ASYMPTOTICS FOR SHAMIR’S PROBLEM

JEFF KAHN

ABSTRACT. For fixed r > 3 and n divisible by r, let H = HJ ,, be the random M-edge r-graph on V' =
{1,...,n}; that is, H is chosen uniformly from the A -subsets of K := (‘7/) (:= {r-subsets of V'}). Shamir’s
Problem (circa 1980) asks, roughly,
for what M = M (n) is H likely to contain a perfect matching
(that is, n/r disjoint r-sets)?
In 2008 Johansson, Vu and the author showed that this is true for M > C;nlogn. The present paper has two
purposes. First, it establishes the asymptotically correct version of the 2008 result:

Theorem 1. For fixede > 0and M > (14 ¢€)(n/r)logn,
P(H contains a perfect matching) — 1 asn — oo.
Second, it begins a proof of the definitive “hitting time” statement:
Theorem 2. If Ay, ... is a uniform permutation of K, H¢ = {A1,..., A¢}, and
T=min{¢t: AyU---UA =V}
then P(H contains a perfect matching) — 1 as n — oo.

It is shown here that Theorem 2 follows from a conditional version of Theorem 1 that will be proved elsewhere.
The key ideas in that proof are similar to those for Theorem 1, but the argument is a longer story, and it has

seemed best to give the present separate proof of Theorem 1, in which those ideas may appear more clearly.

1. INTRODUCTION

A (simple) r-graph (or r-uniform hypergraph) is a set H of r-subsets (edges) of a vertex set V.= V(H); a
matching of such an H is a set of disjoint edges; and a perfect matching (p.m.) is a matching of size |V'|/r.
Write H;, ,, for the random M-edge r-graph on [n] := {1,...,n}; thatis, H,, ), is chosen uniformly from
the M-subsets of K := ([:f]). (Some notation is collected at the end of this section.)

We are interested here in Shamir’s Problem, which asks, roughly, with n ranging over (large) multiples of
a fixed r,
for what M is H;, \ likely to contain a perfect matching?
In what follows we will always work with a fixed r and omit this from our notation—so H,, rs is H,, y;—
and restrict to n divisible by .

Shamir’s Problem first appeared in print in [13], where Erd6s says he heard it from Eli Shamir in 1979,
and, following initial results in [27], became one of the most intensively studied questions in probabilistic
combinatorics; for example, it and its graph factor analogue (see below) were, according to [20, Section 4.3],
“two of the most challenging, unsolved problems in the theory of random structures.”
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For a more precise question, recall that My = My(n) is a threshold for the property of containing a perfect
matching if

0 if M/My — 0,

1 P(H, o h fect matchi
1) (H, s has a perfect matc 1ng)—>{ LS M/My s oo

This notion was introduced by Erdos and Rényi in [14] and has been a central concern of probabilistic
combinatorics since that time (see e.g. [20]). Note (1) depends only on the order of magnitude of M,
though “the threshold” is a common abuse.

A natural guess—maybe with some hindsight; see below—is that, for any (fixed) r,
2 nlogn is a threshold for containing a perfect matching.

(When it matters—here it does not—log is natural logarithm.) We think of this as crudely expressing the
idea that in the random setting the main obstacle to existence of a perfect matching is isolated vertices (ver-
tices not in any edges)—which typically disappear when M =~ (n/r) logn.

Note that while (2) seems natural (or obvious) today, it was not always so. For example Erd&s [13] says
“... usually one can guess the answer [for random hypergraph problems] almost immediately. Here we
have noidea ...,” and [27] gives no guess as to the threshold. It was only in [8] that (2) (in the stronger form

(3) below) was first suggested in print, though its likelihood was surely recognized before then.

Following various attempts, the most successful in [16] and [23] (see also e.g. [8, 24]), (2) was proved in
[21]:

Theorem 1.1. For each r there is a C, such that if M > C,nlogn then H.,, rr has a perfect matching w.h.p.’

(See also [17, Sec. 13.2] for an exposition.)

The challenge since Theorem 1.1 has been to show that isolated vertices are more literally the issue.
Ideally this means proving the precise hitting time statement: if A; ... is a uniform permutation of K then
w.h.p. the A4;’s include a p.m. as soon as they cover the vertices. (This possibility is suggested in [21], but
was by then an obvious guess.)

A somewhat less ambitious goal is to show that Theorem 1.1 holds for any (fixed) C > 1/r. We may call
this asymptotics of the threshold: it gives M, ~ (n/r)logn, where M, = M. (n) is the threshold, the least M for
which

P(#H,,, 0 has a perfect matching) > 1/2
(which is a threshold in the Erd6s-Rényi sense; see [5] or [20, Theorem 1.24]). It is easy to see that this
asymptotic version does follow from the hitting time statement.

The conjecture of [8] is stronger than asymptotics of the threshold but weaker than the hitting time
version: if M = (n/r)(logn + ¢,), then

0 ifc, =0,
3) P(H,,ar has a perfect matching) — e~ ife, — ¢,
1 if ¢,, — oc.

Equivalently, the probability that H,, »s avoids isolated vertices yet fails to contain a perfect matching tends
to zero. For r = 2, (3) and the hitting time statement were shown by Erd6s and Rényi [15] and Bollobas and
Thomason [4] respectively. (So Erdés” comment above might suggest he believed the answer for larger r
would be different.)

Lisyith high probability,” meaning with probability tending to 1 as n — oo
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In this paper we show that the asymptotics of the threshold are as expected and give the first step in a

proof of the hitting time statement that will be completed in [22]; thus:

Theorem 1.2. For fixed ¢ > 0 and M > (1 + ¢)(n/r)logn, Hn a has a perfect matching w.h.p.

Theorem 1.3. If Ay, ... is a uniform permutation of IC, H; = {A1,..., A}, and
T=min{t: AyU---UA4; =V}

(the hitting time), then Hr has a perfect matching w.h.p.

[We note in passing that Theorem 1.2 is equivalent to its analogue for #,, , = H,, ,, (the random r-graph
on [n] in which each edge is present with probability p, independent of other choices):

Theorem 1.4. For fixede > 0and p > (1 +¢)("~}) “logn, H.,, has a perfect matching wh.p.

See e.g. Propositions 1.12 and 1.13 of [20] for the equivalence.]

The story of these results ran very much contrary to expectations. The author had felt since [21] that a
proof of Theorem 1.2 might not be out of the question (maybe a minority opinion), but that Theorem 1.3
was probably hopeless; but in retrospect it is the former that was the bigger step.

Theorem 1.3 is proved by reducing to a statement like Theorem 1.2, but in a conditional space where even
routine points from the proof of Theorem 1.2 are not straightforward; so the present organization, with its
separate proof of the now subsumed Theorem 1.2, is intended to focus on what seem the most important
points. (It should also make the proof of Theorem 1.3 in [22] easier to follow, and will somewhat shorten
[22], since some of what we do here can be used there directly.)

As in [21] our approach to Theorems 1.2 and 1.3 depends crucially on working with counting versions;
with ®(#) denoting the number of perfect matchings of #, the corresponding stronger statements are:

Theorem 1.5. For fixed ¢ > 0and M > (1 + ¢)(n/r)logn, w.h.p.

n/r
4) O(Hoar) > [e*(rfl)TM/n} o—o(n).
Theorem 1.6. For H. and T as in Theorem 1.3, w.h.p.
n/r
(5) O(Hr) > [67(“1) log n] eo),

The right-hand sides are (of course) roughly the expectations of the left-hand sides; more precisely, they are
within subexponential factors of those expectations.

In Section 2 we derive Theorem 1.2 from several statements whose proofs will be the main work of this
paper. Outlining that work will be easier once we have the framework of Section 2, so is postponed until
then.

Section 10 gives the reduction that is the first step in the proof of Theorem 1.3. (To be precise, we reduce
Theorem 1.6 to Theorem 10.1, a conditional variant of Theorem 1.5. The same reduction gets Theorem 1.3
from the weaker version of Theorem 10.1 corresponding to Theorem 1.2, but, again, we don’t know how to
prove the weaker version without proving the stronger.)

Graph factors

Recall that, for graphs H and G, an H-factor of G is a collection of copies of H in G (subgraphs of G
isomorphic to H) whose vertex sets partition V(G). The graph-factor counterpart of Shamir’s Problem asks
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(roughly), when is the random graph G, nr likely to contain an H-factor? This was originally suggested (for
H = K3) by Ruciriski [26].

Here the naive guess—that vertices not in copies of H are the main obstruction—is not always correct,
though one does expect it to be correct for strictly balanced H (see [20]) and slightly beyond. For strictly
balanced H it is shown in [21] at the level of Erd6s-Rényi thresholds (so the analogue of Theorem 1.2; this

says, for example, that n/3 log!/®

n is a threshold for existence of a triangle-factor). See Conjecture 1.1 of
[21] for what ought to be true in general. Though given in detail only for graphs, the arguments and results
of [21] extend essentially unmodified to r-graph-factors, where Theorem 1.2 is just the case that H consists

of a single edge.

I expect—admittedly, without having thought very seriously—that the present results extend to the gen-
eral graph (and hypergraph) factor setting, with, as was true in [21], some technical complications but
all key ideas already appearing in the arguments for Shamir. Beautiful recent coupling arguments of O.
Riordan [25] and A. Heckel [19] show that in some cases—e.g. cliques—the graph factor versions of Theo-
rems 1.1 and 1.2 follow from the Shamir versions (e.g. at these levels of accuracy, Ruciniski’s triangle-factor
question is contained in Shamir); but there seems little chance of anything analogous for Theorem 1.3.

Usage

Throughout the paper we fix r > 3; take V' = [n] := {1,...,n}, with r|n; and use K for (‘:) We use
v,w, z,y, z for vertices and F,G,H for r-graphs (a.k.a. subsets of K), or bold versions of these when the
r-graphs in question are random. As above, we abbreviate H;, ,, = #, v, and the number of perfect
matchings (or p.m.s) of H is denoted ®(H).

We use H, = {A € H : z € A}; Ay, 04 and Dy for maximum, minimum and average degrees in #; and
H—-—X={AeH:ACV\ X} Asusual the codegree (in H) of z,yis [{A € H : z,y € A}|. We will often
abusively write Y Uz and Y \ z for Y U {z} and Y\ {z}.

Asymptotic notation is interpreted as n — oo (with dependence on n typically suppressed). We use
a < band a = o(b) interchangeably and, similarly, a < b is the same as a < (1 + o(1))b. We use both “a.e.”
and “a.a.” to mean “for all but a o(1)-fraction.” A familiar point that nonetheless seems worth mentioning:
given ¢, implied quantities in asymptotic expressions not mentioning ¢ (constants in O(-) and €2(-), rates in
o(+) and w(-)) depend on ¢, but, for example, the implied constant in O(¢) does not.

We use log for natural logarithm and a + b for a quantity within b of a. We will always assume n is
large enough to support our assertions and, following a common abuse, usually pretend large numbers are
integers.

We will sometimes use bold for random objects: consistently for r-graphs, but otherwise only if it seems
needed to distinguish a random object from its possible values. We use mathfrak characters (A, 8, ¢, 0, €&, ...)
for properties (saying, e.g., “H has property ,” “H satisfies 2,” “H |= ” as convenient) and events (e.g.
A, = {H, = AU}; see Section 5), and will usually prefer 2R to A A R.

2. SKELETON

Here we prove Theorem 1.5 modulo a few assertions whose justification will be the main content of the
paper. As mentioned earlier, the approach is similar to that of [21]; a major, if nearly invisible, difference is
the o(n) in (4), which was formerly O(n); see “Orientation” below for a little more on this.

Fix ¢, let M be as in the statement of Theorem 1.5 (or 1.2), and set T' = (:f) — M. Let Aq,... ,A(n) be a

r

uniform ordering of K (= (‘T/)) and set H, = K\ {A41,...,A;}; so Ho = K and we may take H,, ps = Hr.
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(Note the T" and H; here disagree with—are nearly the opposite of—those in Theorems 1.3 and 1.6,
reflecting the different Hy's (K vs. 0)), but we will not see those theorems again until Section 10, when we are
done with the present setup; nor will there ever be any danger of confusing H; and H, (= {A € H:z € A};
see Usage).)

Set ®(H;) = ¥, and let &, be the fraction of perfect matchings of #{,_; that contain A; (so & = ®(H,—1 —
At)/(bt—l)- Then
Dy = Do(1 — &)+ (1 —&);

equivalently,

(6) log ®; = log ®( + Z§=1 log(1 — &;).
It will be helpful to set

@) A= (r—=1)n/r;

this quantity represents one of the crucial differences between the present work and [21] (see “Orientation”
following Lemma 4.1).

Notice that (by Stirling’s Formula)

n! n

8 log @y = log DGR

log (,",) = A+ O(logn)

(recall log is In), and that

n/r
9 E, = o——— =,
) £ M) —i+1 gl
since in fact
(10) ]E[fz'|A17 .- 'aAi—l] =7

for any choice of Ay, ..., A;_1. (Strictly speaking (10) requires ®(#;_1) # 0, but this will be true in any case
we consider.) Thus
t t ()
(11) S EG =) v="log ) e
i=1 i=1 r

provided (") — ¢t = w(n).

Let 2; be the event
(12) {log O, > log®y— 0, i — o(n)}.

Remark. We note, perhaps unnecessarily, that (12) refers to some specific o(n), so that it makes sense to
talk about 2; for a particular n (as opposed to a sequence). Related points will be common below, and,
somewhat departing from common practice, we will elaborate in a couple places where this seems possibly
helpful; see following (58) for a first instance.

Combining (8) and the expression for > ; in (11) (with ¢ = T, in which case the argument of the log is
(") /M), we find that 27 says

(13) log @1 > (n/r)log(rM/n) — A — o(n),
which is the same as (4); so Theorem 1.5 is

(14) P@r) = o(1).
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(We will in fact show P(U;<72;) = o(1); see (19).)

For (14) we use the method of martingales with bounded differences. Here it is natural—though we will
need a slight variant—to consider the martingale

{(Xe =301 (& — )}

(it is a martingale by (10)), with associated difference sequence
{Zi=¢& — v}

In general proving concentration of such X;’s depends on maintaining some control over the |Z,|’s, to
which end we keep track of two sequences of auxiliary events, B; and R, (i < T'—1). These will be defined
in Section 5. Roughly, ®B; says that no edge of H; is in too much more than its proper share of perfect
matchings, while fR; consists of standardish degree restrictions.

For i < T it will follow trivially from 8;_; (see (59)) that
(15) & = O0(m).

This is more than enough for the desired concentration, but can occasionally fail, since 5,_; may fail. We
accordingly slightly modify the above X’s and Z’s, setting

(16) 7 & —: ifB; holdsforall j <4,
1o otherwise
(and X; = Y°!_, Z;). As shown in Section 3, a martingale analysis along the lines of Azuma’s Inequality
then gives
(17) P(| X > \) <D for A > /n.

Notice that if we do have 9B, forall i < t < T (so X; = Zle(ﬁi — 7)) and X; < y/nlogn (say; there is
plenty of room here), then we have 2;; for (15) gives
22:1 512 = 0(25:1 %2)

(18) O((n/r)?32{i=% 1 j > (n/r)logn}) = O(n/logn);

so (using (6))

t t
log ®; > log &g — Y (& +&7) > log®o — Y 7 — O(n/logn),
i=1 i=1
where the first inequality uses &, = o(1) (which follows from (15) and (9)), and the O(n/ log n) absorbs the
smaller S0 (& —vi) = Xi.
Thus the first failure, if any, of an ; (with ¢ < T) must occur either because X, is too large or because B;
fails for some i < t; formally, we have

(19) P(Ur<r@y) < P(UrcrRy) + Z P(2AR:B;) + Z P((Ni<eB5) N2Ar).
t<T t<T

Here the last sum is n~“(!) by (17) and the discussion following it, and we will show

(20) P(Ur<rR¢) = o(1)

and, fori < T,

(21) P(ARB;) = n~wW,

So the Lh.s. of (19) is 0(1), which in particular gives (14) (and Theorem 1.5). |
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Remark. Thus most of the exceptional probability comes from the 93;’s, which include lower bounds on
minimum degrees (see (55)) whose failure probability is not all that small. If the process survives the R;’s,
then the probability that it fails for some other reason is much smaller.

Orientation. What this paper is really about—as was [21]—is bounding the increments &;; that is, estab-
lishing (15), which, as already mentioned, follows immediately from %B;_;. The martingale analysis that
handles (via (17)) the last term in (19) is then pretty standard, and the genericity assertions (20) are also
fairly routine.

Thus the heart of the matter is (21), which is proved in Sections 6-9, with the assistance of the entropy
machinery developed in Section 4. The most important part of this is Sections 8 and 9, but the Brégman-
like bound of Theorem 4.2, which underlies Section 8 and seems of independent interest, is also critical:
as mentioned at the beginning of this section, a crucial difference between the present outline and the
corresponding discussion in [21] is the o(n)—which in [21] was O(n)—in the definition of 2, and it is
Theorem 4.2 that provides the opening to exploiting this.

We will try to comment on particular aspects of the argument when we are in a position to do so more
intelligibly.

Outline. After briefly recalling large deviation basics, Section 3 records what we need in the way of martin-
gale concentration, in a form convenient for a second application in Section 9, and gives the calculation for
(17). As mentioned above, Section 4 treats entropy, with main point the aforementioned Theorem 4.2. In
Section 5 we finally define the events B; and R; as part of a somewhat more general discussion, give the
easy derivation of (15) from B;_;, and, in (58), slightly reformulate (21). The uninteresting proof of (20) is
banished to an appendix that the reader is encouraged to skip. And, again, Sections 6-9 prove (58), thus
establishing (21) and, according to the above discussion, completing the proof of Theorem 1.5.

3. CONCENTRATION

Before turning to the main business of this section we review a couple standard “Chernoff-type” bounds.
Recall that a r.v. £ is hypergeometric if, for some s, a and k, it is distributed as | X N A|, where A is a fixed a-
subset of the s-set S and X is uniform from (%).

Theorem 3.1. If ¢ is binomial or hypergeometric with BE = i, then for t > 0,
(22) Pr(& > p+t) < exp[—pp(t/p)] < exp [—2/(2(u+1/3))]
(23) Pr(§ < p—t) < exp[—pp(—t/p)] < exp[—t?/(2u)],
where p(z) = (1 + z)log(l + x) — x for x > —1and p(—1) = 1.
(See e.g. [20, Theorems 2.1 and 2.10].) For larger deviations the following consequence of the finer bound
in (22) is helpful.
Theorem 3.2. For & and p as in Theorem 3.1 and any K,
Pr(§ > Ku) < exp[—Kplog(K/e)].

We now turn to martingales and (17). The argument for the latter is about the same as that for the
corresponding assertion in [21], but we now present the basic machinery in somewhat greater generality
to support a second application in Section 9. There is nothing much new here, but, lacking a convenient
reference, we include some details.
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Lemma 3.3. If Z1, ..., Z, is a martingale difference sequence with respect to the random sequence Y1, ...,Y, (that
is, Z; is a function of Y1, ..., Y; and E[Z;|Y1,...,Y;_1] = 0), then for Z = " Z; and any 9 > 0,

(24) Ee?? < T['_, maxE[e?Z|y1, ..., yi 1]
and, consequently, for any A > 0,
(25) P(Z > \) < e [, maxE[e"Z |y, ..., yi1]

(where y; ranges over possibilities for Y;).

Proof. As usual, (25) follows from (24), using P(Z > \) = P(e?Z > ¢"*) and Markov’s Inequality. For (24),
with B; denoting the ith factor on the r.h.s., induction on ¢ gives

Ee?? = E{E[e"?|Y1,...,Y;_1]}
E{e?(Z1t+2e-0)R [t |y, ... YV;_4]}

Bt . E[e'&(zl"l‘“"‘l‘zt—l)]

HBi-

IN

IN

Both here and in Section 9, bounds on the factors in (24) are given by the next observation.

Proposition 3.4. Forar.v. W € [0,b] with EW < a, and 9 € [0, (2b)71],

(26) maX{Eeﬁ(foaW)? ]Eefﬂ(WfEW)} < eV%ab.

Proof. Since the bound is increasing in «, it is enough to prove it when EW = a. Given this and the bounds

w

on W, convexity implies that each of Ee”", Ee~"W is maximized (for any 1) when W is b with probability

p := a/b and zero otherwise, in which case we have

Ee?(W—EW) _ 6719bp[1 7p+p619b]’ Ee—?(W-EW) _ eﬁbp[l 7p+p6719b].

)

and simple calculations show that e ™*P[1 — p + pe®] < e”’P for x| < 1/2 (and any p), implying (26). O

Proof of (17). Let ¢; = O(~;) be the bound on &; in (15). We will apply Lemma 3.3 with ¥; = A; and Z; as
in (16) (so Z = X.), using Proposition 3.4 with b = ¢; and a = ~; to bound the factors in (25) (or (24)).
(For relevance of the proposition notice that, conditioned on any particular values of A;,...,4;_1, Z; is
either identically zero (as happens if ®B; has failed for some j < i) or Z; = & — ;, where §; € [0,;] has
(conditional) expectation +; (see (10)).) This combination (i.e. of Lemma 3.3 and Proposition 3.4) gives

P(X; > \) < exp[9? 320, Givi — 9]
for any A > 0, provided, say, ¥ < 1 (< (2maxg;)~!). So with
J =iy = 0(X47) = O(n/logn)
(see (18)) and ¥ = min{1, A\/(2J)}, we have

exp[—A\2/(4J)] if A< 2J,

Pr(X: > \) <
r(Xe ) { exp[—A/2] otherwise;
and for A > /n (as in (17)) each bound is n~“(") (in the first case since .J = O(n/ logn)).

The same argument applies to P(X; < —A) = P(—X; > \) (though this part of (17) isn’t needed for the
proof of Theorem 1.5). O
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4. ENTROPY

Here we develop what we need in the way of entropy. The main result is Theorem 4.2, an extension
(essentially) of Theorem 1.2(a) of [10] (itself more or less a generalization of Brégman’s Theorem [6]) that is
one main point underlying the present improvement of [21]. The discussion also includes a pair of technical
observations, Lemmas 4.3 and 4.4, that support the use of Theorem 4.2 in Section 7.

We use H(X) for the base e entropy of a discrete r.v. X; that is,
H(X)=-> p(z)logp(x),

where p(z) = P(X = z). For entropy basics see e.g. [9].

For a hypergraph H and v € V = V(#) (= [n] as usual), we use X (v, H) for the edge containing v in a
uniformly chosen perfect matching of %, and h(v, H) for H(X (v, H)). (We will not need to worry about H's
without perfect matchings.)

Before turning to our main point we recall one instance of Shearer’s Lemma [7]; this played a role in [21]
corresponding to that of the present Theorem 4.2, and we will find some lesser use for it here.
Lemma 4.1. For any r-graph H,
log®(H) <7 '3 cv h(v, H).

Orientation. The main purpose of this section is to recover (essentially) a missing —A (= —(r — 1)n/r) in the
bound of Lemma 4.1. For example when r = 2 (so A = n/2), the lemma bounds log ®(G) for a d-regular, n-
vertex graph G by (n/2) log d, which an observation of L. Lovész and the author ([10, Eq. (8)] or [1, 11]; itis
just the extension of Brégman to not necessarily bipartite ;) improves to 54 log(d!) = (n/2)logd — A+ o(n).
The missing A was irrelevant in [21], since the argument there involved other losses that could not be made
smaller than O(n); here the present gain will eventually cancel the —A in the bound (12) of 2/, (hidden in
the log ®g; see (8)): see the interplay of (76) and (77) in Section 8.

In what follows we will treat a p.m. f as either a set of edges or a function from vertices to (T‘_/l) ; we use
fu for the edge of f containing v (taking the first view) and f(v) for f, \ v (taking the second).

For Theorem 4.2 we consider a random (not necessarily uniform) p.m. f of a given r-graph H (with
number of vertices divisible by ). We use v for vertices and Y for (r — 1)-sets, and always assume v ¢ Y.

Set p,(Y) =P(f(v) =Y). Forap.m. f, let
T(v,f,Y)={Bef:B+#f,,BNY # 0}

and 7(v, f,Y) = |T(v, f,Y)|. Thus 7(v, f,Y) < r — 1, with equality iff the vertices of v U Y lie in distinct
edges of f (thought of as “generic” behavior of (v,Y) w.r.t. f). With f running over p.m.s of #, set

27) (V)= {f:r(v,.f,.Y) <r—1}
(note this includes f’s with f(v) = Y) and 7,(Y) = P(f € T,(Y)).
Theorem 4.2. With notation as above,
HE) < r 'S, H(f()) — A
(28) +O(XZ, Xy po(Y)1(Y)Y 1) + O(log n).
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(Of course when f is uniform, H(f(v)) is another name for h(v, ).) Again, the point here is the “—A”; the
ugly terms following it are errors we hope to ignore.

Proof. (The argument here is similar to that for Theorem 1.2(a) in [10].) Note we may assume % = K (= (V)),
since we can regard f as a random matching of K that doesn’t use edges not belonging to H.

We use fp for the restriction of f (viewed as a function) to B C V. For a permutation ¢ of V—always
thought of as an ordering of V—and v € V, set B(o,v) = {w € V : o(w) < o(v)}. Let o be a random
(uniform) permutation of V' and X, = (o,fp(,.,)). Then (by the “chain rule” for entropy; see [9, Theorem
2.2.1])

H(f) = n,ZZH V) £5(00))
= SN Pl = 9 HEW)00)
(29) = > H(f(v)X

where o ranges over permutations and, given o, g ranges over possible values of fz(, . (and the condition-
ing on (o, g) has the obvious meaning).

Now let
_ f, if B(o,v)Nf(v) #0,
Yl (VN{w) \U{fw :w € B(o,v)} otherwise.
The condition in the first line just says v is not the first vertex of f, in o, in which case f, is determined by
f5(o,v); these cases will be basically ignored in what follows. In the remaining cases Z, is the set of vertices
that can (in principle) belong to f(v) once we have specified f(w) for w preceding v in o

Since Z, is determined by X,, we have H(f(v)|X,) < H(f(v)|Z,), so, by (29),
(30) ) < ZH v)|Z,);

so we would like to bound H (f(v)|Z,).

We now fix v and write Z for Z,. We use Y for values of f(v) and Z for values of Z not of the form f, and
set py = p,(Y) and v, = 7,(Y). (See the paragraph preceding Theorem 4.2 for the notation.) We use P(Z)
forP(Z = Z),P(Z]Y) for P(Z = Z|f(v) = Y') and so on. (It may be worth stressing that IP refers to o and f,
and that these are independent.)

Since H(f(v)|Z = f) = 0, we have

H((v)|Z) = ;wm;mmnogm
_ P(Z)
= ;;P(Y,Z)logp(y’z)
B 1. 1 P(Z)
(31) = zy:py ;10g};+;P(Z|Y)log]P( 717
(32) = ¢ H(f +Zpyzp (Z|]Y) 1o éIY))

(For (31) notice that independence of f and o gives ), P(Z]Y) = 1/r for any Y for which py # 0.) We
would like to show that the second term in (32) is less than about —A.
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Fix Y with py # 0. Let & = {B(o,v) N f(v) = 0} (that is, v is the first vertex of f, under o) and for
keln—1]set
g = Y {P(Z|Y): Z2Y,|Z| =k} = P(6,]2| = klf(v) =),

re = 3 {P(2): Z2Y,|Z|=k} = P(&,|Z| =k Z2Y).

(Notice that “|Z| = k” and “Z O Y” make sense once we know & holds, and that it is not really necessary
to specify “Z O Y” in the definition of g;.) Then the inner sum in (32) is

Pzly) . P(2) } Tk
33 q { lo Nzl =k < log —
(33) Ek kY o BBz |Z| Ek arlog
(using Jensen’s Inequality), so that (28) will follow from
(34) g qklog% < —(rfl)/r+0(’yi/(’"71) +n*110gn).
k
k

We next discuss values of the g;’s and r;’s (with justifications to follow). We have

1/n ifk=r—1,2r—1,...,n—1,
(35) qkz{ /

0 otherwise.
For the r;’s we omit precise specification and settle for upper bounds: with

L= )/s g — -
Sk:{n ALt fp=r—1,2r—1,...,n -1,

(36) .
0 otherwise

(where (a)p =a(a—1)---(a — b+ 1)), we have

(37) T <Yy @k + (1 =7y )k

Justification. In fact (we assert) (35) holds even if we condition on the value of f; that is, (35) is still correct if
we replace g by

a(f) =P(6,]Z| = k|f = f)
for any f (but we only use this when f(v) = Y)). Similarly, we have

(38) VEET,(Y)sp(f) =P(6,|Z| =k, Z2YI|f = f) = s

To see these, first observe that, given {f = f} and &, if we order the edges of f according to their first
vertices under o, then |Z| — (r — 1) is r times the number of edges of f that follow f,, and this number is
uniform from {0, ...,n/r — 1}. (So qr(f) is as in (35).)

Note further that (again, given f) Y C Z iff each of the 7 := 7(v, f,Y") edges of T'(v, f,Y") follows f,. But
once we know | Z| = k, the set of f-edges following f, is chosen uniformly from the ((k —r +1)/r)-subsets
of the (n/r — 1)-set f \ {f,}. This gives (38) and, more generally (though we won’t use it),

forany f, 7 = 7(v, f,Y) and k as in the first line of (36).
Finally, bounding the second probability in

re= Y B(HB(S,|Z| =k Z 2 Y = f)

by qx(f) = g for each f € T',(Y) gives (37). O
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Now returning to (34) we have, with y = 7, and ¢ in the sums running from 1 to n/r,
Zqﬂog% < 2D logly+ (=g
k
L3 logly + (1= 7)(rt/n)" ]
= =LY log(rt/n) + 2> tog(1 4+ ()7 - 1)
® o)} a1 1))

(using " log(rt/n) = log[(r/n)™/"(n/r)!] and Stirling’s formula for the last line).

N

A

So for (34) it is enough to bound the sum in (39) by O(max{ny'/("=1 1}). For v < (r/n)"~! the sum is
less than

D log(1 4+t D)y <D = 0(1)
(recall 7 > 3). For larger v, we set B = |(n/r)y"/ "=V | (noting that now (n/r)"~* < (2B)"!) and bound

the sum in (39) by
> tog (20 () )+ o (@)

1<t<B t>B

Here the first sum is less than
B
Blog(2vy(n/r)" 1) — (r — 1)/ log xdzx:
1

< Blog(2"B"') — (r —1)[Blog B — B + 1] < Blrlog2 +r — 1],

and for the second we have

AW/ < ey [ e
t>B z>B
r—1 —(r—2 r—1
< (@Bt LB Y <oip.
So the sum in (39) is O(B) = O(ny*/("=1)) as desired. O
We now turn to the two auxiliary lemmas mentioned at the beginning of this section. The first of these

will help in controlling the error terms in (28) when we come to apply Theorem 4.2.

Lemma 4.3. Suppose p;,v; € [0,1],i=1,...,1, satisfy

(40) l =nA,

(41) d.pi=mn,

(42) > pilog(1l/p;) > nlog A — O(n)
and

(43) > v = o(nA).

Then for any nondecreasing h : [0, 1] — [0, 1] with h(xz) — 0 as z — 0,

(44) Y. pih(vi) = o(n).
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Proof. Let X =Y ~; and specify some ¢ with 1 > ¢ > X/(nA). From (41) we have
> <c Pih(7i) < nh(s) = o(n),

so may restrict attention to i’s with v; > <. Let > {p; : v; > ¢} = an. Then > {p;h(vi) : v > <} < an,so it
will be enough to show

(45) a = o(1).

LetT = [{i: v > <} < X/¢ < nA. We have

nlogA—O0(n) < Y pilog(l/p)
(46) < (1 —=a)nloglnA/((1 —a)n)] + anlog[T/(an)]
47) = nl[logA + H(a) — alog(nA/T)].

(For (46) we use the fact that 22:1 x; = a implies )" z;log(1/x;) < alog(l/a).) But then alog(nA/T) —
H(a) = O(1) implies (45). (If o # o(1) then the Lh.s. is w(«), implying that o is o(1).) O

Lemma 4.4. For a probability distribution p = (p1, . .., p1) and p uniform distribution on [I], if H(p) = logl—o(1),
then, with ||| = > |x,

(48) lp = pll = o(1);
equivalently, for some ¢ = o(1)and B = {i : p; # (1 £<)/1},

(49) 1Bl = o(l)
and
(50) ZieBpi =o(1).

Proof. For the equivalence, note that (49) and (50) imply

Ip—pll <D ieplpi = /U +6 <3 eppi +1/1) +<¢ = o(1),

B <IB|/1,
lp— ull = { S w10

with (say) ¢ = ||p — p|'/? shows that (48) implies (49) and then (50).

while

That the hypothesis of the lemma implies (48) is an instance of the next observation, whose elementary
proof we omit.

Proposition 4.5. If I is an interval of R and f : I — R is twice differentiable with f(0) = 0 and f” > 0, then for
any rv. X with EX =0,
Ef(X) = Q(min{E*|X], 1})
(where the implied constant depends on f).
Here, with ||p — u|| = 0, we may take f(z) = (1 + z)log(1 + x) and let X be «; := Ip; — 1, with i chosen

uniformly from [/]. Then, noting that EX = > p, — 1 = 0 and E|X| = ¢, and applying Proposition 4.5, we
have

_ 1 ! _ _ _ o 2
H(p) = lZ(lJraz)logl_’_ai—logl Ef(X) = logl — Q(6?),

which with H(p) = logl — o(1) implies 6 = o(1). O
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5. PROPERTIES %I, R AND ‘B
Properties here and in later sections are defined for a general r-graph #, and then, for example, the event

2, in Section 2 is {#H; = A}. In this section we use n and m as defaults for the numbers of vertices and edges
of H, so

(51) nDy = mr
(recall D is average degree). We will always use
(52) t=")—m,

and will tend to use A for edges and Z or U for general r-sets (members of K). We assume throughout
that we have fixed some positive ¢ (it will be essentially the one in Theorem 1.5), upon which the implied
constants in “O(+)” and “€Q(-)” depend.

We say H has the property 2 (or  satisfies 2, or H = ) if
(53) log ®(H) > log ®g — Y;_; v — o(n),

(see (9) for v;), and the property R if

(54) a.a. degrees in H are asymptotic to Dy,
(55) Ay = O(Dy), oy = Q(Dyy),

and

(56) all codegrees in H are o(Dy).

As noted above, 2; and 2, of Section 2 are then {#H; |= A} and {H, = 91}. Note that 9 is “robust,” in that
(57) if H satisfies 2R then so does H — Z for every Z € K.

(We omit the easy justification, just noting that (55) implies Dy, z ~ Dy and that each of (54)-(56) for H — Z
depends on having (56) for H.)

For B a little notation will be helpful. For a finite set Sand w : S — R* (:= [0, >0)), set
w(S) =157 wla),
a€S

maxw(S) = max w(a),

and
maxr w(S) = w(S) ! maxw(9).
For H C K define wy, : K — R by

wi(Z) = B(H - 2),
and say H has the property 9B if

maxr wy (H) = O(1)
(so the number of p.m.s containing any particular A € H is not too large compared to the average). Then
B; in Section 2 is {#H: |= B}, and (21) is
(58) form > (1 +¢)(n/r)logn, P(H,m = ARDB) = n~«0),
(More formally: there is a fixed C, depending on the particular o(-)’s and implied constants in 2 and A,
such that P({# |= AR} A {maxr wy (H) > C}) = n~<1))
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As mentioned at the end of Section 2, (58) is shown in Sections 6-9, and with (20) (likelihood of the fR;’s,
proved in Section 11) will complete the proof of Theorem 1.5.

We conclude this section with the promised
(59) B:_1 implies (15).
(Recall (15) says & = O(y:), where «y; is now n/(r(m + 1)); see (9) and (52).)

Proof. Given H,_1 = H, we have §;, < maxaecy wy(A)/P(H), while v, is the average of these ratios, since

> aen Wr(A) = @(H)n/r
(and |#H| = m + 1). This gives (59). O

6. MORE PROPERTIES

We will get at B (and (58)) via several auxiliary properties. We introduce the first three of these here
(there will be a couple more in Section 9), together with assertions concerning them that together imply
(58). Proofs of the assertions are mostly postponed to later sections.

Given H, we now use D for Dy,. The first three auxiliary properties (for #) are:
¢ if Z € K satisfies
(60) wi(Z) > @(H)e= ",
then for any z € Z,
(61) wi((Z\ &) Uy) 2 wu(2)d(x)/D forae.y eV \ Z;

¢ wy(A) ~®(H)/Dforae AcH;
§ wy(Z)~®(H)/Dforae Z € K.

(More formally, e.g. for &: there is ¢ = ¢(n) = o(1) such that [{4A € H : wy(A) # (1 £)®(H)/D}| < ¢|H].)
For perspective on & and §—and for use below—note that (using (51))

(62) (W (H) =) [H] ™" Y wae(A) = 1|7 S(H)n/r = S(H)/D.

AeH

We now use H for H,, ,,, and H for a general m-edge r-graph on n, with n and m as in (58), and sometimes

write
X=3
for P(X3) = n=“(); s0 e.g. the conclusion of (58) becomes
(63) {H E AR} = {H | B}.

The aforementioned assertions are as follows.
Lemma 6.1. If H satisfies AR then it satisfies €.
Lemma 6.2. {# = 2R} = {H =T}
Lemma6.3. Forz € Z € K,

{(HERNH-ZEF = {(H.Z2) = (61}
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Lemma 6.4. If H satisfies RFC then it satisfies *B.

The nonprobabilistic Lemma 6.1, which is based mainly on the material of Section 4, allows us to replace
AR by ARE in Lemma 6.2. That lemma then embodies the idea that ¢F is unlikely because the distribution
of the wy;(A)’s (A € H) should reflect that of the wy;(Z)’s (Z € K). We regard this natural point, and more
particularly (83) below, as the heart of our argument; certainly it was the part whose proof took longest to
find.

Lemmas 6.1-6.4 are stated in the order in which they are used in proving (58), but shown below in
ascending order of difficulty and interest. Thus we prove Lemma 6.3 in Section 7, Lemma 6.1 in Section 8,
and Lemma 6.2 in Section 9, with the easy Lemma 6.4 proved here following the derivation of (58).

Proof of (58). We first observe that {# = R} implies {H — Z = R} for any Z (¢ K); {H = 2} implies
{H — Z =2} for any Z as in (60); and Lemma 6.2 also holds with H — Z in place of H (for any Z). The first
of these was already noted in (57) and the second is trivial, so we just need the (routine) justification of the
third:

With h = |H — Z| and m’ = (1 — ¢/2)m, Theorem 3.1 gives
(64) P(h <m') = exp[-Q(e?m)] = n~*W),
So with ¥ = ARE, we have
PH-Z %) <Ph<m')+ Y B(h=hP#H -2 X|h=h),

h>m'

which is n=“() by (64) and application of Lemma 6.2 to the summands.

We thus have, in addition to Lemma 6.2,
for Z asin (60), {H = AR} = {H — Z = T},
which with Lemma 6.3 gives
(65) {H AR} = {H = ¢}

(since {H = ¢} = {(H,Z,z) = (61) forall Z asin (60) and z € Z}). Finally, using Lemma 6.4 with
Lemma 6.2 and (65) gives (58) (in the form (63)). (]

Proof of Lemma 6.4. We need one more property (again, for a given H):
D: if Zy € K satisfies (60) then
(66) W’H(Z) Z WH(Z())D_T HIEZU d'H(.’L‘) forae. Z € K.

The next two assertions give Lemma 6.4.

(67) If H satisfies SRC then it satisfies ©.
(68) If H satisfies RDF then it satisfies 8.
For (67) notice that if # satisfies R¢€ and Zy = {z1, ..., z, } satisfies (60), then induction on i € [r] shows

that for a.e. choice of distinct y1,...,y. € V' \ Zy we have, with Z; = (Z,_1 \ z;) Uy,

(69) Viwy(Z:) 2 Wi (Zi-1)da(2:)/ D 2 wa(Zo) D" [ 1<, da ().
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(The only thing to observe here is that (69) for Z;_; (with (60) for Zy) implies (60) for Z;, since 3y = (D)
(see (55)) implies that the r.h.s. of (69) is Q(wx(Zp)).) This gives ®, since it implies that a.e. Z € K is Z, for
some yi, ..., Y, supporting (69).

For (68) choose Z; € K with wy (Zp) maximum and note Z; satisfies (60) (since wy (Zp) is at least the Lh.s.
of (62)). Thus ® (and dy = (D)) give wy (Z) = Q(wy(Zp)) fora.e. Z € K, which with § implies ®(H)/D =
Q(wy (Zo)). But this gives B, since Wy (H) = ®(H)/D (again see (62)) and maxy (H) < wy(Zp). O

7. PROOF OF LEMMA 6.3
We now use D for Dy (With'H =H,, ) andsetG=H —Z,Y =Z\zand W =V \ Z. Notice to begin

that, forany y € W,
(70) wy (Y Uy) :Z{Wg(SUy) :S e (W_\f), SUz e H}.

T

LetH' ={AeH:ANnZ = {z}} and H" = H \ H'. We think of choosing first H" (which determines
G) and then H'. If H |= R then (using (55) for (71) and (55)-(56) for (72))

(71) Dg ~ D,

(72) d(x) = H|(={S € () : Suz e H}|) ~dulz) = QD),
and (in view of (71)) § for G is

(73) wg(U) ~ @ :=®(G)/D forae. Ue (V).

Thus Lemma 6.3 will follow from
(74) P(H,Z,2) F (6){G = (73)} AMd () | (72)}) = 1 —n7=W.

So we assume " has been chosen so that the conditioning event holds (note this is decided by #"), and
proceed to choosing H'.

From (73) we have
(75) fora.e.y e W, wg(SUy) ~ @ forae. S¢€ (‘;V_\}’),

so for (74) it is enough to show that if y is as in (75) then the inequality in (61) holds with probability
1 —n~“()_ But for such a y, Theorem 3.2 (using (72) and D = Q(log n)) says that with probability 1 —n (1),
wg (S Uy) ~ @ for all but o(d’(x)) of the S’s in (70); and whenever this is true we have (as desired)

wa (Y Uy) 2 ®'d'(z) (~ wa(Z)da(2)/D).
8. PROOF OF LEMMA 6.1

Here # is a general m-edge (n-vertex) r-graph satisfying 2A9. We again use D for Dy,.

Setting p = ((7) —¢) /(%) (= m/(")), and using (8) and (11), we may rewrite the lower bound in (53) as

-
r—1

nlogn — A — n log[(r — 1)!] + Elogp —o(n),
r r

while
log D = (r — 1)logn — log[(r — 1)!] + logp + o(1).
Thus 2 for H says

(76) log®(H) > ; logD — A —o(n) > % Zlog d(v) — A —o(n),
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the second inequality following from ) log d(v) < nlog(>_ d(v)/n). (Here and in the rest of this argument,
v runs over vertices and d(v) is dy(v).)

On the other hand, we claim that
1
77 log ® - —A )
(77) og ®(H) < = h(v,H) = A+o(n)

(Recall from the third paragraph of Section 4 that h(v, # ) is the entropy of the edge containing v in a uniform
p-m. of H.)

Proof of (77). This will follow from Theorem 4.2, applied with f a uniform p.m. of H (so H(f(v)) = h(v, H)),
once we show

(78) >0 Dy Po(Y )7 (Y)Y 1 = o(n).

(Recall from the passage preceding Theorem 4.2 that p,(Y) = P(f(v) = Y) and ~,(Y) is the probability
that fewer than r edges of f meet Y U v. Of course here, for a given v, the only relevant Y’s are those with
Y Uwv € H, and we restrict to these in the following discussion.)

For (78) we apply Lemma 4.3 with h(z) = 2'/("=1, i running over pairs (v,Y), and, for i = (v,Y),
pi = pu(Y)and v; = v, (Y); thus I = > d(v) (= nD) and A = D. Then (78) becomes (44), so we need
(40)-(43). The first two of these are immediate and the third follows from (76) via Lemma 4.1:

> pilog(1/p)

DY po(Y)log(1/py(Y))
Zh(v,?—l) > rlog®(H) > nlogA —O(n)

(with the first inequality given by Lemma 4.1 and the second by the first part of (76)).
For (43) we use (56): with x (= o(D)) the largest codegree in # (and I, (V") as in (27)), we have

DX (Y) =P = f){(0,Y): f € Tu(Y)} < 2 (3)rr = o(nD)

(where the third expression bounds each of the cardinalities in the preceding sum, since f € I',(Y) iff the
edge Y U v meets some member of f more than once).

(For our random #H—as opposed to one just assumed to satisfy 2 and 93—this last bit is particularly
crude since most codegrees will be much smaller than «.)

O

Now combining (76) and (77) we have
Z h(v,H) > Zlog d(v) — o(n),
implying (note h(v, H) < logd(v) is trivial)
(79) h(v,H) > logd(v) — o(1) for a.e. v.

But Lemma 4.4 says that for any v as in (79) there is a set of (1 — o(1))d(v) edges A at v with wy(A4) =
(1 £0(1))®(H)/d(v) (note p,(Y) = wy (Y Uv)/®(H)), and combining this with (54) gives €.
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9. PROOF OF LEMMA 6.2

We again use # for a general m-edge r-graph, H = H,, ,, and D = mr/n (= Dy = D).

By Lemma 6.1, Lemma 6.2 is the same as
(80) {H = ane} = {H |= 5}
Note that, in view of this, we may assume
(81) m = K| - Q(IK]),
since otherwise € and § are equivalent and (80) is vacuous. (This rather silly point will be needed for (86).)

It will be convenient to further reformulate as follows. For any # set

a(M) = inf{a: {U € K :wy(U) # (1 £ a)®(H)/Dn}| < alK[}.

Then {# |= §} = {a(H) = o(1)} and (80) is equivalent to
(82) for any fixed 6 > 0, P({H | ARE} A {a(H) > 20}) = n~«D),
(The 26 will be convenient below.) So for the rest of this section we fix § > 0 and aim for (82).

Set

P = B(H)/D.
Notice that {# |= €} A {a(H) > 260} implies
Q: wy(A) ~ @ forae A€ H, but wy (U) # (1 £20)’ for at least a (20)-fraction of the U’s in K \ H.

So for (82) it is enough to show
(83) P(H = ARQ) < n~W.

For the proof of this we work with an auxiliary random set 7~ chosen uniformly from (t‘), where 7,
which will be specified later (see the paragraph containing (90)-(94)), will at least satisfy
(84) logn < 7 < log” n.
We take F = H \ T and

(=P,
and will be interested in a property of the pair (¥, T) (or (F,T)), viz.
U: wr(A) ~ (D forae. AeT,butwe(U) # (1+£6)CP for at least a O-fraction of the U'’s in K\ H..

(Note (w4, (U) is a natural asymptotic value for wx(U) since each p.m. of £ — U survives in F with proba-
bility about (1 — 7/m)™/"~! ~ ¢; ¢f. (109).)

Here we exploit the familiar leverage derived from the interplay of two natural ways of generating the

pair (H,T):

2With & = {# = ARE} and H(v) = {a(H) > v}, (80) says
there is ¢ = o(1) such that P(& A £()) = n=« 1),

while (82) implies
Yk, P(& A H(1/k)) < n~F for n > ng;
and we get the former from the latter by taking ¢(n) = (max{k : ny, < n})~ L.
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(A) choose H and then T (as above);
(B) choose F and then T (determining H = F U T).

Now writing simply 2 for {# = 2} and similarly for R and 9, and U for {(H, T) |= U}, we will show

(85) P(UARQ) > 1 —o(1)
and

(86) P(Y) = n~«W).
These give (83), since

P(RARA) = PARQY) /P(VARQ) < P(V)/P(V|ARQ).
(So (85) is more than is needed here.) We first dispose of the easier (86).

Proof of (86). Here we use viewpoint (B). The (natural) idea is: F determines the weights wx(U) (for all
U € K, though here we are only interested in U € K\ F), and U then requires that 7 be (pathologically)
drawn almost entirely from U’s with weights close to (®’, though this group excludes an €(1)-fraction of
K\ F.

A small complication is that F doesn’t determine ®’. Among several ways of dealing with this, the
following seems nicest. Given F, let Uy, ... be an ordering of I \ F with wz(U1) < wx(Usz) < ---, and let
Y and Z be (resp.) the first and last 6| \ F|/3 of the U,’s. Then, whatever @ turns out to be, the second part
of U requires that at least one of ), Z be contained in

W :={U :wg(U) # (1+6)CP'}
(or (81), with 7 < m, implies W \ H| < |[Y| + |Z| < 20(|]K \ H| + 7)/3 < 0|K \ H|). But if this is true then
the first part of U requires that (say)
(87) min{|T NY|,|T N Z|} < 67/4;
and, since

EITNY| =E|TNZ|=07/3

(and @ is fixed), Theorem 3.1 bounds the probability of (87) by e~*("), which is n=+() by (84). O
Proof of (85). We now need to pay some attention to parameters. We first observe that if # |= 2R, then

there is v = o(1) (depending on the o(n) in 2 and, in R, the (explicit or implicit) o(-)’s in (54) and (56), and
the implied constants in (55)), such that for each U € K with (say)

(88) (wy(U) =) @(H - U) > ®(H)n"",
H* :=H — U and ®* := ®(H*) satisfy
(89) > {was(A) 1 A € M wy-(A) # (1£7)@"/D} < ynd*.

To see this, notice that each relevant #* satisfies AR (see (57) for R), so also € by Lemma 6.1. But then #*
contains (1 — o(1))|H*| ~ nD/r edges of wy--weight (1 & o(1))®* /Dy ~ ®*/D, with (both) asymptotics
following easily from H = R (see (55)); so such edges account for all but a o(1)-fraction of the total weight
®*(n—r)/r ~ ®*n/r. This gives (89) for a suitable v = o(1).

We now choose 7 = v log n—noting that then

(90) C(=e Py >e7v
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(since D > log n)—together with M and 7, satisfying

91) logn>v>1
(which is (84));

92) e >y
P 207
and

(94) e > n > VTM/logn.

Note this is possible: we may choose v — oo as slowly as we like (which in particular gives (91) and (92));
we then want to choose M as in (93) satisfying (to leave room for 1) e =¥ > v/7M / log n; and this is possible
if e™” > max{v,/7, /v/log n}, which is true for a slow enough v.

For the proof of (85) we use viewpoint (A) (choose H, then 7). We assume we have chosen H = H
satisfying AR9Q; so P now refers just to the choice of 7, and (85) will follow from

(95) P(H,T)ED)=1-o0(1).

It will be enough to show that for U € K as in (88) (i.e. wy (U) > ®(H)n™"),
(96) P(wr(U) ~ Cw(U)) = 1—o(1) ifU € K\ H,
97) Pwe(U) ~Cwy (DU € T)=1—-0(1) ifUeH.

Before proving this we show that it does give (95). If H satisfies Q then for a suitable ¢ = o(1),
(98) {A €M :wu(A) # (1£6)2"} < [H].
Thus, with 7 the set in (98), we have E|T NH°| = 7|H°|/|H| < T, so
[T NHY| < 7 whp.

(by Theorem 3.1 or just Markov’s Inequality). But for the first part of 9 to fail we must have either [TNH"| =
(1), which we have just said occurs with probability o(1), or

[{A € TA\H" 1 wre(A) 7 (wy(A)}] = Q(r),
which has probability o(1) by (97) (and Markov).

Similarly, failure of the second part of U implies

(99) wr(U) = (1£6)CP" o Cwy (U)
for at least 6| \ H| of those U’s in the second part of Q that satisfy
(100) wy (U) > (1= 0)¢d > n°W&(H)/D

(since those failing (100) cannot satisfy (99); for the second bound in (100) see (90) and (91)). But since the
bound in (100) is larger than the one in (88), (96) implies that the probability that (99) holds for such a set of
U’sis o(1).

Finally, we prove (96); the proof of (97) is almost literally the same and is omitted. (Note the probability
in (97) is just P(wyp 7, (U) ~ Cwy (U)), with T uniform from (HT\EI{}))
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Proof of (96). We now fix U as in (88) (and recall H* = H — U and ®* = (H*)).

Say A € H is heavy if A € H* and wy~(A) > M ®*/D, and note that by (89) (and M > 1 + v from (93)),

(101) the number of heavy edges in # is less than ynD/M = ymr/M,
implying
(102) P(T contains a heavy edge) < vyrr/M = o(1)

(see (93)). So it is enough to show (96) conditioned on
(103) {T contains no heavy edges}.

We will instead show a slight variant, replacing 7 by 7' = {4i,..., A}, with the A;’s chosen uniformly
and independently from the non-heavy edges of #; thus:

(104) P(wyp 7 (U) ~ Cwy (U)) = 1 = o(1).
Of course this suffices: we may couple 7 (conditioned on (103)) and 7T~ so they agree whenever the edges of
T are distinct, which occurs w.h.p. (more precisely, with probability at least 1 — 72 /m), and the probability
in (96) is then at least the probability in (104) minus P(7" # T).
For the proof of (104), let
X =X(A1,..., A7) = P(H" \{A1,..., A7 }) = w1 (U).

Since ) < ¢ (see (90) and (94)), (104) will follow from (recall wy (U) = &%)

(105) EX ~ (®*
and
(106) P(|X —EX| > n®*) = o(1).

Proof of (105). Let M; run through the p.m.s of #* and let x; be the number of heavy edges in M;. Then
with m’ the number of non-heavy edges in #, we have

EX =550 = (n/r =1 —a)/m’)"
and, by (89),
(107) > wi=> {wy-(A): AN, Aheavy} < ynd*.
These imply, with o = (n/r — 1)/m/,
(1-0)7® < EX < 3, e lemai/m)7
(108) < e +qrn/(n—1)] O*.

Here the last inequality follows from (107) and convexity of the exponential function, which imply that the

™ 22T o the 2,’s equal to n/r — 1 and the rest (the

n/r—1 n—r

sum in (108) is at most what it would be with
number of which we just bound by ®*) equal to zero.

In view of (108), (105) will follow from

(109) (1—o) ~e T ~e P (=()
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(and v < ¢, which is given by (90) and (92)). For the two parts of (109) we need (resp.) ¢* < 1/7 and
lo —1/D| <« 1/7. The first of these follows from (101) (which gives m' ~ m, though here m’ = Q(m) would
suffice) and (84). For the second, now using (101) more precisely (and recalling D = mr/n), we have

n/r—1 n/r 1 nm-m 1 n 4r 1
—— <+ <— 4= < -,
m/ m mr mm m  rMm' T
with the last inequality a (weak) consequence of (93). O
Proof of (106). We consider the (Doob) martingale
(110) Xz :Xl(Al,,Az) :E[X‘Al,,Al] (Z :0,...,7')7

with difference sequence Z; = X; — X;_; (i € [7])and Z = }_ Z, (= X — EX). For the next little bit we use
Egs for expectation with respect to (4; : i € S).

Given Ay,..., A;_; we may express
(111) Z; =EW — W,
where E refers to A chosen uniformly from the non-heavy edges of # and

W(A) == E[i+177]®(7'l* \ {Al, ey Aifl, Ai+17 ey AT})

(112) - ]E[i-‘rl,‘r](b(H* \ {A17 s 7Ai—17 Aa Ai+17 ey AT})

For (111) just notice that
Xi(A17 LR 7Ai717A) = E[i+1,‘r]q)(H* \ {A17 LR ,AiflaAa Ai+17 ey AT})7
while
X’i*l(A17 s 7A7;71) = ]E[l,T]Q(H* \ {Alu ) A’i717 Ai7Ai+17 e 7AT})'

(The first term on the r.h.s. of (112), which is chosen to give (113), doesn’t depend on A so doesn’t affect
(111).)

We also have
(113) 0 < W(A) < wy-(A),

since these bounds hold even if we remove the E’s in (112). Thus W satisfies the conditions in Proposi-
tion 3.4 with b = M®*/D and a = ®*/D (the latter since |H|™' > , 5y wu+(A) = |H|7'@*(n/r — 1) <
®* /D—note wy- (A) := 0if A € H*—and averaging instead only over non-heavy edges can only decrease
this). So for any

(114) 9 €0, (20)71],

we may apply Lemma 3.3 to each of Z, —Z, using Proposition 3.4 (with (111)) to bound the factors in (24),
yielding

max{Ee’? Re Y%} < em?tab — exp[r92 M (®*/D)?]
and, for any A > 0,

(115) max{P(Z > \),P(Z < —\)} < exp[r9> M (®*/D)? — 9]
For (106) we use (115) with A = n®* and

. P* D D 0D
(116) ﬁ:mln{QTM?q)*/D)2,2Mq>*}: SR mln{%,l}
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(the first value in “min” minimizes the r.h.s. of (115) and the second enforces (114)), and should show that
the exponent in (115) is then —w(1).

Suppose first that nD < 7, so ¥ takes the first value(s) in (116). Then the negative of the exponent in (115)
is (using (94) and D > logn)
(n®*)? i’ D?
4rM(®* /D)2~ 4TM
If instead nD > 7, then ¥ = D/(2M ®*) and the exponent in (115) is

w(l).

D? *\* D T D T
—— M=) - G S S —
@M )2 | < D ) oo = o o < Taar - W
where we used the assumed nD > 7 and, from (93), 7 > M. O
([l
([l

10. REDUCTION

In this section we derive Theorem 1.6 from the following statement, which will be proved in [22].

Theorem 10.1. Fix a small positive € and suppose 6,, ~ € logn for each x € W := [n]. Let M ~ (n/r)logn and let
H* be distributed as H,, ar conditioned on

117) {day(z) > 0, Yo € W}

Then w.h.p.

n/r

O(H") > [67(7«71) logn} eom),

In other words: for ¢ < 1 there is ¢ < 1 such that if M = (1 +¢)(n/r)logn and é, = (1 & ¢)e logn for each
x, then

n/r
Pr (CI)(’H*) < {e_(r_l) logn} 6_9"> < p.

(The n here will not be exactly the one in Theorem 1.6, and will be renamed n’ when we come to use it.)

For the rest of this section H 7 is as in Theorem 1.6. Our discussion through Lemma 10.2 is adapted from
[12].

We employ the following standard device for handling the process {#,} of Theorems 1.3 and 1.6. Let
€4, A € K, be independent random variables, each uniform from [0, 1], and set Gy = {A € £ : {4 < AL
Members of G are A-edges and we use dy for degree in G,. Of course with probability one the £4’s are
distinct. If they are distinct—which we assume henceforth—they define the discrete process {H;} in the
natural way (add edges A in the order in which the {4’s appear in [0, 1]).

Fix a small positive €. Let 6y = |clogn], let g be a suitably slow w(1), and set:
A = min{\ : G, has no isolated vertices}

(soHr =Ga);
> logn — g(n) logn + g(n)

((y) o)

W, ={ve[n] : dy(v) < do};

and 8 =
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and
Y=W,UUJ{A: A€ Gz, ANW, # 0}.

Parts (b) and (c) of the next lemma are (a) and (c) of Lemma 5.1 in [12].

Lemma 10.2. With the above setup, w.h.p.

(a) [W,| < n2>, with a ~ log(e/e);

(b) A € (0,8);

(c) in G, no edge meets W, more than once and no v ¢ W, lies in more than one edge meeting Y \ {u}.

Remarks. Once A < (8 as in (b), the initial W, in the definition of Y is superfluous. For Theorem 1.3,
|W,| = o(n) in (a) would suffice, but for Theorem 1.6 we need a little more (precisely, |W,| = o(n/loglogn)),
to make the bound on ® in Theorem 10.1 (in which, again, |I¥| will not be exactly the present n) an instance
of (5); see (128).

Proof of (a). Since (for any v) d, (v) is binomial with mean p := ("~} )o ~ logn, Theorem 3.1 gives

(118) P(v € W,) < exp[—pp(—(1 — e — o(1)))] < n~'*e,

with « as in (a); and (a) then follows via Markov’s Inequality. |

It will now be convenient to fix some linear ordering “~<” of K. Choose (and condition on)
W,

(119) {Ae G, AnW, # 0},

and the ordering of {4 : ANW, £ 0,4 > o}

Notice that W,, and the set in (119) are enough to tell us whether A > ¢, which by Lemma 10.2 holds
w.h.p. If it does hold—which we now assume—then the above choices determine {A € G, : AN W, # 0},
so in particular, for each © € W, the first (under <) A-edge, say A,, containing z. (They do not determine
A, but we don’t need this and avoid conditioning on a zero-probability event.)

By Lemma 10.2, w.h.p.
(120) |W,| < n?* and the A,’s are distinct and disjoint
(if A < B, as in (b) of the lemma, then the A,’s are all in G, so the second part of (120) is contained in (c));
so we assume these properties and set U = Uyew, A, \ Wo.
Next, choose (and condition on)
(121) {A€eG, : ANU #D=ANW,}
(from (119) we already know the members of G, that do meet WW,,). Set
(122) W=V\W,uU), n = |W|>n—rn*

(using the first part of (120)), and
H =G, W]
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(meaning, as for graphs, the set of edges of G, contained in W). Again by Lemma 10.2, w.h.p.
(123) no vertex of IV lies in more than one o-edge meeting W, U U,

and we add this assumption to those above.

Since ®(Hy) = P(Ga) > ®(H™), Theorem 1.6 will follow from
(124) whp. ®(H*) > [e"Dlogn] /T —o(n).

We will get this from Theorem 10.1.

For x € W let
(125) 0y =00—|{A€G,:2€ A, AN (W, UU) # 0} € {0, 00 — 1}
(with the membership assertion given by (123)), and notice that
(126) H* is distributed as Hyy,» conditioned on £ := {d(z) > 0, Vx € W}

(where Hy ,—and H ., below—have the obvious meanings and d is degree in Hyy ).

To complete the reduction to Theorem 10.1 we then just want to replace Hyy, by a suitable combination
of Hw.m's. (Note (125) says the ¢,’s are as in the theorem.)

By (118) and Harris’ Inequality [18] we have
(127) P(Hw,o =€) > (1—n7")" (~ exp[-n?)),

with a ~ elog(e/e) (as in (118), the substitution of n’ for n and ¢, for dp having no significant effect). On
the other hand, with

po=EHwo| = (7)o (~ (n/r)logn),
v =n"1/3 (say),and I = ((1 —v)u, (1 + v)u), Theorem 3.1 gives
P([Hw,q| & 1) < exp[-Qn'/?)],
which with (127) implies P(|Hw,| € I|£) < exp[—Q(n'/3)].
According to Theorem 10.1 there is
(128) o > [e_(T_l) log(n’)]”//re_"(”/) = [e_(r_l) log n]"/’"e_o(”)
(the equality follows easily from (122)) such that

max P(®(Hw,n) < @*|£) = o(1).

mel
So, finally,
BO(Huo) < 0°[2) = 3, P Huwo| = mI)P@(Hym) < °]2)
< maxpmer P(P(Hw,m) < 2*|L) + o(1)
= o(1),
which gives (124). |
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11. APPENDIX: GENERICS

Here we prove (20). We regard this item as a necessary (actually, for anyone who’s gotten this far surely
unnecessary) evil and aim to be brief.

With D, = Dy, (20) says
(129) w.h.p. H; satisfies (54)-(56) with D = D, forallt < T.

For (54), (56) and the upper bound in (55), a naive union bound will suffice here, as failure probabilities for
individual ¢’s are very small. A little more care is needed for the lower bound in (55), since for ¢ near 7" we
can only say

(130) P(H; violates (55)) < n™“

with a some small (positive) constant depending on e. But even this is enough: with M, = () — t (= |#H])
and
I={t: M; =2'M forsomei € {0,1,...}}
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(recall M = M), (55) holds for all t < T if itholds forall ¢ € I, since then for ¢’ = min{l € I : | > t} we have
Dy < 2Dy and 03¢, > 034, = Q(Dy) = Q(Dy); and (130) gives ), ; P(H; violates (55)) = O(n~“logn).

We proceed to failure probabilities, now writing d, for degree in ‘H; and beginning with (54). For W C V,
we have

EW) = ZUEW di(v) = 22:1 3&i (W),
where £;(W) := [{A € H; : [ANW| = j}| is hypergeometric with mean
(U

If 0 = 6(n) = (logn)~'/3 (say) and |W| = 6n, then E¢; (W) ~ ¢ (5) M, and

p=EEW) ~ E& (W) ~ 0rMy = OnD; > Onlogn;
so for A = O, Theorem 3.1 gives P(|¢; (W) — E&;(W)| > \) < exp[—Q(02u)] for j € [r] (with the true value
much smaller if j # 1), implying
(131) P(E(W) — il > rA) < exp[—Q(6%)] = exp[—Q(6%nlog n)].
But if (54) fails (for #;) then there must be some W € (0‘;) with [E(W) — p| > rA, and (131) bounds the
probability that this happens by

(0’;)679(93”1"3; ") < explOnlog(e/0) — Q(F*nlogn)] = e~ (= n=wW),

This gives (54).

For (55) we apply Theorems 3.1 and 3.2 to the d;(v)’s, each of which is hypergeometric with mean D, >
(1+ €)logn. For the upper bound, Theorem 3.2 gives (say)
P(d;(v) > 3rD;) < exp[—3rD;log(3r/e)] < n™*"

2r—1

so the probability that some d.(v) exceeds 3rD; is less than n~ For the lower bound, with v =

e/(2log(1/¢)), a simple calculation using the first bound in (23) (cf. (118); the weaker second bound will
not do here) gives (say)

(132) P(dy(v) < yDy) < n~FE/3),
implying (130) (and, as discussed above, the lower bound in (55)).
Finally, for (56): Each codegree d;(v,w) is hypergeometric with mean (r — 1)D;/(n — 1); so for ¢ with
(say) 1> ¢ > max{D; ', n~'/2}, Theorem 3.2 gives
P(ds (v, w) > ¢Dy) < exp|—¢Dy log(esn/r)] = n=*W).
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