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Abstract—Q-learning has become an important part of the
reinforcement learning toolkit since its introduction in the
dissertation of Chris Watkins in the 1980s. In the original
tabular formulation, the goal is to compute exactly a solution to
the discounted-cost optimality equation, and thereby obtain the
optimal policy for a Markov Decision Process. The goal today is
more modest: obtain an approximate solution within a prescribed
function class.

The standard algorithms are based on the same architecture as
formulated in the 1980s, with the goal of finding a value function
approximation that solves the so-called projected Bellman equa-
tion. While reinforcement learning has been an active research
area for over four decades, there is little theory providing
conditions for convergence of these Q-learning algorithms, or
even existence of a solution to this equation.

The purpose of this paper is to show that a solution to the
projected Bellman equation does exist, provided the function class
is linear and the input used for training is a form of ε-greedy
policy with sufficiently small ε. Moreover, under these conditions
it is shown that the Q-learning algorithm is stable, in terms of
bounded parameter estimates. Convergence remains one of many
open topics for research.

I. INTRODUCTION

Much of reinforcement learning concerns optimal control
of state space models, typically cast in a Markov Decision
Process (MDP) setting. Following standard notation from the
control systems literature, the state process is denoted X =
{Xk : k ≥ 0}, the input process U = {Uk : k ≥ 0}, and
c(Xk, Uk) denotes the one-stage cost at time k.

This paper concerns Q-learning algorithms, motivated by
the same objective as in the first formulation of Watkins [54],
[53]: the infinite-horizon optimal control problem, with state-
action value function

Q⋆(x, u) = min
∞∑
k=0

γkE[c(Xk, Uk) | X0 = x , U0 = u] (1)

where γ ∈ (0, 1) is the discount factor. The minimum in (1)
is over all history dependent input sequences. This is the Q-
function of Q-learning.

Under standard assumptions an optimal input is obtained by
state feedback, U∗

k = ϕ⋆(X∗
k) for each k, where an optimal

policy ϕ⋆ : X → U is obtained via ϕ⋆(x) ∈ argminuQ
⋆(x, u)

for each x [8]. To avoid technicalities (in particular to avoid
discussion of measurability), it is assumed in this paper that
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the state process evolves on a finite state space X, and the
input takes values a finite set U.

The Q-function solves the Bellman equation Q⋆ = T Q⋆, in
which the Bellman operator T acts on functions H : X×U →
R via

T H (x, u) = c(x, u) + E[H(Xn+1) | Xn = x , Un = u]

where throughout the paper H(x) := minuH(x, u), x ∈ X.
It is helpful to express the Bellman equation in sample path
form: for any adapted input, and k ≥ 0,

Q⋆(Xk , Uk) = c(Xk , Uk) + γE[Q⋆(Xk+1) | Fk] (2)

in which Fk = σ{Xi , Ui : i ≤ k} is the history up to time k.
The objective of Q-learning is to obtain an approximate

solution among a parameterized class {Qθ : θ ∈ Rd}. Given
an approximation we obtain a policy defined in analogy with
the optimal policy,

ϕθ(x) ∈ argmin
u

Qθ(x, u) , x ∈ X , (3)

with some fixed rule in place in case of ties.
The most common criterion for success is the solution to

the projected Bellman equation: find θ∗ ∈ Rd such that

0 = E
[
{c(Xn, Un)+ γQθ

∗
(Xn+1)−Qθ

∗
(Xn, Un)}ζθ

∗

n

]
(4)

in which the expectation is in steady-state, and ζθn =
∇θQ

θ(Xn, Un) for each n and θ ∈ Rd. Alternatives are
discussed in Section IV-D.

The theoretical results in this paper are obtained in the
special case of linear function approximation:

Qθ = θ⊺ψ giving ζθn = ψ(Xn, Un) , (5)

with ψ a vector of basis functions. In this case the projected
Bellman equation may be expressed in the Hilbert space
notation of [50],

Qθ
∗
= ΠT Qθ

∗

in which Π denotes the projection onto the d-dimensional
subspace L2(πθ∗); the definition of the probability mass
function (pmf) πθ∗ may be found below (39b).

Much of the present article focuses on a generalization of
the original algorithm of Watkins: For initialization θ0 ∈ Rd,
define the sequence of estimates recursively:

θn+1 = θn + αn+1Dn+1ζn (6a)

Dn+1 = c(Xn, Un) + γQθn(Xn+1)−Qθn(Xn, Un) , (6b)

in which {αn} is a non-negative step-size sequence, {ζn :=
ζθnn } are known as the eligibility vectors (entirely analogous to
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the eligibility vectors used in the TD(0) algorithm [46], [50]),
and {Dn+1} is known as the temporal difference sequence.

The recursion (6a) reduces to Watkins’ algorithm when
using a tabular basis [54], [53] (see Section III-A for defi-
nitions). See [45], [47], [37] for a range of interpretations of
the algorithm.

Soon after Q-learning was introduced, it was recognized that
the algorithm can be cast within the framework of stochastic
approximation (SA) [49], [24]. To explain the contributions
and approach to analysis in this paper it is necessary to first
explain why (6a) can also be cast as an SA recursion, subject
to mild assumptions on the input used for training.
Some history The central open issue motivating the research
surveyed in this paper is this: it is not known if the projected
Bellman equation (4) has a solution outside of very special
cases.

Success stories surveyed in [47] include the special case of
binning [24], which is a generalization of the tabular setting,
and the criterion in [35] and its improvement in [28], for
which the assumptions are not easily verified in practice. The
progress report in [47, Section 3.3.2] states that the only known
convergence result is due to Melo et al. [35]. See [45, Section
11.2] for further discussion, and [22] for recent insight.

This open problem was a topic of discussion throughout
the Simons program on reinforcement learning held in 2020,
especially during the bootcamp lectures [48].

Thms. IV.1 and IV.5 resolve this open problem for Q-
learning with optimistic training. Following several prelimi-
naries, the proof of Thm. IV.1 is similar to the proof of con-
vergence of TD(λ) learning from the dissertation of Van Roy
[50], [51], and the assumptions are related to the assumptions
in this prior work, even though the setting is very different.

An approximate projected Bellman equation is considered
in [17], in which the minimum defining Qθn is replaced with
a soft-min. Under assumptions similar to those imposed here
they establish the existence of a solution [17, Theorem 5.1].
This result is similar to Prop. IV.2 (ii) of the present paper.

The recent paper [29] considers Q-learning with linear func-
tion approximation and oblivious training (meaning that the
input used for training does not depend directly on parameter
estimates). With sufficiently large regularization they obtain
a unique equilibrium for the algorithm that approximates the
solution to the projected Bellman equation.

Also recent is the work of [15], which is cast in a sim-
ilar setting: Q-learning with linear function approximation
and oblivious training. It is argued that the use of a target
network combined with a carefully constructed projection of
parameters improves performance, and their error bounds are
consistent with their claims. While the paper is a significant
step forward, they leave open the question of existence of
a solution to the projected Bellman equation. With vanishing
step-size, if convergence is established with or without a target
network, the limit must be a solution to the projected Bellman
equation (see [37, Proposition 5.10] for proof in the case of
deterministic optimal control—the arguments in the stochastic
setting are identical).

The lack of theory motivated Baird’s gradient descent
approach [4] as well as GQ learning [31], in which the root

finding problem is replaced with the minimization of a loss
function. See [3] for recent theory and Section IV-D for further
discussion.

Zap stochastic approximation was introduced to ensure con-
vergence, and also provide acceleration [20]. While originally
proposed for Q-learning with linear function approximation, it
was later shown to be convergent even with nonlinear function
approximation [14], and the general technique applies to any
application in which stochastic approximation is used. The
Zap-Zero algorithm introduced in [37] and improved recently
in [38] is designed to avoid matrix inversion.

Much recent research has focused on linear MDPs, notably
[55], [25], in which the system dynamics are partially known:
for a known “feature map” ϕ : X× U → Rd and an unknown
sequence of probability measures {µi : 1 ≤ i ≤ d} on X, a
linear MDP is assumed to have a controlled transition matrix
of the form Pu(x, x

′) =
∑
ϕi(x, u)µi(x

′). There is now a
relatively complete theory for this special case, in which the
algorithm is designed based on knowledge of the feature map.

The reader is encouraged to see [5], [30], [33], [32] for
new approaches to Q-learning based on convex programming
approaches to MDPs. It is hoped that the analytical techniques
presented in this paper may be adapted to these new algo-
rithms.

Overview Section II surveys relevant recent results from
stochastic approximation theory, and Section III provides a
review of Q-learning, for which the vast majority of theory
is restricted to linear function approximation and oblivious
training.

Consideration of optimistic policies is postponed to Sec-
tion IV, which contains the main contributions of the paper:
if a smooth approximation of the ε-greedy policy is used for
training, then under mild conditions the parameter estimates
are bounded, and there exists a solution to the projected
Bellman equation (see Thm. IV.1).

II. BACKGROUND AND ASSUMPTIONS

This section is devoted to three topics: assumptions sur-
rounding the MDP model, a brief summary of results from the
theory of stochastic approximation, followed by assumptions
surrounding the Q-learning algorithms to be considered.

Notation: Q⋆: Discounted-cost value function, (1).

• fn+1, cn and ψ(n), (38).

• ϕθ: Qθ-greedy policy, (3). ϕ̃θ randomized policy, (31).

• CΘ: region of policy continuity, (29).

• H(x) := minuH(x, u), appearing in DCOE (2).

• Q-learning notation from (6b): step-size αn, eligibility
vector ζn, temporal difference Dn+1.

• θ∗ ∈ Rd: solves projected Bellman equation (4).

• θn parameter estimate, θPR
n PR-average, (12).

• Errors: θ̃n = θn − θ∗, θ̃PR
n = θPR

n − θ∗.

• Pu: controlled transition matrix, (8).

• sf : Rd → Rd, vector field for mean-flow, (10b).

• sf∞, vector field for ODE@∞, (22).
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• ϑt: solution to mean-flow, (11).
• A = ∂θ sf and A∗ :=A(θ∗), (19).
• ΣΘ asymptotic covariance, (24a).
• ΣPR

Θ = GΣ∗
∆G

⊺ with G = −(A∗)−1 and Σ∗
∆, (24b).

• Uk = (1−Bk)Uk +BkWk training policy, (30).

A. Markov Decision Process

While the search for an optimal policy may be restricted
to static state feedback under the assumptions imposed below,
in reinforcement learning it is standard practice to introduce
randomization in policies as a way of introducing exploration
during training. We restrict to randomized policies of the form,

Uk = ϕ(Xk, θk, Ik) , k ≥ 0 , (7)

in which I = {I1, I2, . . . } is an i.i.d. sequence. Under the
assumption that X and U are finite, we can assume without
loss of generality that I evolves on a finite set.

The input-state dynamics are assumed to be defined by a
controlled Markov chain, with controlled transition matrix P .
For any randomized stationary policy, the following holds for
each x, x′ ∈ X, u ∈ U, and k ≥ 0:

P{Xk+1 = x′ | Xk = x , Uk = u} = Pu(x, x
′) (8)

The dynamic programming equation Q⋆ = T Q⋆ (equivalently
(2)) may be expressed, for x ∈ X, u ∈ U, by

Q⋆(x, u) = c(x, u) + γ
∑
x′∈X

Pu(x, x
′) Q⋆(x′) (9)

B. What is stochastic approximation?

A fuller answer may be found in any of the standard
monographs, such as [12] (see also [37] for a crash course).

The goal of SA is to solve the root finding problem sf(θ∗) =
0, where the function is defined in terms of an expectation,
sf(θ) = E[f(θ,Φ)] for θ ∈ Rd and with Φ a random vector.
The general SA algorithm is expressed in two forms:

θn+1 = θn + αn+1f(θn ,Φn+1) (10a)

= θn + α[ sf(θn) + ∆n+1] , n ≥ 0 , (10b)

where ∆n+1 := f(θn,Φn+1) − sf(θn). It is assumed that the
sequence {Φn} converges in distribution to Φ.

The algorithm is motivated by ordinary differential equation
(ODE) theory, and this theory plays a large part in establishing
convergence of (10a) along with convergence rates. These
results are obtained by comparing solutions (10a) to solutions
of the mean flow,

d
dtϑt =

sf(ϑt). (11)

In particular, θ∗ is a stationary point of this ODE.
Averaging A large step-size {αn+1} in (10a) is desirable for
quick transient response, but this typically leads to high vari-
ance. There is no conflict if the “noisy” parameter estimates
are averaged. The averaging technique of Polyak and Ruppert
defines

θPR
n =

1

n

n∑
k=1

θk , n ≥ 1. (12)

Thm. II.1 illustrates the value of this approach.

Basic SA assumptions The following are imposed in this
section, and in some others that follow.

It is assumed that the step-size sequence {αn : n ≥ 1} is
deterministic, satisfies 0 < αn ≤ 1,

∞∑
n=1

αn = ∞ and
∞∑
n=1

α2
n <∞ (13)

These conditions hold for αn = gnρ with 1
2 < ρ ≤ 1 and g >

0; see [27] for theory justifying larger step-sizes obtained using
0 < ρ ≤ 1

2 . We sometimes require two time-scale algorithms
in which there is a second step-size sequence {βn : n ≥ 1}
that is relatively large:

lim
n→∞

αn
βn

= 0 (14)

Parameter dependent noise A construction of the process
Φ appearing in the SA recursion reveals one complication. To
make the construction entirely explicit, consider a state space
realization of the MDP, Xk+1 = F (Xk, Uk, Dk) in which D
evolves on a finite set, and F is a function taking values in the
finite set X. In view of (7) we are in the setting of parameter-
dependent noise: instead of one Markov chain, one considers
a family {Φθ : θ ∈ Rd}.

In the present setting, the Markov chain Φθ is defined by
freezing the parameter in (7) to define

Uθk = ϕ(Xθ
k , θ, Ik) Xθ

k+1 = F (Xθ
k , U

θ
k , Dk) , k ≥ 0 .

Note that Xθ is itself a Markov chain on X, whose transi-
tion matrix is denoted Pθ. A simple choice is then Φθk =
(Xk, Ik, Dk). Letting ξ = (x; ι; δ), ξ′ = (x′; ι′; δ′) denote two
state values, the transition matrix is denoted Pθ and has the
simple realization,

Pθ(ξ, ξ′) = Pθ(x, x
′)µI(ι

′)µD(δ
′) (15)

where µI , µD are the respective pmfs for Ik, Dk (independent
of k). It is assumed that Pθ admits a unique invariant pmf ϖθ

for each θ, from which we obtain an expression for the vector
field in the mean flow,

sf(θ) = E[f(θ,Φθ)] , Φθ ∼ ϖθ (16)

That is, Φθ is distributed according to ϖθ in the expectation.
Theory for convergence of SA with parameter-dependent

noise began in the seminal paper [36], and the theory is nearly
as mature as in the classical setting with exogenous noise [26].
The following assumptions for the general SA recursion (10)
are much stronger than those imposed in this prior work:
Assumptions for convergence:
SA1 The function f is globally Lipschitz continuous in its first
variable, with subgradients satisfying supθ |∂θifj (θ, ξ)| < ∞
for each i, j and ξ.
SA2 For each θ, the time-homogeneous Markov chain Φθ

evolves on a finite set. Moreover,
(i) A uniform minorization condition holds: for some N ≥ 1,
a constant δΦ > 0, and a state ξ•,

N∑
k=1

Pkθ (ξ, ξ•) ≥ δΦ , for each θ, ξ. (17)
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It is assumed moreover that Φθ is aperiodic.
Consequently, there is a unique invariant pmf ϖθ.

(ii) The transition matrix Pθ is continuously differentiable in
θ, with with vanishing gradient for large θ: for each 1 ≤ i ≤ d,

sup
ξ,ξ′,θ

∣∣∂θiPθ(ξ, ξ′)∣∣∥θ∥ <∞ (18)

SA3 The mean flow (11) is globally asymptotically stable,
with unique equilibrium θ∗.

Assumptions for convergence rates: The following is used
to obtain useful bounds on the rate of convergence, which
requires the existence of a linearization (at least in a neigh-
borhood of θ∗). Denote

A(θ) = ∂θ sf (θ) (19)

SA4 The derivative (19) is a bounded and continuous function
of θ, and A∗ :=A(θ∗) is a Hurwitz matrix (its eigenvalues lie
in the strict left hand plane).

Assumptions (SA1)–(SA3) imply that sf is globally Lip-
schitz continuous. Hence the only part of (SA4) that goes
beyond the previous assumptions is the Hurwitz condition.

These assumptions combined with theory in [36], [26] imply
convergence of {θn} to θ∗ almost surely from each initial
condition, provided one more property is established:

The parameter sequence {θn : n ≥ 0} is bounded
with probability one from each initial condition.

(20)

Lyapunov techniques provide a means of establishing (20):
(v4) For a globally Lipschitz continuous and C1 function
V : Rd → [1,∞), and a constant δv > 0,

d

dt
V (ϑt) ≤ −δvV (ϑt) , when ∥ϑt∥ ≥ δ−1

v . (21)

The designation “v4” comes from an analogous bound appear-
ing in stability theory of Markov chains [39].

An alternative that is often easily verified for RL algorithms
is the so-called Borkar-Meyn theorem of [13], [12].
ODE@∞ The time-homogeneous ODE d

dtx = sf∞(x) with
vector field,

sf∞(θ) := lim
r→∞

r−1
sf(rθ). (22)

We always have sf∞(0) = 0, which means that the origin is an
equilibrium for the ODE@∞. It is also radially homogeneous,
sf∞(rθ) = r sf∞(θ) for any θ ∈ Rd and r > 0. Based on these
properties it is known that local asymptotic stability of the
origin implies global exponential asymptotic stability [13].

Stability of the ODE@∞ is equivalent to (v4) whenever the
limit (22) exits for each θ.

It is shown in [13] that (20) holds provided the ODE@∞ is
locally asymptotically stable, and {∆n} appearing in (10b) is
a martingale difference sequence. This statistical assumption
does not hold in many applications of reinforcement learning.
Extensions of [13] are given in [9], [41], [10].

The article [10] and its followup [27] require minimal
assumptions on the Markov chain (there is no need for a finite
state space). While these papers consider exogenous noise, the
proof extends to the setting of this paper. See Appendix A for
explanation.

Theorem II.1. Suppose that (SA1) and (SA2) hold for the
SA recursion (10a), and in addition that the origin is locally
asymptotically stable for the ODE@∞, or that (v4) holds.
Then,

(i) The bound (20) holds in a strong sense: there is a fixed
constant BΘ such that for each initial condition (θ0,Φ0),

lim sup
n→∞

∥θn∥ ≤ BΘ a.s.. (23)

(ii) If in addition (SA3) holds then lim
n→∞

θn = θ∗ almost surely
from each initial condition. ■

Based on theory in [10] we can expect to also establish
mean-square convergence rates—part (iii) that follows is stated
as a conjecture at this stage. A functional Central Limit
Theorem is easily obtained under the assumptions of Thm. II.1
and also (SA4) [7], [12], implying that the limits in (24)
will hold under an Lp bound on {θ̃n/

√
αn : n ≥ 1} for

some p > 2, where the tilde denotes error: θ̃n = θn − θ∗,
θ̃PR
n = θPR

n − θ∗. An L4 bound is established in [10] for
exogenous noise.

(iii) Suppose that (SA1)–(SA4) hold, and that αn = gnρ,
n ≥ 1, with 1

2 < ρ < 1 and g > 0. We then have convergence
in mean square, and the following limits exist and are finite:

lim
n→∞

1

αn
E[θ̃nθ̃

⊺
n] = ΣΘ (24a)

lim
n→∞

nE[θ̃PR
n {θ̃PR

n }⊺] = ΣPR
Θ (24b)

The covariance matrix ΣPR
Θ is minimal in a matricial sense,

made precise in [43], [40]. It has the explicit form ΣPR
Θ =

GΣ∗
∆G

⊺ in which G = −(A∗)−1, and

Σ∗
∆ =

∞∑
k=−∞

E[∆∗
k{∆∗

k}⊺] (25)

where {∆∗
k := f(θ∗,Φθ

∗

k ) : k ∈ Z}, with Φθ∗ a stationary
version of the Markov chain on the two-sided time interval. An
alternative representation for Σ∗

∆ is contained in Appendix A.
In practice we rarely make use of these formulae: the

covariance matrix ΣPR
Θ can be estimated using the batch means

method, which requires performing many relatively short runs
with distinct initial conditions [2].

A criterion for stationary points The existence of a suitable
Lyapunov function implies the existence of a stationary point.

Proposition II.2 (Lyapunov Criterion for Existence of a
Stationary Point). For an ODE (11) with globally Lipschitz
continuous vector field, suppose there is a function V : Rd →
R+ with locally Lipschitz continuous gradient, satisfying for
some bII.2,

∇V (θ)⊺ sf(θ) ≤ −1 , whenever ∥θ∥ ≥ bII.2.

Suppose moreover that V is convex and coercive. Then there
exists a solution to sf(θ∗) = 0.

Proof. Let Lδ(θ) = θ + δ sf(θ) for θ ∈ Rd, with δ > 0 to be
chosen. For δ > 0 sufficiently small we construct a convex
and compact set Sδ for which Lδ(θ) ∈ Sδ for each θ ∈ Sδ .
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It follows from Brouwer’s fixed-point theorem that there is
a solution to Lδ(θ

∗) = θ∗. This is equivalent to the desired
conclusion sf(θ∗) = 0.

Denote bδ = sup{V (Lδ(θ)) : ∥θ∥ ≤ bII.2}, and Sδ =
{θ : V (θ) ≤ bδ}; a convex and compact set subject to the
assumptions on V .

We next show that Sδ is invariant under Lδ if δ is small.
We consider two cases, based on whether or not θ lies in the
set S = {θ : ∥θ∥ ≤ bII.2}
1. If θ ∈ Sδ ∩ S, then Lδ(θ) ∈ Sδ by construction of Sδ .
2. If θ ∈ Sδ \ S then we apply convexity combined with the
drift condition: denoting θ+ = Lδ(θ),

V (θ) ≥ V (θ+)+∇V (θ+)⊺(θ−θ+) = V (θ+)−δ∇V (θ+)⊺ sf(θ)

Since the gradient is locally Lipschitz continuous and sf is
globally Lipschitz continuous, there is bv satisfying

V (θ) ≥ V (θ+)− δ∇V (θ)⊺ sf(θ)− bvδ
2 , θ ∈ Sδ \ S

The value of bv can be chosen independent of δ ∈ (0, 1].
Under the assumed drift condition this gives V (θ+) ≤

V (θ)− δ + bvδ
2. Choosing δ = 1/bv gives V (θ+) ≤ V (θ) ≤

bδ , in which the second inequality holds because θ ∈ Sδ \ S.
Hence Lδ(θ) = θ+ ∈ Sδ as desired. ■

When stability of the mean flow cannot be established, sta-
bility can typically be assured using a matrix gain algorithm.
Zap stochastic approximation. This is a two time-scale
algorithm introduced in [20]. For initialization θ0 ∈ Rd, and
Â0 ∈ Rd×d, obtain the sequence of estimates {θn : n ≥ 0}
recursively:

θn+1 = θn − αn+1Â
−1
n+1f(θn ,Φn+1) (26a)

Ân+1 = Ân + βn+1[An+1 − Ân] , (26b)

with An+1 := ∂θfn+1(θn).
The two gain sequences {αn} and {βn} satisfy (14). This

ensures that the ODE approximation for the parameter esti-
mates is the Newton-Raphson flow d

dt
sf(ϑ) = − sf(ϑ). Hence

stability is assured if ∥ sf∥ is coercive [14].
The recursion (26b) requires modification for the appli-

cations considered here, in which the transition law for the
Markov chain depends on the parameter estimate. See discus-
sion surrounding eq. (51) in Section IV-D.

C. Compatible assumptions for Q-learning

The basic Q-learning algorithm (6a) is an instance of
stochastic approximation, for which we can apply general
theory subject to assumptions on the input used for training
(recall (7)). Two settings are considered:
Oblivious training This means that (7) simplifies to

Uk = ϕ(Xk, Ik) , k ≥ 0 , (27)

in which it is always assumed that {Ik} is i.i.d..
It follows that the pair process {(Xk, Uk) : k ≥ 0} is a

time homogeneous Markov chain. It is assumed to be uni-
chain (i.e., the invariant pmf π is unique). In the expression
fn+1(θn) = f(θn ,Φn+1) we take {Φk = (Xk;Xk+1;Uk) :

k ≥ 0}, which is also a time homogeneous Markov chain, for
which its invariant pmf is also unique and easily expressed in
terms of π and the controlled transition matrix.

If the function class is linear {Qθ = θ⊺ψ : θ ∈ Rd}, then
the autocorrelation matrix is assumed full rank

R0 = Eπ[ψ(Xn, Un)ψ(Xn, Un)
⊺] (28)

where the expectation is taken in steady-state
Optimistic training In this non-oblivious approach the input
sequence depends on the parameter sequence, and is designed
to approximate the Qθ-greedy policy ϕθ defined in (3).

There are only a finite number of deterministic stationary
policies, so ϕθ is necessarily discontinuous in θ. The region
on which continuity holds is denoted

CΘ =

{
θ ∈ Rd : there is ε > 0 s.t. ϕθ(x) = ϕθ

′
(x)

for all x when ∥θ − θ′∥ ≤ ε

}
(29)

The training policy is taken of the form,

Uk = (1−Bk)Uk +BkWk (30)

in which {Bk} is an i.i.d. Bernoulli sequence with P{Bk =
1} = ε, and {Wk} is an i.i.d. sequence taking values in U
and independent of {Bk}. The U-valued random variable Uk
depends on the parameter θk, and is independent of (Bk;Wk)
for each k.

The sequences {Uk,Uk : k ≥ 0} are defined by randomized
stationary policies {ϕ̃θ , ϕ̃θ0 : θ ∈ Rd}. Both ϕ̃θ( · | x) and
ϕ̃θ0( · | x) are pmfs on U for each x and θ. Based on the
assumptions imposed after (30), we have

P{Uk = u |F−
k ;Xk = x} = ϕ̃θk(u | x)
= (1− ε)ϕ̃θk0 (u | x) + ενW(u)

(31)

with νW the common pmf for {Wk}, and F−
k = σ{Xi, Ui :

i < k;Bi,Wi : i ≤ k} (a partial history of observations up to
iteration k).

Special cases are described in the following.
1. ε-greedy. The choice Uk = ϕθk(Xk), so that

ϕ̃θ0(u | x) = 1{u = ϕθ(x)} (32)

The mean flow has many attractive properties (see Prop. A.6
in the Appendix). However, because {ϕθ : θ ∈ Rd} is a
piecewise constant function of θ, it follows that the vector
field sf is not continuous in θ as required in Thm. II.1.
2. Gibbs approximation For fixed constant κ > 0 define

ϕ̃θ0(u | x) = 1

Zθ
κ(x)

exp
(
−κQθ(x, u)

)
(33)

in which Zθ
κ(x) is normalization. This is indeed an approxi-

mation of (32): for θ ∈ CΘ,

lim
r→∞

1

Zrθ
κ (x)

exp
(
−κQrθ(x, u)

)
= 1{u = ϕθ(x)} (34)

The limit (34) has two important implications. First is that
the vector field sf∞ for the ODE@∞ is unchanged whether we
consider (32) or its smooth approximation (33). Second is that
discontinuity of sf∞ implies that sf is not globally Lipschitz
continuous, which violates an assumption of Thm. II.1.
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3. Tamed Gibbs approximation This is a modification of
(33) in which κ depends on θ:

ϕ̃θ0(u | x) = 1

Zθ
κ(x)

exp
(
−κθQθ(x, u)

)
(35)

For analysis the following structure is helpful: choose a large
constant κ0 > 0, and assume that

κθ

{
= 1

∥θ∥κ0 ∥θ∥ ≥ 1

≥ 1
2κ0 else

(36)

This will be called the (ε, κ0)-tamed Gibbs policy when it is
necessary to make the policy parameters explicit.

The equality in (36) ensures the following holds for all x, u:

ϕ̃rθ(u | x) = ϕ̃θ(u | x) for all r ≥ 1 and ∥θ∥ ≥ 1. (37)

The Q-learning algorithm (6) can be cast as stochastic
approximation when the input is defined using any of the
training policies described above, in which we take Φn+1 =
(Xn, Xn+1, Un) since these three variables appear in (6).

It is assumed in Thm. II.1 that Φ is exogenous—its tran-
sition matrix does not depend on the parameter sequence.
Fortunately, there is now well developed theory that allows
for parameter-dependent dynamics for Φ in the SA recursion
(10a)—see the recent paper [56] for history and recent results.
In particular, theory of convergence and asymptotic statistics
is now mature.

The question is then, how can we apply SA theory to make
statements about convergence and convergence rates?

III. TROUBLE WITH TABULAR

We begin with a useful representation for the mean flow
vector field sf for Q-learning with linear function approxima-
tion (5), for arbitrary basis. The projected Bellman equation
(4) is the root finding problem, sf(θ∗) = 0.

To avoid long equations we adopt the shorthand notation,

fn+1(θn) = f(θn ,Φn+1)

cn = c(Xn, Un) , ψ(n) = ψ(Xn, Un) .
(38)

The eligibility vector in (6a) is then ζn = ψ(n).
If the parameter θ is frozen, so that Uk ∼ ϕ̃θ( · | Xk)

for each k, then the controlled state process Xθ is a time
homogeneous Markov chain with transition matrix,

Pθ(x, x
′) :=

∑
u

ϕ̃θ(u | x)Pu(x, x′) , x, x′ ∈ X . (39a)

The pair process {(Xk, Uk) : k ≥ 0} is also Markovian, with
transition matrix denoted

Tθ(z, z
′) := Pu(x, x

′)ϕ̃θ(u′ | x′) , (39b)

for each z = (x, u) , z′ = (x′, u′) ∈ X×U. It is assumed that
Tθ has a unique invariant pmf πθ.

Of course, the parameter θ is never frozen in any algorithm.
The transition matrices Pθ and Tθ are introduced for analysis.

Q-learning in the form (6a) is an instance of stochastic
approximation, with mean flow vector field,

sf(θ) = Eπθ
[ψ(n)B(Xn, Un; θ)] , (40a)

B(x, u; θ) = c(x, u)−Qθ(x, u)

+ γ
∑
x′

Pu(x, x
′)Qθ(x′) (40b)

An alternative formula is valuable for analysis.

Lemma III.1. The vector field (40a) may be expressed

sf(θ) = A(θ)θ − b(θ)

with A(θ) = −Eπθ

[
ψ(n){ψ(n) − γψθ(n+1)}

⊺
]

b(θ) = −Eπθ
[ψ(n)cn]

(41)

and ψθ(n+1) = ψ(Xn+1, u) with u = ϕθ(Xn+1).
The vector field sf is globally Lipschitz continuous when

using the training policy (31) with tamed Gibbs policy (35),
for any value of ε ∈ [0, 1] and κ > 0. ■

The representation (41) follows directly from (40b). Lips-
chitz continuity follows Lemma A.1 combined with Prop. A.2
(each postponed to the Appendix).

Note that ε = 1 corresponds to an oblivious policy, so the
lemma provides a large collection of policies for which sf fits
the standard SA theory. The tamed Gibbs policy is the only
choice among the optimistic training rules for which sf satisfies
the smoothness conditions required in Thm. II.1.

In the remainder of this section we restrict to oblivious
training. The main results of this paper in Section IV concern
optimistic training.

A. Tabular Q-learning, the good and the bad

In the tabular setting we take d = |X| × |U| in (5), and

ψi(x, u) = 1{(x, u) = (xi, ui)} , x ∈ X , u ∈ U (42)

where {(xi, ui) : 1 ≤ i ≤ d} is any ordering of state-action
pairs. Hence Qθn(xi, ui) = θn(i) for each n, i.

It is typical to use a diagonal matrix gain,

θn+1 = θn + αn+1GnDn+1ζn (43)

in which G−1
n (i, i) indicates the number of times the pair

(xi, ui) is visited up to time n (set to unity when this is zero).
The mean flow (11) associated with (43) is

d
dtϑt = A(ϑt)ϑt − b (44)

with b the d-dimensional vector with entries bi = −c(xi, ui),
and the matrix-valued function A is piecewise constant.

The good news: The statistical properties of the algorithm are
attractive because {∆n+1} appearing in (10b) is a martingale
difference sequence in the tabular setting.

The best news is stability: we have A(θ) = −[I − γM(θ)],
in which Mi,j(θ) = Pui(xi, xj)1{uj = ϕθ(xj)}. The induced
operator norm of M(θ) in ℓ∞ is no greater than one, meaning
maxi |

∑
jMi,j(θ)vj | ≤ ∥v∥∞ := maxi |vi| for any vector v
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Fig. 1. Evolution of the Q-function approximations for two values of discount
factor, and using an ε-greedy policy with common value of ε = 0.5.

and any θ. It follows that the ℓ∞ norm serves as a Lyapunov
function: Letting ϑ̃t = ϑt − θ∗ and V (θ) = ∥θ∥∞,

d
dtV (ϑt) ≤ −(1− γ)V (ϑt)

This is how convergence is established for tabular Q-learning.

The bad: The matrix A(q) has an eigenvalue at −(1 − γ)
for each θ, which is a reason for slow convergence when the
discount factor is close to unity. One consequence is that the
asymptotic covariance ΣΘ appearing in (24a) is not finite if
γ > 1/2 and the step-size sequence is αn = 1/n (see [20]
and the sample complexity analysis that followed in [52]).

B. Change your goals

A reader with experience in SA would counter that αn =
1/n is a poor choice of step-size. Use instead αn = 1/nρ, with
ρ ∈ ( 12 , 1), and then average using (12) to obtain {θPR

n }. It is
found that averaging fails for this example for large discount
factors, even though it is known that these estimates achieve
the optimal asymptotic covariance [37], [19], [18].

The observed numerical instability is a consequence of the
eigenvalue at −(1 − γ) for A∗ := A(θ∗) (recall (19)). The
eigenvalue can be moved through a change in objective. For
example, construct an algorithm that estimates the relative Q-
function,

H⋆(x, u) = Q⋆(x, u)− δ⟨ν, Q⋆⟩ (45)

where ν is a fixed pmf on X × U and δ > 0. Subtracting
a constant doesn’t change the minimizer over u, and has
enormous benefits.

The function H⋆ satisfies a DP equation which motivates
relative Q-learning. It is shown in [21] that the eigenvalues of
A∗ remain bounded away from the imaginary axis uniformly
for all 0 ≤ γ ≤ 1, resulting in much faster convergence. See
[37] for generalizations.

IV. STABILITY WITH OPTIMISM

The theory surveyed in the preceding section imposed
oblivious training. In the case of Watkins’ Q-learning this
assumption was imposed in part for historical reasons, though
we will see that the analysis is somewhat more complex
when we consider parameter dependent policies. The technical
challenges for Zap Q-learning are far more interesting because

-30

-20

-10

0

10 10210

0 2 4 6 8 10103

0.05 0.1 0.2

Fig. 2. Evolution of the Q-function approximations when using an ε-greedy
policy. Convergence holds when ε > 0 is sufficiently small.

the definition of the linearization A(θ) is not obvious. See the
conclusions for further discussion.

We begin with a motivating example.

A. Baird’s star example

We refer the reader to the source [4]—the final page
contains a full description of the model considered in the
experiments surveyed here. See [45] for a fuller discussion.

There are seven states X = {1, . . . , 7} and two actions U =
{0, 1}, in which Xk+1 = 7 with probability one whenever
Uk = 0. In [4] it is assumed the cost is identically zero. We
take c(x, u) = 0 if x ≤ 6 and c(7, u) = −10 (independent of
u). The Q-function is linearly parameterized with dimension
d = 14. With a well-motivated oblivious policy it was shown
that the parameter estimates diverge when the discount factor
is sufficiently large.

Fig. 1 shows trajectories from the Q-learning algorithm (6a)
with an ε-greedy policy using ε = 0.5. The ideal behavior is
that Qθn(x, u) → Q⋆(x, u) = −10/(1− γ) as n → ∞ when
(x, u) = (7, 0). The figure shows convergence when γ = 0.95,
but the parameters are divergent with discount factor γ = 0.99.

With the larger discount factor we obtain stability when
using a smaller value of ε > 0. Fig. 2 shows typical results
for three small values. The dashed line indicates Q⋆(7, 0).

The step-size sequence was taken to be αn = min(ᾱ, g/nρ)
using g = 1/(1− γ), ρ = 0.85, and ᾱ = 0.1 in each run. The
Matlab code is available on arXiv—see the Appendix of [38].

10-210

0

5

10

15

20

10-2 10-1 100

Fig. 3. The maximum eigenvalue of A∗ as a function of ε. The matrix is
Hurwitz for sufficiently small ε > 0, but some eigenvalues approach zero
with vanishing ε.

See Section III-B for an explanation for slow convergence
with a large discount factor, and [21] for explanation of
the choice g = 1/(1 − γ) based on consideration of the
linearization matrix A∗. Fig. 3 shows a plot of the maximum
real part of A∗ as a function of ε > 0, estimated via Monte-
Carlo. For larger values of ε > 0 we see that A∗ is not Hurwitz
for the three choices of discount factor. There is also trouble
for very small ε > 0: The discussion following Thm. II.1
suggests that the asymptotic covariance will be very large
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when max(Realλ(A∗)) is close to zero, but the covariance
Σ∗

∆ must also be considered to make any conclusions.

Applications to change detection Similar experiments were
conducted in [16] for application to quickest change detection.
Much like in Baird’s example it was found that ε-greedy
training was successful, but only for extremely small values
of ε > 0. Zap Q-learning was far more reliable over a large
range of ε ∈ (0, 1): testing revealed that the final parameter θ•

defining the policy was nearly optimal. However, the matrix
A(θ•) was not Hurwitz, which suggests that the standard
algorithm (6) is unable to recover θ•.

These findings illustrate that significant understanding of RL
theory is essential for practical success in many applications.

B. Sufficient optimism

The main result of this paper shows how exploration using a
policy of the form (30) encourages stability of the Q-learning
algorithm (6) with linear function approximation (5). Analysis
of (6) requires the family of autocorrelation matrices,

RΘ(θ) = Eπθ

[
ψ(Xn,ϕ

θ(Xn))ψ(Xn,ϕ
θ(Xn))

⊺
]

(46a)
RW(θ) = Eπθ

[
ψ(Xn,Wn)ψ(Xn,Wn)

⊺
]

(46b)

R(θ) = Eπθ
[ψ(n)ψ

⊺
(n)] = (1− ε)RΘ(θ) + εRW(θ) (46c)

The expectations are in steady-state, with stationary pmf
πθ induced by the randomized stationary policy with fixed
parameter.

A special case is considered in the assumptions, in which
we take ε = 1, and the randomized policy is then denoted
ϕ̃W , giving ϕ̃W( · | x) = νW(u) for all x, u. The (assumed
unique) invariant pmf is denoted πW , and the autocorrelation
matrix

RW = EπW

[
ψ(Xn,Wn)ψ(Xn,Wn)

⊺
]

using Uk = Wk for all k.
(46d)

We have RW > 0 in Baird’s star example whenever the
distribution of Wk is not degenerate.

The following assumptions are required in the main results
of this section:

The randomized policy ϕ̃W gives rise to an
aperiodic and uni-chain Markov chain, with unique
invariant pmf πW , and the autocorrelation matrix
RW defined in (46d) is positive definite.

(47a)

The inverse temperature κθ is twice continuously
differentiable (C2) in θ, and the first and second
derivatives of κθ are continuous and bounded.

(47b)

We also require small ε > 0 in specification of the policies.
Denote

εγ :=
(1− γ)2

(1− γ)2 + γ2
(48)

Theorem IV.1. Consider the Q-learning algorithm (6a) with
linear function approximation, and training policy (30) defined
using the tamed Gibbs policy (35). Suppose moreover that (47)
holds. Then, for any ε ∈ (0, εγ) there is κε,γ > 0 for which
the following hold using the (ε, κ0)-tamed Gibbs policy, using
κ0 ≥ κε,γ:

(i) The parameter estimates {θn} are bounded: there is a
fixed constant BΘ, independent of κ0 ≥ κε,γ , such that (23)
holds with probability one from each initial condition.

(ii) There exists at least one solution to the projected Bellman
equation (4).

See Section IV-C for an extension of (ii) to the ε-greedy
policy.

To see why (i) is plausible, consider an algorithm approx-
imating (6a), in which the minimum defining Qθn(Xn+1) is
replaced by substitution of the input used for training:

θn+1 = θn + αn+1D̃n+1ζn .

D̃n+1 = cn −Qθn(Xn, Un) + γQθn(Xn+1, U
−
n+1)

(49)

in which U−
n+1 is obtained by sampling from ϕ̃θ( · | x) using

x = Xn+1 and θ = θn. The recursion (49) is a variant of the
SARSA algorithm [42], [45].

Stability of the ODE@∞ is then relatively easy, from which
we obtain the following:

Proposition IV.2. Consider the recursion (49) with linear
function approximation, and training policy (30) defined as
the (ε, κ0)-tamed Gibbs policy (35) with ε ∈ (0, 1) and
κ0 > 0. Suppose moreover that (47) holds. Then, we obtain
the conclusions of Thm. IV.1:

(i) The parameter estimates {θn} are bounded with proba-
bility one from each initial condition.

(ii) There exists at least one solution θ∗ to sf(θ∗) = 0, with
sf the mean flow for (49).

The proof of Thm. IV.1 is postponed to the Appendix—we
proceed here with the proof of Prop. IV.2.

To begin, suppose that U−
n+1 is replaced by Un+1 in (49).

This does not lead to a practical algorithm, since D̃n+1

would then depend on θn+1, but it may be regarded as an
approximation since θn+1 ≈ θn. The approximation leads to
a recursion similar to the TD(0) learning algorithm:

θn+1 = θn + αn+1

[
ψ(n)cn − ψ(n){ψ(n) − γψ(n+1)}⊺θn

]
This motivates consideration of the family of autocorrelation
matrices Rk(θ) = Eπθ

[ψ(n+k)ψ
⊺
(n)] for n, k ≥ 0, so that

R0(θ) = R(θ) in the notation (46c).
The vector field for the mean flow associated with (49) is

Lipschitz continuous and has an attractive form in terms of
the vector and matrix valued functions,

b(θ) = −Eπθ
[ψ(n)cn] , A(θ) = −R0(θ) + γR−1(θ)

Lemma IV.3. Under the assumptions of Prop. IV.2 the fol-
lowing hold for (49):

(i) The vector field for the mean flow is sf(θ) = A(θ)θ−b(θ).
(ii) The limit defining sf∞ in (22) exists and may be expressed
sf∞(θ) = A∞(θ)θ where A∞(θ) = A(θ/∥θ∥) for θ ̸= 0.

Proof. Identification of sf follows immediately from (49) since
θ is held fixed in the definition of the mean flow. The
representation of the ODE@∞ follows from structure of the



9

policy highlighted in (37), which implies the following for all
r ≥ 1 and θ ∈ Rd satisfying ∥θ∥ ≥ 1:

πrθ = πθ , A(rθ) = A(θ) , and b(rθ) = b(θ)

■

Lemma IV.4. Suppose that (47a) holds. Then, for the recur-
sion (49) there exists δψ > 0, independent of θ such that

R0(θ) ≥ δψI for all θ ∈ Rd

θ⊺A(θ)θ ≤ −(1− γ)δψ for all θ ∈ Rd, ∥θ∥ ≥ 1.

Proof. The proof of the lower bound on R0(θ) is iden-
tical to the proof of Lemma A.3 in the Appendix. From
Lemma IV.3 (i) we have for θ ∈ Rd satisfying ∥θ∥ ≥ 1,

θ⊺A(θ)θ = −θ⊺R0(θ)θ + γθ⊺R−1(θ)θ

≤ −(1− γ)θ⊺R0(θ)θ ≤ −(1− γ)δψ∥θ∥2

■

Proof of Prop. IV.2. Let V1(θ) = 1
2∥θ∥

2 and apply Lem-
mas IV.3 and IV.4 to obtain, whenever ∥ϑt∥ ≥ 1,

d
dtV1(ϑt) = ϑ⊺t

sf(ϑt) = ϑ⊺t {A(ϑt)ϑt − b(ϑt)}
≤ −δ1∥ϑt∥2 + ∥ϑt∥∥b(ϑt)∥

with δ1 = (1− γ)δψ . This gives, with b = supθ ∥b(θ)∥ <∞,
d
dtV1(ϑt) ≤ − 1

2δ1∥ϑt∥
2 , ∥ϑt∥ ≥ max(1, 2b)

We then obtain (v4) using V (θ) =
√
V (θ) = ∥θ∥ for

∥θ∥ ≥ max(1, 2b) (modified in a neighborhood of the origin
to impose the C1 condition):

d
dtV (ϑt) ≤ −δvV (ϑt) , ∥ϑt∥ ≥ max(1, 2b) ,

with δv = δ1/4. Part (i) then follows from Thm. II.1 (i) and
part (ii) from Prop. II.2. ■

C. Implications to the ε-greedy policy

A full analysis of Q-learning using the ε-greedy policy for
training is beyond the scope of this paper due to discontinuity
of the vector field. We find here that Thm. IV.1 admits a partial
extension.

We consider here the mean flow (40a), and also the algo-
rithm with matrix gain, whose mean flow vector field is

f̄ zap(θ) = −[A(θ)]−1
sf(θ) = −θ + [A(θ)]−1b(θ) , θ ∈ CΘ

This defines the dynamics expected when using Zap Q-
learning based on (26).

The set CΘ in (29) may be expressed as the disjoint union,

CΘ =
⋃
i

CΘ

i

in which each CΘ
i is an open convex polyhedron, with ϕθ =

ϕθ
′

for all θ, θ′ ∈ CΘ
i . Consequently, both sf and f̄ zap are

constant on each set CΘ
i .

For each θ ∈ Rd, denote by Φθ the set of all randomized
Qθ-greedy policies: if ϕ̃ ∈ Φθ then∑

u

ϕ̃(u | x)Qθ(x, u) = Qθ(x) , x ∈ X .

If θ ∈ CΘ then Φθ = {ϕθ} is a singleton.

Theorem IV.5. Suppose that (47a) holds. Then, the follow-
ing hold for the mean flows associated with the Q-learning
algorithm with ε-greedy training, provided 0 < ε < εγ:

(i) There exists θ∗ ∈ Rd and ϕ̃∗ ∈ Φθ∗ such that sf(θ∗) = 0,
with sf defined in (40a) in which the expectation is taken in
steady-state using πθ∗ obtained from the randomized policy,

ϕ̃θ
∗
(u | x) = (1− ε)ϕ̃∗(u | x) + ενW(u) (50)

(ii) If θ∗ ∈ CΘ then θ∗ is locally asymptotically stable for the
mean flow with vector field sf .

(iii) If θ∗ ∈ CΘ
i for some i, then θ∗ is locally asymptotically

stable for the mean flow with vector field f̄ zap, with domain
of attraction including all of CΘ

i .

Proof. The proof of (i) is contained in Appendix E.
If sf(θ∗) = 0 with θ∗ ∈ CΘ, it then follows from the

definition of the vector field that θ∗ = [A(θ∗)]−1b(θ∗).
Consequently, for θ in a neighborhood of θ∗ contained in CΘ,

sf(θ) = A(θ∗)
(
θ − θ∗

)
See Prop. A.6 for a proof that A(θ∗) is Hurwitz, so that θ∗ is
locally asymptotically stable as claimed in (ii).

We have under the assumptions of (iii),

f̄ zap(θ) = −θ + θ∗ , θ ∈ CΘ

i

If ϑ0 ∈ CΘ
i it follows that the solution to d

dtϑt = f̄ zap(ϑt) is
given by ϑt = θ∗+[ϑt−θ∗]e−t. Convexity of CΘ

i ensures that
ϑt ∈ CΘ

i for all t, which completes the proof of (iii). ■

D. Extensions from the basic algorithm

Theory for the basic Q-learning algorithm will have impli-
cations to other algorithms:

Stochastic Gradient Descent (SGD) The mean flow for
the GQ learning algorithm of [31] can be expressed d

dtϑt =
−∇θL (ϑt), with L(θ) = sf(θ)⊺Z sf(θ) and Z positive definite.
The theory in the present paper provides sufficient conditions
under which the non-singularity condition (L3) of [31] holds,
and most important is the new finding that minθ L(θ) = 0.

A numerical challenge with GQ learning or gradient descent
[4], [3] is that the condition number of the linearization is
squared. In particular, for GQ-learning the linearization is
expressed d

dt ϑ̃t ≈ −[∇2
θL (θ∗)]ϑ̃t, and λmin(∇2

θL (θ∗)) =
O(|1 − γ|2). Hence some of the bad news reviewed in
Section III-A is exacerbated using these SGD methods.

Relative Q-learning The mean flow vector field for this
algorithm is a modification of (41): sf(θ) = [A(θ)−Z]θ−b(θ),
in which Z is a rank one matrix chosen by the user (the specific
form follows from (45)). [37, Proposition 9.23] (adapted from
[21]) tells us that that the maximum eigenvalue of A∗ remains
bounded away from 0 for relative Q-learning in the tabular
setting. It is conjectured that Thm. IV.1 can be extended to
these algorithms, with εγ sufficiently small, but independent
of the discount factor γ ∈ (0, 1). This may require a fresh
look at the choice of Z.
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Regularization Similar to relative Q-learning, in the regu-
larized Q-learning algorithm of [29] the mean flow becomes
sf(θ) = [A(θ) − Z]θ − b(θ). It is possible that the conditions
on Z for convergence may be relaxed based on the theory in
this paper.

Double Q-learning Stability has been established in the
tabular setting [23]. The algorithm with linear function ap-
proximation has a 2d-dimensional mean flow whose state
ϑt = [ϑAt ; ϑ

B
t ] satisfies the mean-flow equations

d
dtϑt =

[
−R(ϑt) γMB(ϑt)
γMA(ϑt) −R(ϑt)

]
ϑt −

[
b(ϑt)
b(ϑt)

]
with b defined in (41), where θ = [θA; θB ] ∈ R2d in the
definition of πθ. The matrix R is unchanged from (46c), and

Mq(θ) = Eπθ

[
ψ(n)ψ

θq

(n+1)}
⊺
]
, q = A,B .

It is not clear how to establish stability of the mean flow using
the techniques of this paper: the intuition following Prop. IV.2
is valid only if (following a transient) each of the policies
ϕϑA

t , ϕϑB
t approximates the ε-greedy policy for each of the

two Q-function approximations.

Zap Q-learning Success requires that ∂θ sf (θ) be non-singular
for “most” θ. Based on theory surrounding the Actor-Critic
method, we have for a policy of the form (31),

∂θ sf (θ) = A0(θ) + Z(θ) , (51)

A0(θ) := Eπθ
[∂θfn+1 (θ)] and Z(θ) := Eπθ

[f̂n (θ)Λn(θ)
⊺].

The random vectors in these definitions are:

• fn+1 is given in (38).

• Λn(θ) = ∇θ log ϕ̃
θ(u | x), evaluated at u = Un and x =

Xn, the score function associated with the randomized policy.

• f̂n solves a certain Poisson equation. If the transition matrix
Tθ is aperiodic, then for a stationary realization of {Xn, Un :
n ≥ 0} we have

Eπθ
[f̂n(θ)Λn(θ)

⊺] =
∞∑
k=0

Eπθ
[[fn−k(θ)− sf(θ)]Λn(θ)

⊺]

Based on this representation we can obtain unbiased estimates
of ∂θ sf (θn) by adopting concepts from actor-critic algorithms.
See [37, Ch. 10] for a survey in the style of this paper.

Analysis of the resulting algorithms will be considered
in future research. The most likely path to success is to
establish that the matrix norm of Z(θ) is uniformly small,
since approximations in this paper imply that A0 has desirable
properties.

V. CONCLUSIONS

In the vast majority of application-oriented papers on rein-
forcement learning the policy used for training is not oblivious.
Motivation for ε-greedy policies and their variants comes
largely from the belief that optimism will lead to faster
training. This paper makes clear that optimism is invaluable
to ensure algorithmic stability.

There are of course a myriad of open questions.

• Can we obtain sharp bounds establishing that optimism
leads to better sample complexity bounds (or perhaps better
bounds on the asymptotic covariance)? The results in this
paper combined with [15] might provide a first step. Ideally we
want bounds sharp enough to inform the choice of ε, and for
this it is likely best to begin with examination of asymptotic
statistics.
• There is a large literature on SA with discontinuous
dynamics, such as [6], [11]. It may be possible to extend
Thm. IV.1 to ε-greedy policies (going beyond Thm. IV.5).
• Extension to average cost optimal control is straightforward
through consideration of [1], as well as extension to relative
Q-learning [21], [37].
• We should consider other paradigms for algorithm design.
The recent approaches [34], [5], [30] are based on the linear
programming formulation of optimal control, and are likely to
lead to algorithms that respect desired performance bounds.

APPENDIX

This Appendix contains proofs of the main technical results
concerning Q-learning subject to the linear function class
assumption (5) and optimistic training. We begin with some
general SA theory.

A. Stochastic approximation theory

Convergence theory begins with a decomposition of the
“disturbance” appearing in (10b):

∆n+1 = Wn+2 − Tn+2 + Tn+1 − αn+1Υn+2 . (52)

Under the assumptions of [10], the dominating term in analysis
is {Wn+2}, which is a martingale difference sequence. The
sequence {−Tn+2+Tn+1} is telescoping so is insignificant in
an ODE approximation. The sequence {αn+1Υn+2} is small
relative to the parameter sequence.

Lemma A.1 that follows provides bounds on the terms on
the right hand side of (52) that are identical to those used in
[10] to obtain the conclusions of Thm. II.1 and finer results.
Consequently, the proof of Thm. II.1 is obtained by following
identical steps in this prior work.

Moreover, if the limits in (24) hold, then the covariance
matrix (25) admits the alternate representation

Σ∗
∆ = E[W∗

k{W∗
k}⊺]

in which {W∗
k : k ∈ Z} is a stationary version of the

martingale difference sequence obtained from a stationary
realization of Φθ∗ .

The terms in (52) admit representations in terms of a family
of solutions to Poisson’s equation, following [36]. For each
θ, one version of the fundamental matrix associated with Pθ
is the matrix inverse Zθ = [I − P̃θ]−1, where P̃θ(ξ, ξ′) :=
Pθ(ξ, ξ′) − ϖθ(ξ

′) for each ξ, ξ′. Under (SA2) this may be
expressed as the sum, Zθ =

∑∞
n=0 P̃nθ . Writing f̂(θ, ξ) =∑

ξ′ Zθ(ξ, ξ′)f(θ, ξ) and ∆(θ, ξ) :=f(θ, ξ)− sf(θ), the desired
Poisson equation is solved:∑

ξ′

Pθ(ξ, ξ′)f̂(θ, ξ′) = f̂(θ, ξ)− ∆(θ, ξ)
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Lemma A.1. Under the assumptions of Thm. II.1,

sup
θ

∥∥∂θi sf (θ)
∥∥ <∞ sup

ξ,θ

∥∥∂θi sf (θ, ξ)
∥∥ <∞ (53)

Moreover, (52) holds with

Wn+2 := f̂(θn,Φn+2)− E[f̂(θn,Φn+2) | Fn+1],

Tn+1 := f̂(θn,Φn+1),

Υn+2 :=− 1

αn+1

[
f̂(θn+1,Φn+2)− f̂(θn,Φn+2)

] (54)

Proof. The decomposition with terms in (54) is obtained
exactly as in [10, Section 2] following [36], so it remains
to establish the bounds on sf and f̂ in (53).

Assumption (SA2) is a uniform Doeblin condition that
implies ∥Zθ∥ is uniformly bounded in θ [39]. Write the
invariance equation in operator theoretic notation ϖθPθ = ϖθ.
On differentiating both sides we obtain the sensitivity formula
of [44]: ∂θiϖθ = ϖθ[∂θiPθ]Zθ. Consequently, the invariant
pmf ϖθ enjoys the same smoothness properties as Pθ, giving
supξ,θ,i |∂θiϖθ(ξ)|∥θ∥ <∞. This and (SA1) imply the bound
on ∂θi sf (θ) in (53).

The bound for the solution to Poisson’s equation follows
from the identity ∂θiZθ = Zθ

[
∂θiP̃θ

]
Zθ. This combined with

(SA1), (SA2) completes the proof of (53). ■

In the following we explain why the SA assumptions hold
for Q-learning under the training policies of interest.

B. Validating SA assumptions for Q-learning

The proof of the following is postponed to the end of this
subsection:

Proposition A.2. Under the assumptions of Thm. IV.1 the Q-
learning algorithm satisfies Assumptions (SA1) and (SA2) with
parameter-dependent noise Φk = (Xk, Ik, Dk).

Consider the oblivious policy defined by Uk ≡ Wk in the
definition of RW in (46d). The transition matrix for the joint
process {(Xk, Uk) : k ≥ 0} can be obtained from (39b):

TW(z, z′) = Pu(x, x
′)νW(u′) ,

for any z = (x, u) , z′ = (x′, u′) ∈ X × U. The invariance
equation πW(z′) =

∑
z πW(z)TW(z, z′) implies that the

invariant pmf is product form:

πW(z′) = µW(x′)νW(u′) , z′ = (x′, u′) ∈ X× U .

in which µW(x′) =
∑
u πW(x′, u) is the steady-state marginal

distribution of X under this policy.
Similar notation is adopted for each of the invariant pmfs,

µθ(x) =
∑
u

πθ(x, u) , x ∈ X , θ ∈ Rd .

These are the invariant pmfs for the transition matrices {Pθ}.
Recall that these transition matrices and {Tθ} are defined in
(39).

Let X0 denote the support of µW and U0 the support of νW .

Lemma A.3. Suppose that (47a) holds, so that πW is the
unique invariant pmf. Consider any one of the three choices

of {Uk} used in (30) with ε < 1 and any choice of κ in
the case of (33) or {κθ} in the case of (35). The following
conclusions then hold:
(i) Tθ is aperiodic, and for some N ≥ 1, δT > 0,

N∑
k=1

T kθ (z, z
′) ≥ δT , z ∈ X× U, z′ ∈ X0 × U0, θ ∈ Rd.

(ii) There is δ• > 0 such that πθ(z) ≥ δ•πW(z) for all z, θ.
(iii) πθ(x, u) ≥ εµθ(x)νW(u) for all x, u, θ.
(iv) RW(θ) ≥ δ•R

W for all θ.
The constants δT , δ• may depend on the policy parameters,

but not θ.

Proof. In view of (30) we have the bound T kθ (z, z
′) ≥

εkT kW(z, z′) for any k. Hence aperiodicity of Tθ follows from
the assumed aperiodicity of TW .

The lower bound in (i) holds for the oblivious policy under
(47a): there is N ≥ 1 and δW > 0 such that

N∑
k=1

T kW(z, z′) ≥ δW , for z ∈ X× U, z′ ∈ X0 × U0.

This implies the desired lower bound in (i) with δT = εNδW .
Part (ii) follows from the bounds above and invariance:

πθ(z
′) =

∑
z

πθ(z)
( 1

N

N∑
k=1

T kθ (z, z
′)
)
≥ 1

N
δT

Part (iii) also follows from invariance in the following one-
step form: we have from (39b),

πθ(z
′) =

∑
z

πθ(z)Tθ(z, z
′)

=
∑
x,u

πθ(x, u)Pu(x, x
′)ϕ̃θ(u′ | x′)

≥ ε
∑
x,u

πθ(x, u)Pu(x, x
′)νW(u′) = εµθ(x

′)νW(u′)

The inequality follows from the bound ϕ̃θ(u′ | x′) ≥ ενW(u′).
For part (iv), we begin with the definitions (46), giving

RW(θ) =
∑
x,u

µθ(x)νW(u)ψ(x, u)ψ(x, u)⊺

Applying (ii) gives µθ(x) ≥ δ•µW(x) for all x, and hence the
desired bound:

RW(θ) ≥ δ•
∑
x,u

µW(x)νW(u)ψ(x, u)ψ(x, u)⊺ = δ•R
W

■

Proof of Prop. A.2. Assumption (SA1) is follows directly
from the form of the recursion (6a), which gives f(θ, ξ) =
ψ(x, u)[c(x, u) + γminu′{ψ(x′, u′)⊺θ}], in which x, u, x′ is
a function of ξ = (x; ι; δ).

Part (i) of (SA2) follows directly from Lemma A.3. It
remains to establish (ii).

For this we apply (15) and (39a), which imply it is enough
to show that a similar bound holds for the policy:

sup
u,x,θ

∣∣∂θiϕ̃θ(u | x)
∣∣∥θ∥ <∞
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This follows from the construction, giving ϕ̃θ = ϕ̃rθ for each
r ≥ 1 and parameter satisfying ∥θ∥ ≥ 1. ■

C. Mean flow for the ε-greedy policy

In this subsection the input is chosen to be the ε-greedy
policy (30). The motivation is in part the fact that establishing
stability of the ODE@∞ in this case is far easier than the
tamed Gibbs approximation.

The transition matrix (39b) becomes

Tθ(z, z
′) = Pu(x, x

′)
{
(1−ε)1{u′ = ϕθ(x′)}+ενW(u′)

}
(55)

for z = (x, u), z′ = (x′, u′) ∈ X × U. The family {Tθ :
θ ∈ Rd} is finite because there are only a finite number of
deterministic stationary policies; it takes on a constant value
on each connected component of CΘ (recall (29)).

Compact representations of f and sf are obtained with
additional notation. For n ≥ 0 denote

ψΘ

(n) = ψ(Xn,ϕ
θn(Xn)) ψW

(n) = ψ(Xn,Wn)

cΘn = c(Xn,ϕ
θn(Xn)) cWn = c(Xn,Wn)

(56)

We have under the ε-greedy policy (30, 32),

fn+1(θn) = (1−Bn)
(
cΘn +

[
γψΘ

(n+1) − ψΘ

(n)

]⊺
θn

)
ψΘ

(n)

+Bn
(
cWn +

[
γψΘ

(n+1) − ψW
n

]⊺
θn

)
ψW
(n)

(57)

Lemma A.4. Eπθ

[
ψ(n){ψΘ

(n+1)}
⊺
]
= R−1(θ) + εD(θ), in

which
D(θ) = Eπθ

[
ψ(n){ψΘ

(n+1) − ψW
(n+1)}

⊺
]

(58)

Proof. Starting with the definition

R−1(θ) = Eπθ

[
ψ(n){ψ(n+1)}⊺

]
we have under the ε-greedy policy, R−1(θ) =

(1− ε)Eπθ

[
ψ(n){ψΘ

(n+1)}
⊺
]
+ εEπθ

[
ψ(n){ψW

(n+1)}
⊺
]

= Eπθ

[
ψ(n){ψΘ

(n+1)}
⊺
]
+ εEπθ

[
ψ(n){ψW

(n+1) − ψΘ

(n+1)}
⊺
]
■

Lemma A.5. The vector fields for the mean flow and the
ODE@∞ for the ε-greedy policy are

sf(θ) = A(θ)θ − b(θ) sf∞(θ) = A(θ)θ (59a)

in which A(θ) = −
[
R0(θ)− γR−1(θ)

]
+ εγD(θ) (59b)

b(θ) = (1− ε)bΘ(θ) + εbW(θ) (59c)

bΘ(θ) = −Eπθ
[ψΘ

(n)c
Θ
n] and bW(θ) = −Eπθ

[ψW
(n)c(Xn,Wn)].

Proof. The representation (57) is equivalently expressed
fn+1(θn) = An+1θn − bn+1, in which

An+1 = ψ(n)

[
γψΘ

(n+1) − ψ(n)

]⊺
bn+1 = (1−Bn)ψ

Θ

(n)c(Xn,ϕ
θ(Xn)) +Bnψ

W
(n)c(Xn,Wn)

The expression for b(θ) in the expression sf(θ) =
Eπθ

[fn+1(θ)] = A(θ)θ − b(θ) is immediate.
We have A(θ) = −R0(θ) + γEπθ

[
ψ(n){ψΘ

(n+1)}
⊺
]
, so that

(59b) follows from Lemma A.4.
The expression for sf∞ follows from the fact that A and b are

invariant under positive scaling of their arguments: A(rθ) =
A(θ) and b(rθ) = b(θ) for any θ and r > 0. ■

The mean flow (11) is a differential inclusion because the
vector field sf is not continuous.

The form of the expression for A(θ) in (59b) is intended to
evoke the similar formula (IV.3) obtained for (49).

The following conclusions are based on arguments similar
to what is used to obtain stability of on-policy TD-learning
[50]. Recall the definition (48): εγ :=(1−γ)2/[(1−γ)2+γ2].

Proposition A.6. If ε < εγ , then there is βε > 0 such that
v⊺A(θ)v ≤ −βε∥v∥2 for each v, θ ∈ Rd.

Proof. Applying Lemma A.5 gives for any v, θ,

v⊺A(θ)v ≤ −(1− γ)v⊺R0(θ)v + εγv⊺D(θ)v (60)

The inequality follows from the bound v⊺Rk(θ)v ≤
v⊺R0(θ)v, valid for any k.

We are left to bound the term involving D. Write
v⊺D(θ)v = dΘ

v (θ)− dW
v (θ) with

dΘ

v (θ) = Eπθ

[
(v⊺ψ(n))(v

⊺ψΘ

(n+1))
]

dW
v (θ) = Eπθ

[
(v⊺ψ(n))(v

⊺ψW
(n+1))

]
Using the bound xy ≤ 1

2 [x
2 + y2] for x, y ∈ R, we obtain for

any δW , δΘ > 0,∣∣dΘ

v (θ)
∣∣ ≤ 1

2δ
−1
Θ v⊺R0(θ)v +

1
2δΘv

⊺RΘ

0 (θ)v∣∣dW
v (θ)

∣∣ ≤ 1
2δ

−1
W v⊺R0(θ)v +

1
2δWv

⊺RW
0 (θ)v

Recall from (46c) that R0(θ) = (1− ε)RΘ
0 (θ) + εRW

0 (θ). Set
δW = εη, δΘ = (1− ε)η, with η > 0 to be chosen. Then,

v⊺D(θ)v ≤ 1
2

[(
δ−1
W + δ−1

Θ

)
v⊺R0(θ)v

+ δΘv
⊺RΘ

0 (θ)v + δWv
⊺RW

0 (θ)v
]

= 1
2

[(1
ε
+

1

1− ε

)1
η
+ η

]
v⊺R0(θ)v

The value η∗ε =
√
ε−1 + (1− ε)−1 minimizes the right hand

side, and on substitution, v⊺D(θ)v ≤ η∗ε v
⊺R0(θ)v.

Substitution into (60) gives the final bound,

v⊺A(θ)v ≤
[
−(1− γ) + εγη∗ε

]
v⊺R0(θ)v

The coefficient is negative for positive ε if and only if ε < εγ .
We obtain the desired bound with

βε =
[
(1− γ)− εγη∗ε

]
min
θ
λmin(R0(θ))

Lemma A.3 implies that the minimum is strictly positive. ■

The extension of Prop. A.6 to the tamed Gibbs policy
requires approximations summarized in the next subsection.

D. Entropy and Gibbs bounds

Consider a single Gibbs pmf on U with energy E : U → R
and inverse temperature κ > 0:

pκ(u) =
1

Zκ
exp(−κE(u)) , u ∈ U ,

The normalizing factor Zκ is known as the partition function.
The entropy of pκ is denoted

Hκ = −
∑
u

pκ(u) log(pκ(u)) =
∑
u

pκ(u)
[
κE(u)+log(Zκ)

]
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Bounds on entropy imply bounds on the quality of the
softmin approximation. Denote E := minuE(u).

Lemma A.7. For any κ > 0,

E ≤
∑
u

pκ(u)E(u) ≤ E +
1

κ
log(|U|)

Proof. The uniform distribution maximizes entropy, giving∑
u

pκ(u)
[
κE(u) + log(Zκ)

]
≤ log(|U|)

The bound log(Zκ) = log
∑
u exp(−κE(u)) ≥ −κE com-

pletes the proof. ■

An implication of the lemma to the policy (35): for any
initial distribution for (X0, U0),

Qθ(Xk+1) ≤ E
[
Qθ(Xk+1,Uk+1) | Xk+1

0 , Uk0
]

≤ Qθ(Xk+1) +
1

κθ
log(|U|) , k ≥ 0 .

(61)

E. Proof of Thms. IV.1 and IV.5

The proof of Thm. IV.1 closely follows the proof of
Prop. A.6. We begin a companion to Lemma A.4:

Lemma A.8. We have for the (ε, κ0)-tamed Gibbs policy,

Eπθ

[
ψ(n){ψΘ

(n+1)}
⊺
]
= R−1(θ) + εD(θ) + (1− ε)E(θ)

(62a)

in which D(θ) = Eπθ

[
ψ(n){ψΘ

(n+1) − ψW
(n+1)}

⊺
]

(62b)

E(θ) = Eπθ

[
ψ(n){ψΘ

(n+1) − ψU
(n+1)}

⊺
]

(62c)

with ψU
(n+1) = ψ(Xn+1,Un+1).

We have a partial extension of Prop. A.6:

Lemma A.9. The following holds for the (ε, κ0)-tamed Gibbs
policy, subject to (47) and ε < εγ: there is βε > 0 such that
θ⊺A(θ)θ ≤ −βε∥θ∥2 for all κ0 > 0 sufficiently large, and all
∥θ∥ ≥ 1.

Proof. Applying Lemma A.8 to (41), and following the same
steps as in the proof of Prop. A.6 we obtain

θ⊺A(θ)θ ≤ −β0
ε θ

⊺R0(θ)θ + γ(1− ε)θ⊺E(θ)θ

with β0
ε =

[
(1− γ)− εγη∗ε

]
> 0

η∗ε =
√
ε−1 + (1− ε)−1

From the definition (62c) we have

θ⊺E(θ)θ = Eπθ

[
Qθ(Xn, Un){Qθ(Xn+1)−Qθ(Xn+1,Un+1)}

]
Applying (61) and the expression for κθ in (36), we obtain
for ∥θ∥ ≥ 1,∣∣θ⊺E(θ)θ

∣∣ ≤ 1

κ0
∥θ∥ log(|U|)Eπθ

[∣∣Qθ(Xn, Un)
∣∣]

≤ 1

κ0
∥θ∥2 log(|U|)

√
λmax

with λmax the maximum over all θ of the maximum eigenvalue
of R0(θ). Combining these bounds completes the proof. ■

Proof of Thm. IV.1. Precisely as in the proof of Prop. IV.2 we
obtain a solution to (v4) using V (θ) = ∥θ∥ (recall (21)), which
implies (23) exactly as in the case when Φ is exogenous.

The existence of θ∗ follows from Prop. II.2, exactly as in
the proof in Prop. IV.2 ■

Proof of Thm. IV.5. Let θκ0 denote the solution to the pro-
jected Bellman equation for the (ε, κ0)-tamed Gibbs policy,
in which ε < εγ is fixed.

Observe that in Lemma A.9 we obtain a uniform bound
over all large κ0. An examination of the proof of Prop. II.2
shows that there is a constant bε such that ∥θκ0∥ ≤ bε for all
sufficiently large κ0.

Hence we can find a subsequence κn0 → ∞ as n→ ∞, for
which the following limits exist:

θ∗ = lim
n→∞

θκ
n
0 , π∗ = lim

n→∞
πn ,

in which πn is the invariant pmf obtained from the policy
using θκ

n
0 .

The invariant pmfs have the form

πn(x, u) = µn(x)ϕ̃
n(u | x)

with ϕ̃n defined in (35) using κn0 , and µn the first marginal
of πn. It follows that the limiting invariant pmf has the same
structure, π∗(x, u) = µ∗(x)ϕ̃θ

∗
(u | x). Since κn0 ↑ ∞, con-

vergence implies that ϕ̃θ
∗

is of the form (50) with ϕ̃∗ ∈ Φθ∗ .
Letting sfn denote the vector field obtained using θκ

n
0 we

must have convergence for each θ:

sf(θ) = lim
n→∞

sfn(θ) = Eπ∗ [ψ(n)B(Xn, Un; θ)] ,

in which Un is defined using the randomized ε-greedy policy
ϕ̃θ

∗
, and B defined in (40b) is a continuous function of θ.

Since sfn(θn) = 0 for each n, we conclude that sf(θ∗) = 0 as
desired. ■
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