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Abstract—Three-dimensional environmentally sustainable neu-
romorphic computing system based on natural organic honey-
memristor is proposed in this paper. The experimental results
indicates the proposed systems have high inference accuracy
over 90% with device variation and nonlinearity. What is
more, four conductance drift scenarios, ADC (Analog-to-Digital
Converter) quantization effects, and different algorithms (VGG8
and DenseNet-40) are considered to further verify the proposed
systems.

Index Terms—Natural organic memristor, honey-memristor,
neuromorphic system, artificial intelligence (AI), inference ac-
curacy, variation, nonlinearity, three-dimensional (3D)

I. INTRODUCTION

The scaling down of CMOS (Complementary Metal-Oxide
Semiconductor) technology has greatly enabled and supported
the growing computation in last decades [1]. However, some
physical limitations have suppressed the further development
of CMOS technology, especially for Al applications. Accord-
ingly, a new device with high speed and low power enabling
computationally intensive applications, such as large data cen-
ters and edge devices, is urgently needed. Memristor is such
a promising device which has a potential of making smooth
transition from CMOS-based systems to advanced devices by
unlocking CIM (Computing in Memory) capability. Memristor
uses multi-level conductance sates to regulate current flow as
well as store charges that have previously been flowed through
it. Even if powering off, such programmed states and charges
are not lost. Besides non-volatility and multilevel resistive state
property, memristor exhibits wonderful characteristics, such as
low computational complexity [2], sub-nanosecond switching
speed [3] sub-10-nm scalability [4], low energy dissipation of
few pJ per bit [3], [5]-[8], long write-erase endurance [9], and
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CMOS-compatibility [10], [11]. As a result, it can efficiently
implement high performance neural networks in hardware for
CIM [12].

However, most of existing memristors are made from in-
organic metal oxide [13], [14] and synthetic polymer [15],
although they contributed to neuromorphic computing, they all
failed to consider environmental sustainability in manufacture
and disposal. In 1987, the Bruntland Report defined sustain-
ability as “development that meets the needs of the present
without compromising the ability of future generations to meet
their own needs [16]”. Therefore, sustainable computing that
makes future generations thrive becomes central to the core
purpose of electronics and semiconductor industries, which
results in a commitment to the exploration of greener material
and process pathways that enable environmentally friendly and
sustainable manufacturing solutions for novel devices.

Natural organic memristor, such as honey-memristors [17]—
[23], is one of such most prospective sustainable devices. It
is low cost, earth-abundant, renewable, bio-degradable, and
has eco-friendly disposal. Therefore, in this paper, our team
proposes novel honey-memristor based 3D (three-dimensional)
neuromorphic computing systems for environmental sustain-
ability in computing. Our team firstly manufacture honey-
memristors and then use reliable platform to evaluate the
inference accuracy of systems with different algorithms, re-
tention, and ADC (Analog-to-Digital Converter) quantization,
which shows the significant potential of 3D natural organic
memristor-based neuromorphic systems for Al applications
and also gives the design reference for the following re-
searchers and designers.

II. HONEY-MEMRISTOR

A. Honey-memristor Fabrication

Our honey-memristors are fabricated on a 2.5 cm x 2.5
cm glass slide. The glass slide is cleaned by acetone, IPA
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Fig. 1: (a) Photograph of a honey-memristor crossbar array on the glass substrate. (b) LTP and LTD characteristics for 8-,
16-, and 32-level potentiation and depression. (c) Variation and nonlinearity fitting curve for 32-level device.

(Isopropyl Alcohol) and D.I. (deionized) water in ultrasonic
bath each for 10 mins, followed by the deposition of indium
tin oxide (ITO) as bottom electrodes with the width of 100 pum,
200 pum, 300 um, 400 pm and 500 pum through a stencil mask.
The final sheet resistance of the ITO film was 10 £/sq. The
honey solution with a concentration of 30 wt% was prepared
by dissolving commercial honey (100%, US Grade A) in D.L.
water at room temperature until no honey crystals were visible.
The honey solution was coated on the ITO/glass substrates at
1000 rpm for 90 s on a spinner, followed by baking on a
hotplate in air at 90°C for 9 hours to dry the honey film.
Finally, Ag top electrodes (100 nm-thick) are deposited on
the honey film through the same stencil mask rotated by
90° to form a crossbar array. A photograph of the honey
crossbar structure is shown in Fig. 1 (a) with each cross point
representing an Ag/honey/ITO memristor.

B. Honey-memristor Characterization

8-, 16-, and 32-level honey-memristors are throughly tested.
During the test, consecutive square voltage pulses (duty cycle:
50%) in positive polarity with 0.8 V amplitude are applied
first, and followed by pulses in negative polarity with 0.6 V
amplitude. The magnitude of the current steadily increased
as the number of positive voltage pulse increases, indicating
that honey-memristor device can mimic synaptic long term
potentiation (LTP) of a biological synapse. When the pulse
voltage changed to negative polarity, magnitude of the current
decayed until the last negative voltage pulse, a behavior
analogous to synaptic long term depression (LTD). Fig. 1
(b) summarizes the LTP and LTD characteristics for 8-, 16-
, and 32-level honey-memristors using the same pulse width,
duty cycle, and amplitude. They all follow that the conduction
gradually increases with an increase in the positive pulse train.
In contrast, if we change the polarity of the pulse to negative,
the conduction of the memristor decreases with an increase in
the pulse train.

C. Variation and Nonlinearity

Similar to inorganic memristors, the weight update variation
and nonlinearity of the honey-memristor happen as the con-
ductance is not updated following the ideal curve [24]-[26].
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Fig. 2: Conductance Change with Nonlinearity in (a) LTP
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Fig. 3: Conductance Change Curves under Various
Nonlinearity of LTP and LTD.

The conductance of the memristor represents the weight
of the neural network. The weight update variation is the
fluctuation in conductance change at each programming pulse.
This fluctuation (o) is represented as a percentage of the entire
conductance range. As for the nonlinearity, as demonstrated
in Fig. 2, the dark curve depicts the conductance of an actual
memristor. The pulses have the same duration and the same
amplitude, and the green line represents the function of the
ideal case. In LTP, as shown in Fig. 2 (a), according to the
result obtained by the algorithm, the conductance of memristor



theoretically needs to be changed from point b to c. Then, the
corresponding number of pulses is calculated according to the
ideal curve (green). However, when these pulses are applied to
the actual memristor, instead of changing from point b to ¢, the
device conductance changes from point a to d. Consequently,
the actual change of conductance and the required change
are not same. Similarly, Fig. 2 (b) shows the occurrence in
the LTD, where the actual conductance changes to point d
instead of point ¢ [27]. The variation and nonlinearity of the
memristor cause the weight change to be inconsistent with the
change required by the learning algorithm, thereby reducing
the inference accuracy.

A nonlinear curve is used to fit the nonlinearity of our
honey-memristor, as shown in Fig. 1 (c). This curve is gener-
ated from a mathematical model (Equations (1) and (2)) [28],
as shown in Fig. 3. The curve is labeled with a NL value (it is
the normalized value of parameter A in Equations (1) and (2))
from +6 to -6, which represents the extent to the curve deviates
from the ideal linear device. Here the positive (+) and negative
(-) signs are merely to label LTP and LTD, respectively.

Grrp = B(1— %) 4 Gpin (1)
Grrp = —B(1— e 3*)) 4 Gpas )
B = (Gmam - szn)/(l - efpzl‘” ) (3)

where Grrp and Grrp are the conductance for LTP and
LTD cases, respectively. G a2, Gmin, and Py, 4, are extracted
from the experimental and testing data, which represents the
maximum and minimum conductance, and maximum pulse
number required to switch the device between the minimum
and maximum conductance. Parameter A controls the nonlin-
ear behavior of weight update. B is a function of A that fits
the functions within the range of G4z, Gmin, and Pruq,.

Through fitting work and adding regulations for device
variations, LTP/LTD = +4/-1.8, +0.7/-0.8, and +1.6/-0.8, and
o = 0.08, 0.01, and 0.01 are respectively applied for our 8-,
16-, and 32-level honey-memiristors, as listed in Table 1.

III. HETEROGENEOUS THREE DIMENSIONAL (3D)
ARCHITECTURE

Top/Bottom TSV (Through Silicon Vias )

Electrode of
Honey-
Memristo

CMOS
Peripheral
Circuits

Fig. 4: 3D Architecture with TSV.

For heterogeneous 3D architecture, a two-tier structure is
designed as shown in Fig. 4, where the honey-memristor array
is on the top tier, and logic circuits are on the bottom tier. The
operation strategy is assumed to be layer-by-layer scheme.
Each time, the honey-memristor array will be activated to
access data from logic tier, and then the data will be sent
to honey-memristor array through TSV (Through Silicon Via)
path. After the honey-memristor array finishes the analog
computation, the output signal will be sent back to the logic
tier for further data-processing.

IV. EXPERIMENTAL RESULTS AND DISCUSSION
A. Accuracy

Characteristics of honey-memristors are incorporated into
DNN-+NeuroSim platform for evaluations. DNN+NeuroSim
is an integrated framework that emulates deep neural net-
works (DNN) inference performance on the memristor-based
hardware [29]. An 8-layer VGG8 model with random drift
and 5-bit ADC precision for CIFAR10 dataset is applied. As
listed in Table I, with specific device variation and nonlinerity,
neuromorphic systems based on 8-, 16-, and 32-level honey-
memristors all have over 90% inference accuracy. This indi-
cates that for VGG8 model, even 8-level honey-memristor is
enough for weight value storage and keep high accuracy.

TABLE I: Inference Accuracy for 8-, 16-, and 32-level
Honey-memristor Based Neuromorphic Systems

Devices 8-level 16-level 32-level
Variation (o) 0.08 0.01 0.01

Nonlinerity (LTP\LTD) | +4/-1.8 | +0.7/-0.8 | +1.6/-0.8
Accuracy 91% 92% 92%

B. Retention

Retention is defined as the ability of the memristor device
to retain its programmed state over a long period of time [30].
Typically the retention ability of a memristor is more than 10
years at 85 degree centigrade. An 8-layer VGG8 model with
random drift and 5-bit ADC precision for CIFAR10 dataset is
utilized, and four conductance drift scenarios with three honey-
memristors have been discussed for the retention analysis:
Drift to High Resistive State (HRS): 0, Drift to Low Resistive

TABLE II: Impact of Drift on Honey-memristor Based
Neuromorphic Systems

Drift Device | Inference Accuracy

0 32 91%

0.5 32 91%

1 32 91%
RANDOM 32 92%
0 16 91%

0.5 16 91%

1 16 91%
RANDOM 16 92%
0 8 91%

0.5 8 91%

1 8 91%
RANDOM 8 91%




State (LRS): 1, Drift to Middle (0.5), and Random Drift. As
listed in Table II, the honey-memristor based neuromorphic
system can successfully keep the high inference accuracy even
in different drift conditions, which indicates that the system
has high immunity to device drift effect.

C. ADC Quantization Effects

In the CIM architecture, there are mainly two read-out
schemes. A sequential processing method of the matrix-vector
multiplication is to read out the dot-products in a row-by-
row manner, which leads to extra energy and latency for
accumulations along the rows [31]. In our honey-memristor
based neuromorphic system, a more efficient method as par-
allel processing is used, where multiple rows are activated
simultaneously by a switch matrix, and the current summation
is read out by an ADC. What is more, a non-linear quanti-
zation is employed for the ADC reference, according to the
distribution of partial-sums, the references are more spread in
high-probability area, while less in low-probability part. To
read out the partial-sums in parallel modes, it requires ADC
with high enough precision, and guarantee higher accuracy.
As listed in Table IV, when ADCs have only 3-bit precision,
all systems have the inference accuracy as low as 10%, like
randomly guessing. When ADCs have 4-bit precision, they
all are increased to 62%, but still low. When the precision is
improved to 5 and above, all accuries are increased over 90%.

TABLE III: Impact of ADC Precision on Honey-memristor
Based Neuromorphic Systems with VGG8 Model

ADC | Device | Inference Accuracy
3 32 10%
4 32 62%
5 32 92%
3 16 10%
4 16 62%
5 16 92%
3 8 10%
4 8 61%
5 8 91%

D. Different Algorithms

In order to further verify the honey-memristor based neuro-
morphic systems, DenseNet-40 model is used in experiments.
DenseNet is a neural network architecture that is designed to
learn feature representations by densely connecting each layer
to every other layer in a feed forward fashion. The use of
dense connections in Densenet allows for more efficient use of
parameters and better gradient flow during training, leading to
improved performance. However, the use of dense connections
in Densenet also increases the amount of computation that
needs to be performed during inference. This increased com-
putational load requires more precise computations and thus
higher precision ADCs are needed in Densenet. Accordingly,
as listed in Table IV, when ADCs have 3-5 bits, all inference
accuracies are below 40%.

TABLE IV: Impact of ADC Precision on Honey-memristor
Based Neuromorphic Systems with DenseNet-40 Model

ADC | Device | Inference Accuracy
3 32 10%
4 32 11%
5 32 39%
3 16 10%
4 16 11%
5 16 39%
3 8 10%
4 8 11%
5 8 39%

V. COMPARISON WITH STATE-OF-THE-ART

3D honey-memristor based neuromorphic systems realize
the environmentally sustainable neuromorphic computing. As
listed in Table V, as compared with other works, it stands out
in terms of many criteria including Bio-degradable and Eco-
friendly features, and has the accuracy as high as 92%. It also
meets the requirements of device characteristics which makes
it an efficient solution for a variety of Al applications.

VI. CONCLUSION

In this paper, honey-memristors are utilized to implement
a 3D environmentally sustainable neuromorphic computing
system. The experiment results indicate that the proposed
systems with 8-, 16-, and 32-level devices have high inference
accuracy over 90% even considering device variation and
nonlinearity. Four conductance scenarios with three honey-
memristors have been discussed for the retention analysis to
show the great immunity against the device drift. ADC quanti-
zation effects and different algorithms (VGGS8 and DenseNet-
40) are also considered to further verify the effectiveness of
systems regarding the inference accuracy. It concludes that as
for VGG8 model, 5-bit ADCs are needed to guarantee over
90% accuracy, but DenseNet-40 model only has 39% inference
accuracy even with 5-bit ADCs.
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