ON A PROBLEM OF M. TALAGRAND

KEITH FRANKSTON, JEFF KAHN, AND JINYOUNG PARK

ABSTRACT. We address a special case of a conjecture of M. Talagrand relating two notions of “threshold” for
an increasing family F of subsets of a finite set V. The full conjecture implies equivalence of the “Fractional
Expectation-Threshold Conjecture,” due to Talagrand and recently proved by the authors and B. Narayanan,
and the (stronger) “Expectation-Threshold Conjecture” of the first author and G. Kalai. The conjecture under
discussion here says there is a fixed J such that if, for a given F, p € [0, 1] admits A : 2 — R with

Secprs>1VFeF
and

T Aspll <1/2

(a.k.a. F is weakly p-small), then p/J admits such a X taking values in {0, 1} (F is (p/J)-small). Talagrand showed
this when X\ is supported on singletons and suggested, as a more challenging test case, proving it when A is
supported on pairs. The present work provides such a proof.

1. INTRODUCTION

Given a finite set V, write 2V for the power set of V and, for p € [0, 1], 11,, for the product measure on 2"
given by 11,(S) = plI(1 — p)IV\SI. An F C 2V is increasingif BD A€ F = B € F. For G C 2V we use (G)
for the increasing family generated by G, namely {B C V : 3A € G, B D A}.

We assume throughout that 7 C 2V is increasing and not equal to 2V, (). Then 1, (F)(:= > {u,(S) : S €
F}) is strictly increasing in p, and we define the threshold, p.(F), to be the unique p for which p,(F) = 1/2.
(This is finer than the original Erd6s—Rényi notion, according to which p* = p*(n) is a threshold for 7 = F,
if pp(F) — 0 when p <« p* and p,(F) — 1 when p > p*. That p.(F) is always an Erd6s—Rényi threshold
follows from [2].)

Thresholds have been a—maybe the—central concern of the study of random discrete structures (random
graphs and hypergraphs, for example) since its initiation by Erdés and Rényi [4], with much of that effort
concerned with identifying (Erd6s—Rényi) thresholds for specific properties (see [1, 6])—though it was not
observed until [2] that every sequence of increasing properties admits such a threshold.

The main concern of this paper is the relation between the following two notions of M. Talagrand [8, 9, 10].
(Our focus is Conjecture 1.4 and our main result is Theorem 1.6; we will come to these following some
motivation.)

Say F is p-small if there is a G C 2" such that

(G)2F @
(that is, each member of F contains a member of G) and
> <12, )
Seg
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and set ¢(F) = max{p : F is p-small}. Say F is weakly p-small if thereisa A : 2 — R such that

Z As >1VFeF 3)
SCF
and
> asplfl <172, €y
S

and set q;(F) = max{p: F is weakly p-small}. As in [5] we refer to ¢(F) and ¢;(F) (respectively) as the
expectation-threshold and fractional expectation-threshold of F. (Note the former is used slightly differently in
[7].) Notice that

a(F) < q5(F) < pe(F). ©)

(The first inequality is trivial and the second holds since, for X as in (3), (4) and Y drawn from g,

1p(F) < 3 () S As < 3 Asip(V 2 8) = S aspl < 1/2) ©)
S

FeF SCF S

In particular, each of g, ¢ is alower bound on p., and these turn out to be easily understood (and to agree
up to constant) in many cases of interest; see [5]. The next two conjectures—respectively the main conjecture
(Conjecture 1) of [7] and a sort of LP relaxation thereof suggested by Talagrand [10, Conjecture 8.3]—say
that these bounds are never far from the truth.

Conjecture 1.1. There is a universal K such that for every finite V and increasing F C 2V,
pe(F) < Kq(F)log|V].
Conjecture 1.2. There is a universal K such that for every finite V and increasing F C 2V,

pe(F) < Kqp(F)log|V].

Talagrand [10, Conjecture 8.5] also proposes the following strengthening of Conjecture 1.2, in which ¢(F) is
the maximum size of a minimal member of F.

Conjecture 1.3. There is a universal K > 0 such that for every finite V and increasing F C 2V,

Pe(F) < Kqp(F)logl(F).

Conjecture 1.3 is proved in [5], to which we also refer for discussion of the very strong consequences that
originally motivated Conjecture 1.1, but follow just as easily from Conjecture 1.2.

Turning, finally, to the business at hand, we are interested in the following conjecture of Talagrand [10,
Conjecture 6.3], which says that the parameters ¢ and gy are in fact not very different.

Conjecture 1.4. There is a fixed L such that, for any F, q(F) > q5(F)/L.

(That is, weakly p-small implies (p/L)-small.) This of course implies equivalence of Conjectures 1.2 and 1.1,
as well as of Conjecture 1.3 and the corresponding strengthening of Conjecture 1.1, so in particular, in view
of [5], Conjecture 1.4 would now supply a proof of Conjecture 1.1. (Post-[5] this implication is probably the
best motivation for Conjecture 1.4, but the authors have long been interested in the conjecture for its own
sake.)

The following mild reformulation of Conjecture 1.4 will be convenient.
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Conjecture 1.5. There is a fixed J such that for any V,pand X : 2V \ {0} — R¥,
{ACV: Y as =D As(Ip)l} (7)
5cA 5

is p-small.

As Talagrand observes, even simple instances of Conjecture 1.4 are not easy to establish. He suggests
two test cases, which in the formulation of Conjecture 1.5 become:

(i) V = () = B(K,) and (for some k) ) is the indicator of {copies of K} in K, };

(ii) A is supported on 2-element sets.

(He does prove Conjecture 1.5 for A supported on singletons; see Proposition 2.1 for a quantified version
that will be useful in what follows.)

The very specific (i) above was treated in [3]. Here we dispose of the broader (ii):

Theorem 1.6. Conjecture 1.5 holds when supp(A) C (‘2/) ; in other words, there is a J such that for any graph
G=(V,E),pel0,1]and \: E — R™,

(U CV:AGU)) > JPAG)p?}

is p-small (where G[U] is the subgraph induced by U).

It seems not impossible that the ideas underlying Theorem 1.6 can be extended to give Conjecture 1.4 in
full, but we don't yet see this.

The rest of the paper is devoted to the proof of Theorem 1.6. The most important part of this turns out
to be (a quantified version of) the “unweighted” case, where A takes values in {0, 1}, though deriving Theo-
rem 1.6 from this still needs some ideas. Section 2 collects a few preliminaries and gives an overview of our
proof strategies. In Section 3 we prove Theorem 1.6 modulo a result on the unweighted case, Theorem 3.4,
whose proof is given in Section 4.

2. ORIENTATION

Usage. We use [n] for {1,2,...,n}, 2% for the power set of X, and ()T( ) for the family of r-element subsets of
X, and recall from above that (A) is the increasing family generated by A C 2X. For a set X and p € [0,1],
X, is the “p-random” subset of X in which each x € X appears with probability p independent of other
choices. We assume throughout that p has been specified and often omit it from our notation.

Graphs here are always simple and are mainly thought of as sets of edges; thus |G| is |[E(G)|. We use
Va(v) or V, for {e € E(G) : v € e}; so the degree of vis d, = |V,]|. (We also use N¢(v) for the neighborhood
of vin G.)

Case of singletons. We first introduce a quantified notion of p-small. For A C 2V, the cost of A (w.r.t. our
given p) is C(A) = ZSeAp‘S‘. We say A covers B C 2V if (A) D B, set

C*(B) = min{C(A) : A covers B},

and say B can be covered at cost v if C*(B) < 7. (So B being p-small means C*(B) < 1/2.) Talagrand’s
observation that Conjecture 1.4 holds for A supported on singletons may now be stated as:
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Proposition 2.1. Forall ( : V — Rt and J > 2e,

C*{U SV : {(U) =2 J((V)p}) < 2¢/(J = 2e). ®)
(The dependence on J is best possible up to constants: e.g. take |V|=.J,p=1/J*and ( = 1.)

Proof. We may take V' = [n] and assume ( is non-increasing (and positive) and Jp < 1 (since the statement
is trivial when Jp > 1). Define R by

L[]
Rp |Jp|

a=U (%)

k>1

We claim that the collection

covers the family in (8); this gives the proposition since the Lh.s. of (8) is then at most

k k
-3 (W< () <7<z

E>1

(the last inequality holding since Jp < 1 implies R > .J/2.)

To see that the claim holds, observe that its failure implies the existence of some U = {u; < ug < --- <
ue} C [n] with ((U) > J¢(V)p such that |[U N [ak]| < k for all k£ > 0. But then u; > ia for all i € [¢], yielding
the contradiction

l—1
V) >33 ¢ +ia) > al(U) = C(V). O

i=0 j€[a]

Towards doubletons. As the proof of Proposition 2.1 illustrates, one way to show a collection is p-small is to
construct an explicit “cheap” cover. We use a similar strategy in the proof of Theorem 1.6. Observe that
what helps us to find the cover in Proposition 2.1 is the fact that the set U satisfies

CU) = JC(V)p,
i.e. U is “heavier” than what it should be. (Note that if U ~ V,, then E[¢(U)] = ¢(V)p.)

Roughly, the proof of Theorem 1.6 consists of two steps: in the first step, we decompose G into subgraphs
G1,Gys, ... so that the edges in GG; have roughly the same value of A. The point here is that since our set U
is heavy (again, if U ~ V), then E[\(G[U])] = A(G)p?), there must exist some G; which, again, contains a
heavy part (see (19) for a precise description).

In the second step (Theorem 3.4), which is the heart of our argument, we give a way to construct a (cheap)
cover for the heavy part from the first step. The main difficulty in implementing this idea is that specifying
a heavy part in each heavy U is too expensive. To manage this issue, we rather produce a generic structure
which all heavy sets must contain some form of, and then explicitly cover all of these structures without
regard to whether our actual sets of interest contain any particular one.

Weighted subsets. The following convention will be helpful. Given a graph G on V, we associate with each
U C V a “weighted subset” D(U) = Dg(U) of E(G) that assigns to each e the weight [e N U|/2. (We also
use D, or D¢ (v) for D({v}).) We then have, for any A : G — R,

AMDU)) = 5 Xper MV)
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(e.g. [D(U)| = £ X,y dv)- To see why this is natural, notice that
EMG[V,]) = EA(D(Vp))p

(e.g. E|G[V,]| = E|D(V,)|p), so that A(D(U))p is a natural benchmark against which to measure A\(G[U]).

3. PROOF OF THEOREM 1.6

We actually prove the following quantified version of Theorem 1.6.
Theorem 3.1. For any graph Gon V, A : G — R* and
R > 4096v/2e, ©)
the set
Up ={U CV : MNGU]) > R*N(G)p*}
can be covered at cost O(1/R).

(Here and throughout we don’t worry about getting good constants, and try instead to keep the argument
fairly clean.)

Proof. We take G, \, R to be as in the theorem, use D(U) for D (U) (defined in Section 2), and assume
throughout that

U € Up.
We first observe that it is enough to prove the theorem assuming
A takes only values 6; :=27", i =1,2,... , (10)
with (9) slightly weakened to
R > 4096e. (1)
Then for a general A (which we may of course scale to take values in [0, 1]) and A’ given by
Ng = max{0; : 0; < Ag},

Uy as in the theorem is contained in the corresponding collection with A and R? replaced by X’ and R?/2
(which supports (11)), since U € U implies 2\ (G[U]) > A(G[U]) > R2X\(G)p* > R?*N (G)p?. So we assume
from now on that A and R are as in (10) and (11) (respectively).

Note also that Proposition 2.1, with ¢ (v) = A(D,) (for whichwe have (V) = Y- ((v) = 3 > A(V,,) = M(G)
and ¢(U) = A(D(U))), says that the set

{UCV:ADO)) = RAG)p}

admits a cover of cost less than 6/R. So we specify such a cover as a first installment on G and it then
becomes enough to show that

U* = {U €Uy : \(D(U)) < RNG)p}

can be covered at cost O(1/R); in fact we will show

C*(U*) = O(R™?). (12)



As sketched in Section 2, our goal is to specify a (cheap) collection of sets which covers /*. We crucially
use the fact that A(G[U]) is quite larger than \(G)p? (i.e. “what it should be”) while A(D(U)) is not very far
from the expectation, A(G)p. This idea is implemented in (16), (17), and their consequence, Claim 3.2.

Set G; = {e € G : A(e) = 0;} and write D;(U) for D¢, (U). We then observe, for any H C G,
AH) = 0;[HNG,l,
and abbreviate
w; = AGi) = 0:|Gil, w=AG)=> w.
Given U, define L = L(U), K = K(U), L; = L;(U) and K; = K;(U) by
AD(U)) = Lwp,
MG[U]) = K Lwp?,

|D;(U)| = Li|Gilp, (13)
and
|Gi[U]| = KiLi|Gilp*. (14)
Then
Lwp = 6:|D;(U)| = > Lwip (15)
and

K Lwp* = ZMGi[U” = ZKiLiWip2~

Since U € Uy, we have

> KiLiw; > R*w, (16)
while U € U* gives
L<R. 17)
Note also that, with
I=1U)={i: K; > R/2},
we have

> {KiLiw; :i € I} > R*w/2, (18)
as follows from (16) and (using (15) and (17))
> {KiLiwi i ¢ I} < (R/2)Lw < R*w/2.

Now let E; = |G;|p?. (Note that this is the expected number of edges in the graph G; induced on a
p-random subset of V(G;).) For integer «, define
Eo={i:E; € (227,27}

We arrange the ¢’s in an array, with columns indexed by «’s (in increasing order) and column « consisting of
the indices in &,, again in increasing order. (So w;’s within a column decrease as we go down. Note column
lengths may vary.) Define Bg to be the set of indices in row .

To keep the computation cleaner (or less messy) we use sort of discretization of w;: for i € &, sety; =
6,2 /p? andy = 3, y;, noting that
yi/2 <w; <y;.
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TABLE 1. i is the Sth smallest index in &, (when |E,| > f).

Set
¢y =(3/2)°'R?/16 (B>1)

and ¢; = cj if i € Bg. Let wj and yj be (respectively) the sums of the w;’s and y;’s over : € B, and notice
that

Y41 <y5/2 forg>1

(since i = Bgy1 N &, (Where we abusively use ¢ for {i}) implies ¢ > j := Bg N &,, whence 2y; <vy;).

Claim 3.2. Foreach U € U* thereisan i € I(U) with K;(U)L;(U) > ¢;.

Proof. With >~* denoting summation over I, we have (using (18) at the end)
D e < 3 chw < D e
<yilei+e3/2+65/28 +)
<y(e+e3/2+c3/2 +0)
< (R/4)y < (B2/2)w < 3 Ki(U)Li(U)w.

(I
It follows that if, for each i, G; covers
U ={UCV:iellU); K;(U)L;(U) > ¢;}, (19)
then UG; covers U*; so we have
Cr ) < 30 O (Uy). (20)
To bound C*(l;), we introduce the following definition.
Definition 3.3. Define
C(u,T)
to be the infimum of those ~'s for which, for every p and (simple) graph G (on V) with |G|p* < u,
{U CV :|GU)| > max{T, J|D¢(U)|p}} (21)

can be covered at cost .



Now, if (e, ) is the pair corresponding to ¢ (that is, 7 is the Sth entry in column « of our array), then
C*(Uy) < Ciyyn(2°, To ),
where T,, 3 = max{c32°~",1}; namely, |G;[p* = E; < 2%, while U € U; implies (using (13), (14) and i € I(U))

> Ci|G1‘|p2 > CZQail

GO = KU)L(U)IClp" { — KDy lp > (R/2)| D0 p.

So it is enough to show that

> Crp(2%,Tap) = O(R™?). (22)
a€Z,BELT

We use the following theorem to show (22), whose proof is postponed to Section 4.
Theorem 3.4. Forany pand T = cJ?u with
¢ > 256e/J and J > 8e, (23)

and J; = J/(8e),
C*(u, T) < 32¢™ ' min{J; %, Jl_ﬁ/w}. (24)

(Note that we don’t use the notion of the weight function A in Definition 3.3, because all the edges in G;
have the same weight. So Theorem 3.4 is a reduction of Theorem 1.6 to an unweighted case.)

Proof of (22) via Theorem 3.4. For T 3 = 1 we bound C}, , (2%, 7, 4) by the trivial
Ci(p,1) < p (25)
(simply take {{z,y} : zy € G} as a cover), which—since T,, 5 = 1 iff 2% < 32R~2(2/3)"~1—bounds the

contribution of such pairs (to the sum in (22)) by

> 2<64R7Y (2/3)77 1 =3.64R 7. (26)

pert {a:20<2/ch} B>1
For T,, 3 > 1 we use Theorem 3.4 with T' = T,, g(= 20‘_102‘3), w=2%J= R/2,and (thus)
¢ =T/(uJ?) = ¢/ (2J%) = (3/2)°71 /5.

Note that (11) gives J > 8e and ¢ > 256e/J, so (23) holds.

For each integer s > 0 let 75 = {(o, ) : Tu s € (2°,2°T1]}. For each 8 > 1 there is a unique a such that
(o, B) € Ts, and every (a, 8) with T, 5 > 1 is in some 7. Let f(s) = min{J; %, Jf25/274}. Then for fixed s,
we have (see (24))

p-1
2
> Ch2% Tap) <Y 327 f(s) =D 256 <3) f(s) < 3-256f(s), (27)
(e, B)ETs B21 B21
and summing over all s we get
> CH2 Tap) <D T68f(s) =Y 768min{J; %, J;
Ta,p>1 s>0 5>0

Finally, combining (28) and (26) gives (22). O

s/2—4

}=001?). (28)



4. PROOF OF THEOREM 3.4

Aiming for simplicity, we first bound the cost in (24) assuming

T — 22k‘+3
for some positive integer k and
c="T/(uJ?) > 64e/J, (29)
showing that in this case
C*(p, T) < 8c g2 1, (30)

Before proving this, we show it implies Theorem 3.4, which, since C’ (1, t) is decreasing in ¢, just requires
showing that the r.h.s. of (24) bounds C(y, Ty) for some Ty < T

If T < 32 this follows from the trivial (25), since u = T/(cJ?) < 32¢~'J; 2, matching the bound in (24).
Suppose then that 7' > 32 and let Ty = ¢oJ?u be the largest integer not greater than T of the form 22++3
(with positive integer k). We then have ¢y > ¢/4 (supporting (29)) and 2*~' > /T,/8 > V/T/16, and it
follows that the bound on C’; (1, Tp) given by (30) is less than the bound in (24).

Proof of (30). We have |G/|p? < i, T = 22k%3 (= c¢J?p with J as in (23) and c as in (29)), and, with
U:={U CV:|GU]| > max{T, J|Dg(U)|p}}, (31)
want to show that C*(I/) is no more than the bound in (30).

A basic challenge for Conjecture 1.4 in general is identifying a suitable covering set G. In the present
instance, each member of G will be a disjoint union of stars, where for present purposes a star at v in W
(C V)issome {v} US C W with § C Ng(v). (Where convenient we will also refer to this as the “star
(v, S).”) We say such a star is good if

S| > Jdyp/4. (32)
Given a positive integer L, we define
L” = max{L, [Jd,p/4]} (33)
and say a star (v, S) is L-special if |S| = L".

For positive integers b and L, let G(b, L) (C 2V) consist of all disjoint unions of b L-special stars in G. We

will specify a particular collection C of pairs (b, L) and set

G=U{G(b,L):(bL)€C}.
Theorem 3.4 is then given by the following two assertions.
Claim 4.1. G covers U.

Claim 4.2. C(G) is at most the bound in (30).

Set (with i € [k] throughout) L; = 2°~! and
6; = max{2~(+2) 2i=k=31 > 1/(8L,), (34)
and notice that

Z 5 < Z 2= (142) 4 Z 2i=k=3 < 1/2. (35)
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Let
b; = 6;47°T > 2k 1, (36)
Finally, set
C={(b;, L;) : i € [k]}.

Proof of Claim 4.1. We are given U € U and must show it contains a member of G. Let Uy = U and for
j =1,... until no longer possible do: let (v;, S;), with S; = Ng(v;) N U,_1, be a largest good star in U,_;,
andsetd; = [S;|and U; = U;_1 \ ({v;} U S;).

The passage from U;_; to U; deletes at most d} edges containing vertices of S; of U;_;-degree at most
dj; any other edge deleted in this step contains u € S; with U;_,-degree less than Jd,p/4 (or u, having
U;_1-degree greater than d;, would have been chosen in place of v;); and of course each vertex u of the final
U, has Uj;-degree less than Jd,p/4. We thus have

GIUY <> d2+ > Jdp/a< Y dI+|GIU]|/2

velU J
(using the second bound in (31)), so

>_d; (= GU)l/2) > T/2. (37)

Set
B — {j:d; 271,29} ifielk—1],
’ {j:d; >2F11 ifi = k.

(It may be worth noting that, while the d;’s are decreasing, the degrees corresponding to B; increase with
i.) In view of (37), either |Bg| > 1 or

SoBila =T/2> Y 6T= > b4

i€lk—1] i€lk—1] i€lk—1]
(using (35)). Recalling that b, = 1, it follows that for some i € [k] we have
|Bi| > b;. (38)

On the other hand, since |S;| > LY (= max{L;(=2"""), [Jd,p/4]}) for j € B;, the set J{S; U {v,} : j € B;}

contains some W € G(b;, L;)(C G) whenever i is as in (38). This completes the proof of Claim 4.1. O
Proof of Claim 4.2. We first bound the cost, say C(b, L), of the collection G (b, L) for any given b and L. Set
_ [edyp L
w=r| 7o :
Then g, bounds the total cost of the set of L-special stars at v (using (Icf’,j) < (ed,/L")*"), and it follows that

C(&L)gZ{qu:Be(‘g)}. (39)

veEB

For a given value of ¢ := ) _ q,, the rh.s. of (39) is largest when the ¢,’s are all equal (this just uses

xy < [(x + y)/2]?), whence )
C(b, L) < ("2') <|$|> < (%)b. (40)
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Recalling (33), we have

so (since |G|p? < p)
e [4e\“7!
<2u-—|— . 41
o <2u L<J) (41)

Now using (40) and (41), recalling that T = c¢J?u, L; = 271, b; = ;47T = §,T/(4L?) and J; = J/(8e),
and for the moment omitting the subscript i, we have (with the final inequality (42) justified below)

- b
221 412 [ 4e L=t
< | —
b, L) < L T (J)

1 de\ 1
_ 27,
= |8k cJ25<J> 1

b

L+17°
| L (e
20 \ J

IN

Fatias ” (42)
For (42), or the equivalent

oltis > I, (43)
it is enough to show 2541 > .2 (since § > 1/(8L); see (34)), which is true for positive integer L.

Finally, returning to Claim 4.2 (and recalling that L and b in the display ending with (42) are really L;
and b;), we have

k k
c 1 q] b
C(@) =Y Clbi L) < 3 |-+ (44)
i=1 i=1
We use b; > 2F~ from (36) to bound the r.h.s. of (44) by (recall that L; = 2!~ 1)
k gi-1417- 2" k —ok—i g1 B 1-27
Sh - _gk—1 ﬂ - [ 1 ﬂ
;[ 4 ] ’;‘Jl [ 4 } j_0<4‘]1 ) 4 ’ 45

2k—‘1

- J
and, since (29) implies that % > 2, the last expression in (45) is at most 8¢~ 1J; -1 matching (30) as

desired.

O
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