learning, each agent is assigned with a neural net-
work policy. However, in the parameter sharing approach, all the agents share the parameters of a
single policy. This allows the policy to be trained with the experiences of all agents simultaneously.
However, each agent is still able to act differently based on the observation it receives.

5 RL APPROACH TO DROPLET ROUTER ON DMFBS

We consider a bioassay that is executed on a cyberphysical DMFB. The droplet location is deter-
mined in real time using a CCD camera [45, 81]. A controller, connected to the DMFB, is loaded
with all the droplet routing tasks needed to complete the bioassay [72]. Figure 6 illustrates the
overall system.

5.1 Droplet Routing as an RL Problem

We formulate droplet routing as a sequence of decision-making problems within the RL framework.
We utilize a droplet routing agent that can make real-time observations of the DMFB, it can move
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Fig. 6. The RL framework for droplet routing on DMFBs. (a) Real-time images are captured using the CCD
camera. (b) The droplet locations are computed by the controller. The information is mapped to an array as
input for the RL agent. (c) An action is chosen by the RL agent. (d) Electrodes are actuated by the controller
based on the action. (e) The RL agent receives a reward.

a droplet to an adjacent electrode at a timestep, and the agent’s goal is to transport the droplet
from a given start electrode to a given destination electrode. The agent is rewarded or punished
based on the state transition result after it takes an action.

Actions. At any timestep, a droplet can be transported to one of the four directions: north, south,
east, and west. Therefore, we define the action set as A = {a,, ds, de, a., }; each element denotes a
direction along which the droplet can be moved.

States. A state s; consists of the location of the transported droplet, the droplet destination,
and electrodes that are concurrently utilized by other fluidic operations. During a bioassay,
multiple operations may be carried out concurrently to achieve high throughput. If a droplet
is moved while a mixing operation is also being carried out, the set of electrodes used for the
mixing operation cannot be used for droplet transportation in order to prevent undesirable
contamination.

At any given timestep, observation made on the DMFB is processed as an RGB image. Control
software is used to determine the locations of on-chip droplets [45]. The resolution of the RGB
image is given by the number of electrodes on the DMFB. An electrode with a droplet on it
is interpreted as a blue pixel. The destination electrode is interpreted as a green pixel. The
electrodes occupied by all the other concurrent operations are interpreted as red pixels (see
Figure 6(b)).

Rewards. The agent is rewarded if the droplet is transported to its destination. Let e; ; be the
i row and the j™ column electrode of the DMFB. Suppose that in state s;, a droplet is present at
e; j, and its destination is ey ,,. We define D(s;) as the Manhattan distance of the droplet from the
destination at state s;; D(s;) = |i — k| + |j — m|. After an action a; is taken, if D(s;11) = 0, the agent
receives a positive reward of +1.0. Otherwise, the reward is computed as follows:

+0.5 ifD(s;41) < D(sz)

Ry =4-0.3 ifD(s;41) = D(sz)

—0.8 ifD(s;41) > D(sy).
In the first case, the action leads to a state in which the droplet is closer to the destination.
Therefore, the reward is positive. Any positive value can facilitate agent convergence because the
total reward is maximized. In the second case, the agent is punished because the action does not

result in a better state. In the third case, the agent is punished with a negative value of larger
magnitude because it leads to a worse state.
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5.2 Formulation of Parallel Droplet Routing as MARL

We formulate parallel droplet in the MARL framework where agents are fully cooperative. The
action space and state for each agent are similar to that of the single-agent formulation.
Rewards. We consider the cooperative setting for the MARL framework [12, 19, 39, 85] because
the agents should not compete with each other to transport droplets. We first compute an assess-
ment value r’ of an agent i after state transition. Similar to prior definition, let D’(t) be defined
as the Manhattan distance of the droplet d; from the destination at timestep t. After an action a!
is taken, if D'(¢ + 1) = 0, the assessment value r' is assigned a positive value of +1.0 because the
droplet has reached the destination. Otherwise, the assessment value is computed as follows:

;i |-0.05 ifDi(t+1) < D(t)
—0.1 ifDi(t + 1) > Di(1).

In the first case, the action leads to a state in which the droplet is closer to the destination. In the
second case, the action results in the same state or even a worse state. Therefore, we use a smaller
value as the assessment value. In this reward setting, to gain the maximum value in a game, the
agent is encouraged to take as few steps as possible to reach the destination.

As all the agents take a combination of actions, a possible resultant state is that droplets may get
too close to each other, which can lead to unintended merging and sample/reagent contamination.
To prevent this scenario, we also adjust the assessment values for droplets that are too close to
each other. Assume that, after a joint set of actions is taken, the resultant locations of two droplets
d'and &’ are eilb and eff > respectively. The distance of the two droplets is computed as D(d Ld) =
la—c|+|b—d|.If D(d',d’) < 2, the assessment values are adjusted as r’ = r'—0.8and r/ = r/ —0.8.
In decentralized learning, each agent i is rewarded by its own assessment value r’; in centralized

. . _ Zf\il ri
learning, we give each agent a team-average reward Ry = =5—.

5.3 DMFB Simulator: Training of RL Agents

We next describe an online droplet router, incorporated as an RL agent, that can execute all the
droplet routing tasks. To train the agent, we developed an OpenAI-Gym environment named
DMFB-Env. The DMFB matrix consists of N X M electrodes, where N and M are inputs to
DMEFB-Env.

Transition Model. DMFB-Env operates in two modes: healthy and degrading. Recall that e; ;
denotes an electrode at the i row and the j column of the DMFB. The transition function is
defined as
ej_1,; ifa; =an
T(e ar) = €it1,j %faz =as
€i,j+1 ifa, = ag
e j—1 ifa; = aw,
where 1 < i < Nand 1 < j < M. If the droplet is present at the boundary of the electrode array
and the action is toward the outside of the biochip, the droplet will remain at the same location.
For example, if the droplet is present at e, o and the action is either ay or ay, the droplet remains
at eg . Similarly, if the next location of the droplet is in the electrodes that are used for the other
concurrent fluidic operations, the droplet stays at the same electrode.

For the degrading mode, we introduce a function d(e;, ;) that describes the degradation status of
an electrode, where 0 < d(e; ;) < 1.Ifthe electrode e; ; is healthy, d(e; ;) = 1; otherwise, d(e; ;) = 0.
The study in the work of Dong et al. [13] showed that an electrode can only be actuated up to
200 times before it is completely degraded. Therefore, we define a degradation factor z, where
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Table 1. CNN Configuration

] Layer \ Type \ Depth \ Activation \ Stride \ Padding \
1 | Convolution 32 ReLU 3 1
2 | Convolution 32 ReLU 3 1
3 | Max Pool N/A N/A 2 1
4 | Convolution 64 ReLU 3 1
5 | Convolution 64 ReLU 3 1
6 | Max Pool N/A N/A 2 1
7 | Convolution 128 ReLU 3 1
8 | Convolution 128 ReLU 3 1
9 | Max Pool N/A N/A 2 1
10 | Fully Connected | 8 ReLU N/A | N/A

0.5 < 7 £0.7, and the degradation function d(e; ;) is defined as
d(ei,j) — T[n/ZSOJ’

where n is the number of actuations. Each electrode is randomly assigned a different value of 7 to
simulate the geometric variance of the electrode array.

ABernoulli random variable X ; is defined as the transition outcome when the droplet is present
at e; j: when X; ; = 1, the transition is successful as T(e; j, a;); when X; ; = 0, the transition fails,
and the droplet remains at the same electrode. The probability mass function of X; ; is defined as

P(X;j=1) =d(ei;)
P(Xi’j = 0) =1- d(ei,j).

RL Agent. The RL agent is a deep neural network (see Figure 6). It observes images and chooses
an action a; € A. It receives a reward value based on the outcome of the previous action.

Over the past few years, many neural network architectures have been proposed [27, 36, 68].
Because DMFBs commercially available today typically include a few hundred electrodes [86], we
evaluate the effectiveness of RL-based adaptation using DMFBs of size N X M, where 25 < NXM <
1,225. While fully connected neural networks are adequate for small DMFB instances (less than
100 electrodes), we found that they do not converge for large DMFBs. Our evaluation showed
that Convolutional Neural Networks (CNNs) are effective for the preceding DMFB instances.
However, because the network needs to be loaded on a DMFB, the computational resources on the
associated controller may be limited compared to a server. For example, in the work of Willsey et
al. [81], the DMFB includes only a quad-core 1.2-GHz ARMv7 processor with 1 GB of RAM, and
it does not contain a GPU; therefore, large CNNs are not feasible in this application scenario. We
tested several options for the number of hidden layers and the number of neurons per layer. Our
results show that a simple CNN, as described in Table 1, can solve the droplet- routing problem
for large DMFBs with more than 1,000 electrodes.

5.4 RL Training

We consider fabricated DMFBs as test cases and evaluate the effectiveness of RL-based adaptation
using arrays of size N X N. N is set as 10 < N < 35 since the number of total electrodes for
recent commercial microfluidics biochips is around 500 on a chip [32]. For each training game of
DMFB-Env, a random routing task is generated. In addition, DMFB-Env generates some random
concurrent modules to simulate high-throughput bioassay execution during droplet routing. We
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Fig. 7. Training process corresponding to different RL algorithms. Score is the total reward that the RL agents
receive in a game. The performance is compared with an offline optimization method [86]. (a) 10 x 10 DMFB.
(b) 15 X 15 DMFB. (c) 20 X 20 DMFB. (d) 25 x 25 DMFB. (e) 30 x 30 DMFB. (f) 35 x 35 DMFB.

evaluated three RL algorithms (i.e., double DQN, PPO, and ACER) described in Section 4 in DMFB-
Env in the healthy mode. We used default parameter settings in the work of Hill et al. [23] for
the three algorithms. The training was executed on a Linux platform integrated with an 11-GB-
memory GPU (NVIDIA GeForce RTX 2080 Ti). The training processes using PPO take nearly 2
hours to converge, which is the fastest among the other algorithms. Although it takes several
hours to train a model to perform as well as the offline method, training needs to be carried out
only once, and the trained model can subsequently be used for all fabricated DMFBs. We compare
the RL approaches with an offline optimization method [86].

The training processes for different sizes of DMFBs are shown in Figure 7. For each RL algorithm,
we ran 18 simulations with random seeds; the average performance of each algorithm is plotted
as a solid line, and the similar color region shows the interval between its best performance and
its worst performance. A training epoch contains 20,000 timesteps. We observe that double DQN
does not converge in all training settings. In some cases, double DQN learned sub-optimal policies
first, and then the policy learned lower-reward experiences, which results in converging to more
passive policies. The results are similar to RL training in other environments [34, 43]. We observe
that PPO performs well in all training settings, but it sometimes takes more training epochs to
converge. This is because PPO is sensitive to initialization [28, 35, 79]. In addition, the update rule
of PPO encourages the policy to exploit rewards that it has already found over the training course.
Therefore, if an initial network policy is far from global optima, the policy can be easily trapped
in local minima. We also observe that ACER does not perform well in some training settings. As
the action space and observation space grow exponentially, the experiences stored in the limited
replay buffer become important for ACER training.

Our training results show that in all training settings, PPO can outperform the other two RL
algorithms. To fine-tune the RL approach using PPO, we tested two significant parameters in PPO
to find the best performance of our RL agent for different sizes of DMFBs, the number of concurrent
environments, and the number of steps for each update.
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Fig. 8. Evaluation of the trained models in degrading mode of DMFB-Env. The performance, expressed as
the required number of actuation (clock) cycles, is compared with the static routing method from Zhao and
Chakrabarty [86]. (a) 5 x 5 DMFB. (b) 10 X 10 DMFB. (c) 15 x 15 DMFB. (d) 20 x 20 DMFB. (e) 25 X 25 DMFB.
(f) 30 x 30 DMFB.

Figure 9 shows the training rewards for agents with varying the number of concurrent environ-
ments and the number of steps for each update. Here, we show the training rewards for a 10 x 10
DMFB, a 20 X 20 DMFB, and a 30 x 30 DMFB. The training is not stable when there are only a few
concurrent environments. For example, when there are four environments, we found out that the
performance of the training model (updated every 16 steps) drops significantly after a few train-
ing epochs. We also observed that for eight environments, irrespective of the update step interval,
the model’s performance is consistently better. Similar trends are observed in training for other
sizes of DMFBs. Therefore, we chose eight concurrent environments as the PPO setting for model
training.

We produced a video recording of droplet routing for a 5 X 8 DMFB during training (see [41]).
From the video, we see that, at first, the agent moved the droplet randomly without knowing the
policy needed to reach the destination. After 200K timesteps, the agent started to “learn” from past
experience; early on, after 400K timesteps, it could transport the droplet to the destination using
the shortest path for only a few of the routing tasks. However, after 800K timesteps, the agent was
able to complete all the routing tasks using the shortest paths.

5.5 MARL Training

To train the agents, we developed a PettingZoo-Gym environment to simulate the parallel droplet
scenarios. For each training game, n,; random routing tasks are generated, where n,, = {2,3}.
Each routing task is performed concurrently by one of the agents. The size of the DMFB is N X N,
where 10 < N < 30. We first performed the agent training using three RL algorithms (PPO, double
DOQN, and ACER). We also used three different MARL training schemes, including centralized,
concurrent, and parameter sharing.

Figure 10 shows the training processes for two and three concurrent routing tasks in the healthy
mode. A training epoch contains 20,000 timesteps. The performance of different algorithms is
compared with the offline optimization method (Baseline) and the RL agents that are trained under
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Fig. 9. Training rewards for agents with different hyper-parameter settings. Score is the total reward that the
RL agent receives in a game. (a) Training rewards for DMFBs of size 10 X 10 electrodes. (b) Training rewards
for DMFBs of size 20 X 20 electrodes. (c) Training rewards for DMFBs of size 30 X 30 electrodes.

single routing task environments (Single). The results show that the concurrent scheme is the most
effective and efficient scheme to train the MARL routing models for DMFBs. We observed that PPO
and ACER have similar performance, whereas DQN fails to converge in all the training settings.
In some of the settings, such as the concurrent training with DMFBs of size 20 x 20, the ACER
algorithm converges faster than the PPO algorithm.

However, the figure shows that single agents can achieve comparable performance as PPO and
ACER when the size of DMFB is small. However, as the size of DMFB grows and the number of
concurrent routing task increases, the performance of single-agent models rapidly decrease since
the single-agent models did not learn the coordination between droplets. The results illustrate the
importance of MARL models for concurrent routing scenarios.

6 EVALUATION

To evaluate our RL framework, we considered DMFBs with the number of electrodes ranging from
25 to 900. For each DMFB, we first trained three models with the same network architecture (as
described in Table 1) using DMFB-Env, and the models were trained in the healthy mode to achieve
the same performance as that of the baseline [86]. After training, we evaluated the performance of
the models in the degrading mode of DMFB-Env. We also evaluated the RL framework by executing
an epigenetic bioassay on a fabricated biochip.

6.1 Single-Agent Simulation Results

We compared the performance of the agent with the work of Zhao and Chakrabarty [86]. We set
50% of the degrading electrodes for DMFBs, and the results are shown in Figure 8. Here, we show
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Fig. 11. Training results for MARL agents under degrading mode with two concurrent routing tasks (a) and
three concurrent routing tasks (b).

the number of actuation cycles required in a game as the performance. The fewer actuation cycles
required in a game, the better the performance is. We observe that the agent performs similar to
the static (offline) method when the DMFBs start to degrade. This is because the RL agent has
been trained to perform as well as the baseline in the healthy mode of DMFB-Env. After a small
number of training games, the RL agent sometimes performs slightly worse because the agent may
explore other alternative routes to avoid the degraded electrodes, and the alternative solutions may
be worse than the original route. However, as DMFBs degrade further, the agent can outperform
the baseline. We also observe that the proposed solution is more effective for smaller DMFBs.
This is because, in our experimental setting, the DMFB with 25 electrodes is the most dynamic
environment. The performance of the baseline method decreases if electrode degradation occurs
in a DMFB. We see that the performance of the baseline method significantly decreases in the 5% 5
DMEB. The experimental results show that the agent can adapt to all sizes of DMFBs, including
the most dynamic environment (i.e., the 5 x 5 DMFB).

We recorded a video of droplet transportation in a simulated degraded environment; the video,
called Simulation.mp4, can be found in the work of Liang et al. [41]. As some electrodes started
to degrade, the agent can still use them to transport the droplet. In the simulated environments,
sets of faults with different sizes have been injected. However, the agent is able to learn the chang-
ing health conditions of these electrodes. For subsequent tasks, the agent transports the droplet
without using these degraded electrodes.

6.2 MARL Simulation Results

In the degrading mode of MARL, we set 10% of the degrading electrodes, and the degrading level of
these electrodes increases as these electrodes are used over time. We compared the performance of
the MARL models with the baseline method. The results are shown in Figure 11. We used the con-
current method to train the MARL models since concurrent is the most effective training method
as discussed in Section 5. For DMFBs with the size of 10 X 10 and 20 X 20, we used PPO as the
training algorithm since PPO and ACER achieve similar performance while the training processes
of PPO are faster. For DMFBs with the size of 30 x 30, we used ACER as the training algorithm
since ACER achieves the best performance among the three algorithms.
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Table 2. Runtime (s) for RL Training and Referencing on a Micro-Computer

Biochip Size | 5X5 | 10X 10 | 15X 15 | 20 X 20 | 25X 25 | 30 X 30 | 35X 35
Training 0.01 | 0.02 0.03 0.04 0.06 0.07 0.1
Referencing | 0.02 | 0.01 0.01 0.15 0.01 0.14 0.02

The degradation processes are shown in Figure 11, where the performance is evaluated using
the number of cycles needed to transport all the droplets to the destinations. Figure 11 shows
that as the electrodes start to degrade, the MARL agent performs slightly worse than the baseline
method since the agents are learning to avoid degraded electrodes and exploring alternative routes,
which are longer than the routes taken by the baseline method. After several training epochs, the
MARL agents outperform the baseline method as the DMFBs degrade further and the MARL agents
have learned from the previous training games. As shown in Figure 11, for DMFBs with sizes of
10 X 10,20 X 20, and 30 x 30, the number of training epochs that the model needs to adapt to the
degrading environments are around 5 to 10, 10 to 15, and 20, respectively. The results show that
the MARL agents can adapt to dynamically degraded environments under different sizes of DMFBs
and provide more reliable routing strategies than the baseline method.

6.3 RL Runtime on a Micro-Computer

As the RL router learns to adapt to a degrading biochip, the RL agent needs to be repeatedly trained
and referenced on the micro-computer of the DMFB system during the biochip execution. We
profiled the runtime of the PPO training and referencing for each timestep on a micro-computer
(Raspberry Pi 4) for various sizes of DMFBs (Table 2). Although the micro-computer includes a
modest 1.5-GHz quad-core processor and only 4 GB of memory, one training timestep takes only
about 0.04 seconds, and one referencing timestep takes only about 0.06 seconds. In our DMFB
design, the actuation time required to move one droplet from an electrode to an adjacent electrode
is 1 second. Therefore, the training step can be carried out concurrently while the fluidic operation
occurs. The additional referencing time for the RL agent to determine the next fluidic operation
is 0.06 seconds. The timing overhead of using the RL framework is therefore 6% when compared
with the original DMFB system, which is negligible in practice.

6.4 Bioassay Execution on a Fabricated Biochip

In this section, we show the feasibility of deploying our RL model on a fabricated chip. The model
deployment is general regardless of the sizes of biochips. In addition, the proposed RL framework
can be used for any bioassay. As a specific case study, We designed and executed an epigenetic
bioassay on a fabricated DMFB because benchtop epigenetic bioassays require large sample vol-
umes and long execution time, and are labor intensive. Previous work has shown the effectiveness
of epigenetic bioassays on DMFBs [30]. This epigenetic bioassay includes 19 routing tasks. We
used the trained RL droplet router to transport droplets.

6.4.1 Epigenetic Bioassay. Even though all cells in the human body have the same DNA,
or genotype, considerable differences in cell type and function, or phenotype, arise from the
selective expression and suppression of certain genes. This phenotypic control can be attributed to
various epigenetic mechanisms. These are processes and environmental factors that alter genomic
behavior and its subsequent expression without any changes to the actual DNA. Epigenetics
is the study of these factors and mechanisms of control in healthy and diseased populations.
Chromatin Immunoprecipitation (ChIP) is used to study the epigenetic relationship between
DNA and its supporting proteins [10]. Running a full ChIP protocol on a single sample requires
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a large starting volume of cells (which are not always available) and several days to run the
assay, and is highly labor intensive. We consider Nucleosome Immunoprecipitation (NulP)
on magnetic beads in order to translate ChIP from the benchtop to automated DMFBs to reduce
sample sizes, decrease runtimes, and increase throughput.

The NulP protocol modifies the traditional ChIP assay [10, 52] by first functionalizing a magnetic
bead off-chip with an antibody that targets one of the histone proteins in the nucleosome of interest.
This is the capture complex as shown in Figure 12. The nucleosome-containing sample is then
mixed and incubated with the capture complex followed by magnetic splitting and washing steps.
In the meantime, off-chip, an antibody specific to a different histone protein in the nucleosome
is incubated with a fluorescent secondary antibody. This forms the detection complex reagent.
Next, the beads are incubated with the detection complex. If there are nucleosomes attached to the
beads, these will bind with the detection complex. After the excess detection complex is washed
away, ensuring that there are no false positives, the beads are resuspended in a droplet and routed
to the detection region. An LED tuned to the excitation wavelength of the fluorescent antibody
shines on the beads which are imaged using a CCD camera outfitted with the appropriate emission
wavelength filter. A fluorescing sample confirms the presence of the nucleosome of interest.

6.4.2 Experimental Setup. Fabricated DMFB. For our experiment, we designed a PCB-based
DMFB and fabricated it using OSH Park [55]. The DMFB contains a 6 X 6 electrode-array
(Figure 13(a)). A reservoir module is placed on each side of the array, and the modules can
dispense different reagent droplets. Each electrode can be controlled individually. The control
signals come from the pin heads that are soldered on the board boundary.

Control Board. For the fabricated DMFB, the activation/de-activation status of each electrode
is controlled by a high voltage relay (part no. Panasonic AQW212). A total of 44 relay ICs are
soldered on the control board (36 for electrode array and 8 for reservoir modules) (see Figure 13(b)).
Each high-voltage relay IC is controlled by a configuration bit, and these configuration bits are
stored in the register ICs (part no. Texas Instruments SN74AHC595). In addition to these ICs, four
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pin-header modules (shown within the red rectangles) are used as the DMFB socket, which allows
DMEFB replacement on the control board.

Overall System. Figure 13(c) shows the hardware setup used to operate the DMFB. The DMFB is
installed above the control board using the pin-header socket. A micro-computer (Raspberry Pi 4)
on the left is used to generate control signals, and the RL agent is installed in the micro-computer.
An amplifier board as well as the functional generator are used to generate a voltage source of
1 KHz and 200 Vpp, which provides actuation signals for the electrodes. A camera placed on top
of the DMFB captures the droplet locations. The images are then utilized by the micro-computer
for making real-time decisions.

6.4.3 Experimental Results. We performed the droplet routing tasks of the bioassay using our
fabricated DMFB, where we simulated the degradation on an electrode at the location (3, 4). The
degradation is simulated by applying a lower voltage of 150 Vpp on the electrode. During the
third routing task, the degraded electrode is involved in the droplet transportation path and thus
a failure occurred. Then, in the following routing task, the RL agent successfully learned from the
experience and adopted an alternative path to avoid the degraded electrode. Examples of routing
tasks on fabricated DMFB can be seen in previous work [41]. In the recorded video DMFBExper-
iment.mp4 [41], intuitive routing cases are presented to show the effectiveness of our RL routing
model.

7 CONCLUSION

We presented a novel framework for RL-based droplet routing on DMFBs. We also developed an
OpenAI-Gym environment that can be used to train the RL droplet router for various DMFB sizes.
The simulation is based on a study of electrode degradation using fabricated DMFBs. The experi-
mental results showed that even though electrodes on a DMFB degrade over time, the RL droplet
router can learn the degradation behavior and transport droplets using only healthy electrodes.

We also formulated a MARL framework for parallel droplet routing on DMFBs. We introduced a
PettingZoo-Gym environment for DMFBs to perform the training of MARL agents. Experimental
results showed that the MARL framework can learn from degradation environments and provide
superior routing strategies, which results in fewer re-routes for failures, and thus the completion
time of bioassay can be faster and a smaller volume of biosamples is needed.

We identified the timing constraint associated with the use of the RL approach on a micro-
computer that does not contain a GPU. The results showed that the proposed RL approach does
not impede the fluidic operations in time-critical bioassays. A failure of the DMFB results in costly
sample and reagent loss. However, the proposed RL framework minimizes the need to discard
biochips with degraded electrodes and abort bioassay protocols. This increases the lifespan of a
biochip’s utility and allows for the adaptation of a plethora of immunoprecipitation assays onto
the DMFB platform.
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