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Abstract

We analyze the convergence properties of Fermat distances, a family of density-driven
metrics defined on Riemannian manifolds with an associated probability measure. Fermat
distances may be defined either on discrete samples from the underlying measure, in which
case they are random, or in the continuum setting, where they are induced by geodesics
under a density-distorted Riemannian metric. We prove that discrete, sample-based Fermat
distances converge to their continuum analogues in small neighborhoods with a precise rate
that depends on the intrinsic dimensionality of the data and the parameter governing the
extent of density weighting in Fermat distances. This is done by leveraging novel geometric
and statistical arguments in percolation theory that allow for non-uniform densities and
curved domains. Our results are then used to prove that discrete graph Laplacians based on
discrete, sample-driven Fermat distances converge to corresponding continuum operators.
In particular, we show the discrete eigenvalues and eigenvectors converge to their continuum
analogues at a dimension-dependent rate, which allows us to interpret the efficacy of discrete
spectral clustering using Fermat distances in terms of the resulting continuum limit. The
perspective afforded by our discrete-to-continuum Fermat distance analysis leads to new
clustering algorithms for data and related insights into efficient computations associated
to density-driven spectral clustering. Our theoretical analysis is supported with numerical
simulations and experiments on synthetic and real image data.
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1. Introduction

Data-driven metrics and related dimensionality reduction methods are a widely used tool
in statistics, data science, and machine learning for analyzing point cloud data X ⊂ RD.
Seminal methods such as principal (Hotelling, 1933) and independent (Comon, 1994) com-
ponent analysis, Laplacian eigenmaps (Belkin and Niyogi, 2003), diffusion maps (Coifman
et al., 2005; Coifman and Lafon, 2006), Isomap (Tenenbaum et al., 2000), locally linear
embedding (Roweis and Saul, 2000), and tSNE (van der Maaten and Hinton, 2008) often
capture important structural properties in data (e.g., cluster structure, concentration near
low-dimensional sets) in a manner that is statistically efficient and robust to noise and
outliers. In many cases, these methods first embed high-dimensional, noisy data into a low-
dimensional Euclidean space so that Euclidean distances on the embedded points implicitly
define a new metric. Working in these embedded spaces (or equivalently, analyzing with the
induced metrics) has led to methods for unsupervised and semisupervised machine learning
(Ng et al., 2002).

An alternative to this broad class of approaches is to consider weighted shortest path
metrics. The idea is to construct a weighted graph associated to X , and then use short-
est path distances in this graph to learn important structures in X . A particular class
of density-weighted path metrics known as Fermat distances use powers of the Euclidean
distance between points as weights (Bijral et al., 2011; Hwang et al., 2016; Chu et al., 2020;
Little et al., 2022; Groisman et al., 2022; Fernández et al., 2023); in the discrete setting,
we denote these distances as ℓp, where p is a parameter that determines the impact of data
density. Fermat distances and related density-driven path metrics have been successfully
applied to a range of problems in unsupervised and semisupervised machine learning (Vin-
cent and Bengio, 2003; Bousquet et al., 2004; Sajama and Orlitsky, 2005; Chang and Yeung,
2008; Bijral et al., 2011; Moscovich et al., 2017; Alamgir and Von Luxburg, 2012; Mckenzie
and Damelin, 2019; Little et al., 2020), as well as to topological data analysis for robust
computation of persistent homology (Fernández et al., 2023) and in high-dimensional sig-
nal processing (Zhang and Murphy, 2021; Manousidaki et al., 2024). When data points are
sampled from a compact Riemannian manifoldM, the discrete ℓp converges to a continuum
metric Lp, which can be interpreted as a density-weighted geodesic distance on M.

Existing works in the literature establishing discrete-to-continuum convergence of gen-
eral data-driven distances include Howard and Newman (2001); Dı́az et al. (2016); Davis
and Sethuraman (2019); Hwang et al. (2016); Bungert et al. (2022), among many others.
The papers Dı́az et al. (2016); Davis and Sethuraman (2019); Bungert et al. (2022), for
example, discuss convergence of distances defined on random geometric graphs (RGG), ei-
ther in the i.i.d. setting or for Poisson point processes. In the RGG setting, admissible
paths between two points must consist of consecutive short range (as specified by a con-
nectivity parameter) hops between data, in contrast to Fermat distances, where arbitrarily
large hops between points are admissible. The results from Davis and Sethuraman (2019)
are asymptotic, while the ones in Dı́az et al. (2016); Bungert et al. (2022) provide high
probability convergence rates in terms of the RGG’s connectivity parameter. The results in
Bungert et al. (2022), for example, discuss the convergence of the ratio between certain ex-
pectations of distances at different scales. When combined with concentration inequalities,
this allows the authors to prove rates of convergence, in sparse settings, for a semisuper-
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vised learning procedure known as Lipschitz learning. The works Kesten (1993); Howard
and Newman (2001); Hwang et al. (2016); Groisman et al. (2022); Little et al. (2022);
Fernández et al. (2023) study Fermat distances on point clouds and are the most relevant
references for our metric approximation results. Note Hwang et al. (2016); Groisman et al.
(2022); Fernández et al. (2023) only provide asymptotic convergence results, while Howard
and Newman (2001); Little et al. (2022) assume a uniform density. We provide the first
local quantitative convergence results for Fermat distance in the manifold setting with a
general density.

While there are several mathematical objects that can be constructed over these finite
data-driven metric spaces, in this paper we will discuss as particularly important examples
the Laplacian operators that these metrics induce on a collection of data points sampled
from a distribution over a smooth and compact manifold M. Indeed, the metric ℓp can be
used to define graph kernel functions which then lead to embeddings of X using, for example,
the low-frequency eigenvectors of the graph Laplacian. These eigenvectors contain valuable
information that can be used in machine learning tasks such as trend filtering, clustering,
or dimensionality reduction. The difficulty in analyzing the induced Laplacians and their
eigenvectors relies, particularly, on the fact that Fermat distances over data clouds are
themselves random (in contrast to the more standard Euclidean metric). This difficulty has
impeded full statistical and analytical understanding of the methods that utilize Fermat-
based Laplacians.

Discrete-to-continuum convergence of Laplacian spectra on a manifold M is a well-
developed area (Belkin and Niyogi, 2007; Burago et al., 2015; Garćıa Trillos et al., 2019),
at least for random geometric graphs built with the Euclidean distance. The main problem
is, given a finite sample X ⊂ M, understanding how the sample-based graph Laplacian
induced from X converges as |X |→ ∞ to an operator defined with respect to the intrinsic
geometry of M (for example, the Laplace-Beltrami operator on M). This allows one to
characterize with high probability the behavior of the spectrum of the graph Laplacian,
thereby ensuring good performance in downstream tasks such as clustering. Existing results
typically focus on the cases in which the graph Laplacian is constructed using Euclidean
distances or the intrinsic geodesic distance on M. In the case of Fermat distances, there
is a natural continuum analogue of ℓp on M, which we shall denote Lp. The metric Lp
is in fact a geodesic distance function on M with respect to a certain density-dependent
Riemannian metric parameterized by p. Unlike in the case of Euclidean distances, the
underlying manifold geodesic Lp must itself be estimated from samples using ℓp, requiring
new tools of analysis.

The computational requirements for computing Fermat distances has also been studied
in the literature. Given n data points, Fermat distances can with high probability be com-
puted in a k-nearest-neighbors (kNN) graph (Little et al., 2022; Chu et al., 2020; Groisman
et al., 2022) as long as k ∼ log(n). This implies all pairwise distances can be computed
with the Floyd-Warshall algorithm with complexity O(n2 log(n)). Furthermore, the Fermat
kNN’s of all points can be computed with complexity O((k2 + CD)n log(n)), where C is a
constant that depends exponentially on the intrinsic dimension of the data (Mckenzie and
Damelin, 2019). This allows Fermat distance nearest neighbors (and consequently, graph
Laplacians based on Fermat distance nearest neighbors) to be calculated relatively effi-
ciently with quasi-linear complexity. Another quasi-linear approach is to compute Fermat
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Garćıa Trillos, Little, Mckenzie, and Murphy

distances on a set of landmarks and then extend quantities of interest using Nystrom-based
methods (Williams and Seeger, 2001; Ghojogh et al., 2020; Platt, 2005; Yu et al., 2012;
Civril et al., 2006; Shamai et al., 2020).

1.1 Summary of Contributions

This paper makes several mathematical, statistical, and algorithmic contributions.
First, we establish precise local convergence rates of discrete Fermat distances to contin-

uum Fermat distances defined with respect to a non-uniform density ρ onM. These results
are of independent interest for their connections to percolation theory and to a variety of
applications in which machine learning tasks rely on the availability of a metric structure
over a data point cloud.

Second, we develop spectral convergence results for graph Laplacians constructed with
ℓp to operators onM with geodesic distance given by Lp. These results leverage our metric
convergence results and also new geometric results pertaining to the properties of M when
endowed with Lp. Importantly, our results quantify the impact of the underlying geometry
of M, and we calculate explicit constants whenever possible. The large sample spectral
analysis of Fermat-based graph Laplacians is thus an important application of our metric
approximation results.

Third, we suggest new spectral clustering algorithms using ℓp. These algorithms enjoy
robustness with respect to cluster elongation, a regime where standard spectral clustering
fails. We highlight the connection of Fermat Laplacians with a broad family of Laplacian
normalizations. Our results provide geometric insight into the choice of normalization
parameters and also suggest statistically and computationally efficient methods of practical
implementation. We evaluate our proposed methods on image data, showing the impact of
the key parameters in Fermat distance spectral clustering; see Figure 1 for an illustration.

1.1.1 Outline of Paper

The remainder of the paper is organized as follows. Section 2 provides background on
Fermat distances and Laplace operators. Section 3 summarizes our main results. Section 4
discusses the Fermat Riemannian metric, including computation of geodesics and discrete-
to-continuum metric approximation results. Section 5 utilizes the metric approximation
to obtain spectral convergence results of Fermat graph Laplacians. Section 6 discusses
some examples and numerical experiments supporting the paper. Section 7 concludes the
article. The Appendix contains proofs of technical results and additional experiments.
Code to reproduce numerical results is available at https://github.com/JamesMMurphy11/
FermatDistances.

2. Background

Throughout the paper, we will use the notation in Table 1.

2.1 Fermat Distances

Discrete Fermat distances can be understood as classical shortest paths on graphs but with
edge lengths penalized according to a parameter p ∈ [1,∞).
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(a) Original Image

(b) Second eigenvector of Euclidean random walk Laplacian

(c) Second eigenvector of Fermat random walk Laplacian (p = 2.5)

Figure 1: A real image of a landscape from the Oljato-Monument Valley that is very elongated; patch-based
features are computed which combine color and spatial information. The second eigenvector of the Euclidean
random walk Laplacian is shown in (b) and the second eigenvector for the Fermat Laplacian with p = 2.5 is
shown in (c). Despite the elongation, the Fermat Laplacian correctly segments background from foreground
in a way the Euclidean Laplacian does not. Image available on unsplash courtesy of Robert Murray.

Definition 2.1 For p ∈ [1,∞), x, y ∈ RD, and some finite set X ⊂ RD, the (discrete)
p-weighted Fermat distance from x to y is:

ℓp(x, y,X ) = min
π={xi}Ti=1

󰀣
T−1󰁛

i=1

󰀂xi − xi+1󰀂p
󰀤 1

p

, (1)

where π is a path of points in X ∪ {x, y} with x1 = x and xT = y and 󰀂 · 󰀂 is the Euclidean
norm.

Note when there is no ambiguity about X , we will drop it from the notation and simply
write ℓp(x, y). The case p ∈ (0, 1) was studied in Alamgir and Von Luxburg (2012) and
shown to have counter-intuitive properties; we do not consider this parameter regime. While
ℓp(x, y) depends on the point cloud X , a population formulation is possible, as follows.
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Notation Definition
󰀂 · 󰀂 Euclidean 2-norm
| · | Norm with respect to the Riemannian metric g
M Data manifold
m Intrinsic dimension of data manifold
X Arbitrary point cloud in RD

R Reach of M
R Injectivity radius of M
K Bounds on sectional curvature of M
ωm Volume of the m-dimensional unit ball
ν Probability measure supported on M
ρ Density function associated to data measure ν
Xn Set of n i.i.d. samples from distribution ν
Hnρ Poisson point process on M with intensity nρ
Nn Poisson random variable with mean n
p Density weight parameter
ℓp Discrete Fermat distance with parameter p; see (1)

ℓ̃p Normalized discrete Fermat distance with parameter p; see (4)
Lp Continuum Fermat distance with parameter p; see (2)
g Arbitrary Riemannian metric
ḡ Euclidean metric
gp Fermat Riemannian metric; see (3)

ρp = ρp Density with respect to Fermat Riemannian metric
d(x, y) Geodesic distance on (M, ḡ)
dg(x, y) Geodesic distance on (M, g)

α = 2(p− 1)/m Reweighting constant
µ Percolation time constant, depending on p,m

∆Γℓ̃,h Discrete random-walk Laplacian with metric ℓ̃pp and bandwidth h; see (6)
∆2,p Continuum random-walk Laplacian with metric Lpp; see Proposition 2.5
a Diffusion maps parameter
η Kernel function, generally taken as η = 1[0,1]

Table 1: Notation used throughout the paper.

Definition 2.2 Let (M, g) be a compact, m-dimensional Riemannian manifold and ρ :
M → R>0 a continuous density function on M. For p ∈ [1,∞) and x, y ∈ M, the
(continuum) p-weighted Fermat distance from x to y is:

Lp(x, y) =
󰀣
inf
γ

󰁝 1

0

1

ρ(γ(t))
p−1
m

󰁳
g (γ′(t), γ′(t))dt

󰀤 1
p

, (2)

where γ : [0, 1] →M is a piecewise C1 path with γ(0) = x, γ(1) = y.

Note when M is embedded in RD and g is the Euclidean metric, one simply has󰁳
g (γ′(t), γ′(t)) = 󰀂γ′(t)󰀂. Suppose further that ρ ∈ C∞(M). Then associated to Lpp

is a Riemannian metric, gp, defined as:

gp,x(X,Y ) := ρ−αgx(X,Y ), (3)
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where α := 2(p− 1)/m (Hwang et al., 2016). Indeed, one easily observes

Lpp(x, y) = inf
γ

󰁝 1

0

󰁴
gp(γ′(t), γ′(t)) dt,

i.e., the distance function associated to gp is Lpp. This interpretation of Lpp as a Riemannian
metric on M leads us to consider ℓpp rather than ℓp in the discrete setting.

Suppose X is sampled from a distribution ν with density ρ with respect to the volume
form of M. A natural question is to characterize the convergence of ℓpp to Lpp as |X | tends
to infinity. Two concrete probabilistic models for X that are popular in the literature are:

• The i.i.d. setting, where we consider X = Xn := {x1, . . . , xn} to be a collection of
i.i.d. draws from ν.

• The Poisson point process (PPP) setting, where we consider X = Hnρ to be the
realization of a Poisson point process on M with intensity nρ.

In either case, one is naturally interested in the behavior of ℓpp as n tends to infinity. In this
paper we obtain convergence results for both PPP models as well as for the i.i.d. setting,
the latter being the model that is most often assumed in statistical learning theory.

Remark 2.3 The Poisson point process Hnρ and the i.i.d. model Xn are closely connected
to each other. Indeed, from an infinite sequence x1, x2, . . . of i.i.d. samples from ν and from
a Poisson random variable Nn with mean n, independent from the xi, one can generate Hnρ

by setting Hnρ = {x1, . . . , xNn}. In particular, conditioned on Nn, Hnρ consists of Nn i.i.d.
points drawn from ν.

Informally, one of our main results (Theorem 4.3) states that, with high probability,
the discrete Fermat distance (1) approximates locally the geodesic distance (2). We first
derive a metric approximation result for PPPs on manifolds using results from percolation
theory. We then extend the result to the i.i.d. case through a method typically known as
de-Poissonization. We then explore some of the geometric implications of this convergence,
including quantitative rates for the spectral convergence of normalized graph Laplacian
operators induced by discrete Fermat distances toward weighted Laplace-Beltrami operators
relative to the family of Riemannian metrics gp, a result of interest for its direct application
to manifold learning. From the structure of the resulting continuum Laplacian operators,
we extract theoretical insights on the role that data density plays in clustering and how, by
picking p appropriately, we can accentuate or suppress the effect of density on the resulting
data partitioning.

This paper is not the first to address the discrete-to-continuum convergence of Fermat
distances. Precise statement of such results requires an appropriate normalization, to ac-
count for the fact that ℓp → 0+ as n → ∞. It can be shown (Howard and Newman,
2001) that the correct scaling constant for ℓp is n

(p−1)/pm, so that the relevant convergence
question is that of

ℓ̃pp := n(p−1)/mℓpp (4)

to Lpp.
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Hwang et al. (2016) establish that for M compact and ρ continuous and bounded away
from 0, there exists a constant µ > 0, depending only on p and m, such that for all b, 󰂃 > 0,
there exists θ0 > 0 such that for n large enough,

P

󰀣
sup

Lpp(x,y)≥b

󰀏󰀏󰀏󰀏󰀏
ℓ̃pp(x, y)

Lpp(x, y)
− µ

󰀏󰀏󰀏󰀏󰀏 > 󰂃

󰀤
≤ exp(−θ0n

1/(m+2p)) ,

i.e., ℓ̃pp → µLpp in probability for Lpp ≥ b. The uniform lower bound b > 0 was removed by
Fernández et al. (2023), significantly improving the convergence results. However, this type
of convergence in probability is inadequate for our purposes as we need precise characteri-
zation of 󰂃 and θ0, at least locally.

Little et al. (2022) provide more precise convergence results, albeit in a limited set-
ting. They show that if ρ is uniform and M is convex, compact, and has m-dimensional
unit volume, then for n sufficiently large and for all points x, y sufficiently far from ∂M,

E
󰁫
(ℓ̃p(x, y)− µ

1
pLp(x, y))2

󰁬
≲ n−

1
m log2(n). While this result is precise, it applies only to

uniform densities, and is thus inadequate for developing spectral convergence results for a
large class of densities ρ.

2.2 Discrete Laplace Operators

Let X = {x1, . . . , xn} be a finite set of points on M ⊂ RD. Let η : [0,∞) → [0,∞) be
any non-increasing function with support contained in [0, 1] and η(1/2) > 0. For ease of
exposition in all that follows, we take η = 1

ωm
1[0,1] where the normalizing factor ωm denotes

the volume of the unit ball in Rm and is chosen so that
󰁕
Rm

η(󰀂x󰀂)dx = 1. Choosing a
distance function d0(·, ·) on X and a bandwidth parameter h, we define a weighted graph
Γd0,h = (X ,W d0,h) by setting

wd0,h
ij =

1

nhm
η

󰀕
d0(xi, xj)

h

󰀖
. (5)

There are several popular definitions of Laplacian operators on Γd0,h; in this paper we focus
on the random-walk Laplacian, defined for any u : X → R as

(∆Γd0,hu) (xi) =
2(m+ 2)

h2

󰁛

j

wd0,h
ij

md0,h,i
(u(xi)− u(xj)) . (6)

where md0,h,i :=
󰁓

j w
d0,h
ij is the degree of xi; when the choices of metric d0 and scaling

parameter h are clear, we will simply write mi. Up to a normalization constant, the random
walk Laplacian can be expressed in matrix form as ∆Γd0,h = I − D−1W , where D is a
diagonal matrix containing the degrees and W is the matrix of weights. As is well-known,
(e.g., Garćıa Trillos et al. (2019)), the eigenvalues of ∆Γd0,h may equivalently be expressed
in terms of the corresponding Dirichlet form,

bd0,h(u, v) :=
m+ 2

nh2

󰁛

i,j

wd0,h
ij (u(xi)− u(xj)) (v(xi)− v(xj)) . (7)
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Specifically,

λk(∆Γd0,h) = min
Lk : dim(Lk)=k

max
u∈Lk\{0}

bd0,hΓ (u, u)

󰀂u󰀂2m
,

where the minimization is over k-dimensional subspaces Lk and 󰀂u󰀂2m := 1
n

󰁓
imiu

2
i . When

d0(x, y) is the Euclidean distance 󰀂x− y󰀂2, the eigenvectors of ∆Γd0,h with smallest eigen-
values (which we will hereafter refer to as “low frequency” in analogy with Fourier analysis)
have important applications in unsupervised machine learning. Indeed for connected graphs,
the second lowest frequency eigenvector (and first eigenvector with eigenvalue greater than
0) is closely connected to normalized graph cuts (Shi and Malik, 2000). The problem of
finding a partition (Z∗,Zc

∗) of X which minimizes

Ncut(Z) =
󰁛

i∈Z,j∈Zc

Wij

󰀡
min

󰀻
󰀿

󰀽
󰁛

i∈Z,j∈X
Wij ,

󰁛

i∈Zc,j∈X
Wij

󰀼
󰁀

󰀾 (8)

is NP-hard. One can relax the hard cluster assignments (which correspond to integer con-
straints in optimization of the Rayleigh quotient) in (8), which leads to making partition
assignments by thresholding the second lowest frequency eigenvector of ∆Γ. This approach
can be extended to more than 2 clusters by running K-means or Gaussian mixture model-
ing on a small number of the lowest frequency eigenvectors of ∆Γ. These procedures—in
which low-frequency Laplacian eigenfunctions are used as features in baseline clustering
algorithms—are called spectral clustering and have been well-studied and extended in re-
cent decades (Ng et al., 2002; Von Luxburg, 2007; Schiebinger et al., 2015; Garćıa Trillos
et al., 2021).

2.2.1 Alternative Graph Laplacian Normalizations

In the previous section we introduced the random walk Laplacian matrix, but Laplacian
matrices can in fact be categorized as a three parameter family of various density normal-
izations. In particular, given j, q, r ∈ R and an initial weight matrix W ∈ Rn×n (for some
n ∈ N) together with its associated degree matrix D, let Wq be the weight matrix defined
as (Wq)ij := Wij/(D

q
iD

q
j ) and Dq be its corresponding degree matrix. We then define the

matrix:

Lj,q,r :=

󰀻
󰀿

󰀽
D

1−j
q−1
q (Dq −Wq)D

− r
q−1

q , if q ∕= 1,

Dq −Wq, if q = 1.

Some popular choices of (j, r, q) are q = 1, which yields the standard unnormalized
graph Laplacian; (j, q, r) = (2, 3, 1), which yields the symmetric normalized Laplacian; and
(j, q, r) = (2, 2, 0), which yields the random walk Laplacian. We note moreover that the
family of operators inducing diffusion maps (Coifman et al., 2005; Coifman and Lafon,
2006) is obtained by taking (j, q, r) = (2(1− a), 2(1− a), 0) for a ∈ [0, 1].

In Hoffmann et al. (2022), the base weights Wij over a data set X sampled from a
distribution with density ρ over M are constructed as in (5) using the Euclidean distance
as d0(·, ·). The resulting graph Laplacians are closely related to the family of differential
operators discussed in Remark 2.8.
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2.3 Continuum Laplace Operators

There is also a corresponding continuum Laplacian that is not based on point clouds,
but instead is defined at the population level. We recall the definition of the s-weighted
Laplacian from Hein et al. (2007) (note we have changed the sign in Definition 2.4 for
consistency with our notation).

Definition 2.4 Let (M, g) be a Riemannian manifold with probability measure ν and as-
sociated density ρ defined with respect to dVol. Let ∆ be the Laplace-Beltrami operator on
(M, g). For s ∈ R, we define the sth weighted Laplacian ∆s as

∆s := −∆− s

ρ
gij(∇iρ)∇j = − 1

ρs
gij∇i(ρ

s∇j) = − 1

ρs
div(ρs∇) .

Note that s = 0 gives the negative Laplace-Beltrami operator under the geometry deter-
mined by g; s = 2 is the continuous version of the normalized random walk Laplacian.
The diffusion maps framework (Coifman and Lafon, 2006) considers the family of operators
s = 2(1 − a) for a ∈ [0, 1]. If, in the construction described in Definition 2.4, one uses the
Fermat metric gp as defined in (3) instead of g we arrive at a new operator defined on M,
which we denote as ∆s,p. Explicitly,

∆s,p := − 1

ρsp
divp(ρ

s
p∇p) , (9)

where divp,∇p are the divergence and gradient in the geometry induced by gp, and ρp is the
density of the measure ν with respect to the volume form dVolp. For the latter, recall that
any Riemannian metric g has an associated volume form, dVol, defined with respect to any
local coordinates x1, . . . , xm as dVol =

󰁳
det(g)dx1 · · · dxm, or simply dVol =

󰁳
det(g)dx.

From this, one sees that

dVolp :=
󰁴
det(gp)dx =

󰁳
det(ρ−αg)dx = ρ−mα/2dVol = ρ1−pdVol,

where the final equality comes from the definition of α. Recall that ρ is the density of the
measure ν with respect to dVol. That is, for all U ⊂M,

ν(U) =

󰁝

U
ρdVol =

󰁝

U
ρ · ρp−1

󰀃
ρ1−pdVol

󰀄
=

󰁝

U
ρpdVolp.

Thus ρp, the density of ν with respect to dVolp, is ρp = ρp.
To get a better intuition on how the parameters p, s affect the qualitative properties

of the operators ∆s,p, specifically, properties of their spectra and implications for data
clustering, it will be convenient to relate geometric quantities in (M, gp) with those in
(M, g); we will annotate the objects pertaining to the (M, gp)-geometry with the subscript
p. First, gradients of smooth functions f : M → R under the different geometries are
related according to ∇pf(x) = ρα(x)∇f(x), x ∈M. This standard identity is deduced by
writing the first variation of f in a given direction as an inner product between the gradient
of f (in each geometry) and the direction of variation. From the relations between gradients
and volume forms for the two geometries g and gp one can also deduce a relation between

10
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the divergences of a smooth vector field under g and gp. For this, we recall the integration
by parts formulae:

󰁝

M
g(∇f, V )dVol = −

󰁝

M
div(V )fdVol,

󰁝

M
gp(∇pf, V )dVolp = −

󰁝

M
divp(V )fdVolp,

(10)

which hold for all smooth scalar functions f and all smooth vector fields V . From the above,
one can readily obtain the following relation: divp(V ) = ρp−1div(ρ1−pV ).We can also relate
the second order geometries of (M, g) and (M, gp). In particular, the sectional curvatures
of (M, gp) can be controlled in terms of those of (M, g) as stated precisely in Theorem B.2
in Appendix B.

With the above identities we can now rewrite ∆s,p in terms of differential operators in
the geometry of (M, g).

Proposition 2.5 (Fermat s-Laplacian in Euclidean Coordinates) When M ⊆ RD

is an embedded manifold and g = g = 〈·, ·〉 is the Euclidean metric, we have:

(a) ∆s,p = −ρ
2(p−1)

m

󰀗
∆+

󰀕
p(s− 1) + 1 +

2(p− 1)

m

󰀖
∇ρ

ρ
·∇

󰀘
, where ∆ is the Laplace-

Beltrami operator on (M, g).

(b) When s = 2, ∆2,p = − 1
ρ2p

divp(ρ
2p∇p) = −ρ

2(p−1)
m

󰁫
∆+

󰀓
p+ 1 + 2(p−1)

m

󰀔
∇ρ
ρ ·∇

󰁬
is a

random walk Laplacian.

Proof To see (a), recall that the s-weighted Laplacian is ∆s,p = − 1

ρps
divp(ρ

ps∇p). The

desired formula for ∆s,p follows by using the fact that ∇p = ρα∇, divp(·) = ρp−1div(ρ1−p ·)
(discussed in Section 4) and the product rule. Plugging in s = 2 yields (b).

The operator ∆s,p is self-adjoint in an appropriately defined inner product space. For
any s ≥ 0 consider the function space:

L2(M, ρpsdVolp) :=

󰀝
f :M→ R

󰀏󰀏󰀏󰀏
󰁝

M
f2ρpsdVolp < ∞

󰀞
.

Define an inner product on this space by

〈f, h〉p,s :=
󰁝

M
fh ρps dVolp =

󰁝

M
fh ρps ρ1−pdVol =

󰁝

M
fh ρp(s−1)+1dVol.

Also, consider the Dirichlet form Ds,p defined as

Ds,p(f, h) :=

󰁝

M
gp (∇pf,∇ph) ρ

psdVolp

=

󰁝

M
ραg (∇f,∇h) ρps

󰀅
ρ1−pdVol

󰀆

=

󰁝

M
g (∇f,∇h) ρ1+p(s−1)+αdVol.

(11)

11
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Using (10) and the first line in (11) we can immediately deduce the following.

Proposition 2.6 In its domain of definition, ∆s,p is self-adjoint with respect to the inner
product 〈·, ·〉p,s. Moreover, Ds,p(f, h) = 〈∆s,pf, h〉p,s = 〈f,∆s,ph〉p,s, for all smooth f, h.

Remark 2.7 To intuitively interpret the role of ρ on the operator ∆s,p, it is helpful to see
∆s,p, at least when we consider M = Ω to be a domain in Euclidean space for simplicity,
as the generator of the following diffusion:

dXt := ρ
2(p−1)

m

󰀕
p(s− 1) + 1 +

2(p− 1)

m

󰀖
∇ρ

ρ
dt+

√
2ρ

(p−1)
m dBt.

As p > 1, the scalar coefficients in front of the drift and diffusion terms in the above SDE
are large at points of high density. This means that a particle moving according to this
SDE explores connected regions with high density very rapidly while being drifted away from
regions where ρ is small. Thus, low density barriers will be particularly difficult to cross,
effectively inducing a separation of regions (clusters) of high density.

The problem of understanding for what choice of parameter scaling h does a discrete
operator ∆Γ built over samples from ν converge to ∆s as n → ∞ is by now a classical
problem (Belkin and Niyogi, 2003; Garćıa Trillos et al., 2019; Wormell and Reich, 2021;
Calder and Garćıa Trillos, 2022) when g is the metric induced by a Euclidean embedding
of M. One of our contributions in this paper is to analyze the convergence of the discrete
graph Laplacian built from Fermat distances to its appropriate continuum analogue.

Remark 2.8 It was informally argued in Hoffmann et al. (2022) that the graph Laplacian
Lj,q,r from Section 2.2.1, built with base weights as in (5) for i.i.d. points x1, . . . , xn sampled
from ρ dVol and d0 the Euclidean distance, approximates spectrally the family of differential
operators

Lj,q,rf = − 1

ρj
div

󰀕
ρq∇

󰀕
f

ρr

󰀖󰀖
.

On the other hand, based on the relations between different geometric quantities under the
geometries g and gp discussed above, the operator ∆s,p from (9) can be written as

∆s,pf = − 1

ρ(s−1)p+1
div(ρ(s−1)p+1+α∇f),

where α = 2(p − 1)/m. This says that, in principle, the graph Laplacians discussed in
Hoffmann et al. (2022) can be used to recover the spectrum of ∆s,p, provided one chooses
j = (s − 1)p + 1, q = (s − 1)p + 1 + α, and r = 0, in which case Lj,q,0 = ∆s,p. We
will use this observation in our numerics Section 6.2 when comparing Fermat-based graph
Laplacians with their degree-reweighted counterparts.

3. Set-up and Main Results

In this section, we introduce some more technical background and state our main results.
Background on Riemannian geometry is given in Appendix A. We assume that M is nor-
malized so that it has volume 1 with respect to its canonical measure dVol (i.e., the measure
given by the volume form associated to g).

12
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3.1 Notation and Assumptions

We shall make the following standing assumptions on the manifold M and density ρ.

Assumption 3.1 We assume M ⊂ RD is an embedded, smooth, compact manifold of
dimension m and that ρ satisfies:

(i) there exists β > 0 such that 1
β ≤ ρ(x) ≤ β for all x ∈M.

(ii) ρ ∈ C∞(M).

(iii) ρ is Lipschitz continuous: |ρ(x)− ρ(y)| ≤ L1d(x, y) for all x, y ∈M.

(iv) ∇ ρ is Lipschitz continuous: 󰀂∇2ρ(x)󰀂 ≤ L2 for all x ∈M.

Fix x ∈ M and let logx = exp−1x be the inverse of the exponential map at x. Let R =
inj(M) be the injectivity radius, i.e., the largest radius such that logx is a diffeomorphism
on Bx(R) for all x, where Bx(R) is a geodesic ball (in terms of geodesic distance d) of radius
R centered at x. Let K be the maximal sectional curvature of M, and let R = reach(M).
For v, w ∈ TxM, let Jx(v) =

󰁳
det(g) be the Jacobian in the normal coordinates induced

by the exponential map.
For all v, w ∈ B0(R), we have:

1− CmK󰀂v󰀂2 ≤ Jx(v) ≤ 1 + CmK󰀂v󰀂2, (12)

󰀂v − w󰀂 − CK󰀂v − w󰀂3 ≤ d(expx(v), expx(w)) ≤ 󰀂v − w󰀂+ CK󰀂v − w󰀂3. (13)

For (12), see (1.34) in Garćıa Trillos et al. (2019), and for (13), see Proposition E.1 in
Little et al. (2022). Furthermore (see Proposition 2 in Garćıa Trillos et al. (2019)), for all
x, y ∈M such that 󰀂x− y󰀂 ≤ R

2 , we have

󰀂x− y󰀂 ≤ d(x, y) ≤ 󰀂x− y󰀂+ 8

R2
󰀂x− y󰀂3. (14)

3.2 Statements of Main Results

In this section we state our main results, the first of which quantifies the discrepancy between
Fermat distances at the continuum level and Fermat distances built from i.i.d. point clouds.

Theorem 3.2 (Local Metric Approximation for i.i.d. Point Clouds) Let x, y ∈M.
Fix 󰂃 ∈ (0, 1/(8p + 6)) and let κ = 2󰂃

3 min{ 1
m ,

1
p}. Let Assumption 3.1 hold and suppose

moreover that
2(nβ/2)−

1
m(

1
3
−󰂃) ≤ d(x, y) ≤ CM,ρ,p , m ≥ 2 .

Let Xn consist of n i.i.d. samples from ρ. Then for n large enough:

|ℓ̃pp(x, y,Xn)− µLpp(x, y)| ≤ C1Lpp(x, y)2 + C2Lpp(x, y)3

13
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with probability at least 1− C󰂃n exp
󰀓
−c󰂃( n

4β )
κ
󰀔
, where

C1 = β
p−1
m

󰀕
5µ

2

󰀕
p− 1

m

󰀖
L1β + 1

󰀖
, C2 = Cp,m,β

󰀃
R−2 +K(1 + L1) + L2

1 + L2

󰀄
.

Here C󰂃, c󰂃 are constants depending on 󰂃, Cp,m,β is a constant depending on p,m,β, and
CM,ρ,p is a constant depending on ρ, p, and the geometry of M.

Proof See Appendix G.

Theorem 3.2 follows from Theorem 4.3 (metric approximation for PPPs) and a de-
Poissonization argument. As an application of this local distance approximation result, we
obtain rates for the spectral convergence of Fermat-based graph Laplacians toward their
continuum analogues. The graph Laplacians are built over realizations of an i.i.d. point
cloud, as we state precisely below. For legibility, we write Γℓ̃,h instead of Γℓ̃pp,h and ΓL,h

instead of ΓµL
p
p,h when p is clear from context. We also denote constants by C or c, with

subscripts indicating the primitive quantities (p,m,L1. . . ) upon which they depend.

Theorem 3.3 Let Γℓ̃,h denote the graph constructed using the discrete Fermat distance ℓ̃pp

and bandwidth h = O(n−
1
3m

+ 󰂃
m ) for some 󰂃 ∈ (0, 1

8p+6) over a point cloud of i.i.d. points
X = {x1, . . . , xn} sampled from ρ. Let ∆

Γℓ̃,h denote the random walk Laplacian of this graph

(see (6)) and λk(Γ
ℓ̃,h) its k-th eigenvalue. Finally, let ∆2,p denote the 2-weighted Fermat

Laplacian:

∆2,pu = − 1

ρ2p
divp

󰀃
ρ2p∇pu

󰀄

and let λk(∆2,p) denote its k-th eigenvalue. Then for n large enough

󰀏󰀏λk(∆Γℓ̃,h)− λk(∆2,p)
󰀏󰀏

|λk(∆2,p)|
≤ Cβ,p,m,L1n

− 1
3m

+ 󰂃
m + Cβ,p,m,L1,L2,K,Rn

− 2
3m

+ 2󰂃
m

with probability at least 1− C󰂃n
3 exp

󰀓
−c󰂃( n

4β )
󰂃

2p+1
min{ 1

m
, 1
p
}
󰀔
.

Remark 3.4 Note that the leading error term is O(n−
1
3m

+ 󰂃
m ). In contrast, the leading

error term in Garćıa Trillos et al. (2019) is O(n−
1
2m ). This is explained by the fact that in

Theorem 3.3 the dominating source of error comes from the approximation ℓ̃pp(·, ·) ≈ µLpp(·, ·)
which decays more slowly than the ∞-optimal transport distance between the sample measure
associated to X and population measure ν—the dominating source of error in Garćıa Trillos
et al. (2019).

We use Theorem 3.3 and combine it with some auxiliary estimates discussed in Sections
5.2 and 5.3 to prove the convergence of eigenvectors of ∆

Γℓ̃,h toward eigenfunctions of
∆2,p. While said results can be derived for arbitrary eigenvectors, we will focus on the
consistency of the Fiedler eigenvector (i.e., the one with second smallest eigenvalue) for
simplicity and refer the reader to works like Burago et al. (2015); Garćıa Trillos et al.

14
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(2019) for extensions; see also Remark 5.12 below. We will further assume that ∆2,p’s
Fiedler eigenvalue is simple. In order to compare the discrete and continuum eigenvectors,
we use a discretization map that associates a function defined over the data set to every
function defined over the manifold M; this operator is introduced in (22). We prove that
the difference between the discretization of the continuum Fiedler eigenfunction and its
projection onto the graph-Laplacian Fiedler eigenspace tends to zero as n → ∞; we also
quantify the rate of convergence. Other notions of consistency for eigenvectors of discrete
graph Laplacians toward manifold counterparts are possible and we refer the reader to
Garćıa Trillos et al. (2019) for more details.

Theorem 3.5 Let the assumptions and notation from Theorem 3.3 hold, and furthermore
assume that the Fiedler eigenvalue λ2 = λ2(∆2,p) of ∆2,p is simple. Let f be a normalized
eigenfunction with eigenvalue λ2(∆2,p) (which by assumption is unique up to sign). Then

with probability at least 1− C󰂃n
3 exp

󰀓
−c󰂃( n

4β )
󰂃

2p+1
min{ 1

m
, 1
p
}
󰀔
, for n large enough,

󰀂Pf − ψn
2 󰀂2m ≤ 1

λ3 − λ2

󰁫
Cβ,p,m,L1n

− 1
3m

+ 󰂃
m + Cβ,p,m,L1,L2,K,Rn

− 2
3m

+ 2󰂃
m

󰁬
λ2

+ Cβ,p,m,L1n
− 1
3m

+ 󰂃
m + Cm,β,p,L1,L2,Kn

− 2
3m

+ 2󰂃
m ,

where λ3 = λ3(∆2,p), P is the discretization map defined in (22), and ψn
2 is one of the

normalized (w.r.t. 󰀂·󰀂m) Fiedler eigenvectors of the graph Laplacian ∆
Γℓ̃,h.

Although Theorem 3.3 guarantees that for n large enough λ2(Γ
ℓ̃,h) is also a simple

eigenvalue, in the statement of Theorem 3.5 we talk about “one of the Fiedler eigenvectors
of the graph Laplacian” since uniqueness only holds up to sign. In Section 5.4 we provide
further remarks on the convergence stated in Theorem 3.5 and discuss other approaches in
the literature to prove consistency of eigenvectors for Laplacian matrices built over data
clouds.

4. Fermat Riemannian Metrics

4.1 Fermat Geodesics and Local Euclidean Equivalence

In this section we derive a concrete, local expression for geodesics in the Fermat distance on
a flat domain (i.e., an m-dimensional, open, connected subset of Rm), and then establish a
higher order local equivalence between Lp and Euclidean distance on a flat domain. These
results will then be applied in the tangent plane of a general manifold to establish the local
metric approximation results given in Section 4.2. To make clear that the domain lacks
both intrinsic and extrinsic curvature, we denote it by Ω instead of M.

Theorem 4.1 Let Ω ⊆ Rm be a m-dimensional, open, connected domain and assume (Ω, ρ)
satisfies Assumption 3.1. Fix y ∈ Ω and let γb(t) denote the unit speed geodesic with respect
to gp originating at y in the direction of unit vector b ∈ Rm. Then:

γb(t) =ρ(y)
α
2 bt+ αρ(y)α−1

󰀕
1

2
〈b,∇ρ(y)〉b− 1

4
∇ρ(y)

󰀖
t2

+(C ′
1b+ C ′

2H(y)b+ C ′
3∇ρ(y))t3 +O(t4) ,

(15)
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where H(y) denotes the Hessian matrix of ρ evaluated at y and

C ′
1 =

󰀕
1

3
α2 − 1

6
α

󰀖
ρ(y)

3
2
α−2〈b,∇ρ(y)〉2

+
α

6
ρ(y)

3
2
α−1〈H(y)b, b〉 − α2

12
ρ(y)

3
2
α−2〈∇ρ(y),∇ρ(y)〉,

C ′
2 = − α

12
ρ(y)

3
2
α−1,

C ′
3 =

󰀕
α

12
− α2

6

󰀖
ρ(y)

3
2
α−2〈∇ρ(y), b〉.

Proof See Appendix C.

As a numerical illustration of the local Fermat geodesics, consider the density function
ρ(x1, x2) = 1 + x1 for (x1, x2) ∈ [−1

2 ,
1
2 ] × [−1

2 ,
1
2 ], so that ∇ρ = (1, 0), ρ(0, 0) = 1. We

consider p = 3, and since m = 2 we have α = 2. We solve the geodesic equations appearing
in the proof of Theorem 4.1 with a numerical solver for a collection of initial directions b and
for total time T in order to produce the Fermat geodesic balls appearing in Figure 2; note
(15) gives a third order approximation of these curves, valid for small times. Intuitively, the
Lpp ball is elongated in the direction of the gradient because it costs less to travel in that
direction.

Figure 2: Fermat geodesic balls of radius T = 0.15 (left) and T = 0.35 (right). The Lpp ball is wider in
directions of high density because geodesics in that direction are less costly.

We can utilize the geodesic computation of Theorem 4.1 to establish a higher-order
equivalence of Fermat distances with a density-warped Euclidean distance, depending both
on ρ and ∇ρ.

Theorem 4.2 Let Ω ⊆ Rm be an m-dimensional, open, connected domain and assume
(Ω, ρ) satisfies Assumption 3.1. Then for x, y ∈ Ω with x ∕= y and unit vector u = (y −
x)/󰀂y − x󰀂, we can relate Euclidean and Fermat distance as follows:

󰀂y − x󰀂 = ρ(x)
p−1
m Lpp(x, y) +

1

2

󰀕
p− 1

m

󰀖
〈u,∇ρ(x)〉 ρ(x)

2(p−1)
m −1L2p

p (x, y)

16
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+ CL3p
p (x, y) +O(L4p

p (x, y))

for

C = ρ(x)
3
2α−2

󰀗
α2

96
〈∇ρ(x),∇ρ(x)〉+

󰀕
7α2

96
− α

12

󰀖
〈u,∇ρ(x)〉2 + α

12
ρ(x) 〈H(x)u, u〉

󰀘
.

Also:

Lpp(x, y) =
1

ρ(x)
p−1
m

󰀕
󰀂y − x󰀂 − 1

2

󰀕
p− 1

m

󰀖󰀟
u,

∇ρ(x)

ρ(x)

󰀠
󰀂y − x󰀂2

󰀖
+O

󰀃
󰀂y − x󰀂3

󰀄
.

Proof See Appendix D.

4.2 Discrete-to-Continuum Fermat Distance Approximation

We now utilize the results of Section 4.1 to establish that, locally, the discrete, computable
metric ℓ̃pp is well-approximated by the Fermat geodesic distance Lpp. Following is the main
result of this section, which quantifies the metric approximation for PPPs; we work with
PPPs in order to utilize results from percolation theory. Recall Hnρ denotes a nonhomoge-

neous Poisson point process on M with intensity nρ, and ℓ̃pp(x, y,Hnρ) = n
p−1
m ℓpp(x, y,Hnρ)

denotes the discrete (normalized) Fermat distance computed in Hnρ∪{x, y}. Note although
the number of points in Hnρ is random, E[|Hnρ|] = n.

Theorem 4.3 (Local Metric Approximation for PPP) Suppose (M, ρ) satisfies As-
sumption 3.1. Let x, y ∈M, fix 󰂃 ∈ (0, 1/(8p+ 6)), and suppose that

2(nβ)−
1
m(

1
3
−󰂃) ≤ d(x, y) ≤ CM,ρ,p.

Then for n large enough:

|ℓ̃pp(x, y,Hnρ)− µLpp(x, y)| ≤ C1Lpp(x, y)2 + C2Lpp(x, y)3

with probability at least 1− C󰂃n exp
󰀓
−c󰂃( n

2β )
2󰂃
3
min{ 1

m
, 1
p
}
󰀔
, where

C1 = β
p−1
m

󰀕
5µ

2

󰀕
p− 1

m

󰀖
L1β + 1

󰀖
, C2 = Cp,d,β

󰀃
R−2 +K(1 + L1) + L2

1 + L2

󰀄
.

Here C󰂃, c󰂃 are constants depending on 󰂃, Cp,d,β is a constant depending on p, d,β, and
CM,ρ,p is a constant depending on ρ, p, and the geometry of M.

4.2.1 Background and Outline for Proof of Theorem 4.3

We first establish some notation used in the proof of Theorem 4.3. Let r = d(x, y); we
assume r is upper bounded by a constant CM,ρ,p independent of n but depending on ρ, p,
and the geometry of M, but to simplify already long calculations we do not keep track of
it. Let u = logx(y) so that 󰀂u󰀂 = r.
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Fix any R > 0 satisfying 4R < R and define the function ρx(z) := ρ(expx(z))Jx(z)1{z ∈
B0(R)}, where 1{z ∈ B0(R)} is 1 for z ∈ B0(R), and 0 otherwise. We note that Hnρx :=
logx(Hnρ ∩ Bx(R)) is a PPP on B0(R) ⊆ TxM with intensity nρx(z), since for A ⊆ B0(R),

E[Hnρx(A)] = E[Hnρ(expx(A))] = n

󰁝

expx(A)⊆M
ρ(y)dvy = n

󰁝

A⊆B0(R)
ρ(expx(z))Jx(z)dz ,

where Hnρx(A) denotes the number of points of the PPP falling in A. The function ρx
(thought of as the density ρ lifted to the tangent plane) implicitly defines a tangent plane
continuum Fermat distance between x, y:

Lpp(0, u, ρx) = inf
logx γ⊆B0(R)

󰁝
ρx(logx γ(t))

(1−p)/m|(logx γ)′(t)| dt

where logx γ is a path in TxM connecting 0 and u. Let ρmin, ρmax be the min/max of ρx(z)
over B0(2r). Let Hnρmin be the PPP obtained by replacing ρx with ρmin on B0(2r) (no
change outside of this ball), and similarly for Hnρmax .

Note that we can couple the PPPs so thatHnρmin ⊆ Hnρx ⊆ Hnρmax . Finally, letHnρmin =
Hnρmin ∩ B0(2r), Hnρmax = Hnρmax ∩ B0(2r). Note that Hnρmin , Hnρmax are homogeneous
PPPs on B0(2r) with intensities nρmin, nρmax, while Hnρx is inhomogeneous and harder to
analyze directly.

Our metric approximation consists of a series of Lemmas:

1. Lemma E.1: ℓ̃pp(x, y,Hnρ) = ℓ̃pp(x, y,Hnρ∩Bx(R)) holds w.h.p. Intuitively, this means
that optimal discrete Fermat paths between nearby points do not meander too much.
This allows the paths on the manifold to be compared to those on the tangent plane.

2. Lemma E.2: ℓ̃pp(x, y,Hnρ ∩ Bx(R)) ≈ ℓ̃pp(0, u,Hnρx). This means that optimal paths
on the manifold are close to those on the tangent plane. The paths on the tangent
plane are easier to analyze, because the domain is flat.

3. Lemma E.3: ℓpp(0, u,Hnρmin) = ℓpp(0, u,Hnρmin) w.h.p., and same for Hnρmax

This allows us to “trap” the Fermat distance for the nonhomogeneous PPP Hnρx as
ℓpp(0, u,Hnρmax) ≤ ℓpp(0, u,Hnρx) ≤ ℓpp(0, u,Hnρmin).

4. Lemma E.4: ℓ̃pp(0, u,Hnρx) ≈ µLpp(0, u, ρx) w.h.p. This is a direct discrete-to-continuum
metric approximation on the tangent plane.

5. Lemma E.5: Lpp(0, u, ρx) ≈ Lpp(x, y). This involves bounding the perturbation due to
curvature for Lpp.

See Appendix E for precise statements and proofs of the above lemmas. An important
tool in our analysis is the following result from percolation theory, which is a direct result
of Theorem 2.2 in Howard and Newman (2001).

Proposition 4.4 Let Hnλ be a homogeneous PPP on Rm with intensity nλ > 1. Fix q > 1
and 󰂃 ∈ (0, 1/(8p+ 6)). Suppose

󰀂u󰀂 ≥ (nλ)
− 1

m

󰀓
1

2q−1
−󰂃

󰀔

(16)
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Then 󰀏󰀏󰀏(nλ)
(p−1)
m ℓpp(0, u,Hnλ)− µ󰀂u󰀂

󰀏󰀏󰀏 ≤ 󰀂u󰀂q (17)

with probability at least

1− C󰂃 exp

󰀕
−c󰂃(nλ)

󰂃
󰀓
2q−2
2q−1

󰀔
min{ 1

m
, 1
p
}
󰀖
. (18)

for constants C󰂃, c󰂃 depending on 󰂃.

Proof By Theorem 2.2 in Howard and Newman (2001), for every 󰂃 ∈ (0, 1
8p+6), |ℓ

p
p(0, z,H1)−

µ󰀂z󰀂| ≤ 󰀂z󰀂 1
2
+󰂃 with probability at least 1−C󰂃 exp(−c󰂃󰀂z󰀂󰂃min{1,m

p
}
). Via (nλ)

1
mu = z, we

obtain

|(nλ)
p
m ℓpp(0, u,Hnλ)− µ(nλ)

1
m 󰀂u󰀂| ≤

󰀓
(nλ)

1
m 󰀂u󰀂

󰀔 1
2
+󰂃

=⇒ |(nλ)
1
m
+ p−1

m ℓpp(0, u,Hnλ)− µ(nλ)
1
m 󰀂u󰀂| ≤

󰀓
(nλ)

1
m 󰀂u󰀂

󰀔 1
2
+󰂃

=⇒ |(nλ)
p−1
m ℓpp(0, u,Hnλ)− µ󰀂u󰀂| ≤ 󰀂u󰀂 1

2
+󰂃

(nλ)
1
m
( 1
2
−󰂃)

(19)

with probability

1− C󰂃 exp

󰀕
−c󰂃

󰀓
(nλ)

1
m 󰀂u󰀂

󰀔󰂃min{1,m/p}
󰀖
. (20)

We observe that (16) implies 󰀂u󰀂 ≥ (nλ)
−(1−2󰂃)

m(2q−1−2󰂃) ; thus the right hand side of (19) can be
bounded by

󰀂u󰀂 1
2
+󰂃

(nλ)
1
m
( 1
2
−󰂃)

≤ 󰀂u󰀂 1
2
+󰂃

󰀂u󰀂−q+1/2+󰂃
= 󰀂u󰀂q.

Similarly (nλ)1/m 󰀂u󰀂 ≥ (nλ)1/m
󰀗
(nλ)

−(1−2󰂃)
m(2q−1−2󰂃)

󰀘
= (nλ)

2q−2
m(2q−1−2󰂃) ≥ (nλ)

2q−2
m(2q−1) , assuming

nλ > 1. Substituting this into (20) yields (18).

Remark 4.5 There is an interesting trade-off controlled by q. Taking q larger yields a
faster rate of convergence in (17), but one that only applies to larger u in (16). As q → 1+

we approach a very natural lower bound, 󰀂u󰀂 ≥ (nλ)−1/m, but the probability bound (18)
becomes constant with respect to n, and the metric approximation error (17) becomes large.
We shall focus exclusively on the q = 2 case henceforth, as this choice leads to the best
spectral convergence rates.

Our PPP metric approximation result (Theorem 4.3) puts together the pieces dis-
cussed in the preceding sections to conclude that locally µLpp(x, y) is well approximated
by ℓ̃pp(x, y,Hnρ):
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Proof [Theorem 4.3] Let C̃1, C̃2 be as in Lemma E.4 and let L denote Lpp(x, y). We have,
for 󰀂u󰀂 ≤ CM,ρ,p,

ℓ̃pp(x, y,Hnρ)

=ℓ̃pp(x, y,Hnρ ∩ Bx(R)) (Lemma E.1, prob. 1− p1)

=
󰀃
1± Cp(mK +R−2)󰀂u󰀂2

󰀄
ℓ̃pp(0, u,Hnρx) (Lemma E.2)

=
󰀃
1± Cp(mK +R−2)󰀂u󰀂2

󰀄 󰀓
µLpp(0, u, ρx)± C̃1L2 ± C̃2L3

󰀔
(Lemma E.4, prob. 1− p2)

=
󰀃
1± Cp(mK +R−2)󰀂u󰀂2

󰀄 󰀓󰀃
1± Cp(mK +R−2)󰀂u󰀂2

󰀄
µL ± C̃1L2 ± C̃2L3

󰀔
(Lemma E.5)

=µL ± C̃1L2 + C̃ ′
2L3,

where C̃ ′
2 = Cp,d,β

󰀃
R−2 +K(1 + L1) + L2

1 + L2

󰀄
now includes the reach, p1 ≤ p2 = C󰂃n exp

󰀓
−c󰂃( n

2β )
2󰂃
3
min{ 1

m
, 1
p
}
󰀔
,

and we have utilized 󰀂u󰀂2 = ρ(x)
2(p−1)

m L2 +O(L3) (see proof of Lemma E.4).

We note Theorem 4.3 is closely related to existing results in the Fermat distance lit-
erature, especially Theorem 1 in Hwang et al. (2016) and Theorem 2.3 in Groisman et al.
(2022). Our results are local (showing ℓ̃pp(xi, xj) ≈ µLpp(xi, xj) when xi, xj are close) but
quantitative, giving a sharp third order estimate on the local deviations. In contrast, Hwang
et al. (2016) and Groisman et al. (2022) provide macroscale/global convergence results, i.e.,
xi, xj are arbitrary points in M, but of an asymptotic nature. At a more technical level,
we note that from the proof of (Hwang et al., 2016, Lemma 10), a result similar to Lemma
E.2 can be deduced:

ℓ̃pp(x, y,Hnρ ∩ Bx(R)) = (1± δ) ℓ̃pp(0, u,Hnρx).

5. Continuum Limits of Graph Laplace Operators

In this section we show that discrete graph Laplacians built from discrete Fermat distances
converge to continuum Laplace operators built from continuum Fermat distances. While
this analysis is similar to the arguments of Burago et al. (2015) and Garćıa Trillos et al.
(2019), new ideas are needed. Indeed:

1. In Burago et al. (2015) convergence of eigenvectors of ∆Γdg,h to eigenfunctions of ∆0

associated to (M, g) is studied. Here, Γdg ,h denotes the graph constructed using the
kernel 1

ωm
1[0,1], bandwidth parameter h, and the geodesic distance dg. In this case

the graph weights are degree-normalized and not chosen as in (5).

2. In Garćıa Trillos et al. (2019) convergence of eigenvectors of ∆Γd0,h to eigenfunctions
of the random walk Laplacian ∆2 associated to (M, g) is studied. Here, Γd0,h denotes
the graph constructed using a kernel η satisfying certain mild assumptions, bandwidth
parameter h, and Euclidean distance function d0(x, y) = 󰀂x− y󰀂2.

Like Garćıa Trillos et al. (2019) our discrete and continuum operators are defined using two
different metrics. Unlike Garćıa Trillos et al. (2019), the relationship between these two
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metrics is not straightforward. Indeed, the key new ingredient is the refined approximation
bounds µLpp(x, y) ≈ ℓ̃pp(x, y) of Section 4.2. Nonetheless, we follow the approach outlined in
Garćıa Trillos et al. (2019). As many of the required technical lemmas can be applied with
only minor modifications, instead of reproving them we indicate how the proof presented in
Garćıa Trillos et al. (2019) should be modified.

We begin by summarizing some relevant definitions and notation. Let νn := 1
n

󰁓n
i=1 δxi

denote the empirical measure of Xn. Let T :M→ X denote a transportation map from ν to
νn, i.e., T#ν = νn where the pushforward measure T#ν is defined via T#ν(U) = ν(T−1(U)).
We define

dg∞(ν, νn) := min
T : T#ν=νn

ess sup
x∈M

dg(x, T (x)), (21)

Henceforth, we shall fix T to be a minimizer of (21). Later we shall use (Garćıa Trillos
et al., 2019, Theorem 2) to quantify dg∞(ν, νn). For now, we note that we may assume
dg∞(ν, νn) ≪ h. T induces a partition {Ui}ni=1 of M via Ui = T−1(xi). Using this partition,
we define the discretization operator:

P : L2 (M, ν) → L2 (X , νn) ,

(Pf)(xi) = n

󰁝

Ui

f(x)dν(x).
(22)

Finally, we define a non-local energy

Ẽr(f) =

󰁝

M

󰁝

M
η

󰀕
dg(x, y)

r

󰀖
|f(y)− f(x)|2 dν(x)dν(y),

which will be used to approximate the continuous Dirichlet energy.

5.1 Technical Results for Kernels and Degrees

We first derive some supporting results regarding Fermat kernels and degrees; see Appendix
F for the proofs. The following corollary applies Theorem 3.2 to kernels and is critical for
what follows.

Corollary 5.1 Let δ := 2µ−1C1h + 4µ−1C2h
2 ≤ 1

2 , where C1, C2 are as in Theorem 3.2.

Define 󰁥h+ := h(1 + δ), 󰁥h− := h(1 − δ). Then for n large enough, with probability at least

1− C󰂃n
3 exp

󰀓
−c󰂃( n

4β )
󰂃

2p+1
min{ 1

m
, 1
p
}
󰀔
, we have for all xi, xj ∈ X :

η

󰀣
µLpp(xi, xj)

󰁥h−

󰀤
≤ η

󰀣
ℓ̃pp(xi, xj)

h

󰀤
≤ η

󰀣
µLpp(xi, xj)

󰁥h+

󰀤
, (23)

where C󰂃, c󰂃 are constants depending on 󰂃, η = 1
ωm
1[0,1] and h ≥ 4µβ

(p−1)
m (nβ/2)−

1
m
( 1
3
−󰂃).

The following lemma is a minor modification of (Garćıa Trillos et al., 2019, Lemma 18)
and bounds degrees computed with respect to the (discrete) Fermat distance.

Lemma 5.2 For C1, C2 as in Theorem 3.2 and Kp as in Theorem B.2:

󰀏󰀏󰀏mℓ̃pp,h,i
− ρp(xi)

󰀏󰀏󰀏 ≤ Cβp
󰀗󰀕

L1

β
+ C1m

󰀖
h+m(Kp + C2µ)h

2 +mωm
dg∞(ν, νn)

h

󰀘
.
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5.2 Analysis of Discrete Dirichlet Energies

Next, we consider the relationship between the discrete Dirichlet energies induced by dg
and d0 respectively, where d0 is any distance function approximating dg as quantified by
the following assumption:

Assumption 5.3 Let dg be the geodesic distance function on (M, g) while d0 is any dis-
tance function on Xn. Suppose that, for appropriate kernel sizes h > 0 there exists δ := δ(h)
and εn → 0+ such that for all xi, xj ∈ Xn:

η

󰀣
dg(xi, xj)

󰁥h−

󰀤
≤ η

󰀕
d0(xi, xj)

h

󰀖
≤ η

󰀣
dg(xi, xj)

󰁥h+

󰀤

holds with probability 1− εn where 󰁥h+ = h(1 + δ) and 󰁥h− = h(1− δ).

For brevity, for c = 0, g we write wc,h
i,j instead of wdc,h

i,j and bc,h(·) instead of bdc,h(·); see
Section 2.2 for definitions.

Theorem 5.4 (General Dirichlet Energy Perturbation) Suppose Assumption 5.3 holds
for d0, dg and h > 0. Then, for all u : X → R and with probability 1− εn,

(1− Cmδ) bg,
󰁥h−(u) ≤ b0,h(u) ≤ (1 + Cmδ) bg,

󰁥h+(u).

Proof We simply compare the Dirichlet energies:

bg,
󰁥h−(u) =

m+ 2

n󰁥h2−

󰁛

i,j

w
g,󰁥h−
i,j (u(xi)− u(xj))

2

=
m+ 2

n2󰁥hm+2
−

󰁛

i,j

η

󰀣
dg(xi, xj)

󰁥h−

󰀤
(u(xi)− u(xj))

2

(a)

≤
󰀕

1

1− δ

󰀖m+2 m+ 2

n2hm+2

󰁛

i,j

η

󰀕
d0(xi, xj)

h

󰀖
(u(xi)− u(xj))

2

⇒ (1− δ)m+2 bg,
󰁥h−(u) ≤ m+ 2

nh2

󰁛

i,j

w0,h
i,j (u(xi)− u(xj))

2 = b0,h(u),

where we use Assumption 5.3 in (a). For δ small enough (1 − δ)m+2 ≤ 1 − Cmδ and the
stated bound follows. The proof of the upper bound is similar.

Next, we relate the corresponding eigenvalues.

Theorem 5.5 Suppose Assumption 5.3 holds for d0, dg and h > 0. Recall that λk(∆Γc,h)
denotes the k-th eigenvalue of the random walk Laplacian of the graph Γc,h := (X ,W c,h) for
c = 0, g. Then with probability 1− εn

λk(∆Γ0,h) ≤
󰀕
1 + Cmδ + CβL1h+ Cβ2

dg∞(ν, νn)

h
+ Cβ,m,L1h

2 + Cm,β,L1δh

󰀖
λk(∆Γg,

󰁥h+ ),

λk(∆Γ0,h) ≥
󰀕
1− Cmδ − CβL1h− Cβ2

dg∞(ν, νn)

h
− Cβ,m,L1h

2 − Cm,β,L1δh

󰀖
λk(∆Γg,

󰁥h− ),

where dg∞(ν, νn) is as defined in (21).
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Proof As discussed in Section 2.2,

λk(∆Γc,h′ ) = min
Lk

max
u∈Lk\{0}

bc,h
′
(u)

󰀂u󰀂2c,m
for c = 0, g and h′ > 0.

First, we compare degrees, which we explicitly decorate with a value of h. From Assump-
tion 5.3 we deduce that

m
g,󰁥h−,i :=

1

n󰁥hm−

n󰁛

j=1

η

󰀣
dg(xi, xj)

󰁥h−

󰀤
≤

󰀕
1

1− δ

󰀖m 1

nhm

n󰁛

j=1

η

󰀕
d0(xi, xj)

h

󰀖

≤ (1 + Cmδ)
1

nhm

n󰁛

j=1

η

󰀕
d0(xi, xj)

h

󰀖
= (1 + Cmδ)m0,h,i, (24)

and similarly m
g,󰁥h+,i ≥ (1− Cmδ)m0,h,i, where both hold with probability 1 − εn. Using

(Garćıa Trillos et al., 2019, Lemma 18) we get

max
i=1,...,n

|m
g,󰁥h−,i −m

g,󰁥h+,i| ≤ max
i=1,...,n

|m
g,󰁥h−,i − ρ(xi)|+ max

i=1,...,n
|m

g,󰁥h+,i − ρ(xi)|

≤ CL1h+ Cβ
dg∞(ν, νn)

h
+ CβmKh2. (25)

for dg∞(ν, νn) as defined in (21). Also, letting i󰂏 := argmini=1,...,nmg,󰁥h±,i,

min
i=1,...,n

m
g,󰁥h±,i = ρ(xi󰂏) +

󰀓
m

g,󰁥h±,i󰂏 − ρ(xi󰂏)
󰀔

≥ 1

β
− CL1h− Cβ

dg∞(ν, νn)

h
− CβmKh2.

So,

m0,h,i ≥
1

1 + Cmδ
m

g,󰁥h−,i from (24)

≥ (1− Cmδ)
󰀓
m

g,󰁥h+,i −m
g,󰁥h+,i +m

g,󰁥h−,i

󰀔

≥ (1− Cmδ)

󰀕
m

g,󰁥h+,i − max
i=1,...,n

|m
g,󰁥h−,i −m

g,󰁥h+,i|
󰀖

≥ (1− Cmδ)

󰀕
m

g,󰁥h+,i − CL1h− Cβ
dg∞(ν, νn)

h
− CβmKh2

󰀖
from (25)

≥ (1− Cmδ)

󰀣
m

g,󰁥h+,i −
m

g,󰁥h+,i
mini=1,...,nmg,󰁥h±,i

󰀕
CL1h+ Cβ

dg∞(ν, νn)

h
+ CβmKh2

󰀖󰀤

≥
󰀕
1−

󰀕
Cmδ + CβL1h+ Cβ2

dg∞(ν, νn)

h
+ Cβ,m,L1h

2 + Cm,β,L1δh

󰀖󰀖
m

g,󰁥h+,i

:= (1− E)m
g,󰁥h+,i

and similarly, m0,h,i ≤ (1 + E)m
g,󰁥h−,i, where we have ignored certain higher order terms.

We now compare norms.

󰀂u󰀂20,m,h =

n󰁛

i=1

m0,h,iu
2
i ≤

n󰁛

i=1

(1 + E)m
g,󰁥h−,iu

2
i = (1 + E)󰀂u󰀂2

g,m,󰁥h−
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and similarly 󰀂u󰀂20,m,h ≥ (1− E) 󰀂u󰀂2
g,m,󰁥h+

. Now fix any subspace Lk of dimension k.

max
u∈Lk\{0}

b0,h(u)

󰀂u󰀂20,m,h

≤ (1 + E) max
u∈Lk\{0}

b0,h(u)

󰀂u󰀂2
g,m,󰁥h+

(a)

≤ (1 + E)(1 + Cmδ) max
u∈Lk\{0}

bg,
󰁥h+(u)

󰀂u󰀂2
g,m,󰁥h+

,

where we have used Theorem 5.4 in (a). But Lk was arbitrary, and so

λk(∆Γ2,h) = min
Lk : dim(Lk)=k

max
u∈Lk\{0}

b0,h(u)

󰀂u󰀂20,m,h

≤ (1 + E)(1 + Cmδ) min
Lk : dim(Lk)=k

max
u∈Lk\{0}

bg,
󰁥h+(u)

󰀂u󰀂2
g,m,󰁥h+

= (1 + E)(1 + Cmδ)λk(∆Γ2,
󰁥h+ ) .

Simplifying (1+E)(1+Cmδ), ignoring higher order terms e.g. δh2, δdg∞(ν, νn), and adjust-
ing constants as necessary yields the stated upper bound. A similar argument yields the
lower bound.

5.3 Discrete-to-Continuum Convergence of Eigenvalues

With d0 as in Section 5.2 we now show the eigenvalues of ∆Γd0,h converge to those of ∆2

provided Assumption 5.3 holds. Later, we specialize this to d0 = ℓ̃pp and dg = µLpp.

Lemma 5.6 (cf. Lemma 13, part (ii) Garćıa Trillos et al. (2019)) Suppose Assump-
tion 5.3 holds. Then with probability 1− εn, for all f ∈ H1(M),

bd0h (Pf) ≤
󰀕
1 + CβL1(1 + δ)h+ Cm

dg∞(ν, νn)

(1 + δ)h
+ CmKp(1 + 3δ)h2

󰀖
D(f) .

where

D(f) :=

󰁝

M
g(∇f,∇f)dVol. (26)

Proof We indicate how to modify the proof. Recalling ση in their notation is 1
m+2 :

bd0h (Pf) ≤ m+ 2

hm+2

󰁛

i

󰁛

j

󰁝

Ui

󰁝

Uj

η

󰀕
d0(xi, xj)

h

󰀖
|f(y)− f(x)|2 dν(y)dν(x) (27)

≤ m+ 2

hm+2

󰁛

i

󰁛

j

󰁝

Ui

󰁝

Uj

η

󰀕
dg(xi, xj)

󰁥h+

󰀖
|f(y)− f(x)|2 dν(y)dν(x) (28)

≤ m+ 2

hm+2

󰁝

M

󰁝

M
η

󰀕
(dg(x, y)− 2dg∞(ν, νn))+

󰁥h+

󰀖
|f(y)− f(x)|2 dν(y)dν(x) (29)

=
m+ 2

hm+2

󰁝

M

󰁝

M
η

󰀣
dg(x, y)

󰁥h+ + 2dg∞(ν, νn)

󰀤
|f(y)− f(x)|2 dν(y)dν(x) (30)
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=
m+ 2

hm+2
Ẽ󰁥h++2dg∞(ν,νn)

,

where (27) is shown in the proof of Lemma 13, part (ii) Garćıa Trillos et al. (2019), (28)
follows from Assumption 5.3, (29) follows as the Ui have diameter at most 2dg∞(ν, νn), and

(30) follows from the identity η
󰀓
(t−s)+

r

󰀔
= η

󰀓
t

r+s

󰀔
for r, t, s > 0, see (Garćıa Trillos et al.,

2019, Lemma 10). From (Garćıa Trillos et al., 2019, Lemma 5):

Ẽ󰁥h++2dg∞(ν,νn)
(f) ≤

󰀓
1 + L1β(󰁥h++2dg∞(ν, νn))

󰀔󰀕
1 + CmK

󰀓
󰁥h++2dg∞(ν, νn)

󰀔2󰀖

󰀓
󰁥h++2dg∞(ν, νn)

󰀔m+2 D(f)

m+ 2
.

Simplifying as in Garćıa Trillos et al. (2019) and using dg∞(ν, νn) ≪ h < 󰁥h+ := h(1 + δ)
yields the stated bound.

Proof [Proof of Theorem 3.3] By Corollary 5.1, as long as

h ≥ 4µβ
(p−1)
m (nβ/2)−

1
m
( 1
3
−󰂃), (31)

Assumption 5.3 holds with dg = µLpp and d0 = ℓ̃pp where

δ = 2µ−1C1h+ 4µ−1C2h
2. (32)

From Theorem 5.5,

λk(Γ
ℓ̃,h)− λk(Γ

L,󰁥h−) ≥ −Eλk(Γ
L,󰁥h−) and λk(Γ

ℓ̃,h)− λk(Γ
L,󰁥h+) ≤ Eλk(Γ

L,󰁥h+) (33)

where

E = Cmδ + CβL1h+ Cβ2
dg∞(ν, νn)

h
+ Cβ,m,L1h

2 + Cm,β,L1δh. (34)

From (Garćıa Trillos et al., 2019, Theorem 4, part 1) we have

λk(Γ
L,󰁥h+)− λk(∆2,p) ≤ δ1λk(∆2,p), (35)

where

δ1 = C̃

󰀥
L1

󰁥h+ +
dg∞(ν, νn)

󰁥h+
+

󰁴
λk(∆2,p)d

g
∞(ν, νn) +Kp

󰁥h2+ + 󰀂m− ρp󰀂∞

󰀦
(36)

and C̃ depends only on m,β, p and L1. We do not retain the term proportional to h2/R2

in (Garćıa Trillos et al., 2019, eq. (1.16)), as ΓL,
󰁥h+ is constructed using geodesic distances

between points, not Euclidean distances. More precisely, this discrepancy arises from using
Lemma 5.6 in place of (Garćıa Trillos et al., 2019, Lemma 13). Similarly, from (Garćıa
Trillos et al., 2019, Theorem 4, part 2) we have

λk(Γ
L,󰁥h−)− λk(∆2,p) ≥ −δ2λk(∆2,p), (37)
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where

δ2 = C̃

󰀥
L1

󰁥h− +
dg∞(ν, νn)

󰁥h−
+

󰁴
λk(∆2,p)d

g
∞(ν, νn) +Kp

󰁥h2− + 󰀂m− ρp󰀂∞

󰀦
. (38)

Combining (35) and (33) yields:

λk(Γ
ℓ̃,h)− λk(∆2,p) = λk(Γ

ℓ̃,h)− λk(Γ
L,󰁥h+) + λk(Γ

L,󰁥h+)− λk(∆2,p)

≤ Eλk(Γ
L,󰁥h+) + δ1λk(∆2,p)

≤ E(1 + δ1)λk(∆2,p) + δ1λk(∆2,p)

= (E + δ1 + Eδ1) (∆2,p).

(39)

Similarly, combining (37) and (33)

λk(Γ
ℓ̃,h)− λk(∆2,p) ≥ − (E + δ2 + Eδ2)λk(∆2,p) . (40)

Using (32), (34), (36) and (38) the error terms in (39) and (40) can be expressed as

E + δ1 + Eδ1 = Cβ,p,L1,mh+ Cβ2
dg∞(ν, νn)

h
+ Cβ,m,L1,L2,p,Kp,Rh

2 +O(h3 + dg∞(ν, νn)),

E + δ2 + Eδ2 = Cβ,p,L1,mh+ Cβ2
dg∞(ν, νn)

h
+ Cβ,m,L1,L2,p,Kp,Rh

2 +O(h3 + dg∞(ν, νn)).

From (Garćıa Trillos et al., 2019, Theorem 2) we have

dg∞(ν, νn) = O

󰀕
log(n)km

n1/m

󰀖

w.h.p, where km = 3/4 if m = 2 and km = 1/m if m ≥ 3. In Garćıa Trillos et al. (2019)
contributions to the approximation error (δ1 and δ2 in our notation) from h and dg∞(ν, νn)

are optimally balanced by setting h =
󰁳
dg∞(ν, νn) = O

󰀓
log(n)kmn−

1
2m

󰀔
. We cannot do so

here as hmust satisfy the lower bound of (31). Instead, we take h = 4µβ
(p−1)
m (nβ)−

1
m
( 1
3
−󰂃) =

O(n−
1
3m

+ 󰂃
m ). Noting that Kp may be bounded by an expression involving K,L1, L,m, and

p (see Appendix B) we may write Cβ,m,L1,L2,p,K,R instead of Cβ,m,L1,L2,p,Kp,R. We now
identify the leading and second-order terms in (39) and (40). Observe that

h2 = O(n−
2
3m

+ 2󰂃
m ) ≫ dg∞(ν, νn) and h2 ≫ O(n−

2
3m

− 󰂃
m ) =

dg∞(ν, νn)

h
.

retaining only terms proportional to h and h2 yields the stated error bounds.

Remark 5.7 The dependence of h on n is determined by Corollary 5.1, which is in turn
determined by Proposition 4.4. One might enquire as to whether a better choice of q in
Proposition 4.4 could result in a better error bound in Theorem 3.3. In fact it is straight-
forward (but tedious) to trace the dependency on q through Theorem 4.3 and Corollary 5.1
to the proof of Theorem 3.3, whence a straightforward computation reveals q = 2 is optimal.

Remark 5.8 Although we state the above theorem in terms of (discrete and continuous)
Fermat distance, with superficial modifications it can be applied to any Riemannian distance
dg(·, ·) and any discrete approximation d0(·, ·) satisfying Assumption 5.3.
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5.4 Discrete-to-Continuum Convergence of Eigenvectors

In this section we relate eigenvectors of the Fermat graph Laplacian ∆
Γℓ̃,h to the eigenfunc-

tions of the operator ∆2,p by proving Theorem 3.5. The proof of this result relies on the
relationship between Dirichlet energies that we established in previous sections as well as
on the consistency of eigenvalues from Theorem 3.3.

Throughout this section let ψn
1 , . . . ,ψ

n
n denote the eigenvectors of ∆

Γℓ̃,h normalized ac-
cording to 󰀂·󰀂2m. Let f be an eigenfunction of ∆2,p with eigenvalue λ2 := λ2(∆2,p), normal-
ized according to 󰀂·󰀂2L2(M,ρ2pdVolp)

. Recall that, by assumption, this eigenfunction is unique

up to sign. We shall use C decorated with subscripts to denote a constant depending on
the indicated manifold or density related properties, but not on n.

Lemma 5.9 Define 1X : X → R as 1X (xi) = 1 for all xi ∈ X . Then

ψn
1 = 󰀂1X 󰀂−1m 1X w.l.o.g (41)

〈Pf,1X 〉m ≤ Cβ,p,m,L1n
− 1
3m

+ 󰂃
m + Cm,β,p,L1,L2,Kn

− 2
3m

+ 2󰂃
m (42)

1

2
β−2p ≤ 󰀂1X 󰀂2m ≤ 1

2
β2p. (43)

Proof As is well-known, the smallest eigenvalue of ∆
Γℓ̃,h is 0, and the associated eigenvector

is a multiple of 1X . Up to sign, 󰀂1X 󰀂−1m 1X is the unique multiple of 1X that is normalized
according to 󰀂 · 󰀂m, proving (41).

Using the definition of the operator P and recalling that Ui = T−1(xi),

〈Pf,1X 〉m =
1

n

n󰁛

i=1

Pf(xi)mi

=

n󰁛

i=1

mi

󰁝

Ui

f(x)ρp(x)dVolp(x)

=

n󰁛

i=1

󰁝

Ui

f(x)ρ2p(x)dVolp(x) +

n󰁛

i=1

󰁝

Ui

f(x)(mi − ρp(x))ρp(x)dVolp(x)

=:

n󰁛

i=1

󰁝

Ui

f(x)ρ2p(x)dVolp(x) + cn

= cn,

where we have used the fact that f is orthogonal to 1M—the first eigenfunction of ∆2,p—
w.r.t. the inner product 〈·, ·〉L2(M,ρ2pdVolp)

:

n󰁛

i=1

󰁝

Ui

f(x)ρ2p(x)dVolp(x) =

󰁝

M
f(x)ρ2p(x)dVolp(x) = 〈f,1M〉L2(M,ρ2pdVolp)

= 0.

In turn, the error term cn can be bounded as

|cn| ≤ 󰀂m− ρp󰀂∞
󰁝

M
|f(x)|ρp(x)dVolp ≤ βp󰀂f󰀂L2(M,ρ2pdVolp)

󰀂m− ρp󰀂∞

27
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= βp󰀂m− ρp󰀂∞ ≤ Cβ,p,m,L1n
− 1
3m

+ 󰂃
m + Cm,β,p,L1,L2,Kn

− 2
3m

+ 2󰂃
m (44)

where we have used Lemma 5.2, the value of h given in the assumptions, simplified as in
the proof of Theorem 3.3, and ignored higher order terms (i.e. those ≪ n−

2
3m

+ 2󰂃
m such as

terms proportional to dg∞(ν, νn)). This proves (42). A similar computation reveals that

󰀂1X 󰀂2m =
1

n

n󰁛

i=1

mi ≥
󰁝

M
ρ2pdVolp − 󰀂m− ρp󰀂∞

(a)

≥ 1

2

󰁝

M
ρ2pdVolp ≥

1

2
β−2p,

proving the lower bound of (43). The upper bound follows similarly.

Lemma 5.10 Let v : X → R be the function v := Pf − 〈Pf,ψn
1 〉mψn

1 and let v̂ := v/󰀂v󰀂m
denote its normalization. Let P2 : RX → RX denote the projection onto the eigenspace
associated to λ2(Γ

ℓ̃,h). Then:

󰀂v̂ − P2v̂󰀂2m ≤ bℓ̃h(v̂)− λ2(Γ
ℓ̃,h)

λ3(Γℓ̃,h)− λ2(Γℓ̃,h)
(45)

󰀂v󰀂m ≥ 1− Cβ,p,m,L1n
− 1
3m

+ 󰂃
m − Cm,β,p,L1,L2,Kn

− 2
3m

+ 2󰂃
m (46)

Proof By construction, 〈v,ψn
1 〉m = 0. So, expanding in the eigenbasis yields

λ3(Γ
ℓ̃,h)󰀂v̂ − P2v̂󰀂2m = λ3(Γ

ℓ̃,h)

n󰁛

i=3

(〈v̂,ψn
i 〉m)2 ≤

n󰁛

i=3

λi(Γ
ℓ̃,h)(〈v̂,ψn

i 〉m)2

= bℓ̃h(v̂)− λ2(Γ
ℓ̃,h)(〈v̂,ψn

2 〉m)2.

Because
󰀂v̂ − P2v̂󰀂2m = 󰀂v̂ − 〈v̂,ψn

2 〉mψn
2 󰀂2m = 1− (〈v̂,ψn

2 〉m)
2

it follows that
(λ3(Γ

ℓ̃,h)− λ2(Γ
ℓ̃,h))󰀂v̂ − P2v̂󰀂2m + λ2(Γ

ℓ̃,h) ≤ bℓ̃h(v̂),

and rearranging yields (45). As for (46),

󰀂v󰀂m =
󰀐󰀐Pf − 󰀂1X 󰀂−1m 〈Pf,1X 〉mψn

1

󰀐󰀐
m

≥ 󰀂Pf󰀂m − |〈Pf,1X 〉m| 󰀂1X 󰀂−1m

From the proof of Lemma 13 in Garćıa Trillos et al. (2019) we know that

󰀏󰀏󰀂Pf󰀂2m − 1
󰀏󰀏 =

󰀏󰀏󰀏󰀂Pf󰀂2m − 󰀂f󰀂2L2(M,ρ2pdVolp)

󰀏󰀏󰀏

≤ C(󰀂m− ρp󰀂∞ + dg∞(ν, νn)) + Cdg∞(ν, νn)λ
1/2
2 .

(47)

Appealing to Lemma 5.2 and ignoring higher order terms, as was done in the proof of
Lemma 5.9, we obtain

󰀂Pf󰀂2m ≥ 1− Cβ,p,m,L1n
− 1
3m

+ 󰂃
m − Cm,β,p,L1,L2,Kn

− 2
3m

+ 2󰂃
m . (48)
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Consequently we have

󰀂v󰀂m ≥ 1− Cβ,p,m,L1n
− 1
3m

+ 󰂃
m − Cm,β,p,L1,L2,Kn

− 2
3m

+ 2󰂃
m ,

where the constants Cβ,p,m,L1 and Cm,β,p,L1,L2,K have changed to incorporate the bounds
of (42) and (43) of Lemma 5.9.

Proof [Proof of Theorem 3.5] From Lemma 5.6, and the fact that D(f) = λ2 as f is an
eigenvector, we know that

bℓ̃h(Pf) ≤
󰀕
1 + CβL1h+ Cm

dg∞(ν, νn)

h
+ CmKph

2

󰀖
λ2. (49)

where we have assumed, as in Corollary 5.1, that h is sufficiently small so that δ ≤ 1
2 and

adjusted the constants C accordingly. Let v be as in Lemma 5.10. By the invariance of
bℓ̃h(·) to shifts, bℓ̃h(v) = bℓ̃h(Pf). Appealing to (49) it follows that

bℓ̃h(v) = bℓ̃h(Pf) ≤
󰀕
1 + CβL1h+ Cm

dg∞(ν, νn)

h
+ CmKph

2

󰀖
λ2 (50)

≤ λ2 + Cβ,L1λ2n
− 1
3m

+ 󰂃
m + Cm,β,p,L1,L2,Kλ2n

− 2
3m

+ 2󰂃
m (51)

where, as before, we have simplified by substituting in for h and ignoring higher order terms.
Now observe that

󰀂v̂ − P2v̂󰀂2m =
1

󰀂v󰀂2m
󰀂v − P2v󰀂2m

=
1

󰀂v󰀂2m
󰀂Pf − P2Pf − 〈Pf,ψn

1 〉mψn
1 󰀂

2
m as P2ψ

n
1 = 0

≥ 1

2󰀂v󰀂2m

󰀓
󰀂Pf − P2Pf󰀂2m − 2 |〈Pf,1X 〉|2 󰀂1X 󰀂m−2

󰀔

and consequently

󰀂Pf − P2Pf󰀂2 ≤ 2󰀂v󰀂2m󰀂v̂ − P2v̂󰀂2m + 2 |〈Pf,1X 〉|2 󰀂1X 󰀂m−2

(a)

≤ 2󰀂v󰀂2mbℓ̃h(v̂)− 2󰀂v󰀂2mλ2(Γℓ̃,h)

λ3(Γℓ̃,h)− λ2(Γℓ̃,h)
+ 2 |〈Pf,1X 〉|2 󰀂1X 󰀂m−2

(b)
=

2bℓ̃h(v)− 2󰀂v󰀂2mλ2(Γℓ̃,h)

λ3(Γℓ̃,h)− λ2(Γℓ̃,h)
+ 2 |〈Pf,1X 〉|2 󰀂1X 󰀂m−2

where (a) follows from Lemma 5.10 while (b) follows from the 2-homogeneity of bℓ̃h(·):

󰀂v󰀂2mbℓ̃h(v̂) = bℓ̃h(󰀂v󰀂mv̂) = bℓ̃h(v).

To conclude we bound terms by powers of n, ignoring higher order terms as we have done
before. From the error estimates of Theorem 3.3

λ2(Γ
ℓ̃,h) ≤ λ2

󰀓
1 + Cβ,p,m,L1n

− 1
3m

+ 󰂃
m + Cβ,p,m,L1,L2,Kp,Rn

− 2
3m

+ 2󰂃
m

󰀔
.
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Bounds on bℓ̃h(v), 󰀂v󰀂2m, |〈Pf,1X 〉|, and 󰀂1X 󰀂m−2 follow from (51), Lemma 5.10 and

Lemma 5.9 respectively, while bounds on
󰀓
λ3(Γ

ℓ̃,h)− λ2(Γ
ℓ̃,h)

󰀔−1
follow from Lemma 5.11.

Combining these bounds and ignoring higher order terms,

󰀂Pf − P2(Pf)󰀂2m ≤ 1

λ3 − λ2

󰁫
Cβ,p,m,L1n

− 1
3m

+ 󰂃
m + Cβ,p,m,L1,L2,K,Rn

− 2
3m

+ 2󰂃
m

󰁬
λ2

+ Cβ,p,m,L1n
− 2
3m

+ 2󰂃
3m .

For n large ψn
2 is simple, so P2(Pf) = 󰀂P2(Pf)󰀂mψn

2 and thus

󰀂Pf − ψn
2 󰀂

2
m ≤ 2 󰀂Pf − P2(Pf)󰀂2m + 2 󰀂P2(Pf)− ψn

2 󰀂
2
m

= 2 󰀂Pf − P2(Pf)󰀂2m + 2 (1− 󰀂P2(Pf)󰀂m)2

≤ 2 󰀂Pf − P2(Pf)󰀂2m + 2 (1− 󰀂(Pf)󰀂m + 󰀂Pf − P2(Pf)󰀂m)2

≤ 6 󰀂Pf − P2(Pf)󰀂2m + 4 (1− 󰀂(Pf)󰀂m)2

≤ 6 󰀂Pf − P2(Pf)󰀂2m + 4
󰀏󰀏1− 󰀂(Pf)󰀂2m

󰀏󰀏

where in the final line we have used the following easily verifiable inequality:

(a− b)2 ≤ |a2 − b2| for a, b ≥ 0. (52)

Combining the above with (48) one obtains

󰀂Pf − ψn
2 󰀂

2
m ≤ 1

λ3 − λ2

󰁫
Cβ,p,m,L1n

− 1
3m

+ 󰂃
m + Cβ,p,m,L1,L2,K,Rn

− 2
3m

+ 2󰂃
m

󰁬
λ2

+ Cβ,p,m,L1n
− 1
3m

+ 󰂃
m + Cm,β,p,L1,L2,Kn

− 2
3m

+ 2󰂃
m .

Lemma 5.11 With notation as in the proof of Theorem 3.5,

1

λ3(Γℓ̃,h)− λ2(Γℓ̃,h)
≤ 1

λ3 − λ2
− λ3

(λ3 − λ2)2

󰁫
Cβ,p,m,L1n

− 1
3m

+ 󰂃
m + Cβ,p,m,L1,L2,K,Rn

− 2
3m

+ 2󰂃
m

󰁬

− λ2
(λ3 − λ2)2

󰁫
Cβ,p,m,L1n

− 1
3m

+ 󰂃
m + Cβ,p,m,L1,L2,Kp,Rn

− 2
3m

+ 2󰂃
m

󰁬
.

Proof Using the error estimates of Theorem 3.3 again and letting λ3 := λ3(∆2,p),

1

λ3(Γℓ̃,h)− λ2(Γℓ̃,h)
=

1

(λ3(Γℓ̃,h)− λ3) + (λ3 − λ2) + (λ2 − λ2(Γℓ̃,h))

≤ 1

λ3 − λ2
− λ3

(λ3 − λ2)2

󰁫
Cβ,p,m,L1n

− 1
3m

+ 󰂃
m + Cβ,p,m,L1,L2,K,Rn

− 2
3m

+ 2󰂃
m

󰁬

− λ2
(λ3 − λ2)2

󰁫
Cβ,p,m,L1n

− 1
3m

+ 󰂃
m + Cβ,p,m,L1,L2,Kp,Rn

− 2
3m

+ 2󰂃
m

󰁬
.
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Remark 5.12 It is possible to consider alternative metrics to capture the convergence of
graph Laplacian eigenvectors toward their continuum counterparts; e.g., see Garćıa Trillos
et al. (2019). We also want to remark that extending the convergence result from Theorem
3.5 to higher eigenfunctions is straightforward but cumbersome as one needs to introduce
additional notation and operators. The rationale of the proof is however the same and
relies on the strong convexity of the discrete Raleigh quotient when restricted to eigenspaces.
In this interpretation, the strong convexity constants are determined by the spectral gaps
between consecutive eigenvalues. We refer the reader to Garćıa Trillos et al. (2019) for
some related discussion.

Remark 5.13 It is interesting to observe that the proof of convergence of eigenvectors
presented in Calder and Garćıa Trillos (2022), which ultimately produces faster rates of
convergence than the ones based on energy considerations (i.e., the approach used in Garćıa
Trillos et al. (2019); Burago et al. (2015) as well as in here) cannot be used in our setting,
since the approach considered in Calder and Garćıa Trillos (2022) relies on pointwise consis-
tency of graph Laplacians. Pointwise consistency results for Fermat-based graph Laplacians
do not follow from similar considerations as in other works in the literature given that the
discrete Fermat distances are random. Obtaining pointwise consistency results for Fermat-
based graph Laplacians is thus left as an interesting open problem.

5.5 Extensions and Discussion

It is possible to adapt the proofs of our theorems in Sections 5.2- 5.4 to obtain similar
spectral convergence results (with rates) for more general normalizations of graph Laplacians
such as the ones discussed in Section 2.2.1. Let the base weights W̃ik be defined according

to W̃ik = wℓ̃,h
i,k as in (5) for d0 = ℓ̃pp the discrete p-Fermat distance. We choose r = 0, j = q =

1− s/2 in the construction from Section 2.2.1 and denote by Lp,s the resulting normalized
graph Laplacian. It is straightforward to see that Lp,s is self-adjoint with respect to the
inner product 〈·, ·〉D, where the matrix D is the degree matrix for the weights Wi,k =

W̃ik/(D̃
1− s

2
i D̃

1− s
2

k ).
The (properly scaled) Dirichlet energy associated to the operator Lp,s takes the form

2(m+ 2)

n2hm+2

󰁛

i,k

η(
ℓ̃pp(xi,xk)

h )

D̃
1− s

2
i D̃

1− s
2

k

(u(xi)− u(xk))
2 .

Note that the only difference with the Dirichlet energy bd0h (u, u) from (7) is the extra nor-

malization terms D̃
1− s

2
i , where

D̃i :=
1

nhm

n󰁛

k=1

η

󰀣
ℓ̃pp(xi, xk)

h

󰀤
.

Using Lemma (5.2), we can reduce our analysis to studying the Dirichlet energy

2(m+ 2)

n2hm+2

󰁛

i,k

η(
ℓ̃pp(xi,xk)

h )

ρp(1−
s
2
)(xi)ρ

p(1− s
2
)(xk)

(u(xi)− u(xk))
2 ,
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which, in turn, can be related to the continuum Dirichlet energy
󰁝

M
|∇pu|2ρsp(x)dVolp(x),

after following very similar steps as in the proofs of our results in Sections 5.2 and 5.3.
The operators Lp,s described above can thus be shown to converge spectrally toward

the family of s-weighted operators (see Proposition 2.5)):

∆s,pu = − 1

ρsp
divp

󰀃
ρsp∇pu

󰀄
.

See also the discussion in in Remark 2.8 and Section 6.

5.5.1 Dynamic Perspective and Comparison with Diffusion Maps

As we discuss below, every graph Laplacian operator Lp,s induces a family of transformations
of the original data set {x1, . . . , xn} (which we recall is embedded in RD) into Rn. The
idea of using these transformations is to help “disentangle” the original data set X by
finding a representation for it that more clearly reveals its intrinsic geometric structure.
These transformations are in many instances effective preprocessing steps for tasks such as
clustering or dimensionality reduction.

To introduce the family of transformations associated to Lp,s, let us denote by Qs,p :=
−Lp,s the transition rate matrix associated to the Laplacian Lp,s. Following Section 2 in
Craig et al. (2022), we consider the family of evolution equations:

󰀫
∂tut(y) =

󰁓
x∈X ut(x)Qs,p(x, y), t > 0

u0 = u0,
(53)

where each ut is interpreted as a function ut : X → R; in the above, we use the notation
Qs,p(xi, xj) to denote the ij entry of Qs,p. Fixing a time horizon T > 0, for an arbitrary
data point xi we set u

0 := δxi and define the transformation

xi 󰀁→ uxiT ∈ L2({x1, . . . , xn}) ∼= Rn, (54)

where we have used the notation uxi to denote the solution to equation (53) at time T when
its initial condition is δxi , the function over X which is one at xi and 0 everywhere else.

In what follows we discuss the similarities and differences between the family of transfor-
mations induced by the operators Lp,s indexed by s for different values of p and the family
of diffusion maps from Coifman and Lafon (2006). To compare these families, we use the
connection between discrete and continuum operators that we developed in the previous
sections and draw conclusions from the comparison between the continuum analogues of
each of these families.

First, as in Section 2 in Craig et al. (2022), we can argue that the (discrete) evolution
equation (53) has the following continuum counterpart:

∂tft,p = divp

󰀕
ρ2sp ∇p

󰀕
ft,p
ρ2sp

󰀖󰀖
,
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where the function ft,p must be interpreted as a density function with respect to the volume
form dVolp. In terms of density functions and operators in the base geometry (M, g), the
above equation can be rewritten as:

∂tft = div(ρα∇ft)− ((2s− 1)p+ 1)div(ftρ
α−1∇ρ) (55)

where the function ft = ft,pρ
1−p is interpreted as a density function with respect to the

base volume form dVol. If α > 0, i.e. p > 1, the above can be written as

∂tft = div(ρα∇ft)−
((2s− 1)p+ 1)

α
div(ft∇ρα),

whereas for α = 0 (which happens when p = 1) it can be written as

∂tft = div(∇ft)− 2sdiv(ft∇ log(ρ)).

Notice that regardless of the value of α ≥ 0 chosen, the second term on the right hand side
of (55) is a “mean shift term”, i.e., it is a term that pushes the distribution ft towards the
local maxima of the function ρ (which are the same as the local maxima of log(ρ) or ρα for
α > 0). The first term on (55), on the other hand, is a non-homogeneous diffusion term
with a diffusion coefficient that is larger at points with larger values of ρ. The larger the
value of α, the more dramatic the difference between the diffusion rate at points with large
values of ρ and at points with small values of ρ. Notice that α gets modulated by the value
of p only, and in particular s does not play any role in determining it. As we will see below,
being able to tune this effect in the diffusion term in (55) is one of the main differences
between the family of maps represented by (55) and the diffusion maps of Coifman and
Lafon (2006).

Let us recall that, as discussed in Section 4.2 in Craig et al. (2022), diffusion maps are
connected to the following family of evolution equations:

∂tft = divM

󰀕
ρ2(1−a)∇M

󰀕
ft

ρ2(1−a)

󰀖󰀖
= ∆Mft − 2(1− a)divM(ft∇M log(ρ)), (56)

for a ∈ (−∞, 1]. We see that (55) and (56) coincide when s = 1 − a and p = 1. This is
expected, since the distance function Lp is precisely the original metric on M when p = 1.
In general, however, with the family of Fermat based Laplacians we have one extra degree
of freedom that can be used to accelerate the diffusion in regions where the density ρ is
larger, as was mentioned earlier. Numerical examples illustrating this effect are presented in
Section 6. In settings like the desert horizon image from Figure 1, considering larger values
of α in the maps (55) should be beneficial, as in that case the map (54) is expected to
induce agglomeration of points at each of the clusters more quickly while still inducing the
mean-shift force pushing clusters apart. However, we highlight that in order to translate our
insights from the continuum model to the discrete setting, it is important to have enough
samples to justify the approximation of the continuum model by the discrete one, and in this
regard, larger values of α may require a larger number of samples (since the probabilities
in Theorems 3.2, 3.3, and 3.5 deteriorate as p gets large).
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Algorithm 1 Fermat Distance Spectral Clustering

1: Input: data points x1, . . . , xn, density parameter p ≥ 1, normalization parameter s ≥ 0,
embedding dimension r, kernel scale h

2: Output: Laplacian Lp,s, FD-SC spectral embedding [v1, . . . , vr] ∈ Rn×r

3:

4: Wp(xi, xk) ← η(ℓp(xi, xk)/h) ⊲ Compute weights
5: dp(xi) ←

󰁓
kWp(xi, xk) ⊲ Compute normalization factor

6: Wp,s(xi, xk) ←
Wp(xi, xk)

dp(xi)
(1− s

2
)dp(xk)

(1− s
2
)

⊲ Compute normalized weight matrix

7:

8: Dp,s(xi, xi) ←
󰁓

kWp,s(xi, xk) ⊲ Compute degree matrix
9: Lp,s ← D−1

p,s (Dp,s −Wp,s) ⊲ Compute random walk Laplacian
10: [v1, . . . , vr] ← bottom r eigenvectors of Lp,s

Algorithm 2 Degree Normalized Spectral Clustering

1: Input: data points x1, . . . , xn, parameters q, j, embedding dimension r, kernel scale h
2: Output: Laplacian Lq,j , DN-SC embedding [v1, . . . , vr] ∈ Rn×r

3:

4: W (xi, xk) ← η(󰀂xi − xk󰀂/h) ⊲ Compute weights
5: d(xi) ←

󰁓
kW (xi, xk) ⊲ Compute normalization factor

6: Wq(xi, xk) ←
W (xi, xk)

d(xi)qd(xk)q
⊲ Compute normalized weight matrix

7:

8: Dq(xi, xi) ←
󰁓

kWq(xi, xk) ⊲ Compute degree matrix

9: Lq,j ← D
1−j
q−1
q (Dq −Wq) ⊲ Compute normalized Laplacian

10: [v1, . . . , vr] ← bottom r eigenvectors of Lq,j

6. Numerical Simulations

The discrete Fermat distance spectral clustering algorithm is summarized in Algorithm 1.
The algorithm depends on two key parameters: p, which determines the metric geometry,
and s, which determines the Laplacian normalization. In Section 6.1 we explore the impact
of these parameters. In Section 6.2 we explore the equivalence of Algorithm 1, where
Fermat distances are computed explicitly, with Algorithm 2, a Euclidean spectral clustering
algorithm with positive degree normalization.

6.1 Role of p and s in Fermat Spectral Clustering

In Figure 3, we consider an elongated data set with a density gap. There are two natural
partitions: one that cuts “long” through the region of low density (which we call “Density
Cut”) and one that cuts “short” (which we call “Geometric Cut”). We see that as p
increases, the density cut is eventually learned by Algorithm 1 by applying k-means to
the spectral embedding to produce labels, which are then compared with the two natural
partitions via an accuracy score that computes the proportion of points correctly assigned.
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The behavior in p of Figure 3 corroborates our analysis that low p will favor geometry-driven
cuts and large p density-driven cuts.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-1.5

-1

-0.5

0

0.5

1

1.5

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-1.5

-1

-0.5

0

0.5

1

1.5

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

1

1.25

1.5

1.75

2

2.25

2.5

2.75

3
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

1

1.25

1.5

1.75

2

2.25

2.5

2.75

3
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Figure 3: Fermat distance SC on elongated, density separated data. Two partitions are reasonable. As p
increases, the learned clustering transitions from the geometric partition to the density partition.

In Figure 4, we demonstrate the impact of the normalization parameter s while keeping
p fixed. As s increases, the moon—which is small but very separated from the rest of the
pixels by intensity—is increasingly emphasized in the second Fermat eigenvector. Choosing
a large s allows the Fiedler eigenvector to concentrate on a set of very small volume, while
a smaller s prevents this behavior and recovers the more balanced cut of the horizon.

6.2 Asymptotic Equivalence with Degree Normalized Euclidean Laplacians

We compare to Hoffmann et al. (2022) by sampling data from a non-uniform density and
constructing (i) a discrete Fermat graph Laplacian (e.g., Algorithm 1) and (ii) a Euclidean
distances graph Laplacian, with density rescaling so that in the large sample limit, the
discrete Laplacians convergence to the same continuum operator (e.g., Algorithm 2). As
a baseline, we also compare with (iii) the random walk Laplacian build with Euclidean
distances but without density rescaling.
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(a) Original Image (b) Euclidean RW v2 (s = 2) (c) Fermat v2 (p = 2, s = 1)

(d) Fermat v2 (p = 2, s = 2) (e) Fermat v2 (p = 2, s = 2.5) (f) Fermat v2 (p = 2, s = 3)

Figure 4: Moon example: effect of normalization. For small s, the Fermat v2 cuts along the horizon, but
for large s the cut produced by Fermat v2 may yield very imbalanced clusters. Image available on unsplash
courtesy of Kym MacKinnon.

We consider 2 example data sets in R2:

1. Data sampled from a ball of radius 1 with a density valley running down the vertical
axis, specifically we consider for some τ > 0 the density ρ(x1, x2) ∝ (τ + x21)

−1 ·
1[0,1](x

2
1 + x22).

2. A mixture of 2 Gaussians with uniform background noise, whose intensity is governed
by a parameter τ > 0.

Figures 5-6 illustrate the convergence of the Fermat Laplacian eigenvalues to their den-
sity normalized counterparts. The bottom row of these plots show comparisons between (i)
and (ii). In general, smaller p and larger τ lead to larger regions of convergence. It is also
relevant that the Fermat eigenvalues have larger variance, especially the higher frequency
ones. Additional experiments appear in Appendix H.

This suggests that in practice and for sufficiently large sample size n, density-normalization
provides a more computationally efficient (because Fermat distances do not need to be cal-
culated) and statistically consistent alternative to constructing the Fermat distance graph
Laplacian. Indeed, the complexity of computing a Fermat distances graph Laplacian, with
each point connected to its k Fermat nearest neighbors, is O((k2 + CD)n log(n)) for a
constant C that depends exponentially on the intrinsic dimension of the data (Mckenzie
and Damelin, 2019). This is done via a modified Dijkstra’s algorithm that leverages fast
Euclidean nearest neighbor algorithms such as cover trees (Beygelzimer et al., 2006). In con-
trast, computing a k Euclidean nearest neighbors graph is essentially O((k+CD)n log(n)).
In practice, the cost of computing the Fermat nearest neighbor distances is significantly
larger than computing the Euclidean nearest neighbors, even if they have the same asymp-
totic complexity in n (i.e., k2 is fixed to be relatively small compared to C and D). The
spectral decomposition of the sparse Fermat distance Laplacian and density-reweighted Eu-
clidean Laplacian have essentially the same complexity (since the sparsity level is the same),
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Figure 5: p = 1.2, τ = .25. Runtime for Fermat Laplacian: 168.46±10.70s. Runtime for Rescaled Euclidean
Laplacian: 6.64± .63s.
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Figure 6: p = 2, τ = .5. Runtime for Fermat Laplacian: 271.85 ± 96.75s. Runtime for Rescaled Euclidean
Laplacian: 1.45± .23s.

so the benefit of avoiding Fermat Laplacians is at the level of avoiding expensive distance
calculations that suffer from relatively high statistical variance (Little et al., 2022).
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7. Conclusions and Future Work

By computing Fermat geodesics and applying percolation results in the manifold tangent
plane, we have developed the first quantitative local Fermat metric convergence results
in the literature. We apply these results to develop a continuum limit theory for Fermat
graph Laplacians, and prove convergence results of the eigenvalues and eigenvectors of the
discrete operators to those of their continuum analogues. An interesting consequence of
this analysis is that it establishes the similarity of (i) Fermat Laplacians and (ii) density-
reweighted Euclidean Laplacians in the large sample limit. The geometric framework we
develop thus leads to new computational schemes that leverage the theoretical benefits
of Fermat spectral clustering (for example robustness with respect to cluster elongation
as illustrated in Figure 1) without the need for onerous calculation of pairwise Fermat
distances.

In future work, it is of interest to investigate whether our local metric convergence results
can be extended to apply globally, whether it is possible to obtain point-wise consistency for
Fermat graph Laplacians, how our results are impacted by noise, and also to theoretically
investigate the role of the normalization parameter s, which we have fixed in this work.
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Garćıa Trillos, Little, Mckenzie, and Murphy

R. Coifman, S. Lafon, A. Lee, M. Maggioni, B. Nadler, F. Warner, and S. Zucker. Geometric
diffusions as a tool for harmonic analysis and structure definition of data: Diffusion maps.
Proceedings of the National Academy of Sciences, 102(21):7426–7431, 2005.

P. Comon. Independent component analysis, a new concept? Signal processing, 36(3):
287–314, 1994.
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Appendix A. Preliminaries from Differential Geometry

In this appendix, we shall use the Einstein summation convention: when an index appears
in an upper and lower position, it means summation over that index. In contrast to the main
body, we shall use grad (resp. Hess) to denote the Riemannian gradient (resp. Hessian) so
that ∇ (resp. H) can be reserved for Euclidean gradients (resp. Hessians) computed in the
ambient space or on a tangent space.

Definition A.1 Let dist(x,M) = miny∈M 󰀂x− y󰀂. The reach of M ⊂ RD is

R := sup{t > 0 : ∀x ∈ RD with dist(x,M) ≤ t, ∃!y ∈M s.t. dist(x,M) = 󰀂x− y󰀂}.

As R depends only on the embedding, not on the specific metric chosen on M, the reach
of (M, gp) equals the reach of (M, g).

Definition A.2 For any linearly independent X,Y ∈ TxM the sectional curvature, with
respect to g, of the plane spanned by X,Y is defined as

Kx(X,Y ) =
Rx(X,Y, Y,X)

gx(X,X)gx(Y, Y )− gx(X,Y )2
,

where R is the Riemannian curvature tensor.
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We are interested in (M, g) with globally bounded sectional curvature:

|Kx(X,Y )| ≤ K for all x ∈M, X, Y ∈ TxM.

Lemma 1 Suppose that ρ ∈ C2M. Fix any x ∈M and consider the function

ρ∗x : TxM→ R

ρ∗x(u) = ρ(expx(u))Jx(u)
(57)

where Jx =
󰁳
det(gx). Then 󰀂∇ρ∗x(0)󰀂 = 󰀂∇ρ(x)󰀂 and

󰀂Hρ∗x(0)󰀂 ≲ 󰀂Hρ(x)󰀂+mKρ(x) +Kd
3
2 󰀂∇ρ(x)󰀂.

Proof Starting from the normal coordinate expansion of the metric (see, e.g. Brewin
(2009)), taking determinants, and using

√
1 + x = 1 + 1

2x+O(x2) yields:

Jx(z) =
󰁳
det(gx) = 1− 1

6
zizjRij −

1

12
zizjzk∇iRjk +O(󰀂z󰀂4) (58)

where Rij is the Ricci curvature tensor, expressed in normal coordinates. As all sectional
curvatures are bounded by K, Rij ≤ (m− 1)Kgij . Differentiating (58):

󰀂∇Jx(z)󰀂 ≲ (m− 1)K󰀂z󰀂+O(󰀂z󰀂2) , 󰀂HJx(z)󰀂 ≲ (m− 1)K +O(󰀂z󰀂).
As Jx(0) = 1,∇Jx(0) = 0 differentiating (57) yields

∇ρ∗x(0) = Jx(0)∇ρ∗x(expx(u)) = ∇ρ(expx(z))|z=0 = ∇ρ(x) · Jac(expx(0)) = ∇ρ(x).

Using Jac(expx(0)) = Id. Taking norms yields the first claim. From the product rule for
Hessians:

Hρ∗x = Jx(Hρ ◦ expx) + (∇ρ ◦ expx)T∇Jx + (∇Jx)T∇ρ ◦ expx+ρ ◦ expx(HJx)

evaluating at 0 and recalling Jx(0) = 1,∇Jx(0) = 0

Hρ∗x(0) = Hρ ◦ expx(0) + ρ(x)HJx(0).

Since 󰀂HJx(0)󰀂 ≲ (m − 1)K, it remains to bound Hρx(0). From Skorski (2019) we have
the following chain rule for Hessians:

H(ρ ◦ expx) = (Jac expx)
T ·Hρ(expx) · (Jac expx) +

D󰁛

k=1

∂ρ

∂xk
·H(expkx)

where expkx is the kth coordinate of expx and x1, . . . , xD are full-dimensional Euclidean
coordinates. Since 󰀂H(expkx)󰀂 ≲ Km, evaluating at z = 0 and taking norms gives:

󰀂Hρ ◦ expx(0)󰀂 ≤ 󰀂Hρ(x)󰀂+ CKm󰀂∇ρ(x)󰀂1 ≤ 󰀂Hρ(x)󰀂+ CKm
3
2 󰀂∇ρ(x)󰀂

(here we have used the fact that we can choose coordinates so that ∇ρ(x) is zero except in
the first m coordinates, and once again we have ignored the lower order term). Thus we
obtain:

󰀂Hρ∗x(0)󰀂 ≲ 󰀂Hρ(x)󰀂+mKρ(x) +Km
3
2 󰀂∇ρ(x)󰀂.
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Appendix B. Fermat Sectional Curvature

In this section we bound the sectional curvatures of (M, gp) in terms of those of (M, g).
This will follow from standard results on conformally equivalent metrics.

Lemma B.1 Suppose ρ is a density function on (M, g) satisfying Assumptions 3.1. Let
ϕ = α

2 log(ρ) where α = 2(p− 1)/m. Then:

1. 󰀂 gradϕ󰀂 ≤ β
󰀓
p−1
m

󰀔
L1.

2. 󰀂Hessϕ󰀂 ≤ β
󰀓
p−1
m

󰀔
(βL2

1 + L2).

Proof We compute:

gradϕ =
α

2

1

ρ
grad ρ =

α

2ρ
grad ρ =

p− 1

mρ
grad ρ.

From e.g. (Boumal, 2020, Proposition 10.43), we obtain 󰀂 grad ρ󰀂 ≤ L1. Hence:

󰀂 gradϕ󰀂 = p− 1

mρ
󰀂 grad ρ󰀂 ≤ β

󰀕
p− 1

m

󰀖
L1.

For part 2, a simple calculation reveals

Hessϕ = −p− 1

dρ2
grad ρ⊗ grad ρ+

p− 1

dρ
Hess ρ.

By assumption 󰀂Hess ρ󰀂 ≤ L2, and 󰀂 grad ρ⊗ grad ρ󰀂 = 󰀂 grad ρ󰀂2 ≤ L2
1, so

󰀂Hessϕ󰀂 ≤ p− 1

mρ2
L2
1 +

p− 1

mρ
L2 ≤ β

󰀕
p− 1

m

󰀖
(βL2

1 + L2).

Theorem B.2 Assume ρ satisfies Assumption 3.1 and (M, g) has sectional curvature
bounded by K. Then (M, gp) has sectional curvature bounded by Kp where

Kp := βα

󰀕
K +

3β2(p− 1)2L2
1

m2
+

2β2(p− 1)L2
1

m
+

β(p− 1)L2

m

󰀖
.

Proof Let R (resp. Rp) denote the (0, 4) Riemannian curvature tensor of (M, g) (resp.
(M, gp)). Let φ := −α

2 log ρ. From (Kühnel, 2015, pp. 345) (see also (Besse, 2007, pp. 58))
we have the identity:

e2φRp = R− 1

2
〈gradϕ, gradϕ〉g • g + (Hessϕ) • g + (gradϕ)2 • g

where • is the Kulkarni-Nomizu product between symmetric two tensors defined as

A •B(X,Y, Z,W ) =A(X,Z)B(Y,W ) +A(Y,W )B(X,Z)
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−A(X,W )B(Y, Z)−A(Y, Z)B(X,W ),

see (Kühnel, 2015, Def. 8.20), and (gradϕ)2 is the symmetric (0,2) tensor defined as

(gradϕ)2 (X,Y ) = (Xϕ) (Y ϕ) .

By the definition of sectional curvature,

Kp,x(X,Y ) =
Rp,x(X,Y, Y,X)

gp,x(X,X)gp,x(Y, Y )− gp,x(X,Y )2

for any linearly independent X,Y ∈ TxM. It suffices to consider only orthonormal X,Y ,
in which case Kp,x(X,Y ) = Rp,x(X,Y, Y,X). As g and gp are conformally equivalent, X,Y
are orthonormal with respect to g if and only if they are orthonormal with respect to gp.
Thus if X,Y are gp orthonormal, we also have Kx(X,Y ) = Rx(X,Y, Y,X). Assuming
orthonormality, some straightforward calculations reveal

g • g(X,Y, Y,X) = −2,
(gradϕ)2 • g(X,Y, Y,X) = − (g(gradϕ, X))2 − (g(gradϕ, Y )ϕ)2 ,

(Hessϕ) • g(X,Y, Y,X) = −Hessϕ(X,X)−Hessϕ(Y, Y ).

Now,

|Kp,x(X,Y )| = |Rp,x(X,Y, Y,X)|

≤ e2ϕ
󰀕
|R(X,Y, Y,X)|+

󰀏󰀏󰀏󰀏
1

2
〈gradϕ, gradϕ〉g • g(X,Y, Y,X)

󰀏󰀏󰀏󰀏

+ |(Hessϕ) • g(X,Y, Y,X)|+
󰀏󰀏󰀏(∇ϕ)2 • g(X,Y, Y,X)

󰀏󰀏󰀏
󰀔

≤ e2ϕ
󰀕
K +

1

2
󰀂 gradϕ󰀂2 |−2|+

+ |Hessϕ(X,X)|+ |Hessϕ(Y, Y )|+ (g(gradϕ, X))2 + (g(gradϕ, Y ))2
󰀔

(a)

≤ (ρα)

󰀕
K +

(p− 1)2β2L2
1

m2
+ 2β

󰀕
p− 1

m

󰀖
(βL2

1 + L2) +
2(p− 1)2β2L2

1

m2

󰀖

= ρα
󰀕
K +

3(p− 1)2β2L2
1

m2
+

2(p− 1)β2L2
1

m
+

(p− 1)βL2

m

󰀖

≤ βα

󰀕
K +

3(p− 1)2β2L2
1

m2
+

2(p− 1)β2L2
1

m
+

(p− 1)βL2

m

󰀖
.

where in (a) we use various bounds from Lemma B.1.

Appendix C. Fermat Geodesics

This appendix contains the proof of Theorem 4.1.
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Theorem 4.1 Let Ω ⊆ Rm be a m-dimensional, open, connected domain and assume (Ω, ρ)
satisfies Assumption 3.1. Fix y ∈ Ω and let γb(t) denote the unit speed geodesic with respect
to gp originating at y in the direction of unit vector b ∈ Rm. Then:

γb(t) =ρ(y)
α
2 bt+ αρ(y)α−1

󰀕
1

2
〈b,∇ρ(y)〉b− 1

4
∇ρ(y)

󰀖
t2

+(C ′
1b+ C ′

2H(y)b+ C ′
3∇ρ(y))t3 +O(t4) ,

(15)

where H(y) denotes the Hessian matrix of ρ evaluated at y and

C ′
1 =

󰀕
1

3
α2 − 1

6
α

󰀖
ρ(y)

3
2
α−2〈b,∇ρ(y)〉2

+
α

6
ρ(y)

3
2
α−1〈H(y)b, b〉 − α2

12
ρ(y)

3
2
α−2〈∇ρ(y),∇ρ(y)〉,

C ′
2 = − α

12
ρ(y)

3
2
α−1,

C ′
3 =

󰀕
α

12
− α2

6

󰀖
ρ(y)

3
2
α−2〈∇ρ(y), b〉.

Proof We compute the geodesic equations for (Ω, gp) for geodesics starting at some y ∈ Ω.
Without loss of generality, assume y = 0 and for notational convenience, let ρ0, ∇ρ0, and
H0 denote ρ(y) = ρ(0) = ρ0, ∇ρ(y) = ∇ρ(0) = ∇ρ0, and H(y) = H(0) = H0, respectively;
also let gpij denote (gp)ij . We have global coordinates on Ω which are just the standard

coordinates (xi). The function x(t) = (x1(t), . . . , xm(t)) is a gp geodesic if and only if it
satisfies for all k = 1, . . . , d the geodesic equation

ẍk(t) + ẋi(t)ẋj(t)Γkij(x(t)) = 0,

where

Γkij =
1

2
gkℓp (∂ig

p
jℓ + ∂jg

p
iℓ − ∂ℓg

p
ij)

are the Christoffel symbols associated to gp (Lee, 2006). Now, gpij = ρ−αgij , where gij =
〈∂i, ∂j〉 = δij is the Euclidean metric tensor on Rm. In addition, since gij is the identity

matrix, gijp = (gpij)
−1 = ρα(gij)

−1 = ρα〈∂i, ∂j〉 = ραδij and ∂ig
p
jℓ = ∂i(ρ

−αgjℓ) = δjℓ∂iρ
−α.

Thus:

Γkij =
1

2
gkℓp (∂ig

p
jℓ + ∂jg

p
iℓ − ∂ℓg

p
ij)

=
1

2
ραδkℓ

󰀃
δjℓ∂iρ

−α + δiℓ∂jρ
−α − δij∂ℓρ

−α
󰀄

=
1

2
ρα

󰀓
δkj ∂iρ

−α + δki ∂jρ
−α − δijδ

kℓ∂ℓρ
−α

󰀔
.

So, for k fixed:

ẋiẋjΓkij = ẋiẋj
1

2
ρα

󰀓
δkj ∂iρ

−α + δki ∂jρ
−α − δijδ

kℓ∂ℓρ
−α

󰀔

=
1

2
ραẋiẋk∂iρ

−α +
1

2
ραẋkẋj∂jρ

−α − 1

2
ραẋiẋiδ

kℓ∂ℓρ
−α
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=
1

2
ρα

󰀃
ẋi∂iρ

−α + ẋj∂jρ
−α

󰀄
ẋk − 1

2
ραẋiẋiδ

kℓ∂ℓρ
−α

= ρα〈ẋ,∇ρ−α〉ẋk − 1

2
ρα〈ẋ, ẋ〉∂kρ−α.

Where in the last line we have switched to vector notation and identified dρ−α with ∇ρ−α

(which is valid as the metric is the Euclidean one). Thus, in vector notation the geodesic
equation becomes:

ẍ+ ρα〈ẋ,∇ρ−α〉ẋ− 1

2
ρα〈ẋ, ẋ〉∇ρ−α = 0. (59)

For a unit Euclidean norm vector b ∈ Rm, consider the initial value problem

x(0) = 0,

ẋ(0) = ρ
α
2
0 b,

which has a unique geodesic solution γb(t) in some local neighborhood (Lee, 2006). Note

|ẋ(0)|p = ρ
−α

2
0 󰀂ρ

α
2
0 b󰀂 = 󰀂b󰀂 = 1 where | · |p denotes the norm with respect to gp, so γb(t) is

the unit speed geodesic in the direction of b. Because ρ is assumed C∞ and bounded away
from 0, we have that each gpij is C

∞, hence the Christoffel symbols are C∞. This implies
the geodesic γb(t) is also C∞, and hence we can Taylor expand it about t = 0 to obtain:

γb(t) = ρ
α
2
0 bt+ vt2 + qt3 +O(t4),

γ̇b(t) = ρ
α
2
0 b+ 2vt+ 3qt2 +O(t3),

γ̈b(t) = 2v + 6qt+O(t2),

for some vectors v, q depending on b, ρ, which can be computed from the leading order terms
in (59).

We have the following Taylor expansions for ρ,∇ρ, ρα,∇ρ−α:

ρ(x) = ρ0 + 〈∇ρ0, x〉+
1

2
xTH0x+O(x3),

∇ρ(x) = ∇ρ0 +H0x+O(x2),

ρ(x)α = ρα0 + αρα−10 〈∇ρ0, x〉+O(x2),

∇ρ(x)−α = −αρ(x)−α−1∇ρ(x)

= −α(ρ0 + 〈∇ρ0, x〉+O(x2))−α−1(∇ρ0 +H0x+O(x2))

= −αρ−α−1
0 (1 + ρ−10 〈∇ρ0, x〉+O(x2))−α−1(∇ρ0 +H0x+O(x2))

= −αρ−α−1
0 (1− (α+ 1)ρ−10 〈∇ρ0, x〉+O(x2))(∇ρ0 +H0x+O(x2))

= −αρ−α−1
0 (∇ρ0 − (α+ 1)ρ−10 〈∇ρ0, x〉∇ρ0 +H0x+O(x2))

= −αρ−α−1
0 ∇ρ0 + α(α+ 1)ρ−α−2

0 〈∇ρ0, x〉∇ρ0 − αρ−α−1
0 H0x+O(x2).

Substituting x = γb(t), we obtain for some vectors z, w the following Taylor expansions in
terms of t:

ρα = ρα0 + αρ
3
2
α−1

0 〈∇ρ0, b〉t+O(t2)
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:= ρα0 + zt+O(t2),

∇ρ−α = −αρ−α−1
0 ∇ρ0 + α(α+ 1)ρ

−α
2
−2

0 〈∇ρ0, b〉∇ρ0t− αρ
−α

2
−1

0 H0bt+O(t2)

:= −αρ−α−1
0 ∇ρ0 + wt+O(t2),

〈γ̇b,∇ρ−α〉 = 〈ρ
α
2
0 b+ 2vt,−αρ−α−1

0 ∇ρ0 + wt〉+O(t2)

= −αρ
−α

2
−1

0 〈b,∇ρ0〉+ ρ
α
2
0 〈b, w〉t− 2αρ−α−1

0 〈v,∇ρ0〉t+O(t2),

〈γ̇b, γ̇b〉 = 〈ρ
α
2
0 b+ 2vt, ρ

α
2
0 b+ 2vt〉+O(t2)

= ρα0 + 4ρ
α
2
0 〈b, v〉t+O(t2).

To solve for v, we only need to compute the leading order term in the geodesic equation
(59). We have:

ρα〈γ̇b,∇ρ−α〉γ̇b = ρα0 (−αρ
−α

2
−1

0 〈b,∇ρ0〉)ρ
α
2
0 b+O(t)

= −αρα−10 〈b,∇ρ0〉b+O(t)

as well as

−1

2
ρα〈γ̇b, γ̇b〉∇ρ−α = −1

2
ρα0 (ρ

α
0 )

󰀃
−αρ−α−1

0 ∇ρ0
󰀄
+O(t)

=
α

2
ρα−10 ∇ρ0 +O(t).

Since γ̈b(t) = 2v +O(t), plugging into (59) gives:

2v − αρα−10 〈b,∇ρ0〉b+
α

2
ρα−10 ∇ρ0 +O(t) = 0.

Since the above must hold for arbitrarily small t, we obtain

v = αρα−10

󰀕
1

2
〈b,∇ρ0〉b−

1

4
∇ρ0

󰀖
.

We have thus established that the unit geodesic in direction b has form:

γb(t) = ρ
α
2
0 bt+ αρα−10

󰀕
1

2
〈b,∇ρ0〉b−

1

4
∇ρ0

󰀖
t2 +O(t3) .

We can now compute q to obtain a higher order expansion; we need to compute the lin-
earization of each term in the geodesic equation. We have three terms:

(I) := γ̈b = 2v + 6qt+O(t2)

(II) := ρα〈γ̇b,∇ρ−α〉γ̇b

= (ρα0 + zt)(−αρ
−α
2

−1
0 〈b,∇ρ0〉+ ρ

α
2
0 〈b, w〉t− 2αρ−α−1

0 〈v,∇ρ0〉t)(ρ
α
2
0 b+ 2vt) +O(t2)

= −αρα−10 〈b,∇ρ0〉b− αρ−10 z〈b,∇ρ0〉bt+ ρ
3
2
α

0 b
󰁫
ρ

α
2
0 〈b, w〉t− 2αρ−α−1

0 〈v,∇ρ0〉t
󰁬

− 2αρ
α
2
−1

0 〈b,∇ρ0〉vt+O(t2)
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= −αρα−10 〈b,∇ρ0〉b− αρ−10 z〈b,∇ρ0〉bt+ ρ2α0 〈b, w〉bt− 2αρ
α
2
−1

0 〈v,∇ρ0〉bt

− 2αρ
α
2
−1

0 〈b,∇ρ0〉vt+O(t2)

= −αρα−10 〈b,∇ρ0〉b+
󰀓
−αρ−10 z〈b,∇ρ0〉+ ρ2α0 〈b, w〉 − 2αρ

α
2
−1

0 〈v,∇ρ0〉
󰀔
bt

− 2αρ
α
2
−1

0 〈b,∇ρ0〉vt+O(t2)

= −αρα−10 〈b,∇ρ0〉b+
󰀓
−αρ−10 z〈b,∇ρ0〉+ ρ2α0 〈b, w〉 − 2αρ

α
2
−1

0 〈v,∇ρ0〉
󰀔
bt

− 2αρ
α
2
−1

0 〈b,∇ρ0〉 − αρα−10

󰀕
1

4
∇ρ0 −

1

2
〈b,∇ρ0〉b

󰀖
t+O(t2)

= −αρα−10 〈b,∇ρ0〉b+ C1bt+
α2

2
ρ
3
2
α−2

0 〈b,∇ρ0〉∇ρ0t+O(t2)

where

C1 = −αρ−10 z〈b,∇ρ0〉+ ρ2α0 〈b, w〉 − 2αρ
α
2
−1

0 〈v,∇ρ0〉 − α2ρ
3
2
α−2

0 〈b,∇ρ0〉2

= −α2ρ
3
2
α−2

0 〈b,∇ρ0〉2 + ρ2α0

󰀓
−α(−α− 1)ρ

−α
2
−2

0 〈∇ρ0, b〉2 − αρ
−α

2
−1

0 〈H0b, b〉
󰀔

− 2αρ
α
2
−1

0

󰀓
−α

4
ρα−10 〈∇ρ0,∇ρ0〉+

α

2
ρα−10 〈b,∇ρ0〉2

󰀔
− α2ρ

3
2
α−2

0 〈b,∇ρ0〉2

= −2α2ρ
3
2
α−2

0 〈b,∇ρ0〉2 + (α2 + α)ρ
3
2
α−2

0 〈b,∇ρ0〉2 − αρ
3
2
α−1

0 〈H0b, b〉

+
α2

2
ρ
3
2
α−2

0 〈∇ρ0,∇ρ0〉 − α2ρ
3
2
α−2

0 〈b,∇ρ0〉2

= (−2α2 + α)ρ
3
2
α−2

0 〈b,∇ρ0〉2 − αρ
3
2
α−1

0 〈H0b, b〉+
α2

2
ρ
3
2
α−2

0 〈∇ρ0,∇ρ0〉.

Similarly:

(III) := −1

2
ρα〈γ̇b, γ̇b〉∇ρ−α

= −1

2
(ρα0 + zt)

󰀓
ρα0 + 4ρ

α
2
0 〈b, v〉t

󰀔 󰀃
−αρ−α−1

0 ∇ρ+ wt
󰀄
+O(t2)

= −1

2

󰀓
−αρα−10 ∇ρ0 + ρ2α0 wt− 4αρ

α
2
−1

0 〈b, v〉∇ρ0t− αρ−10 z∇ρ0t
󰀔
+O(t2)

=
α

2
ρα−10 ∇ρ0 −

1

2
ρ2α0 wt+ 2αρ

α
2
−1

0 〈b, v〉∇ρ0t+
α

2
ρ−10 z∇ρt+O(t2)

=
α

2
ρα−10 ∇ρ0 −

1

2
ρ2α0

󰀓
(α2 + α)ρ

−α
2
−2

0 〈∇ρ0, b〉∇ρ0 − αρ
−α

2
−1

0 H0b
󰀔
t

2αρ
α
2
−1

0 〈b, v〉∇ρ0t+
α

2
ρ−10 (αρ

3
2
α−1

0 )〈∇ρ0, b〉∇ρ0t+O(t2)

=
α

2
ρα−10 ∇ρ0 +

󰀕
−α

2
− α2

2

󰀖
ρ
3
2
α−2

0 〈∇ρ0, b〉∇ρ0t+
α

2
ρ
3
2
α−1

0 H0bt

+ 2αρ
α
2
−1

0 〈b, v〉∇ρ0t+
α2

2
ρ
3
2
α−2

0 〈∇ρ0, b〉∇ρ0t+O(t2)

=
α

2
ρα−10 ∇ρ0 + C2∇ρ0t+

α

2
ρ
3
2
α−1

0 H0bt+O(t2)
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where

C2 = −α

2
ρ
3
2
α−2

0 〈∇ρ0, b〉+ 2αρ
α
2
−1

0 〈b, v〉

= −α

2
ρ
3
2
α−2

0 〈∇ρ0, b〉+ 2αρ
α
2
−1

0

󰀓
−α

4
ρα−10 〈∇ρ0, b〉+

α

2
ρα−10 〈b,∇ρ0〉

󰀔

=

󰀕
α2

2
− α

2

󰀖
ρ
3
2
α−2

0 〈∇ρ0, b〉.

The linear terms in the geodesic equation must sum to zero, and we obtain:

6qt+ C1bt+
α2

2
ρ
3
2
α−2

0 〈b,∇ρ0〉∇ρ0t+ C2∇ρ0t+
α

2
ρ
3
2
α−1

0 H0bt = 0

=⇒ 6q + C1b+ C3∇ρ0 +
α

2
ρ
3
2
α−1

0 H0b = 0

where

C3 = C2 +
α2

2
ρ
3
2
α−2

0 〈b,∇ρ0〉 =
󰀓
α2 − α

2

󰀔
ρ
3
2
α−2

0 〈b,∇ρ0〉.

We thus obtain:

q = −1

6
C1b−

α

12
ρ
3
2
α−1

0 H0b−
C3

6
∇ρ0,

= C ′
1b+ C ′

2H0b+ C ′
3∇ρ0,

where

C ′
1 =

󰀕
1

3
α2 − 1

6
α

󰀖
ρ
3
2
α−2

0 〈b,∇ρ0〉2 +
α

6
ρ
3
2
α−1

0 〈Hb, b〉 − α2

12
ρ
3
2
α−2

0 〈∇ρ0,∇ρ0〉,

C ′
2 = − α

12
ρ
3
2
α−1

0 ,

C ′
3 =

󰀕
α

12
− α2

6

󰀖
ρ
3
2
α−2

0 〈∇ρ0, b〉.

In summary we have the following geodesic expansion depending on b, ρ0,∇ρ0, H0:

γb(t) = ρ
α
2
0 bt+ αρα−10

󰀕
1

2
〈b,∇ρ0〉b−

1

4
∇ρ0

󰀖
t2 + (C ′

1b+ C ′
2H0b+ C ′

3∇ρ0)t
3 +O(t4) .

Appendix D. Local Euclidean Equivalence

This appendix contains the proof of Theorem 4.2.
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Theorem 4.2 Let Ω ⊆ Rm be an m-dimensional, open, connected domain and assume
(Ω, ρ) satisfies Assumption 3.1. Then for x, y ∈ Ω with x ∕= y and unit vector u = (y −
x)/󰀂y − x󰀂, we can relate Euclidean and Fermat distance as follows:

󰀂y − x󰀂 = ρ(x)
p−1
m Lpp(x, y) +

1

2

󰀕
p− 1

m

󰀖
〈u,∇ρ(x)〉 ρ(x)

2(p−1)
m −1L2p

p (x, y)

+ CL3p
p (x, y) +O(L4p

p (x, y))

for

C = ρ(x)
3
2α−2

󰀗
α2

96
〈∇ρ(x),∇ρ(x)〉+

󰀕
7α2

96
− α

12

󰀖
〈u,∇ρ(x)〉2 + α

12
ρ(x) 〈H(x)u, u〉

󰀘
.

Also:

Lpp(x, y) =
1

ρ(x)
p−1
m

󰀕
󰀂y − x󰀂 − 1

2

󰀕
p− 1

m

󰀖󰀟
u,

∇ρ(x)

ρ(x)

󰀠
󰀂y − x󰀂2

󰀖
+O

󰀃
󰀂y − x󰀂3

󰀄
.

Proof Without loss of generality assume x = 0, and let 󰂃 = 󰀂y󰀂. Now consider B(0, 󰂃), a
Euclidean ball of radius 󰂃 about 0. As long as 󰂃 is not too large, each point on ∂B(0, 󰂃) is
on a unique Lpp geodesic curve leaving the origin; let γb be the geodesic which goes through
y (recall it is unit speed in the direction of unit vector b). Note in general b ∕= uy = y

󰀂y󰀂 ,
but these vectors are close for 󰂃 small.

For notational brevity we denote Lpp(x, y), ρ(0),∇ρ(0), H(0) by L, ρ0,∇ρ0, H0 through-
out the proof. Note since the geodesic is unit speed, γb reaches y at time L, i.e., y = γb(L).
By Theorem 4.1, we have

γb(L) = ρ
α
2
0 bL+ αρα−10

󰀕
1

2
〈b,∇ρ0〉b−

1

4
∇ρ0

󰀖
L2 + (C ′

1b+ C ′
2H0b+ C ′

3∇ρ0)L3 +O(L4) .

(60)

Thus for

C4 =
α2

16
ρ2α−20 〈∇ρ0,∇ρ0〉+ 2ρ

α
2
0 (C

′
1 + C ′

2〈H0b, b〉+ C ′
3〈∇ρ0, b〉)

we have

󰂃 = 󰀂γb(L)󰀂

=

󰁶

ρα0L2 − 2αρ
3
2
α−1

0

󰀕
1

4
〈b,∇ρ0〉 −

1

2
〈b,∇ρ0〉

󰀖
L3 + C4L4 +O(L5)

=

󰁵
ρα0L2 +

1

2
αρ

3
2
α−1

0 〈b,∇ρ0〉L3 + C4L4 +O(L5)

= ρ
α
2
0 L

󰁵
1 +

1

2
αρ

α
2
−1

0 〈b,∇ρ0〉L+ ρ−α
0 C4L2 +O(L3)

= ρ
α
2
0 L

󰀕
1 +

1

4
αρ

α
2
−1

0 〈b,∇ρ0〉L+

󰀕
C4

2
ρ−α
0 − 1

32
α2ρα−20 〈b,∇ρ0〉2

󰀖
L2 +O(L3)

󰀖
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= ρ
α
2
0 L+

1

4
αρα−10 〈b,∇ρ0〉L2 +

󰀕
C4

2
ρ
−α

2
0 − 1

32
α2ρ

3
2
α−2

0 〈b,∇ρ0〉2
󰀖
L3 +O(L4)

so that

󰂃 = ρ
α
2
0 L+

1

4
αρα−10 〈b,∇ρ0〉L2 + C ′

4L3 +O(L4) (61)

for

C ′
4 =

1

2
ρ
−α

2
0

󰀕
α2

16
ρ2α−20 〈∇ρ0,∇ρ0〉+ 2ρ

α
2
0 (C

′
1 + C ′

2〈H0b, b〉+ C ′
3〈∇ρ0, b〉)

󰀖

− 1

32
α2ρ

3
2
α−2

0 〈b,∇ρ0〉2

=
α2

32
ρ
3
2
α−2

0 〈∇ρ0,∇ρ0〉+ (C ′
1 + C ′

2〈H0b, b〉+ C ′
3〈∇ρ0, b〉)−

1

32
α2ρ

3
2
α−2

0 〈b,∇ρ0〉2

= −5α2

96
ρ
3
2
α−2

0 〈∇ρ0,∇ρ0〉+
󰀕
13

96
α2 − α

12

󰀖
ρ
3
2
α−2

0 〈b,∇ρ0〉2 +
α

12
ρ
3
2
α−1

0 〈H0b, b〉 .

We now relate b with uy to obtain an expansion independent of b. Combining (60) and
(61), we obtain:

uy =
ρ

α
2
0 L

󰀓
b+ αρ

α
2
−1

0 (12〈b,∇ρ0〉 − 1
4∇ρ0)L+O(L2)

󰀔

ρ
α
2
0 L

󰀓
1 + α

4 ρ
α
2
−1

0 〈b,∇ρ0〉L+O(L2)
󰀔

= b+
α

4
ρ

α
2
−1

0 〈b,∇ρ0〉bL− α

4
ρ

α
2
−1

0 ∇ρ0L+O(L2) .

Since b = uy +O(L), we obtain:

b = uy −
α

4
ρ

α
2
−1

0 〈uy,∇ρ0〉uyL+
α

4
ρ

α
2
−1

0 ∇ρ0L+O(L2) .

Plugging the above into (61), we obtain:

󰂃 = ρ
α
2
0 L+

α

4
ρα−10 〈uy,∇ρ0〉L2 + C ′

5L3 +O(L4) , (62)

where

C ′
5 = C ′

4 −
α2

16
ρ
3
2
α−2

0 〈uy,∇ρ0〉2 +
α2

16
ρ
3
2
α−2

0 〈∇ρ0,∇ρ0〉

= ρ
3
2
α−2

0

󰀗
α2

96
〈∇ρ0,∇ρ0〉+

󰀕
7α2

96
− α

12

󰀖
〈uy,∇ρ0〉2 +

α

12
ρ0〈H0uy, uy〉

󰀘
,

and we obtain the first statement in the theorem. Rearranging (62) yields:

O(L3) + α

4
ρ

α
2
−1

0 〈uy,∇ρ0〉L2 + L− ρ
−α

2
0 󰂃 = 0 . (63)
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We now solve for L, which is the root of (63) satisfying L ∼ 󰂃 as 󰂃 → 0. Expanding
L(󰂃) = c0 + c1󰂃 + c2󰂃

2 + . . ., plugging into (63), and solving for the coefficients ci, one
obtains that any root satisfying c0 = 0 has form:

L = ρ
−α

2
0 󰂃− α

4
ρ
−α

2
−1

0 〈uy,∇ρ0〉󰂃2 +O(󰂃3)

= ρ
− (p−1)

m
0 󰀂y󰀂 − 1

2

󰀕
p− 1

m

󰀖
ρ
− (p−1)

m
−1

0 〈uy,∇ρ0〉 · 󰀂y󰀂2 +O(󰀂y󰀂3),

which proves the second theorem statement.

Appendix E. Metric Approximation

Lemma E.1 (Fermat Paths are Local) Choose R > 0 such that 4R ≤ R and suppose

x, y ∈ Bz(R). Then ℓ̃pp(x, y,Hnρ) = ℓ̃pp(x, y,Hnρ∩Bz(R)) with probability 1−exp
󰀓
−cn

1
m+2p

󰀔
.

Proof This is shown in the proof of (Hwang et al., 2016, Lemma 10), see pp. 2807, using
the conclusion of (Hwang et al., 2016, Corollary 9).

Lemma E.2 (Curvature Perturbation for Discrete Metric) Suppose d(x, y) ≤ CM.
Then

ℓ̃pp(x, y,Hnρ ∩ Bx(R)) =
󰀃
1± Cp(K +R−2)d(x, y)2

󰀄
ℓ̃pp(0, u,Hnρx) .

Proof Define u := logx(y). Note 0 = logx(x) and d(x, y) = 󰀂 logx(x)− logx(y)󰀂 = 󰀂u󰀂. Let
π = {0 = logx(x0), logx(x1), . . . , logx(xL) = u} be the optimal path for ℓ̃pp(0, u,Hnρx). By
(13),

󰀂xi+1 − xi󰀂 ≤ d(xi+1, xi) ≤ 󰀂 logx(xi+1)− logx(xi)󰀂+ CK󰀂 logx(xi+1)− logx(xi)󰀂3

≤ 󰀂 logx(xi+1)− logx(xi)󰀂
󰀃
1 + CK󰀂 logx(x)− logx(y)󰀂2

󰀄

= 󰀂 logx(xi+1)− logx(xi)󰀂
󰀃
1 + CKd(x, y)2

󰀄
.

Thus:

ℓ̃pp(x, y,Hnρ ∩ Bx(R)) ≤ n
p−1
m

󰁛
󰀂xi+1 − xi󰀂p

≤ n
p−1
m

󰁛
󰀂 logx(xi+1)− logx(xi)󰀂p

󰀃
1 + CKd(x, y)2

󰀄p

≤ (1 + CpKd(x, y)2 +O(d(x, y)4))ℓ̃pp(0, u,Hnρx) .

Now let π = {x = x0, x1, . . . , xL = y} be the optimal path for ℓ̃pp(x, y,Hnρ ∩ Bx(R)). Note
(13) implies

󰀂 logx(xi+1)− logx(xi)󰀂 = d(xi+1, xi)± CKd(xi+1, xi)
3 +O(d(xi+1, xi)

5) .
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Combining the above with (14) gives

󰀂 logx(xi+1)− logx(xi)󰀂 = 󰀂xi+1 − xi󰀂
󰀃
1± C(K +R−2)󰀂xi+1 − xi󰀂2 +O(󰀂xi+1 − xi󰀂4)

󰀄

≤ 󰀂xi+1 − xi󰀂
󰀃
1± C(K +R−2)󰀂x− y󰀂2 +O(󰀂x− y󰀂4)

󰀄

≤ 󰀂xi+1 − xi󰀂
󰀃
1± C(K +R−2)d(x, y)2 +O(d(x, y)4)

󰀄
,

since the optimality of π ensures 󰀂xi+1 − xi󰀂 ≤ 󰀂x− y󰀂. We thus obtain:

ℓ̃pp(0, u,Hnρx) ≤ n
p−1
m

󰁛
󰀂 logx(xi+1)− logx(xi)󰀂p

≤ n
p−1
m

󰁛
󰀂xi+1 − xi󰀂p

󰀃
1 + C(K +R−2)d(x, y)2 +O(d(x, y)4)

󰀄p

= n
p−1
m

󰁛
󰀂xi+1 − xi󰀂p

󰀃
1 + Cp(K +R−2)d(x, y)2 +O(d(x, y)4)

󰀄

=
󰀃
1 + Cp(K +R−2)d(x, y)2 +O(d(x, y)4)

󰀄
ℓ̃pp(x, y,Hnρ ∩ Bx(R)).

For d(x, y) ≤ CM, we can remove the fourth order term by increasing the constant on the
second order term, and we obtain

ℓ̃pp(0, u,Hnρx)

1 + Cp(K +R−2)d(x, y)2
≤ ℓ̃pp(x, y,Hnρ ∩ Bx(R)) ≤

󰀃
1 + Cp(K +R−2)d(x, y)2

󰀄
ℓ̃pp(0, u,Hnρx)

which proves the lemma.

Lemma E.3 (Locality of Homogeneous Paths) Suppose

Cp,m,β,K ≥ 󰀂u󰀂 ≥ (
n

2β
)−

1
m
( 1
3
−󰂃).

Then ℓpp(0, u,Hnρmin) = ℓpp(0, u,Hnρmin) with probability at least 1−C󰂃n exp
󰀓
−c󰂃( n

2β )
2󰂃
3
min{ 1

p
, 1
m
}
󰀔
,

and same for Hnρmax.

Proof The proof is similar to that of (Hwang et al., 2016, Thm. 7). For completeness,
we reprove this lemma here. Suppose, for the sake of contradiction, that the optimal path
leaves B0(2r) where r := 󰀂u󰀂. Then ℓpp(0, ∂B0(2r), Hnρmin) ≤ ℓpp(0, u,Hnρmin), where

ℓpp(0, ∂B0(2r), Hnρmin) = min
|v|=2r

ℓpp(0, v,Hnρmin).

Applying Proposition 4.4 yields

(nρmin)
p−1
m ℓpp(0, ∂B0(2r), Hnρmin) ≤ (nρmin)

p−1
m ℓpp(0, u,Hnρmin) ≤ µ󰀂u󰀂+ 󰀂u󰀂2 = µr + r2

(64)

with probability at least 1− C󰂃 exp
󰀓
−c󰂃(nρmin)

2󰂃
3
min{ 1

p
, 1
m
}
󰀔
if 󰀂u󰀂 ≥ (nρmin)

− 1
m
( 1
3
−󰂃).

On the other hand, let δ = 3rn−
1
m . Then, by (Vershynin, 2018, Cor. 4.2.13), we may

find a δ-net of points v1, . . . , vn, as the covering number of Sm−1(2r) is upper-bounded by󰀃
3r
δ

󰀄m
. Again by Proposition 4.4:

(nρmin)
p−1
m ℓpp(0, vi, Hnρmin) ≥ µ󰀂vi󰀂 − 󰀂vi󰀂2 = 2µr − 4r2 for i = 1, . . . , n
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⇒ min
i=1,...,n

(nρmin)
p−1
m ℓpp(0, vi, Hnρmin) ≥ µ󰀂vi󰀂 − 󰀂vi󰀂2 = 2µr − 4r2

with probability at least 1−C󰂃n exp
󰀓
−c󰂃(nρmin)

2󰂃
3
min{ 1

p
, 1
m
}
󰀔
, via a union bound. But also

min
|v|=2r

ℓpp(0, v,Hnρmin) ≥ min
i=1,...,n

ℓpp(0, vi, Hnρmin)− δp

⇒(nρmin)
p−1
m ℓpp(0, ∂B0(2r), Hnρmin) ≥ 2µr − 4r2 −

3prpg
p−1
m

min

n
1
m

.

(65)

Combining (64) and (65) yields

5r2 +
3prpg

p−1
m

min

n
1
m

≥ µr.

This yields a contradiction for r = 󰀂u󰀂 ≤ Cp,m,β,K . For n sufficiently large, we have

Cp,m,β,K > ( n
2β )

− 1
m
( 1
3
−󰂃).

Lemma E.4 (Discrete to Continuum Approximation in the Tangent Plane) Fix 󰂃 ∈
(0, 1/(8p+ 6)) and suppose

󰀕
n

2β

󰀖− 1
m
( 1
3
−󰂃)

≤ 󰀂u󰀂 ≤ Cp,m,β,K .

For notational convenience define L = Lpp(0, u, ρx). Then we have

|ℓ̃pp(0, u,Hnρx)− µL| ≤ C̃1L2 + C̃2L3 +O(L4)

with probability at least 1− C󰂃n exp
󰀓
−c󰂃( n

2β )
2󰂃
3
min{ 1

m
, 1
p
}
󰀔
, where

C̃1 := β
p−1
m

󰀕
5µ

2

󰀕
p− 1

m

󰀖
βL1 + 1

󰀖
, C̃2 := Cp,d,β

󰀃
K(1 + L1) + L2

1 + L2

󰀄
.

Proof Note throughout the proof we let Cp,d,β be a constant depending on p, d,β whose
value may change line to line. We know ℓpp(0, u,Hnρmin) = ℓpp(0, u,Hnρmin) and ℓpp(0, u,Hnρmax) =
ℓpp(0, u,Hnρmax) w.h.p. by Lemma E.3. Since we can couple the PPPs so that Hnρmin ⊆
Hnρx ⊆ Hnρmax , we obtain:

ℓpp(0, u,Hnρmax) ≤ ℓpp(0, u,Hnρx) ≤ ℓpp(0, u,Hnρmin)

=⇒ n
(p−1)
m ℓpp(0, u,Hnρmax) ≤ n

(p−1)
m ℓpp(0, u,Hnρx) ≤ n

(p−1)
m ℓpp(0, u,Hnρmin).

By applying Proposition 4.4 with q = 2:

ℓpp(0, u,Hρminn) =
1

(nρmin)
(p−1)
m

󰀃
µ󰀂u󰀂± 󰀂u󰀂2

󰀄
(66)
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Garćıa Trillos, Little, Mckenzie, and Murphy

for 󰀂u󰀂 ≥ (nρmin)
− 1

m
( 1
3
−󰂃) with probability at least 1 − C󰂃 exp

󰀓
−c󰂃(nρmin)

2󰂃
3
min{ 1

m
, 1
p
}
󰀔
.

From Theorem 4.2, we have:

󰀂u󰀂 = ρx(0)
p−1
m L ± 1

2

󰀕
p− 1

m

󰀖
ρx(0)

2(p−1)
m

−1󰀂∇ρx(0)󰀂L2 + CL3 +O(L4)

=⇒ 󰀂u󰀂2 = ρx(0)
2(p−1)

m L2 ±
󰀕
p− 1

m

󰀖
ρx(0)

3(p−1)
m

−1󰀂∇ρx(0)󰀂L3 +O(L4)

where |C| ≤ Cp,d,β(󰀂∇ρx(0)󰀂2 + 󰀂Hρx(0)󰀂). Returning to (66) we obtain:

n
(p−1)
m ℓpp(0, u,Hnρmin)

=
1

ρ
(p−1)
m

min

󰀃
µ󰀂u󰀂± 󰀂u󰀂2

󰀄

≤µρ
−(p−1)

m
min

󰀕
ρx(0)

p−1
m L+

1

2

󰀕
p− 1

m

󰀖
ρx(0)

2(p−1)
m

−1󰀂∇ρx(0)󰀂L2 + µ−1ρx(0)
2(p−1)

m L2 + C̃L3 +O(L4)

󰀖

≤
󰀕
ρx(0)

ρmin

󰀖 p−1
m

󰀕
µL+

µ

2

󰀕
p− 1

m

󰀖
ρx(0)

(p−1)
m

−1󰀂∇ρx(0)󰀂L2 + ρx(0)
(p−1)
m L2 + C̃L3 +O(L4)

󰀖

where

C̃ ≤ Cp,d,β

󰀃
󰀂∇ρx(0)󰀂+ 󰀂∇ρx(0)󰀂2 + 󰀂Hρx(0)󰀂

󰀄
.

Since |ρx(0)− ρmin| ≤ 2∇ρx(0)󰀂u󰀂+ 2󰀂Hρx(0)󰀂 · 󰀂u󰀂2 +O(󰀂u󰀂3), we have:

ρx(0)

ρmin
≤ ρx(0)

ρx(0)− 2󰀂∇ρx(0)󰀂 · 󰀂u󰀂 − 2󰀂Hρx(0)󰀂 · 󰀂u󰀂2 +O(󰀂u󰀂3)

≤ 1 +
2󰀂∇ρx(0)󰀂 · 󰀂u󰀂

ρx(0)
+

󰀕
2󰀂Hρx(0)󰀂

ρx(0)
+

4󰀂∇ρx(0)󰀂2
ρx(0)2

󰀖
󰀂u󰀂2 +O(󰀂u󰀂3)

=⇒
󰀕
ρx(0)

ρmin

󰀖 p−1
m

≤ 1 + 2

󰀕
p− 1

m

󰀖
ρx(0)

−1󰀂∇ρx(0)󰀂 · 󰀂u󰀂

+ Cp,d,β

󰀃
󰀂∇ρx(0)󰀂2 + 󰀂Hρx(0)󰀂

󰀄
󰀂u󰀂2 +O(󰀂u󰀂3)

which gives

󰀕
ρx(0)

ρmin

󰀖 p−1
m

=1 + 2

󰀕
p− 1

m

󰀖
ρx(0)

p−1
m

−1󰀂∇ρx(0)󰀂L+ Cp,d,β

󰀃
󰀂∇ρx(0)󰀂2 + 󰀂Hρx(0)󰀂

󰀄
L2 +O(L3).

Thus:

n
(p−1)
m ℓpp(0, u,Hnρmin)

≤
󰀕
1 + 2

󰀕
p− 1

m

󰀖
ρx(0)

p−1
m

−1󰀂∇ρx(0)󰀂L+ Cp,d,β

󰀃
󰀂∇ρx(0)󰀂2 + 󰀂Hρx(0)󰀂

󰀄
L2 +O(L3)

󰀖
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×
󰀕
µL+

µ

2

󰀕
p− 1

m

󰀖
ρx(0)

(p−1)
m

−1󰀂∇ρx(0)󰀂L2 + ρx(0)
(p−1)
m L2 + C̃L3 +O(L4)

󰀖

=µL+

󰀕
5µ

2

󰀕
p− 1

m

󰀖
ρx(0)

(p−1)
m

−1󰀂∇ρx(0)󰀂+ ρx(0)
p−1
m

󰀖
L2 + C̃2L3 +O(L4)

where

C̃2 ≤ Cp,d,β

󰀃
󰀂∇ρx(0)󰀂+ 󰀂∇ρx(0)󰀂2 + 󰀂Hρx(0)󰀂

󰀄
.

A similar argument shows that

n
(p−1)
m ℓpp(0, u,Hnρmax)

≥µL−
󰀕
5µ

2

󰀕
p− 1

m

󰀖
ρx(0)

(p−1)
m

−1󰀂∇ρx(0)󰀂+ ρx(0)
p−1
m

󰀖
L2 − C̃2L3 +O(L4) ,

and we obtain

|ℓ̃pp(0, u,Hnρx)− µLpp(0, u, ρx)| ≤ ρx(0)
p−1
m

󰀕
5µ

2

󰀕
p− 1

m

󰀖
󰀂∇ρx(0)󰀂
ρx(0)

+ 1

󰀖
L2 + C̃2L3 +O(L4) .

Note ρx(0) = ρ(x). To finish the proof we use bounds for 󰀂∇ρx(0)󰀂, 󰀂Hρx(0)󰀂 shown in
Lemma 1 (note C̃2 depends on Hρx(0)). Altogether we have:

|ℓ̃pp(0, u,Hnρx)− µLpp(0, u, ρx)| ≤ ρ(x)
p−1
m

󰀕
5µ

2

󰀕
p− 1

m

󰀖
󰀂∇ρ(x)󰀂
ρ(x)

+ 1

󰀖
L2 + C̃L3 +O(L4)

with

C̃ ≤ Cp,d,β

󰀃
K +K󰀂∇ρ(x)󰀂+ 󰀂∇ρ(x)󰀂2 + 󰀂Hρ(x)󰀂

󰀄
.

Since ρmin ≥ 1
β (1 − CmK󰀂u󰀂2) ≥ 1

2β as long as 󰀂u󰀂 is small enough, the above holds for

Cp,m,β,K ≥ 󰀂u󰀂 ≥ ( n
2β )

− 1
m
( 1
3
−󰂃) with probability at least 1 − C exp

󰀓
−c( n

2β )
2󰂃
3
min{ 1

m
, 1
p
}
󰀔
.

Bounding 󰀂∇ρ(x)󰀂 ≤ L1 and 󰀂Hρ(x)󰀂 ≤ L2 concludes the proof.

Lemma E.5 (Curvature Perturbation, Continuum Metric) For 󰀂u󰀂 ≤ CM,ρ,

µLpp(0, u, ρx) = (1± CpK󰀂u󰀂2)µLpp(x, y) .

Proof We first note that for 󰀂u󰀂 ≤ CM,ρ, the optimal Lp path γ ∈ M stays inside Bx(2r)
and that the optimal path for Lpp(0, u, ρx) stays inside B0(2r) (see for example Theorem 4.2
and Lemma 2.2 from Little et al. (2022)). We thus have:

Lpp(0, u, ρx) = inf
logx γ∈B0(2r)

󰁝
ρx(logx γ(t))

(1−p)/m|(logx γ)′(t)| dt

= inf
γ∈Bx(2r)

󰁝
ρ(γ(t))(1−p)/mJx(logx γ(t))

(1−p)/m |(logx γ)′(t)| dt

57
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= inf
γ∈Bx(2r)

󰁝
ρ(γ(t))(1−p)/mJx(logx γ(t))

(1−p)/m | log′x(γ(t))| · |γ′(t)| dt

= inf
γ∈Bx(2r)

󰁝
ρ(γ(t))(1−p)/m(1± CmK󰀂u󰀂2)(1−p)/m · (1± CK󰀂u󰀂2) · |γ′(t)| dt

= (1± CpK󰀂u󰀂2) inf
γ∈Bx(2r)

󰁝
ρ(γ(t))(1−p)/m|γ′(t)| dt

= (1± CpK󰀂u󰀂2) inf
γ∈M

󰁝
ρ(γ(t))(1−p)/m|γ′(t)| dt

= (1± CpK󰀂u󰀂2)Lpp(x, y).

For the bound on | log′x(γ(t))|, see 1.34 of Garćıa Trillos et al. (2019).

Appendix F. Fermat Kernels and Degrees

Corollary 5.1 Let δ := 2µ−1C1h + 4µ−1C2h
2 ≤ 1

2 , where C1, C2 are as in Theorem 3.2.

Define 󰁥h+ := h(1 + δ), 󰁥h− := h(1 − δ). Then for n large enough, with probability at least

1− C󰂃n
3 exp

󰀓
−c󰂃( n

4β )
󰂃

2p+1
min{ 1

m
, 1
p
}
󰀔
, we have for all xi, xj ∈ X :

η

󰀣
µLpp(xi, xj)

󰁥h−

󰀤
≤ η

󰀣
ℓ̃pp(xi, xj)

h

󰀤
≤ η

󰀣
µLpp(xi, xj)

󰁥h+

󰀤
, (23)

where C󰂃, c󰂃 are constants depending on 󰂃, η = 1
ωm
1[0,1] and h ≥ 4µβ

(p−1)
m (nβ/2)−

1
m
( 1
3
−󰂃).

Proof We prove the result by defining ξ := 2µβ
(p−1)
m (nβ/2)−

1
m
( 1
3
−󰂃) ≤ 1

2h and considering
the following 3 cases for any fixed xi, xj :

1. µLpp < ξ

2. ξ ≤ µLpp ≤ 2h

3. µLpp > 2h

Case 1: Assume µLpp < ξ. We want to show that all kernels evaluate to 1, i.e., µLpp < 󰁥h−
(which also guarantees µLpp < 󰁥h+) and that 󰁨ℓpp < h. Since µLpp < ξ ≤ 1

2h = 1
2

󰁥h−
(1−δ) ≤ 󰁥h−,

the Lpp kernels evaluate to 1. To bound 󰁨ℓpp, we need to further consider the following two
subcases:

Case 1a: Lpp ≤ n
− 1

m

󰀓
1− 2

3p

󰀔

. In this case for n large enough the bound follows by considering
the straight-line path, since

ℓ̃pp(xi, xj) ≤ n
p−1
m 󰀂xi − xj󰀂p ≲ n

p−1
m n−

1
m(p−

2
3) = n−

1
m(1−

2
3) = n−

1
3m ≪ n−

1
m(

1
3
−󰂃) ∼ 2ξ ,

so that ℓ̃pp(xi, xj) < h.

Case 1b: n
− 1

m

󰀓
1− 2

3p

󰀔

≤ Lpp. This case involves discrete-to-continuum control of metric
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convergence at smaller scales than given in Theorem 3.2. However a repeat of the same ar-
guments used to prove Theorem 3.2, but with choosing q = 1+ 1

4p when applying Proposition

4.4 in the proof of Lemma E.4, gives that for d(xi, xj) ≥ 2(nβ/2)
− 1

m

󰀓
2p

2p+1
−󰂃

󰀔

,

|ℓ̃pp(xi, xj)− µLpp(xi, xj)| = O((Lpp)
(1+ 1

4p
)
) (67)

with probability at least 1 − C󰂃n exp
󰀓
−c󰂃( n

4β )
󰂃

2p+1
min{ 1

m
, 1
p
}
󰀔
. We double check the lower

bound in (23) is satisfied in Case 1b. Because dg(xi, xj) ≥ β
1−p
m Lpp (see (2) and apply the

upper bound on ρ) and Lpp ≥ n
− 1

m

󰀓
1− 2

3p

󰀔

by assumption, to apply (67) it is sufficient to
check that

d(xi, xj) ≥
1

β
p−1
m

n
− 1

m

󰀓
1− 2

3p

󰀔

≥ 2(nβ/2)
− 1

m

󰀓
2p

2p+1
−󰂃

󰀔

, (68)

i.e., we need 1− 2
3p <

1
1+(1/2p) − 󰂃. Since 󰂃 < 1

2(4p+3) <
1
6p , we have

1

1 + (1/2p)
− 󰂃 ≥ 1

1 + (1/2p)
− 1

6p
≥ 1− 1

2p
− 1

6p
= 1− 2

3p

and indeed the lower bound in (68) holds for n large enough. Thus, w.h.p.

ℓ̃pp(xi, xj) ≤ µLpp(xi, xj) +O(ξ

󰀓
1+ 1

4p

󰀔

) = µLpp + n
− 1

m(
1
3
−󰂃)

󰀓
1+ 1

4p

󰀔

< 2µLpp < 2ξ

so that ℓ̃pp(xi, xj) < h.

Case 2: Note d(xi, xj) ≥ β
1−p
m Lpp(xi, xj) ≥ β

1−p
m µ−1ξ = 2(nβ/2)−

1
m
( 1
3
−󰂃), and so by Theorem

3.2:

µLpp(1− δ) ≤ 󰁨ℓpp ≤ µLpp(1 + δ)

=⇒ µLpp
󰁥h+

=
µLpp

h(1 + 2δ)
≤

󰁨ℓpp
h

≤ µLpp
h(1− δ)

=
µLpp
󰁥h−

which establishes the corollary in this case.
Case 3: Now assume that µLpp > 2h. We want to show that all kernels evaluate to 0, i.e.,

we need to show that Lpp > 󰁥h+ (of course this guarantees Lpp > 󰁥h−) and also that 󰁨ℓpp > h.

The first is true since Lpp > 2h ≥ h(1 + 2δ) = 󰁥h+. For 󰁨ℓpp, note that by Theorem 3.2

󰁨ℓpp > µLpp − C1(Lpp)2 − C2(Lpp)3 >
µ

2
Lpp > h

whenever Lpp ≤ C3 for a fixed constant C3. But when Lpp > C3, it is clear that 󰁨ℓpp > µ
2L

p
p

from Theorem 1 in Hwang et al. (2016) (or from the proof of Proposition 4.4).
Finally, to conclude that (23) holds for all pairs of points we take a union bound,

so that (23) holds with probability at least 1 − C󰂃n
3 exp

󰀓
−c󰂃( n

4β )
󰂃

2p+1
min{ 1

m
, 1
p
}
󰀔
(note the

probability from Case 1 dominates the probability from Case 2, since we applied Proposition
4.4 with q = 1 + 1

4p instead of q = 2).
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Lemma 5.2 For C1, C2 as in Theorem 3.2 and Kp as in Theorem B.2:

󰀏󰀏󰀏mℓ̃pp,h,i
− ρp(xi)

󰀏󰀏󰀏 ≤ Cβp
󰀗󰀕

L1

β
+ C1m

󰀖
h+m(Kp + C2µ)h

2 +mωm
dg∞(ν, νn)

h

󰀘
.

Proof From the proof of (Garćıa Trillos et al., 2019, Lemma 18), if a distance function d0
approximates dg by

η

󰀕
dg(xi, xj)

h(1− δ)

󰀖
≤ η

󰀕
d0(xi, xj)

h

󰀖
≤ η

󰀕
dg(xi, xj)

h(1 + δ)

󰀖

for all xi, xj ∈ Xn, then for h ≤ CM (see (Garćıa Trillos et al., 2019, Assumption 3))

|md0,h,i − ρ(xi)| ≤ C

󰀕
Lρh+ βmKh2 + βmδ + βmη(0)ωm

dg∞(ν, νn)

h

󰀖

Note if dg = Lpp then data is sampled from density ρp, and Lρ,β,K, δ all depend on p. Thus,

for dg = Lpp and d0 = 󰁨ℓpp we obtain

󰀏󰀏󰀏mℓ̃pp,h,i
− ρp(xi)

󰀏󰀏󰀏 ≤ C

󰀕
Lρph+ βpdKph

2 + βpdδ + βpdη(0)ωd
dg∞(ν, νn)

h

󰀖

where Kp is computed in Theorem B.2, Lρp is the Lipschitz constant of ρp, and we can
choose δ = 4C1h + 8C2µh

2 by Corollary 5.1. We may take Lρp = Cβp−1L1 as for all
x, y ∈M

|ρp(x)− ρp(y)| ≤ |ρ(x)− ρ(y)|
p−1󰁛

j=0

|ρp−j−1(x)||ρj(y)| ≤ (L1)
󰀃
Cβp−1

󰀄
.

Appendix G. De-Poissonization: Proof of Theorem 3.2

Proof To utilize the results of Theorem 4.3, we consider a coupling process of 2 random
PPPs as follows. We have two infinite sequences with draws from ρ:

x1, x2, x3, . . .

y1, y2, y3, . . .

Now we let N− be a Poisson random variable with mean n− = n−n
1+κ
2 , and Ninc a Poisson

random variable with mean 2n
1+κ
2 ; note N− + Ninc is Poisson with mean n+ = n + n

1+κ
2 .

This process defines two PPPs:

Hn−ρ := {x1, . . . , xN−},
Hn+ρ := {x1, . . . , xN− , y1, . . . , yNinc}.
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We define the following high probability events:

Ω1 := {N− ≤ n},
Ω2 := {n ≤ N− +Ninc}.

We now let Xn consist of the first N− ∧ n points from the xi sequence, with an additional
n−N− points taken from the yi sequence if n > N−; Xn consists of n iid samples from ρ.
Note that on Ω1, Xn gets to use all of the points available to Hn−ρ, and possibly more; on
Ω2, Hn+ρ gets to use all of the points available to Xn, and possibly more. For notational
brevity, we let ζ = C1L2 + C2L3 where C1, C2 are the constants from Theorem 4.3 and
define the following events:

A := {n
p−1
m

− ℓpp(Xn) < µL+ ζ},

A′ := {n
p−1
m

− ℓpp(Hn−ρ) < µL+ ζ},

B := {n
p−1
m
+ ℓpp(Xn) > µL− ζ},

B′ := {n
p−1
m
+ ℓpp(Hn+ρ) > µL− ζ}.

We then obtain:

P (A) ≥ P (A ∩ Ω1) ≥ P (A′ ∩ Ω1) = P (A′)− P (A′ ∩ ΩC
1 ) ≥ P (A′)− P (ΩC

1 ),

P (B) ≥ P (B ∩ Ω2) ≥ P (B′ ∩ Ω2) = P (B′)− P (B′ ∩ ΩC
2 ) ≥ P (B′)− P (ΩC

2 ) .

By Theorem 4.3

P (A′) ≥ 1− Cn− exp (−c(n−/2β)κ) ≥ 1− Cn exp (−c (n/4β)κ)
P (B′) ≥ 1− Cn+ exp (−c(n+/2β)κ) ≥ 1− Cn exp (−c(n/2β)κ)

since n ≥ 5 and 2(nβ/2)−
1
m(

1
3
−󰂃) ≤ d(x, y) ≤ CM,ρ.

We now bound P (ΩC
1 ), P (Ω

C
2 ). Note that when X = Poisson(λ), the following Poisson

tail bounds can be derived from a Chernoff bound argument:

P (X ≥ x) ≤
󰀕
λ

x

󰀖
ex−λ for x > λ , P (X ≤ x) ≤

󰀕
λ

x

󰀖
ex−λ for x < λ .

Combining the first inequality with ln(1 + x) ≤ 2x
2+x for −1 < x ≤ 0 and 1

1−x ≥ 1 + x for

|x| ≤ 1 gives P (N− ≥ n) ≤ e−
1
2
nκ
. Combining the second inequality with ln(1+ x) ≤ x√

1+x

for x ≥ 0 and 1√
1+x

≤ 1 − x
4 for 0 ≤ x ≤ 1 gives P (N− + Ninc ≤ n) ≤ e−

1
4
nκ
. We thus

obtain:

P (ΩC
1 ) ≤ e−

1
2
nκ

, P (ΩC
2 ) ≤ e−

1
4
nκ

so that

P (A ∩B) ≥ P (A)− P (BC) ≥ 1− Cn exp (−c (n/4β)κ) .
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Note that on A ∩B, we have:

n
p−1
m ℓpp(Xn) <

󰀕
1

1− n
κ−1
2

󰀖 p−1
m

(µL+ ζ) ≤
󰀓
1 + 2n

κ−1
2

󰀔 p−1
m

(µL+ ζ)

since n
κ−1
2 ≤ 1

2 (true since κ ≤ 1
21 , n ≥ 5). We utilize the inequality (1+x)q ≤ 1+x(1∨⌈q⌉2)

for 0 ≤ x ≤ ⌈q⌉−1. If q ≤ 1, then (1+x)q ≤ 1+x and the inequality clearly holds. If q > 1,
then by the Binomial Theorem

(1 + x)⌈q⌉ =

⌈q⌉󰁛

k=0

󰀕
⌈q⌉
k

󰀖
xk = 1 +

⌈q⌉󰁛

k=1

󰀕
⌈q⌉
k

󰀖
xk ≤ 1 + ⌈q⌉2x

as long as
󰀃⌈q⌉
k

󰀄
xk ≥

󰀃 ⌈q⌉
k+1

󰀄
xk+1 for 1 ≤ k ≤ ⌈q⌉ − 1, which is guaranteed by x ≤ ⌈q⌉−1. We

thus obtain that for 2n
κ−1
2 ≤

󰁯
p−1
m

󰁰−1
:

n
p−1
m ℓpp(Xn) ≤

󰀥
1 + 2n

κ−1
2

󰀣
1 ∨

󰀛
p− 1

m

󰀜2󰀤󰀦
(µL+ ζ)

≤ µL+ ζ + 2n
κ−1
2

󰀣
1 ∨

󰀛
p− 1

m

󰀜2󰀤
3µL

since µL+ ζ ≤ 3µL for d(x, y) ≤ CM,ρ. A similar argument gives

n
p−1
m ℓpp(Xn) ≥ µL− ζ − n

κ−1
2

󰀣
1 ∨

󰀛
p− 1

m

󰀜2󰀤
3µL

so that on A ∩B we have

|n
p−1
m ℓpp(Xn)− µL| ≤ ζ + 2n

κ−1
2

󰀣
1 ∨

󰀛
p− 1

m

󰀜2󰀤
3µL .

In particular,

|n
p−1
m ℓpp(Xn)− µL| ≤ C1L+ C2(L3 + Ln

κ−1
2 ) ,

where we update Cp,d,β in the definition of C2 as needed.

Finally, we observe that the lower bound on d(x, y) implies L2 ≥ Cp,d,βn
− 2

m(
1
3
−󰂃). Since

n−
2
m(

1
3
−󰂃) dominates n

κ−1
2 whenever 3m − 4 + 10󰂃 ≥ 0 which is guaranteed by m ≥ 2, we

obtain the theorem statement.

Appendix H. Additional Experimental Plots
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Figure 7: p = 1.2, τ = .5. Runtime for Fermat Laplacian: 168.46± 10.70s. Runtime for Rescaled Euclidean
Laplacian: 7.38± 1.10s.
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Figure 8: p = 2, τ = .1. Runtime for Fermat Laplacian: 212.52 ± 70.49s. Runtime for Rescaled Euclidean
Laplacian: 1.33± .24s.
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Figure 9: p = 2, τ = .5. Runtime for Fermat Laplacian: 83.62 ± 10.50s. Runtime for Rescaled Euclidean
Laplacian: 1.24± .16s.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Fermat Eigenvalues
Degree Renormalized Euclidean Eigenvalues
Euclidean Eigenvalues

10 20 30 40 50 60 70 80 90 100

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Fermat Eigenvalues
Degree Renormalized Euclidean Eigenvalues
Euclidean Eigenvalues

0 10 20 30 40 50 60 70 80 90 100
-5.5

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

0 10 20 30 40 50 60 70 80 90 100
-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0 10 20 30 40 50 60 70 80 90 100
-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

Figure 10: p = 1.2, τ = .25. Runtime for Fermat Laplacian: 170.10±58.73s. Runtime for Rescaled Euclidean
Laplacian: 1.27± .05s.
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Figure 11: p = 1.2, τ = .5. Runtime for Fermat Laplacian: 58.72 ± 1.51s. Runtime for Rescaled Euclidean
Laplacian: 1.04± .05s.
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Figure 12: p = 2, τ = .25. Runtime for Fermat Laplacian: 219.76± 19.41s. Runtime for Rescaled Euclidean
Laplacian: .60± .28s.


